• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * OMAP MPUSS low power code
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  *	Santosh Shilimkar <santosh.shilimkar@ti.com>
7  *
8  * OMAP4430 MPUSS mainly consists of dual Cortex-A9 with per-CPU
9  * Local timer and Watchdog, GIC, SCU, PL310 L2 cache controller,
10  * CPU0 and CPU1 LPRM modules.
11  * CPU0, CPU1 and MPUSS each have there own power domain and
12  * hence multiple low power combinations of MPUSS are possible.
13  *
14  * The CPU0 and CPU1 can't support Closed switch Retention (CSWR)
15  * because the mode is not supported by hw constraints of dormant
16  * mode. While waking up from the dormant mode, a reset  signal
17  * to the Cortex-A9 processor must be asserted by the external
18  * power controller.
19  *
20  * With architectural inputs and hardware recommendations, only
21  * below modes are supported from power gain vs latency point of view.
22  *
23  *	CPU0		CPU1		MPUSS
24  *	----------------------------------------------
25  *	ON		ON		ON
26  *	ON(Inactive)	OFF		ON(Inactive)
27  *	OFF		OFF		CSWR
28  *	OFF		OFF		OSWR
29  *	OFF		OFF		OFF(Device OFF *TBD)
30  *	----------------------------------------------
31  *
32  * Note: CPU0 is the master core and it is the last CPU to go down
33  * and first to wake-up when MPUSS low power states are excercised
34  */
35 
36 #include <linux/kernel.h>
37 #include <linux/io.h>
38 #include <linux/errno.h>
39 #include <linux/linkage.h>
40 #include <linux/smp.h>
41 
42 #include <asm/cacheflush.h>
43 #include <asm/tlbflush.h>
44 #include <asm/smp_scu.h>
45 #include <asm/suspend.h>
46 #include <asm/virt.h>
47 #include <asm/hardware/cache-l2x0.h>
48 
49 #include "soc.h"
50 #include "common.h"
51 #include "omap44xx.h"
52 #include "omap4-sar-layout.h"
53 #include "pm.h"
54 #include "prcm_mpu44xx.h"
55 #include "prcm_mpu54xx.h"
56 #include "prminst44xx.h"
57 #include "prcm44xx.h"
58 #include "prm44xx.h"
59 #include "prm-regbits-44xx.h"
60 
61 static void __iomem *sar_base;
62 static u32 old_cpu1_ns_pa_addr;
63 
64 #if defined(CONFIG_PM) && defined(CONFIG_SMP)
65 
66 struct omap4_cpu_pm_info {
67 	struct powerdomain *pwrdm;
68 	void __iomem *scu_sar_addr;
69 	void __iomem *wkup_sar_addr;
70 	void __iomem *l2x0_sar_addr;
71 };
72 
73 /**
74  * struct cpu_pm_ops - CPU pm operations
75  * @finish_suspend:	CPU suspend finisher function pointer
76  * @resume:		CPU resume function pointer
77  * @scu_prepare:	CPU Snoop Control program function pointer
78  * @hotplug_restart:	CPU restart function pointer
79  *
80  * Structure holds functions pointer for CPU low power operations like
81  * suspend, resume and scu programming.
82  */
83 struct cpu_pm_ops {
84 	int (*finish_suspend)(unsigned long cpu_state);
85 	void (*resume)(void);
86 	void (*scu_prepare)(unsigned int cpu_id, unsigned int cpu_state);
87 	void (*hotplug_restart)(void);
88 };
89 
90 static DEFINE_PER_CPU(struct omap4_cpu_pm_info, omap4_pm_info);
91 static struct powerdomain *mpuss_pd;
92 static u32 cpu_context_offset;
93 
default_finish_suspend(unsigned long cpu_state)94 static int default_finish_suspend(unsigned long cpu_state)
95 {
96 	omap_do_wfi();
97 	return 0;
98 }
99 
dummy_cpu_resume(void)100 static void dummy_cpu_resume(void)
101 {}
102 
dummy_scu_prepare(unsigned int cpu_id,unsigned int cpu_state)103 static void dummy_scu_prepare(unsigned int cpu_id, unsigned int cpu_state)
104 {}
105 
106 static struct cpu_pm_ops omap_pm_ops = {
107 	.finish_suspend		= default_finish_suspend,
108 	.resume			= dummy_cpu_resume,
109 	.scu_prepare		= dummy_scu_prepare,
110 	.hotplug_restart	= dummy_cpu_resume,
111 };
112 
113 /*
114  * Program the wakeup routine address for the CPU0 and CPU1
115  * used for OFF or DORMANT wakeup.
