• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 #include <linux/backing-dev.h>
127 
128 #include "blk.h"
129 #include "blk-mq.h"
130 #include "blk-mq-tag.h"
131 #include "blk-mq-sched.h"
132 #include "bfq-iosched.h"
133 #include "blk-wbt.h"
134 
135 #define BFQ_BFQQ_FNS(name)						\
136 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
137 {									\
138 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
139 }									\
140 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
141 {									\
142 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
143 }									\
144 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
145 {									\
146 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
147 }
148 
149 BFQ_BFQQ_FNS(just_created);
150 BFQ_BFQQ_FNS(busy);
151 BFQ_BFQQ_FNS(wait_request);
152 BFQ_BFQQ_FNS(non_blocking_wait_rq);
153 BFQ_BFQQ_FNS(fifo_expire);
154 BFQ_BFQQ_FNS(has_short_ttime);
155 BFQ_BFQQ_FNS(sync);
156 BFQ_BFQQ_FNS(IO_bound);
157 BFQ_BFQQ_FNS(in_large_burst);
158 BFQ_BFQQ_FNS(coop);
159 BFQ_BFQQ_FNS(split_coop);
160 BFQ_BFQQ_FNS(softrt_update);
161 BFQ_BFQQ_FNS(has_waker);
162 #undef BFQ_BFQQ_FNS						\
163 
164 /* Expiration time of sync (0) and async (1) requests, in ns. */
165 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
166 
167 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
168 static const int bfq_back_max = 16 * 1024;
169 
170 /* Penalty of a backwards seek, in number of sectors. */
171 static const int bfq_back_penalty = 2;
172 
173 /* Idling period duration, in ns. */
174 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
175 
176 /* Minimum number of assigned budgets for which stats are safe to compute. */
177 static const int bfq_stats_min_budgets = 194;
178 
179 /* Default maximum budget values, in sectors and number of requests. */
180 static const int bfq_default_max_budget = 16 * 1024;
181 
182 /*
183  * When a sync request is dispatched, the queue that contains that
184  * request, and all the ancestor entities of that queue, are charged
185  * with the number of sectors of the request. In contrast, if the
186  * request is async, then the queue and its ancestor entities are
187  * charged with the number of sectors of the request, multiplied by
188  * the factor below. This throttles the bandwidth for async I/O,
189  * w.r.t. to sync I/O, and it is done to counter the tendency of async
190  * writes to steal I/O throughput to reads.
191  *
192  * The current value of this parameter is the result of a tuning with
193  * several hardware and software configurations. We tried to find the
194  * lowest value for which writes do not cause noticeable problems to
195  * reads. In fact, the lower this parameter, the stabler I/O control,
196  * in the following respect.  The lower this parameter is, the less
197  * the bandwidth enjoyed by a group decreases
198  * - when the group does writes, w.r.t. to when it does reads;
199  * - when other groups do reads, w.r.t. to when they do writes.
200  */
201 static const int bfq_async_charge_factor = 3;
202 
203 /* Default timeout values, in jiffies, approximating CFQ defaults. */
204 const int bfq_timeout = HZ / 8;
205 
206 /*
207  * Time limit for merging (see comments in bfq_setup_cooperator). Set
208  * to the slowest value that, in our tests, proved to be effective in
209  * removing false positives, while not causing true positives to miss
210  * queue merging.
211  *
212  * As can be deduced from the low time limit below, queue merging, if
213  * successful, happens at the very beginning of the I/O of the involved
214  * cooperating processes, as a consequence of the arrival of the very
215  * first requests from each cooperator.  After that, there is very
216  * little chance to find cooperators.
217  */
218 static const unsigned long bfq_merge_time_limit = HZ/10;
219 
220 static struct kmem_cache *bfq_pool;
221 
222 /* Below this threshold (in ns), we consider thinktime immediate. */
223 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
224 
225 /* hw_tag detection: parallel requests threshold and min samples needed. */
226 #define BFQ_HW_QUEUE_THRESHOLD	3
227 #define BFQ_HW_QUEUE_SAMPLES	32
228 
229 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
230 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
231 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
232 	(get_sdist(last_pos, rq) >			\
233 	 BFQQ_SEEK_THR &&				\
234 	 (!blk_queue_nonrot(bfqd->queue) ||		\
235 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
236 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
237 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
238 /*
239  * Sync random I/O is likely to be confused with soft real-time I/O,
240  * because it is characterized by limited throughput and apparently
241  * isochronous arrival pattern. To avoid false positives, queues
242  * containing only random (seeky) I/O are prevented from being tagged
243  * as soft real-time.
244  */
245 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
246 
247 /* Min number of samples required to perform peak-rate update */
248 #define BFQ_RATE_MIN_SAMPLES	32
249 /* Min observation time interval required to perform a peak-rate update (ns) */
250 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
251 /* Target observation time interval for a peak-rate update (ns) */
252 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
253 
254 /*
255  * Shift used for peak-rate fixed precision calculations.
256  * With
257  * - the current shift: 16 positions
258  * - the current type used to store rate: u32
259  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
260  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
261  * the range of rates that can be stored is
262  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
263  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
264  * [15, 65G] sectors/sec
265  * Which, assuming a sector size of 512B, corresponds to a range of
266  * [7.5K, 33T] B/sec
267  */
268 #define BFQ_RATE_SHIFT		16
269 
270 /*
271  * When configured for computing the duration of the weight-raising
272  * for interactive queues automatically (see the comments at the
273  * beginning of this file), BFQ does it using the following formula:
274  * duration = (ref_rate / r) * ref_wr_duration,
275  * where r is the peak rate of the device, and ref_rate and
276  * ref_wr_duration are two reference parameters.  In particular,
277  * ref_rate is the peak rate of the reference storage device (see
278  * below), and ref_wr_duration is about the maximum time needed, with
279  * BFQ and while reading two files in parallel, to load typical large
280  * applications on the reference device (see the comments on
281  * max_service_from_wr below, for more details on how ref_wr_duration
282  * is obtained).  In practice, the slower/faster the device at hand
283  * is, the more/less it takes to load applications with respect to the
284  * reference device.  Accordingly, the longer/shorter BFQ grants
285  * weight raising to interactive applications.
286  *
287  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
288  * depending on whether the device is rotational or non-rotational.
289  *
290  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
291  * are the reference values for a rotational device, whereas
292  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
293  * non-rotational device. The reference rates are not the actual peak
294  * rates of the devices used as a reference, but slightly lower
295  * values. The reason for using slightly lower values is that the
296  * peak-rate estimator tends to yield slightly lower values than the
297  * actual peak rate (it can yield the actual peak rate only if there
298  * is only one process doing I/O, and the process does sequential
299  * I/O).
300  *
301  * The reference peak rates are measured in sectors/usec, left-shifted
302  * by BFQ_RATE_SHIFT.
303  */
304 static int ref_rate[2] = {14000, 33000};
305 /*
306  * To improve readability, a conversion function is used to initialize
307  * the following array, which entails that the array can be
308  * initialized only in a function.
309  */
310 static int ref_wr_duration[2];
311 
312 /*
313  * BFQ uses the above-detailed, time-based weight-raising mechanism to
314  * privilege interactive tasks. This mechanism is vulnerable to the
315  * following false positives: I/O-bound applications that will go on
316  * doing I/O for much longer than the duration of weight
317  * raising. These applications have basically no benefit from being
318  * weight-raised at the beginning of their I/O. On the opposite end,
319  * while being weight-raised, these applications
320  * a) unjustly steal throughput to applications that may actually need
321  * low latency;
322  * b) make BFQ uselessly perform device idling; device idling results
323  * in loss of device throughput with most flash-based storage, and may
324  * increase latencies when used purposelessly.
325  *
326  * BFQ tries to reduce these problems, by adopting the following
327  * countermeasure. To introduce this countermeasure, we need first to
328  * finish explaining how the duration of weight-raising for
329  * interactive tasks is computed.
330  *
331  * For a bfq_queue deemed as interactive, the duration of weight
332  * raising is dynamically adjusted, as a function of the estimated
333  * peak rate of the device, so as to be equal to the time needed to
334  * execute the 'largest' interactive task we benchmarked so far. By
335  * largest task, we mean the task for which each involved process has
336  * to do more I/O than for any of the other tasks we benchmarked. This
337  * reference interactive task is the start-up of LibreOffice Writer,
338  * and in this task each process/bfq_queue needs to have at most ~110K
339  * sectors transferred.
340  *
341  * This last piece of information enables BFQ to reduce the actual
342  * duration of weight-raising for at least one class of I/O-bound
343  * applications: those doing sequential or quasi-sequential I/O. An
344  * example is file copy. In fact, once started, the main I/O-bound
345  * processes of these applications usually consume the above 110K
346  * sectors in much less time than the processes of an application that
347  * is starting, because these I/O-bound processes will greedily devote
348  * almost all their CPU cycles only to their target,
349  * throughput-friendly I/O operations. This is even more true if BFQ
350  * happens to be underestimating the device peak rate, and thus
351  * overestimating the duration of weight raising. But, according to
352  * our measurements, once transferred 110K sectors, these processes
353  * have no right to be weight-raised any longer.
354  *
355  * Basing on the last consideration, BFQ ends weight-raising for a
356  * bfq_queue if the latter happens to have received an amount of
357  * service at least equal to the following constant. The constant is
358  * set to slightly more than 110K, to have a minimum safety margin.
359  *
360  * This early ending of weight-raising reduces the amount of time
361  * during which interactive false positives cause the two problems
362  * described at the beginning of these comments.
363  */
364 static const unsigned long max_service_from_wr = 120000;
365 
366 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
367 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
368 
bic_to_bfqq(struct bfq_io_cq * bic,bool is_sync)369 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
370 {
371 	return bic->bfqq[is_sync];
372 }
373 
bic_set_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq,bool is_sync)374 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
375 {
376 	struct bfq_queue *old_bfqq = bic->bfqq[is_sync];
377 
378 	/* Clear bic pointer if bfqq is detached from this bic */
379 	if (old_bfqq && old_bfqq->bic == bic)
380 		old_bfqq->bic = NULL;
381 
382 	bic->bfqq[is_sync] = bfqq;
383 }
384 
bic_to_bfqd(struct bfq_io_cq * bic)385 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
386 {
387 	return bic->icq.q->elevator->elevator_data;
388 }
389 
390 /**
391  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
392  * @icq: the iocontext queue.
393  */
icq_to_bic(struct io_cq * icq)394 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
395 {
396 	/* bic->icq is the first member, %NULL will convert to %NULL */
397 	return container_of(icq, struct bfq_io_cq, icq);
398 }
399 
400 /**
401  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
402  * @bfqd: the lookup key.
403  * @ioc: the io_context of the process doing I/O.
404  * @q: the request queue.
405  */
bfq_bic_lookup(struct bfq_data * bfqd,struct io_context * ioc,struct request_queue * q)406 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
407 					struct io_context *ioc,
408 					struct request_queue *q)
409 {
410 	if (ioc) {
411 		unsigned long flags;
412 		struct bfq_io_cq *icq;
413 
414 		spin_lock_irqsave(&q->queue_lock, flags);
415 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
416 		spin_unlock_irqrestore(&q->queue_lock, flags);
417 
418 		return icq;
419 	}
420 
421 	return NULL;
422 }
423 
424 /*
425  * Scheduler run of queue, if there are requests pending and no one in the
426  * driver that will restart queueing.
427  */
bfq_schedule_dispatch(struct bfq_data * bfqd)428 void bfq_schedule_dispatch(struct bfq_data *bfqd)
429 {
430 	lockdep_assert_held(&bfqd->lock);
431 
432 	if (bfqd->queued != 0) {
433 		bfq_log(bfqd, "schedule dispatch");
434 		blk_mq_run_hw_queues(bfqd->queue, true);
435 	}
436 }
437 
438 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
439 
440 #define bfq_sample_valid(samples)	((samples) > 80)
441 
442 /*
443  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
444  * We choose the request that is closer to the head right now.  Distance
445  * behind the head is penalized and only allowed to a certain extent.
446  */
bfq_choose_req(struct bfq_data * bfqd,struct request * rq1,struct request * rq2,sector_t last)447 static struct request *bfq_choose_req(struct bfq_data *bfqd,
448 				      struct request *rq1,
449 				      struct request *rq2,
450 				      sector_t last)
451 {
452 	sector_t s1, s2, d1 = 0, d2 = 0;
453 	unsigned long back_max;
454 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
455 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
456 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
457 
458 	if (!rq1 || rq1 == rq2)
459 		return rq2;
460 	if (!rq2)
461 		return rq1;
462 
463 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
464 		return rq1;
465 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
466 		return rq2;
467 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
468 		return rq1;
469 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
470 		return rq2;
471 
472 	s1 = blk_rq_pos(rq1);
473 	s2 = blk_rq_pos(rq2);
474 
475 	/*
476 	 * By definition, 1KiB is 2 sectors.
477 	 */
478 	back_max = bfqd->bfq_back_max * 2;
479 
480 	/*
481 	 * Strict one way elevator _except_ in the case where we allow
482 	 * short backward seeks which are biased as twice the cost of a
483 	 * similar forward seek.
484 	 */
485 	if (s1 >= last)
486 		d1 = s1 - last;
487 	else if (s1 + back_max >= last)
488 		d1 = (last - s1) * bfqd->bfq_back_penalty;
489 	else
490 		wrap |= BFQ_RQ1_WRAP;
491 
492 	if (s2 >= last)
493 		d2 = s2 - last;
494 	else if (s2 + back_max >= last)
495 		d2 = (last - s2) * bfqd->bfq_back_penalty;
496 	else
497 		wrap |= BFQ_RQ2_WRAP;
498 
499 	/* Found required data */
500 
501 	/*
502 	 * By doing switch() on the bit mask "wrap" we avoid having to
503 	 * check two variables for all permutations: --> faster!
504 	 */
505 	switch (wrap) {
506 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
507 		if (d1 < d2)
508 			return rq1;
509 		else if (d2 < d1)
510 			return rq2;
511 
512 		if (s1 >= s2)
513 			return rq1;
514 		else
515 			return rq2;
516 
517 	case BFQ_RQ2_WRAP:
518 		return rq1;
519 	case BFQ_RQ1_WRAP:
520 		return rq2;
521 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
522 	default:
523 		/*
524 		 * Since both rqs are wrapped,
525 		 * start with the one that's further behind head
526 		 * (--> only *one* back seek required),
527 		 * since back seek takes more time than forward.
528 		 */
529 		if (s1 <= s2)
530 			return rq1;
531 		else
532 			return rq2;
533 	}
534 }
535 
536 /*
537  * Async I/O can easily starve sync I/O (both sync reads and sync
538  * writes), by consuming all tags. Similarly, storms of sync writes,
539  * such as those that sync(2) may trigger, can starve sync reads.
540  * Limit depths of async I/O and sync writes so as to counter both
541  * problems.
542  */
bfq_limit_depth(unsigned int op,struct blk_mq_alloc_data * data)543 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
544 {
545 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
546 
547 	if (op_is_sync(op) && !op_is_write(op))
548 		return;
549 
550 	data->shallow_depth =
551 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
552 
553 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
554 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
555 			data->shallow_depth);
556 }
557 
558 static struct bfq_queue *
bfq_rq_pos_tree_lookup(struct bfq_data * bfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)559 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
560 		     sector_t sector, struct rb_node **ret_parent,
561 		     struct rb_node ***rb_link)
562 {
563 	struct rb_node **p, *parent;
564 	struct bfq_queue *bfqq = NULL;
565 
566 	parent = NULL;
567 	p = &root->rb_node;
568 	while (*p) {
569 		struct rb_node **n;
570 
571 		parent = *p;
572 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
573 
574 		/*
575 		 * Sort strictly based on sector. Smallest to the left,
576 		 * largest to the right.
577 		 */
578 		if (sector > blk_rq_pos(bfqq->next_rq))
579 			n = &(*p)->rb_right;
580 		else if (sector < blk_rq_pos(bfqq->next_rq))
581 			n = &(*p)->rb_left;
582 		else
583 			break;
584 		p = n;
585 		bfqq = NULL;
586 	}
587 
588 	*ret_parent = parent;
589 	if (rb_link)
590 		*rb_link = p;
591 
592 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
593 		(unsigned long long)sector,
594 		bfqq ? bfqq->pid : 0);
595 
596 	return bfqq;
597 }
598 
bfq_too_late_for_merging(struct bfq_queue * bfqq)599 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
600 {
601 	return bfqq->service_from_backlogged > 0 &&
602 		time_is_before_jiffies(bfqq->first_IO_time +
603 				       bfq_merge_time_limit);
604 }
605 
606 /*
607  * The following function is not marked as __cold because it is
608  * actually cold, but for the same performance goal described in the
609  * comments on the likely() at the beginning of
610  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
611  * execution time for the case where this function is not invoked, we
612  * had to add an unlikely() in each involved if().
613  */
614 void __cold
bfq_pos_tree_add_move(struct bfq_data * bfqd,struct bfq_queue * bfqq)615 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
616 {
617 	struct rb_node **p, *parent;
618 	struct bfq_queue *__bfqq;
619 
620 	if (bfqq->pos_root) {
621 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
622 		bfqq->pos_root = NULL;
623 	}
624 
625 	/* oom_bfqq does not participate in queue merging */
626 	if (bfqq == &bfqd->oom_bfqq)
627 		return;
628 
629 	/*
630 	 * bfqq cannot be merged any longer (see comments in
631 	 * bfq_setup_cooperator): no point in adding bfqq into the
632 	 * position tree.
633 	 */
634 	if (bfq_too_late_for_merging(bfqq))
635 		return;
636 
637 	if (bfq_class_idle(bfqq))
638 		return;
639 	if (!bfqq->next_rq)
640 		return;
641 
642 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
643 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
644 			blk_rq_pos(bfqq->next_rq), &parent, &p);
645 	if (!__bfqq) {
646 		rb_link_node(&bfqq->pos_node, parent, p);
647 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
648 	} else
649 		bfqq->pos_root = NULL;
650 }
651 
652 /*
653  * The following function returns false either if every active queue
654  * must receive the same share of the throughput (symmetric scenario),
655  * or, as a special case, if bfqq must receive a share of the
656  * throughput lower than or equal to the share that every other active
657  * queue must receive.  If bfqq does sync I/O, then these are the only
658  * two cases where bfqq happens to be guaranteed its share of the
659  * throughput even if I/O dispatching is not plugged when bfqq remains
660  * temporarily empty (for more details, see the comments in the
661  * function bfq_better_to_idle()). For this reason, the return value
662  * of this function is used to check whether I/O-dispatch plugging can
663  * be avoided.
664  *
665  * The above first case (symmetric scenario) occurs when:
666  * 1) all active queues have the same weight,
667  * 2) all active queues belong to the same I/O-priority class,
668  * 3) all active groups at the same level in the groups tree have the same
669  *    weight,
670  * 4) all active groups at the same level in the groups tree have the same
671  *    number of children.
672  *
673  * Unfortunately, keeping the necessary state for evaluating exactly
674  * the last two symmetry sub-conditions above would be quite complex
675  * and time consuming. Therefore this function evaluates, instead,
676  * only the following stronger three sub-conditions, for which it is
677  * much easier to maintain the needed state:
678  * 1) all active queues have the same weight,
679  * 2) all active queues belong to the same I/O-priority class,
680  * 3) there are no active groups.
681  * In particular, the last condition is always true if hierarchical
682  * support or the cgroups interface are not enabled, thus no state
683  * needs to be maintained in this case.
684  */
bfq_asymmetric_scenario(struct bfq_data * bfqd,struct bfq_queue * bfqq)685 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
686 				   struct bfq_queue *bfqq)
687 {
688 	bool smallest_weight = bfqq &&
689 		bfqq->weight_counter &&
690 		bfqq->weight_counter ==
691 		container_of(
692 			rb_first_cached(&bfqd->queue_weights_tree),
693 			struct bfq_weight_counter,
694 			weights_node);
695 
696 	/*
697 	 * For queue weights to differ, queue_weights_tree must contain
698 	 * at least two nodes.
699 	 */
700 	bool varied_queue_weights = !smallest_weight &&
701 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
702 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
703 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
704 
705 	bool multiple_classes_busy =
706 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
707 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
708 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
709 
710 	return varied_queue_weights || multiple_classes_busy
711 #ifdef CONFIG_BFQ_GROUP_IOSCHED
712 	       || bfqd->num_groups_with_pending_reqs > 0
713 #endif
714 		;
715 }
716 
717 /*
718  * If the weight-counter tree passed as input contains no counter for
719  * the weight of the input queue, then add that counter; otherwise just
720  * increment the existing counter.
721  *
722  * Note that weight-counter trees contain few nodes in mostly symmetric
723  * scenarios. For example, if all queues have the same weight, then the
724  * weight-counter tree for the queues may contain at most one node.
725  * This holds even if low_latency is on, because weight-raised queues
726  * are not inserted in the tree.
727  * In most scenarios, the rate at which nodes are created/destroyed
728  * should be low too.
729  */
bfq_weights_tree_add(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root_cached * root)730 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
731 			  struct rb_root_cached *root)
732 {
733 	struct bfq_entity *entity = &bfqq->entity;
734 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
735 	bool leftmost = true;
736 
737 	/*
738 	 * Do not insert if the queue is already associated with a
739 	 * counter, which happens if:
740 	 *   1) a request arrival has caused the queue to become both
741 	 *      non-weight-raised, and hence change its weight, and
742 	 *      backlogged; in this respect, each of the two events
743 	 *      causes an invocation of this function,
744 	 *   2) this is the invocation of this function caused by the
745 	 *      second event. This second invocation is actually useless,
746 	 *      and we handle this fact by exiting immediately. More
747 	 *      efficient or clearer solutions might possibly be adopted.
748 	 */
749 	if (bfqq->weight_counter)
750 		return;
751 
752 	while (*new) {
753 		struct bfq_weight_counter *__counter = container_of(*new,
754 						struct bfq_weight_counter,
755 						weights_node);
756 		parent = *new;
757 
758 		if (entity->weight == __counter->weight) {
759 			bfqq->weight_counter = __counter;
760 			goto inc_counter;
761 		}
762 		if (entity->weight < __counter->weight)
763 			new = &((*new)->rb_left);
764 		else {
765 			new = &((*new)->rb_right);
766 			leftmost = false;
767 		}
768 	}
769 
770 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
771 				       GFP_ATOMIC);
772 
773 	/*
774 	 * In the unlucky event of an allocation failure, we just
775 	 * exit. This will cause the weight of queue to not be
776 	 * considered in bfq_asymmetric_scenario, which, in its turn,
777 	 * causes the scenario to be deemed wrongly symmetric in case
778 	 * bfqq's weight would have been the only weight making the
779 	 * scenario asymmetric.  On the bright side, no unbalance will
780 	 * however occur when bfqq becomes inactive again (the
781 	 * invocation of this function is triggered by an activation
782 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
783 	 * if !bfqq->weight_counter.
784 	 */
785 	if (unlikely(!bfqq->weight_counter))
786 		return;
787 
788 	bfqq->weight_counter->weight = entity->weight;
789 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
790 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
791 				leftmost);
792 
793 inc_counter:
794 	bfqq->weight_counter->num_active++;
795 	bfqq->ref++;
796 }
797 
798 /*
799  * Decrement the weight counter associated with the queue, and, if the
800  * counter reaches 0, remove the counter from the tree.
801  * See the comments to the function bfq_weights_tree_add() for considerations
802  * about overhead.
803  */
__bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root_cached * root)804 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
805 			       struct bfq_queue *bfqq,
806 			       struct rb_root_cached *root)
807 {
808 	if (!bfqq->weight_counter)
809 		return;
810 
811 	bfqq->weight_counter->num_active--;
812 	if (bfqq->weight_counter->num_active > 0)
813 		goto reset_entity_pointer;
814 
815 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
816 	kfree(bfqq->weight_counter);
817 
818 reset_entity_pointer:
819 	bfqq->weight_counter = NULL;
820 	bfq_put_queue(bfqq);
821 }
822 
823 /*
824  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
825  * of active groups for each queue's inactive parent entity.
826  */
bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq)827 void bfq_weights_tree_remove(struct bfq_data *bfqd,
828 			     struct bfq_queue *bfqq)
829 {
830 	struct bfq_entity *entity = bfqq->entity.parent;
831 
832 	for_each_entity(entity) {
833 		struct bfq_sched_data *sd = entity->my_sched_data;
834 
835 		if (sd->next_in_service || sd->in_service_entity) {
836 			/*
837 			 * entity is still active, because either
838 			 * next_in_service or in_service_entity is not
839 			 * NULL (see the comments on the definition of
840 			 * next_in_service for details on why
841 			 * in_service_entity must be checked too).
842 			 *
843 			 * As a consequence, its parent entities are
844 			 * active as well, and thus this loop must
845 			 * stop here.
846 			 */
847 			break;
848 		}
849 
850 		/*
851 		 * The decrement of num_groups_with_pending_reqs is
852 		 * not performed immediately upon the deactivation of
853 		 * entity, but it is delayed to when it also happens
854 		 * that the first leaf descendant bfqq of entity gets
855 		 * all its pending requests completed. The following
856 		 * instructions perform this delayed decrement, if
857 		 * needed. See the comments on
858 		 * num_groups_with_pending_reqs for details.
859 		 */
860 		if (entity->in_groups_with_pending_reqs) {
861 			entity->in_groups_with_pending_reqs = false;
862 			bfqd->num_groups_with_pending_reqs--;
863 		}
864 	}
865 
866 	/*
867 	 * Next function is invoked last, because it causes bfqq to be
868 	 * freed if the following holds: bfqq is not in service and
869 	 * has no dispatched request. DO NOT use bfqq after the next
870 	 * function invocation.
871 	 */
872 	__bfq_weights_tree_remove(bfqd, bfqq,
873 				  &bfqd->queue_weights_tree);
874 }
875 
876 /*
877  * Return expired entry, or NULL to just start from scratch in rbtree.
