• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36 
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56 #undef CREATE_TRACE_POINTS
57 #include <trace/hooks/debug.h>
58 
59 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
60 EXPORT_PER_CPU_SYMBOL(cpu_number);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_raise);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_entry);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_exit);
64 
65 /*
66  * as from 2.5, kernels no longer have an init_tasks structure
67  * so we need some other way of telling a new secondary core
68  * where to place its SVC stack
69  */
70 struct secondary_data secondary_data;
71 /* Number of CPUs which aren't online, but looping in kernel text. */
72 static int cpus_stuck_in_kernel;
73 
74 enum ipi_msg_type {
75 	IPI_RESCHEDULE,
76 	IPI_CALL_FUNC,
77 	IPI_CPU_STOP,
78 	IPI_CPU_CRASH_STOP,
79 	IPI_TIMER,
80 	IPI_IRQ_WORK,
81 	IPI_WAKEUP,
82 	NR_IPI
83 };
84 
85 static int ipi_irq_base __read_mostly;
86 static int nr_ipi __read_mostly = NR_IPI;
87 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
88 
89 static void ipi_setup(int cpu);
90 
91 #ifdef CONFIG_HOTPLUG_CPU
92 static void ipi_teardown(int cpu);
93 static int op_cpu_kill(unsigned int cpu);
94 #else
op_cpu_kill(unsigned int cpu)95 static inline int op_cpu_kill(unsigned int cpu)
96 {
97 	return -ENOSYS;
98 }
99 #endif
100 
101 
102 /*
103  * Boot a secondary CPU, and assign it the specified idle task.
104  * This also gives us the initial stack to use for this CPU.
105  */
boot_secondary(unsigned int cpu,struct task_struct * idle)106 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
107 {
108 	const struct cpu_operations *ops = get_cpu_ops(cpu);
109 
110 	if (ops->cpu_boot)
111 		return ops->cpu_boot(cpu);
112 
113 	return -EOPNOTSUPP;
114 }
115 
116 static DECLARE_COMPLETION(cpu_running);
117 
__cpu_up(unsigned int cpu,struct task_struct * idle)118 int __cpu_up(unsigned int cpu, struct task_struct *idle)
119 {
120 	int ret;
121 	long status;
122 
123 	/*
124 	 * We need to tell the secondary core where to find its stack and the
125 	 * page tables.
126 	 */
127 	secondary_data.task = idle;
128 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
129 	update_cpu_boot_status(CPU_MMU_OFF);
130 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
131 
132 	/* Now bring the CPU into our world */
133 	ret = boot_secondary(cpu, idle);
134 	if (ret) {
135 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
136 		return ret;
137 	}
138 
139 	/*
140 	 * CPU was successfully started, wait for it to come online or
141 	 * time out.
142 	 */
143 	wait_for_completion_timeout(&cpu_running,
144 				    msecs_to_jiffies(5000));
145 	if (cpu_online(cpu))
146 		return 0;
147 
148 	pr_crit("CPU%u: failed to come online\n", cpu);
149 	secondary_data.task = NULL;
150 	secondary_data.stack = NULL;
151 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
152 	status = READ_ONCE(secondary_data.status);
153 	if (status == CPU_MMU_OFF)
154 		status = READ_ONCE(__early_cpu_boot_status);
155 
156 	switch (status & CPU_BOOT_STATUS_MASK) {
157 	default:
158 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
159 		       cpu, status);
160 		cpus_stuck_in_kernel++;
161 		break;
162 	case CPU_KILL_ME:
163 		if (!op_cpu_kill(cpu)) {
164 			pr_crit("CPU%u: died during early boot\n", cpu);
165 			break;
166 		}
167 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
168 		fallthrough;
169 	case CPU_STUCK_IN_KERNEL:
170 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
171 		if (status & CPU_STUCK_REASON_52_BIT_VA)
172 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
173 		if (status & CPU_STUCK_REASON_NO_GRAN) {
174 			pr_crit("CPU%u: does not support %luK granule\n",
175 				cpu, PAGE_SIZE / SZ_1K);
176 		}
177 		cpus_stuck_in_kernel++;
178 		break;
179 	case CPU_PANIC_KERNEL:
180 		panic("CPU%u detected unsupported configuration\n", cpu);
181 	}
182 
183 	return -EIO;
184 }
185 
init_gic_priority_masking(void)186 static void init_gic_priority_masking(void)
187 {
188 	u32 cpuflags;
189 
190 	if (WARN_ON(!gic_enable_sre()))
191 		return;
192 
193 	cpuflags = read_sysreg(daif);
194 
195 	WARN_ON(!(cpuflags & PSR_I_BIT));
196 
197 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
198 }
199 
200 /*
201  * This is the secondary CPU boot entry.  We're using this CPUs
202  * idle thread stack, but a set of temporary page tables.