116  */
set_cpu_wakeup_addr(unsigned int cpu_id,u32 addr)117 static inline void set_cpu_wakeup_addr(unsigned int cpu_id, u32 addr)
118 {
119 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
120 
121 	if (pm_info->wkup_sar_addr)
122 		writel_relaxed(addr, pm_info->wkup_sar_addr);
123 }
124 
125 /*
126  * Store the SCU power status value to scratchpad memory
127  */
scu_pwrst_prepare(unsigned int cpu_id,unsigned int cpu_state)128 static void scu_pwrst_prepare(unsigned int cpu_id, unsigned int cpu_state)
129 {
130 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
131 	u32 scu_pwr_st;
132 
133 	switch (cpu_state) {
134 	case PWRDM_POWER_RET:
135 		scu_pwr_st = SCU_PM_DORMANT;
136 		break;
137 	case PWRDM_POWER_OFF:
138 		scu_pwr_st = SCU_PM_POWEROFF;
139 		break;
140 	case PWRDM_POWER_ON:
141 	case PWRDM_POWER_INACTIVE:
142 	default:
143 		scu_pwr_st = SCU_PM_NORMAL;
144 		break;
145 	}
146 
147 	if (pm_info->scu_sar_addr)
148 		writel_relaxed(scu_pwr_st, pm_info->scu_sar_addr);
149 }
150 
151 /* Helper functions for MPUSS OSWR */
mpuss_clear_prev_logic_pwrst(void)152 static inline void mpuss_clear_prev_logic_pwrst(void)
153 {
154 	u32 reg;
155 
156 	reg = omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION,
157 		OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
158 	omap4_prminst_write_inst_reg(reg, OMAP4430_PRM_PARTITION,
159 		OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
160 }
161 
cpu_clear_prev_logic_pwrst(unsigned int cpu_id)162 static inline void cpu_clear_prev_logic_pwrst(unsigned int cpu_id)
163 {
164 	u32 reg;
165 
166 	if (cpu_id) {
167 		reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU1_INST,
168 					cpu_context_offset);
169 		omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU1_INST,
170 					cpu_context_offset);
171 	} else {
172 		reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU0_INST,
173 					cpu_context_offset);
174 		omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU0_INST,
175 					cpu_context_offset);
176 	}
177 }
178 
179 /*
180  * Store the CPU cluster state for L2X0 low power operations.
181  */
l2x0_pwrst_prepare(unsigned int cpu_id,unsigned int save_state)182 static void l2x0_pwrst_prepare(unsigned int cpu_id, unsigned int save_state)
183 {
184 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
185 
186 	if (pm_info->l2x0_sar_addr)
187 		writel_relaxed(save_state, pm_info->l2x0_sar_addr);
188 }
189 
190 /*
191  * Save the L2X0 AUXCTRL and POR value to SAR memory. Its used to
192  * in every restore MPUSS OFF path.