878  */
bfq_check_fifo(struct bfq_queue * bfqq,struct request * last)879 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
880 				      struct request *last)
881 {
882 	struct request *rq;
883 
884 	if (bfq_bfqq_fifo_expire(bfqq))
885 		return NULL;
886 
887 	bfq_mark_bfqq_fifo_expire(bfqq);
888 
889 	rq = rq_entry_fifo(bfqq->fifo.next);
890 
891 	if (rq == last || ktime_get_ns() < rq->fifo_time)
892 		return NULL;
893 
894 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
895 	return rq;
896 }
897 
bfq_find_next_rq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * last)898 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
899 					struct bfq_queue *bfqq,
900 					struct request *last)
901 {
902 	struct rb_node *rbnext = rb_next(&last->rb_node);
903 	struct rb_node *rbprev = rb_prev(&last->rb_node);
904 	struct request *next, *prev = NULL;
905 
906 	/* Follow expired path, else get first next available. */
907 	next = bfq_check_fifo(bfqq, last);
908 	if (next)
909 		return next;
910 
911 	if (rbprev)
912 		prev = rb_entry_rq(rbprev);
913 
914 	if (rbnext)
915 		next = rb_entry_rq(rbnext);
916 	else {
917 		rbnext = rb_first(&bfqq->sort_list);
918 		if (rbnext && rbnext != &last->rb_node)
919 			next = rb_entry_rq(rbnext);
920 	}
921 
922 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
923 }
924 
925 /* see the definition of bfq_async_charge_factor for details */
bfq_serv_to_charge(struct request * rq,struct bfq_queue * bfqq)926 static unsigned long bfq_serv_to_charge(struct request *rq,
927 					struct bfq_queue *bfqq)
928 {
929 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
930 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
931 		return blk_rq_sectors(rq);
932 
933 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
934 }
935 
936 /**
937  * bfq_updated_next_req - update the queue after a new next_rq selection.
938  * @bfqd: the device data the queue belongs to.
939  * @bfqq: the queue to update.
940  *
941  * If the first request of a queue changes we make sure that the queue
942  * has enough budget to serve at least its first request (if the
943  * request has grown).  We do this because if the queue has not enough
944  * budget for its first request, it has to go through two dispatch
945  * rounds to actually get it dispatched.
946  */
bfq_updated_next_req(struct bfq_data * bfqd,struct bfq_queue * bfqq)947 static void bfq_updated_next_req(struct bfq_data *bfqd,
948 				 struct bfq_queue *bfqq)
949 {
950 	struct bfq_entity *entity = &bfqq->entity;
951 	struct request *next_rq = bfqq->next_rq;
952 	unsigned long new_budget;
953 
954 	if (!next_rq)
955 		return;
956 
957 	if (bfqq == bfqd->in_service_queue)
958 		/*
959 		 * In order not to break guarantees, budgets cannot be
960 		 * changed after an entity has been selected.
961 		 */
962 		return;
963 
964 	new_budget = max_t(unsigned long,
965 			   max_t(unsigned long, bfqq->max_budget,
966 				 bfq_serv_to_charge(next_rq, bfqq)),
967 			   entity->service);
968 	if (entity->budget != new_budget) {
969 		entity->budget = new_budget;
970 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
971 					 new_budget);
972 		bfq_requeue_bfqq(bfqd, bfqq, false);
973 	}
974 }
975 
bfq_wr_duration(struct bfq_data * bfqd)976 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
977 {
978 	u64 dur;
979 
980 	if (bfqd->bfq_wr_max_time > 0)
981 		return bfqd->bfq_wr_max_time;
982 
983 	dur = bfqd->rate_dur_prod;
984 	do_div(dur, bfqd->peak_rate);
985 
986 	/*
987 	 * Limit duration between 3 and 25 seconds. The upper limit
988 	 * has been conservatively set after the following worst case:
989 	 * on a QEMU/KVM virtual machine
990 	 * - running in a slow PC
991 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
992 	 * - serving a heavy I/O workload, such as the sequential reading
993 	 *   of several files
994 	 * mplayer took 23 seconds to start, if constantly weight-raised.
995 	 *
996 	 * As for higher values than that accommodating the above bad
997 	 * scenario, tests show that higher values would often yield
998 	 * the opposite of the desired result, i.e., would worsen
999 	 * responsiveness by allowing non-interactive applications to
1000 	 * preserve weight raising for too long.
1001 	 *
1002 	 * On the other end, lower values than 3 seconds make it
1003 	 * difficult for most interactive tasks to complete their jobs
1004 	 * before weight-raising finishes.
1005 	 */
1006 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1007 }
1008 
1009 /* switch back from soft real-time to interactive weight raising */
switch_back_to_interactive_wr(struct bfq_queue * bfqq,struct bfq_data * bfqd)1010 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1011 					  struct bfq_data *bfqd)
1012 {
1013 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1014 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1015 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1016 }
1017 
1018 static void
bfq_bfqq_resume_state(struct bfq_queue * bfqq,struct bfq_data * bfqd,struct bfq_io_cq * bic,bool bfq_already_existing)1019 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1020 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1021 {
1022 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1023 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1024 
1025 	if (bic->saved_has_short_ttime)
1026 		bfq_mark_bfqq_has_short_ttime(bfqq);
1027 	else
1028 		bfq_clear_bfqq_has_short_ttime(bfqq);
1029 
1030 	if (bic->saved_IO_bound)
1031 		bfq_mark_bfqq_IO_bound(bfqq);
1032 	else
1033 		bfq_clear_bfqq_IO_bound(bfqq);
1034 
1035 	bfqq->entity.new_weight = bic->saved_weight;
1036 	bfqq->ttime = bic->saved_ttime;
1037 	bfqq->wr_coeff = bic->saved_wr_coeff;
1038 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1039 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1040 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1041 
1042 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1043 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1044 				   bfqq->wr_cur_max_time))) {
1045 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1046 		    !bfq_bfqq_in_large_burst(bfqq) &&
1047 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1048 					     bfq_wr_duration(bfqd))) {
1049 			switch_back_to_interactive_wr(bfqq, bfqd);
1050 		} else {
1051 			bfqq->wr_coeff = 1;
1052 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1053 				     "resume state: switching off wr");
1054 		}
1055 	}
1056 
1057 	/* make sure weight will be updated, however we got here */
1058 	bfqq->entity.prio_changed = 1;
1059 
1060 	if (likely(!busy))
1061 		return;
1062 
1063 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1064 		bfqd->wr_busy_queues++;
1065 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1066 		bfqd->wr_busy_queues--;
1067 }
1068 
bfqq_process_refs(struct bfq_queue * bfqq)1069 static int bfqq_process_refs(struct bfq_queue *bfqq)
1070 {
1071 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
1072 		(bfqq->weight_counter != NULL);
1073 }
1074 
1075 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
bfq_reset_burst_list(struct bfq_data * bfqd,struct bfq_queue * bfqq)1076 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1077 {
1078 	struct bfq_queue *item;
1079 	struct hlist_node *n;
1080 
1081 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1082 		hlist_del_init(&item->burst_list_node);
1083 
1084 	/*
1085 	 * Start the creation of a new burst list only if there is no
1086 	 * active queue. See comments on the conditional invocation of
1087 	 * bfq_handle_burst().
1088 	 */
1089 	if (bfq_tot_busy_queues(bfqd) == 0) {
1090 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1091 		bfqd->burst_size = 1;
1092 	} else
1093 		bfqd->burst_size = 0;
1094 
1095 	bfqd->burst_parent_entity = bfqq->entity.parent;
1096 }
1097 
1098 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
bfq_add_to_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1099 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1100 {
1101 	/* Increment burst size to take into account also bfqq */
1102 	bfqd->burst_size++;
1103 
1104 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1105 		struct bfq_queue *pos, *bfqq_item;
1106 		struct hlist_node *n;
1107 
1108 		/*
1109 		 * Enough queues have been activated shortly after each
1110 		 * other to consider this burst as large.
1111 		 */
1112 		bfqd->large_burst = true;
1113 
1114 		/*
1115 		 * We can now mark all queues in the burst list as
1116 		 * belonging to a large burst.
1117 		 */
1118 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1119 				     burst_list_node)
1120 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1121 		bfq_mark_bfqq_in_large_burst(bfqq);
1122 
1123 		/*
1124 		 * From now on, and until the current burst finishes, any
1125 		 * new queue being activated shortly after the last queue
1126 		 * was inserted in the burst can be immediately marked as
1127 		 * belonging to a large burst. So the burst list is not
1128 		 * needed any more. Remove it.
1129 		 */
1130 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1131 					  burst_list_node)
1132 			hlist_del_init(&pos->burst_list_node);
1133 	} else /*
1134 		* Burst not yet large: add bfqq to the burst list. Do
1135 		* not increment the ref counter for bfqq, because bfqq
1136 		* is removed from the burst list before freeing bfqq
1137 		* in put_queue.
1138 		*/
1139 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1140 }
1141 
1142 /*
1143  * If many queues belonging to the same group happen to be created
1144  * shortly after each other, then the processes associated with these
1145  * queues have typically a common goal. In particular, bursts of queue
1146  * creations are usually caused by services or applications that spawn
1147  * many parallel threads/processes. Examples are systemd during boot,
1148  * or git grep. To help these processes get their job done as soon as
1149  * possible, it is usually better to not grant either weight-raising
1150  * or device idling to their queues, unless these queues must be
1151  * protected from the I/O flowing through other active queues.
1152  *
1153  * In this comment we describe, firstly, the reasons why this fact
1154  * holds, and, secondly, the next function, which implements the main
1155  * steps needed to properly mark these queues so that they can then be
1156  * treated in a different way.
1157  *
1158  * The above services or applications benefit mostly from a high
1159  * throughput: the quicker the requests of the activated queues are
1160  * cumulatively served, the sooner the target job of these queues gets
1161  * completed. As a consequence, weight-raising any of these queues,
1162  * which also implies idling the device for it, is almost always
1163  * counterproductive, unless there are other active queues to isolate
1164  * these new queues from. If there no other active queues, then
1165  * weight-raising these new queues just lowers throughput in most
1166  * cases.
1167  *
1168  * On the other hand, a burst of queue creations may be caused also by
1169  * the start of an application that does not consist of a lot of
1170  * parallel I/O-bound threads. In fact, with a complex application,
1171  * several short processes may need to be executed to start-up the
1172  * application. In this respect, to start an application as quickly as
1173  * possible, the best thing to do is in any case to privilege the I/O
1174  * related to the application with respect to all other
1175  * I/O. Therefore, the best strategy to start as quickly as possible
1176  * an application that causes a burst of queue creations is to
1177  * weight-raise all the queues created during the burst. This is the
1178  * exact opposite of the best strategy for the other type of bursts.
1179  *
1180  * In the end, to take the best action for each of the two cases, the
1181  * two types of bursts need to be distinguished. Fortunately, this
1182  * seems relatively easy, by looking at the sizes of the bursts. In
1183  * particular, we found a threshold such that only bursts with a
1184  * larger size than that threshold are apparently caused by
1185  * services or commands such as systemd or git grep. For brevity,
1186  * hereafter we call just 'large' these bursts. BFQ *does not*
1187  * weight-raise queues whose creation occurs in a large burst. In
1188  * addition, for each of these queues BFQ performs or does not perform
1189  * idling depending on which choice boosts the throughput more. The
1190  * exact choice depends on the device and request pattern at
1191  * hand.
1192  *
1193  * Unfortunately, false positives may occur while an interactive task
1194  * is starting (e.g., an application is being started). The
1195  * consequence is that the queues associated with the task do not
1196  * enjoy weight raising as expected. Fortunately these false positives
1197  * are very rare. They typically occur if some service happens to
1198  * start doing I/O exactly when the interactive task starts.
1199  *
1200  * Turning back to the next function, it is invoked only if there are
1201  * no active queues (apart from active queues that would belong to the
1202  * same, possible burst bfqq would belong to), and it implements all
1203  * the steps needed to detect the occurrence of a large burst and to
1204  * properly mark all the queues belonging to it (so that they can then
1205  * be treated in a different way). This goal is achieved by
1206  * maintaining a "burst list" that holds, temporarily, the queues that
1207  * belong to the burst in progress. The list is then used to mark
1208  * these queues as belonging to a large burst if the burst does become
1209  * large. The main steps are the following.
1210  *
1211  * . when the very first queue is created, the queue is inserted into the
1212  *   list (as it could be the first queue in a possible burst)
1213  *
1214  * . if the current burst has not yet become large, and a queue Q that does
1215  *   not yet belong to the burst is activated shortly after the last time
1216  *   at which a new queue entered the burst list, then the function appends
1217  *   Q to the burst list
1218  *
1219  * . if, as a consequence of the previous step, the burst size reaches
1220  *   the large-burst threshold, then
1221  *
1222  *     . all the queues in the burst list are marked as belonging to a
1223  *       large burst
1224  *
1225  *     . the burst list is deleted; in fact, the burst list already served
1226  *       its purpose (keeping temporarily track of the queues in a burst,
1227  *       so as to be able to mark them as belonging to a large burst in the
1228  *       previous sub-step), and now is not needed any more
1229  *
1230  *     . the device enters a large-burst mode
1231  *
1232  * . if a queue Q that does not belong to the burst is created while
1233  *   the device is in large-burst mode and shortly after the last time
1234  *   at which a queue either entered the burst list or was marked as
1235  *   belonging to the current large burst, then Q is immediately marked
1236  *   as belonging to a large burst.
1237  *
1238  * . if a queue Q that does not belong to the burst is created a while
1239  *   later, i.e., not shortly after, than the last time at which a queue
1240  *   either entered the burst list or was marked as belonging to the
1241  *   current large burst, then the current burst is deemed as finished and:
1242  *
1243  *        . the large-burst mode is reset if set
1244  *
1245  *        . the burst list is emptied
1246  *
1247  *        . Q is inserted in the burst list, as Q may be the first queue
1248  *          in a possible new burst (then the burst list contains just Q
1249  *          after this step).
1250  */
bfq_handle_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1251 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1252 {
1253 	/*
1254 	 * If bfqq is already in the burst list or is part of a large
1255 	 * burst, or finally has just been split, then there is
1256 	 * nothing else to do.
1257 	 */
1258 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1259 	    bfq_bfqq_in_large_burst(bfqq) ||
1260 	    time_is_after_eq_jiffies(bfqq->split_time +
1261 				     msecs_to_jiffies(10)))
1262 		return;
1263 
1264 	/*
1265 	 * If bfqq's creation happens late enough, or bfqq belongs to
1266 	 * a different group than the burst group, then the current
1267 	 * burst is finished, and related data structures must be
1268 	 * reset.
1269 	 *
1270 	 * In this respect, consider the special case where bfqq is
1271 	 * the very first queue created after BFQ is selected for this
1272 	 * device. In this case, last_ins_in_burst and
1273 	 * burst_parent_entity are not yet significant when we get
1274 	 * here. But it is easy to verify that, whether or not the
1275 	 * following condition is true, bfqq will end up being
1276 	 * inserted into the burst list. In particular the list will
1277 	 * happen to contain only bfqq. And this is exactly what has
1278 	 * to happen, as bfqq may be the first queue of the first
1279 	 * burst.
1280 	 */
1281 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1282 	    bfqd->bfq_burst_interval) ||
1283 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1284 		bfqd->large_burst = false;
1285 		bfq_reset_burst_list(bfqd, bfqq);
1286 		goto end;
1287 	}
1288 
1289 	/*
1290 	 * If we get here, then bfqq is being activated shortly after the
1291 	 * last queue. So, if the current burst is also large, we can mark
1292 	 * bfqq as belonging to this large burst immediately.
1293 	 */
1294 	if (bfqd->large_burst) {
1295 		bfq_mark_bfqq_in_large_burst(bfqq);
1296 		goto end;
1297 	}
1298 
1299 	/*
1300 	 * If we get here, then a large-burst state has not yet been
1301 	 * reached, but bfqq is being activated shortly after the last
1302 	 * queue. Then we add bfqq to the burst.
1303 	 */
1304 	bfq_add_to_burst(bfqd, bfqq);
1305 end:
1306 	/*
1307 	 * At this point, bfqq either has been added to the current
1308 	 * burst or has caused the current burst to terminate and a
1309 	 * possible new burst to start. In particular, in the second
1310 	 * case, bfqq has become the first queue in the possible new
1311 	 * burst.  In both cases last_ins_in_burst needs to be moved
1312 	 * forward.
1313 	 */
1314 	bfqd->last_ins_in_burst = jiffies;
1315 }
1316 
bfq_bfqq_budget_left(struct bfq_queue * bfqq)1317 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1318 {
1319 	struct bfq_entity *entity = &bfqq->entity;
1320 
1321 	return entity->budget - entity->service;
1322 }
1323 
1324 /*
1325  * If enough samples have been computed, return the current max budget
1326  * stored in bfqd, which is dynamically updated according to the
1327  * estimated disk peak rate; otherwise return the default max budget
1328  */
bfq_max_budget(struct bfq_data * bfqd)1329 static int bfq_max_budget(struct bfq_data *bfqd)
1330 {
1331 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1332 		return bfq_default_max_budget;
1333 	else
1334 		return bfqd->bfq_max_budget;
1335 }
1336 
1337 /*
1338  * Return min budget, which is a fraction of the current or default
1339  * max budget (trying with 1/32)
1340  */
bfq_min_budget(struct bfq_data * bfqd)1341 static int bfq_min_budget(struct bfq_data *bfqd)
1342 {
1343 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1344 		return bfq_default_max_budget / 32;
1345 	else
1346 		return bfqd->bfq_max_budget / 32;
1347 }
1348 
1349 /*
1350  * The next function, invoked after the input queue bfqq switches from
1351  * idle to busy, updates the budget of bfqq. The function also tells
1352  * whether the in-service queue should be expired, by returning
1353  * true. The purpose of expiring the in-service queue is to give bfqq
1354  * the chance to possibly preempt the in-service queue, and the reason
1355  * for preempting the in-service queue is to achieve one of the two
1356  * goals below.
1357  *
1358  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1359  * expired because it has remained idle. In particular, bfqq may have
1360  * expired for one of the following two reasons:
1361  *
1362  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1363  *   and did not make it to issue a new request before its last
1364  *   request was served;
1365  *
1366  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1367  *   a new request before the expiration of the idling-time.
1368  *
1369  * Even if bfqq has expired for one of the above reasons, the process
1370  * associated with the queue may be however issuing requests greedily,
1371  * and thus be sensitive to the bandwidth it receives (bfqq may have
1372  * remained idle for other reasons: CPU high load, bfqq not enjoying
1373  * idling, I/O throttling somewhere in the path from the process to
1374  * the I/O scheduler, ...). But if, after every expiration for one of
1375  * the above two reasons, bfqq has to wait for the service of at least
1376  * one full budget of another queue before being served again, then
1377  * bfqq is likely to get a much lower bandwidth or resource time than
1378  * its reserved ones. To address this issue, two countermeasures need
1379  * to be taken.
1380  *
1381  * First, the budget and the timestamps of bfqq need to be updated in
1382  * a special way on bfqq reactivation: they need to be updated as if
1383  * bfqq did not remain idle and did not expire. In fact, if they are
1384  * computed as if bfqq expired and remained idle until reactivation,
1385  * then the process associated with bfqq is treated as if, instead of
1386  * being greedy, it stopped issuing requests when bfqq remained idle,
1387  * and restarts issuing requests only on this reactivation. In other
1388  * words, the scheduler does not help the process recover the "service
1389  * hole" between bfqq expiration and reactivation. As a consequence,
1390  * the process receives a lower bandwidth than its reserved one. In
1391  * contrast, to recover this hole, the budget must be updated as if
1392  * bfqq was not expired at all before this reactivation, i.e., it must
1393  * be set to the value of the remaining budget when bfqq was
1394  * expired. Along the same line, timestamps need to be assigned the
1395  * value they had the last time bfqq was selected for service, i.e.,
1396  * before last expiration. Thus timestamps need to be back-shifted
1397  * with respect to their normal computation (see [1] for more details
1398  * on this tricky aspect).
1399  *
1400  * Secondly, to allow the process to recover the hole, the in-service
1401  * queue must be expired too, to give bfqq the chance to preempt it
1402  * immediately. In fact, if bfqq has to wait for a full budget of the
1403  * in-service queue to be completed, then it may become impossible to
1404  * let the process recover the hole, even if the back-shifted
1405  * timestamps of bfqq are lower than those of the in-service queue. If
1406  * this happens for most or all of the holes, then the process may not
1407  * receive its reserved bandwidth. In this respect, it is worth noting
1408  * that, being the service of outstanding requests unpreemptible, a
1409  * little fraction of the holes may however be unrecoverable, thereby
1410  * causing a little loss of bandwidth.
1411  *
1412  * The last important point is detecting whether bfqq does need this
1413  * bandwidth recovery. In this respect, the next function deems the
1414  * process associated with bfqq greedy, and thus allows it to recover
1415  * the hole, if: 1) the process is waiting for the arrival of a new
1416  * request (which implies that bfqq expired for one of the above two
1417  * reasons), and 2) such a request has arrived soon. The first
1418  * condition is controlled through the flag non_blocking_wait_rq,
1419  * while the second through the flag arrived_in_time. If both
1420  * conditions hold, then the function computes the budget in the
1421  * above-described special way, and signals that the in-service queue
1422  * should be expired. Timestamp back-shifting is done later in
1423  * __bfq_activate_entity.
1424  *
1425  * 2. Reduce latency. Even if timestamps are not backshifted to let
1426  * the process associated with bfqq recover a service hole, bfqq may
1427  * however happen to have, after being (re)activated, a lower finish
1428  * timestamp than the in-service queue.	 That is, the next budget of
1429  * bfqq may have to be completed before the one of the in-service
1430  * queue. If this is the case, then preempting the in-service queue
1431  * allows this goal to be achieved, apart from the unpreemptible,
1432  * outstanding requests mentioned above.
1433  *
1434  * Unfortunately, regardless of which of the above two goals one wants
1435  * to achieve, service trees need first to be updated to know whether
1436  * the in-service queue must be preempted. To have service trees
1437  * correctly updated, the in-service queue must be expired and
1438  * rescheduled, and bfqq must be scheduled too. This is one of the
1439  * most costly operations (in future versions, the scheduling
1440  * mechanism may be re-designed in such a way to make it possible to
1441  * know whether preemption is needed without needing to update service
1442  * trees). In addition, queue preemptions almost always cause random
1443  * I/O, which may in turn cause loss of throughput. Finally, there may
1444  * even be no in-service queue when the next function is invoked (so,
1445  * no queue to compare timestamps with). Because of these facts, the
1446  * next function adopts the following simple scheme to avoid costly
1447  * operations, too frequent preemptions and too many dependencies on
1448  * the state of the scheduler: it requests the expiration of the
1449  * in-service queue (unconditionally) only for queues that need to
1450  * recover a hole. Then it delegates to other parts of the code the
1451  * responsibility of handling the above case 2.
1452  */
bfq_bfqq_update_budg_for_activation(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool arrived_in_time)1453 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1454 						struct bfq_queue *bfqq,
1455 						bool arrived_in_time)
1456 {
1457 	struct bfq_entity *entity = &bfqq->entity;
1458 
1459 	/*
1460 	 * In the next compound condition, we check also whether there
1461 	 * is some budget left, because otherwise there is no point in
1462 	 * trying to go on serving bfqq with this same budget: bfqq
1463 	 * would be expired immediately after being selected for
1464 	 * service. This would only cause useless overhead.
1465 	 */
1466 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1467 	    bfq_bfqq_budget_left(bfqq) > 0) {
1468 		/*
1469 		 * We do not clear the flag non_blocking_wait_rq here, as
1470 		 * the latter is used in bfq_activate_bfqq to signal
1471 		 * that timestamps need to be back-shifted (and is
1472 		 * cleared right after).
1473 		 */
1474 
1475 		/*
1476 		 * In next assignment we rely on that either
1477 		 * entity->service or entity->budget are not updated
1478 		 * on expiration if bfqq is empty (see
1479 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1480 		 * remain unchanged after such an expiration, and the
1481 		 * following statement therefore assigns to
1482 		 * entity->budget the remaining budget on such an
1483 		 * expiration.
1484 		 */
1485 		entity->budget = min_t(unsigned long,
1486 				       bfq_bfqq_budget_left(bfqq),
1487 				       bfqq->max_budget);
1488 
1489 		/*
1490 		 * At this point, we have used entity->service to get
1491 		 * the budget left (needed for updating
1492 		 * entity->budget). Thus we finally can, and have to,
1493 		 * reset entity->service. The latter must be reset
1494 		 * because bfqq would otherwise be charged again for
1495 		 * the service it has received during its previous
1496 		 * service slot(s).
1497 		 */
1498 		entity->service = 0;
1499 
1500 		return true;
1501 	}
1502 
1503 	/*
1504 	 * We can finally complete expiration, by setting service to 0.
1505 	 */
1506 	entity->service = 0;
1507 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1508 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1509 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1510 	return false;
1511 }
1512 
1513 /*
1514  * Return the farthest past time instant according to jiffies
1515  * macros.
1516  */
bfq_smallest_from_now(void)1517 static unsigned long bfq_smallest_from_now(void)
1518 {
1519 	return jiffies - MAX_JIFFY_OFFSET;
1520 }
1521 
bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data * bfqd,struct bfq_queue * bfqq,unsigned int old_wr_coeff,bool wr_or_deserves_wr,bool interactive,bool in_burst,bool soft_rt)1522 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1523 					     struct bfq_queue *bfqq,
1524 					     unsigned int old_wr_coeff,
1525 					     bool wr_or_deserves_wr,
1526 					     bool interactive,
1527 					     bool in_burst,
1528 					     bool soft_rt)
1529 {
1530 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1531 		/* start a weight-raising period */
1532 		if (interactive) {
1533 			bfqq->service_from_wr = 0;
1534 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1535 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1536 		} else {
1537 			/*
1538 			 * No interactive weight raising in progress
1539 			 * here: assign minus infinity to
1540 			 * wr_start_at_switch_to_srt, to make sure
1541 			 * that, at the end of the soft-real-time
1542 			 * weight raising periods that is starting
1543 			 * now, no interactive weight-raising period
1544 			 * may be wrongly considered as still in
1545 			 * progress (and thus actually started by
1546 			 * mistake).
1547 			 */
1548 			bfqq->wr_start_at_switch_to_srt =
1549 				bfq_smallest_from_now();
1550 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1551 				BFQ_SOFTRT_WEIGHT_FACTOR;
1552 			bfqq->wr_cur_max_time =
1553 				bfqd->bfq_wr_rt_max_time;
1554 		}
1555 
1556 		/*
1557 		 * If needed, further reduce budget to make sure it is
1558 		 * close to bfqq's backlog, so as to reduce the
1559 		 * scheduling-error component due to a too large
1560 		 * budget. Do not care about throughput consequences,
1561 		 * but only about latency. Finally, do not assign a
1562 		 * too small budget either, to avoid increasing
1563 		 * latency by causing too frequent expirations.
