1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
5 *
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56 #undef CREATE_TRACE_POINTS
57 #include <trace/hooks/debug.h>
58
59 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
60 EXPORT_PER_CPU_SYMBOL(cpu_number);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_raise);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_entry);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_exit);
64
65 /*
66 * as from 2.5, kernels no longer have an init_tasks structure
67 * so we need some other way of telling a new secondary core
68 * where to place its SVC stack
69 */
70 struct secondary_data secondary_data;
71 /* Number of CPUs which aren't online, but looping in kernel text. */
72 static int cpus_stuck_in_kernel;
73
74 enum ipi_msg_type {
75 IPI_RESCHEDULE,
76 IPI_CALL_FUNC,
77 IPI_CPU_STOP,
78 IPI_CPU_CRASH_STOP,
79 IPI_TIMER,
80 IPI_IRQ_WORK,
81 IPI_WAKEUP,
82 NR_IPI
83 };
84
85 static int ipi_irq_base __read_mostly;
86 static int nr_ipi __read_mostly = NR_IPI;
87 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
88
89 static void ipi_setup(int cpu);
90
91 #ifdef CONFIG_HOTPLUG_CPU
92 static void ipi_teardown(int cpu);
93 static int op_cpu_kill(unsigned int cpu);
94 #else
op_cpu_kill(unsigned int cpu)95 static inline int op_cpu_kill(unsigned int cpu)
96 {
97 return -ENOSYS;
98 }
99 #endif
100
101
102 /*
103 * Boot a secondary CPU, and assign it the specified idle task.
104 * This also gives us the initial stack to use for this CPU.
105 */
boot_secondary(unsigned int cpu,struct task_struct * idle)106 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
107 {
108 const struct cpu_operations *ops = get_cpu_ops(cpu);
109
110 if (ops->cpu_boot)
111 return ops->cpu_boot(cpu);
112
113 return -EOPNOTSUPP;
114 }
115
116 static DECLARE_COMPLETION(cpu_running);
117
__cpu_up(unsigned int cpu,struct task_struct * idle)118 int __cpu_up(unsigned int cpu, struct task_struct *idle)
119 {
120 int ret;
121 long status;
122
123 /*
124 * We need to tell the secondary core where to find its stack and the
125 * page tables.
126 */
127 secondary_data.task = idle;
128 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
129 update_cpu_boot_status(CPU_MMU_OFF);
130 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
131
132 /* Now bring the CPU into our world */
133 ret = boot_secondary(cpu, idle);
134 if (ret) {
135 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
136 return ret;
137 }
138
139 /*
140 * CPU was successfully started, wait for it to come online or
141 * time out.
142 */
143 wait_for_completion_timeout(&cpu_running,
144 msecs_to_jiffies(5000));
145 if (cpu_online(cpu))
146 return 0;
147
148 pr_crit("CPU%u: failed to come online\n", cpu);
149 secondary_data.task = NULL;
150 secondary_data.stack = NULL;
151 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
152 status = READ_ONCE(secondary_data.status);
153 if (status == CPU_MMU_OFF)
154 status = READ_ONCE(__early_cpu_boot_status);
155
156 switch (status & CPU_BOOT_STATUS_MASK) {
157 default:
158 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
159 cpu, status);
160 cpus_stuck_in_kernel++;
161 break;
162 case CPU_KILL_ME:
163 if (!op_cpu_kill(cpu)) {
164 pr_crit("CPU%u: died during early boot\n", cpu);
165 break;
166 }
167 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
168 fallthrough;
169 case CPU_STUCK_IN_KERNEL:
170 pr_crit("CPU%u: is stuck in kernel\n", cpu);
171 if (status & CPU_STUCK_REASON_52_BIT_VA)
172 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
173 if (status & CPU_STUCK_REASON_NO_GRAN) {
174 pr_crit("CPU%u: does not support %luK granule\n",
175 cpu, PAGE_SIZE / SZ_1K);
176 }
177 cpus_stuck_in_kernel++;
178 break;
179 case CPU_PANIC_KERNEL:
180 panic("CPU%u detected unsupported configuration\n", cpu);
181 }
182
183 return -EIO;
184 }
185
init_gic_priority_masking(void)186 static void init_gic_priority_masking(void)
187 {
188 u32 cpuflags;
189
190 if (WARN_ON(!gic_enable_sre()))
191 return;
192
193 cpuflags = read_sysreg(daif);
194
195 WARN_ON(!(cpuflags & PSR_I_BIT));
196
197 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
198 }
199
200 /*
201 * This is the secondary CPU boot entry. We're using this CPUs
202 * idle thread stack, but a set of temporary page tables.
