1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44
45 #ifdef CONFIG_NUMA
46 #define NUMA(x) (x)
47 #define DO_NUMA(x) do { (x); } while (0)
48 #else
49 #define NUMA(x) (0)
50 #define DO_NUMA(x) do { } while (0)
51 #endif
52
53 /**
54 * DOC: Overview
55 *
56 * A few notes about the KSM scanning process,
57 * to make it easier to understand the data structures below:
58 *
59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
60 * contents into a data structure that holds pointers to the pages' locations.
61 *
62 * Since the contents of the pages may change at any moment, KSM cannot just
63 * insert the pages into a normal sorted tree and expect it to find anything.
64 * Therefore KSM uses two data structures - the stable and the unstable tree.
65 *
66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67 * by their contents. Because each such page is write-protected, searching on
68 * this tree is fully assured to be working (except when pages are unmapped),
69 * and therefore this tree is called the stable tree.
70 *
71 * The stable tree node includes information required for reverse
72 * mapping from a KSM page to virtual addresses that map this page.
73 *
74 * In order to avoid large latencies of the rmap walks on KSM pages,
75 * KSM maintains two types of nodes in the stable tree:
76 *
77 * * the regular nodes that keep the reverse mapping structures in a
78 * linked list
79 * * the "chains" that link nodes ("dups") that represent the same
80 * write protected memory content, but each "dup" corresponds to a
81 * different KSM page copy of that content
82 *
83 * Internally, the regular nodes, "dups" and "chains" are represented
84 * using the same struct stable_node structure.
85 *
86 * In addition to the stable tree, KSM uses a second data structure called the
87 * unstable tree: this tree holds pointers to pages which have been found to
88 * be "unchanged for a period of time". The unstable tree sorts these pages
89 * by their contents, but since they are not write-protected, KSM cannot rely
90 * upon the unstable tree to work correctly - the unstable tree is liable to
91 * be corrupted as its contents are modified, and so it is called unstable.
92 *
93 * KSM solves this problem by several techniques:
94 *
95 * 1) The unstable tree is flushed every time KSM completes scanning all
96 * memory areas, and then the tree is rebuilt again from the beginning.
97 * 2) KSM will only insert into the unstable tree, pages whose hash value
98 * has not changed since the previous scan of all memory areas.
99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100 * colors of the nodes and not on their contents, assuring that even when
101 * the tree gets "corrupted" it won't get out of balance, so scanning time
102 * remains the same (also, searching and inserting nodes in an rbtree uses
103 * the same algorithm, so we have no overhead when we flush and rebuild).
104 * 4) KSM never flushes the stable tree, which means that even if it were to
105 * take 10 attempts to find a page in the unstable tree, once it is found,
106 * it is secured in the stable tree. (When we scan a new page, we first
107 * compare it against the stable tree, and then against the unstable tree.)
108 *
109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110 * stable trees and multiple unstable trees: one of each for each NUMA node.
111 */
112
113 /**
114 * struct mm_slot - ksm information per mm that is being scanned
115 * @link: link to the mm_slots hash list
116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118 * @mm: the mm that this information is valid for
119 */
120 struct mm_slot {
121 struct hlist_node link;
122 struct list_head mm_list;
123 struct rmap_item *rmap_list;
124 struct mm_struct *mm;
125 };
126
127 /**
128 * struct ksm_scan - cursor for scanning
129 * @mm_slot: the current mm_slot we are scanning
130 * @address: the next address inside that to be scanned
131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
132 * @seqnr: count of completed full scans (needed when removing unstable node)
133 *
134 * There is only the one ksm_scan instance of this cursor structure.
135 */
136 struct ksm_scan {
137 struct mm_slot *mm_slot;
138 unsigned long address;
139 struct rmap_item **rmap_list;
140 unsigned long seqnr;
141 };
142
143 /**
144 * struct stable_node - node of the stable rbtree
145 * @node: rb node of this ksm page in the stable tree
146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148 * @list: linked into migrate_nodes, pending placement in the proper node tree
149 * @hlist: hlist head of rmap_items using this ksm page
150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151 * @chain_prune_time: time of the last full garbage collection
152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154 */
155 struct stable_node {
156 union {
157 struct rb_node node; /* when node of stable tree */
158 struct { /* when listed for migration */
159 struct list_head *head;
160 struct {
161 struct hlist_node hlist_dup;
162 struct list_head list;
163 };
164 };
165 };
166 struct hlist_head hlist;
167 union {
168 unsigned long kpfn;
169 unsigned long chain_prune_time;
170 };
171 /*
172 * STABLE_NODE_CHAIN can be any negative number in
173 * rmap_hlist_len negative range, but better not -1 to be able
174 * to reliably detect underflows.
175 */
176 #define STABLE_NODE_CHAIN -1024
177 int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 int nid;
180 #endif
181 };
182
183 /**
184 * struct rmap_item - reverse mapping item for virtual addresses
185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
188 * @mm: the memory structure this rmap_item is pointing into
189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190 * @oldchecksum: previous checksum of the page at that virtual address
191 * @node: rb node of this rmap_item in the unstable tree
192 * @head: pointer to stable_node heading this list in the stable tree
193 * @hlist: link into hlist of rmap_items hanging off that stable_node
194 */
195 struct rmap_item {
196 struct rmap_item *rmap_list;
197 union {
198 struct anon_vma *anon_vma; /* when stable */
199 #ifdef CONFIG_NUMA
200 int nid; /* when node of unstable tree */
201 #endif
202 };
203 struct mm_struct *mm;
204 unsigned long address; /* + low bits used for flags below */
205 unsigned int oldchecksum; /* when unstable */
206 union {
207 struct rb_node node; /* when node of unstable tree */
208 struct { /* when listed from stable tree */
209 struct stable_node *head;
210 struct hlist_node hlist;
211 };
212 };
213 };
214
215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
218 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
219 /* to mask all the flags */
220
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233
234 static struct mm_slot ksm_mm_head = {
235 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
236 };
237 static struct ksm_scan ksm_scan = {
238 .mm_slot = &ksm_mm_head,
239 };
240
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static int ksm_stable_node_chains_prune_millisecs = 2000;
265
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes 1U
287 #define ksm_nr_node_ids 1
288 #endif
289
290 #define KSM_RUN_STOP 0
291 #define KSM_RUN_MERGE 1
292 #define KSM_RUN_UNMERGE 2
293 #define KSM_RUN_OFFLINE 4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
303 sizeof(struct __struct), __alignof__(struct __struct),\
304 (__flags), NULL)
305
ksm_slab_init(void)306 static int __init ksm_slab_init(void)
307 {
308 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
309 if (!rmap_item_cache)
310 goto out;
311
312 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
313 if (!stable_node_cache)
314 goto out_free1;
315
316 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
317 if (!mm_slot_cache)
318 goto out_free2;
319
320 return 0;
321
322 out_free2:
323 kmem_cache_destroy(stable_node_cache);
324 out_free1:
325 kmem_cache_destroy(rmap_item_cache);
326 out:
327 return -ENOMEM;
328 }
329
ksm_slab_free(void)330 static void __init ksm_slab_free(void)
331 {
332 kmem_cache_destroy(mm_slot_cache);
333 kmem_cache_destroy(stable_node_cache);
334 kmem_cache_destroy(rmap_item_cache);
335 mm_slot_cache = NULL;
336 }
337
is_stable_node_chain(struct stable_node * chain)338 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
339 {
340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342
is_stable_node_dup(struct stable_node * dup)343 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
344 {
345 return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347
stable_node_chain_add_dup(struct stable_node * dup,struct stable_node * chain)348 static inline void stable_node_chain_add_dup(struct stable_node *dup,
349 struct stable_node *chain)
350 {
351 VM_BUG_ON(is_stable_node_dup(dup));
352 dup->head = STABLE_NODE_DUP_HEAD;
353 VM_BUG_ON(!is_stable_node_chain(chain));
354 hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 ksm_stable_node_dups++;
356 }
357
__stable_node_dup_del(struct stable_node * dup)358 static inline void __stable_node_dup_del(struct stable_node *dup)
359 {
360 VM_BUG_ON(!is_stable_node_dup(dup));
361 hlist_del(&dup->hlist_dup);
362 ksm_stable_node_dups--;
363 }
364
stable_node_dup_del(struct stable_node * dup)365 static inline void stable_node_dup_del(struct stable_node *dup)
366 {
367 VM_BUG_ON(is_stable_node_chain(dup));
368 if (is_stable_node_dup(dup))
369 __stable_node_dup_del(dup);
370 else
371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373 dup->head = NULL;
374 #endif
375 }
376
alloc_rmap_item(void)377 static inline struct rmap_item *alloc_rmap_item(void)
378 {
379 struct rmap_item *rmap_item;
380
381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 __GFP_NORETRY | __GFP_NOWARN);
383 if (rmap_item)
384 ksm_rmap_items++;
385 return rmap_item;
386 }
387
free_rmap_item(struct rmap_item * rmap_item)388 static inline void free_rmap_item(struct rmap_item *rmap_item)
389 {
390 ksm_rmap_items--;
391 rmap_item->mm = NULL; /* debug safety */
392 kmem_cache_free(rmap_item_cache, rmap_item);
393 }
394
alloc_stable_node(void)395 static inline struct stable_node *alloc_stable_node(void)
396 {
397 /*
398 * The allocation can take too long with GFP_KERNEL when memory is under
399 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
400 * grants access to memory reserves, helping to avoid this problem.
401 */
402 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
403 }
404
free_stable_node(struct stable_node * stable_node)405 static inline void free_stable_node(struct stable_node *stable_node)
406 {
407 VM_BUG_ON(stable_node->rmap_hlist_len &&
408 !is_stable_node_chain(stable_node));
409 kmem_cache_free(stable_node_cache, stable_node);
410 }
411
alloc_mm_slot(void)412 static inline struct mm_slot *alloc_mm_slot(void)
413 {
414 if (!mm_slot_cache) /* initialization failed */
415 return NULL;
416 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
417 }
418
free_mm_slot(struct mm_slot * mm_slot)419 static inline void free_mm_slot(struct mm_slot *mm_slot)
420 {
421 kmem_cache_free(mm_slot_cache, mm_slot);
422 }
423
get_mm_slot(struct mm_struct * mm)424 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
425 {
426 struct mm_slot *slot;
427
428 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
429 if (slot->mm == mm)
430 return slot;
431
432 return NULL;
433 }
434
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)435 static void insert_to_mm_slots_hash(struct mm_struct *mm,
436 struct mm_slot *mm_slot)
437 {
438 mm_slot->mm = mm;
439 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
440 }
441
442 /*
443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
444 * page tables after it has passed through ksm_exit() - which, if necessary,
445 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
446 * a special flag: they can just back out as soon as mm_users goes to zero.
447 * ksm_test_exit() is used throughout to make this test for exit: in some
448 * places for correctness, in some places just to avoid unnecessary work.
449 */
ksm_test_exit(struct mm_struct * mm)450 static inline bool ksm_test_exit(struct mm_struct *mm)
451 {
452 return atomic_read(&mm->mm_users) == 0;
453 }
454
455 /*
456 * We use break_ksm to break COW on a ksm page: it's a stripped down
457 *
458 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
459 * put_page(page);
460 *
461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
462 * in case the application has unmapped and remapped mm,addr meanwhile.
463 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
465 *
466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
467 * of the process that owns 'vma'. We also do not want to enforce
468 * protection keys here anyway.
469 */
break_ksm(struct vm_area_struct * vma,unsigned long addr)470 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
471 {
472 struct page *page;
473 vm_fault_t ret = 0;
474
475 do {
476 cond_resched();
477 page = follow_page(vma, addr,
478 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
479 if (IS_ERR_OR_NULL(page))
480 break;
481 if (PageKsm(page))
482 ret = handle_mm_fault(vma, addr,
483 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
484 NULL);
485 else
486 ret = VM_FAULT_WRITE;
487 put_user_page(page);
488 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
489 /*
490 * We must loop because handle_mm_fault() may back out if there's
491 * any difficulty e.g. if pte accessed bit gets updated concurrently.
492 *
493 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494 * COW has been broken, even if the vma does not permit VM_WRITE;
495 * but note that a concurrent fault might break PageKsm for us.
496 *
497 * VM_FAULT_SIGBUS could occur if we race with truncation of the
498 * backing file, which also invalidates anonymous pages: that's
499 * okay, that truncation will have unmapped the PageKsm for us.
500 *
501 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503 * current task has TIF_MEMDIE set, and will be OOM killed on return
504 * to user; and ksmd, having no mm, would never be chosen for that.
505 *
506 * But if the mm is in a limited mem_cgroup, then the fault may fail
507 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508 * even ksmd can fail in this way - though it's usually breaking ksm
509 * just to undo a merge it made a moment before, so unlikely to oom.