1564 		 */
1565 		bfqq->entity.budget = min_t(unsigned long,
1566 					    bfqq->entity.budget,
1567 					    2 * bfq_min_budget(bfqd));
1568 	} else if (old_wr_coeff > 1) {
1569 		if (interactive) { /* update wr coeff and duration */
1570 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1571 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1572 		} else if (in_burst)
1573 			bfqq->wr_coeff = 1;
1574 		else if (soft_rt) {
1575 			/*
1576 			 * The application is now or still meeting the
1577 			 * requirements for being deemed soft rt.  We
1578 			 * can then correctly and safely (re)charge
1579 			 * the weight-raising duration for the
1580 			 * application with the weight-raising
1581 			 * duration for soft rt applications.
1582 			 *
1583 			 * In particular, doing this recharge now, i.e.,
1584 			 * before the weight-raising period for the
1585 			 * application finishes, reduces the probability
1586 			 * of the following negative scenario:
1587 			 * 1) the weight of a soft rt application is
1588 			 *    raised at startup (as for any newly
1589 			 *    created application),
1590 			 * 2) since the application is not interactive,
1591 			 *    at a certain time weight-raising is
1592 			 *    stopped for the application,
1593 			 * 3) at that time the application happens to
1594 			 *    still have pending requests, and hence
1595 			 *    is destined to not have a chance to be
1596 			 *    deemed soft rt before these requests are
1597 			 *    completed (see the comments to the
1598 			 *    function bfq_bfqq_softrt_next_start()
1599 			 *    for details on soft rt detection),
1600 			 * 4) these pending requests experience a high
1601 			 *    latency because the application is not
1602 			 *    weight-raised while they are pending.
1603 			 */
1604 			if (bfqq->wr_cur_max_time !=
1605 				bfqd->bfq_wr_rt_max_time) {
1606 				bfqq->wr_start_at_switch_to_srt =
1607 					bfqq->last_wr_start_finish;
1608 
1609 				bfqq->wr_cur_max_time =
1610 					bfqd->bfq_wr_rt_max_time;
1611 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1612 					BFQ_SOFTRT_WEIGHT_FACTOR;
1613 			}
1614 			bfqq->last_wr_start_finish = jiffies;
1615 		}
1616 	}
1617 }
1618 
bfq_bfqq_idle_for_long_time(struct bfq_data * bfqd,struct bfq_queue * bfqq)1619 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1620 					struct bfq_queue *bfqq)
1621 {
1622 	return bfqq->dispatched == 0 &&
1623 		time_is_before_jiffies(
1624 			bfqq->budget_timeout +
1625 			bfqd->bfq_wr_min_idle_time);
1626 }
1627 
1628 
1629 /*
1630  * Return true if bfqq is in a higher priority class, or has a higher
1631  * weight than the in-service queue.
1632  */
bfq_bfqq_higher_class_or_weight(struct bfq_queue * bfqq,struct bfq_queue * in_serv_bfqq)1633 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1634 					    struct bfq_queue *in_serv_bfqq)
1635 {
1636 	int bfqq_weight, in_serv_weight;
1637 
1638 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1639 		return true;
1640 
1641 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1642 		bfqq_weight = bfqq->entity.weight;
1643 		in_serv_weight = in_serv_bfqq->entity.weight;
1644 	} else {
1645 		if (bfqq->entity.parent)
1646 			bfqq_weight = bfqq->entity.parent->weight;
1647 		else
1648 			bfqq_weight = bfqq->entity.weight;
1649 		if (in_serv_bfqq->entity.parent)
1650 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1651 		else
1652 			in_serv_weight = in_serv_bfqq->entity.weight;
1653 	}
1654 
1655 	return bfqq_weight > in_serv_weight;
1656 }
1657 
bfq_bfqq_handle_idle_busy_switch(struct bfq_data * bfqd,struct bfq_queue * bfqq,int old_wr_coeff,struct request * rq,bool * interactive)1658 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1659 					     struct bfq_queue *bfqq,
1660 					     int old_wr_coeff,
1661 					     struct request *rq,
1662 					     bool *interactive)
1663 {
1664 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1665 		bfqq_wants_to_preempt,
1666 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1667 		/*
1668 		 * See the comments on
1669 		 * bfq_bfqq_update_budg_for_activation for
1670 		 * details on the usage of the next variable.
1671 		 */
1672 		arrived_in_time =  ktime_get_ns() <=
1673 			bfqq->ttime.last_end_request +
1674 			bfqd->bfq_slice_idle * 3;
1675 
1676 
1677 	/*
1678 	 * bfqq deserves to be weight-raised if:
1679 	 * - it is sync,
1680 	 * - it does not belong to a large burst,
1681 	 * - it has been idle for enough time or is soft real-time,
1682 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1683 	 */
1684 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1685 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1686 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1687 		!in_burst &&
1688 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1689 		bfqq->dispatched == 0;
1690 	*interactive = !in_burst && idle_for_long_time;
1691 	wr_or_deserves_wr = bfqd->low_latency &&
1692 		(bfqq->wr_coeff > 1 ||
1693 		 (bfq_bfqq_sync(bfqq) &&
1694 		  bfqq->bic && (*interactive || soft_rt)));
1695 
1696 	/*
1697 	 * Using the last flag, update budget and check whether bfqq
1698 	 * may want to preempt the in-service queue.
1699 	 */
1700 	bfqq_wants_to_preempt =
1701 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1702 						    arrived_in_time);
1703 
1704 	/*
1705 	 * If bfqq happened to be activated in a burst, but has been
1706 	 * idle for much more than an interactive queue, then we
1707 	 * assume that, in the overall I/O initiated in the burst, the
1708 	 * I/O associated with bfqq is finished. So bfqq does not need
1709 	 * to be treated as a queue belonging to a burst
1710 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1711 	 * if set, and remove bfqq from the burst list if it's
1712 	 * there. We do not decrement burst_size, because the fact
1713 	 * that bfqq does not need to belong to the burst list any
1714 	 * more does not invalidate the fact that bfqq was created in
1715 	 * a burst.
1716 	 */
1717 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1718 	    idle_for_long_time &&
1719 	    time_is_before_jiffies(
1720 		    bfqq->budget_timeout +
1721 		    msecs_to_jiffies(10000))) {
1722 		hlist_del_init(&bfqq->burst_list_node);
1723 		bfq_clear_bfqq_in_large_burst(bfqq);
1724 	}
1725 
1726 	bfq_clear_bfqq_just_created(bfqq);
1727 
1728 
1729 	if (!bfq_bfqq_IO_bound(bfqq)) {
1730 		if (arrived_in_time) {
1731 			bfqq->requests_within_timer++;
1732 			if (bfqq->requests_within_timer >=
1733 			    bfqd->bfq_requests_within_timer)
1734 				bfq_mark_bfqq_IO_bound(bfqq);
1735 		} else
1736 			bfqq->requests_within_timer = 0;
1737 	}
1738 
1739 	if (bfqd->low_latency) {
1740 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1741 			/* wraparound */
1742 			bfqq->split_time =
1743 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1744 
1745 		if (time_is_before_jiffies(bfqq->split_time +
1746 					   bfqd->bfq_wr_min_idle_time)) {
1747 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1748 							 old_wr_coeff,
1749 							 wr_or_deserves_wr,
1750 							 *interactive,
1751 							 in_burst,
1752 							 soft_rt);
1753 
1754 			if (old_wr_coeff != bfqq->wr_coeff)
1755 				bfqq->entity.prio_changed = 1;
1756 		}
1757 	}
1758 
1759 	bfqq->last_idle_bklogged = jiffies;
1760 	bfqq->service_from_backlogged = 0;
1761 	bfq_clear_bfqq_softrt_update(bfqq);
1762 
1763 	bfq_add_bfqq_busy(bfqd, bfqq);
1764 
1765 	/*
1766 	 * Expire in-service queue only if preemption may be needed
1767 	 * for guarantees. In particular, we care only about two
1768 	 * cases. The first is that bfqq has to recover a service
1769 	 * hole, as explained in the comments on
1770 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1771 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1772 	 * carry time-critical I/O, then bfqq's bandwidth is less
1773 	 * important than that of queues that carry time-critical I/O.
1774 	 * So, as a further constraint, we consider this case only if
1775 	 * bfqq is at least as weight-raised, i.e., at least as time
1776 	 * critical, as the in-service queue.
1777 	 *
1778 	 * The second case is that bfqq is in a higher priority class,
1779 	 * or has a higher weight than the in-service queue. If this
1780 	 * condition does not hold, we don't care because, even if
1781 	 * bfqq does not start to be served immediately, the resulting
1782 	 * delay for bfqq's I/O is however lower or much lower than
1783 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1784 	 *
1785 	 * In both cases, preemption is needed only if, according to
1786 	 * the timestamps of both bfqq and of the in-service queue,
1787 	 * bfqq actually is the next queue to serve. So, to reduce
1788 	 * useless preemptions, the return value of
1789 	 * next_queue_may_preempt() is considered in the next compound
1790 	 * condition too. Yet next_queue_may_preempt() just checks a
1791 	 * simple, necessary condition for bfqq to be the next queue
1792 	 * to serve. In fact, to evaluate a sufficient condition, the
1793 	 * timestamps of the in-service queue would need to be
1794 	 * updated, and this operation is quite costly (see the
1795 	 * comments on bfq_bfqq_update_budg_for_activation()).
1796 	 */
1797 	if (bfqd->in_service_queue &&
1798 	    ((bfqq_wants_to_preempt &&
1799 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1800 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue)) &&
1801 	    next_queue_may_preempt(bfqd))
1802 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1803 				false, BFQQE_PREEMPTED);
1804 }
1805 
bfq_reset_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)1806 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1807 				   struct bfq_queue *bfqq)
1808 {
1809 	/* invalidate baseline total service time */
1810 	bfqq->last_serv_time_ns = 0;
1811 
1812 	/*
1813 	 * Reset pointer in case we are waiting for
1814 	 * some request completion.
1815 	 */
1816 	bfqd->waited_rq = NULL;
1817 
1818 	/*
1819 	 * If bfqq has a short think time, then start by setting the
1820 	 * inject limit to 0 prudentially, because the service time of
1821 	 * an injected I/O request may be higher than the think time
1822 	 * of bfqq, and therefore, if one request was injected when
1823 	 * bfqq remains empty, this injected request might delay the
1824 	 * service of the next I/O request for bfqq significantly. In
1825 	 * case bfqq can actually tolerate some injection, then the
1826 	 * adaptive update will however raise the limit soon. This
1827 	 * lucky circumstance holds exactly because bfqq has a short
1828 	 * think time, and thus, after remaining empty, is likely to
1829 	 * get new I/O enqueued---and then completed---before being
1830 	 * expired. This is the very pattern that gives the
1831 	 * limit-update algorithm the chance to measure the effect of
1832 	 * injection on request service times, and then to update the
1833 	 * limit accordingly.
1834 	 *
1835 	 * However, in the following special case, the inject limit is
1836 	 * left to 1 even if the think time is short: bfqq's I/O is
1837 	 * synchronized with that of some other queue, i.e., bfqq may
1838 	 * receive new I/O only after the I/O of the other queue is
1839 	 * completed. Keeping the inject limit to 1 allows the
1840 	 * blocking I/O to be served while bfqq is in service. And
1841 	 * this is very convenient both for bfqq and for overall
1842 	 * throughput, as explained in detail in the comments in
1843 	 * bfq_update_has_short_ttime().
1844 	 *
1845 	 * On the opposite end, if bfqq has a long think time, then
1846 	 * start directly by 1, because:
1847 	 * a) on the bright side, keeping at most one request in
1848 	 * service in the drive is unlikely to cause any harm to the
1849 	 * latency of bfqq's requests, as the service time of a single
1850 	 * request is likely to be lower than the think time of bfqq;
1851 	 * b) on the downside, after becoming empty, bfqq is likely to
1852 	 * expire before getting its next request. With this request
1853 	 * arrival pattern, it is very hard to sample total service
1854 	 * times and update the inject limit accordingly (see comments
1855 	 * on bfq_update_inject_limit()). So the limit is likely to be
1856 	 * never, or at least seldom, updated.  As a consequence, by
1857 	 * setting the limit to 1, we avoid that no injection ever
1858 	 * occurs with bfqq. On the downside, this proactive step
1859 	 * further reduces chances to actually compute the baseline
1860 	 * total service time. Thus it reduces chances to execute the
1861 	 * limit-update algorithm and possibly raise the limit to more
1862 	 * than 1.
1863 	 */
1864 	if (bfq_bfqq_has_short_ttime(bfqq))
1865 		bfqq->inject_limit = 0;
1866 	else
1867 		bfqq->inject_limit = 1;
1868 
1869 	bfqq->decrease_time_jif = jiffies;
1870 }
1871 
bfq_add_request(struct request * rq)1872 static void bfq_add_request(struct request *rq)
1873 {
1874 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1875 	struct bfq_data *bfqd = bfqq->bfqd;
1876 	struct request *next_rq, *prev;
1877 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1878 	bool interactive = false;
1879 
1880 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1881 	bfqq->queued[rq_is_sync(rq)]++;
1882 	bfqd->queued++;
1883 
1884 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1885 		/*
1886 		 * Detect whether bfqq's I/O seems synchronized with
1887 		 * that of some other queue, i.e., whether bfqq, after
1888 		 * remaining empty, happens to receive new I/O only
1889 		 * right after some I/O request of the other queue has
1890 		 * been completed. We call waker queue the other
1891 		 * queue, and we assume, for simplicity, that bfqq may
1892 		 * have at most one waker queue.
1893 		 *
1894 		 * A remarkable throughput boost can be reached by
1895 		 * unconditionally injecting the I/O of the waker
1896 		 * queue, every time a new bfq_dispatch_request
1897 		 * happens to be invoked while I/O is being plugged
1898 		 * for bfqq.  In addition to boosting throughput, this
1899 		 * unblocks bfqq's I/O, thereby improving bandwidth
1900 		 * and latency for bfqq. Note that these same results
1901 		 * may be achieved with the general injection
1902 		 * mechanism, but less effectively. For details on
1903 		 * this aspect, see the comments on the choice of the
1904 		 * queue for injection in bfq_select_queue().
1905 		 *
1906 		 * Turning back to the detection of a waker queue, a
1907 		 * queue Q is deemed as a waker queue for bfqq if, for
1908 		 * two consecutive times, bfqq happens to become non
1909 		 * empty right after a request of Q has been
1910 		 * completed. In particular, on the first time, Q is
1911 		 * tentatively set as a candidate waker queue, while
1912 		 * on the second time, the flag
1913 		 * bfq_bfqq_has_waker(bfqq) is set to confirm that Q
1914 		 * is a waker queue for bfqq. These detection steps
1915 		 * are performed only if bfqq has a long think time,
1916 		 * so as to make it more likely that bfqq's I/O is
1917 		 * actually being blocked by a synchronization. This
1918 		 * last filter, plus the above two-times requirement,
1919 		 * make false positives less likely.
1920 		 *
1921 		 * NOTE
1922 		 *
1923 		 * The sooner a waker queue is detected, the sooner
1924 		 * throughput can be boosted by injecting I/O from the
1925 		 * waker queue. Fortunately, detection is likely to be
1926 		 * actually fast, for the following reasons. While
1927 		 * blocked by synchronization, bfqq has a long think
1928 		 * time. This implies that bfqq's inject limit is at
1929 		 * least equal to 1 (see the comments in
1930 		 * bfq_update_inject_limit()). So, thanks to
1931 		 * injection, the waker queue is likely to be served
1932 		 * during the very first I/O-plugging time interval
1933 		 * for bfqq. This triggers the first step of the
1934 		 * detection mechanism. Thanks again to injection, the
1935 		 * candidate waker queue is then likely to be
1936 		 * confirmed no later than during the next
1937 		 * I/O-plugging interval for bfqq.
1938 		 */
1939 		if (bfqd->last_completed_rq_bfqq &&
1940 		    !bfq_bfqq_has_short_ttime(bfqq) &&
1941 		    ktime_get_ns() - bfqd->last_completion <
1942 		    200 * NSEC_PER_USEC) {
1943 			if (bfqd->last_completed_rq_bfqq != bfqq &&
1944 			    bfqd->last_completed_rq_bfqq !=
1945 			    bfqq->waker_bfqq) {
1946 				/*
1947 				 * First synchronization detected with
1948 				 * a candidate waker queue, or with a
1949 				 * different candidate waker queue
1950 				 * from the current one.
1951 				 */
1952 				bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
1953 
1954 				/*
1955 				 * If the waker queue disappears, then
1956 				 * bfqq->waker_bfqq must be reset. To
1957 				 * this goal, we maintain in each
1958 				 * waker queue a list, woken_list, of
1959 				 * all the queues that reference the
1960 				 * waker queue through their
1961 				 * waker_bfqq pointer. When the waker
1962 				 * queue exits, the waker_bfqq pointer
1963 				 * of all the queues in the woken_list
1964 				 * is reset.
1965 				 *
1966 				 * In addition, if bfqq is already in
1967 				 * the woken_list of a waker queue,
1968 				 * then, before being inserted into
1969 				 * the woken_list of a new waker
1970 				 * queue, bfqq must be removed from
1971 				 * the woken_list of the old waker
1972 				 * queue.
1973 				 */
1974 				if (!hlist_unhashed(&bfqq->woken_list_node))
1975 					hlist_del_init(&bfqq->woken_list_node);
1976 				hlist_add_head(&bfqq->woken_list_node,
1977 				    &bfqd->last_completed_rq_bfqq->woken_list);
1978 
1979 				bfq_clear_bfqq_has_waker(bfqq);
1980 			} else if (bfqd->last_completed_rq_bfqq ==
1981 				   bfqq->waker_bfqq &&
1982 				   !bfq_bfqq_has_waker(bfqq)) {
1983 				/*
1984 				 * synchronization with waker_bfqq
1985 				 * seen for the second time
1986 				 */
1987 				bfq_mark_bfqq_has_waker(bfqq);
1988 			}
1989 		}
1990 
1991 		/*
1992 		 * Periodically reset inject limit, to make sure that
1993 		 * the latter eventually drops in case workload
1994 		 * changes, see step (3) in the comments on
1995 		 * bfq_update_inject_limit().
1996 		 */
1997 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1998 					     msecs_to_jiffies(1000)))
1999 			bfq_reset_inject_limit(bfqd, bfqq);
2000 
2001 		/*
2002 		 * The following conditions must hold to setup a new
2003 		 * sampling of total service time, and then a new
2004 		 * update of the inject limit:
2005 		 * - bfqq is in service, because the total service
2006 		 *   time is evaluated only for the I/O requests of
2007 		 *   the queues in service;
2008 		 * - this is the right occasion to compute or to
2009 		 *   lower the baseline total service time, because
2010 		 *   there are actually no requests in the drive,
2011 		 *   or
2012 		 *   the baseline total service time is available, and
2013 		 *   this is the right occasion to compute the other
2014 		 *   quantity needed to update the inject limit, i.e.,
2015 		 *   the total service time caused by the amount of
2016 		 *   injection allowed by the current value of the
2017 		 *   limit. It is the right occasion because injection
2018 		 *   has actually been performed during the service
2019 		 *   hole, and there are still in-flight requests,
2020 		 *   which are very likely to be exactly the injected
2021 		 *   requests, or part of them;
2022 		 * - the minimum interval for sampling the total
2023 		 *   service time and updating the inject limit has
2024 		 *   elapsed.
2025 		 */
2026 		if (bfqq == bfqd->in_service_queue &&
2027 		    (bfqd->rq_in_driver == 0 ||
2028 		     (bfqq->last_serv_time_ns > 0 &&
2029 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2030 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2031 					      msecs_to_jiffies(10))) {
2032 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2033 			/*
2034 			 * Start the state machine for measuring the
2035 			 * total service time of rq: setting
2036 			 * wait_dispatch will cause bfqd->waited_rq to
2037 			 * be set when rq will be dispatched.
2038 			 */
2039 			bfqd->wait_dispatch = true;
2040 			/*
2041 			 * If there is no I/O in service in the drive,
2042 			 * then possible injection occurred before the
2043 			 * arrival of rq will not affect the total
2044 			 * service time of rq. So the injection limit
2045 			 * must not be updated as a function of such
2046 			 * total service time, unless new injection
2047 			 * occurs before rq is completed. To have the
2048 			 * injection limit updated only in the latter
2049 			 * case, reset rqs_injected here (rqs_injected
2050 			 * will be set in case injection is performed
2051 			 * on bfqq before rq is completed).
2052 			 */
2053 			if (bfqd->rq_in_driver == 0)
2054 				bfqd->rqs_injected = false;
2055 		}
2056 	}
2057 
2058 	elv_rb_add(&bfqq->sort_list, rq);
2059 
2060 	/*
2061 	 * Check if this request is a better next-serve candidate.
2062 	 */
2063 	prev = bfqq->next_rq;
2064 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2065 	bfqq->next_rq = next_rq;
2066 
2067 	/*
2068 	 * Adjust priority tree position, if next_rq changes.
2069 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2070 	 */
2071 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2072 		bfq_pos_tree_add_move(bfqd, bfqq);
2073 
2074 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2075 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2076 						 rq, &interactive);
2077 	else {
2078 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2079 		    time_is_before_jiffies(
2080 				bfqq->last_wr_start_finish +
2081 				bfqd->bfq_wr_min_inter_arr_async)) {
2082 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2083 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2084 
2085 			bfqd->wr_busy_queues++;
2086 			bfqq->entity.prio_changed = 1;
2087 		}
2088 		if (prev != bfqq->next_rq)
2089 			bfq_updated_next_req(bfqd, bfqq);
2090 	}
2091 
2092 	/*
2093 	 * Assign jiffies to last_wr_start_finish in the following
2094 	 * cases:
2095 	 *
2096 	 * . if bfqq is not going to be weight-raised, because, for
2097 	 *   non weight-raised queues, last_wr_start_finish stores the
2098 	 *   arrival time of the last request; as of now, this piece
2099 	 *   of information is used only for deciding whether to
2100 	 *   weight-raise async queues
2101 	 *
2102 	 * . if bfqq is not weight-raised, because, if bfqq is now
2103 	 *   switching to weight-raised, then last_wr_start_finish
2104 	 *   stores the time when weight-raising starts
2105 	 *
2106 	 * . if bfqq is interactive, because, regardless of whether
2107 	 *   bfqq is currently weight-raised, the weight-raising
2108 	 *   period must start or restart (this case is considered
2109 	 *   separately because it is not detected by the above
2110 	 *   conditions, if bfqq is already weight-raised)
2111 	 *
2112 	 * last_wr_start_finish has to be updated also if bfqq is soft
2113 	 * real-time, because the weight-raising period is constantly
2114 	 * restarted on idle-to-busy transitions for these queues, but
2115 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2116 	 * needed.
2117 	 */
2118 	if (bfqd->low_latency &&
2119 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2120 		bfqq->last_wr_start_finish = jiffies;
2121 }
2122 
bfq_find_rq_fmerge(struct bfq_data * bfqd,struct bio * bio,struct request_queue * q)2123 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2124 					  struct bio *bio,
2125 					  struct request_queue *q)
2126 {
2127 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2128 
2129 
2130 	if (bfqq)
2131 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2132 
2133 	return NULL;
2134 }
2135 
get_sdist(sector_t last_pos,struct request * rq)2136 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2137 {
2138 	if (last_pos)
2139 		return abs(blk_rq_pos(rq) - last_pos);
2140 
2141 	return 0;
2142 }
2143 
2144 #if 0 /* Still not clear if we can do without next two functions */
2145 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2146 {
2147 	struct bfq_data *bfqd = q->elevator->elevator_data;
2148 
2149 	bfqd->rq_in_driver++;
2150 }
2151 
2152 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2153 {
2154 	struct bfq_data *bfqd = q->elevator->elevator_data;
2155 
2156 	bfqd->rq_in_driver--;
2157 }
2158 #endif
2159 
bfq_remove_request(struct request_queue * q,struct request * rq)2160 static void bfq_remove_request(struct request_queue *q,
2161 			       struct request *rq)
2162 {
2163 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2164 	struct bfq_data *bfqd = bfqq->bfqd;
2165 	const int sync = rq_is_sync(rq);
2166 
2167 	if (bfqq->next_rq == rq) {
2168 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2169 		bfq_updated_next_req(bfqd, bfqq);
2170 	}
2171 
2172 	if (rq->queuelist.prev != &rq->queuelist)
2173 		list_del_init(&rq->queuelist);
2174 	bfqq->queued[sync]--;
2175 	bfqd->queued--;
2176 	elv_rb_del(&bfqq->sort_list, rq);
2177 
2178 	elv_rqhash_del(q, rq);
2179 	if (q->last_merge == rq)
2180 		q->last_merge = NULL;
2181 
2182 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2183 		bfqq->next_rq = NULL;
2184 
2185 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2186 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2187 			/*
2188 			 * bfqq emptied. In normal operation, when
2189 			 * bfqq is empty, bfqq->entity.service and
2190 			 * bfqq->entity.budget must contain,
2191 			 * respectively, the service received and the
2192 			 * budget used last time bfqq emptied. These
2193 			 * facts do not hold in this case, as at least
2194 			 * this last removal occurred while bfqq is
2195 			 * not in service. To avoid inconsistencies,
2196 			 * reset both bfqq->entity.service and
2197 			 * bfqq->entity.budget, if bfqq has still a
2198 			 * process that may issue I/O requests to it.
2199 			 */
2200 			bfqq->entity.budget = bfqq->entity.service = 0;
2201 		}
2202 
2203 		/*
2204 		 * Remove queue from request-position tree as it is empty.
2205 		 */
2206 		if (bfqq->pos_root) {
2207 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2208 			bfqq->pos_root = NULL;
2209 		}
2210 	} else {
2211 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2212 		if (unlikely(!bfqd->nonrot_with_queueing))
2213 			bfq_pos_tree_add_move(bfqd, bfqq);
2214 	}
2215 
2216 	if (rq->cmd_flags & REQ_META)
2217 		bfqq->meta_pending--;
2218 
2219 }
2220 
bfq_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2221 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2222 		unsigned int nr_segs)
2223 {
2224 	struct bfq_data *bfqd = q->elevator->elevator_data;
2225 	struct request *free = NULL;
2226 	/*
2227 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2228 	 * store its return value for later use, to avoid nesting
2229 	 * queue_lock inside the bfqd->lock. We assume that the bic
2230 	 * returned by bfq_bic_lookup does not go away before
2231 	 * bfqd->lock is taken.