203 */
secondary_start_kernel(void)204 asmlinkage notrace void secondary_start_kernel(void)
205 {
206 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
207 struct mm_struct *mm = &init_mm;
208 const struct cpu_operations *ops;
209 unsigned int cpu;
210
211 cpu = task_cpu(current);
212 set_my_cpu_offset(per_cpu_offset(cpu));
213
214 /*
215 * All kernel threads share the same mm context; grab a
216 * reference and switch to it.
217 */
218 mmgrab(mm);
219 current->active_mm = mm;
220
221 /*
222 * TTBR0 is only used for the identity mapping at this stage. Make it
223 * point to zero page to avoid speculatively fetching new entries.
224 */
225 cpu_uninstall_idmap();
226
227 if (system_uses_irq_prio_masking())
228 init_gic_priority_masking();
229
230 rcu_cpu_starting(cpu);
231 trace_hardirqs_off();
232
233 /*
234 * If the system has established the capabilities, make sure
235 * this CPU ticks all of those. If it doesn't, the CPU will
236 * fail to come online.
237 */
238 check_local_cpu_capabilities();
239
240 ops = get_cpu_ops(cpu);
241 if (ops->cpu_postboot)
242 ops->cpu_postboot();
243
244 /*
245 * Log the CPU info before it is marked online and might get read.
246 */
247 cpuinfo_store_cpu();
248
249 /*
250 * Enable GIC and timers.
251 */
252 notify_cpu_starting(cpu);
253
254 ipi_setup(cpu);
255
256 store_cpu_topology(cpu);
257 numa_add_cpu(cpu);
258
259 /*
260 * OK, now it's safe to let the boot CPU continue. Wait for
261 * the CPU migration code to notice that the CPU is online
262 * before we continue.
263 */
264 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
265 cpu, (unsigned long)mpidr,
266 read_cpuid_id());
267 update_cpu_boot_status(CPU_BOOT_SUCCESS);
268 set_cpu_online(cpu, true);
269 complete(&cpu_running);
270
271 local_daif_restore(DAIF_PROCCTX);
272
273 /*
274 * OK, it's off to the idle thread for us
275 */
276 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
277 }
278
279 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)280 static int op_cpu_disable(unsigned int cpu)
281 {
282 const struct cpu_operations *ops = get_cpu_ops(cpu);
283
284 /*
285 * If we don't have a cpu_die method, abort before we reach the point
286 * of no return. CPU0 may not have an cpu_ops, so test for it.
287 */
288 if (!ops || !ops->cpu_die)
289 return -EOPNOTSUPP;
290
291 /*
292 * We may need to abort a hot unplug for some other mechanism-specific
293 * reason.
294 */
295 if (ops->cpu_disable)
296 return ops->cpu_disable(cpu);
297
298 return 0;
299 }
300
301 /*
302 * __cpu_disable runs on the processor to be shutdown.
303 */
__cpu_disable(void)304 int __cpu_disable(void)
305 {
306 unsigned int cpu = smp_processor_id();
307 int ret;
308
309 ret = op_cpu_disable(cpu);
310 if (ret)
311 return ret;
312
313 remove_cpu_topology(cpu);
314 numa_remove_cpu(cpu);
315
316 /*
317 * Take this CPU offline. Once we clear this, we can't return,
318 * and we must not schedule until we're ready to give up the cpu.