510 *
511 * That's a pity: we might therefore have more kernel pages allocated
512 * than we're counting as nodes in the stable tree; but ksm_do_scan
513 * will retry to break_cow on each pass, so should recover the page
514 * in due course. The important thing is to not let VM_MERGEABLE
515 * be cleared while any such pages might remain in the area.
516 */
517 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
518 }
519
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521 unsigned long addr)
522 {
523 struct vm_area_struct *vma;
524 if (ksm_test_exit(mm))
525 return NULL;
526 vma = find_vma(mm, addr);
527 if (!vma || vma->vm_start > addr)
528 return NULL;
529 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530 return NULL;
531 return vma;
532 }
533
break_cow(struct rmap_item * rmap_item)534 static void break_cow(struct rmap_item *rmap_item)
535 {
536 struct mm_struct *mm = rmap_item->mm;
537 unsigned long addr = rmap_item->address;
538 struct vm_area_struct *vma;
539
540 /*
541 * It is not an accident that whenever we want to break COW
542 * to undo, we also need to drop a reference to the anon_vma.
543 */
544 put_anon_vma(rmap_item->anon_vma);
545
546 mmap_read_lock(mm);
547 vma = find_mergeable_vma(mm, addr);
548 if (vma)
549 break_ksm(vma, addr);
550 mmap_read_unlock(mm);
551 }
552
get_mergeable_page(struct rmap_item * rmap_item)553 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554 {
555 struct mm_struct *mm = rmap_item->mm;
556 unsigned long addr = rmap_item->address;
557 struct vm_area_struct *vma;
558 struct page *page;
559
560 mmap_read_lock(mm);
561 vma = find_mergeable_vma(mm, addr);
562 if (!vma)
563 goto out;
564
565 page = follow_page(vma, addr, FOLL_GET);
566 if (IS_ERR_OR_NULL(page))
567 goto out;
568 if (PageAnon(page)) {
569 flush_anon_page(vma, page, addr);
570 flush_dcache_page(page);
571 } else {
572 put_user_page(page);
573 out:
574 page = NULL;
575 }
576 mmap_read_unlock(mm);
577 return page;
578 }
579
580 /*
581 * This helper is used for getting right index into array of tree roots.
582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584 * every node has its own stable and unstable tree.
585 */
get_kpfn_nid(unsigned long kpfn)586 static inline int get_kpfn_nid(unsigned long kpfn)
587 {
588 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
589 }
590
alloc_stable_node_chain(struct stable_node * dup,struct rb_root * root)591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592 struct rb_root *root)
593 {
594 struct stable_node *chain = alloc_stable_node();
595 VM_BUG_ON(is_stable_node_chain(dup));
596 if (likely(chain)) {
597 INIT_HLIST_HEAD(&chain->hlist);
598 chain->chain_prune_time = jiffies;
599 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601 chain->nid = NUMA_NO_NODE; /* debug */
602 #endif
603 ksm_stable_node_chains++;
604
605 /*
606 * Put the stable node chain in the first dimension of
607 * the stable tree and at the same time remove the old
608 * stable node.
609 */
610 rb_replace_node(&dup->node, &chain->node, root);
611
612 /*
613 * Move the old stable node to the second dimension
614 * queued in the hlist_dup. The invariant is that all
615 * dup stable_nodes in the chain->hlist point to pages
616 * that are write protected and have the exact same
617 * content.
618 */
619 stable_node_chain_add_dup(dup, chain);
620 }
621 return chain;
622 }
623
free_stable_node_chain(struct stable_node * chain,struct rb_root * root)624 static inline void free_stable_node_chain(struct stable_node *chain,
625 struct rb_root *root)
626 {
627 rb_erase(&chain->node, root);
628 free_stable_node(chain);
629 ksm_stable_node_chains--;
630 }
631
remove_node_from_stable_tree(struct stable_node * stable_node)632 static void remove_node_from_stable_tree(struct stable_node *stable_node)
633 {
634 struct rmap_item *rmap_item;
635
636 /* check it's not STABLE_NODE_CHAIN or negative */
637 BUG_ON(stable_node->rmap_hlist_len < 0);
638
639 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
640 if (rmap_item->hlist.next)
641 ksm_pages_sharing--;
642 else
643 ksm_pages_shared--;
644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 stable_node->rmap_hlist_len--;
646 put_anon_vma(rmap_item->anon_vma);
647 rmap_item->address &= PAGE_MASK;
648 cond_resched();
649 }
650
651 /*
652 * We need the second aligned pointer of the migrate_nodes
653 * list_head to stay clear from the rb_parent_color union
654 * (aligned and different than any node) and also different
655 * from &migrate_nodes. This will verify that future list.h changes
656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 */
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661 #endif
662
663 if (stable_node->head == &migrate_nodes)
664 list_del(&stable_node->list);
665 else
666 stable_node_dup_del(stable_node);
667 free_stable_node(stable_node);
668 }
669
670 enum get_ksm_page_flags {
671 GET_KSM_PAGE_NOLOCK,
672 GET_KSM_PAGE_LOCK,
673 GET_KSM_PAGE_TRYLOCK
674 };
675
676 /*
677 * get_ksm_page: checks if the page indicated by the stable node
678 * is still its ksm page, despite having held no reference to it.
679 * In which case we can trust the content of the page, and it
680 * returns the gotten page; but if the page has now been zapped,
681 * remove the stale node from the stable tree and return NULL.
682 * But beware, the stable node's page might be being migrated.
683 *
684 * You would expect the stable_node to hold a reference to the ksm page.
685 * But if it increments the page's count, swapping out has to wait for
686 * ksmd to come around again before it can free the page, which may take
687 * seconds or even minutes: much too unresponsive. So instead we use a
688 * "keyhole reference": access to the ksm page from the stable node peeps
689 * out through its keyhole to see if that page still holds the right key,
690 * pointing back to this stable node. This relies on freeing a PageAnon
691 * page to reset its page->mapping to NULL, and relies on no other use of
692 * a page to put something that might look like our key in page->mapping.
693 * is on its way to being freed; but it is an anomaly to bear in mind.
694 */
get_ksm_page(struct stable_node * stable_node,enum get_ksm_page_flags flags)695 static struct page *get_ksm_page(struct stable_node *stable_node,
696 enum get_ksm_page_flags flags)
697 {
698 struct page *page;
699 void *expected_mapping;
700 unsigned long kpfn;
701
702 expected_mapping = (void *)((unsigned long)stable_node |
703 PAGE_MAPPING_KSM);
704 again:
705 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
706 page = pfn_to_page(kpfn);
707 if (READ_ONCE(page->mapping) != expected_mapping)
708 goto stale;
709
710 /*
711 * We cannot do anything with the page while its refcount is 0.
712 * Usually 0 means free, or tail of a higher-order page: in which
713 * case this node is no longer referenced, and should be freed;
714 * however, it might mean that the page is under page_ref_freeze().
715 * The __remove_mapping() case is easy, again the node is now stale;
716 * the same is in reuse_ksm_page() case; but if page is swapcache
717 * in migrate_page_move_mapping(), it might still be our page,
718 * in which case it's essential to keep the node.
719 */
720 while (!get_page_unless_zero(page)) {
721 /*
722 * Another check for page->mapping != expected_mapping would
723 * work here too. We have chosen the !PageSwapCache test to
724 * optimize the common case, when the page is or is about to
725 * be freed: PageSwapCache is cleared (under spin_lock_irq)
726 * in the ref_freeze section of __remove_mapping(); but Anon
727 * page->mapping reset to NULL later, in free_pages_prepare().
728 */
729 if (!PageSwapCache(page))
730 goto stale;
731 cpu_relax();
732 }
733
734 if (READ_ONCE(page->mapping) != expected_mapping) {
735 put_page(page);
736 goto stale;
737 }
738
739 if (flags == GET_KSM_PAGE_TRYLOCK) {
740 if (!trylock_page(page)) {
741 put_page(page);
742 return ERR_PTR(-EBUSY);
743 }
744 } else if (flags == GET_KSM_PAGE_LOCK)
745 lock_page(page);
746
747 if (flags != GET_KSM_PAGE_NOLOCK) {
748 if (READ_ONCE(page->mapping) != expected_mapping) {
749 unlock_page(page);
750 put_page(page);
751 goto stale;
752 }
753 }
754 return page;
755
756 stale:
757 /*
758 * We come here from above when page->mapping or !PageSwapCache
759 * suggests that the node is stale; but it might be under migration.
760 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
761 * before checking whether node->kpfn has been changed.
762 */
763 smp_rmb();
764 if (READ_ONCE(stable_node->kpfn) != kpfn)
765 goto again;
766 remove_node_from_stable_tree(stable_node);
767 return NULL;
768 }
769
770 /*
771 * Removing rmap_item from stable or unstable tree.
772 * This function will clean the information from the stable/unstable tree.
773 */
remove_rmap_item_from_tree(struct rmap_item * rmap_item)774 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
775 {
776 if (rmap_item->address & STABLE_FLAG) {
777 struct stable_node *stable_node;
778 struct page *page;
779
780 stable_node = rmap_item->head;
781 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
782 if (!page)
783 goto out;
784
785 hlist_del(&rmap_item->hlist);
786 unlock_page(page);
787 put_page(page);
788
789 if (!hlist_empty(&stable_node->hlist))
790 ksm_pages_sharing--;
791 else
792 ksm_pages_shared--;
793 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794 stable_node->rmap_hlist_len--;
795
796 put_anon_vma(rmap_item->anon_vma);
797 rmap_item->head = NULL;
798 rmap_item->address &= PAGE_MASK;
799
800 } else if (rmap_item->address & UNSTABLE_FLAG) {
801 unsigned char age;
802 /*
803 * Usually ksmd can and must skip the rb_erase, because
804 * root_unstable_tree was already reset to RB_ROOT.
805 * But be careful when an mm is exiting: do the rb_erase
806 * if this rmap_item was inserted by this scan, rather
807 * than left over from before.
808 */
809 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
810 BUG_ON(age > 1);
811 if (!age)
812 rb_erase(&rmap_item->node,
813 root_unstable_tree + NUMA(rmap_item->nid));
814 ksm_pages_unshared--;
815 rmap_item->address &= PAGE_MASK;
816 }
817 out:
818 cond_resched(); /* we're called from many long loops */
819 }
820
remove_trailing_rmap_items(struct mm_slot * mm_slot,struct rmap_item ** rmap_list)821 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
822 struct rmap_item **rmap_list)
823 {
824 while (*rmap_list) {
825 struct rmap_item *rmap_item = *rmap_list;
826 *rmap_list = rmap_item->rmap_list;
827 remove_rmap_item_from_tree(rmap_item);
828 free_rmap_item(rmap_item);
829 }
830 }
831
832 /*
833 * Though it's very tempting to unmerge rmap_items from stable tree rather
834 * than check every pte of a given vma, the locking doesn't quite work for
835 * that - an rmap_item is assigned to the stable tree after inserting ksm
836 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
837 * rmap_items from parent to child at fork time (so as not to waste time
838 * if exit comes before the next scan reaches it).
839 *
840 * Similarly, although we'd like to remove rmap_items (so updating counts
841 * and freeing memory) when unmerging an area, it's easier to leave that
842 * to the next pass of ksmd - consider, for example, how ksmd might be
843 * in cmp_and_merge_page on one of the rmap_items we would be removing.
844 */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end)845 static int unmerge_ksm_pages(struct vm_area_struct *vma,
846 unsigned long start, unsigned long end)
847 {
848 unsigned long addr;
849 int err = 0;
850
851 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
852 if (ksm_test_exit(vma->vm_mm))
853 break;
854 if (signal_pending(current))
855 err = -ERESTARTSYS;
856 else
857 err = break_ksm(vma, addr);
858 }
859 return err;
860 }
861
page_stable_node(struct page * page)862 static inline struct stable_node *page_stable_node(struct page *page)
863 {
864 return PageKsm(page) ? page_rmapping(page) : NULL;
865 }
866
set_page_stable_node(struct page * page,struct stable_node * stable_node)867 static inline void set_page_stable_node(struct page *page,
868 struct stable_node *stable_node)
869 {
870 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
871 }
872
873 #ifdef CONFIG_SYSFS
874 /*
875 * Only called through the sysfs control interface:
876 */
remove_stable_node(struct stable_node * stable_node)877 static int remove_stable_node(struct stable_node *stable_node)
878 {
879 struct page *page;
880 int err;
881
882 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
883 if (!page) {
884 /*
885 * get_ksm_page did remove_node_from_stable_tree itself.
886 */
887 return 0;
888 }
889
890 /*
891 * Page could be still mapped if this races with __mmput() running in
892 * between ksm_exit() and exit_mmap(). Just refuse to let
893 * merge_across_nodes/max_page_sharing be switched.