2232 	 */
2233 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2234 	bool ret;
2235 
2236 	spin_lock_irq(&bfqd->lock);
2237 
2238 	if (bic) {
2239 		/*
2240 		 * Make sure cgroup info is uptodate for current process before
2241 		 * considering the merge.
2242 		 */
2243 		bfq_bic_update_cgroup(bic, bio);
2244 
2245 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2246 	} else {
2247 		bfqd->bio_bfqq = NULL;
2248 	}
2249 	bfqd->bio_bic = bic;
2250 
2251 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2252 
2253 	if (free)
2254 		blk_mq_free_request(free);
2255 	spin_unlock_irq(&bfqd->lock);
2256 
2257 	return ret;
2258 }
2259 
bfq_request_merge(struct request_queue * q,struct request ** req,struct bio * bio)2260 static int bfq_request_merge(struct request_queue *q, struct request **req,
2261 			     struct bio *bio)
2262 {
2263 	struct bfq_data *bfqd = q->elevator->elevator_data;
2264 	struct request *__rq;
2265 
2266 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2267 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2268 		*req = __rq;
2269 
2270 		if (blk_discard_mergable(__rq))
2271 			return ELEVATOR_DISCARD_MERGE;
2272 		return ELEVATOR_FRONT_MERGE;
2273 	}
2274 
2275 	return ELEVATOR_NO_MERGE;
2276 }
2277 
bfq_request_merged(struct request_queue * q,struct request * req,enum elv_merge type)2278 static void bfq_request_merged(struct request_queue *q, struct request *req,
2279 			       enum elv_merge type)
2280 {
2281 	if (type == ELEVATOR_FRONT_MERGE &&
2282 	    rb_prev(&req->rb_node) &&
2283 	    blk_rq_pos(req) <
2284 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2285 				    struct request, rb_node))) {
2286 		struct bfq_queue *bfqq = RQ_BFQQ(req);
2287 		struct bfq_data *bfqd;
2288 		struct request *prev, *next_rq;
2289 
2290 		if (!bfqq)
2291 			return;
2292 
2293 		bfqd = bfqq->bfqd;
2294 
2295 		/* Reposition request in its sort_list */
2296 		elv_rb_del(&bfqq->sort_list, req);
2297 		elv_rb_add(&bfqq->sort_list, req);
2298 
2299 		/* Choose next request to be served for bfqq */
2300 		prev = bfqq->next_rq;
2301 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2302 					 bfqd->last_position);
2303 		bfqq->next_rq = next_rq;
2304 		/*
2305 		 * If next_rq changes, update both the queue's budget to
2306 		 * fit the new request and the queue's position in its
2307 		 * rq_pos_tree.
2308 		 */
2309 		if (prev != bfqq->next_rq) {
2310 			bfq_updated_next_req(bfqd, bfqq);
2311 			/*
2312 			 * See comments on bfq_pos_tree_add_move() for
2313 			 * the unlikely().
2314 			 */
2315 			if (unlikely(!bfqd->nonrot_with_queueing))
2316 				bfq_pos_tree_add_move(bfqd, bfqq);
2317 		}
2318 	}
2319 }
2320 
2321 /*
2322  * This function is called to notify the scheduler that the requests
2323  * rq and 'next' have been merged, with 'next' going away.  BFQ
2324  * exploits this hook to address the following issue: if 'next' has a
2325  * fifo_time lower that rq, then the fifo_time of rq must be set to
2326  * the value of 'next', to not forget the greater age of 'next'.
2327  *
2328  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2329  * on that rq is picked from the hash table q->elevator->hash, which,
2330  * in its turn, is filled only with I/O requests present in
2331  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2332  * the function that fills this hash table (elv_rqhash_add) is called
2333  * only by bfq_insert_request.
2334  */
bfq_requests_merged(struct request_queue * q,struct request * rq,struct request * next)2335 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2336 				struct request *next)
2337 {
2338 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
2339 		*next_bfqq = RQ_BFQQ(next);
2340 
2341 	if (!bfqq)
2342 		return;
2343 
2344 	/*
2345 	 * If next and rq belong to the same bfq_queue and next is older
2346 	 * than rq, then reposition rq in the fifo (by substituting next
2347 	 * with rq). Otherwise, if next and rq belong to different
2348 	 * bfq_queues, never reposition rq: in fact, we would have to
2349 	 * reposition it with respect to next's position in its own fifo,
2350 	 * which would most certainly be too expensive with respect to
2351 	 * the benefits.
2352 	 */
2353 	if (bfqq == next_bfqq &&
2354 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2355 	    next->fifo_time < rq->fifo_time) {
2356 		list_del_init(&rq->queuelist);
2357 		list_replace_init(&next->queuelist, &rq->queuelist);
2358 		rq->fifo_time = next->fifo_time;
2359 	}
2360 
2361 	if (bfqq->next_rq == next)
2362 		bfqq->next_rq = rq;
2363 
2364 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2365 }
2366 
2367 /* Must be called with bfqq != NULL */
bfq_bfqq_end_wr(struct bfq_queue * bfqq)2368 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2369 {
2370 	if (bfq_bfqq_busy(bfqq))
2371 		bfqq->bfqd->wr_busy_queues--;
2372 	bfqq->wr_coeff = 1;
2373 	bfqq->wr_cur_max_time = 0;
2374 	bfqq->last_wr_start_finish = jiffies;
2375 	/*
2376 	 * Trigger a weight change on the next invocation of
2377 	 * __bfq_entity_update_weight_prio.
2378 	 */
2379 	bfqq->entity.prio_changed = 1;
2380 }
2381 
bfq_end_wr_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)2382 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2383 			     struct bfq_group *bfqg)
2384 {
2385 	int i, j;
2386 
2387 	for (i = 0; i < 2; i++)
2388 		for (j = 0; j < IOPRIO_BE_NR; j++)
2389 			if (bfqg->async_bfqq[i][j])
2390 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2391 	if (bfqg->async_idle_bfqq)
2392 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2393 }
2394 
bfq_end_wr(struct bfq_data * bfqd)2395 static void bfq_end_wr(struct bfq_data *bfqd)
2396 {
2397 	struct bfq_queue *bfqq;
2398 
2399 	spin_lock_irq(&bfqd->lock);
2400 
2401 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2402 		bfq_bfqq_end_wr(bfqq);
2403 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2404 		bfq_bfqq_end_wr(bfqq);
2405 	bfq_end_wr_async(bfqd);
2406 
2407 	spin_unlock_irq(&bfqd->lock);
2408 }
2409 
bfq_io_struct_pos(void * io_struct,bool request)2410 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2411 {
2412 	if (request)
2413 		return blk_rq_pos(io_struct);
2414 	else
2415 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2416 }
2417 
bfq_rq_close_to_sector(void * io_struct,bool request,sector_t sector)2418 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2419 				  sector_t sector)
2420 {
2421 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2422 	       BFQQ_CLOSE_THR;
2423 }
2424 
bfqq_find_close(struct bfq_data * bfqd,struct bfq_queue * bfqq,sector_t sector)2425 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2426 					 struct bfq_queue *bfqq,
2427 					 sector_t sector)
2428 {
2429 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2430 	struct rb_node *parent, *node;
2431 	struct bfq_queue *__bfqq;
2432 
2433 	if (RB_EMPTY_ROOT(root))
2434 		return NULL;
2435 
2436 	/*
2437 	 * First, if we find a request starting at the end of the last
2438 	 * request, choose it.
2439 	 */
2440 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2441 	if (__bfqq)
2442 		return __bfqq;
2443 
2444 	/*
2445 	 * If the exact sector wasn't found, the parent of the NULL leaf
2446 	 * will contain the closest sector (rq_pos_tree sorted by
2447 	 * next_request position).
2448 	 */
2449 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2450 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2451 		return __bfqq;
2452 
2453 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2454 		node = rb_next(&__bfqq->pos_node);
2455 	else
2456 		node = rb_prev(&__bfqq->pos_node);
2457 	if (!node)
2458 		return NULL;
2459 
2460 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2461 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2462 		return __bfqq;
2463 
2464 	return NULL;
2465 }
2466 
bfq_find_close_cooperator(struct bfq_data * bfqd,struct bfq_queue * cur_bfqq,sector_t sector)2467 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2468 						   struct bfq_queue *cur_bfqq,
2469 						   sector_t sector)
2470 {
2471 	struct bfq_queue *bfqq;
2472 
2473 	/*
2474 	 * We shall notice if some of the queues are cooperating,
2475 	 * e.g., working closely on the same area of the device. In
2476 	 * that case, we can group them together and: 1) don't waste
2477 	 * time idling, and 2) serve the union of their requests in
2478 	 * the best possible order for throughput.
2479 	 */
2480 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2481 	if (!bfqq || bfqq == cur_bfqq)
2482 		return NULL;
2483 
2484 	return bfqq;
2485 }
2486 
2487 static struct bfq_queue *
bfq_setup_merge(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2488 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2489 {
2490 	int process_refs, new_process_refs;
2491 	struct bfq_queue *__bfqq;
2492 
2493 	/*
2494 	 * If there are no process references on the new_bfqq, then it is
2495 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2496 	 * may have dropped their last reference (not just their last process
2497 	 * reference).
2498 	 */
2499 	if (!bfqq_process_refs(new_bfqq))
2500 		return NULL;
2501 
2502 	/* Avoid a circular list and skip interim queue merges. */
2503 	while ((__bfqq = new_bfqq->new_bfqq)) {
2504 		if (__bfqq == bfqq)
2505 			return NULL;
2506 		new_bfqq = __bfqq;
2507 	}
2508 
2509 	process_refs = bfqq_process_refs(bfqq);
2510 	new_process_refs = bfqq_process_refs(new_bfqq);
2511 	/*
2512 	 * If the process for the bfqq has gone away, there is no
2513 	 * sense in merging the queues.
2514 	 */
2515 	if (process_refs == 0 || new_process_refs == 0)
2516 		return NULL;
2517 
2518 	/*
2519 	 * Make sure merged queues belong to the same parent. Parents could
2520 	 * have changed since the time we decided the two queues are suitable
2521 	 * for merging.
2522 	 */
2523 	if (new_bfqq->entity.parent != bfqq->entity.parent)
2524 		return NULL;
2525 
2526 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2527 		new_bfqq->pid);
2528 
2529 	/*
2530 	 * Merging is just a redirection: the requests of the process
2531 	 * owning one of the two queues are redirected to the other queue.
2532 	 * The latter queue, in its turn, is set as shared if this is the
2533 	 * first time that the requests of some process are redirected to
2534 	 * it.
2535 	 *
2536 	 * We redirect bfqq to new_bfqq and not the opposite, because
2537 	 * we are in the context of the process owning bfqq, thus we
2538 	 * have the io_cq of this process. So we can immediately
2539 	 * configure this io_cq to redirect the requests of the
2540 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2541 	 * not available any more (new_bfqq->bic == NULL).
2542 	 *
2543 	 * Anyway, even in case new_bfqq coincides with the in-service
2544 	 * queue, redirecting requests the in-service queue is the
2545 	 * best option, as we feed the in-service queue with new
2546 	 * requests close to the last request served and, by doing so,
2547 	 * are likely to increase the throughput.
2548 	 */
2549 	bfqq->new_bfqq = new_bfqq;
2550 	/*
2551 	 * The above assignment schedules the following redirections:
2552 	 * each time some I/O for bfqq arrives, the process that
2553 	 * generated that I/O is disassociated from bfqq and
2554 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2555 	 * in advance, adding the number of processes that are
2556 	 * expected to be associated with new_bfqq as they happen to
2557 	 * issue I/O.
2558 	 */
2559 	new_bfqq->ref += process_refs;
2560 	return new_bfqq;
2561 }
2562 
bfq_may_be_close_cooperator(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2563 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2564 					struct bfq_queue *new_bfqq)
2565 {
2566 	if (bfq_too_late_for_merging(new_bfqq))
2567 		return false;
2568 
2569 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2570 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2571 		return false;
2572 
2573 	/*
2574 	 * If either of the queues has already been detected as seeky,
2575 	 * then merging it with the other queue is unlikely to lead to
2576 	 * sequential I/O.
2577 	 */
2578 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2579 		return false;
2580 
2581 	/*
2582 	 * Interleaved I/O is known to be done by (some) applications
2583 	 * only for reads, so it does not make sense to merge async
2584 	 * queues.
2585 	 */
2586 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2587 		return false;
2588 
2589 	return true;
2590 }
2591 
2592 /*
2593  * Attempt to schedule a merge of bfqq with the currently in-service
2594  * queue or with a close queue among the scheduled queues.  Return
2595  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2596  * structure otherwise.
2597  *
2598  * The OOM queue is not allowed to participate to cooperation: in fact, since
2599  * the requests temporarily redirected to the OOM queue could be redirected
2600  * again to dedicated queues at any time, the state needed to correctly
2601  * handle merging with the OOM queue would be quite complex and expensive
2602  * to maintain. Besides, in such a critical condition as an out of memory,
2603  * the benefits of queue merging may be little relevant, or even negligible.
2604  *
2605  * WARNING: queue merging may impair fairness among non-weight raised
2606  * queues, for at least two reasons: 1) the original weight of a
2607  * merged queue may change during the merged state, 2) even being the
2608  * weight the same, a merged queue may be bloated with many more
2609  * requests than the ones produced by its originally-associated
2610  * process.
2611  */
2612 static struct bfq_queue *
bfq_setup_cooperator(struct bfq_data * bfqd,struct bfq_queue * bfqq,void * io_struct,bool request)2613 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2614 		     void *io_struct, bool request)
2615 {
2616 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2617 
2618 	/* if a merge has already been setup, then proceed with that first */
2619 	if (bfqq->new_bfqq)
2620 		return bfqq->new_bfqq;
2621 
2622 	/*
2623 	 * Do not perform queue merging if the device is non
2624 	 * rotational and performs internal queueing. In fact, such a
2625 	 * device reaches a high speed through internal parallelism
2626 	 * and pipelining. This means that, to reach a high
2627 	 * throughput, it must have many requests enqueued at the same
2628 	 * time. But, in this configuration, the internal scheduling
2629 	 * algorithm of the device does exactly the job of queue
2630 	 * merging: it reorders requests so as to obtain as much as
2631 	 * possible a sequential I/O pattern. As a consequence, with
2632 	 * the workload generated by processes doing interleaved I/O,
2633 	 * the throughput reached by the device is likely to be the
2634 	 * same, with and without queue merging.
2635 	 *
2636 	 * Disabling merging also provides a remarkable benefit in
2637 	 * terms of throughput. Merging tends to make many workloads
2638 	 * artificially more uneven, because of shared queues
2639 	 * remaining non empty for incomparably more time than
2640 	 * non-merged queues. This may accentuate workload
2641 	 * asymmetries. For example, if one of the queues in a set of
2642 	 * merged queues has a higher weight than a normal queue, then
2643 	 * the shared queue may inherit such a high weight and, by
2644 	 * staying almost always active, may force BFQ to perform I/O
2645 	 * plugging most of the time. This evidently makes it harder
2646 	 * for BFQ to let the device reach a high throughput.
2647 	 *
2648 	 * Finally, the likely() macro below is not used because one
2649 	 * of the two branches is more likely than the other, but to
2650 	 * have the code path after the following if() executed as
2651 	 * fast as possible for the case of a non rotational device
2652 	 * with queueing. We want it because this is the fastest kind
2653 	 * of device. On the opposite end, the likely() may lengthen
2654 	 * the execution time of BFQ for the case of slower devices
2655 	 * (rotational or at least without queueing). But in this case
2656 	 * the execution time of BFQ matters very little, if not at
2657 	 * all.
2658 	 */
2659 	if (likely(bfqd->nonrot_with_queueing))
2660 		return NULL;
2661 
2662 	/*
2663 	 * Prevent bfqq from being merged if it has been created too
2664 	 * long ago. The idea is that true cooperating processes, and
2665 	 * thus their associated bfq_queues, are supposed to be
2666 	 * created shortly after each other. This is the case, e.g.,
2667 	 * for KVM/QEMU and dump I/O threads. Basing on this
2668 	 * assumption, the following filtering greatly reduces the
2669 	 * probability that two non-cooperating processes, which just
2670 	 * happen to do close I/O for some short time interval, have
2671 	 * their queues merged by mistake.
2672 	 */
2673 	if (bfq_too_late_for_merging(bfqq))
2674 		return NULL;
2675 
2676 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2677 		return NULL;
2678 
2679 	/* If there is only one backlogged queue, don't search. */
2680 	if (bfq_tot_busy_queues(bfqd) == 1)
2681 		return NULL;
2682 
2683 	in_service_bfqq = bfqd->in_service_queue;
2684 
2685 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2686 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2687 	    bfq_rq_close_to_sector(io_struct, request,
2688 				   bfqd->in_serv_last_pos) &&
2689 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2690 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2691 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2692 		if (new_bfqq)
2693 			return new_bfqq;
2694 	}
2695 	/*
2696 	 * Check whether there is a cooperator among currently scheduled
2697 	 * queues. The only thing we need is that the bio/request is not
2698 	 * NULL, as we need it to establish whether a cooperator exists.
2699 	 */
2700 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2701 			bfq_io_struct_pos(io_struct, request));
2702 
2703 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2704 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2705 		return bfq_setup_merge(bfqq, new_bfqq);
2706 
2707 	return NULL;
2708 }
2709 
bfq_bfqq_save_state(struct bfq_queue * bfqq)2710 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2711 {
2712 	struct bfq_io_cq *bic = bfqq->bic;
2713 
2714 	/*
2715 	 * If !bfqq->bic, the queue is already shared or its requests
2716 	 * have already been redirected to a shared queue; both idle window
2717 	 * and weight raising state have already been saved. Do nothing.
2718 	 */
2719 	if (!bic)
2720 		return;
2721 
2722 	bic->saved_weight = bfqq->entity.orig_weight;
2723 	bic->saved_ttime = bfqq->ttime;
2724 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2725 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2726 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2727 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2728 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2729 		     !bfq_bfqq_in_large_burst(bfqq) &&
2730 		     bfqq->bfqd->low_latency)) {
2731 		/*
2732 		 * bfqq being merged right after being created: bfqq
2733 		 * would have deserved interactive weight raising, but
2734 		 * did not make it to be set in a weight-raised state,
2735 		 * because of this early merge.	Store directly the
2736 		 * weight-raising state that would have been assigned
2737 		 * to bfqq, so that to avoid that bfqq unjustly fails
2738 		 * to enjoy weight raising if split soon.
2739 		 */
2740 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2741 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2742 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2743 		bic->saved_last_wr_start_finish = jiffies;
2744 	} else {
2745 		bic->saved_wr_coeff = bfqq->wr_coeff;
2746 		bic->saved_wr_start_at_switch_to_srt =
2747 			bfqq->wr_start_at_switch_to_srt;
2748 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2749 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2750 	}
2751 }
2752 
bfq_release_process_ref(struct bfq_data * bfqd,struct bfq_queue * bfqq)2753 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2754 {
2755 	/*
2756 	 * To prevent bfqq's service guarantees from being violated,
2757 	 * bfqq may be left busy, i.e., queued for service, even if
2758 	 * empty (see comments in __bfq_bfqq_expire() for
2759 	 * details). But, if no process will send requests to bfqq any
2760 	 * longer, then there is no point in keeping bfqq queued for
2761 	 * service. In addition, keeping bfqq queued for service, but
2762 	 * with no process ref any longer, may have caused bfqq to be
2763 	 * freed when dequeued from service. But this is assumed to
2764 	 * never happen.
2765 	 */
2766 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2767 	    bfqq != bfqd->in_service_queue)
2768 		bfq_del_bfqq_busy(bfqd, bfqq, false);
2769 
2770 	bfq_put_queue(bfqq);
2771 }
2772 
2773 static void
bfq_merge_bfqqs(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2774 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2775 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2776 {
2777 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2778 		(unsigned long)new_bfqq->pid);
2779 	/* Save weight raising and idle window of the merged queues */
2780 	bfq_bfqq_save_state(bfqq);
2781 	bfq_bfqq_save_state(new_bfqq);
2782 	if (bfq_bfqq_IO_bound(bfqq))
2783 		bfq_mark_bfqq_IO_bound(new_bfqq);
2784 	bfq_clear_bfqq_IO_bound(bfqq);
2785 
2786 	/*
2787 	 * If bfqq is weight-raised, then let new_bfqq inherit
2788 	 * weight-raising. To reduce false positives, neglect the case
2789 	 * where bfqq has just been created, but has not yet made it
2790 	 * to be weight-raised (which may happen because EQM may merge
2791 	 * bfqq even before bfq_add_request is executed for the first
2792 	 * time for bfqq). Handling this case would however be very
2793 	 * easy, thanks to the flag just_created.
2794 	 */
2795 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2796 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2797 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2798 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2799 		new_bfqq->wr_start_at_switch_to_srt =
2800 			bfqq->wr_start_at_switch_to_srt;
2801 		if (bfq_bfqq_busy(new_bfqq))
2802 			bfqd->wr_busy_queues++;
2803 		new_bfqq->entity.prio_changed = 1;
2804 	}
2805 
2806 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2807 		bfqq->wr_coeff = 1;
2808 		bfqq->entity.prio_changed = 1;
2809 		if (bfq_bfqq_busy(bfqq))
2810 			bfqd->wr_busy_queues--;
2811 	}
2812 
2813 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2814 		     bfqd->wr_busy_queues);
2815 
2816 	/*
2817 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2818 	 */
2819 	bic_set_bfqq(bic, new_bfqq, true);
2820 	bfq_mark_bfqq_coop(new_bfqq);
2821 	/*
2822 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2823 	 * set new_bfqq->bic to NULL. bfqq either:
2824 	 * - does not belong to any bic any more, and hence bfqq->bic must
2825 	 *   be set to NULL, or
2826 	 * - is a queue whose owning bics have already been redirected to a
2827 	 *   different queue, hence the queue is destined to not belong to
2828 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2829 	 *   assignment causes no harm).
2830 	 */
2831 	new_bfqq->bic = NULL;
2832 	/*
2833 	 * If the queue is shared, the pid is the pid of one of the associated
2834 	 * processes. Which pid depends on the exact sequence of merge events
2835 	 * the queue underwent. So printing such a pid is useless and confusing
2836 	 * because it reports a random pid between those of the associated
2837 	 * processes.
2838 	 * We mark such a queue with a pid -1, and then print SHARED instead of
2839 	 * a pid in logging messages.
2840 	 */
2841 	new_bfqq->pid = -1;
2842 	bfqq->bic = NULL;
2843 	bfq_release_process_ref(bfqd, bfqq);
2844 }
2845 
bfq_allow_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio)2846 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2847 				struct bio *bio)
2848 {
2849 	struct bfq_data *bfqd = q->elevator->elevator_data;
2850 	bool is_sync = op_is_sync(bio->bi_opf);
2851 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2852 
2853 	/*
2854 	 * Disallow merge of a sync bio into an async request.
2855 	 */
2856 	if (is_sync && !rq_is_sync(rq))
2857 		return false;
2858 
2859 	/*
2860 	 * Lookup the bfqq that this bio will be queued with. Allow
2861 	 * merge only if rq is queued there.
2862 	 */
2863 	if (!bfqq)
2864 		return false;
2865 
2866 	/*
2867 	 * We take advantage of this function to perform an early merge
2868 	 * of the queues of possible cooperating processes.
2869 	 */
2870 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2871 	if (new_bfqq) {
2872 		/*
2873 		 * bic still points to bfqq, then it has not yet been
2874 		 * redirected to some other bfq_queue, and a queue
2875 		 * merge between bfqq and new_bfqq can be safely
2876 		 * fulfilled, i.e., bic can be redirected to new_bfqq
2877 		 * and bfqq can be put.
2878 		 */
2879 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2880 				new_bfqq);
2881 		/*
2882 		 * If we get here, bio will be queued into new_queue,
2883 		 * so use new_bfqq to decide whether bio and rq can be
2884 		 * merged.
2885 		 */
2886 		bfqq = new_bfqq;
2887 
2888 		/*
2889 		 * Change also bqfd->bio_bfqq, as
2890 		 * bfqd->bio_bic now points to new_bfqq, and
2891 		 * this function may be invoked again (and then may
2892 		 * use again bqfd->bio_bfqq).
2893 		 */
2894 		bfqd->bio_bfqq = bfqq;
2895 	}
2896 
2897 	return bfqq == RQ_BFQQ(rq);
2898 }
2899 
2900 /*
2901  * Set the maximum time for the in-service queue to consume its
2902  * budget. This prevents seeky processes from lowering the throughput.
2903  * In practice, a time-slice service scheme is used with seeky
2904  * processes.
2905  */
bfq_set_budget_timeout(struct bfq_data * bfqd,struct bfq_queue * bfqq)2906 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2907 				   struct bfq_queue *bfqq)
2908 {
2909 	unsigned int timeout_coeff;
2910 
2911 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2912 		timeout_coeff = 1;
2913 	else
2914 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2915 
2916 	bfqd->last_budget_start = ktime_get();
2917 
2918 	bfqq->budget_timeout = jiffies +
2919 		bfqd->bfq_timeout * timeout_coeff;
2920 }
2921 
__bfq_set_in_service_queue(struct bfq_data * bfqd,struct bfq_queue * bfqq)2922 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2923 				       struct bfq_queue *bfqq)
2924 {
2925 	if (bfqq) {
2926 		bfq_clear_bfqq_fifo_expire(bfqq);
2927 
2928 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2929 
2930 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2931 		    bfqq->wr_coeff > 1 &&
2932 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2933 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2934 			/*
2935 			 * For soft real-time queues, move the start
2936 			 * of the weight-raising period forward by the
2937 			 * time the queue has not received any
2938 			 * service. Otherwise, a relatively long
2939 			 * service delay is likely to cause the
2940 			 * weight-raising period of the queue to end,
2941 			 * because of the short duration of the
2942 			 * weight-raising period of a soft real-time
2943 			 * queue.  It is worth noting that this move
2944 			 * is not so dangerous for the other queues,
2945 			 * because soft real-time queues are not
2946 			 * greedy.
2947 			 *
2948 			 * To not add a further variable, we use the
2949 			 * overloaded field budget_timeout to
2950 			 * determine for how long the queue has not
2951 			 * received service, i.e., how much time has
2952 			 * elapsed since the queue expired. However,
2953 			 * this is a little imprecise, because
2954 			 * budget_timeout is set to jiffies if bfqq
2955 			 * not only expires, but also remains with no
2956 			 * request.