319 */
320 set_cpu_online(cpu, false);
321 ipi_teardown(cpu);
322
323 /*
324 * OK - migrate IRQs away from this CPU
325 */
326 irq_migrate_all_off_this_cpu();
327
328 return 0;
329 }
330
op_cpu_kill(unsigned int cpu)331 static int op_cpu_kill(unsigned int cpu)
332 {
333 const struct cpu_operations *ops = get_cpu_ops(cpu);
334
335 /*
336 * If we have no means of synchronising with the dying CPU, then assume
337 * that it is really dead. We can only wait for an arbitrary length of
338 * time and hope that it's dead, so let's skip the wait and just hope.
339 */
340 if (!ops->cpu_kill)
341 return 0;
342
343 return ops->cpu_kill(cpu);
344 }
345
346 /*
347 * called on the thread which is asking for a CPU to be shutdown -
348 * waits until shutdown has completed, or it is timed out.
349 */
__cpu_die(unsigned int cpu)350 void __cpu_die(unsigned int cpu)
351 {
352 int err;
353
354 if (!cpu_wait_death(cpu, 5)) {
355 pr_crit("CPU%u: cpu didn't die\n", cpu);
356 return;
357 }
358 pr_debug("CPU%u: shutdown\n", cpu);
359
360 /*
361 * Now that the dying CPU is beyond the point of no return w.r.t.
362 * in-kernel synchronisation, try to get the firwmare to help us to
363 * verify that it has really left the kernel before we consider
364 * clobbering anything it might still be using.
365 */
366 err = op_cpu_kill(cpu);
367 if (err)
368 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
369 }
370
371 /*
372 * Called from the idle thread for the CPU which has been shutdown.
373 *
374 */
cpu_die(void)375 void cpu_die(void)
376 {
377 unsigned int cpu = smp_processor_id();
378 const struct cpu_operations *ops = get_cpu_ops(cpu);
379
380 idle_task_exit();
381
382 local_daif_mask();
383
384 /* Tell __cpu_die() that this CPU is now safe to dispose of */
385 (void)cpu_report_death();
386
387 /*
388 * Actually shutdown the CPU. This must never fail. The specific hotplug
389 * mechanism must perform all required cache maintenance to ensure that
390 * no dirty lines are lost in the process of shutting down the CPU.
391 */
392 ops->cpu_die(cpu);
393
394 BUG();
395 }
396 #endif
397
__cpu_try_die(int cpu)398 static void __cpu_try_die(int cpu)
399 {
400 #ifdef CONFIG_HOTPLUG_CPU
401 const struct cpu_operations *ops = get_cpu_ops(cpu);
402
403 if (ops && ops->cpu_die)
404 ops->cpu_die(cpu);
405 #endif
406 }
407
408 /*
409 * Kill the calling secondary CPU, early in bringup before it is turned
410 * online.
411 */
cpu_die_early(void)412 void cpu_die_early(void)
413 {
414 int cpu = smp_processor_id();
415
416 pr_crit("CPU%d: will not boot\n", cpu);
417
418 /* Mark this CPU absent */
419 set_cpu_present(cpu, 0);
420 rcu_report_dead(cpu);
421
422 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
423 update_cpu_boot_status(CPU_KILL_ME);
424 __cpu_try_die(cpu);
425 }
426
427 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
428
429 cpu_park_loop();
430 }
431
hyp_mode_check(void)432 static void __init hyp_mode_check(void)
433 {
434 if (is_hyp_mode_available())
435 pr_info("CPU: All CPU(s) started at EL2\n");
436 else if (is_hyp_mode_mismatched())
437 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
438 "CPU: CPUs started in inconsistent modes");
439 else
440 pr_info("CPU: All CPU(s) started at EL1\n");
441 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
442 kvm_compute_layout();
443 kvm_apply_hyp_relocations();
444 }
445 }
446
smp_cpus_done(unsigned int max_cpus)447 void __init smp_cpus_done(unsigned int max_cpus)
448 {
449 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
450 setup_cpu_features();
451 hyp_mode_check();
452 apply_alternatives_all();
453 mark_linear_text_alias_ro();
454 }
455
smp_prepare_boot_cpu(void)456 void __init smp_prepare_boot_cpu(void)
457 {
458 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
459 cpuinfo_store_boot_cpu();
460
461 /*
462 * We now know enough about the boot CPU to apply the
463 * alternatives that cannot wait until interrupt handling
464 * and/or scheduling is enabled.
