1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5 * Copyright (C) 2004 PathScale, Inc
6 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
7 */
8
9 #include <stdlib.h>
10 #include <stdarg.h>
11 #include <errno.h>
12 #include <signal.h>
13 #include <string.h>
14 #include <strings.h>
15 #include <as-layout.h>
16 #include <kern_util.h>
17 #include <os.h>
18 #include <sysdep/mcontext.h>
19 #include <um_malloc.h>
20 #include <sys/ucontext.h>
21
22 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
23 [SIGTRAP] = relay_signal,
24 [SIGFPE] = relay_signal,
25 [SIGILL] = relay_signal,
26 [SIGWINCH] = winch,
27 [SIGBUS] = bus_handler,
28 [SIGSEGV] = segv_handler,
29 [SIGIO] = sigio_handler,
30 };
31
sig_handler_common(int sig,struct siginfo * si,mcontext_t * mc)32 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
33 {
34 struct uml_pt_regs r;
35 int save_errno = errno;
36
37 r.is_user = 0;
38 if (sig == SIGSEGV) {
39 /* For segfaults, we want the data from the sigcontext. */
40 get_regs_from_mc(&r, mc);
41 GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
42 }
43
44 /* enable signals if sig isn't IRQ signal */
45 if ((sig != SIGIO) && (sig != SIGWINCH))
46 unblock_signals_trace();
47
48 (*sig_info[sig])(sig, si, &r);
49
50 errno = save_errno;
51 }
52
53 /*
54 * These are the asynchronous signals. SIGPROF is excluded because we want to
55 * be able to profile all of UML, not just the non-critical sections. If
56 * profiling is not thread-safe, then that is not my problem. We can disable
57 * profiling when SMP is enabled in that case.
58 */
59 #define SIGIO_BIT 0
60 #define SIGIO_MASK (1 << SIGIO_BIT)
61
62 #define SIGALRM_BIT 1
63 #define SIGALRM_MASK (1 << SIGALRM_BIT)
64
65 static int signals_enabled;
66 static unsigned int signals_pending;
67 static unsigned int signals_active = 0;
68
sig_handler(int sig,struct siginfo * si,mcontext_t * mc)69 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
70 {
71 int enabled;
72
73 enabled = signals_enabled;
74 if (!enabled && (sig == SIGIO)) {
75 signals_pending |= SIGIO_MASK;
76 return;
77 }
78
79 block_signals_trace();
80
81 sig_handler_common(sig, si, mc);
82
83 set_signals_trace(enabled);
84 }
85
timer_real_alarm_handler(mcontext_t * mc)86 static void timer_real_alarm_handler(mcontext_t *mc)
87 {
88 struct uml_pt_regs regs;
89
90 if (mc != NULL)
91 get_regs_from_mc(®s, mc);
92 else
93 memset(®s, 0, sizeof(regs));
94 timer_handler(SIGALRM, NULL, ®s);
95 }
96
timer_alarm_handler(int sig,struct siginfo * unused_si,mcontext_t * mc)97 void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
98 {
99 int enabled;
100
101 enabled = signals_enabled;
102 if (!signals_enabled) {
103 signals_pending |= SIGALRM_MASK;
104 return;
105 }
106
107 block_signals_trace();
108
109 signals_active |= SIGALRM_MASK;
110
111 timer_real_alarm_handler(mc);
112
113 signals_active &= ~SIGALRM_MASK;
114
115 set_signals_trace(enabled);
116 }
117
deliver_alarm(void)118 void deliver_alarm(void) {
119 timer_alarm_handler(SIGALRM, NULL, NULL);
120 }
121
timer_set_signal_handler(void)122 void timer_set_signal_handler(void)
123 {
124 set_handler(SIGALRM);
125 }
126
set_sigstack(void * sig_stack,int size)127 void set_sigstack(void *sig_stack, int size)
128 {
129 stack_t stack = {
130 .ss_flags = 0,
131 .ss_sp = sig_stack,
132 .ss_size = size - sizeof(void *)
133 };
134
135 if (sigaltstack(&stack, NULL) != 0)
136 panic("enabling signal stack failed, errno = %d\n", errno);
137 }
138
sigusr1_handler(int sig,struct siginfo * unused_si,mcontext_t * mc)139 static void sigusr1_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
140 {
141 uml_pm_wake();
142 }
143
register_pm_wake_signal(void)144 void register_pm_wake_signal(void)
145 {
146 set_handler(SIGUSR1);
147 }
148
149 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
150 [SIGSEGV] = sig_handler,
151 [SIGBUS] = sig_handler,
152 [SIGILL] = sig_handler,
153 [SIGFPE] = sig_handler,
154 [SIGTRAP] = sig_handler,
155
156 [SIGIO] = sig_handler,
157 [SIGWINCH] = sig_handler,
158 [SIGALRM] = timer_alarm_handler,
159
160 [SIGUSR1] = sigusr1_handler,
161 };
162
hard_handler(int sig,siginfo_t * si,void * p)163 static void hard_handler(int sig, siginfo_t *si, void *p)
164 {
165 ucontext_t *uc = p;
166 mcontext_t *mc = &uc->uc_mcontext;
167 unsigned long pending = 1UL << sig;
168
169 do {
170 int nested, bail;
171
172 /*
173 * pending comes back with one bit set for each
174 * interrupt that arrived while setting up the stack,
175 * plus a bit for this interrupt, plus the zero bit is
176 * set if this is a nested interrupt.