894 */
895 err = -EBUSY;
896 if (!page_mapped(page)) {
897 /*
898 * The stable node did not yet appear stale to get_ksm_page(),
899 * since that allows for an unmapped ksm page to be recognized
900 * right up until it is freed; but the node is safe to remove.
901 * This page might be in a pagevec waiting to be freed,
902 * or it might be PageSwapCache (perhaps under writeback),
903 * or it might have been removed from swapcache a moment ago.
904 */
905 set_page_stable_node(page, NULL);
906 remove_node_from_stable_tree(stable_node);
907 err = 0;
908 }
909
910 unlock_page(page);
911 put_page(page);
912 return err;
913 }
914
remove_stable_node_chain(struct stable_node * stable_node,struct rb_root * root)915 static int remove_stable_node_chain(struct stable_node *stable_node,
916 struct rb_root *root)
917 {
918 struct stable_node *dup;
919 struct hlist_node *hlist_safe;
920
921 if (!is_stable_node_chain(stable_node)) {
922 VM_BUG_ON(is_stable_node_dup(stable_node));
923 if (remove_stable_node(stable_node))
924 return true;
925 else
926 return false;
927 }
928
929 hlist_for_each_entry_safe(dup, hlist_safe,
930 &stable_node->hlist, hlist_dup) {
931 VM_BUG_ON(!is_stable_node_dup(dup));
932 if (remove_stable_node(dup))
933 return true;
934 }
935 BUG_ON(!hlist_empty(&stable_node->hlist));
936 free_stable_node_chain(stable_node, root);
937 return false;
938 }
939
remove_all_stable_nodes(void)940 static int remove_all_stable_nodes(void)
941 {
942 struct stable_node *stable_node, *next;
943 int nid;
944 int err = 0;
945
946 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
947 while (root_stable_tree[nid].rb_node) {
948 stable_node = rb_entry(root_stable_tree[nid].rb_node,
949 struct stable_node, node);
950 if (remove_stable_node_chain(stable_node,
951 root_stable_tree + nid)) {
952 err = -EBUSY;
953 break; /* proceed to next nid */
954 }
955 cond_resched();
956 }
957 }
958 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
959 if (remove_stable_node(stable_node))
960 err = -EBUSY;
961 cond_resched();
962 }
963 return err;
964 }
965
unmerge_and_remove_all_rmap_items(void)966 static int unmerge_and_remove_all_rmap_items(void)
967 {
968 struct mm_slot *mm_slot;
969 struct mm_struct *mm;
970 struct vm_area_struct *vma;
971 int err = 0;
972
973 spin_lock(&ksm_mmlist_lock);
974 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
975 struct mm_slot, mm_list);
976 spin_unlock(&ksm_mmlist_lock);
977
978 for (mm_slot = ksm_scan.mm_slot;
979 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
980 mm = mm_slot->mm;
981 mmap_read_lock(mm);
982 for (vma = mm->mmap; vma; vma = vma->vm_next) {
983 if (ksm_test_exit(mm))
984 break;
985 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
986 continue;
987 err = unmerge_ksm_pages(vma,
988 vma->vm_start, vma->vm_end);
989 if (err)
990 goto error;
991 }
992
993 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
994 mmap_read_unlock(mm);
995
996 spin_lock(&ksm_mmlist_lock);
997 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
998 struct mm_slot, mm_list);
999 if (ksm_test_exit(mm)) {
1000 hash_del(&mm_slot->link);
1001 list_del(&mm_slot->mm_list);
1002 spin_unlock(&ksm_mmlist_lock);
1003
1004 free_mm_slot(mm_slot);
1005 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1006 mmdrop(mm);
1007 } else
1008 spin_unlock(&ksm_mmlist_lock);
1009 }
1010
1011 /* Clean up stable nodes, but don't worry if some are still busy */
1012 remove_all_stable_nodes();
1013 ksm_scan.seqnr = 0;
1014 return 0;
1015
1016 error:
1017 mmap_read_unlock(mm);
1018 spin_lock(&ksm_mmlist_lock);
1019 ksm_scan.mm_slot = &ksm_mm_head;
1020 spin_unlock(&ksm_mmlist_lock);
1021 return err;
1022 }
1023 #endif /* CONFIG_SYSFS */
1024
calc_checksum(struct page * page)1025 static u32 calc_checksum(struct page *page)
1026 {
1027 u32 checksum;
1028 void *addr = kmap_atomic(page);
1029 checksum = xxhash(addr, PAGE_SIZE, 0);
1030 kunmap_atomic(addr);
1031 return checksum;
1032 }
1033
write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)1034 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1035 pte_t *orig_pte)
1036 {
1037 struct mm_struct *mm = vma->vm_mm;
1038 struct page_vma_mapped_walk pvmw = {
1039 .page = page,
1040 .vma = vma,
1041 };
1042 int swapped;
1043 int err = -EFAULT;
1044 struct mmu_notifier_range range;
1045
1046 pvmw.address = page_address_in_vma(page, vma);
1047 if (pvmw.address == -EFAULT)
1048 goto out;
1049
1050 BUG_ON(PageTransCompound(page));
1051
1052 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1053 pvmw.address,
1054 pvmw.address + PAGE_SIZE);
1055 mmu_notifier_invalidate_range_start(&range);
1056
1057 if (!page_vma_mapped_walk(&pvmw))
1058 goto out_mn;
1059 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1060 goto out_unlock;
1061
1062 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1063 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1064 mm_tlb_flush_pending(mm)) {
1065 pte_t entry;
1066
1067 swapped = PageSwapCache(page);
1068 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1069 /*
1070 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1071 * take any lock, therefore the check that we are going to make
1072 * with the pagecount against the mapcount is racey and
1073 * O_DIRECT can happen right after the check.
1074 * So we clear the pte and flush the tlb before the check
1075 * this assure us that no O_DIRECT can happen after the check
1076 * or in the middle of the check.
1077 *
1078 * No need to notify as we are downgrading page table to read
1079 * only not changing it to point to a new page.
1080 *
1081 * See Documentation/vm/mmu_notifier.rst
1082 */
1083 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1084 /*
1085 * Check that no O_DIRECT or similar I/O is in progress on the
1086 * page
1087 */
1088 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1089 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1090 goto out_unlock;
1091 }
1092 if (pte_dirty(entry))
1093 set_page_dirty(page);
1094
1095 if (pte_protnone(entry))
1096 entry = pte_mkclean(pte_clear_savedwrite(entry));
1097 else
1098 entry = pte_mkclean(pte_wrprotect(entry));
1099 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1100 }
1101 *orig_pte = *pvmw.pte;
1102 err = 0;
1103
1104 out_unlock:
1105 page_vma_mapped_walk_done(&pvmw);
1106 out_mn:
1107 mmu_notifier_invalidate_range_end(&range);
1108 out:
1109 return err;
1110 }
1111
1112 /**
1113 * replace_page - replace page in vma by new ksm page
1114 * @vma: vma that holds the pte pointing to page
1115 * @page: the page we are replacing by kpage
1116 * @kpage: the ksm page we replace page by
1117 * @orig_pte: the original value of the pte
1118 *
1119 * Returns 0 on success, -EFAULT on failure.
1120 */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1121 static int replace_page(struct vm_area_struct *vma, struct page *page,
1122 struct page *kpage, pte_t orig_pte)
1123 {
1124 struct mm_struct *mm = vma->vm_mm;
1125 pmd_t *pmd;
1126 pte_t *ptep;
1127 pte_t newpte;
1128 spinlock_t *ptl;
1129 unsigned long addr;
1130 int err = -EFAULT;
1131 struct mmu_notifier_range range;
1132
1133 addr = page_address_in_vma(page, vma);
1134 if (addr == -EFAULT)
1135 goto out;
1136
1137 pmd = mm_find_pmd(mm, addr);
1138 if (!pmd)
1139 goto out;
1140
1141 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1142 addr + PAGE_SIZE);
1143 mmu_notifier_invalidate_range_start(&range);
1144
1145 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1146 if (!pte_same(*ptep, orig_pte)) {
1147 pte_unmap_unlock(ptep, ptl);
1148 goto out_mn;
1149 }
1150
1151 /*
1152 * No need to check ksm_use_zero_pages here: we can only have a
1153 * zero_page here if ksm_use_zero_pages was enabled already.
1154 */
1155 if (!is_zero_pfn(page_to_pfn(kpage))) {
1156 get_page(kpage);
1157 page_add_anon_rmap(kpage, vma, addr, false);
1158 newpte = mk_pte(kpage, vma->vm_page_prot);
1159 } else {
1160 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1161 vma->vm_page_prot));
1162 /*
1163 * We're replacing an anonymous page with a zero page, which is
1164 * not anonymous. We need to do proper accounting otherwise we
1165 * will get wrong values in /proc, and a BUG message in dmesg
1166 * when tearing down the mm.
1167 */
1168 dec_mm_counter(mm, MM_ANONPAGES);
1169 }
1170
1171 flush_cache_page(vma, addr, pte_pfn(*ptep));
1172 /*
1173 * No need to notify as we are replacing a read only page with another
1174 * read only page with the same content.
1175 *
1176 * See Documentation/vm/mmu_notifier.rst
1177 */
1178 ptep_clear_flush(vma, addr, ptep);
1179 set_pte_at_notify(mm, addr, ptep, newpte);
1180
1181 page_remove_rmap(page, false);
1182 if (!page_mapped(page))
1183 try_to_free_swap(page);
1184 put_page(page);
1185
1186 pte_unmap_unlock(ptep, ptl);
1187 err = 0;
1188 out_mn:
1189 mmu_notifier_invalidate_range_end(&range);
1190 out:
1191 return err;
1192 }
1193
1194 /*
1195 * try_to_merge_one_page - take two pages and merge them into one
1196 * @vma: the vma that holds the pte pointing to page
1197 * @page: the PageAnon page that we want to replace with kpage
1198 * @kpage: the PageKsm page that we want to map instead of page,
1199 * or NULL the first time when we want to use page as kpage.
1200 *
1201 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1202 */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1203 static int try_to_merge_one_page(struct vm_area_struct *vma,
1204 struct page *page, struct page *kpage)
1205 {
1206 pte_t orig_pte = __pte(0);
1207 int err = -EFAULT;
1208
1209 if (page == kpage) /* ksm page forked */
1210 return 0;
1211
1212 if (!PageAnon(page))
1213 goto out;
1214
1215 /*
1216 * We need the page lock to read a stable PageSwapCache in
1217 * write_protect_page(). We use trylock_page() instead of
1218 * lock_page() because we don't want to wait here - we
1219 * prefer to continue scanning and merging different pages,
1220 * then come back to this page when it is unlocked.
1221 */
1222 if (!trylock_page(page))
1223 goto out;
1224
1225 if (PageTransCompound(page)) {
1226 if (split_huge_page(page))
1227 goto out_unlock;
1228 }
1229
1230 /*
1231 * If this anonymous page is mapped only here, its pte may need
1232 * to be write-protected. If it's mapped elsewhere, all of its
1233 * ptes are necessarily already write-protected. But in either
1234 * case, we need to lock and check page_count is not raised.
1235 */
1236 if (write_protect_page(vma, page, &orig_pte) == 0) {
1237 if (!kpage) {
1238 /*
1239 * While we hold page lock, upgrade page from
1240 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1241 * stable_tree_insert() will update stable_node.
1242 */
1243 set_page_stable_node(page, NULL);
1244 mark_page_accessed(page);
1245 /*
1246 * Page reclaim just frees a clean page with no dirty
1247 * ptes: make sure that the ksm page would be swapped.
1248 */
1249 if (!PageDirty(page))
1250 SetPageDirty(page);
1251 err = 0;
1252 } else if (pages_identical(page, kpage))
1253 err = replace_page(vma, page, kpage, orig_pte);
1254 }
1255
1256 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1257 munlock_vma_page(page);
1258 if (!PageMlocked(kpage)) {
1259 unlock_page(page);
1260 lock_page(kpage);
1261 mlock_vma_page(kpage);
1262 page = kpage; /* for final unlock */
1263 }
1264 }
1265
1266 out_unlock:
1267 unlock_page(page);
1268 out:
1269 return err;
1270 }
1271
1272 /*
1273 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1274 * but no new kernel page is allocated: kpage must already be a ksm page.