465 */
466 apply_boot_alternatives();
467
468 /* Conditionally switch to GIC PMR for interrupt masking */
469 if (system_uses_irq_prio_masking())
470 init_gic_priority_masking();
471
472 kasan_init_hw_tags();
473 }
474
of_get_cpu_mpidr(struct device_node * dn)475 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
476 {
477 const __be32 *cell;
478 u64 hwid;
479
480 /*
481 * A cpu node with missing "reg" property is
482 * considered invalid to build a cpu_logical_map
483 * entry.
484 */
485 cell = of_get_property(dn, "reg", NULL);
486 if (!cell) {
487 pr_err("%pOF: missing reg property\n", dn);
488 return INVALID_HWID;
489 }
490
491 hwid = of_read_number(cell, of_n_addr_cells(dn));
492 /*
493 * Non affinity bits must be set to 0 in the DT
494 */
495 if (hwid & ~MPIDR_HWID_BITMASK) {
496 pr_err("%pOF: invalid reg property\n", dn);
497 return INVALID_HWID;
498 }
499 return hwid;
500 }
501
502 /*
503 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
504 * entries and check for duplicates. If any is found just ignore the
505 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
506 * matching valid MPIDR values.
507 */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)508 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
509 {
510 unsigned int i;
511
512 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
513 if (cpu_logical_map(i) == hwid)
514 return true;
515 return false;
516 }
517
518 /*
519 * Initialize cpu operations for a logical cpu and
520 * set it in the possible mask on success
521 */
smp_cpu_setup(int cpu)522 static int __init smp_cpu_setup(int cpu)
523 {
524 const struct cpu_operations *ops;
525
526 if (init_cpu_ops(cpu))
527 return -ENODEV;
528
529 ops = get_cpu_ops(cpu);
530 if (ops->cpu_init(cpu))
531 return -ENODEV;
532
533 set_cpu_possible(cpu, true);
534
535 return 0;
536 }
537
538 static bool bootcpu_valid __initdata;
539 static unsigned int cpu_count = 1;
540
541 #ifdef CONFIG_ACPI
542 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
543
acpi_cpu_get_madt_gicc(int cpu)544 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
545 {
546 return &cpu_madt_gicc[cpu];
547 }
548
549 /*
550 * acpi_map_gic_cpu_interface - parse processor MADT entry
551 *
552 * Carry out sanity checks on MADT processor entry and initialize
553 * cpu_logical_map on success
554 */
555 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)556 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
557 {
558 u64 hwid = processor->arm_mpidr;
559
560 if (!(processor->flags & ACPI_MADT_ENABLED)) {
561 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
562 return;
563 }
564
565 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
566 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
567 return;
568 }
569
570 if (is_mpidr_duplicate(cpu_count, hwid)) {
571 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
572 return;
573 }
574
575 /* Check if GICC structure of boot CPU is available in the MADT */
576 if (cpu_logical_map(0) == hwid) {
577 if (bootcpu_valid) {
578 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
579 hwid);
580 return;
581 }
582 bootcpu_valid = true;
583 cpu_madt_gicc[0] = *processor;
584 return;
585 }
586
587 if (cpu_count >= NR_CPUS)
588 return;
589
590 /* map the logical cpu id to cpu MPIDR */
591 set_cpu_logical_map(cpu_count, hwid);
592
593 cpu_madt_gicc[cpu_count] = *processor;
594
595 /*
596 * Set-up the ACPI parking protocol cpu entries
597 * while initializing the cpu_logical_map to
598 * avoid parsing MADT entries multiple times for
599 * nothing (ie a valid cpu_logical_map entry should
600 * contain a valid parking protocol data set to
601 * initialize the cpu if the parking protocol is
602 * the only available enable method).