203  */
secondary_start_kernel(void)204 asmlinkage notrace void secondary_start_kernel(void)
205 {
206 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
207 	struct mm_struct *mm = &init_mm;
208 	const struct cpu_operations *ops;
209 	unsigned int cpu;
210 
211 	cpu = task_cpu(current);
212 	set_my_cpu_offset(per_cpu_offset(cpu));
213 
214 	/*
215 	 * All kernel threads share the same mm context; grab a
216 	 * reference and switch to it.
217 	 */
218 	mmgrab(mm);
219 	current->active_mm = mm;
220 
221 	/*
222 	 * TTBR0 is only used for the identity mapping at this stage. Make it
223 	 * point to zero page to avoid speculatively fetching new entries.
224 	 */
225 	cpu_uninstall_idmap();
226 
227 	if (system_uses_irq_prio_masking())
228 		init_gic_priority_masking();
229 
230 	rcu_cpu_starting(cpu);
231 	trace_hardirqs_off();
232 
233 	/*
234 	 * If the system has established the capabilities, make sure
235 	 * this CPU ticks all of those. If it doesn't, the CPU will
236 	 * fail to come online.
237 	 */
238 	check_local_cpu_capabilities();
239 
240 	ops = get_cpu_ops(cpu);
241 	if (ops->cpu_postboot)
242 		ops->cpu_postboot();
243 
244 	/*
245 	 * Log the CPU info before it is marked online and might get read.
246 	 */
247 	cpuinfo_store_cpu();
248 
249 	/*
250 	 * Enable GIC and timers.
251 	 */
252 	notify_cpu_starting(cpu);
253 
254 	ipi_setup(cpu);
255 
256 	store_cpu_topology(cpu);
257 	numa_add_cpu(cpu);
258 
259 	/*
260 	 * OK, now it's safe to let the boot CPU continue.  Wait for
261 	 * the CPU migration code to notice that the CPU is online
262 	 * before we continue.
263 	 */
264 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
265 					 cpu, (unsigned long)mpidr,
266 					 read_cpuid_id());
267 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
268 	set_cpu_online(cpu, true);
269 	complete(&cpu_running);
270 
271 	local_daif_restore(DAIF_PROCCTX);
272 
273 	/*
274 	 * OK, it's off to the idle thread for us
275 	 */
276 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
277 }
278 
279 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)280 static int op_cpu_disable(unsigned int cpu)
281 {
282 	const struct cpu_operations *ops = get_cpu_ops(cpu);
283 
284 	/*
285 	 * If we don't have a cpu_die method, abort before we reach the point
286 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
287 	 */
288 	if (!ops || !ops->cpu_die)
289 		return -EOPNOTSUPP;
290 
291 	/*
292 	 * We may need to abort a hot unplug for some other mechanism-specific
293 	 * reason.
294 	 */
295 	if (ops->cpu_disable)
296 		return ops->cpu_disable(cpu);
297 
298 	return 0;
299 }
300 
301 /*
302  * __cpu_disable runs on the processor to be shutdown.
303  */
__cpu_disable(void)304 int __cpu_disable(void)
305 {
306 	unsigned int cpu = smp_processor_id();
307 	int ret;
308 
309 	ret = op_cpu_disable(cpu);
310 	if (ret)
311 		return ret;
312 
313 	remove_cpu_topology(cpu);
314 	numa_remove_cpu(cpu);
315 
316 	/*
317 	 * Take this CPU offline.  Once we clear this, we can't return,
318 	 * and we must not schedule until we're ready to give up the cpu.