2957 			 */
2958 			if (time_after(bfqq->budget_timeout,
2959 				       bfqq->last_wr_start_finish))
2960 				bfqq->last_wr_start_finish +=
2961 					jiffies - bfqq->budget_timeout;
2962 			else
2963 				bfqq->last_wr_start_finish = jiffies;
2964 		}
2965 
2966 		bfq_set_budget_timeout(bfqd, bfqq);
2967 		bfq_log_bfqq(bfqd, bfqq,
2968 			     "set_in_service_queue, cur-budget = %d",
2969 			     bfqq->entity.budget);
2970 	}
2971 
2972 	bfqd->in_service_queue = bfqq;
2973 	bfqd->in_serv_last_pos = 0;
2974 }
2975 
2976 /*
2977  * Get and set a new queue for service.
2978  */
bfq_set_in_service_queue(struct bfq_data * bfqd)2979 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2980 {
2981 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2982 
2983 	__bfq_set_in_service_queue(bfqd, bfqq);
2984 	return bfqq;
2985 }
2986 
bfq_arm_slice_timer(struct bfq_data * bfqd)2987 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2988 {
2989 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2990 	u32 sl;
2991 
2992 	bfq_mark_bfqq_wait_request(bfqq);
2993 
2994 	/*
2995 	 * We don't want to idle for seeks, but we do want to allow
2996 	 * fair distribution of slice time for a process doing back-to-back
2997 	 * seeks. So allow a little bit of time for him to submit a new rq.
2998 	 */
2999 	sl = bfqd->bfq_slice_idle;
3000 	/*
3001 	 * Unless the queue is being weight-raised or the scenario is
3002 	 * asymmetric, grant only minimum idle time if the queue
3003 	 * is seeky. A long idling is preserved for a weight-raised
3004 	 * queue, or, more in general, in an asymmetric scenario,
3005 	 * because a long idling is needed for guaranteeing to a queue
3006 	 * its reserved share of the throughput (in particular, it is
3007 	 * needed if the queue has a higher weight than some other
3008 	 * queue).
3009 	 */
3010 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3011 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3012 		sl = min_t(u64, sl, BFQ_MIN_TT);
3013 	else if (bfqq->wr_coeff > 1)
3014 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3015 
3016 	bfqd->last_idling_start = ktime_get();
3017 	bfqd->last_idling_start_jiffies = jiffies;
3018 
3019 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3020 		      HRTIMER_MODE_REL);
3021 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3022 }
3023 
3024 /*
3025  * In autotuning mode, max_budget is dynamically recomputed as the
3026  * amount of sectors transferred in timeout at the estimated peak
3027  * rate. This enables BFQ to utilize a full timeslice with a full
3028  * budget, even if the in-service queue is served at peak rate. And
3029  * this maximises throughput with sequential workloads.
3030  */
bfq_calc_max_budget(struct bfq_data * bfqd)3031 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3032 {
3033 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3034 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3035 }
3036 
3037 /*
3038  * Update parameters related to throughput and responsiveness, as a
3039  * function of the estimated peak rate. See comments on
3040  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3041  */
update_thr_responsiveness_params(struct bfq_data * bfqd)3042 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3043 {
3044 	if (bfqd->bfq_user_max_budget == 0) {
3045 		bfqd->bfq_max_budget =
3046 			bfq_calc_max_budget(bfqd);
3047 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3048 	}
3049 }
3050 
bfq_reset_rate_computation(struct bfq_data * bfqd,struct request * rq)3051 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3052 				       struct request *rq)
3053 {
3054 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3055 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3056 		bfqd->peak_rate_samples = 1;
3057 		bfqd->sequential_samples = 0;
3058 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3059 			blk_rq_sectors(rq);
3060 	} else /* no new rq dispatched, just reset the number of samples */
3061 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3062 
3063 	bfq_log(bfqd,
3064 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3065 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3066 		bfqd->tot_sectors_dispatched);
3067 }
3068 
bfq_update_rate_reset(struct bfq_data * bfqd,struct request * rq)3069 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3070 {
3071 	u32 rate, weight, divisor;
3072 
3073 	/*
3074 	 * For the convergence property to hold (see comments on
3075 	 * bfq_update_peak_rate()) and for the assessment to be
3076 	 * reliable, a minimum number of samples must be present, and
3077 	 * a minimum amount of time must have elapsed. If not so, do
3078 	 * not compute new rate. Just reset parameters, to get ready
3079 	 * for a new evaluation attempt.
3080 	 */
3081 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3082 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3083 		goto reset_computation;
3084 
3085 	/*
3086 	 * If a new request completion has occurred after last
3087 	 * dispatch, then, to approximate the rate at which requests
3088 	 * have been served by the device, it is more precise to
3089 	 * extend the observation interval to the last completion.
3090 	 */
3091 	bfqd->delta_from_first =
3092 		max_t(u64, bfqd->delta_from_first,
3093 		      bfqd->last_completion - bfqd->first_dispatch);
3094 
3095 	/*
3096 	 * Rate computed in sects/usec, and not sects/nsec, for
3097 	 * precision issues.
3098 	 */
3099 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3100 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3101 
3102 	/*
3103 	 * Peak rate not updated if:
3104 	 * - the percentage of sequential dispatches is below 3/4 of the
3105 	 *   total, and rate is below the current estimated peak rate
3106 	 * - rate is unreasonably high (> 20M sectors/sec)
3107 	 */
3108 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3109 	     rate <= bfqd->peak_rate) ||
3110 		rate > 20<<BFQ_RATE_SHIFT)
3111 		goto reset_computation;
3112 
3113 	/*
3114 	 * We have to update the peak rate, at last! To this purpose,
3115 	 * we use a low-pass filter. We compute the smoothing constant
3116 	 * of the filter as a function of the 'weight' of the new
3117 	 * measured rate.
3118 	 *
3119 	 * As can be seen in next formulas, we define this weight as a
3120 	 * quantity proportional to how sequential the workload is,
3121 	 * and to how long the observation time interval is.
3122 	 *
3123 	 * The weight runs from 0 to 8. The maximum value of the
3124 	 * weight, 8, yields the minimum value for the smoothing
3125 	 * constant. At this minimum value for the smoothing constant,
3126 	 * the measured rate contributes for half of the next value of
3127 	 * the estimated peak rate.
3128 	 *
3129 	 * So, the first step is to compute the weight as a function
3130 	 * of how sequential the workload is. Note that the weight
3131 	 * cannot reach 9, because bfqd->sequential_samples cannot
3132 	 * become equal to bfqd->peak_rate_samples, which, in its
3133 	 * turn, holds true because bfqd->sequential_samples is not
3134 	 * incremented for the first sample.
3135 	 */
3136 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3137 
3138 	/*
3139 	 * Second step: further refine the weight as a function of the
3140 	 * duration of the observation interval.
3141 	 */
3142 	weight = min_t(u32, 8,
3143 		       div_u64(weight * bfqd->delta_from_first,
3144 			       BFQ_RATE_REF_INTERVAL));
3145 
3146 	/*
3147 	 * Divisor ranging from 10, for minimum weight, to 2, for
3148 	 * maximum weight.
3149 	 */
3150 	divisor = 10 - weight;
3151 
3152 	/*
3153 	 * Finally, update peak rate:
3154 	 *
3155 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3156 	 */
3157 	bfqd->peak_rate *= divisor-1;
3158 	bfqd->peak_rate /= divisor;
3159 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3160 
3161 	bfqd->peak_rate += rate;
3162 
3163 	/*
3164 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3165 	 * the minimum representable values reported in the comments
3166 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3167 	 * divisions by zero where bfqd->peak_rate is used as a
3168 	 * divisor.
3169 	 */
3170 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3171 
3172 	update_thr_responsiveness_params(bfqd);
3173 
3174 reset_computation:
3175 	bfq_reset_rate_computation(bfqd, rq);
3176 }
3177 
3178 /*
3179  * Update the read/write peak rate (the main quantity used for
3180  * auto-tuning, see update_thr_responsiveness_params()).
3181  *
3182  * It is not trivial to estimate the peak rate (correctly): because of
3183  * the presence of sw and hw queues between the scheduler and the
3184  * device components that finally serve I/O requests, it is hard to
3185  * say exactly when a given dispatched request is served inside the
3186  * device, and for how long. As a consequence, it is hard to know
3187  * precisely at what rate a given set of requests is actually served
3188  * by the device.
3189  *
3190  * On the opposite end, the dispatch time of any request is trivially
3191  * available, and, from this piece of information, the "dispatch rate"
3192  * of requests can be immediately computed. So, the idea in the next
3193  * function is to use what is known, namely request dispatch times
3194  * (plus, when useful, request completion times), to estimate what is
3195  * unknown, namely in-device request service rate.
3196  *
3197  * The main issue is that, because of the above facts, the rate at
3198  * which a certain set of requests is dispatched over a certain time
3199  * interval can vary greatly with respect to the rate at which the
3200  * same requests are then served. But, since the size of any
3201  * intermediate queue is limited, and the service scheme is lossless
3202  * (no request is silently dropped), the following obvious convergence
3203  * property holds: the number of requests dispatched MUST become
3204  * closer and closer to the number of requests completed as the
3205  * observation interval grows. This is the key property used in
3206  * the next function to estimate the peak service rate as a function
3207  * of the observed dispatch rate. The function assumes to be invoked
3208  * on every request dispatch.
3209  */
bfq_update_peak_rate(struct bfq_data * bfqd,struct request * rq)3210 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3211 {
3212 	u64 now_ns = ktime_get_ns();
3213 
3214 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3215 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3216 			bfqd->peak_rate_samples);
3217 		bfq_reset_rate_computation(bfqd, rq);
3218 		goto update_last_values; /* will add one sample */
3219 	}
3220 
3221 	/*
3222 	 * Device idle for very long: the observation interval lasting
3223 	 * up to this dispatch cannot be a valid observation interval
3224 	 * for computing a new peak rate (similarly to the late-
3225 	 * completion event in bfq_completed_request()). Go to
3226 	 * update_rate_and_reset to have the following three steps
3227 	 * taken:
3228 	 * - close the observation interval at the last (previous)
3229 	 *   request dispatch or completion
3230 	 * - compute rate, if possible, for that observation interval
3231 	 * - start a new observation interval with this dispatch
3232 	 */
3233 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3234 	    bfqd->rq_in_driver == 0)
3235 		goto update_rate_and_reset;
3236 
3237 	/* Update sampling information */
3238 	bfqd->peak_rate_samples++;
3239 
3240 	if ((bfqd->rq_in_driver > 0 ||
3241 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3242 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3243 		bfqd->sequential_samples++;
3244 
3245 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3246 
3247 	/* Reset max observed rq size every 32 dispatches */
3248 	if (likely(bfqd->peak_rate_samples % 32))
3249 		bfqd->last_rq_max_size =
3250 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3251 	else
3252 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3253 
3254 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3255 
3256 	/* Target observation interval not yet reached, go on sampling */
3257 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3258 		goto update_last_values;
3259 
3260 update_rate_and_reset:
3261 	bfq_update_rate_reset(bfqd, rq);
3262 update_last_values:
3263 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3264 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3265 		bfqd->in_serv_last_pos = bfqd->last_position;
3266 	bfqd->last_dispatch = now_ns;
3267 }
3268 
3269 /*
3270  * Remove request from internal lists.
3271  */
bfq_dispatch_remove(struct request_queue * q,struct request * rq)3272 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3273 {
3274 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3275 
3276 	/*
3277 	 * For consistency, the next instruction should have been
3278 	 * executed after removing the request from the queue and
3279 	 * dispatching it.  We execute instead this instruction before
3280 	 * bfq_remove_request() (and hence introduce a temporary
3281 	 * inconsistency), for efficiency.  In fact, should this
3282 	 * dispatch occur for a non in-service bfqq, this anticipated
3283 	 * increment prevents two counters related to bfqq->dispatched
3284 	 * from risking to be, first, uselessly decremented, and then
3285 	 * incremented again when the (new) value of bfqq->dispatched
3286 	 * happens to be taken into account.
3287 	 */
3288 	bfqq->dispatched++;
3289 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3290 
3291 	bfq_remove_request(q, rq);
3292 }
3293 
3294 /*
3295  * There is a case where idling does not have to be performed for
3296  * throughput concerns, but to preserve the throughput share of
3297  * the process associated with bfqq.
3298  *
3299  * To introduce this case, we can note that allowing the drive
3300  * to enqueue more than one request at a time, and hence
3301  * delegating de facto final scheduling decisions to the
3302  * drive's internal scheduler, entails loss of control on the
3303  * actual request service order. In particular, the critical
3304  * situation is when requests from different processes happen
3305  * to be present, at the same time, in the internal queue(s)
3306  * of the drive. In such a situation, the drive, by deciding
3307  * the service order of the internally-queued requests, does
3308  * determine also the actual throughput distribution among
3309  * these processes. But the drive typically has no notion or
3310  * concern about per-process throughput distribution, and
3311  * makes its decisions only on a per-request basis. Therefore,
3312  * the service distribution enforced by the drive's internal
3313  * scheduler is likely to coincide with the desired throughput
3314  * distribution only in a completely symmetric, or favorably
3315  * skewed scenario where:
3316  * (i-a) each of these processes must get the same throughput as
3317  *	 the others,
3318  * (i-b) in case (i-a) does not hold, it holds that the process
3319  *       associated with bfqq must receive a lower or equal
3320  *	 throughput than any of the other processes;
3321  * (ii)  the I/O of each process has the same properties, in
3322  *       terms of locality (sequential or random), direction
3323  *       (reads or writes), request sizes, greediness
3324  *       (from I/O-bound to sporadic), and so on;
3325 
3326  * In fact, in such a scenario, the drive tends to treat the requests
3327  * of each process in about the same way as the requests of the
3328  * others, and thus to provide each of these processes with about the
3329  * same throughput.  This is exactly the desired throughput
3330  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3331  * even more convenient distribution for (the process associated with)
3332  * bfqq.
3333  *
3334  * In contrast, in any asymmetric or unfavorable scenario, device
3335  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3336  * that bfqq receives its assigned fraction of the device throughput
3337  * (see [1] for details).
3338  *
3339  * The problem is that idling may significantly reduce throughput with
3340  * certain combinations of types of I/O and devices. An important
3341  * example is sync random I/O on flash storage with command
3342  * queueing. So, unless bfqq falls in cases where idling also boosts
3343  * throughput, it is important to check conditions (i-a), i(-b) and
3344  * (ii) accurately, so as to avoid idling when not strictly needed for
3345  * service guarantees.
3346  *
3347  * Unfortunately, it is extremely difficult to thoroughly check
3348  * condition (ii). And, in case there are active groups, it becomes
3349  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3350  * if there are active groups, then, for conditions (i-a) or (i-b) to
3351  * become false 'indirectly', it is enough that an active group
3352  * contains more active processes or sub-groups than some other active
3353  * group. More precisely, for conditions (i-a) or (i-b) to become
3354  * false because of such a group, it is not even necessary that the
3355  * group is (still) active: it is sufficient that, even if the group
3356  * has become inactive, some of its descendant processes still have
3357  * some request already dispatched but still waiting for
3358  * completion. In fact, requests have still to be guaranteed their
3359  * share of the throughput even after being dispatched. In this
3360  * respect, it is easy to show that, if a group frequently becomes
3361  * inactive while still having in-flight requests, and if, when this
3362  * happens, the group is not considered in the calculation of whether
3363  * the scenario is asymmetric, then the group may fail to be
3364  * guaranteed its fair share of the throughput (basically because
3365  * idling may not be performed for the descendant processes of the
3366  * group, but it had to be).  We address this issue with the following
3367  * bi-modal behavior, implemented in the function
3368  * bfq_asymmetric_scenario().
3369  *
3370  * If there are groups with requests waiting for completion
3371  * (as commented above, some of these groups may even be
3372  * already inactive), then the scenario is tagged as
3373  * asymmetric, conservatively, without checking any of the
3374  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3375  * This behavior matches also the fact that groups are created
3376  * exactly if controlling I/O is a primary concern (to
3377  * preserve bandwidth and latency guarantees).
3378  *
3379  * On the opposite end, if there are no groups with requests waiting
3380  * for completion, then only conditions (i-a) and (i-b) are actually
3381  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3382  * idling is not performed, regardless of whether condition (ii)
3383  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3384  * hold, then idling is allowed, and the device tends to be prevented
3385  * from queueing many requests, possibly of several processes. Since
3386  * there are no groups with requests waiting for completion, then, to
3387  * control conditions (i-a) and (i-b) it is enough to check just
3388  * whether all the queues with requests waiting for completion also
3389  * have the same weight.
3390  *
3391  * Not checking condition (ii) evidently exposes bfqq to the
3392  * risk of getting less throughput than its fair share.
3393  * However, for queues with the same weight, a further
3394  * mechanism, preemption, mitigates or even eliminates this
3395  * problem. And it does so without consequences on overall
3396  * throughput. This mechanism and its benefits are explained
3397  * in the next three paragraphs.
3398  *
3399  * Even if a queue, say Q, is expired when it remains idle, Q
3400  * can still preempt the new in-service queue if the next
3401  * request of Q arrives soon (see the comments on
3402  * bfq_bfqq_update_budg_for_activation). If all queues and
3403  * groups have the same weight, this form of preemption,
3404  * combined with the hole-recovery heuristic described in the
3405  * comments on function bfq_bfqq_update_budg_for_activation,
3406  * are enough to preserve a correct bandwidth distribution in
3407  * the mid term, even without idling. In fact, even if not
3408  * idling allows the internal queues of the device to contain
3409  * many requests, and thus to reorder requests, we can rather
3410  * safely assume that the internal scheduler still preserves a
3411  * minimum of mid-term fairness.
3412  *
3413  * More precisely, this preemption-based, idleless approach
3414  * provides fairness in terms of IOPS, and not sectors per
3415  * second. This can be seen with a simple example. Suppose
3416  * that there are two queues with the same weight, but that
3417  * the first queue receives requests of 8 sectors, while the
3418  * second queue receives requests of 1024 sectors. In
3419  * addition, suppose that each of the two queues contains at
3420  * most one request at a time, which implies that each queue
3421  * always remains idle after it is served. Finally, after
3422  * remaining idle, each queue receives very quickly a new
3423  * request. It follows that the two queues are served
3424  * alternatively, preempting each other if needed. This
3425  * implies that, although both queues have the same weight,
3426  * the queue with large requests receives a service that is
3427  * 1024/8 times as high as the service received by the other
3428  * queue.
3429  *
3430  * The motivation for using preemption instead of idling (for
3431  * queues with the same weight) is that, by not idling,
3432  * service guarantees are preserved (completely or at least in
3433  * part) without minimally sacrificing throughput. And, if
3434  * there is no active group, then the primary expectation for
3435  * this device is probably a high throughput.
3436  *
3437  * We are now left only with explaining the two sub-conditions in the
3438  * additional compound condition that is checked below for deciding
3439  * whether the scenario is asymmetric. To explain the first
3440  * sub-condition, we need to add that the function
3441  * bfq_asymmetric_scenario checks the weights of only
3442  * non-weight-raised queues, for efficiency reasons (see comments on
3443  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3444  * is checked explicitly here. More precisely, the compound condition
3445  * below takes into account also the fact that, even if bfqq is being
3446  * weight-raised, the scenario is still symmetric if all queues with
3447  * requests waiting for completion happen to be
3448  * weight-raised. Actually, we should be even more precise here, and
3449  * differentiate between interactive weight raising and soft real-time
3450  * weight raising.
3451  *
3452  * The second sub-condition checked in the compound condition is
3453  * whether there is a fair amount of already in-flight I/O not
3454  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3455  * following reason. The drive may decide to serve in-flight
3456  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3457  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3458  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3459  * basically uncontrolled amount of I/O from other queues may be
3460  * dispatched too, possibly causing the service of bfqq's I/O to be
3461  * delayed even longer in the drive. This problem gets more and more
3462  * serious as the speed and the queue depth of the drive grow,
3463  * because, as these two quantities grow, the probability to find no
3464  * queue busy but many requests in flight grows too. By contrast,
3465  * plugging I/O dispatching minimizes the delay induced by already
3466  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3467  * lose because of this delay.
3468  *
3469  * As a side note, it is worth considering that the above
3470  * device-idling countermeasures may however fail in the following
3471  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3472  * in a time period during which all symmetry sub-conditions hold, and
3473  * therefore the device is allowed to enqueue many requests, but at
3474  * some later point in time some sub-condition stops to hold, then it
3475  * may become impossible to make requests be served in the desired
3476  * order until all the requests already queued in the device have been
3477  * served. The last sub-condition commented above somewhat mitigates
3478  * this problem for weight-raised queues.
3479  */
idling_needed_for_service_guarantees(struct bfq_data * bfqd,struct bfq_queue * bfqq)3480 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3481 						 struct bfq_queue *bfqq)
3482 {
3483 	/* No point in idling for bfqq if it won't get requests any longer */
3484 	if (unlikely(!bfqq_process_refs(bfqq)))
3485 		return false;
3486 
3487 	return (bfqq->wr_coeff > 1 &&
3488 		(bfqd->wr_busy_queues <
3489 		 bfq_tot_busy_queues(bfqd) ||
3490 		 bfqd->rq_in_driver >=
3491 		 bfqq->dispatched + 4)) ||
3492 		bfq_asymmetric_scenario(bfqd, bfqq);
3493 }
3494 
__bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3495 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3496 			      enum bfqq_expiration reason)
3497 {
3498 	/*
3499 	 * If this bfqq is shared between multiple processes, check
3500 	 * to make sure that those processes are still issuing I/Os
3501 	 * within the mean seek distance. If not, it may be time to
3502 	 * break the queues apart again.
3503 	 */
3504 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3505 		bfq_mark_bfqq_split_coop(bfqq);
3506 
3507 	/*
3508 	 * Consider queues with a higher finish virtual time than
3509 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3510 	 * true, then bfqq's bandwidth would be violated if an
3511 	 * uncontrolled amount of I/O from these queues were
3512 	 * dispatched while bfqq is waiting for its new I/O to
3513 	 * arrive. This is exactly what may happen if this is a forced
3514 	 * expiration caused by a preemption attempt, and if bfqq is
3515 	 * not re-scheduled. To prevent this from happening, re-queue
3516 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3517 	 * empty. By doing so, bfqq is granted to be served before the
3518 	 * above queues (provided that bfqq is of course eligible).
3519 	 */
3520 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3521 	    !(reason == BFQQE_PREEMPTED &&
3522 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3523 		if (bfqq->dispatched == 0)
3524 			/*
3525 			 * Overloading budget_timeout field to store
3526 			 * the time at which the queue remains with no
3527 			 * backlog and no outstanding request; used by
3528 			 * the weight-raising mechanism.
3529 			 */
3530 			bfqq->budget_timeout = jiffies;
3531 
3532 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3533 	} else {
3534 		bfq_requeue_bfqq(bfqd, bfqq, true);
3535 		/*
3536 		 * Resort priority tree of potential close cooperators.
3537 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3538 		 */
3539 		if (unlikely(!bfqd->nonrot_with_queueing &&
3540 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3541 			bfq_pos_tree_add_move(bfqd, bfqq);
3542 	}
3543 
3544 	/*
3545 	 * All in-service entities must have been properly deactivated
3546 	 * or requeued before executing the next function, which
3547 	 * resets all in-service entities as no more in service. This
3548 	 * may cause bfqq to be freed. If this happens, the next
3549 	 * function returns true.
3550 	 */
3551 	return __bfq_bfqd_reset_in_service(bfqd);
3552 }
3553 
3554 /**
3555  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3556  * @bfqd: device data.
3557  * @bfqq: queue to update.
3558  * @reason: reason for expiration.
3559  *
3560  * Handle the feedback on @bfqq budget at queue expiration.
3561  * See the body for detailed comments.
3562  */
__bfq_bfqq_recalc_budget(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3563 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3564 				     struct bfq_queue *bfqq,
3565 				     enum bfqq_expiration reason)
3566 {
3567 	struct request *next_rq;
3568 	int budget, min_budget;
3569 
3570 	min_budget = bfq_min_budget(bfqd);
3571 
3572 	if (bfqq->wr_coeff == 1)
3573 		budget = bfqq->max_budget;
3574 	else /*
3575 	      * Use a constant, low budget for weight-raised queues,
3576 	      * to help achieve a low latency. Keep it slightly higher
3577 	      * than the minimum possible budget, to cause a little
3578 	      * bit fewer expirations.
3579 	      */
3580 		budget = 2 * min_budget;
3581 
3582 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3583 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3584 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3585 		budget, bfq_min_budget(bfqd));
3586 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3587 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3588 
3589 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3590 		switch (reason) {
3591 		/*
3592 		 * Caveat: in all the following cases we trade latency
3593 		 * for throughput.
3594 		 */
3595 		case BFQQE_TOO_IDLE:
3596 			/*
3597 			 * This is the only case where we may reduce
3598 			 * the budget: if there is no request of the
3599 			 * process still waiting for completion, then
3600 			 * we assume (tentatively) that the timer has
3601 			 * expired because the batch of requests of
3602 			 * the process could have been served with a
3603 			 * smaller budget.  Hence, betting that
3604 			 * process will behave in the same way when it
3605 			 * becomes backlogged again, we reduce its
3606 			 * next budget.  As long as we guess right,
3607 			 * this budget cut reduces the latency
3608 			 * experienced by the process.
3609 			 *
3610 			 * However, if there are still outstanding
3611 			 * requests, then the process may have not yet
3612 			 * issued its next request just because it is
3613 			 * still waiting for the completion of some of
3614 			 * the still outstanding ones.  So in this
3615 			 * subcase we do not reduce its budget, on the
3616 			 * contrary we increase it to possibly boost
3617 			 * the throughput, as discussed in the
3618 			 * comments to the BUDGET_TIMEOUT case.
3619 			 */
3620 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3621 				budget = min(budget * 2, bfqd->bfq_max_budget);
3622 			else {
3623 				if (budget > 5 * min_budget)
3624 					budget -= 4 * min_budget;
3625 				else
3626 					budget = min_budget;
3627 			}
3628 			break;
3629 		case BFQQE_BUDGET_TIMEOUT:
3630 			/*
3631 			 * We double the budget here because it gives
3632 			 * the chance to boost the throughput if this
3633 			 * is not a seeky process (and has bumped into
3634 			 * this timeout because of, e.g., ZBR).