603 */
604 acpi_set_mailbox_entry(cpu_count, processor);
605
606 cpu_count++;
607 }
608
609 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)610 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
611 const unsigned long end)
612 {
613 struct acpi_madt_generic_interrupt *processor;
614
615 processor = (struct acpi_madt_generic_interrupt *)header;
616 if (BAD_MADT_GICC_ENTRY(processor, end))
617 return -EINVAL;
618
619 acpi_table_print_madt_entry(&header->common);
620
621 acpi_map_gic_cpu_interface(processor);
622
623 return 0;
624 }
625
acpi_parse_and_init_cpus(void)626 static void __init acpi_parse_and_init_cpus(void)
627 {
628 int i;
629
630 /*
631 * do a walk of MADT to determine how many CPUs
632 * we have including disabled CPUs, and get information
633 * we need for SMP init.
634 */
635 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
636 acpi_parse_gic_cpu_interface, 0);
637
638 /*
639 * In ACPI, SMP and CPU NUMA information is provided in separate
640 * static tables, namely the MADT and the SRAT.
641 *
642 * Thus, it is simpler to first create the cpu logical map through
643 * an MADT walk and then map the logical cpus to their node ids
644 * as separate steps.
645 */
646 acpi_map_cpus_to_nodes();
647
648 for (i = 0; i < nr_cpu_ids; i++)
649 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
650 }
651 #else
652 #define acpi_parse_and_init_cpus(...) do { } while (0)
653 #endif
654
655 /*
656 * Enumerate the possible CPU set from the device tree and build the
657 * cpu logical map array containing MPIDR values related to logical
658 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
659 */
of_parse_and_init_cpus(void)660 static void __init of_parse_and_init_cpus(void)
661 {
662 struct device_node *dn;
663
664 for_each_of_cpu_node(dn) {
665 u64 hwid = of_get_cpu_mpidr(dn);
666
667 if (hwid == INVALID_HWID)
668 goto next;
669
670 if (is_mpidr_duplicate(cpu_count, hwid)) {
671 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
672 dn);
673 goto next;
674 }
675
676 /*
677 * The numbering scheme requires that the boot CPU
678 * must be assigned logical id 0. Record it so that
679 * the logical map built from DT is validated and can
680 * be used.
681 */
682 if (hwid == cpu_logical_map(0)) {
683 if (bootcpu_valid) {
684 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
685 dn);
686 goto next;
687 }
688
689 bootcpu_valid = true;
690 early_map_cpu_to_node(0, of_node_to_nid(dn));
691
692 /*
693 * cpu_logical_map has already been
694 * initialized and the boot cpu doesn't need
695 * the enable-method so continue without
696 * incrementing cpu.
697 */
698 continue;
699 }
700
701 if (cpu_count >= NR_CPUS)
702 goto next;
703
704 pr_debug("cpu logical map 0x%llx\n", hwid);
705 set_cpu_logical_map(cpu_count, hwid);
706
707 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
708 next:
709 cpu_count++;
710 }
711 }
712
713 /*
714 * Enumerate the possible CPU set from the device tree or ACPI and build the
715 * cpu logical map array containing MPIDR values related to logical
716 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
717 */
smp_init_cpus(void)718 void __init smp_init_cpus(void)
719 {
720 int i;
721
722 if (acpi_disabled)
723 of_parse_and_init_cpus();
724 else
725 acpi_parse_and_init_cpus();
726
727 if (cpu_count > nr_cpu_ids)
728 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
729 cpu_count, nr_cpu_ids);
730
731 if (!bootcpu_valid) {
732 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
733 return;
734 }
735
736 /*
737 * We need to set the cpu_logical_map entries before enabling
738 * the cpus so that cpu processor description entries (DT cpu nodes
739 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
740 * with entries in cpu_logical_map while initializing the cpus.