193  */
194 #ifdef CONFIG_CACHE_L2X0
save_l2x0_context(void)195 static void __init save_l2x0_context(void)
196 {
197 	void __iomem *l2x0_base = omap4_get_l2cache_base();
198 
199 	if (l2x0_base && sar_base) {
200 		writel_relaxed(l2x0_saved_regs.aux_ctrl,
201 			       sar_base + L2X0_AUXCTRL_OFFSET);
202 		writel_relaxed(l2x0_saved_regs.prefetch_ctrl,
203 			       sar_base + L2X0_PREFETCH_CTRL_OFFSET);
204 	}
205 }
206 #else
save_l2x0_context(void)207 static void __init save_l2x0_context(void)
208 {}
209 #endif
210 
211 /**
212  * omap4_enter_lowpower: OMAP4 MPUSS Low Power Entry Function
213  * The purpose of this function is to manage low power programming
214  * of OMAP4 MPUSS subsystem
215  * @cpu : CPU ID
216  * @power_state: Low power state.
217  *
218  * MPUSS states for the context save:
219  * save_state =
220  *	0 - Nothing lost and no need to save: MPUSS INACTIVE
221  *	1 - CPUx L1 and logic lost: MPUSS CSWR
222  *	2 - CPUx L1 and logic lost + GIC lost: MPUSS OSWR
223  *	3 - CPUx L1 and logic lost + GIC + L2 lost: DEVICE OFF
224  */
omap4_enter_lowpower(unsigned int cpu,unsigned int power_state)225 int omap4_enter_lowpower(unsigned int cpu, unsigned int power_state)
226 {
227 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
228 	unsigned int save_state = 0, cpu_logic_state = PWRDM_POWER_RET;
229 
230 	if (omap_rev() == OMAP4430_REV_ES1_0)
231 		return -ENXIO;
232 
233 	switch (power_state) {
234 	case PWRDM_POWER_ON:
235 	case PWRDM_POWER_INACTIVE:
236 		save_state = 0;
237 		break;
238 	case PWRDM_POWER_OFF:
239 		cpu_logic_state = PWRDM_POWER_OFF;
240 		save_state = 1;
241 		break;
242 	case PWRDM_POWER_RET:
243 		if (IS_PM44XX_ERRATUM(PM_OMAP4_CPU_OSWR_DISABLE))
244 			save_state = 0;
245 		break;
246 	default:
247 		/*
248 		 * CPUx CSWR is invalid hardware state. Also CPUx OSWR
249 		 * doesn't make much scense, since logic is lost and $L1
250 		 * needs to be cleaned because of coherency. This makes
251 		 * CPUx OSWR equivalent to CPUX OFF and hence not supported
252 		 */
253 		WARN_ON(1);
254 		return -ENXIO;
255 	}
256 
257 	pwrdm_pre_transition(NULL);
258 
259 	/*
260 	 * Check MPUSS next state and save interrupt controller if needed.
261 	 * In MPUSS OSWR or device OFF, interrupt controller  contest is lost.
262 	 */
263 	mpuss_clear_prev_logic_pwrst();
264 	if ((pwrdm_read_next_pwrst(mpuss_pd) == PWRDM_POWER_RET) &&
265 		(pwrdm_read_logic_retst(mpuss_pd) == PWRDM_POWER_OFF))
266 		save_state = 2;
267 
268 	cpu_clear_prev_logic_pwrst(cpu);
269 	pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
270 	pwrdm_set_logic_retst(pm_info->pwrdm, cpu_logic_state);
271 	set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.resume));
272 	omap_pm_ops.scu_prepare(cpu, power_state);
273 	l2x0_pwrst_prepare(cpu, save_state);
274 
275 	/*
276 	 * Call low level function  with targeted low power state.
277 	 */
278 	if (save_state)
279 		cpu_suspend(save_state, omap_pm_ops.finish_suspend);
280 	else
281 		omap_pm_ops.finish_suspend(save_state);
282 
283 	if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD) && cpu)
284 		gic_dist_enable();
285 
286 	/*
287 	 * Restore the CPUx power state to ON otherwise CPUx
288 	 * power domain can transitions to programmed low power
289 	 * state while doing WFI outside the low powe code. On
290 	 * secure devices, CPUx does WFI which can result in
291 	 * domain transition
292 	 */
293 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
294 
295 	pwrdm_post_transition(NULL);
296 
297 	return 0;
298 }
299 
300 /**
301  * omap4_hotplug_cpu: OMAP4 CPU hotplug entry
302  * @cpu : CPU ID
303  * @power_state: CPU low power state.