319 	 */
320 	set_cpu_online(cpu, false);
321 	ipi_teardown(cpu);
322 
323 	/*
324 	 * OK - migrate IRQs away from this CPU
325 	 */
326 	irq_migrate_all_off_this_cpu();
327 
328 	return 0;
329 }
330 
op_cpu_kill(unsigned int cpu)331 static int op_cpu_kill(unsigned int cpu)
332 {
333 	const struct cpu_operations *ops = get_cpu_ops(cpu);
334 
335 	/*
336 	 * If we have no means of synchronising with the dying CPU, then assume
337 	 * that it is really dead. We can only wait for an arbitrary length of
338 	 * time and hope that it's dead, so let's skip the wait and just hope.
339 	 */
340 	if (!ops->cpu_kill)
341 		return 0;
342 
343 	return ops->cpu_kill(cpu);
344 }
345 
346 /*
347  * called on the thread which is asking for a CPU to be shutdown -
348  * waits until shutdown has completed, or it is timed out.
349  */
__cpu_die(unsigned int cpu)350 void __cpu_die(unsigned int cpu)
351 {
352 	int err;
353 
354 	if (!cpu_wait_death(cpu, 5)) {
355 		pr_crit("CPU%u: cpu didn't die\n", cpu);
356 		return;
357 	}
358 	pr_debug("CPU%u: shutdown\n", cpu);
359 
360 	/*
361 	 * Now that the dying CPU is beyond the point of no return w.r.t.
362 	 * in-kernel synchronisation, try to get the firwmare to help us to
363 	 * verify that it has really left the kernel before we consider
364 	 * clobbering anything it might still be using.
365 	 */
366 	err = op_cpu_kill(cpu);
367 	if (err)
368 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
369 }
370 
371 /*
372  * Called from the idle thread for the CPU which has been shutdown.
373  *
374  */
cpu_die(void)375 void cpu_die(void)
376 {
377 	unsigned int cpu = smp_processor_id();
378 	const struct cpu_operations *ops = get_cpu_ops(cpu);
379 
380 	idle_task_exit();
381 
382 	local_daif_mask();
383 
384 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
385 	(void)cpu_report_death();
386 
387 	/*
388 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
389 	 * mechanism must perform all required cache maintenance to ensure that
390 	 * no dirty lines are lost in the process of shutting down the CPU.
391 	 */
392 	ops->cpu_die(cpu);
393 
394 	BUG();
395 }
396 #endif
397 
__cpu_try_die(int cpu)398 static void __cpu_try_die(int cpu)
399 {
400 #ifdef CONFIG_HOTPLUG_CPU
401 	const struct cpu_operations *ops = get_cpu_ops(cpu);
402 
403 	if (ops && ops->cpu_die)
404 		ops->cpu_die(cpu);
405 #endif
406 }
407 
408 /*
409  * Kill the calling secondary CPU, early in bringup before it is turned
410  * online.
411  */
cpu_die_early(void)412 void cpu_die_early(void)
413 {
414 	int cpu = smp_processor_id();
415 
416 	pr_crit("CPU%d: will not boot\n", cpu);
417 
418 	/* Mark this CPU absent */
419 	set_cpu_present(cpu, 0);
420 	rcu_report_dead(cpu);
421 
422 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
423 		update_cpu_boot_status(CPU_KILL_ME);
424 		__cpu_try_die(cpu);
425 	}
426 
427 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
428 
429 	cpu_park_loop();
430 }
431 
hyp_mode_check(void)432 static void __init hyp_mode_check(void)
433 {
434 	if (is_hyp_mode_available())
435 		pr_info("CPU: All CPU(s) started at EL2\n");
436 	else if (is_hyp_mode_mismatched())
437 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
438 			   "CPU: CPUs started in inconsistent modes");
439 	else
440 		pr_info("CPU: All CPU(s) started at EL1\n");
441 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
442 		kvm_compute_layout();
443 		kvm_apply_hyp_relocations();
444 	}
445 }
446 
smp_cpus_done(unsigned int max_cpus)447 void __init smp_cpus_done(unsigned int max_cpus)
448 {
449 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
450 	setup_cpu_features();
451 	hyp_mode_check();
452 	apply_alternatives_all();
453 	mark_linear_text_alias_ro();
454 }
455 
smp_prepare_boot_cpu(void)456 void __init smp_prepare_boot_cpu(void)
457 {
458 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
459 	cpuinfo_store_boot_cpu();
460 
461 	/*
462 	 * We now know enough about the boot CPU to apply the
463 	 * alternatives that cannot wait until interrupt handling
464 	 * and/or scheduling is enabled.