1275 *
1276 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1277 */
try_to_merge_with_ksm_page(struct rmap_item * rmap_item,struct page * page,struct page * kpage)1278 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1279 struct page *page, struct page *kpage)
1280 {
1281 struct mm_struct *mm = rmap_item->mm;
1282 struct vm_area_struct *vma;
1283 int err = -EFAULT;
1284
1285 mmap_read_lock(mm);
1286 vma = find_mergeable_vma(mm, rmap_item->address);
1287 if (!vma)
1288 goto out;
1289
1290 err = try_to_merge_one_page(vma, page, kpage);
1291 if (err)
1292 goto out;
1293
1294 /* Unstable nid is in union with stable anon_vma: remove first */
1295 remove_rmap_item_from_tree(rmap_item);
1296
1297 /* Must get reference to anon_vma while still holding mmap_lock */
1298 rmap_item->anon_vma = vma->anon_vma;
1299 get_anon_vma(vma->anon_vma);
1300 out:
1301 mmap_read_unlock(mm);
1302 return err;
1303 }
1304
1305 /*
1306 * try_to_merge_two_pages - take two identical pages and prepare them
1307 * to be merged into one page.
1308 *
1309 * This function returns the kpage if we successfully merged two identical
1310 * pages into one ksm page, NULL otherwise.
1311 *
1312 * Note that this function upgrades page to ksm page: if one of the pages
1313 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1314 */
try_to_merge_two_pages(struct rmap_item * rmap_item,struct page * page,struct rmap_item * tree_rmap_item,struct page * tree_page)1315 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1316 struct page *page,
1317 struct rmap_item *tree_rmap_item,
1318 struct page *tree_page)
1319 {
1320 int err;
1321
1322 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1323 if (!err) {
1324 err = try_to_merge_with_ksm_page(tree_rmap_item,
1325 tree_page, page);
1326 /*
1327 * If that fails, we have a ksm page with only one pte
1328 * pointing to it: so break it.
1329 */
1330 if (err)
1331 break_cow(rmap_item);
1332 }
1333 return err ? NULL : page;
1334 }
1335
1336 static __always_inline
__is_page_sharing_candidate(struct stable_node * stable_node,int offset)1337 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1338 {
1339 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1340 /*
1341 * Check that at least one mapping still exists, otherwise
1342 * there's no much point to merge and share with this
1343 * stable_node, as the underlying tree_page of the other
1344 * sharer is going to be freed soon.
1345 */
1346 return stable_node->rmap_hlist_len &&
1347 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1348 }
1349
1350 static __always_inline
is_page_sharing_candidate(struct stable_node * stable_node)1351 bool is_page_sharing_candidate(struct stable_node *stable_node)
1352 {
1353 return __is_page_sharing_candidate(stable_node, 0);
1354 }
1355
stable_node_dup(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1356 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1357 struct stable_node **_stable_node,
1358 struct rb_root *root,
1359 bool prune_stale_stable_nodes)
1360 {
1361 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1362 struct hlist_node *hlist_safe;
1363 struct page *_tree_page, *tree_page = NULL;
1364 int nr = 0;
1365 int found_rmap_hlist_len;
1366
1367 if (!prune_stale_stable_nodes ||
1368 time_before(jiffies, stable_node->chain_prune_time +
1369 msecs_to_jiffies(
1370 ksm_stable_node_chains_prune_millisecs)))
1371 prune_stale_stable_nodes = false;
1372 else
1373 stable_node->chain_prune_time = jiffies;
1374
1375 hlist_for_each_entry_safe(dup, hlist_safe,
1376 &stable_node->hlist, hlist_dup) {
1377 cond_resched();
1378 /*
1379 * We must walk all stable_node_dup to prune the stale
1380 * stable nodes during lookup.
1381 *
1382 * get_ksm_page can drop the nodes from the
1383 * stable_node->hlist if they point to freed pages
1384 * (that's why we do a _safe walk). The "dup"
1385 * stable_node parameter itself will be freed from
1386 * under us if it returns NULL.
1387 */
1388 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1389 if (!_tree_page)
1390 continue;
1391 nr += 1;
1392 if (is_page_sharing_candidate(dup)) {
1393 if (!found ||
1394 dup->rmap_hlist_len > found_rmap_hlist_len) {
1395 if (found)
1396 put_page(tree_page);
1397 found = dup;
1398 found_rmap_hlist_len = found->rmap_hlist_len;
1399 tree_page = _tree_page;
1400
1401 /* skip put_page for found dup */
1402 if (!prune_stale_stable_nodes)
1403 break;
1404 continue;
1405 }
1406 }
1407 put_page(_tree_page);
1408 }
1409
1410 if (found) {
1411 /*
1412 * nr is counting all dups in the chain only if
1413 * prune_stale_stable_nodes is true, otherwise we may
1414 * break the loop at nr == 1 even if there are
1415 * multiple entries.
1416 */
1417 if (prune_stale_stable_nodes && nr == 1) {
1418 /*
1419 * If there's not just one entry it would
1420 * corrupt memory, better BUG_ON. In KSM
1421 * context with no lock held it's not even
1422 * fatal.
1423 */
1424 BUG_ON(stable_node->hlist.first->next);
1425
1426 /*
1427 * There's just one entry and it is below the
1428 * deduplication limit so drop the chain.
1429 */
1430 rb_replace_node(&stable_node->node, &found->node,
1431 root);
1432 free_stable_node(stable_node);
1433 ksm_stable_node_chains--;
1434 ksm_stable_node_dups--;
1435 /*
1436 * NOTE: the caller depends on the stable_node
1437 * to be equal to stable_node_dup if the chain
1438 * was collapsed.
1439 */
1440 *_stable_node = found;
1441 /*
1442 * Just for robustneess as stable_node is
1443 * otherwise left as a stable pointer, the
1444 * compiler shall optimize it away at build
1445 * time.
1446 */
1447 stable_node = NULL;
1448 } else if (stable_node->hlist.first != &found->hlist_dup &&
1449 __is_page_sharing_candidate(found, 1)) {
1450 /*
1451 * If the found stable_node dup can accept one
1452 * more future merge (in addition to the one
1453 * that is underway) and is not at the head of
1454 * the chain, put it there so next search will
1455 * be quicker in the !prune_stale_stable_nodes
1456 * case.
1457 *
1458 * NOTE: it would be inaccurate to use nr > 1
1459 * instead of checking the hlist.first pointer
1460 * directly, because in the
1461 * prune_stale_stable_nodes case "nr" isn't
1462 * the position of the found dup in the chain,
1463 * but the total number of dups in the chain.
1464 */
1465 hlist_del(&found->hlist_dup);
1466 hlist_add_head(&found->hlist_dup,
1467 &stable_node->hlist);
1468 }
1469 }
1470
1471 *_stable_node_dup = found;
1472 return tree_page;
1473 }
1474
stable_node_dup_any(struct stable_node * stable_node,struct rb_root * root)1475 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1476 struct rb_root *root)
1477 {
1478 if (!is_stable_node_chain(stable_node))
1479 return stable_node;
1480 if (hlist_empty(&stable_node->hlist)) {
1481 free_stable_node_chain(stable_node, root);
1482 return NULL;
1483 }
1484 return hlist_entry(stable_node->hlist.first,
1485 typeof(*stable_node), hlist_dup);
1486 }
1487
1488 /*
1489 * Like for get_ksm_page, this function can free the *_stable_node and
1490 * *_stable_node_dup if the returned tree_page is NULL.
1491 *
1492 * It can also free and overwrite *_stable_node with the found
1493 * stable_node_dup if the chain is collapsed (in which case
1494 * *_stable_node will be equal to *_stable_node_dup like if the chain
1495 * never existed). It's up to the caller to verify tree_page is not
1496 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1497 *
1498 * *_stable_node_dup is really a second output parameter of this
1499 * function and will be overwritten in all cases, the caller doesn't
1500 * need to initialize it.
1501 */
__stable_node_chain(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1502 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1503 struct stable_node **_stable_node,
1504 struct rb_root *root,
1505 bool prune_stale_stable_nodes)
1506 {
1507 struct stable_node *stable_node = *_stable_node;
1508 if (!is_stable_node_chain(stable_node)) {
1509 if (is_page_sharing_candidate(stable_node)) {
1510 *_stable_node_dup = stable_node;
1511 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1512 }
1513 /*
1514 * _stable_node_dup set to NULL means the stable_node
1515 * reached the ksm_max_page_sharing limit.
1516 */
1517 *_stable_node_dup = NULL;
1518 return NULL;
1519 }
1520 return stable_node_dup(_stable_node_dup, _stable_node, root,
1521 prune_stale_stable_nodes);
1522 }
1523
chain_prune(struct stable_node ** s_n_d,struct stable_node ** s_n,struct rb_root * root)1524 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1525 struct stable_node **s_n,
1526 struct rb_root *root)
1527 {
1528 return __stable_node_chain(s_n_d, s_n, root, true);
1529 }
1530
chain(struct stable_node ** s_n_d,struct stable_node * s_n,struct rb_root * root)1531 static __always_inline struct page *chain(struct stable_node **s_n_d,
1532 struct stable_node *s_n,
1533 struct rb_root *root)
1534 {
1535 struct stable_node *old_stable_node = s_n;
1536 struct page *tree_page;
1537
1538 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1539 /* not pruning dups so s_n cannot have changed */
1540 VM_BUG_ON(s_n != old_stable_node);
1541 return tree_page;
1542 }
1543
1544 /*
1545 * stable_tree_search - search for page inside the stable tree
1546 *
1547 * This function checks if there is a page inside the stable tree
1548 * with identical content to the page that we are scanning right now.
1549 *
1550 * This function returns the stable tree node of identical content if found,
1551 * NULL otherwise.
1552 */
stable_tree_search(struct page * page)1553 static struct page *stable_tree_search(struct page *page)
1554 {
1555 int nid;
1556 struct rb_root *root;
1557 struct rb_node **new;
1558 struct rb_node *parent;
1559 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1560 struct stable_node *page_node;
1561
1562 page_node = page_stable_node(page);
1563 if (page_node && page_node->head != &migrate_nodes) {
1564 /* ksm page forked */
1565 get_page(page);
1566 return page;
1567 }
1568
1569 nid = get_kpfn_nid(page_to_pfn(page));
1570 root = root_stable_tree + nid;
1571 again:
1572 new = &root->rb_node;
1573 parent = NULL;
1574
1575 while (*new) {
1576 struct page *tree_page;
1577 int ret;
1578
1579 cond_resched();
1580 stable_node = rb_entry(*new, struct stable_node, node);
1581 stable_node_any = NULL;
1582 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1583 /*
1584 * NOTE: stable_node may have been freed by
1585 * chain_prune() if the returned stable_node_dup is
1586 * not NULL. stable_node_dup may have been inserted in
1587 * the rbtree instead as a regular stable_node (in
1588 * order to collapse the stable_node chain if a single
1589 * stable_node dup was found in it). In such case the
1590 * stable_node is overwritten by the calleee to point
1591 * to the stable_node_dup that was collapsed in the
1592 * stable rbtree and stable_node will be equal to
1593 * stable_node_dup like if the chain never existed.
1594 */
1595 if (!stable_node_dup) {
1596 /*
1597 * Either all stable_node dups were full in
1598 * this stable_node chain, or this chain was
1599 * empty and should be rb_erased.
1600 */
1601 stable_node_any = stable_node_dup_any(stable_node,
1602 root);
1603 if (!stable_node_any) {
1604 /* rb_erase just run */
1605 goto again;
1606 }
1607 /*
1608 * Take any of the stable_node dups page of
1609 * this stable_node chain to let the tree walk
1610 * continue. All KSM pages belonging to the
1611 * stable_node dups in a stable_node chain
1612 * have the same content and they're
1613 * write protected at all times. Any will work
1614 * fine to continue the walk.
1615 */
1616 tree_page = get_ksm_page(stable_node_any,
1617 GET_KSM_PAGE_NOLOCK);
1618 }
1619 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1620 if (!tree_page) {
1621 /*
1622 * If we walked over a stale stable_node,
1623 * get_ksm_page() will call rb_erase() and it
1624 * may rebalance the tree from under us. So
1625 * restart the search from scratch. Returning
1626 * NULL would be safe too, but we'd generate
1627 * false negative insertions just because some
1628 * stable_node was stale.
1629 */
1630 goto again;
1631 }
1632
1633 ret = memcmp_pages(page, tree_page);
1634 put_page(tree_page);
1635
1636 parent = *new;
1637 if (ret < 0)
1638 new = &parent->rb_left;
1639 else if (ret > 0)
1640 new = &parent->rb_right;
1641 else {
1642 if (page_node) {
1643 VM_BUG_ON(page_node->head != &migrate_nodes);
1644 /*
1645 * Test if the migrated page should be merged
1646 * into a stable node dup. If the mapcount is
1647 * 1 we can migrate it with another KSM page
1648 * without adding it to the chain.
1649 */
1650 if (page_mapcount(page) > 1)
1651 goto chain_append;
1652 }
1653
1654 if (!stable_node_dup) {
1655 /*
1656 * If the stable_node is a chain and
1657 * we got a payload match in memcmp
1658 * but we cannot merge the scanned
1659 * page in any of the existing
1660 * stable_node dups because they're
1661 * all full, we need to wait the
1662 * scanned page to find itself a match
1663 * in the unstable tree to create a
1664 * brand new KSM page to add later to
1665 * the dups of this stable_node.