304  */
omap4_hotplug_cpu(unsigned int cpu,unsigned int power_state)305 int omap4_hotplug_cpu(unsigned int cpu, unsigned int power_state)
306 {
307 	struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
308 	unsigned int cpu_state = 0;
309 
310 	if (omap_rev() == OMAP4430_REV_ES1_0)
311 		return -ENXIO;
312 
313 	/* Use the achievable power state for the domain */
314 	power_state = pwrdm_get_valid_lp_state(pm_info->pwrdm,
315 					       false, power_state);
316 
317 	if (power_state == PWRDM_POWER_OFF)
318 		cpu_state = 1;
319 
320 	pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
321 	pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
322 	set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.hotplug_restart));
323 	omap_pm_ops.scu_prepare(cpu, power_state);
324 
325 	/*
326 	 * CPU never retuns back if targeted power state is OFF mode.
327 	 * CPU ONLINE follows normal CPU ONLINE ptah via
328 	 * omap4_secondary_startup().
329 	 */
330 	omap_pm_ops.finish_suspend(cpu_state);
331 
332 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
333 	return 0;
334 }
335 
336 
337 /*
338  * Enable Mercury Fast HG retention mode by default.
339  */
enable_mercury_retention_mode(void)340 static void enable_mercury_retention_mode(void)
341 {
342 	u32 reg;
343 
344 	reg = omap4_prcm_mpu_read_inst_reg(OMAP54XX_PRCM_MPU_DEVICE_INST,
345 				  OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
346 	/* Enable HG_EN, HG_RAMPUP = fast mode */
347 	reg |= BIT(24) | BIT(25);
348 	omap4_prcm_mpu_write_inst_reg(reg, OMAP54XX_PRCM_MPU_DEVICE_INST,
349 				      OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
350 }
351 
352 /*
353  * Initialise OMAP4 MPUSS
354  */
omap4_mpuss_init(void)355 int __init omap4_mpuss_init(void)
356 {
357 	struct omap4_cpu_pm_info *pm_info;
358 
359 	if (omap_rev() == OMAP4430_REV_ES1_0) {
360 		WARN(1, "Power Management not supported on OMAP4430 ES1.0\n");
361 		return -ENODEV;
362 	}
363 
364 	/* Initilaise per CPU PM information */
365 	pm_info = &per_cpu(omap4_pm_info, 0x0);
366 	if (sar_base) {
367 		pm_info->scu_sar_addr = sar_base + SCU_OFFSET0;
368 		if (cpu_is_omap44xx())
369 			pm_info->wkup_sar_addr = sar_base +
370 				CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
371 		else
372 			pm_info->wkup_sar_addr = sar_base +
373 				OMAP5_CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
374 		pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET0;
375 	}
376 	pm_info->pwrdm = pwrdm_lookup("cpu0_pwrdm");
377 	if (!pm_info->pwrdm) {
378 		pr_err("Lookup failed for CPU0 pwrdm\n");
379 		return -ENODEV;
380 	}
381 
382 	/* Clear CPU previous power domain state */
383 	pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
384 	cpu_clear_prev_logic_pwrst(0);
385 
386 	/* Initialise CPU0 power domain state to ON */
387 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
388 
389 	pm_info = &per_cpu(omap4_pm_info, 0x1);
390 	if (sar_base) {
391 		pm_info->scu_sar_addr = sar_base + SCU_OFFSET1;
392 		if (cpu_is_omap44xx())
393 			pm_info->wkup_sar_addr = sar_base +
394 				CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
395 		else
396 			pm_info->wkup_sar_addr = sar_base +
397 				OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