465 	 */
466 	apply_boot_alternatives();
467 
468 	/* Conditionally switch to GIC PMR for interrupt masking */
469 	if (system_uses_irq_prio_masking())
470 		init_gic_priority_masking();
471 
472 	kasan_init_hw_tags();
473 }
474 
of_get_cpu_mpidr(struct device_node * dn)475 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
476 {
477 	const __be32 *cell;
478 	u64 hwid;
479 
480 	/*
481 	 * A cpu node with missing "reg" property is
482 	 * considered invalid to build a cpu_logical_map
483 	 * entry.
484 	 */
485 	cell = of_get_property(dn, "reg", NULL);
486 	if (!cell) {
487 		pr_err("%pOF: missing reg property\n", dn);
488 		return INVALID_HWID;
489 	}
490 
491 	hwid = of_read_number(cell, of_n_addr_cells(dn));
492 	/*
493 	 * Non affinity bits must be set to 0 in the DT
494 	 */
495 	if (hwid & ~MPIDR_HWID_BITMASK) {
496 		pr_err("%pOF: invalid reg property\n", dn);
497 		return INVALID_HWID;
498 	}
499 	return hwid;
500 }
501 
502 /*
503  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
504  * entries and check for duplicates. If any is found just ignore the
505  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
506  * matching valid MPIDR values.
507  */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)508 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
509 {
510 	unsigned int i;
511 
512 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
513 		if (cpu_logical_map(i) == hwid)
514 			return true;
515 	return false;
516 }
517 
518 /*
519  * Initialize cpu operations for a logical cpu and
520  * set it in the possible mask on success
521  */
smp_cpu_setup(int cpu)522 static int __init smp_cpu_setup(int cpu)
523 {
524 	const struct cpu_operations *ops;
525 
526 	if (init_cpu_ops(cpu))
527 		return -ENODEV;
528 
529 	ops = get_cpu_ops(cpu);
530 	if (ops->cpu_init(cpu))
531 		return -ENODEV;
532 
533 	set_cpu_possible(cpu, true);
534 
535 	return 0;
536 }
537 
538 static bool bootcpu_valid __initdata;
539 static unsigned int cpu_count = 1;
540 
541 #ifdef CONFIG_ACPI
542 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
543 
acpi_cpu_get_madt_gicc(int cpu)544 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
545 {
546 	return &cpu_madt_gicc[cpu];
547 }
548 
549 /*
550  * acpi_map_gic_cpu_interface - parse processor MADT entry
551  *
552  * Carry out sanity checks on MADT processor entry and initialize
553  * cpu_logical_map on success
554  */
555 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)556 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
557 {
558 	u64 hwid = processor->arm_mpidr;
559 
560 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
561 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
562 		return;
563 	}
564 
565 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
566 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
567 		return;
568 	}
569 
570 	if (is_mpidr_duplicate(cpu_count, hwid)) {
571 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
572 		return;
573 	}
574 
575 	/* Check if GICC structure of boot CPU is available in the MADT */
576 	if (cpu_logical_map(0) == hwid) {
577 		if (bootcpu_valid) {
578 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
579 			       hwid);
580 			return;
581 		}
582 		bootcpu_valid = true;
583 		cpu_madt_gicc[0] = *processor;
584 		return;
585 	}
586 
587 	if (cpu_count >= NR_CPUS)
588 		return;
589 
590 	/* map the logical cpu id to cpu MPIDR */
591 	set_cpu_logical_map(cpu_count, hwid);
592 
593 	cpu_madt_gicc[cpu_count] = *processor;
594 
595 	/*
596 	 * Set-up the ACPI parking protocol cpu entries
597 	 * while initializing the cpu_logical_map to
598 	 * avoid parsing MADT entries multiple times for
599 	 * nothing (ie a valid cpu_logical_map entry should
600 	 * contain a valid parking protocol data set to
601 	 * initialize the cpu if the parking protocol is
602 	 * the only available enable method).