741 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
742 */
743 for (i = 1; i < nr_cpu_ids; i++) {
744 if (cpu_logical_map(i) != INVALID_HWID) {
745 if (smp_cpu_setup(i))
746 set_cpu_logical_map(i, INVALID_HWID);
747 }
748 }
749 }
750
smp_prepare_cpus(unsigned int max_cpus)751 void __init smp_prepare_cpus(unsigned int max_cpus)
752 {
753 const struct cpu_operations *ops;
754 int err;
755 unsigned int cpu;
756 unsigned int this_cpu;
757
758 init_cpu_topology();
759
760 this_cpu = smp_processor_id();
761 store_cpu_topology(this_cpu);
762 numa_store_cpu_info(this_cpu);
763 numa_add_cpu(this_cpu);
764
765 /*
766 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
767 * secondary CPUs present.
768 */
769 if (max_cpus == 0)
770 return;
771
772 /*
773 * Initialise the present map (which describes the set of CPUs
774 * actually populated at the present time) and release the
775 * secondaries from the bootloader.
776 */
777 for_each_possible_cpu(cpu) {
778
779 per_cpu(cpu_number, cpu) = cpu;
780
781 if (cpu == smp_processor_id())
782 continue;
783
784 ops = get_cpu_ops(cpu);
785 if (!ops)
786 continue;
787
788 err = ops->cpu_prepare(cpu);
789 if (err)
790 continue;
791
792 set_cpu_present(cpu, true);
793 numa_store_cpu_info(cpu);
794 }
795 }
796
797 static const char *ipi_types[NR_IPI] __tracepoint_string = {
798 #define S(x,s) [x] = s
799 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
800 S(IPI_CALL_FUNC, "Function call interrupts"),
801 S(IPI_CPU_STOP, "CPU stop interrupts"),
802 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
803 S(IPI_TIMER, "Timer broadcast interrupts"),
804 S(IPI_IRQ_WORK, "IRQ work interrupts"),
805 S(IPI_WAKEUP, "CPU wake-up interrupts"),
806 };
807
808 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
809
810 unsigned long irq_err_count;
811
arch_show_interrupts(struct seq_file * p,int prec)812 int arch_show_interrupts(struct seq_file *p, int prec)
813 {
814 unsigned int cpu, i;
815
816 for (i = 0; i < NR_IPI; i++) {
817 unsigned int irq = irq_desc_get_irq(ipi_desc[i]);
818 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
819 prec >= 4 ? " " : "");
820 for_each_online_cpu(cpu)
821 seq_printf(p, "%10u ", kstat_irqs_cpu(irq, cpu));
822 seq_printf(p, " %s\n", ipi_types[i]);
823 }
824
825 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
826 return 0;
827 }
828
arch_send_call_function_ipi_mask(const struct cpumask * mask)829 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
830 {
831 smp_cross_call(mask, IPI_CALL_FUNC);
832 }
833
arch_send_call_function_single_ipi(int cpu)834 void arch_send_call_function_single_ipi(int cpu)
835 {
836 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
837 }
838
839 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi_mask(const struct cpumask * mask)840 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
841 {
842 smp_cross_call(mask, IPI_WAKEUP);
843 }
844 #endif
845
846 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)847 void arch_irq_work_raise(void)
848 {
849 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
850 }
851 #endif
852
local_cpu_stop(void)853 static void local_cpu_stop(void)
854 {
855 set_cpu_online(smp_processor_id(), false);
856
857 local_daif_mask();
858 sdei_mask_local_cpu();
859 cpu_park_loop();
860 }
861
862 /*
863 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
864 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
865 * CPUs that have already stopped themselves.