3635 			 */
3636 			budget = min(budget * 2, bfqd->bfq_max_budget);
3637 			break;
3638 		case BFQQE_BUDGET_EXHAUSTED:
3639 			/*
3640 			 * The process still has backlog, and did not
3641 			 * let either the budget timeout or the disk
3642 			 * idling timeout expire. Hence it is not
3643 			 * seeky, has a short thinktime and may be
3644 			 * happy with a higher budget too. So
3645 			 * definitely increase the budget of this good
3646 			 * candidate to boost the disk throughput.
3647 			 */
3648 			budget = min(budget * 4, bfqd->bfq_max_budget);
3649 			break;
3650 		case BFQQE_NO_MORE_REQUESTS:
3651 			/*
3652 			 * For queues that expire for this reason, it
3653 			 * is particularly important to keep the
3654 			 * budget close to the actual service they
3655 			 * need. Doing so reduces the timestamp
3656 			 * misalignment problem described in the
3657 			 * comments in the body of
3658 			 * __bfq_activate_entity. In fact, suppose
3659 			 * that a queue systematically expires for
3660 			 * BFQQE_NO_MORE_REQUESTS and presents a
3661 			 * new request in time to enjoy timestamp
3662 			 * back-shifting. The larger the budget of the
3663 			 * queue is with respect to the service the
3664 			 * queue actually requests in each service
3665 			 * slot, the more times the queue can be
3666 			 * reactivated with the same virtual finish
3667 			 * time. It follows that, even if this finish
3668 			 * time is pushed to the system virtual time
3669 			 * to reduce the consequent timestamp
3670 			 * misalignment, the queue unjustly enjoys for
3671 			 * many re-activations a lower finish time
3672 			 * than all newly activated queues.
3673 			 *
3674 			 * The service needed by bfqq is measured
3675 			 * quite precisely by bfqq->entity.service.
3676 			 * Since bfqq does not enjoy device idling,
3677 			 * bfqq->entity.service is equal to the number
3678 			 * of sectors that the process associated with
3679 			 * bfqq requested to read/write before waiting
3680 			 * for request completions, or blocking for
3681 			 * other reasons.
3682 			 */
3683 			budget = max_t(int, bfqq->entity.service, min_budget);
3684 			break;
3685 		default:
3686 			return;
3687 		}
3688 	} else if (!bfq_bfqq_sync(bfqq)) {
3689 		/*
3690 		 * Async queues get always the maximum possible
3691 		 * budget, as for them we do not care about latency
3692 		 * (in addition, their ability to dispatch is limited
3693 		 * by the charging factor).
3694 		 */
3695 		budget = bfqd->bfq_max_budget;
3696 	}
3697 
3698 	bfqq->max_budget = budget;
3699 
3700 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3701 	    !bfqd->bfq_user_max_budget)
3702 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3703 
3704 	/*
3705 	 * If there is still backlog, then assign a new budget, making
3706 	 * sure that it is large enough for the next request.  Since
3707 	 * the finish time of bfqq must be kept in sync with the
3708 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3709 	 * update.
3710 	 *
3711 	 * If there is no backlog, then no need to update the budget;
3712 	 * it will be updated on the arrival of a new request.
3713 	 */
3714 	next_rq = bfqq->next_rq;
3715 	if (next_rq)
3716 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3717 					    bfq_serv_to_charge(next_rq, bfqq));
3718 
3719 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3720 			next_rq ? blk_rq_sectors(next_rq) : 0,
3721 			bfqq->entity.budget);
3722 }
3723 
3724 /*
3725  * Return true if the process associated with bfqq is "slow". The slow
3726  * flag is used, in addition to the budget timeout, to reduce the
3727  * amount of service provided to seeky processes, and thus reduce
3728  * their chances to lower the throughput. More details in the comments
3729  * on the function bfq_bfqq_expire().
3730  *
3731  * An important observation is in order: as discussed in the comments
3732  * on the function bfq_update_peak_rate(), with devices with internal
3733  * queues, it is hard if ever possible to know when and for how long
3734  * an I/O request is processed by the device (apart from the trivial
3735  * I/O pattern where a new request is dispatched only after the
3736  * previous one has been completed). This makes it hard to evaluate
3737  * the real rate at which the I/O requests of each bfq_queue are
3738  * served.  In fact, for an I/O scheduler like BFQ, serving a
3739  * bfq_queue means just dispatching its requests during its service
3740  * slot (i.e., until the budget of the queue is exhausted, or the
3741  * queue remains idle, or, finally, a timeout fires). But, during the
3742  * service slot of a bfq_queue, around 100 ms at most, the device may
3743  * be even still processing requests of bfq_queues served in previous
3744  * service slots. On the opposite end, the requests of the in-service
3745  * bfq_queue may be completed after the service slot of the queue
3746  * finishes.
3747  *
3748  * Anyway, unless more sophisticated solutions are used
3749  * (where possible), the sum of the sizes of the requests dispatched
3750  * during the service slot of a bfq_queue is probably the only
3751  * approximation available for the service received by the bfq_queue
3752  * during its service slot. And this sum is the quantity used in this
3753  * function to evaluate the I/O speed of a process.
3754  */
bfq_bfqq_is_slow(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason,unsigned long * delta_ms)3755 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3756 				 bool compensate, enum bfqq_expiration reason,
3757 				 unsigned long *delta_ms)
3758 {
3759 	ktime_t delta_ktime;
3760 	u32 delta_usecs;
3761 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3762 
3763 	if (!bfq_bfqq_sync(bfqq))
3764 		return false;
3765 
3766 	if (compensate)
3767 		delta_ktime = bfqd->last_idling_start;
3768 	else
3769 		delta_ktime = ktime_get();
3770 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3771 	delta_usecs = ktime_to_us(delta_ktime);
3772 
3773 	/* don't use too short time intervals */
3774 	if (delta_usecs < 1000) {
3775 		if (blk_queue_nonrot(bfqd->queue))
3776 			 /*
3777 			  * give same worst-case guarantees as idling
3778 			  * for seeky
3779 			  */
3780 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3781 		else /* charge at least one seek */
3782 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3783 
3784 		return slow;
3785 	}
3786 
3787 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3788 
3789 	/*
3790 	 * Use only long (> 20ms) intervals to filter out excessive
3791 	 * spikes in service rate estimation.
3792 	 */
3793 	if (delta_usecs > 20000) {
3794 		/*
3795 		 * Caveat for rotational devices: processes doing I/O
3796 		 * in the slower disk zones tend to be slow(er) even
3797 		 * if not seeky. In this respect, the estimated peak
3798 		 * rate is likely to be an average over the disk
3799 		 * surface. Accordingly, to not be too harsh with
3800 		 * unlucky processes, a process is deemed slow only if
3801 		 * its rate has been lower than half of the estimated
3802 		 * peak rate.
3803 		 */
3804 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3805 	}
3806 
3807 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3808 
3809 	return slow;
3810 }
3811 
3812 /*
3813  * To be deemed as soft real-time, an application must meet two
3814  * requirements. First, the application must not require an average
3815  * bandwidth higher than the approximate bandwidth required to playback or
3816  * record a compressed high-definition video.
3817  * The next function is invoked on the completion of the last request of a
3818  * batch, to compute the next-start time instant, soft_rt_next_start, such
3819  * that, if the next request of the application does not arrive before
3820  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3821  *
3822  * The second requirement is that the request pattern of the application is
3823  * isochronous, i.e., that, after issuing a request or a batch of requests,
3824  * the application stops issuing new requests until all its pending requests
3825  * have been completed. After that, the application may issue a new batch,
3826  * and so on.
3827  * For this reason the next function is invoked to compute
3828  * soft_rt_next_start only for applications that meet this requirement,
3829  * whereas soft_rt_next_start is set to infinity for applications that do
3830  * not.
3831  *
3832  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3833  * happen to meet, occasionally or systematically, both the above
3834  * bandwidth and isochrony requirements. This may happen at least in
3835  * the following circumstances. First, if the CPU load is high. The
3836  * application may stop issuing requests while the CPUs are busy
3837  * serving other processes, then restart, then stop again for a while,
3838  * and so on. The other circumstances are related to the storage
3839  * device: the storage device is highly loaded or reaches a low-enough
3840  * throughput with the I/O of the application (e.g., because the I/O
3841  * is random and/or the device is slow). In all these cases, the
3842  * I/O of the application may be simply slowed down enough to meet
3843  * the bandwidth and isochrony requirements. To reduce the probability
3844  * that greedy applications are deemed as soft real-time in these
3845  * corner cases, a further rule is used in the computation of
3846  * soft_rt_next_start: the return value of this function is forced to
3847  * be higher than the maximum between the following two quantities.
3848  *
3849  * (a) Current time plus: (1) the maximum time for which the arrival
3850  *     of a request is waited for when a sync queue becomes idle,
3851  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3852  *     postpone for a moment the reason for adding a few extra
3853  *     jiffies; we get back to it after next item (b).  Lower-bounding
3854  *     the return value of this function with the current time plus
3855  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3856  *     because the latter issue their next request as soon as possible
3857  *     after the last one has been completed. In contrast, a soft
3858  *     real-time application spends some time processing data, after a
3859  *     batch of its requests has been completed.
3860  *
3861  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3862  *     above, greedy applications may happen to meet both the
3863  *     bandwidth and isochrony requirements under heavy CPU or
3864  *     storage-device load. In more detail, in these scenarios, these
3865  *     applications happen, only for limited time periods, to do I/O
3866  *     slowly enough to meet all the requirements described so far,
3867  *     including the filtering in above item (a). These slow-speed
3868  *     time intervals are usually interspersed between other time
3869  *     intervals during which these applications do I/O at a very high
3870  *     speed. Fortunately, exactly because of the high speed of the
3871  *     I/O in the high-speed intervals, the values returned by this
3872  *     function happen to be so high, near the end of any such
3873  *     high-speed interval, to be likely to fall *after* the end of
3874  *     the low-speed time interval that follows. These high values are
3875  *     stored in bfqq->soft_rt_next_start after each invocation of
3876  *     this function. As a consequence, if the last value of
3877  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3878  *     next value that this function may return, then, from the very
3879  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3880  *     likely to be constantly kept so high that any I/O request
3881  *     issued during the low-speed interval is considered as arriving
3882  *     to soon for the application to be deemed as soft
3883  *     real-time. Then, in the high-speed interval that follows, the
3884  *     application will not be deemed as soft real-time, just because
3885  *     it will do I/O at a high speed. And so on.
3886  *
3887  * Getting back to the filtering in item (a), in the following two
3888  * cases this filtering might be easily passed by a greedy
3889  * application, if the reference quantity was just
3890  * bfqd->bfq_slice_idle:
3891  * 1) HZ is so low that the duration of a jiffy is comparable to or
3892  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3893  *    devices with HZ=100. The time granularity may be so coarse
3894  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3895  *    is rather lower than the exact value.
3896  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3897  *    for a while, then suddenly 'jump' by several units to recover the lost
3898  *    increments. This seems to happen, e.g., inside virtual machines.
3899  * To address this issue, in the filtering in (a) we do not use as a
3900  * reference time interval just bfqd->bfq_slice_idle, but
3901  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3902  * minimum number of jiffies for which the filter seems to be quite
3903  * precise also in embedded systems and KVM/QEMU virtual machines.
3904  */
bfq_bfqq_softrt_next_start(struct bfq_data * bfqd,struct bfq_queue * bfqq)3905 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3906 						struct bfq_queue *bfqq)
3907 {
3908 	return max3(bfqq->soft_rt_next_start,
3909 		    bfqq->last_idle_bklogged +
3910 		    HZ * bfqq->service_from_backlogged /
3911 		    bfqd->bfq_wr_max_softrt_rate,
3912 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3913 }
3914 
3915 /**
3916  * bfq_bfqq_expire - expire a queue.
3917  * @bfqd: device owning the queue.
3918  * @bfqq: the queue to expire.
3919  * @compensate: if true, compensate for the time spent idling.
3920  * @reason: the reason causing the expiration.
3921  *
3922  * If the process associated with bfqq does slow I/O (e.g., because it
3923  * issues random requests), we charge bfqq with the time it has been
3924  * in service instead of the service it has received (see
3925  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3926  * a consequence, bfqq will typically get higher timestamps upon
3927  * reactivation, and hence it will be rescheduled as if it had
3928  * received more service than what it has actually received. In the
3929  * end, bfqq receives less service in proportion to how slowly its
3930  * associated process consumes its budgets (and hence how seriously it
3931  * tends to lower the throughput). In addition, this time-charging
3932  * strategy guarantees time fairness among slow processes. In
3933  * contrast, if the process associated with bfqq is not slow, we
3934  * charge bfqq exactly with the service it has received.
3935  *
3936  * Charging time to the first type of queues and the exact service to
3937  * the other has the effect of using the WF2Q+ policy to schedule the
3938  * former on a timeslice basis, without violating service domain
3939  * guarantees among the latter.
3940  */
bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason)3941 void bfq_bfqq_expire(struct bfq_data *bfqd,
3942 		     struct bfq_queue *bfqq,
3943 		     bool compensate,
3944 		     enum bfqq_expiration reason)
3945 {
3946 	bool slow;
3947 	unsigned long delta = 0;
3948 	struct bfq_entity *entity = &bfqq->entity;
3949 
3950 	/*
3951 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3952 	 */
3953 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3954 
3955 	/*
3956 	 * As above explained, charge slow (typically seeky) and
3957 	 * timed-out queues with the time and not the service
3958 	 * received, to favor sequential workloads.
3959 	 *
3960 	 * Processes doing I/O in the slower disk zones will tend to
3961 	 * be slow(er) even if not seeky. Therefore, since the
3962 	 * estimated peak rate is actually an average over the disk
3963 	 * surface, these processes may timeout just for bad luck. To
3964 	 * avoid punishing them, do not charge time to processes that
3965 	 * succeeded in consuming at least 2/3 of their budget. This
3966 	 * allows BFQ to preserve enough elasticity to still perform
3967 	 * bandwidth, and not time, distribution with little unlucky
3968 	 * or quasi-sequential processes.
3969 	 */
3970 	if (bfqq->wr_coeff == 1 &&
3971 	    (slow ||
3972 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3973 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3974 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3975 
3976 	if (reason == BFQQE_TOO_IDLE &&
3977 	    entity->service <= 2 * entity->budget / 10)
3978 		bfq_clear_bfqq_IO_bound(bfqq);
3979 
3980 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3981 		bfqq->last_wr_start_finish = jiffies;
3982 
3983 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3984 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3985 		/*
3986 		 * If we get here, and there are no outstanding
3987 		 * requests, then the request pattern is isochronous
3988 		 * (see the comments on the function
3989 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3990 		 * soft_rt_next_start. And we do it, unless bfqq is in
3991 		 * interactive weight raising. We do not do it in the
3992 		 * latter subcase, for the following reason. bfqq may
3993 		 * be conveying the I/O needed to load a soft
3994 		 * real-time application. Such an application will
3995 		 * actually exhibit a soft real-time I/O pattern after
3996 		 * it finally starts doing its job. But, if
3997 		 * soft_rt_next_start is computed here for an
3998 		 * interactive bfqq, and bfqq had received a lot of
3999 		 * service before remaining with no outstanding
4000 		 * request (likely to happen on a fast device), then
4001 		 * soft_rt_next_start would be assigned such a high
4002 		 * value that, for a very long time, bfqq would be
4003 		 * prevented from being possibly considered as soft
4004 		 * real time.
4005 		 *
4006 		 * If, instead, the queue still has outstanding
4007 		 * requests, then we have to wait for the completion
4008 		 * of all the outstanding requests to discover whether
4009 		 * the request pattern is actually isochronous.
4010 		 */
4011 		if (bfqq->dispatched == 0 &&
4012 		    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
4013 			bfqq->soft_rt_next_start =
4014 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4015 		else if (bfqq->dispatched > 0) {
4016 			/*
4017 			 * Schedule an update of soft_rt_next_start to when
4018 			 * the task may be discovered to be isochronous.
4019 			 */
4020 			bfq_mark_bfqq_softrt_update(bfqq);
4021 		}
4022 	}
4023 
4024 	bfq_log_bfqq(bfqd, bfqq,
4025 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4026 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4027 
4028 	/*
4029 	 * bfqq expired, so no total service time needs to be computed
4030 	 * any longer: reset state machine for measuring total service
4031 	 * times.
4032 	 */
4033 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4034 	bfqd->waited_rq = NULL;
4035 
4036 	/*
4037 	 * Increase, decrease or leave budget unchanged according to
4038 	 * reason.
4039 	 */
4040 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4041 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4042 		/* bfqq is gone, no more actions on it */
4043 		return;
4044 
4045 	/* mark bfqq as waiting a request only if a bic still points to it */
4046 	if (!bfq_bfqq_busy(bfqq) &&
4047 	    reason != BFQQE_BUDGET_TIMEOUT &&
4048 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4049 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4050 		/*
4051 		 * Not setting service to 0, because, if the next rq
4052 		 * arrives in time, the queue will go on receiving
4053 		 * service with this same budget (as if it never expired)
4054 		 */
4055 	} else
4056 		entity->service = 0;
4057 
4058 	/*
4059 	 * Reset the received-service counter for every parent entity.
4060 	 * Differently from what happens with bfqq->entity.service,
4061 	 * the resetting of this counter never needs to be postponed
4062 	 * for parent entities. In fact, in case bfqq may have a
4063 	 * chance to go on being served using the last, partially
4064 	 * consumed budget, bfqq->entity.service needs to be kept,
4065 	 * because if bfqq then actually goes on being served using
4066 	 * the same budget, the last value of bfqq->entity.service is
4067 	 * needed to properly decrement bfqq->entity.budget by the
4068 	 * portion already consumed. In contrast, it is not necessary
4069 	 * to keep entity->service for parent entities too, because
4070 	 * the bubble up of the new value of bfqq->entity.budget will
4071 	 * make sure that the budgets of parent entities are correct,
4072 	 * even in case bfqq and thus parent entities go on receiving
4073 	 * service with the same budget.
4074 	 */
4075 	entity = entity->parent;
4076 	for_each_entity(entity)
4077 		entity->service = 0;
4078 }
4079 
4080 /*
4081  * Budget timeout is not implemented through a dedicated timer, but
4082  * just checked on request arrivals and completions, as well as on
4083  * idle timer expirations.
4084  */
bfq_bfqq_budget_timeout(struct bfq_queue * bfqq)4085 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4086 {
4087 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4088 }
4089 
4090 /*
4091  * If we expire a queue that is actively waiting (i.e., with the
4092  * device idled) for the arrival of a new request, then we may incur
4093  * the timestamp misalignment problem described in the body of the
4094  * function __bfq_activate_entity. Hence we return true only if this
4095  * condition does not hold, or if the queue is slow enough to deserve
4096  * only to be kicked off for preserving a high throughput.
4097  */
bfq_may_expire_for_budg_timeout(struct bfq_queue * bfqq)4098 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4099 {
4100 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4101 		"may_budget_timeout: wait_request %d left %d timeout %d",
4102 		bfq_bfqq_wait_request(bfqq),
4103 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4104 		bfq_bfqq_budget_timeout(bfqq));
4105 
4106 	return (!bfq_bfqq_wait_request(bfqq) ||
4107 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4108 		&&
4109 		bfq_bfqq_budget_timeout(bfqq);
4110 }
4111 
idling_boosts_thr_without_issues(struct bfq_data * bfqd,struct bfq_queue * bfqq)4112 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4113 					     struct bfq_queue *bfqq)
4114 {
4115 	bool rot_without_queueing =
4116 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4117 		bfqq_sequential_and_IO_bound,
4118 		idling_boosts_thr;
4119 
4120 	/* No point in idling for bfqq if it won't get requests any longer */
4121 	if (unlikely(!bfqq_process_refs(bfqq)))
4122 		return false;
4123 
4124 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4125 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4126 
4127 	/*
4128 	 * The next variable takes into account the cases where idling
4129 	 * boosts the throughput.
4130 	 *
4131 	 * The value of the variable is computed considering, first, that
4132 	 * idling is virtually always beneficial for the throughput if:
4133 	 * (a) the device is not NCQ-capable and rotational, or
4134 	 * (b) regardless of the presence of NCQ, the device is rotational and
4135 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4136 	 * (c) regardless of whether it is rotational, the device is
4137 	 *     not NCQ-capable and the request pattern for bfqq is
4138 	 *     I/O-bound and sequential.
4139 	 *
4140 	 * Secondly, and in contrast to the above item (b), idling an
4141 	 * NCQ-capable flash-based device would not boost the
4142 	 * throughput even with sequential I/O; rather it would lower
4143 	 * the throughput in proportion to how fast the device
4144 	 * is. Accordingly, the next variable is true if any of the
4145 	 * above conditions (a), (b) or (c) is true, and, in
4146 	 * particular, happens to be false if bfqd is an NCQ-capable
4147 	 * flash-based device.
4148 	 */
4149 	idling_boosts_thr = rot_without_queueing ||
4150 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4151 		 bfqq_sequential_and_IO_bound);
4152 
4153 	/*
4154 	 * The return value of this function is equal to that of
4155 	 * idling_boosts_thr, unless a special case holds. In this
4156 	 * special case, described below, idling may cause problems to
4157 	 * weight-raised queues.
4158 	 *
4159 	 * When the request pool is saturated (e.g., in the presence
4160 	 * of write hogs), if the processes associated with
4161 	 * non-weight-raised queues ask for requests at a lower rate,
4162 	 * then processes associated with weight-raised queues have a
4163 	 * higher probability to get a request from the pool
4164 	 * immediately (or at least soon) when they need one. Thus
4165 	 * they have a higher probability to actually get a fraction
4166 	 * of the device throughput proportional to their high
4167 	 * weight. This is especially true with NCQ-capable drives,
4168 	 * which enqueue several requests in advance, and further
4169 	 * reorder internally-queued requests.
4170 	 *
4171 	 * For this reason, we force to false the return value if
4172 	 * there are weight-raised busy queues. In this case, and if
4173 	 * bfqq is not weight-raised, this guarantees that the device
4174 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4175 	 * then idling will be guaranteed by another variable, see
4176 	 * below). Combined with the timestamping rules of BFQ (see
4177 	 * [1] for details), this behavior causes bfqq, and hence any
4178 	 * sync non-weight-raised queue, to get a lower number of
4179 	 * requests served, and thus to ask for a lower number of
4180 	 * requests from the request pool, before the busy
4181 	 * weight-raised queues get served again. This often mitigates
4182 	 * starvation problems in the presence of heavy write
4183 	 * workloads and NCQ, thereby guaranteeing a higher
4184 	 * application and system responsiveness in these hostile
4185 	 * scenarios.
4186 	 */
4187 	return idling_boosts_thr &&
4188 		bfqd->wr_busy_queues == 0;
4189 }
4190 
4191 /*
4192  * For a queue that becomes empty, device idling is allowed only if
4193  * this function returns true for that queue. As a consequence, since
4194  * device idling plays a critical role for both throughput boosting
4195  * and service guarantees, the return value of this function plays a
4196  * critical role as well.
4197  *
4198  * In a nutshell, this function returns true only if idling is
4199  * beneficial for throughput or, even if detrimental for throughput,
4200  * idling is however necessary to preserve service guarantees (low
4201  * latency, desired throughput distribution, ...). In particular, on
4202  * NCQ-capable devices, this function tries to return false, so as to
4203  * help keep the drives' internal queues full, whenever this helps the
4204  * device boost the throughput without causing any service-guarantee
4205  * issue.
4206  *
4207  * Most of the issues taken into account to get the return value of
4208  * this function are not trivial. We discuss these issues in the two
4209  * functions providing the main pieces of information needed by this
4210  * function.
4211  */
bfq_better_to_idle(struct bfq_queue * bfqq)4212 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4213 {
4214 	struct bfq_data *bfqd = bfqq->bfqd;
4215 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4216 
4217 	/* No point in idling for bfqq if it won't get requests any longer */
4218 	if (unlikely(!bfqq_process_refs(bfqq)))
4219 		return false;
4220 
4221 	if (unlikely(bfqd->strict_guarantees))
4222 		return true;
4223 
4224 	/*
4225 	 * Idling is performed only if slice_idle > 0. In addition, we
4226 	 * do not idle if
4227 	 * (a) bfqq is async
4228 	 * (b) bfqq is in the idle io prio class: in this case we do
4229 	 * not idle because we want to minimize the bandwidth that
4230 	 * queues in this class can steal to higher-priority queues
4231 	 */
4232 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4233 	   bfq_class_idle(bfqq))
4234 		return false;
4235 
4236 	idling_boosts_thr_with_no_issue =
4237 		idling_boosts_thr_without_issues(bfqd, bfqq);
4238 
4239 	idling_needed_for_service_guar =
4240 		idling_needed_for_service_guarantees(bfqd, bfqq);
4241 
4242 	/*
4243 	 * We have now the two components we need to compute the
4244 	 * return value of the function, which is true only if idling
4245 	 * either boosts the throughput (without issues), or is
4246 	 * necessary to preserve service guarantees.
4247 	 */
4248 	return idling_boosts_thr_with_no_issue ||
4249 		idling_needed_for_service_guar;
4250 }
4251 
4252 /*
4253  * If the in-service queue is empty but the function bfq_better_to_idle
4254  * returns true, then:
4255  * 1) the queue must remain in service and cannot be expired, and
4256  * 2) the device must be idled to wait for the possible arrival of a new
4257  *    request for the queue.
4258  * See the comments on the function bfq_better_to_idle for the reasons
4259  * why performing device idling is the best choice to boost the throughput
4260  * and preserve service guarantees when bfq_better_to_idle itself
4261  * returns true.
4262  */
bfq_bfqq_must_idle(struct bfq_queue * bfqq)4263 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4264 {
4265 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4266 }
4267 
4268 /*
4269  * This function chooses the queue from which to pick the next extra
4270  * I/O request to inject, if it finds a compatible queue. See the
4271  * comments on bfq_update_inject_limit() for details on the injection
4272  * mechanism, and for the definitions of the quantities mentioned
4273  * below.