603 	 */
604 	acpi_set_mailbox_entry(cpu_count, processor);
605 
606 	cpu_count++;
607 }
608 
609 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)610 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
611 			     const unsigned long end)
612 {
613 	struct acpi_madt_generic_interrupt *processor;
614 
615 	processor = (struct acpi_madt_generic_interrupt *)header;
616 	if (BAD_MADT_GICC_ENTRY(processor, end))
617 		return -EINVAL;
618 
619 	acpi_table_print_madt_entry(&header->common);
620 
621 	acpi_map_gic_cpu_interface(processor);
622 
623 	return 0;
624 }
625 
acpi_parse_and_init_cpus(void)626 static void __init acpi_parse_and_init_cpus(void)
627 {
628 	int i;
629 
630 	/*
631 	 * do a walk of MADT to determine how many CPUs
632 	 * we have including disabled CPUs, and get information
633 	 * we need for SMP init.
634 	 */
635 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
636 				      acpi_parse_gic_cpu_interface, 0);
637 
638 	/*
639 	 * In ACPI, SMP and CPU NUMA information is provided in separate
640 	 * static tables, namely the MADT and the SRAT.
641 	 *
642 	 * Thus, it is simpler to first create the cpu logical map through
643 	 * an MADT walk and then map the logical cpus to their node ids
644 	 * as separate steps.
645 	 */
646 	acpi_map_cpus_to_nodes();
647 
648 	for (i = 0; i < nr_cpu_ids; i++)
649 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
650 }
651 #else
652 #define acpi_parse_and_init_cpus(...)	do { } while (0)
653 #endif
654 
655 /*
656  * Enumerate the possible CPU set from the device tree and build the
657  * cpu logical map array containing MPIDR values related to logical
658  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
659  */
of_parse_and_init_cpus(void)660 static void __init of_parse_and_init_cpus(void)
661 {
662 	struct device_node *dn;
663 
664 	for_each_of_cpu_node(dn) {
665 		u64 hwid = of_get_cpu_mpidr(dn);
666 
667 		if (hwid == INVALID_HWID)
668 			goto next;
669 
670 		if (is_mpidr_duplicate(cpu_count, hwid)) {
671 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
672 				dn);
673 			goto next;
674 		}
675 
676 		/*
677 		 * The numbering scheme requires that the boot CPU
678 		 * must be assigned logical id 0. Record it so that
679 		 * the logical map built from DT is validated and can
680 		 * be used.
681 		 */
682 		if (hwid == cpu_logical_map(0)) {
683 			if (bootcpu_valid) {
684 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
685 					dn);
686 				goto next;
687 			}
688 
689 			bootcpu_valid = true;
690 			early_map_cpu_to_node(0, of_node_to_nid(dn));
691 
692 			/*
693 			 * cpu_logical_map has already been
694 			 * initialized and the boot cpu doesn't need
695 			 * the enable-method so continue without
696 			 * incrementing cpu.
697 			 */
698 			continue;
699 		}
700 
701 		if (cpu_count >= NR_CPUS)
702 			goto next;
703 
704 		pr_debug("cpu logical map 0x%llx\n", hwid);
705 		set_cpu_logical_map(cpu_count, hwid);
706 
707 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
708 next:
709 		cpu_count++;
710 	}
711 }
712 
713 /*
714  * Enumerate the possible CPU set from the device tree or ACPI and build the
715  * cpu logical map array containing MPIDR values related to logical
716  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
717  */
smp_init_cpus(void)718 void __init smp_init_cpus(void)
719 {
720 	int i;
721 
722 	if (acpi_disabled)
723 		of_parse_and_init_cpus();
724 	else
725 		acpi_parse_and_init_cpus();
726 
727 	if (cpu_count > nr_cpu_ids)
728 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
729 			cpu_count, nr_cpu_ids);
730 
731 	if (!bootcpu_valid) {
732 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
733 		return;
734 	}
735 
736 	/*
737 	 * We need to set the cpu_logical_map entries before enabling
738 	 * the cpus so that cpu processor description entries (DT cpu nodes
739 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
740 	 * with entries in cpu_logical_map while initializing the cpus.