866 */
panic_smp_self_stop(void)867 void panic_smp_self_stop(void)
868 {
869 local_cpu_stop();
870 }
871
872 #ifdef CONFIG_KEXEC_CORE
873 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
874 #endif
875
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)876 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
877 {
878 #ifdef CONFIG_KEXEC_CORE
879 crash_save_cpu(regs, cpu);
880
881 atomic_dec(&waiting_for_crash_ipi);
882
883 local_irq_disable();
884 sdei_mask_local_cpu();
885
886 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
887 __cpu_try_die(cpu);
888
889 /* just in case */
890 cpu_park_loop();
891 #endif
892 }
893
894 /*
895 * Main handler for inter-processor interrupts
896 */
do_handle_IPI(int ipinr)897 static void do_handle_IPI(int ipinr)
898 {
899 unsigned int cpu = smp_processor_id();
900
901 if ((unsigned)ipinr < NR_IPI)
902 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
903
904 switch (ipinr) {
905 case IPI_RESCHEDULE:
906 scheduler_ipi();
907 break;
908
909 case IPI_CALL_FUNC:
910 generic_smp_call_function_interrupt();
911 break;
912
913 case IPI_CPU_STOP:
914 trace_android_vh_ipi_stop_rcuidle(get_irq_regs());
915 local_cpu_stop();
916 break;
917
918 case IPI_CPU_CRASH_STOP:
919 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
920 ipi_cpu_crash_stop(cpu, get_irq_regs());
921
922 unreachable();
923 }
924 break;
925
926 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
927 case IPI_TIMER:
928 tick_receive_broadcast();
929 break;
930 #endif
931
932 #ifdef CONFIG_IRQ_WORK
933 case IPI_IRQ_WORK:
934 irq_work_run();
935 break;
936 #endif
937
938 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
939 case IPI_WAKEUP:
940 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
941 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
942 cpu);
943 break;
944 #endif
945
946 default:
947 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
948 break;
949 }
950
951 if ((unsigned)ipinr < NR_IPI)
952 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
953 }
954
ipi_handler(int irq,void * data)955 static irqreturn_t ipi_handler(int irq, void *data)
956 {
957 do_handle_IPI(irq - ipi_irq_base);
958 return IRQ_HANDLED;
959 }
960
smp_cross_call(const struct cpumask * target,unsigned int ipinr)961 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
962 {
963 trace_ipi_raise(target, ipi_types[ipinr]);
964 __ipi_send_mask(ipi_desc[ipinr], target);
965 }
966
ipi_setup(int cpu)967 static void ipi_setup(int cpu)
968 {
969 int i;
970
971 if (WARN_ON_ONCE(!ipi_irq_base))
972 return;
973
974 for (i = 0; i < nr_ipi; i++)
975 enable_percpu_irq(ipi_irq_base + i, 0);
976 }
977
978 #ifdef CONFIG_HOTPLUG_CPU
ipi_teardown(int cpu)979 static void ipi_teardown(int cpu)
980 {
981 int i;
982
983 if (WARN_ON_ONCE(!ipi_irq_base))
984 return;
985
986 for (i = 0; i < nr_ipi; i++)
987 disable_percpu_irq(ipi_irq_base + i);
988 }
989 #endif
990
set_smp_ipi_range(int ipi_base,int n)991 void __init set_smp_ipi_range(int ipi_base, int n)
992 {
993 int i;
994
995 WARN_ON(n < NR_IPI);
996 nr_ipi = min(n, NR_IPI);
997
998 for (i = 0; i < nr_ipi; i++) {
999 int err;
1000
1001 err = request_percpu_irq(ipi_base + i, ipi_handler,
1002 "IPI", &cpu_number);
1003 WARN_ON(err);
1004
1005 ipi_desc[i] = irq_to_desc(ipi_base + i);
1006 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1007
1008 /* The recheduling IPI is special... */
1009 if (i == IPI_RESCHEDULE)
1010 __irq_modify_status(ipi_base + i, 0, IRQ_RAW, ~0);
1011 }
1012
1013 ipi_irq_base = ipi_base;
1014
1015 /* Setup the boot CPU immediately */
1016 ipi_setup(smp_processor_id());
1017 }
1018
smp_send_reschedule(int cpu)1019 void smp_send_reschedule(int cpu)
1020 {
1021 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1022 }
1023
1024 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)1025 void tick_broadcast(const struct cpumask *mask)
1026 {
1027 smp_cross_call(mask, IPI_TIMER);
1028 }
1029 #endif
1030
1031 /*
1032 * The number of CPUs online, not counting this CPU (which may not be
1033 * fully online and so not counted in num_online_cpus()).