4274  */
4275 static struct bfq_queue *
bfq_choose_bfqq_for_injection(struct bfq_data * bfqd)4276 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4277 {
4278 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4279 	unsigned int limit = in_serv_bfqq->inject_limit;
4280 	/*
4281 	 * If
4282 	 * - bfqq is not weight-raised and therefore does not carry
4283 	 *   time-critical I/O,
4284 	 * or
4285 	 * - regardless of whether bfqq is weight-raised, bfqq has
4286 	 *   however a long think time, during which it can absorb the
4287 	 *   effect of an appropriate number of extra I/O requests
4288 	 *   from other queues (see bfq_update_inject_limit for
4289 	 *   details on the computation of this number);
4290 	 * then injection can be performed without restrictions.
4291 	 */
4292 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4293 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4294 
4295 	/*
4296 	 * If
4297 	 * - the baseline total service time could not be sampled yet,
4298 	 *   so the inject limit happens to be still 0, and
4299 	 * - a lot of time has elapsed since the plugging of I/O
4300 	 *   dispatching started, so drive speed is being wasted
4301 	 *   significantly;
4302 	 * then temporarily raise inject limit to one request.
4303 	 */
4304 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4305 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4306 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4307 				      bfqd->bfq_slice_idle)
4308 		)
4309 		limit = 1;
4310 
4311 	if (bfqd->rq_in_driver >= limit)
4312 		return NULL;
4313 
4314 	/*
4315 	 * Linear search of the source queue for injection; but, with
4316 	 * a high probability, very few steps are needed to find a
4317 	 * candidate queue, i.e., a queue with enough budget left for
4318 	 * its next request. In fact:
4319 	 * - BFQ dynamically updates the budget of every queue so as
4320 	 *   to accommodate the expected backlog of the queue;
4321 	 * - if a queue gets all its requests dispatched as injected
4322 	 *   service, then the queue is removed from the active list
4323 	 *   (and re-added only if it gets new requests, but then it
4324 	 *   is assigned again enough budget for its new backlog).
4325 	 */
4326 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4327 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4328 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4329 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4330 		    bfq_bfqq_budget_left(bfqq)) {
4331 			/*
4332 			 * Allow for only one large in-flight request
4333 			 * on non-rotational devices, for the
4334 			 * following reason. On non-rotationl drives,
4335 			 * large requests take much longer than
4336 			 * smaller requests to be served. In addition,
4337 			 * the drive prefers to serve large requests
4338 			 * w.r.t. to small ones, if it can choose. So,
4339 			 * having more than one large requests queued
4340 			 * in the drive may easily make the next first
4341 			 * request of the in-service queue wait for so
4342 			 * long to break bfqq's service guarantees. On
4343 			 * the bright side, large requests let the
4344 			 * drive reach a very high throughput, even if
4345 			 * there is only one in-flight large request
4346 			 * at a time.
4347 			 */
4348 			if (blk_queue_nonrot(bfqd->queue) &&
4349 			    blk_rq_sectors(bfqq->next_rq) >=
4350 			    BFQQ_SECT_THR_NONROT)
4351 				limit = min_t(unsigned int, 1, limit);
4352 			else
4353 				limit = in_serv_bfqq->inject_limit;
4354 
4355 			if (bfqd->rq_in_driver < limit) {
4356 				bfqd->rqs_injected = true;
4357 				return bfqq;
4358 			}
4359 		}
4360 
4361 	return NULL;
4362 }
4363 
4364 /*
4365  * Select a queue for service.  If we have a current queue in service,
4366  * check whether to continue servicing it, or retrieve and set a new one.
4367  */
bfq_select_queue(struct bfq_data * bfqd)4368 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4369 {
4370 	struct bfq_queue *bfqq;
4371 	struct request *next_rq;
4372 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4373 
4374 	bfqq = bfqd->in_service_queue;
4375 	if (!bfqq)
4376 		goto new_queue;
4377 
4378 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4379 
4380 	/*
4381 	 * Do not expire bfqq for budget timeout if bfqq may be about
4382 	 * to enjoy device idling. The reason why, in this case, we
4383 	 * prevent bfqq from expiring is the same as in the comments
4384 	 * on the case where bfq_bfqq_must_idle() returns true, in
4385 	 * bfq_completed_request().
4386 	 */
4387 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4388 	    !bfq_bfqq_must_idle(bfqq))
4389 		goto expire;
4390 
4391 check_queue:
4392 	/*
4393 	 * This loop is rarely executed more than once. Even when it
4394 	 * happens, it is much more convenient to re-execute this loop
4395 	 * than to return NULL and trigger a new dispatch to get a
4396 	 * request served.
4397 	 */
4398 	next_rq = bfqq->next_rq;
4399 	/*
4400 	 * If bfqq has requests queued and it has enough budget left to
4401 	 * serve them, keep the queue, otherwise expire it.
4402 	 */
4403 	if (next_rq) {
4404 		if (bfq_serv_to_charge(next_rq, bfqq) >
4405 			bfq_bfqq_budget_left(bfqq)) {
4406 			/*
4407 			 * Expire the queue for budget exhaustion,
4408 			 * which makes sure that the next budget is
4409 			 * enough to serve the next request, even if
4410 			 * it comes from the fifo expired path.
4411 			 */
4412 			reason = BFQQE_BUDGET_EXHAUSTED;
4413 			goto expire;
4414 		} else {
4415 			/*
4416 			 * The idle timer may be pending because we may
4417 			 * not disable disk idling even when a new request
4418 			 * arrives.
4419 			 */
4420 			if (bfq_bfqq_wait_request(bfqq)) {
4421 				/*
4422 				 * If we get here: 1) at least a new request
4423 				 * has arrived but we have not disabled the
4424 				 * timer because the request was too small,
4425 				 * 2) then the block layer has unplugged
4426 				 * the device, causing the dispatch to be
4427 				 * invoked.
4428 				 *
4429 				 * Since the device is unplugged, now the
4430 				 * requests are probably large enough to
4431 				 * provide a reasonable throughput.
4432 				 * So we disable idling.
4433 				 */
4434 				bfq_clear_bfqq_wait_request(bfqq);
4435 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4436 			}
4437 			goto keep_queue;
4438 		}
4439 	}
4440 
4441 	/*
4442 	 * No requests pending. However, if the in-service queue is idling
4443 	 * for a new request, or has requests waiting for a completion and
4444 	 * may idle after their completion, then keep it anyway.
4445 	 *
4446 	 * Yet, inject service from other queues if it boosts
4447 	 * throughput and is possible.
4448 	 */
4449 	if (bfq_bfqq_wait_request(bfqq) ||
4450 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4451 		struct bfq_queue *async_bfqq =
4452 			bfqq->bic && bfqq->bic->bfqq[0] &&
4453 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4454 			bfqq->bic->bfqq[0]->next_rq ?
4455 			bfqq->bic->bfqq[0] : NULL;
4456 
4457 		/*
4458 		 * The next three mutually-exclusive ifs decide
4459 		 * whether to try injection, and choose the queue to
4460 		 * pick an I/O request from.
4461 		 *
4462 		 * The first if checks whether the process associated
4463 		 * with bfqq has also async I/O pending. If so, it
4464 		 * injects such I/O unconditionally. Injecting async
4465 		 * I/O from the same process can cause no harm to the
4466 		 * process. On the contrary, it can only increase
4467 		 * bandwidth and reduce latency for the process.
4468 		 *
4469 		 * The second if checks whether there happens to be a
4470 		 * non-empty waker queue for bfqq, i.e., a queue whose
4471 		 * I/O needs to be completed for bfqq to receive new
4472 		 * I/O. This happens, e.g., if bfqq is associated with
4473 		 * a process that does some sync. A sync generates
4474 		 * extra blocking I/O, which must be completed before
4475 		 * the process associated with bfqq can go on with its
4476 		 * I/O. If the I/O of the waker queue is not served,
4477 		 * then bfqq remains empty, and no I/O is dispatched,
4478 		 * until the idle timeout fires for bfqq. This is
4479 		 * likely to result in lower bandwidth and higher
4480 		 * latencies for bfqq, and in a severe loss of total
4481 		 * throughput. The best action to take is therefore to
4482 		 * serve the waker queue as soon as possible. So do it
4483 		 * (without relying on the third alternative below for
4484 		 * eventually serving waker_bfqq's I/O; see the last
4485 		 * paragraph for further details). This systematic
4486 		 * injection of I/O from the waker queue does not
4487 		 * cause any delay to bfqq's I/O. On the contrary,
4488 		 * next bfqq's I/O is brought forward dramatically,
4489 		 * for it is not blocked for milliseconds.
4490 		 *
4491 		 * The third if checks whether bfqq is a queue for
4492 		 * which it is better to avoid injection. It is so if
4493 		 * bfqq delivers more throughput when served without
4494 		 * any further I/O from other queues in the middle, or
4495 		 * if the service times of bfqq's I/O requests both
4496 		 * count more than overall throughput, and may be
4497 		 * easily increased by injection (this happens if bfqq
4498 		 * has a short think time). If none of these
4499 		 * conditions holds, then a candidate queue for
4500 		 * injection is looked for through
4501 		 * bfq_choose_bfqq_for_injection(). Note that the
4502 		 * latter may return NULL (for example if the inject
4503 		 * limit for bfqq is currently 0).
4504 		 *
4505 		 * NOTE: motivation for the second alternative
4506 		 *
4507 		 * Thanks to the way the inject limit is updated in
4508 		 * bfq_update_has_short_ttime(), it is rather likely
4509 		 * that, if I/O is being plugged for bfqq and the
4510 		 * waker queue has pending I/O requests that are
4511 		 * blocking bfqq's I/O, then the third alternative
4512 		 * above lets the waker queue get served before the
4513 		 * I/O-plugging timeout fires. So one may deem the
4514 		 * second alternative superfluous. It is not, because
4515 		 * the third alternative may be way less effective in
4516 		 * case of a synchronization. For two main
4517 		 * reasons. First, throughput may be low because the
4518 		 * inject limit may be too low to guarantee the same
4519 		 * amount of injected I/O, from the waker queue or
4520 		 * other queues, that the second alternative
4521 		 * guarantees (the second alternative unconditionally
4522 		 * injects a pending I/O request of the waker queue
4523 		 * for each bfq_dispatch_request()). Second, with the
4524 		 * third alternative, the duration of the plugging,
4525 		 * i.e., the time before bfqq finally receives new I/O,
4526 		 * may not be minimized, because the waker queue may
4527 		 * happen to be served only after other queues.
4528 		 */
4529 		if (async_bfqq &&
4530 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4531 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4532 		    bfq_bfqq_budget_left(async_bfqq))
4533 			bfqq = bfqq->bic->bfqq[0];
4534 		else if (bfq_bfqq_has_waker(bfqq) &&
4535 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4536 			   bfqq->waker_bfqq->next_rq &&
4537 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4538 					      bfqq->waker_bfqq) <=
4539 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4540 			)
4541 			bfqq = bfqq->waker_bfqq;
4542 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4543 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4544 			  !bfq_bfqq_has_short_ttime(bfqq)))
4545 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4546 		else
4547 			bfqq = NULL;
4548 
4549 		goto keep_queue;
4550 	}
4551 
4552 	reason = BFQQE_NO_MORE_REQUESTS;
4553 expire:
4554 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4555 new_queue:
4556 	bfqq = bfq_set_in_service_queue(bfqd);
4557 	if (bfqq) {
4558 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4559 		goto check_queue;
4560 	}
4561 keep_queue:
4562 	if (bfqq)
4563 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4564 	else
4565 		bfq_log(bfqd, "select_queue: no queue returned");
4566 
4567 	return bfqq;
4568 }
4569 
bfq_update_wr_data(struct bfq_data * bfqd,struct bfq_queue * bfqq)4570 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4571 {
4572 	struct bfq_entity *entity = &bfqq->entity;
4573 
4574 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4575 		bfq_log_bfqq(bfqd, bfqq,
4576 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4577 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4578 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4579 			bfqq->wr_coeff,
4580 			bfqq->entity.weight, bfqq->entity.orig_weight);
4581 
4582 		if (entity->prio_changed)
4583 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4584 
4585 		/*
4586 		 * If the queue was activated in a burst, or too much
4587 		 * time has elapsed from the beginning of this
4588 		 * weight-raising period, then end weight raising.
4589 		 */
4590 		if (bfq_bfqq_in_large_burst(bfqq))
4591 			bfq_bfqq_end_wr(bfqq);
4592 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4593 						bfqq->wr_cur_max_time)) {
4594 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4595 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4596 					       bfq_wr_duration(bfqd)))
4597 				bfq_bfqq_end_wr(bfqq);
4598 			else {
4599 				switch_back_to_interactive_wr(bfqq, bfqd);
4600 				bfqq->entity.prio_changed = 1;
4601 			}
4602 		}
4603 		if (bfqq->wr_coeff > 1 &&
4604 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4605 		    bfqq->service_from_wr > max_service_from_wr) {
4606 			/* see comments on max_service_from_wr */
4607 			bfq_bfqq_end_wr(bfqq);
4608 		}
4609 	}
4610 	/*
4611 	 * To improve latency (for this or other queues), immediately
4612 	 * update weight both if it must be raised and if it must be
4613 	 * lowered. Since, entity may be on some active tree here, and
4614 	 * might have a pending change of its ioprio class, invoke
4615 	 * next function with the last parameter unset (see the
4616 	 * comments on the function).
4617 	 */
4618 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4619 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4620 						entity, false);
4621 }
4622 
4623 /*
4624  * Dispatch next request from bfqq.
4625  */
bfq_dispatch_rq_from_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)4626 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4627 						 struct bfq_queue *bfqq)
4628 {
4629 	struct request *rq = bfqq->next_rq;
4630 	unsigned long service_to_charge;
4631 
4632 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4633 
4634 	bfq_bfqq_served(bfqq, service_to_charge);
4635 
4636 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4637 		bfqd->wait_dispatch = false;
4638 		bfqd->waited_rq = rq;
4639 	}
4640 
4641 	bfq_dispatch_remove(bfqd->queue, rq);
4642 
4643 	if (bfqq != bfqd->in_service_queue)
4644 		goto return_rq;
4645 
4646 	/*
4647 	 * If weight raising has to terminate for bfqq, then next
4648 	 * function causes an immediate update of bfqq's weight,
4649 	 * without waiting for next activation. As a consequence, on
4650 	 * expiration, bfqq will be timestamped as if has never been
4651 	 * weight-raised during this service slot, even if it has
4652 	 * received part or even most of the service as a
4653 	 * weight-raised queue. This inflates bfqq's timestamps, which
4654 	 * is beneficial, as bfqq is then more willing to leave the
4655 	 * device immediately to possible other weight-raised queues.
4656 	 */
4657 	bfq_update_wr_data(bfqd, bfqq);
4658 
4659 	/*
4660 	 * Expire bfqq, pretending that its budget expired, if bfqq
4661 	 * belongs to CLASS_IDLE and other queues are waiting for
4662 	 * service.
4663 	 */
4664 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4665 		goto return_rq;
4666 
4667 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4668 
4669 return_rq:
4670 	return rq;
4671 }
4672 
bfq_has_work(struct blk_mq_hw_ctx * hctx)4673 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4674 {
4675 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4676 
4677 	/*
4678 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4679 	 * most a call to dispatch for nothing
4680 	 */
4681 	return !list_empty_careful(&bfqd->dispatch) ||
4682 		bfq_tot_busy_queues(bfqd) > 0;
4683 }
4684 
__bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)4685 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4686 {
4687 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4688 	struct request *rq = NULL;
4689 	struct bfq_queue *bfqq = NULL;
4690 
4691 	if (!list_empty(&bfqd->dispatch)) {
4692 		rq = list_first_entry(&bfqd->dispatch, struct request,
4693 				      queuelist);
4694 		list_del_init(&rq->queuelist);
4695 
4696 		bfqq = RQ_BFQQ(rq);
4697 
4698 		if (bfqq) {
4699 			/*
4700 			 * Increment counters here, because this
4701 			 * dispatch does not follow the standard
4702 			 * dispatch flow (where counters are
4703 			 * incremented)
4704 			 */
4705 			bfqq->dispatched++;
4706 
4707 			goto inc_in_driver_start_rq;
4708 		}
4709 
4710 		/*
4711 		 * We exploit the bfq_finish_requeue_request hook to
4712 		 * decrement rq_in_driver, but
4713 		 * bfq_finish_requeue_request will not be invoked on
4714 		 * this request. So, to avoid unbalance, just start
4715 		 * this request, without incrementing rq_in_driver. As
4716 		 * a negative consequence, rq_in_driver is deceptively
4717 		 * lower than it should be while this request is in
4718 		 * service. This may cause bfq_schedule_dispatch to be
4719 		 * invoked uselessly.
4720 		 *
4721 		 * As for implementing an exact solution, the
4722 		 * bfq_finish_requeue_request hook, if defined, is
4723 		 * probably invoked also on this request. So, by
4724 		 * exploiting this hook, we could 1) increment
4725 		 * rq_in_driver here, and 2) decrement it in
4726 		 * bfq_finish_requeue_request. Such a solution would
4727 		 * let the value of the counter be always accurate,
4728 		 * but it would entail using an extra interface
4729 		 * function. This cost seems higher than the benefit,
4730 		 * being the frequency of non-elevator-private
4731 		 * requests very low.
4732 		 */
4733 		goto start_rq;
4734 	}
4735 
4736 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4737 		bfq_tot_busy_queues(bfqd));
4738 
4739 	if (bfq_tot_busy_queues(bfqd) == 0)
4740 		goto exit;
4741 
4742 	/*
4743 	 * Force device to serve one request at a time if
4744 	 * strict_guarantees is true. Forcing this service scheme is
4745 	 * currently the ONLY way to guarantee that the request
4746 	 * service order enforced by the scheduler is respected by a
4747 	 * queueing device. Otherwise the device is free even to make
4748 	 * some unlucky request wait for as long as the device
4749 	 * wishes.
4750 	 *
4751 	 * Of course, serving one request at a time may cause loss of
4752 	 * throughput.
4753 	 */
4754 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4755 		goto exit;
4756 
4757 	bfqq = bfq_select_queue(bfqd);
4758 	if (!bfqq)
4759 		goto exit;
4760 
4761 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4762 
4763 	if (rq) {
4764 inc_in_driver_start_rq:
4765 		bfqd->rq_in_driver++;
4766 start_rq:
4767 		rq->rq_flags |= RQF_STARTED;
4768 	}
4769 exit:
4770 	return rq;
4771 }
4772 
4773 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)4774 static void bfq_update_dispatch_stats(struct request_queue *q,
4775 				      struct request *rq,
4776 				      struct bfq_queue *in_serv_queue,
4777 				      bool idle_timer_disabled)
4778 {
4779 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4780 
4781 	if (!idle_timer_disabled && !bfqq)
4782 		return;
4783 
4784 	/*
4785 	 * rq and bfqq are guaranteed to exist until this function
4786 	 * ends, for the following reasons. First, rq can be
4787 	 * dispatched to the device, and then can be completed and
4788 	 * freed, only after this function ends. Second, rq cannot be
4789 	 * merged (and thus freed because of a merge) any longer,
4790 	 * because it has already started. Thus rq cannot be freed
4791 	 * before this function ends, and, since rq has a reference to
4792 	 * bfqq, the same guarantee holds for bfqq too.
4793 	 *
4794 	 * In addition, the following queue lock guarantees that
4795 	 * bfqq_group(bfqq) exists as well.
4796 	 */
4797 	spin_lock_irq(&q->queue_lock);
4798 	if (idle_timer_disabled)
4799 		/*
4800 		 * Since the idle timer has been disabled,
4801 		 * in_serv_queue contained some request when
4802 		 * __bfq_dispatch_request was invoked above, which
4803 		 * implies that rq was picked exactly from
4804 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4805 		 * therefore guaranteed to exist because of the above
4806 		 * arguments.
4807 		 */
4808 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4809 	if (bfqq) {
4810 		struct bfq_group *bfqg = bfqq_group(bfqq);
4811 
4812 		bfqg_stats_update_avg_queue_size(bfqg);
4813 		bfqg_stats_set_start_empty_time(bfqg);
4814 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4815 	}
4816 	spin_unlock_irq(&q->queue_lock);
4817 }
4818 #else
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)4819 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4820 					     struct request *rq,
4821 					     struct bfq_queue *in_serv_queue,
4822 					     bool idle_timer_disabled) {}
4823 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
4824 
bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)4825 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4826 {
4827 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4828 	struct request *rq;
4829 	struct bfq_queue *in_serv_queue;
4830 	bool waiting_rq, idle_timer_disabled = false;
4831 
4832 	spin_lock_irq(&bfqd->lock);
4833 
4834 	in_serv_queue = bfqd->in_service_queue;
4835 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4836 
4837 	rq = __bfq_dispatch_request(hctx);
4838 	if (in_serv_queue == bfqd->in_service_queue) {
4839 		idle_timer_disabled =
4840 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4841 	}
4842 
4843 	spin_unlock_irq(&bfqd->lock);
4844 	bfq_update_dispatch_stats(hctx->queue, rq,
4845 			idle_timer_disabled ? in_serv_queue : NULL,
4846 				idle_timer_disabled);
4847 
4848 	return rq;
4849 }
4850 
4851 /*
4852  * Task holds one reference to the queue, dropped when task exits.  Each rq
4853  * in-flight on this queue also holds a reference, dropped when rq is freed.
4854  *
4855  * Scheduler lock must be held here. Recall not to use bfqq after calling
4856  * this function on it.
4857  */
bfq_put_queue(struct bfq_queue * bfqq)4858 void bfq_put_queue(struct bfq_queue *bfqq)
4859 {
4860 	struct bfq_queue *item;
4861 	struct hlist_node *n;
4862 	struct bfq_group *bfqg = bfqq_group(bfqq);
4863 
4864 	if (bfqq->bfqd)
4865 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4866 			     bfqq, bfqq->ref);
4867 
4868 	bfqq->ref--;
4869 	if (bfqq->ref)
4870 		return;
4871 
4872 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4873 		hlist_del_init(&bfqq->burst_list_node);
4874 		/*
4875 		 * Decrement also burst size after the removal, if the
4876 		 * process associated with bfqq is exiting, and thus
4877 		 * does not contribute to the burst any longer. This
4878 		 * decrement helps filter out false positives of large
4879 		 * bursts, when some short-lived process (often due to
4880 		 * the execution of commands by some service) happens
4881 		 * to start and exit while a complex application is
4882 		 * starting, and thus spawning several processes that
4883 		 * do I/O (and that *must not* be treated as a large
4884 		 * burst, see comments on bfq_handle_burst).
4885 		 *
4886 		 * In particular, the decrement is performed only if:
4887 		 * 1) bfqq is not a merged queue, because, if it is,
4888 		 * then this free of bfqq is not triggered by the exit
4889 		 * of the process bfqq is associated with, but exactly
4890 		 * by the fact that bfqq has just been merged.
4891 		 * 2) burst_size is greater than 0, to handle
4892 		 * unbalanced decrements. Unbalanced decrements may
4893 		 * happen in te following case: bfqq is inserted into
4894 		 * the current burst list--without incrementing
4895 		 * bust_size--because of a split, but the current
4896 		 * burst list is not the burst list bfqq belonged to
4897 		 * (see comments on the case of a split in
4898 		 * bfq_set_request).
4899 		 */
4900 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4901 			bfqq->bfqd->burst_size--;
4902 	}
4903 
4904 	/*
4905 	 * bfqq does not exist any longer, so it cannot be woken by
4906 	 * any other queue, and cannot wake any other queue. Then bfqq
4907 	 * must be removed from the woken list of its possible waker
4908 	 * queue, and all queues in the woken list of bfqq must stop
4909 	 * having a waker queue. Strictly speaking, these updates
4910 	 * should be performed when bfqq remains with no I/O source
4911 	 * attached to it, which happens before bfqq gets freed. In
4912 	 * particular, this happens when the last process associated
4913 	 * with bfqq exits or gets associated with a different
4914 	 * queue. However, both events lead to bfqq being freed soon,
4915 	 * and dangling references would come out only after bfqq gets
4916 	 * freed. So these updates are done here, as a simple and safe
4917 	 * way to handle all cases.
4918 	 */
4919 	/* remove bfqq from woken list */
4920 	if (!hlist_unhashed(&bfqq->woken_list_node))
4921 		hlist_del_init(&bfqq->woken_list_node);
4922 
4923 	/* reset waker for all queues in woken list */
4924 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
4925 				  woken_list_node) {
4926 		item->waker_bfqq = NULL;
4927 		bfq_clear_bfqq_has_waker(item);
4928 		hlist_del_init(&item->woken_list_node);
4929 	}
4930 
4931 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
4932 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
4933 
4934 	kmem_cache_free(bfq_pool, bfqq);
4935 	bfqg_and_blkg_put(bfqg);
4936 }
4937 
bfq_put_cooperator(struct bfq_queue * bfqq)4938 void bfq_put_cooperator(struct bfq_queue *bfqq)
4939 {
4940 	struct bfq_queue *__bfqq, *next;
4941 
4942 	/*
4943 	 * If this queue was scheduled to merge with another queue, be
4944 	 * sure to drop the reference taken on that queue (and others in
4945 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4946 	 */
4947 	__bfqq = bfqq->new_bfqq;
4948 	while (__bfqq) {
4949 		if (__bfqq == bfqq)
4950 			break;
4951 		next = __bfqq->new_bfqq;
4952 		bfq_put_queue(__bfqq);
4953 		__bfqq = next;
4954 	}
4955 }
4956 
bfq_exit_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)4957 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4958 {
4959 	if (bfqq == bfqd->in_service_queue) {
4960 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
4961 		bfq_schedule_dispatch(bfqd);
4962 	}
4963 
4964 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4965 
4966 	bfq_put_cooperator(bfqq);
4967 
4968 	bfq_release_process_ref(bfqd, bfqq);
4969 }
4970 
bfq_exit_icq_bfqq(struct bfq_io_cq * bic,bool is_sync)4971 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4972 {
4973 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4974 	struct bfq_data *bfqd;
4975 
4976 	if (bfqq)
4977 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4978 
4979 	if (bfqq && bfqd) {
4980 		unsigned long flags;
4981 
4982 		spin_lock_irqsave(&bfqd->lock, flags);
4983 		bic_set_bfqq(bic, NULL, is_sync);
4984 		bfq_exit_bfqq(bfqd, bfqq);
4985 		spin_unlock_irqrestore(&bfqd->lock, flags);
4986 	}
4987 }
4988 
bfq_exit_icq(struct io_cq * icq)4989 static void bfq_exit_icq(struct io_cq *icq)
4990 {
4991 	struct bfq_io_cq *bic = icq_to_bic(icq);
4992 
4993 	bfq_exit_icq_bfqq(bic, true);
4994 	bfq_exit_icq_bfqq(bic, false);
4995 }
4996 
4997 /*
4998  * Update the entity prio values; note that the new values will not
4999  * be used until the next (re)activation.