741 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
742 	 */
743 	for (i = 1; i < nr_cpu_ids; i++) {
744 		if (cpu_logical_map(i) != INVALID_HWID) {
745 			if (smp_cpu_setup(i))
746 				set_cpu_logical_map(i, INVALID_HWID);
747 		}
748 	}
749 }
750 
smp_prepare_cpus(unsigned int max_cpus)751 void __init smp_prepare_cpus(unsigned int max_cpus)
752 {
753 	const struct cpu_operations *ops;
754 	int err;
755 	unsigned int cpu;
756 	unsigned int this_cpu;
757 
758 	init_cpu_topology();
759 
760 	this_cpu = smp_processor_id();
761 	store_cpu_topology(this_cpu);
762 	numa_store_cpu_info(this_cpu);
763 	numa_add_cpu(this_cpu);
764 
765 	/*
766 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
767 	 * secondary CPUs present.
768 	 */
769 	if (max_cpus == 0)
770 		return;
771 
772 	/*
773 	 * Initialise the present map (which describes the set of CPUs
774 	 * actually populated at the present time) and release the
775 	 * secondaries from the bootloader.
776 	 */
777 	for_each_possible_cpu(cpu) {
778 
779 		per_cpu(cpu_number, cpu) = cpu;
780 
781 		if (cpu == smp_processor_id())
782 			continue;
783 
784 		ops = get_cpu_ops(cpu);
785 		if (!ops)
786 			continue;
787 
788 		err = ops->cpu_prepare(cpu);
789 		if (err)
790 			continue;
791 
792 		set_cpu_present(cpu, true);
793 		numa_store_cpu_info(cpu);
794 	}
795 }
796 
797 static const char *ipi_types[NR_IPI] __tracepoint_string = {
798 #define S(x,s)	[x] = s
799 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
800 	S(IPI_CALL_FUNC, "Function call interrupts"),
801 	S(IPI_CPU_STOP, "CPU stop interrupts"),
802 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
803 	S(IPI_TIMER, "Timer broadcast interrupts"),
804 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
805 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
806 };
807 
808 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
809 
810 unsigned long irq_err_count;
811 
arch_show_interrupts(struct seq_file * p,int prec)812 int arch_show_interrupts(struct seq_file *p, int prec)
813 {
814 	unsigned int cpu, i;
815 
816 	for (i = 0; i < NR_IPI; i++) {
817 		unsigned int irq = irq_desc_get_irq(ipi_desc[i]);
818 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
819 			   prec >= 4 ? " " : "");
820 		for_each_online_cpu(cpu)
821 			seq_printf(p, "%10u ", kstat_irqs_cpu(irq, cpu));
822 		seq_printf(p, "      %s\n", ipi_types[i]);
823 	}
824 
825 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
826 	return 0;
827 }
828 
arch_send_call_function_ipi_mask(const struct cpumask * mask)829 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
830 {
831 	smp_cross_call(mask, IPI_CALL_FUNC);
832 }
833 
arch_send_call_function_single_ipi(int cpu)834 void arch_send_call_function_single_ipi(int cpu)
835 {
836 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
837 }
838 
839 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi_mask(const struct cpumask * mask)840 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
841 {
842 	smp_cross_call(mask, IPI_WAKEUP);
843 }
844 #endif
845 
846 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)847 void arch_irq_work_raise(void)
848 {
849 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
850 }
851 #endif
852 
local_cpu_stop(void)853 static void local_cpu_stop(void)
854 {
855 	set_cpu_online(smp_processor_id(), false);
856 
857 	local_daif_mask();
858 	sdei_mask_local_cpu();
859 	cpu_park_loop();
860 }
861 
862 /*
863  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
864  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
865  * CPUs that have already stopped themselves.