1034 */
num_other_online_cpus(void)1035 static inline unsigned int num_other_online_cpus(void)
1036 {
1037 unsigned int this_cpu_online = cpu_online(smp_processor_id());
1038
1039 return num_online_cpus() - this_cpu_online;
1040 }
1041
smp_send_stop(void)1042 void smp_send_stop(void)
1043 {
1044 unsigned long timeout;
1045
1046 if (num_other_online_cpus()) {
1047 cpumask_t mask;
1048
1049 cpumask_copy(&mask, cpu_online_mask);
1050 cpumask_clear_cpu(smp_processor_id(), &mask);
1051
1052 if (system_state <= SYSTEM_RUNNING)
1053 pr_crit("SMP: stopping secondary CPUs\n");
1054 smp_cross_call(&mask, IPI_CPU_STOP);
1055 }
1056
1057 /* Wait up to one second for other CPUs to stop */
1058 timeout = USEC_PER_SEC;
1059 while (num_other_online_cpus() && timeout--)
1060 udelay(1);
1061
1062 if (num_other_online_cpus())
1063 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1064 cpumask_pr_args(cpu_online_mask));
1065
1066 sdei_mask_local_cpu();
1067 }
1068
1069 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)1070 void crash_smp_send_stop(void)
1071 {
1072 static int cpus_stopped;
1073 cpumask_t mask;
1074 unsigned long timeout;
1075
1076 /*
1077 * This function can be called twice in panic path, but obviously
1078 * we execute this only once.
1079 */
1080 if (cpus_stopped)
1081 return;
1082
1083 cpus_stopped = 1;
1084
1085 /*
1086 * If this cpu is the only one alive at this point in time, online or
1087 * not, there are no stop messages to be sent around, so just back out.
1088 */
1089 if (num_other_online_cpus() == 0)
1090 goto skip_ipi;
1091
1092 cpumask_copy(&mask, cpu_online_mask);
1093 cpumask_clear_cpu(smp_processor_id(), &mask);
1094
1095 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1096
1097 pr_crit("SMP: stopping secondary CPUs\n");
1098 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1099
1100 /* Wait up to one second for other CPUs to stop */
1101 timeout = USEC_PER_SEC;
1102 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1103 udelay(1);
1104
1105 if (atomic_read(&waiting_for_crash_ipi) > 0)
1106 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1107 cpumask_pr_args(&mask));
1108
1109 skip_ipi:
1110 sdei_mask_local_cpu();
1111 sdei_handler_abort();
1112 }
1113
smp_crash_stop_failed(void)1114 bool smp_crash_stop_failed(void)
1115 {
1116 return (atomic_read(&waiting_for_crash_ipi) > 0);
1117 }
1118 #endif
1119
1120 /*
1121 * not supported here
1122 */
setup_profiling_timer(unsigned int multiplier)1123 int setup_profiling_timer(unsigned int multiplier)
1124 {
1125 return -EINVAL;
1126 }
1127
have_cpu_die(void)1128 static bool have_cpu_die(void)
1129 {
1130 #ifdef CONFIG_HOTPLUG_CPU
1131 int any_cpu = raw_smp_processor_id();
1132 const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1133
1134 if (ops && ops->cpu_die)
1135 return true;
1136 #endif
1137 return false;
1138 }
1139
cpus_are_stuck_in_kernel(void)1140 bool cpus_are_stuck_in_kernel(void)
1141 {
1142 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1143
1144 return !!cpus_stuck_in_kernel || smp_spin_tables;
1145 }
1146
nr_ipi_get(void)1147 int nr_ipi_get(void)
1148 {
1149 return nr_ipi;
1150 }
1151 EXPORT_SYMBOL_GPL(nr_ipi_get);
1152
ipi_desc_get(void)1153 struct irq_desc **ipi_desc_get(void)
1154 {
1155 return ipi_desc;
1156 }
1157 EXPORT_SYMBOL_GPL(ipi_desc_get);
1158