177 * If bail is true, then we interrupted another
178 * handler setting up the stack. In this case, we
179 * have to return, and the upper handler will deal
180 * with this interrupt.
181 */
182 bail = to_irq_stack(&pending);
183 if (bail)
184 return;
185
186 nested = pending & 1;
187 pending &= ~1;
188
189 while ((sig = ffs(pending)) != 0){
190 sig--;
191 pending &= ~(1 << sig);
192 (*handlers[sig])(sig, (struct siginfo *)si, mc);
193 }
194
195 /*
196 * Again, pending comes back with a mask of signals
197 * that arrived while tearing down the stack. If this
198 * is non-zero, we just go back, set up the stack
199 * again, and handle the new interrupts.
200 */
201 if (!nested)
202 pending = from_irq_stack(nested);
203 } while (pending);
204 }
205
set_handler(int sig)206 void set_handler(int sig)
207 {
208 struct sigaction action;
209 int flags = SA_SIGINFO | SA_ONSTACK;
210 sigset_t sig_mask;
211
212 action.sa_sigaction = hard_handler;
213
214 /* block irq ones */
215 sigemptyset(&action.sa_mask);
216 sigaddset(&action.sa_mask, SIGIO);
217 sigaddset(&action.sa_mask, SIGWINCH);
218 sigaddset(&action.sa_mask, SIGALRM);
219
220 if (sig == SIGSEGV)
221 flags |= SA_NODEFER;
222
223 if (sigismember(&action.sa_mask, sig))
224 flags |= SA_RESTART; /* if it's an irq signal */
225
226 action.sa_flags = flags;
227 action.sa_restorer = NULL;
228 if (sigaction(sig, &action, NULL) < 0)
229 panic("sigaction failed - errno = %d\n", errno);
230
231 sigemptyset(&sig_mask);
232 sigaddset(&sig_mask, sig);
233 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
234 panic("sigprocmask failed - errno = %d\n", errno);
235 }
236
change_sig(int signal,int on)237 int change_sig(int signal, int on)
238 {
239 sigset_t sigset;
240
241 sigemptyset(&sigset);
242 sigaddset(&sigset, signal);
243 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
244 return -errno;
245
246 return 0;
247 }
248
block_signals(void)249 void block_signals(void)
250 {
251 signals_enabled = 0;
252 /*
253 * This must return with signals disabled, so this barrier
254 * ensures that writes are flushed out before the return.
255 * This might matter if gcc figures out how to inline this and
256 * decides to shuffle this code into the caller.
257 */
258 barrier();
259 }
260
unblock_signals(void)261 void unblock_signals(void)
262 {
263 int save_pending;
264
265 if (signals_enabled == 1)
266 return;
267
268 signals_enabled = 1;
269
270 /*
271 * We loop because the IRQ handler returns with interrupts off. So,
272 * interrupts may have arrived and we need to re-enable them and
273 * recheck signals_pending.
274 */
275 while (1) {
276 /*
277 * Save and reset save_pending after enabling signals. This
278 * way, signals_pending won't be changed while we're reading it.
279 *
280 * Setting signals_enabled and reading signals_pending must
281 * happen in this order, so have the barrier here.
282 */
283 barrier();
284
285 save_pending = signals_pending;
286 if (save_pending == 0)
287 return;
288
289 signals_pending = 0;
290
291 /*
292 * We have pending interrupts, so disable signals, as the
293 * handlers expect them off when they are called. They will
294 * be enabled again above. We need to trace this, as we're
295 * expected to be enabling interrupts already, but any more
296 * tracing that happens inside the handlers we call for the
297 * pending signals will mess up the tracing state.
298 */
299 signals_enabled = 0;
300 um_trace_signals_off();
301
302 /*
303 * Deal with SIGIO first because the alarm handler might
304 * schedule, leaving the pending SIGIO stranded until we come
305 * back here.
306 *
307 * SIGIO's handler doesn't use siginfo or mcontext,
308 * so they can be NULL.
309 */
310 if (save_pending & SIGIO_MASK)
311 sig_handler_common(SIGIO, NULL, NULL);
312
313 /* Do not reenter the handler */
314
315 if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
316 timer_real_alarm_handler(NULL);
317
318 /* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
319
320 if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
321 return;
322
323 /* Re-enable signals and trace that we're doing so. */
324 um_trace_signals_on();
325 signals_enabled = 1;
326 }
327 }
328
get_signals(void)329 int get_signals(void)
330 {
331 return signals_enabled;
332 }
333
set_signals(int enable)334 int set_signals(int enable)
335 {
336 int ret;
337 if (signals_enabled == enable)
338 return enable;
339
340 ret = signals_enabled;
341 if (enable)
342 unblock_signals();
343 else block_signals();
344
345 return ret;
346 }
347
set_signals_trace(int enable)348 int set_signals_trace(int enable)
349 {
350 int ret;
351 if (signals_enabled == enable)
352 return enable;
353
354 ret = signals_enabled;
355 if (enable)
356 unblock_signals_trace();
357 else
358 block_signals_trace();
359
360 return ret;
361 }
362
os_is_signal_stack(void)363 int os_is_signal_stack(void)
364 {
365 stack_t ss;
366 sigaltstack(NULL, &ss);
367
368 return ss.ss_flags & SS_ONSTACK;
369 }
370