866  */
panic_smp_self_stop(void)867 void panic_smp_self_stop(void)
868 {
869 	local_cpu_stop();
870 }
871 
872 #ifdef CONFIG_KEXEC_CORE
873 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
874 #endif
875 
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)876 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
877 {
878 #ifdef CONFIG_KEXEC_CORE
879 	crash_save_cpu(regs, cpu);
880 
881 	atomic_dec(&waiting_for_crash_ipi);
882 
883 	local_irq_disable();
884 	sdei_mask_local_cpu();
885 
886 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
887 		__cpu_try_die(cpu);
888 
889 	/* just in case */
890 	cpu_park_loop();
891 #endif
892 }
893 
894 /*
895  * Main handler for inter-processor interrupts
896  */
do_handle_IPI(int ipinr)897 static void do_handle_IPI(int ipinr)
898 {
899 	unsigned int cpu = smp_processor_id();
900 
901 	if ((unsigned)ipinr < NR_IPI)
902 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
903 
904 	switch (ipinr) {
905 	case IPI_RESCHEDULE:
906 		scheduler_ipi();
907 		break;
908 
909 	case IPI_CALL_FUNC:
910 		generic_smp_call_function_interrupt();
911 		break;
912 
913 	case IPI_CPU_STOP:
914 		trace_android_vh_ipi_stop_rcuidle(get_irq_regs());
915 		local_cpu_stop();
916 		break;
917 
918 	case IPI_CPU_CRASH_STOP:
919 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
920 			ipi_cpu_crash_stop(cpu, get_irq_regs());
921 
922 			unreachable();
923 		}
924 		break;
925 
926 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
927 	case IPI_TIMER:
928 		tick_receive_broadcast();
929 		break;
930 #endif
931 
932 #ifdef CONFIG_IRQ_WORK
933 	case IPI_IRQ_WORK:
934 		irq_work_run();
935 		break;
936 #endif
937 
938 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
939 	case IPI_WAKEUP:
940 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
941 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
942 			  cpu);
943 		break;
944 #endif
945 
946 	default:
947 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
948 		break;
949 	}
950 
951 	if ((unsigned)ipinr < NR_IPI)
952 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
953 }
954 
ipi_handler(int irq,void * data)955 static irqreturn_t ipi_handler(int irq, void *data)
956 {
957 	do_handle_IPI(irq - ipi_irq_base);
958 	return IRQ_HANDLED;
959 }
960 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)961 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
962 {
963 	trace_ipi_raise(target, ipi_types[ipinr]);
964 	__ipi_send_mask(ipi_desc[ipinr], target);
965 }
966 
ipi_setup(int cpu)967 static void ipi_setup(int cpu)
968 {
969 	int i;
970 
971 	if (WARN_ON_ONCE(!ipi_irq_base))
972 		return;
973 
974 	for (i = 0; i < nr_ipi; i++)
975 		enable_percpu_irq(ipi_irq_base + i, 0);
976 }
977 
978 #ifdef CONFIG_HOTPLUG_CPU
ipi_teardown(int cpu)979 static void ipi_teardown(int cpu)
980 {
981 	int i;
982 
983 	if (WARN_ON_ONCE(!ipi_irq_base))
984 		return;
985 
986 	for (i = 0; i < nr_ipi; i++)
987 		disable_percpu_irq(ipi_irq_base + i);
988 }
989 #endif
990 
set_smp_ipi_range(int ipi_base,int n)991 void __init set_smp_ipi_range(int ipi_base, int n)
992 {
993 	int i;
994 
995 	WARN_ON(n < NR_IPI);
996 	nr_ipi = min(n, NR_IPI);
997 
998 	for (i = 0; i < nr_ipi; i++) {
999 		int err;
1000 
1001 		err = request_percpu_irq(ipi_base + i, ipi_handler,
1002 					 "IPI", &cpu_number);
1003 		WARN_ON(err);
1004 
1005 		ipi_desc[i] = irq_to_desc(ipi_base + i);
1006 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1007 
1008 		/* The recheduling IPI is special... */
1009 		if (i == IPI_RESCHEDULE)
1010 			__irq_modify_status(ipi_base + i, 0, IRQ_RAW, ~0);
1011 	}
1012 
1013 	ipi_irq_base = ipi_base;
1014 
1015 	/* Setup the boot CPU immediately */
1016 	ipi_setup(smp_processor_id());
1017 }
1018 
smp_send_reschedule(int cpu)1019 void smp_send_reschedule(int cpu)
1020 {
1021 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1022 }
1023 
1024 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)1025 void tick_broadcast(const struct cpumask *mask)
1026 {
1027 	smp_cross_call(mask, IPI_TIMER);
1028 }
1029 #endif
1030 
1031 /*
1032  * The number of CPUs online, not counting this CPU (which may not be
1033  * fully online and so not counted in num_online_cpus()).