1666 */
1667 return NULL;
1668 }
1669
1670 /*
1671 * Lock and unlock the stable_node's page (which
1672 * might already have been migrated) so that page
1673 * migration is sure to notice its raised count.
1674 * It would be more elegant to return stable_node
1675 * than kpage, but that involves more changes.
1676 */
1677 tree_page = get_ksm_page(stable_node_dup,
1678 GET_KSM_PAGE_TRYLOCK);
1679
1680 if (PTR_ERR(tree_page) == -EBUSY)
1681 return ERR_PTR(-EBUSY);
1682
1683 if (unlikely(!tree_page))
1684 /*
1685 * The tree may have been rebalanced,
1686 * so re-evaluate parent and new.
1687 */
1688 goto again;
1689 unlock_page(tree_page);
1690
1691 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1692 NUMA(stable_node_dup->nid)) {
1693 put_page(tree_page);
1694 goto replace;
1695 }
1696 return tree_page;
1697 }
1698 }
1699
1700 if (!page_node)
1701 return NULL;
1702
1703 list_del(&page_node->list);
1704 DO_NUMA(page_node->nid = nid);
1705 rb_link_node(&page_node->node, parent, new);
1706 rb_insert_color(&page_node->node, root);
1707 out:
1708 if (is_page_sharing_candidate(page_node)) {
1709 get_page(page);
1710 return page;
1711 } else
1712 return NULL;
1713
1714 replace:
1715 /*
1716 * If stable_node was a chain and chain_prune collapsed it,
1717 * stable_node has been updated to be the new regular
1718 * stable_node. A collapse of the chain is indistinguishable
1719 * from the case there was no chain in the stable
1720 * rbtree. Otherwise stable_node is the chain and
1721 * stable_node_dup is the dup to replace.
1722 */
1723 if (stable_node_dup == stable_node) {
1724 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1725 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1726 /* there is no chain */
1727 if (page_node) {
1728 VM_BUG_ON(page_node->head != &migrate_nodes);
1729 list_del(&page_node->list);
1730 DO_NUMA(page_node->nid = nid);
1731 rb_replace_node(&stable_node_dup->node,
1732 &page_node->node,
1733 root);
1734 if (is_page_sharing_candidate(page_node))
1735 get_page(page);
1736 else
1737 page = NULL;
1738 } else {
1739 rb_erase(&stable_node_dup->node, root);
1740 page = NULL;
1741 }
1742 } else {
1743 VM_BUG_ON(!is_stable_node_chain(stable_node));
1744 __stable_node_dup_del(stable_node_dup);
1745 if (page_node) {
1746 VM_BUG_ON(page_node->head != &migrate_nodes);
1747 list_del(&page_node->list);
1748 DO_NUMA(page_node->nid = nid);
1749 stable_node_chain_add_dup(page_node, stable_node);
1750 if (is_page_sharing_candidate(page_node))
1751 get_page(page);
1752 else
1753 page = NULL;
1754 } else {
1755 page = NULL;
1756 }
1757 }
1758 stable_node_dup->head = &migrate_nodes;
1759 list_add(&stable_node_dup->list, stable_node_dup->head);
1760 return page;
1761
1762 chain_append:
1763 /* stable_node_dup could be null if it reached the limit */
1764 if (!stable_node_dup)
1765 stable_node_dup = stable_node_any;
1766 /*
1767 * If stable_node was a chain and chain_prune collapsed it,
1768 * stable_node has been updated to be the new regular
1769 * stable_node. A collapse of the chain is indistinguishable
1770 * from the case there was no chain in the stable
1771 * rbtree. Otherwise stable_node is the chain and
1772 * stable_node_dup is the dup to replace.
1773 */
1774 if (stable_node_dup == stable_node) {
1775 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1776 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1777 /* chain is missing so create it */
1778 stable_node = alloc_stable_node_chain(stable_node_dup,
1779 root);
1780 if (!stable_node)
1781 return NULL;
1782 }
1783 /*
1784 * Add this stable_node dup that was
1785 * migrated to the stable_node chain
1786 * of the current nid for this page
1787 * content.
1788 */
1789 VM_BUG_ON(!is_stable_node_chain(stable_node));
1790 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1791 VM_BUG_ON(page_node->head != &migrate_nodes);
1792 list_del(&page_node->list);
1793 DO_NUMA(page_node->nid = nid);
1794 stable_node_chain_add_dup(page_node, stable_node);
1795 goto out;
1796 }
1797
1798 /*
1799 * stable_tree_insert - insert stable tree node pointing to new ksm page
1800 * into the stable tree.
1801 *
1802 * This function returns the stable tree node just allocated on success,
1803 * NULL otherwise.
1804 */
stable_tree_insert(struct page * kpage)1805 static struct stable_node *stable_tree_insert(struct page *kpage)
1806 {
1807 int nid;
1808 unsigned long kpfn;
1809 struct rb_root *root;
1810 struct rb_node **new;
1811 struct rb_node *parent;
1812 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1813 bool need_chain = false;
1814
1815 kpfn = page_to_pfn(kpage);
1816 nid = get_kpfn_nid(kpfn);
1817 root = root_stable_tree + nid;
1818 again:
1819 parent = NULL;
1820 new = &root->rb_node;
1821
1822 while (*new) {
1823 struct page *tree_page;
1824 int ret;
1825
1826 cond_resched();
1827 stable_node = rb_entry(*new, struct stable_node, node);
1828 stable_node_any = NULL;
1829 tree_page = chain(&stable_node_dup, stable_node, root);
1830 if (!stable_node_dup) {
1831 /*
1832 * Either all stable_node dups were full in
1833 * this stable_node chain, or this chain was
1834 * empty and should be rb_erased.
1835 */
1836 stable_node_any = stable_node_dup_any(stable_node,
1837 root);
1838 if (!stable_node_any) {
1839 /* rb_erase just run */
1840 goto again;
1841 }
1842 /*
1843 * Take any of the stable_node dups page of
1844 * this stable_node chain to let the tree walk
1845 * continue. All KSM pages belonging to the
1846 * stable_node dups in a stable_node chain
1847 * have the same content and they're
1848 * write protected at all times. Any will work
1849 * fine to continue the walk.
1850 */
1851 tree_page = get_ksm_page(stable_node_any,
1852 GET_KSM_PAGE_NOLOCK);
1853 }
1854 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1855 if (!tree_page) {
1856 /*
1857 * If we walked over a stale stable_node,
1858 * get_ksm_page() will call rb_erase() and it
1859 * may rebalance the tree from under us. So
1860 * restart the search from scratch. Returning
1861 * NULL would be safe too, but we'd generate
1862 * false negative insertions just because some
1863 * stable_node was stale.
1864 */
1865 goto again;
1866 }
1867
1868 ret = memcmp_pages(kpage, tree_page);
1869 put_page(tree_page);
1870
1871 parent = *new;
1872 if (ret < 0)
1873 new = &parent->rb_left;
1874 else if (ret > 0)
1875 new = &parent->rb_right;
1876 else {
1877 need_chain = true;
1878 break;
1879 }
1880 }
1881
1882 stable_node_dup = alloc_stable_node();
1883 if (!stable_node_dup)
1884 return NULL;
1885
1886 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1887 stable_node_dup->kpfn = kpfn;
1888 set_page_stable_node(kpage, stable_node_dup);
1889 stable_node_dup->rmap_hlist_len = 0;
1890 DO_NUMA(stable_node_dup->nid = nid);
1891 if (!need_chain) {
1892 rb_link_node(&stable_node_dup->node, parent, new);
1893 rb_insert_color(&stable_node_dup->node, root);
1894 } else {
1895 if (!is_stable_node_chain(stable_node)) {
1896 struct stable_node *orig = stable_node;
1897 /* chain is missing so create it */
1898 stable_node = alloc_stable_node_chain(orig, root);
1899 if (!stable_node) {
1900 free_stable_node(stable_node_dup);
1901 return NULL;
1902 }
1903 }
1904 stable_node_chain_add_dup(stable_node_dup, stable_node);
1905 }
1906
1907 return stable_node_dup;
1908 }
1909
1910 /*
1911 * unstable_tree_search_insert - search for identical page,
1912 * else insert rmap_item into the unstable tree.
1913 *
1914 * This function searches for a page in the unstable tree identical to the
1915 * page currently being scanned; and if no identical page is found in the
1916 * tree, we insert rmap_item as a new object into the unstable tree.
1917 *
1918 * This function returns pointer to rmap_item found to be identical
1919 * to the currently scanned page, NULL otherwise.
1920 *
1921 * This function does both searching and inserting, because they share
1922 * the same walking algorithm in an rbtree.
1923 */
1924 static
unstable_tree_search_insert(struct rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)1925 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1926 struct page *page,
1927 struct page **tree_pagep)
1928 {
1929 struct rb_node **new;
1930 struct rb_root *root;
1931 struct rb_node *parent = NULL;
1932 int nid;
1933
1934 nid = get_kpfn_nid(page_to_pfn(page));
1935 root = root_unstable_tree + nid;
1936 new = &root->rb_node;
1937
1938 while (*new) {
1939 struct rmap_item *tree_rmap_item;
1940 struct page *tree_page;
1941 int ret;
1942
1943 cond_resched();
1944 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1945 tree_page = get_mergeable_page(tree_rmap_item);
1946 if (!tree_page)
1947 return NULL;
1948
1949 /*
1950 * Don't substitute a ksm page for a forked page.
1951 */
1952 if (page == tree_page) {
1953 put_user_page(tree_page);
1954 return NULL;
1955 }
1956
1957 ret = memcmp_pages(page, tree_page);
1958
1959 parent = *new;
1960 if (ret < 0) {
1961 put_user_page(tree_page);
1962 new = &parent->rb_left;
1963 } else if (ret > 0) {
1964 put_user_page(tree_page);
1965 new = &parent->rb_right;
1966 } else if (!ksm_merge_across_nodes &&
1967 page_to_nid(tree_page) != nid) {
1968 /*
1969 * If tree_page has been migrated to another NUMA node,
1970 * it will be flushed out and put in the right unstable
1971 * tree next time: only merge with it when across_nodes.
1972 */
1973 put_user_page(tree_page);
1974 return NULL;
1975 } else {
1976 *tree_pagep = tree_page;
1977 return tree_rmap_item;
1978 }
1979 }
1980
1981 rmap_item->address |= UNSTABLE_FLAG;
1982 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1983 DO_NUMA(rmap_item->nid = nid);
1984 rb_link_node(&rmap_item->node, parent, new);
1985 rb_insert_color(&rmap_item->node, root);
1986
1987 ksm_pages_unshared++;
1988 return NULL;
1989 }
1990
1991 /*
1992 * stable_tree_append - add another rmap_item to the linked list of
1993 * rmap_items hanging off a given node of the stable tree, all sharing
1994 * the same ksm page.
1995 */
stable_tree_append(struct rmap_item * rmap_item,struct stable_node * stable_node,bool max_page_sharing_bypass)1996 static void stable_tree_append(struct rmap_item *rmap_item,
1997 struct stable_node *stable_node,
1998 bool max_page_sharing_bypass)
1999 {
2000 /*
2001 * rmap won't find this mapping if we don't insert the
2002 * rmap_item in the right stable_node
2003 * duplicate. page_migration could break later if rmap breaks,
2004 * so we can as well crash here. We really need to check for
2005 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2006 * for other negative values as an underflow if detected here
2007 * for the first time (and not when decreasing rmap_hlist_len)
2008 * would be sign of memory corruption in the stable_node.
2009 */
2010 BUG_ON(stable_node->rmap_hlist_len < 0);
2011
2012 stable_node->rmap_hlist_len++;
2013 if (!max_page_sharing_bypass)
2014 /* possibly non fatal but unexpected overflow, only warn */
2015 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2016 ksm_max_page_sharing);
2017
2018 rmap_item->head = stable_node;
2019 rmap_item->address |= STABLE_FLAG;
2020 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2021
2022 if (rmap_item->hlist.next)
2023 ksm_pages_sharing++;
2024 else
2025 ksm_pages_shared++;
2026 }
2027
2028 /*
2029 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2030 * if not, compare checksum to previous and if it's the same, see if page can
2031 * be inserted into the unstable tree, or merged with a page already there and
2032 * both transferred to the stable tree.
2033 *
2034 * @page: the page that we are searching identical page to.