398 		pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET1;
399 	}
400 
401 	pm_info->pwrdm = pwrdm_lookup("cpu1_pwrdm");
402 	if (!pm_info->pwrdm) {
403 		pr_err("Lookup failed for CPU1 pwrdm\n");
404 		return -ENODEV;
405 	}
406 
407 	/* Clear CPU previous power domain state */
408 	pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
409 	cpu_clear_prev_logic_pwrst(1);
410 
411 	/* Initialise CPU1 power domain state to ON */
412 	pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
413 
414 	mpuss_pd = pwrdm_lookup("mpu_pwrdm");
415 	if (!mpuss_pd) {
416 		pr_err("Failed to lookup MPUSS power domain\n");
417 		return -ENODEV;
418 	}
419 	pwrdm_clear_all_prev_pwrst(mpuss_pd);
420 	mpuss_clear_prev_logic_pwrst();
421 
422 	if (sar_base) {
423 		/* Save device type on scratchpad for low level code to use */
424 		writel_relaxed((omap_type() != OMAP2_DEVICE_TYPE_GP) ? 1 : 0,
425 			       sar_base + OMAP_TYPE_OFFSET);
426 		save_l2x0_context();
427 	}
428 
429 	if (cpu_is_omap44xx()) {
430 		omap_pm_ops.finish_suspend = omap4_finish_suspend;
431 		omap_pm_ops.resume = omap4_cpu_resume;
432 		omap_pm_ops.scu_prepare = scu_pwrst_prepare;
433 		omap_pm_ops.hotplug_restart = omap4_secondary_startup;
434 		cpu_context_offset = OMAP4_RM_CPU0_CPU0_CONTEXT_OFFSET;
435 	} else if (soc_is_omap54xx() || soc_is_dra7xx()) {
436 		cpu_context_offset = OMAP54XX_RM_CPU0_CPU0_CONTEXT_OFFSET;
437 		enable_mercury_retention_mode();
438 	}
439 
440 	if (cpu_is_omap446x())
441 		omap_pm_ops.hotplug_restart = omap4460_secondary_startup;
442 
443 	return 0;
444 }
445 
446 #endif
447 
omap4_get_cpu1_ns_pa_addr(void)448 u32 omap4_get_cpu1_ns_pa_addr(void)
449 {
450 	return old_cpu1_ns_pa_addr;
451 }
452 
453 /*
454  * For kexec, we must set CPU1_WAKEUP_NS_PA_ADDR to point to
455  * current kernel's secondary_startup() early before
456  * clockdomains_init(). Otherwise clockdomain_init() can
457  * wake CPU1 and cause a hang.
458  */
omap4_mpuss_early_init(void)459 void __init omap4_mpuss_early_init(void)
460 {
461 	unsigned long startup_pa;
462 	void __iomem *ns_pa_addr;
463 
464 	if (!(soc_is_omap44xx() || soc_is_omap54xx()))
465 		return;
466 
467 	sar_base = omap4_get_sar_ram_base();
468 
469 	/* Save old NS_PA_ADDR for validity checks later on */
470 	if (soc_is_omap44xx())
471 		ns_pa_addr = sar_base + CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
472 	else
473 		ns_pa_addr = sar_base + OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
474 	old_cpu1_ns_pa_addr = readl_relaxed(ns_pa_addr);
475 
476 	if (soc_is_omap443x())
477 		startup_pa = __pa_symbol(omap4_secondary_startup);
478 	else if (soc_is_omap446x())
479 		startup_pa = __pa_symbol(omap4460_secondary_startup);
480 	else if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE)
481 		startup_pa = __pa_symbol(omap5_secondary_hyp_startup);
482 	else
483 		startup_pa = __pa_symbol(omap5_secondary_startup);
484 
485 	if (soc_is_omap44xx())
486 		writel_relaxed(startup_pa, sar_base +
487 			       CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
488 	else
489 		writel_relaxed(startup_pa, sar_base +
490 			       OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
491 }
492