1034  */
num_other_online_cpus(void)1035 static inline unsigned int num_other_online_cpus(void)
1036 {
1037 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1038 
1039 	return num_online_cpus() - this_cpu_online;
1040 }
1041 
smp_send_stop(void)1042 void smp_send_stop(void)
1043 {
1044 	unsigned long timeout;
1045 
1046 	if (num_other_online_cpus()) {
1047 		cpumask_t mask;
1048 
1049 		cpumask_copy(&mask, cpu_online_mask);
1050 		cpumask_clear_cpu(smp_processor_id(), &mask);
1051 
1052 		if (system_state <= SYSTEM_RUNNING)
1053 			pr_crit("SMP: stopping secondary CPUs\n");
1054 		smp_cross_call(&mask, IPI_CPU_STOP);
1055 	}
1056 
1057 	/* Wait up to one second for other CPUs to stop */
1058 	timeout = USEC_PER_SEC;
1059 	while (num_other_online_cpus() && timeout--)
1060 		udelay(1);
1061 
1062 	if (num_other_online_cpus())
1063 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1064 			cpumask_pr_args(cpu_online_mask));
1065 
1066 	sdei_mask_local_cpu();
1067 }
1068 
1069 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)1070 void crash_smp_send_stop(void)
1071 {
1072 	static int cpus_stopped;
1073 	cpumask_t mask;
1074 	unsigned long timeout;
1075 
1076 	/*
1077 	 * This function can be called twice in panic path, but obviously
1078 	 * we execute this only once.
1079 	 */
1080 	if (cpus_stopped)
1081 		return;
1082 
1083 	cpus_stopped = 1;
1084 
1085 	/*
1086 	 * If this cpu is the only one alive at this point in time, online or
1087 	 * not, there are no stop messages to be sent around, so just back out.
1088 	 */
1089 	if (num_other_online_cpus() == 0)
1090 		goto skip_ipi;
1091 
1092 	cpumask_copy(&mask, cpu_online_mask);
1093 	cpumask_clear_cpu(smp_processor_id(), &mask);
1094 
1095 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1096 
1097 	pr_crit("SMP: stopping secondary CPUs\n");
1098 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1099 
1100 	/* Wait up to one second for other CPUs to stop */
1101 	timeout = USEC_PER_SEC;
1102 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1103 		udelay(1);
1104 
1105 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1106 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1107 			cpumask_pr_args(&mask));
1108 
1109 skip_ipi:
1110 	sdei_mask_local_cpu();
1111 	sdei_handler_abort();
1112 }
1113 
smp_crash_stop_failed(void)1114 bool smp_crash_stop_failed(void)
1115 {
1116 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1117 }
1118 #endif
1119 
1120 /*
1121  * not supported here
1122  */
setup_profiling_timer(unsigned int multiplier)1123 int setup_profiling_timer(unsigned int multiplier)
1124 {
1125 	return -EINVAL;
1126 }
1127 
have_cpu_die(void)1128 static bool have_cpu_die(void)
1129 {
1130 #ifdef CONFIG_HOTPLUG_CPU
1131 	int any_cpu = raw_smp_processor_id();
1132 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1133 
1134 	if (ops && ops->cpu_die)
1135 		return true;
1136 #endif
1137 	return false;
1138 }
1139 
cpus_are_stuck_in_kernel(void)1140 bool cpus_are_stuck_in_kernel(void)
1141 {
1142 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1143 
1144 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1145 }
1146 
nr_ipi_get(void)1147 int nr_ipi_get(void)
1148 {
1149 	return nr_ipi;
1150 }
1151 EXPORT_SYMBOL_GPL(nr_ipi_get);
1152 
ipi_desc_get(void)1153 struct irq_desc **ipi_desc_get(void)
1154 {
1155 	return ipi_desc;
1156 }
1157 EXPORT_SYMBOL_GPL(ipi_desc_get);
1158