2035 * @rmap_item: the reverse mapping into the virtual address of this page
2036 */
cmp_and_merge_page(struct page * page,struct rmap_item * rmap_item)2037 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2038 {
2039 struct mm_struct *mm = rmap_item->mm;
2040 struct rmap_item *tree_rmap_item;
2041 struct page *tree_page = NULL;
2042 struct stable_node *stable_node;
2043 struct page *kpage;
2044 unsigned int checksum;
2045 int err;
2046 bool max_page_sharing_bypass = false;
2047
2048 stable_node = page_stable_node(page);
2049 if (stable_node) {
2050 if (stable_node->head != &migrate_nodes &&
2051 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2052 NUMA(stable_node->nid)) {
2053 stable_node_dup_del(stable_node);
2054 stable_node->head = &migrate_nodes;
2055 list_add(&stable_node->list, stable_node->head);
2056 }
2057 if (stable_node->head != &migrate_nodes &&
2058 rmap_item->head == stable_node)
2059 return;
2060 /*
2061 * If it's a KSM fork, allow it to go over the sharing limit
2062 * without warnings.
2063 */
2064 if (!is_page_sharing_candidate(stable_node))
2065 max_page_sharing_bypass = true;
2066 }
2067
2068 /* We first start with searching the page inside the stable tree */
2069 kpage = stable_tree_search(page);
2070 if (kpage == page && rmap_item->head == stable_node) {
2071 put_page(kpage);
2072 return;
2073 }
2074
2075 remove_rmap_item_from_tree(rmap_item);
2076
2077 if (kpage) {
2078 if (PTR_ERR(kpage) == -EBUSY)
2079 return;
2080
2081 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2082 if (!err) {
2083 /*
2084 * The page was successfully merged:
2085 * add its rmap_item to the stable tree.
2086 */
2087 lock_page(kpage);
2088 stable_tree_append(rmap_item, page_stable_node(kpage),
2089 max_page_sharing_bypass);
2090 unlock_page(kpage);
2091 }
2092 put_page(kpage);
2093 return;
2094 }
2095
2096 /*
2097 * If the hash value of the page has changed from the last time
2098 * we calculated it, this page is changing frequently: therefore we
2099 * don't want to insert it in the unstable tree, and we don't want
2100 * to waste our time searching for something identical to it there.
2101 */
2102 checksum = calc_checksum(page);
2103 if (rmap_item->oldchecksum != checksum) {
2104 rmap_item->oldchecksum = checksum;
2105 return;
2106 }
2107
2108 /*
2109 * Same checksum as an empty page. We attempt to merge it with the
2110 * appropriate zero page if the user enabled this via sysfs.
2111 */
2112 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2113 struct vm_area_struct *vma;
2114
2115 mmap_read_lock(mm);
2116 vma = find_mergeable_vma(mm, rmap_item->address);
2117 if (vma) {
2118 err = try_to_merge_one_page(vma, page,
2119 ZERO_PAGE(rmap_item->address));
2120 } else {
2121 /*
2122 * If the vma is out of date, we do not need to
2123 * continue.
2124 */
2125 err = 0;
2126 }
2127 mmap_read_unlock(mm);
2128 /*
2129 * In case of failure, the page was not really empty, so we
2130 * need to continue. Otherwise we're done.
2131 */
2132 if (!err)
2133 return;
2134 }
2135 tree_rmap_item =
2136 unstable_tree_search_insert(rmap_item, page, &tree_page);
2137 if (tree_rmap_item) {
2138 bool split;
2139
2140 kpage = try_to_merge_two_pages(rmap_item, page,
2141 tree_rmap_item, tree_page);
2142 /*
2143 * If both pages we tried to merge belong to the same compound
2144 * page, then we actually ended up increasing the reference
2145 * count of the same compound page twice, and split_huge_page
2146 * failed.
2147 * Here we set a flag if that happened, and we use it later to
2148 * try split_huge_page again. Since we call put_page right
2149 * afterwards, the reference count will be correct and
2150 * split_huge_page should succeed.
2151 */
2152 split = PageTransCompound(page)
2153 && compound_head(page) == compound_head(tree_page);
2154 put_user_page(tree_page);
2155 if (kpage) {
2156 /*
2157 * The pages were successfully merged: insert new
2158 * node in the stable tree and add both rmap_items.
2159 */
2160 lock_page(kpage);
2161 stable_node = stable_tree_insert(kpage);
2162 if (stable_node) {
2163 stable_tree_append(tree_rmap_item, stable_node,
2164 false);
2165 stable_tree_append(rmap_item, stable_node,
2166 false);
2167 }
2168 unlock_page(kpage);
2169
2170 /*
2171 * If we fail to insert the page into the stable tree,
2172 * we will have 2 virtual addresses that are pointing
2173 * to a ksm page left outside the stable tree,
2174 * in which case we need to break_cow on both.
2175 */
2176 if (!stable_node) {
2177 break_cow(tree_rmap_item);
2178 break_cow(rmap_item);
2179 }
2180 } else if (split) {
2181 /*
2182 * We are here if we tried to merge two pages and
2183 * failed because they both belonged to the same
2184 * compound page. We will split the page now, but no
2185 * merging will take place.
2186 * We do not want to add the cost of a full lock; if
2187 * the page is locked, it is better to skip it and
2188 * perhaps try again later.
2189 */
2190 if (!trylock_page(page))
2191 return;
2192 split_huge_page(page);
2193 unlock_page(page);
2194 }
2195 }
2196 }
2197
get_next_rmap_item(struct mm_slot * mm_slot,struct rmap_item ** rmap_list,unsigned long addr)2198 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2199 struct rmap_item **rmap_list,
2200 unsigned long addr)
2201 {
2202 struct rmap_item *rmap_item;
2203
2204 while (*rmap_list) {
2205 rmap_item = *rmap_list;
2206 if ((rmap_item->address & PAGE_MASK) == addr)
2207 return rmap_item;
2208 if (rmap_item->address > addr)
2209 break;
2210 *rmap_list = rmap_item->rmap_list;
2211 remove_rmap_item_from_tree(rmap_item);
2212 free_rmap_item(rmap_item);
2213 }
2214
2215 rmap_item = alloc_rmap_item();
2216 if (rmap_item) {
2217 /* It has already been zeroed */
2218 rmap_item->mm = mm_slot->mm;
2219 rmap_item->address = addr;
2220 rmap_item->rmap_list = *rmap_list;
2221 *rmap_list = rmap_item;
2222 }
2223 return rmap_item;
2224 }
2225
scan_get_next_rmap_item(struct page ** page)2226 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2227 {
2228 struct mm_struct *mm;
2229 struct mm_slot *slot;
2230 struct vm_area_struct *vma;
2231 struct rmap_item *rmap_item;
2232 int nid;
2233
2234 if (list_empty(&ksm_mm_head.mm_list))
2235 return NULL;
2236
2237 slot = ksm_scan.mm_slot;
2238 if (slot == &ksm_mm_head) {
2239 /*
2240 * A number of pages can hang around indefinitely on per-cpu
2241 * pagevecs, raised page count preventing write_protect_page
2242 * from merging them. Though it doesn't really matter much,
2243 * it is puzzling to see some stuck in pages_volatile until
2244 * other activity jostles them out, and they also prevented
2245 * LTP's KSM test from succeeding deterministically; so drain
2246 * them here (here rather than on entry to ksm_do_scan(),
2247 * so we don't IPI too often when pages_to_scan is set low).
2248 */
2249 lru_add_drain_all();
2250
2251 /*
2252 * Whereas stale stable_nodes on the stable_tree itself
2253 * get pruned in the regular course of stable_tree_search(),
2254 * those moved out to the migrate_nodes list can accumulate:
2255 * so prune them once before each full scan.
2256 */
2257 if (!ksm_merge_across_nodes) {
2258 struct stable_node *stable_node, *next;
2259 struct page *page;
2260
2261 list_for_each_entry_safe(stable_node, next,
2262 &migrate_nodes, list) {
2263 page = get_ksm_page(stable_node,
2264 GET_KSM_PAGE_NOLOCK);
2265 if (page)
2266 put_page(page);
2267 cond_resched();
2268 }
2269 }
2270
2271 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2272 root_unstable_tree[nid] = RB_ROOT;
2273
2274 spin_lock(&ksm_mmlist_lock);
2275 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2276 ksm_scan.mm_slot = slot;
2277 spin_unlock(&ksm_mmlist_lock);
2278 /*
2279 * Although we tested list_empty() above, a racing __ksm_exit
2280 * of the last mm on the list may have removed it since then.
2281 */
2282 if (slot == &ksm_mm_head)
2283 return NULL;
2284 next_mm:
2285 ksm_scan.address = 0;
2286 ksm_scan.rmap_list = &slot->rmap_list;
2287 }
2288
2289 mm = slot->mm;
2290 mmap_read_lock(mm);
2291 if (ksm_test_exit(mm))
2292 vma = NULL;
2293 else
2294 vma = find_vma(mm, ksm_scan.address);
2295
2296 for (; vma; vma = vma->vm_next) {
2297 if (!(vma->vm_flags & VM_MERGEABLE))
2298 continue;
2299 if (ksm_scan.address < vma->vm_start)
2300 ksm_scan.address = vma->vm_start;
2301 if (!vma->anon_vma)
2302 ksm_scan.address = vma->vm_end;
2303
2304 while (ksm_scan.address < vma->vm_end) {
2305 if (ksm_test_exit(mm))
2306 break;
2307 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2308 if (IS_ERR_OR_NULL(*page)) {
2309 ksm_scan.address += PAGE_SIZE;
2310 cond_resched();
2311 continue;
2312 }
2313 if (PageAnon(*page)) {
2314 flush_anon_page(vma, *page, ksm_scan.address);
2315 flush_dcache_page(*page);
2316 rmap_item = get_next_rmap_item(slot,
2317 ksm_scan.rmap_list, ksm_scan.address);
2318 if (rmap_item) {
2319 ksm_scan.rmap_list =
2320 &rmap_item->rmap_list;
2321 ksm_scan.address += PAGE_SIZE;
2322 } else
2323 put_user_page(*page);
2324 mmap_read_unlock(mm);
2325 return rmap_item;
2326 }
2327 put_user_page(*page);
2328 ksm_scan.address += PAGE_SIZE;
2329 cond_resched();
2330 }
2331 }
2332
2333 if (ksm_test_exit(mm)) {
2334 ksm_scan.address = 0;
2335 ksm_scan.rmap_list = &slot->rmap_list;
2336 }
2337 /*
2338 * Nuke all the rmap_items that are above this current rmap:
2339 * because there were no VM_MERGEABLE vmas with such addresses.
2340 */
2341 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2342
2343 spin_lock(&ksm_mmlist_lock);
2344 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2345 struct mm_slot, mm_list);
2346 if (ksm_scan.address == 0) {
2347 /*
2348 * We've completed a full scan of all vmas, holding mmap_lock
2349 * throughout, and found no VM_MERGEABLE: so do the same as
2350 * __ksm_exit does to remove this mm from all our lists now.
2351 * This applies either when cleaning up after __ksm_exit
2352 * (but beware: we can reach here even before __ksm_exit),
2353 * or when all VM_MERGEABLE areas have been unmapped (and
2354 * mmap_lock then protects against race with MADV_MERGEABLE).
2355 */
2356 hash_del(&slot->link);
2357 list_del(&slot->mm_list);
2358 spin_unlock(&ksm_mmlist_lock);
2359
2360 free_mm_slot(slot);
2361 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2362 mmap_read_unlock(mm);
2363 mmdrop(mm);
2364 } else {
2365 mmap_read_unlock(mm);
2366 /*
2367 * mmap_read_unlock(mm) first because after
2368 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2369 * already have been freed under us by __ksm_exit()
2370 * because the "mm_slot" is still hashed and
2371 * ksm_scan.mm_slot doesn't point to it anymore.
2372 */
2373 spin_unlock(&ksm_mmlist_lock);
2374 }
2375
2376 /* Repeat until we've completed scanning the whole list */
2377 slot = ksm_scan.mm_slot;
2378 if (slot != &ksm_mm_head)
2379 goto next_mm;
2380
2381 ksm_scan.seqnr++;
2382 return NULL;
2383 }
2384
2385 /**
2386 * ksm_do_scan - the ksm scanner main worker function.
2387 * @scan_npages: number of pages we want to scan before we return.
2388 */
ksm_do_scan(unsigned int scan_npages)2389 static void ksm_do_scan(unsigned int scan_npages)
2390 {
2391 struct rmap_item *rmap_item;
2392 struct page *page;
2393
2394 while (scan_npages-- && likely(!freezing(current))) {
2395 cond_resched();
2396 rmap_item = scan_get_next_rmap_item(&page);
2397 if (!rmap_item)
2398 return;
2399 cmp_and_merge_page(page, rmap_item);
2400 put_page(page);
2401 }
2402 }
2403
ksmd_should_run(void)2404 static int ksmd_should_run(void)
2405 {
2406 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2407 }
2408
ksm_scan_thread(void * nothing)2409 static int ksm_scan_thread(void *nothing)
2410 {
2411 unsigned int sleep_ms;
2412
2413 set_freezable();
2414 set_user_nice(current, 5);
2415
2416 while (!kthread_should_stop()) {
2417 mutex_lock(&ksm_thread_mutex);
2418 wait_while_offlining();
2419 if (ksmd_should_run())
2420 ksm_do_scan(ksm_thread_pages_to_scan);
2421 mutex_unlock(&ksm_thread_mutex);
2422
2423 try_to_freeze();
2424
2425 if (ksmd_should_run()) {
2426 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2427 wait_event_interruptible_timeout(ksm_iter_wait,
2428 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2429 msecs_to_jiffies(sleep_ms));
2430 } else {
2431 wait_event_freezable(ksm_thread_wait,
2432 ksmd_should_run() || kthread_should_stop());
2433 }
2434 }
2435 return 0;
2436 }
2437
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)2438 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2439 unsigned long end, int advice, unsigned long *vm_flags)
2440 {
2441 struct mm_struct *mm = vma->vm_mm;
2442 int err;
2443
2444 switch (advice) {
2445 case MADV_MERGEABLE:
2446 /*
2447 * Be somewhat over-protective for now!
2448 */
2449 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2450 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2451 VM_HUGETLB | VM_MIXEDMAP))
2452 return 0; /* just ignore the advice */
2453
2454 if (vma_is_dax(vma))
2455 return 0;
2456
2457 #ifdef VM_SAO
2458 if (*vm_flags & VM_SAO)
2459 return 0;
2460 #endif
2461 #ifdef VM_SPARC_ADI
2462 if (*vm_flags & VM_SPARC_ADI)
2463 return 0;
2464 #endif
2465
2466 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2467 err = __ksm_enter(mm);
2468 if (err)
2469 return err;
2470 }
2471
2472 *vm_flags |= VM_MERGEABLE;
2473 break;
2474
2475 case MADV_UNMERGEABLE:
2476 if (!(*vm_flags & VM_MERGEABLE))
2477 return 0; /* just ignore the advice */
2478
2479 if (vma->anon_vma) {
2480 err = unmerge_ksm_pages(vma, start, end);
2481 if (err)
2482 return err;
2483 }
2484
2485 *vm_flags &= ~VM_MERGEABLE;
2486 break;
2487 }
2488
2489 return 0;
2490 }
2491 EXPORT_SYMBOL_GPL(ksm_madvise);
2492
__ksm_enter(struct mm_struct * mm)2493 int __ksm_enter(struct mm_struct *mm)
2494 {
2495 struct mm_slot *mm_slot;
2496 int needs_wakeup;
2497
2498 mm_slot = alloc_mm_slot();
2499 if (!mm_slot)
2500 return -ENOMEM;
2501
2502 /* Check ksm_run too? Would need tighter locking */
2503 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2504
2505 spin_lock(&ksm_mmlist_lock);
2506 insert_to_mm_slots_hash(mm, mm_slot);
2507 /*
2508 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2509 * insert just behind the scanning cursor, to let the area settle
2510 * down a little; when fork is followed by immediate exec, we don't
2511 * want ksmd to waste time setting up and tearing down an rmap_list.
2512 *
2513 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2514 * scanning cursor, otherwise KSM pages in newly forked mms will be
2515 * missed: then we might as well insert at the end of the list.
2516 */
2517 if (ksm_run & KSM_RUN_UNMERGE)
2518 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2519 else
2520 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2521 spin_unlock(&ksm_mmlist_lock);
2522
2523 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2524 mmgrab(mm);
2525
2526 if (needs_wakeup)
2527 wake_up_interruptible(&ksm_thread_wait);
2528
2529 return 0;
2530 }
2531
__ksm_exit(struct mm_struct * mm)2532 void __ksm_exit(struct mm_struct *mm)
2533 {
2534 struct mm_slot *mm_slot;
2535 int easy_to_free = 0;
2536
2537 /*
2538 * This process is exiting: if it's straightforward (as is the
2539 * case when ksmd was never running), free mm_slot immediately.
2540 * But if it's at the cursor or has rmap_items linked to it, use
2541 * mmap_lock to synchronize with any break_cows before pagetables
2542 * are freed, and leave the mm_slot on the list for ksmd to free.
2543 * Beware: ksm may already have noticed it exiting and freed the slot.
2544 */
2545
2546 spin_lock(&ksm_mmlist_lock);
2547 mm_slot = get_mm_slot(mm);
2548 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2549 if (!mm_slot->rmap_list) {
2550 hash_del(&mm_slot->link);
2551 list_del(&mm_slot->mm_list);
2552 easy_to_free = 1;
2553 } else {
2554 list_move(&mm_slot->mm_list,
2555 &ksm_scan.mm_slot->mm_list);
2556 }
2557 }
2558 spin_unlock(&ksm_mmlist_lock);
2559
2560 if (easy_to_free) {
2561 free_mm_slot(mm_slot);
2562 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2563 mmdrop(mm);
2564 } else if (mm_slot) {
2565 mmap_write_lock(mm);
2566 mmap_write_unlock(mm);
2567 }
2568 }
2569
ksm_might_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)2570 struct page *ksm_might_need_to_copy(struct page *page,
2571 struct vm_area_struct *vma, unsigned long address)
2572 {
2573 struct anon_vma *anon_vma = page_anon_vma(page);
2574 struct page *new_page;
2575
2576 if (PageKsm(page)) {
2577 if (page_stable_node(page) &&
2578 !(ksm_run & KSM_RUN_UNMERGE))
2579 return page; /* no need to copy it */
2580 } else if (!anon_vma) {
2581 return page; /* no need to copy it */
2582 } else if (anon_vma->root == vma->anon_vma->root &&
2583 page->index == linear_page_index(vma, address)) {
2584 return page; /* still no need to copy it */
2585 }
2586 if (!PageUptodate(page))
2587 return page; /* let do_swap_page report the error */
2588
2589 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2590 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2591 put_page(new_page);
2592 new_page = NULL;
2593 }
2594 if (new_page) {
2595 copy_user_highpage(new_page, page, address, vma);
2596
2597 SetPageDirty(new_page);
2598 __SetPageUptodate(new_page);
2599 __SetPageLocked(new_page);
2600 }
2601
2602 return new_page;
2603 }
2604
rmap_walk_ksm(struct page * page,struct rmap_walk_control * rwc)2605 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2606 {
2607 struct stable_node *stable_node;
2608 struct rmap_item *rmap_item;
2609 int search_new_forks = 0;
2610
2611 VM_BUG_ON_PAGE(!PageKsm(page), page);
2612
2613 /*
2614 * Rely on the page lock to protect against concurrent modifications
2615 * to that page's node of the stable tree.
2616 */
2617 VM_BUG_ON_PAGE(!PageLocked(page), page);
2618
2619 stable_node = page_stable_node(page);
2620 if (!stable_node)
2621 return;
2622 again:
2623 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2624 struct anon_vma *anon_vma = rmap_item->anon_vma;
2625 struct anon_vma_chain *vmac;
2626 struct vm_area_struct *vma;
2627
2628 cond_resched();
2629 if (!anon_vma_trylock_read(anon_vma)) {
2630 if (rwc->try_lock) {
2631 rwc->contended = true;
2632 return;
2633 }
2634 anon_vma_lock_read(anon_vma);
2635 }
2636 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2637 0, ULONG_MAX) {
2638 unsigned long addr;
2639
2640 cond_resched();
2641 vma = vmac->vma;
2642
2643 /* Ignore the stable/unstable/sqnr flags */
2644 addr = rmap_item->address & ~KSM_FLAG_MASK;
2645
2646 if (addr < vma->vm_start || addr >= vma->vm_end)
2647 continue;
2648 /*
2649 * Initially we examine only the vma which covers this
2650 * rmap_item; but later, if there is still work to do,
2651 * we examine covering vmas in other mms: in case they
2652 * were forked from the original since ksmd passed.
2653 */
2654 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2655 continue;
2656
2657 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2658 continue;
2659
2660 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2661 anon_vma_unlock_read(anon_vma);
2662 return;
2663 }
2664 if (rwc->done && rwc->done(page)) {
2665 anon_vma_unlock_read(anon_vma);
2666 return;
2667 }
2668 }
2669 anon_vma_unlock_read(anon_vma);
2670 }
2671 if (!search_new_forks++)
2672 goto again;
2673 }
2674
2675 #ifdef CONFIG_MIGRATION
ksm_migrate_page(struct page * newpage,struct page * oldpage)2676 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2677 {
2678 struct stable_node *stable_node;
2679
2680 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2681 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2682 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2683
2684 stable_node = page_stable_node(newpage);
2685 if (stable_node) {
2686 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2687 stable_node->kpfn = page_to_pfn(newpage);
2688 /*
2689 * newpage->mapping was set in advance; now we need smp_wmb()
2690 * to make sure that the new stable_node->kpfn is visible
2691 * to get_ksm_page() before it can see that oldpage->mapping
2692 * has gone stale (or that PageSwapCache has been cleared).
2693 */
2694 smp_wmb();
2695 set_page_stable_node(oldpage, NULL);
2696 }
2697 }
2698 #endif /* CONFIG_MIGRATION */
2699
2700 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)2701 static void wait_while_offlining(void)
2702 {
2703 while (ksm_run & KSM_RUN_OFFLINE) {
2704 mutex_unlock(&ksm_thread_mutex);
2705 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2706 TASK_UNINTERRUPTIBLE);
2707 mutex_lock(&ksm_thread_mutex);
2708 }
2709 }
2710
stable_node_dup_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)2711 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2712 unsigned long start_pfn,
2713 unsigned long end_pfn)
2714 {
2715 if (stable_node->kpfn >= start_pfn &&
2716 stable_node->kpfn < end_pfn) {
2717 /*
2718 * Don't get_ksm_page, page has already gone:
2719 * which is why we keep kpfn instead of page*
2720 */
2721 remove_node_from_stable_tree(stable_node);
2722 return true;
2723 }
2724 return false;
2725 }
2726
stable_node_chain_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)2727 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2728 unsigned long start_pfn,
2729 unsigned long end_pfn,
2730 struct rb_root *root)
2731 {
2732 struct stable_node *dup;
2733 struct hlist_node *hlist_safe;
2734
2735 if (!is_stable_node_chain(stable_node)) {
2736 VM_BUG_ON(is_stable_node_dup(stable_node));
2737 return stable_node_dup_remove_range(stable_node, start_pfn,
2738 end_pfn);
2739 }
2740
2741 hlist_for_each_entry_safe(dup, hlist_safe,
2742 &stable_node->hlist, hlist_dup) {
2743 VM_BUG_ON(!is_stable_node_dup(dup));
2744 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2745 }
2746 if (hlist_empty(&stable_node->hlist)) {
2747 free_stable_node_chain(stable_node, root);
2748 return true; /* notify caller that tree was rebalanced */
2749 } else
2750 return false;
2751 }
2752
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)2753 static void ksm_check_stable_tree(unsigned long start_pfn,
2754 unsigned long end_pfn)
2755 {
2756 struct stable_node *stable_node, *next;
2757 struct rb_node *node;
2758 int nid;
2759
2760 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2761 node = rb_first(root_stable_tree + nid);
2762 while (node) {
2763 stable_node = rb_entry(node, struct stable_node, node);
2764 if (stable_node_chain_remove_range(stable_node,
2765 start_pfn, end_pfn,
2766 root_stable_tree +
2767 nid))
2768 node = rb_first(root_stable_tree + nid);
2769 else
2770 node = rb_next(node);
2771 cond_resched();
2772 }
2773 }
2774 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2775 if (stable_node->kpfn >= start_pfn &&
2776 stable_node->kpfn < end_pfn)
2777 remove_node_from_stable_tree(stable_node);
2778 cond_resched();
2779 }
2780 }
2781
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)2782 static int ksm_memory_callback(struct notifier_block *self,
2783 unsigned long action, void *arg)
2784 {
2785 struct memory_notify *mn = arg;
2786
2787 switch (action) {
2788 case MEM_GOING_OFFLINE:
2789 /*
2790 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2791 * and remove_all_stable_nodes() while memory is going offline:
2792 * it is unsafe for them to touch the stable tree at this time.
2793 * But unmerge_ksm_pages(), rmap lookups and other entry points
2794 * which do not need the ksm_thread_mutex are all safe.
2795 */
2796 mutex_lock(&ksm_thread_mutex);
2797 ksm_run |= KSM_RUN_OFFLINE;
2798 mutex_unlock(&ksm_thread_mutex);
2799 break;
2800
2801 case MEM_OFFLINE:
2802 /*
2803 * Most of the work is done by page migration; but there might
2804 * be a few stable_nodes left over, still pointing to struct
2805 * pages which have been offlined: prune those from the tree,
2806 * otherwise get_ksm_page() might later try to access a
2807 * non-existent struct page.
2808 */
2809 ksm_check_stable_tree(mn->start_pfn,
2810 mn->start_pfn + mn->nr_pages);
2811 fallthrough;
2812 case MEM_CANCEL_OFFLINE:
2813 mutex_lock(&ksm_thread_mutex);
2814 ksm_run &= ~KSM_RUN_OFFLINE;
2815 mutex_unlock(&ksm_thread_mutex);
2816
2817 smp_mb(); /* wake_up_bit advises this */
2818 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2819 break;
2820 }
2821 return NOTIFY_OK;
2822 }
2823 #else
wait_while_offlining(void)2824 static void wait_while_offlining(void)
2825 {
2826 }
2827 #endif /* CONFIG_MEMORY_HOTREMOVE */
2828
2829 #ifdef CONFIG_SYSFS
2830 /*
2831 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2832 */
2833
2834 #define KSM_ATTR_RO(_name) \
2835 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2836 #define KSM_ATTR(_name) \
2837 static struct kobj_attribute _name##_attr = \
2838 __ATTR(_name, 0644, _name##_show, _name##_store)
2839
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2840 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2841 struct kobj_attribute *attr, char *buf)
2842 {
2843 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2844 }
2845
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2846 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2847 struct kobj_attribute *attr,
2848 const char *buf, size_t count)
2849 {
2850 unsigned long msecs;
2851 int err;
2852
2853 err = kstrtoul(buf, 10, &msecs);
2854 if (err || msecs > UINT_MAX)
2855 return -EINVAL;
2856
2857 ksm_thread_sleep_millisecs = msecs;
2858 wake_up_interruptible(&ksm_iter_wait);
2859
2860 return count;
2861 }
2862 KSM_ATTR(sleep_millisecs);
2863
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2864 static ssize_t pages_to_scan_show(struct kobject *kobj,
2865 struct kobj_attribute *attr, char *buf)
2866 {
2867 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2868 }
2869
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2870 static ssize_t pages_to_scan_store(struct kobject *kobj,
2871 struct kobj_attribute *attr,
2872 const char *buf, size_t count)
2873 {
2874 int err;
2875 unsigned long nr_pages;
2876
2877 err = kstrtoul(buf, 10, &nr_pages);
2878 if (err || nr_pages > UINT_MAX)
2879 return -EINVAL;
2880
2881 ksm_thread_pages_to_scan = nr_pages;
2882
2883 return count;
2884 }
2885 KSM_ATTR(pages_to_scan);
2886
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2887 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2888 char *buf)
2889 {
2890 return sprintf(buf, "%lu\n", ksm_run);
2891 }
2892
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2893 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2894 const char *buf, size_t count)
2895 {
2896 int err;
2897 unsigned long flags;
2898
2899 err = kstrtoul(buf, 10, &flags);
2900 if (err || flags > UINT_MAX)
2901 return -EINVAL;
2902 if (flags > KSM_RUN_UNMERGE)
2903 return -EINVAL;
2904
2905 /*
2906 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2907 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2908 * breaking COW to free the pages_shared (but leaves mm_slots
2909 * on the list for when ksmd may be set running again).
2910 */
2911
2912 mutex_lock(&ksm_thread_mutex);
2913 wait_while_offlining();
2914 if (ksm_run != flags) {
2915 ksm_run = flags;
2916 if (flags & KSM_RUN_UNMERGE) {
2917 set_current_oom_origin();
2918 err = unmerge_and_remove_all_rmap_items();
2919 clear_current_oom_origin();
2920 if (err) {
2921 ksm_run = KSM_RUN_STOP;
2922 count = err;
2923 }
2924 }
2925 }
2926 mutex_unlock(&ksm_thread_mutex);
2927
2928 if (flags & KSM_RUN_MERGE)
2929 wake_up_interruptible(&ksm_thread_wait);
2930
2931 return count;
2932 }
2933 KSM_ATTR(run);
2934
2935 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2936 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2937 struct kobj_attribute *attr, char *buf)
2938 {
2939 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2940 }
2941
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2942 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2943 struct kobj_attribute *attr,
2944 const char *buf, size_t count)
2945 {
2946 int err;
2947 unsigned long knob;
2948
2949 err = kstrtoul(buf, 10, &knob);
2950 if (err)
2951 return err;
2952 if (knob > 1)
2953 return -EINVAL;
2954
2955 mutex_lock(&ksm_thread_mutex);
2956 wait_while_offlining();
2957 if (ksm_merge_across_nodes != knob) {
2958 if (ksm_pages_shared || remove_all_stable_nodes())
2959 err = -EBUSY;
2960 else if (root_stable_tree == one_stable_tree) {
2961 struct rb_root *buf;
2962 /*
2963 * This is the first time that we switch away from the
2964 * default of merging across nodes: must now allocate
2965 * a buffer to hold as many roots as may be needed.
2966 * Allocate stable and unstable together:
2967 * MAXSMP NODES_SHIFT 10 will use 16kB.
2968 */
2969 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2970 GFP_KERNEL);
2971 /* Let us assume that RB_ROOT is NULL is zero */
2972 if (!buf)
2973 err = -ENOMEM;
2974 else {
2975 root_stable_tree = buf;
2976 root_unstable_tree = buf + nr_node_ids;
2977 /* Stable tree is empty but not the unstable */
2978 root_unstable_tree[0] = one_unstable_tree[0];
2979 }
2980 }
2981 if (!err) {
2982 ksm_merge_across_nodes = knob;
2983 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2984 }
2985 }
2986 mutex_unlock(&ksm_thread_mutex);
2987
2988 return err ? err : count;
2989 }
2990 KSM_ATTR(merge_across_nodes);
2991 #endif
2992
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2993 static ssize_t use_zero_pages_show(struct kobject *kobj,
2994 struct kobj_attribute *attr, char *buf)
2995 {
2996 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2997 }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2998 static ssize_t use_zero_pages_store(struct kobject *kobj,
2999 struct kobj_attribute *attr,
3000 const char *buf, size_t count)
3001 {
3002 int err;
3003 bool value;
3004
3005 err = kstrtobool(buf, &value);
3006 if (err)
3007 return -EINVAL;
3008
3009 ksm_use_zero_pages = value;
3010
3011 return count;
3012 }
3013 KSM_ATTR(use_zero_pages);
3014
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3015 static ssize_t max_page_sharing_show(struct kobject *kobj,
3016 struct kobj_attribute *attr, char *buf)
3017 {
3018 return sprintf(buf, "%u\n", ksm_max_page_sharing);
3019 }
3020
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3021 static ssize_t max_page_sharing_store(struct kobject *kobj,
3022 struct kobj_attribute *attr,
3023 const char *buf, size_t count)
3024 {
3025 int err;
3026 int knob;
3027
3028 err = kstrtoint(buf, 10, &knob);
3029 if (err)
3030 return err;
3031 /*
3032 * When a KSM page is created it is shared by 2 mappings. This
3033 * being a signed comparison, it implicitly verifies it's not
3034 * negative.
3035 */
3036 if (knob < 2)
3037 return -EINVAL;
3038
3039 if (READ_ONCE(ksm_max_page_sharing) == knob)
3040 return count;
3041
3042 mutex_lock(&ksm_thread_mutex);
3043 wait_while_offlining();
3044 if (ksm_max_page_sharing != knob) {
3045 if (ksm_pages_shared || remove_all_stable_nodes())
3046 err = -EBUSY;
3047 else
3048 ksm_max_page_sharing = knob;
3049 }
3050 mutex_unlock(&ksm_thread_mutex);
3051
3052 return err ? err : count;
3053 }
3054 KSM_ATTR(max_page_sharing);
3055
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3056 static ssize_t pages_shared_show(struct kobject *kobj,
3057 struct kobj_attribute *attr, char *buf)
3058 {
3059 return sprintf(buf, "%lu\n", ksm_pages_shared);
3060 }
3061 KSM_ATTR_RO(pages_shared);
3062
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3063 static ssize_t pages_sharing_show(struct kobject *kobj,
3064 struct kobj_attribute *attr, char *buf)
3065 {
3066 return sprintf(buf, "%lu\n", ksm_pages_sharing);
3067 }
3068 KSM_ATTR_RO(pages_sharing);
3069
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3070 static ssize_t pages_unshared_show(struct kobject *kobj,
3071 struct kobj_attribute *attr, char *buf)
3072 {
3073 return sprintf(buf, "%lu\n", ksm_pages_unshared);
3074 }
3075 KSM_ATTR_RO(pages_unshared);
3076
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3077 static ssize_t pages_volatile_show(struct kobject *kobj,
3078 struct kobj_attribute *attr, char *buf)
3079 {
3080 long ksm_pages_volatile;
3081
3082 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3083 - ksm_pages_sharing - ksm_pages_unshared;
3084 /*
3085 * It was not worth any locking to calculate that statistic,
3086 * but it might therefore sometimes be negative: conceal that.
3087 */
3088 if (ksm_pages_volatile < 0)
3089 ksm_pages_volatile = 0;
3090 return sprintf(buf, "%ld\n", ksm_pages_volatile);
3091 }
3092 KSM_ATTR_RO(pages_volatile);
3093
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3094 static ssize_t stable_node_dups_show(struct kobject *kobj,
3095 struct kobj_attribute *attr, char *buf)
3096 {
3097 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3098 }
3099 KSM_ATTR_RO(stable_node_dups);
3100
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3101 static ssize_t stable_node_chains_show(struct kobject *kobj,
3102 struct kobj_attribute *attr, char *buf)
3103 {
3104 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3105 }
3106 KSM_ATTR_RO(stable_node_chains);
3107
3108 static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3109 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3110 struct kobj_attribute *attr,
3111 char *buf)
3112 {
3113 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3114 }
3115
3116 static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3117 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3118 struct kobj_attribute *attr,
3119 const char *buf, size_t count)
3120 {
3121 unsigned long msecs;
3122 int err;
3123
3124 err = kstrtoul(buf, 10, &msecs);
3125 if (err || msecs > UINT_MAX)
3126 return -EINVAL;
3127
3128 ksm_stable_node_chains_prune_millisecs = msecs;
3129
3130 return count;
3131 }
3132 KSM_ATTR(stable_node_chains_prune_millisecs);
3133
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3134 static ssize_t full_scans_show(struct kobject *kobj,
3135 struct kobj_attribute *attr, char *buf)
3136 {
3137 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3138 }
3139 KSM_ATTR_RO(full_scans);
3140
3141 static struct attribute *ksm_attrs[] = {
3142 &sleep_millisecs_attr.attr,
3143 &pages_to_scan_attr.attr,
3144 &run_attr.attr,
3145 &pages_shared_attr.attr,
3146 &pages_sharing_attr.attr,
3147 &pages_unshared_attr.attr,
3148 &pages_volatile_attr.attr,
3149 &full_scans_attr.attr,
3150 #ifdef CONFIG_NUMA
3151 &merge_across_nodes_attr.attr,
3152 #endif
3153 &max_page_sharing_attr.attr,
3154 &stable_node_chains_attr.attr,
3155 &stable_node_dups_attr.attr,
3156 &stable_node_chains_prune_millisecs_attr.attr,
3157 &use_zero_pages_attr.attr,
3158 NULL,
3159 };
3160
3161 static const struct attribute_group ksm_attr_group = {
3162 .attrs = ksm_attrs,
3163 .name = "ksm",
3164 };
3165 #endif /* CONFIG_SYSFS */
3166
ksm_init(void)3167 static int __init ksm_init(void)
3168 {
3169 struct task_struct *ksm_thread;
3170 int err;
3171
3172 /* The correct value depends on page size and endianness */
3173 zero_checksum = calc_checksum(ZERO_PAGE(0));
3174 /* Default to false for backwards compatibility */
3175 ksm_use_zero_pages = false;
3176
3177 err = ksm_slab_init();
3178 if (err)
3179 goto out;
3180
3181 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3182 if (IS_ERR(ksm_thread)) {
3183 pr_err("ksm: creating kthread failed\n");
3184 err = PTR_ERR(ksm_thread);
3185 goto out_free;
3186 }
3187
3188 #ifdef CONFIG_SYSFS
3189 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3190 if (err) {
3191 pr_err("ksm: register sysfs failed\n");
3192 kthread_stop(ksm_thread);
3193 goto out_free;
3194 }
3195 #else
3196 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3197
3198 #endif /* CONFIG_SYSFS */
3199
3200 #ifdef CONFIG_MEMORY_HOTREMOVE
3201 /* There is no significance to this priority 100 */
3202 hotplug_memory_notifier(ksm_memory_callback, 100);
3203 #endif
3204 return 0;
3205
3206 out_free:
3207 ksm_slab_free();
3208 out:
3209 return err;
3210 }
3211 subsys_initcall(ksm_init);
3212