5000  */
5001 static void
bfq_set_next_ioprio_data(struct bfq_queue * bfqq,struct bfq_io_cq * bic)5002 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5003 {
5004 	struct task_struct *tsk = current;
5005 	int ioprio_class;
5006 	struct bfq_data *bfqd = bfqq->bfqd;
5007 
5008 	if (!bfqd)
5009 		return;
5010 
5011 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5012 	switch (ioprio_class) {
5013 	default:
5014 		pr_err("bdi %s: bfq: bad prio class %d\n",
5015 				bdi_dev_name(bfqq->bfqd->queue->backing_dev_info),
5016 				ioprio_class);
5017 		fallthrough;
5018 	case IOPRIO_CLASS_NONE:
5019 		/*
5020 		 * No prio set, inherit CPU scheduling settings.
5021 		 */
5022 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5023 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5024 		break;
5025 	case IOPRIO_CLASS_RT:
5026 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5027 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5028 		break;
5029 	case IOPRIO_CLASS_BE:
5030 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5031 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5032 		break;
5033 	case IOPRIO_CLASS_IDLE:
5034 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5035 		bfqq->new_ioprio = 7;
5036 		break;
5037 	}
5038 
5039 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
5040 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5041 			bfqq->new_ioprio);
5042 		bfqq->new_ioprio = IOPRIO_BE_NR - 1;
5043 	}
5044 
5045 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5046 	bfqq->entity.prio_changed = 1;
5047 }
5048 
5049 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5050 				       struct bio *bio, bool is_sync,
5051 				       struct bfq_io_cq *bic);
5052 
bfq_check_ioprio_change(struct bfq_io_cq * bic,struct bio * bio)5053 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5054 {
5055 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5056 	struct bfq_queue *bfqq;
5057 	int ioprio = bic->icq.ioc->ioprio;
5058 
5059 	/*
5060 	 * This condition may trigger on a newly created bic, be sure to
5061 	 * drop the lock before returning.
5062 	 */
5063 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5064 		return;
5065 
5066 	bic->ioprio = ioprio;
5067 
5068 	bfqq = bic_to_bfqq(bic, false);
5069 	if (bfqq) {
5070 		struct bfq_queue *old_bfqq = bfqq;
5071 
5072 		bfqq = bfq_get_queue(bfqd, bio, false, bic);
5073 		bic_set_bfqq(bic, bfqq, false);
5074 		bfq_release_process_ref(bfqd, old_bfqq);
5075 	}
5076 
5077 	bfqq = bic_to_bfqq(bic, true);
5078 	if (bfqq)
5079 		bfq_set_next_ioprio_data(bfqq, bic);
5080 }
5081 
bfq_init_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic,pid_t pid,int is_sync)5082 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5083 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5084 {
5085 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5086 	INIT_LIST_HEAD(&bfqq->fifo);
5087 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5088 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5089 	INIT_HLIST_HEAD(&bfqq->woken_list);
5090 
5091 	bfqq->ref = 0;
5092 	bfqq->bfqd = bfqd;
5093 
5094 	if (bic)
5095 		bfq_set_next_ioprio_data(bfqq, bic);
5096 
5097 	if (is_sync) {
5098 		/*
5099 		 * No need to mark as has_short_ttime if in
5100 		 * idle_class, because no device idling is performed
5101 		 * for queues in idle class
5102 		 */
5103 		if (!bfq_class_idle(bfqq))
5104 			/* tentatively mark as has_short_ttime */
5105 			bfq_mark_bfqq_has_short_ttime(bfqq);
5106 		bfq_mark_bfqq_sync(bfqq);
5107 		bfq_mark_bfqq_just_created(bfqq);
5108 	} else
5109 		bfq_clear_bfqq_sync(bfqq);
5110 
5111 	/* set end request to minus infinity from now */
5112 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
5113 
5114 	bfq_mark_bfqq_IO_bound(bfqq);
5115 
5116 	bfqq->pid = pid;
5117 
5118 	/* Tentative initial value to trade off between thr and lat */
5119 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5120 	bfqq->budget_timeout = bfq_smallest_from_now();
5121 
5122 	bfqq->wr_coeff = 1;
5123 	bfqq->last_wr_start_finish = jiffies;
5124 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5125 	bfqq->split_time = bfq_smallest_from_now();
5126 
5127 	/*
5128 	 * To not forget the possibly high bandwidth consumed by a
5129 	 * process/queue in the recent past,
5130 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5131 	 * to the current value of bfqq->soft_rt_next_start (see
5132 	 * comments on bfq_bfqq_softrt_next_start).  Set
5133 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5134 	 * no bandwidth so far.
5135 	 */
5136 	bfqq->soft_rt_next_start = jiffies;
5137 
5138 	/* first request is almost certainly seeky */
5139 	bfqq->seek_history = 1;
5140 }
5141 
bfq_async_queue_prio(struct bfq_data * bfqd,struct bfq_group * bfqg,int ioprio_class,int ioprio)5142 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5143 					       struct bfq_group *bfqg,
5144 					       int ioprio_class, int ioprio)
5145 {
5146 	switch (ioprio_class) {
5147 	case IOPRIO_CLASS_RT:
5148 		return &bfqg->async_bfqq[0][ioprio];
5149 	case IOPRIO_CLASS_NONE:
5150 		ioprio = IOPRIO_NORM;
5151 		fallthrough;
5152 	case IOPRIO_CLASS_BE:
5153 		return &bfqg->async_bfqq[1][ioprio];
5154 	case IOPRIO_CLASS_IDLE:
5155 		return &bfqg->async_idle_bfqq;
5156 	default:
5157 		return NULL;
5158 	}
5159 }
5160 
bfq_get_queue(struct bfq_data * bfqd,struct bio * bio,bool is_sync,struct bfq_io_cq * bic)5161 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5162 				       struct bio *bio, bool is_sync,
5163 				       struct bfq_io_cq *bic)
5164 {
5165 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5166 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5167 	struct bfq_queue **async_bfqq = NULL;
5168 	struct bfq_queue *bfqq;
5169 	struct bfq_group *bfqg;
5170 
5171 	bfqg = bfq_bio_bfqg(bfqd, bio);
5172 	if (!is_sync) {
5173 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5174 						  ioprio);
5175 		bfqq = *async_bfqq;
5176 		if (bfqq)
5177 			goto out;
5178 	}
5179 
5180 	bfqq = kmem_cache_alloc_node(bfq_pool,
5181 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5182 				     bfqd->queue->node);
5183 
5184 	if (bfqq) {
5185 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5186 			      is_sync);
5187 		bfq_init_entity(&bfqq->entity, bfqg);
5188 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5189 	} else {
5190 		bfqq = &bfqd->oom_bfqq;
5191 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5192 		goto out;
5193 	}
5194 
5195 	/*
5196 	 * Pin the queue now that it's allocated, scheduler exit will
5197 	 * prune it.
5198 	 */
5199 	if (async_bfqq) {
5200 		bfqq->ref++; /*
5201 			      * Extra group reference, w.r.t. sync
5202 			      * queue. This extra reference is removed
5203 			      * only if bfqq->bfqg disappears, to
5204 			      * guarantee that this queue is not freed
5205 			      * until its group goes away.
5206 			      */
5207 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5208 			     bfqq, bfqq->ref);
5209 		*async_bfqq = bfqq;
5210 	}
5211 
5212 out:
5213 	bfqq->ref++; /* get a process reference to this queue */
5214 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
5215 	return bfqq;
5216 }
5217 
bfq_update_io_thinktime(struct bfq_data * bfqd,struct bfq_queue * bfqq)5218 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5219 				    struct bfq_queue *bfqq)
5220 {
5221 	struct bfq_ttime *ttime = &bfqq->ttime;
5222 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5223 
5224 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5225 
5226 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
5227 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5228 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5229 				     ttime->ttime_samples);
5230 }
5231 
5232 static void
bfq_update_io_seektime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)5233 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5234 		       struct request *rq)
5235 {
5236 	bfqq->seek_history <<= 1;
5237 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5238 
5239 	if (bfqq->wr_coeff > 1 &&
5240 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5241 	    BFQQ_TOTALLY_SEEKY(bfqq))
5242 		bfq_bfqq_end_wr(bfqq);
5243 }
5244 
bfq_update_has_short_ttime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic)5245 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5246 				       struct bfq_queue *bfqq,
5247 				       struct bfq_io_cq *bic)
5248 {
5249 	bool has_short_ttime = true, state_changed;
5250 
5251 	/*
5252 	 * No need to update has_short_ttime if bfqq is async or in
5253 	 * idle io prio class, or if bfq_slice_idle is zero, because
5254 	 * no device idling is performed for bfqq in this case.
5255 	 */
5256 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5257 	    bfqd->bfq_slice_idle == 0)
5258 		return;
5259 
5260 	/* Idle window just restored, statistics are meaningless. */
5261 	if (time_is_after_eq_jiffies(bfqq->split_time +
5262 				     bfqd->bfq_wr_min_idle_time))
5263 		return;
5264 
5265 	/* Think time is infinite if no process is linked to
5266 	 * bfqq. Otherwise check average think time to
5267 	 * decide whether to mark as has_short_ttime
5268 	 */
5269 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5270 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5271 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
5272 		has_short_ttime = false;
5273 
5274 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5275 
5276 	if (has_short_ttime)
5277 		bfq_mark_bfqq_has_short_ttime(bfqq);
5278 	else
5279 		bfq_clear_bfqq_has_short_ttime(bfqq);
5280 
5281 	/*
5282 	 * Until the base value for the total service time gets
5283 	 * finally computed for bfqq, the inject limit does depend on
5284 	 * the think-time state (short|long). In particular, the limit
5285 	 * is 0 or 1 if the think time is deemed, respectively, as
5286 	 * short or long (details in the comments in
5287 	 * bfq_update_inject_limit()). Accordingly, the next
5288 	 * instructions reset the inject limit if the think-time state
5289 	 * has changed and the above base value is still to be
5290 	 * computed.
5291 	 *
5292 	 * However, the reset is performed only if more than 100 ms
5293 	 * have elapsed since the last update of the inject limit, or
5294 	 * (inclusive) if the change is from short to long think
5295 	 * time. The reason for this waiting is as follows.
5296 	 *
5297 	 * bfqq may have a long think time because of a
5298 	 * synchronization with some other queue, i.e., because the
5299 	 * I/O of some other queue may need to be completed for bfqq
5300 	 * to receive new I/O. Details in the comments on the choice
5301 	 * of the queue for injection in bfq_select_queue().
5302 	 *
5303 	 * As stressed in those comments, if such a synchronization is
5304 	 * actually in place, then, without injection on bfqq, the
5305 	 * blocking I/O cannot happen to served while bfqq is in
5306 	 * service. As a consequence, if bfqq is granted
5307 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5308 	 * is dispatched, until the idle timeout fires. This is likely
5309 	 * to result in lower bandwidth and higher latencies for bfqq,
5310 	 * and in a severe loss of total throughput.
5311 	 *
5312 	 * On the opposite end, a non-zero inject limit may allow the
5313 	 * I/O that blocks bfqq to be executed soon, and therefore
5314 	 * bfqq to receive new I/O soon.
5315 	 *
5316 	 * But, if the blocking gets actually eliminated, then the
5317 	 * next think-time sample for bfqq may be very low. This in
5318 	 * turn may cause bfqq's think time to be deemed
5319 	 * short. Without the 100 ms barrier, this new state change
5320 	 * would cause the body of the next if to be executed
5321 	 * immediately. But this would set to 0 the inject
5322 	 * limit. Without injection, the blocking I/O would cause the
5323 	 * think time of bfqq to become long again, and therefore the
5324 	 * inject limit to be raised again, and so on. The only effect
5325 	 * of such a steady oscillation between the two think-time
5326 	 * states would be to prevent effective injection on bfqq.
5327 	 *
5328 	 * In contrast, if the inject limit is not reset during such a
5329 	 * long time interval as 100 ms, then the number of short
5330 	 * think time samples can grow significantly before the reset
5331 	 * is performed. As a consequence, the think time state can
5332 	 * become stable before the reset. Therefore there will be no
5333 	 * state change when the 100 ms elapse, and no reset of the
5334 	 * inject limit. The inject limit remains steadily equal to 1
5335 	 * both during and after the 100 ms. So injection can be
5336 	 * performed at all times, and throughput gets boosted.
5337 	 *
5338 	 * An inject limit equal to 1 is however in conflict, in
5339 	 * general, with the fact that the think time of bfqq is
5340 	 * short, because injection may be likely to delay bfqq's I/O
5341 	 * (as explained in the comments in
5342 	 * bfq_update_inject_limit()). But this does not happen in
5343 	 * this special case, because bfqq's low think time is due to
5344 	 * an effective handling of a synchronization, through
5345 	 * injection. In this special case, bfqq's I/O does not get
5346 	 * delayed by injection; on the contrary, bfqq's I/O is
5347 	 * brought forward, because it is not blocked for
5348 	 * milliseconds.
5349 	 *
5350 	 * In addition, serving the blocking I/O much sooner, and much
5351 	 * more frequently than once per I/O-plugging timeout, makes
5352 	 * it much quicker to detect a waker queue (the concept of
5353 	 * waker queue is defined in the comments in
5354 	 * bfq_add_request()). This makes it possible to start sooner
5355 	 * to boost throughput more effectively, by injecting the I/O
5356 	 * of the waker queue unconditionally on every
5357 	 * bfq_dispatch_request().
5358 	 *
5359 	 * One last, important benefit of not resetting the inject
5360 	 * limit before 100 ms is that, during this time interval, the
5361 	 * base value for the total service time is likely to get
5362 	 * finally computed for bfqq, freeing the inject limit from
5363 	 * its relation with the think time.
5364 	 */
5365 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5366 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5367 				      msecs_to_jiffies(100)) ||
5368 	     !has_short_ttime))
5369 		bfq_reset_inject_limit(bfqd, bfqq);
5370 }
5371 
5372 /*
5373  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5374  * something we should do about it.
5375  */
bfq_rq_enqueued(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)5376 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5377 			    struct request *rq)
5378 {
5379 	if (rq->cmd_flags & REQ_META)
5380 		bfqq->meta_pending++;
5381 
5382 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5383 
5384 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5385 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5386 				 blk_rq_sectors(rq) < 32;
5387 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5388 
5389 		/*
5390 		 * There is just this request queued: if
5391 		 * - the request is small, and
5392 		 * - we are idling to boost throughput, and
5393 		 * - the queue is not to be expired,
5394 		 * then just exit.
5395 		 *
5396 		 * In this way, if the device is being idled to wait
5397 		 * for a new request from the in-service queue, we
5398 		 * avoid unplugging the device and committing the
5399 		 * device to serve just a small request. In contrast
5400 		 * we wait for the block layer to decide when to
5401 		 * unplug the device: hopefully, new requests will be
5402 		 * merged to this one quickly, then the device will be
5403 		 * unplugged and larger requests will be dispatched.
5404 		 */
5405 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5406 		    !budget_timeout)
5407 			return;
5408 
5409 		/*
5410 		 * A large enough request arrived, or idling is being
5411 		 * performed to preserve service guarantees, or
5412 		 * finally the queue is to be expired: in all these
5413 		 * cases disk idling is to be stopped, so clear
5414 		 * wait_request flag and reset timer.
5415 		 */
5416 		bfq_clear_bfqq_wait_request(bfqq);
5417 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5418 
5419 		/*
5420 		 * The queue is not empty, because a new request just
5421 		 * arrived. Hence we can safely expire the queue, in
5422 		 * case of budget timeout, without risking that the
5423 		 * timestamps of the queue are not updated correctly.
5424 		 * See [1] for more details.
5425 		 */
5426 		if (budget_timeout)
5427 			bfq_bfqq_expire(bfqd, bfqq, false,
5428 					BFQQE_BUDGET_TIMEOUT);
5429 	}
5430 }
5431 
5432 /* returns true if it causes the idle timer to be disabled */
__bfq_insert_request(struct bfq_data * bfqd,struct request * rq)5433 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5434 {
5435 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5436 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
5437 	bool waiting, idle_timer_disabled = false;
5438 
5439 	if (new_bfqq) {
5440 		/*
5441 		 * Release the request's reference to the old bfqq
5442 		 * and make sure one is taken to the shared queue.
5443 		 */
5444 		new_bfqq->allocated++;
5445 		bfqq->allocated--;
5446 		new_bfqq->ref++;
5447 		/*
5448 		 * If the bic associated with the process
5449 		 * issuing this request still points to bfqq
5450 		 * (and thus has not been already redirected
5451 		 * to new_bfqq or even some other bfq_queue),
5452 		 * then complete the merge and redirect it to
5453 		 * new_bfqq.
5454 		 */
5455 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5456 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5457 					bfqq, new_bfqq);
5458 
5459 		bfq_clear_bfqq_just_created(bfqq);
5460 		/*
5461 		 * rq is about to be enqueued into new_bfqq,
5462 		 * release rq reference on bfqq
5463 		 */
5464 		bfq_put_queue(bfqq);
5465 		rq->elv.priv[1] = new_bfqq;
5466 		bfqq = new_bfqq;
5467 	}
5468 
5469 	bfq_update_io_thinktime(bfqd, bfqq);
5470 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5471 	bfq_update_io_seektime(bfqd, bfqq, rq);
5472 
5473 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
5474 	bfq_add_request(rq);
5475 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5476 
5477 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5478 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5479 
5480 	bfq_rq_enqueued(bfqd, bfqq, rq);
5481 
5482 	return idle_timer_disabled;
5483 }
5484 
5485 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,unsigned int cmd_flags)5486 static void bfq_update_insert_stats(struct request_queue *q,
5487 				    struct bfq_queue *bfqq,
5488 				    bool idle_timer_disabled,
5489 				    unsigned int cmd_flags)
5490 {
5491 	if (!bfqq)
5492 		return;
5493 
5494 	/*
5495 	 * bfqq still exists, because it can disappear only after
5496 	 * either it is merged with another queue, or the process it
5497 	 * is associated with exits. But both actions must be taken by
5498 	 * the same process currently executing this flow of
5499 	 * instructions.
5500 	 *
5501 	 * In addition, the following queue lock guarantees that
5502 	 * bfqq_group(bfqq) exists as well.
5503 	 */
5504 	spin_lock_irq(&q->queue_lock);
5505 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5506 	if (idle_timer_disabled)
5507 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5508 	spin_unlock_irq(&q->queue_lock);
5509 }
5510 #else
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,unsigned int cmd_flags)5511 static inline void bfq_update_insert_stats(struct request_queue *q,
5512 					   struct bfq_queue *bfqq,
5513 					   bool idle_timer_disabled,
5514 					   unsigned int cmd_flags) {}
5515 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5516 
5517 static struct bfq_queue *bfq_init_rq(struct request *rq);
5518 
bfq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)5519 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5520 			       bool at_head)
5521 {
5522 	struct request_queue *q = hctx->queue;
5523 	struct bfq_data *bfqd = q->elevator->elevator_data;
5524 	struct bfq_queue *bfqq;
5525 	bool idle_timer_disabled = false;
5526 	unsigned int cmd_flags;
5527 
5528 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5529 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5530 		bfqg_stats_update_legacy_io(q, rq);
5531 #endif
5532 	spin_lock_irq(&bfqd->lock);
5533 	bfqq = bfq_init_rq(rq);
5534 	if (blk_mq_sched_try_insert_merge(q, rq)) {
5535 		spin_unlock_irq(&bfqd->lock);
5536 		return;
5537 	}
5538 
5539 	blk_mq_sched_request_inserted(rq);
5540 
5541 	if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
5542 		if (at_head)
5543 			list_add(&rq->queuelist, &bfqd->dispatch);
5544 		else
5545 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
5546 	} else {
5547 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
5548 		/*
5549 		 * Update bfqq, because, if a queue merge has occurred
5550 		 * in __bfq_insert_request, then rq has been
5551 		 * redirected into a new queue.
5552 		 */
5553 		bfqq = RQ_BFQQ(rq);
5554 
5555 		if (rq_mergeable(rq)) {
5556 			elv_rqhash_add(q, rq);
5557 			if (!q->last_merge)
5558 				q->last_merge = rq;
5559 		}
5560 	}
5561 
5562 	/*
5563 	 * Cache cmd_flags before releasing scheduler lock, because rq
5564 	 * may disappear afterwards (for example, because of a request
5565 	 * merge).
5566 	 */
5567 	cmd_flags = rq->cmd_flags;
5568 
5569 	spin_unlock_irq(&bfqd->lock);
5570 
5571 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5572 				cmd_flags);
5573 }
5574 
bfq_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * list,bool at_head)5575 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5576 				struct list_head *list, bool at_head)
5577 {
5578 	while (!list_empty(list)) {
5579 		struct request *rq;
5580 
5581 		rq = list_first_entry(list, struct request, queuelist);
5582 		list_del_init(&rq->queuelist);
5583 		bfq_insert_request(hctx, rq, at_head);
5584 	}
5585 }
5586 
bfq_update_hw_tag(struct bfq_data * bfqd)5587 static void bfq_update_hw_tag(struct bfq_data *bfqd)
5588 {
5589 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5590 
5591 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5592 				       bfqd->rq_in_driver);
5593 
5594 	if (bfqd->hw_tag == 1)
5595 		return;
5596 
5597 	/*
5598 	 * This sample is valid if the number of outstanding requests
5599 	 * is large enough to allow a queueing behavior.  Note that the
5600 	 * sum is not exact, as it's not taking into account deactivated
5601 	 * requests.
5602 	 */
5603 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
5604 		return;
5605 
5606 	/*
5607 	 * If active queue hasn't enough requests and can idle, bfq might not
5608 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5609 	 * case
5610 	 */
5611 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5612 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5613 	    BFQ_HW_QUEUE_THRESHOLD &&
5614 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5615 		return;
5616 
5617 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5618 		return;
5619 
5620 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5621 	bfqd->max_rq_in_driver = 0;
5622 	bfqd->hw_tag_samples = 0;
5623 
5624 	bfqd->nonrot_with_queueing =
5625 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
5626 }
5627 
bfq_completed_request(struct bfq_queue * bfqq,struct bfq_data * bfqd)5628 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5629 {
5630 	u64 now_ns;
5631 	u32 delta_us;
5632 
5633 	bfq_update_hw_tag(bfqd);
5634 
5635 	bfqd->rq_in_driver--;
5636 	bfqq->dispatched--;
5637 
5638 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5639 		/*
5640 		 * Set budget_timeout (which we overload to store the
5641 		 * time at which the queue remains with no backlog and
5642 		 * no outstanding request; used by the weight-raising
5643 		 * mechanism).
5644 		 */
5645 		bfqq->budget_timeout = jiffies;
5646 
5647 		bfq_weights_tree_remove(bfqd, bfqq);
5648 	}
5649 
5650 	now_ns = ktime_get_ns();
5651 
5652 	bfqq->ttime.last_end_request = now_ns;
5653 
5654 	/*
5655 	 * Using us instead of ns, to get a reasonable precision in
5656 	 * computing rate in next check.
5657 	 */
5658 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5659 
5660 	/*
5661 	 * If the request took rather long to complete, and, according
5662 	 * to the maximum request size recorded, this completion latency
5663 	 * implies that the request was certainly served at a very low
5664 	 * rate (less than 1M sectors/sec), then the whole observation
5665 	 * interval that lasts up to this time instant cannot be a
5666 	 * valid time interval for computing a new peak rate.  Invoke
5667 	 * bfq_update_rate_reset to have the following three steps
5668 	 * taken:
5669 	 * - close the observation interval at the last (previous)
5670 	 *   request dispatch or completion
5671 	 * - compute rate, if possible, for that observation interval
5672 	 * - reset to zero samples, which will trigger a proper
5673 	 *   re-initialization of the observation interval on next
5674 	 *   dispatch
5675 	 */
5676 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5677 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5678 			1UL<<(BFQ_RATE_SHIFT - 10))
5679 		bfq_update_rate_reset(bfqd, NULL);
5680 	bfqd->last_completion = now_ns;
5681 	bfqd->last_completed_rq_bfqq = bfqq;
5682 
5683 	/*
5684 	 * If we are waiting to discover whether the request pattern
5685 	 * of the task associated with the queue is actually
5686 	 * isochronous, and both requisites for this condition to hold
5687 	 * are now satisfied, then compute soft_rt_next_start (see the
5688 	 * comments on the function bfq_bfqq_softrt_next_start()). We
5689 	 * do not compute soft_rt_next_start if bfqq is in interactive
5690 	 * weight raising (see the comments in bfq_bfqq_expire() for
5691 	 * an explanation). We schedule this delayed update when bfqq
5692 	 * expires, if it still has in-flight requests.
5693 	 */
5694 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
5695 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
5696 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
5697 		bfqq->soft_rt_next_start =
5698 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
5699 
5700 	/*
5701 	 * If this is the in-service queue, check if it needs to be expired,
5702 	 * or if we want to idle in case it has no pending requests.
5703 	 */
5704 	if (bfqd->in_service_queue == bfqq) {
5705 		if (bfq_bfqq_must_idle(bfqq)) {
5706 			if (bfqq->dispatched == 0)
5707 				bfq_arm_slice_timer(bfqd);
5708 			/*
5709 			 * If we get here, we do not expire bfqq, even
5710 			 * if bfqq was in budget timeout or had no
5711 			 * more requests (as controlled in the next
5712 			 * conditional instructions). The reason for
5713 			 * not expiring bfqq is as follows.
5714 			 *
5715 			 * Here bfqq->dispatched > 0 holds, but
5716 			 * bfq_bfqq_must_idle() returned true. This
5717 			 * implies that, even if no request arrives
5718 			 * for bfqq before bfqq->dispatched reaches 0,
5719 			 * bfqq will, however, not be expired on the
5720 			 * completion event that causes bfqq->dispatch
5721 			 * to reach zero. In contrast, on this event,
5722 			 * bfqq will start enjoying device idling
5723 			 * (I/O-dispatch plugging).
5724 			 *
5725 			 * But, if we expired bfqq here, bfqq would
5726 			 * not have the chance to enjoy device idling
5727 			 * when bfqq->dispatched finally reaches
5728 			 * zero. This would expose bfqq to violation
5729 			 * of its reserved service guarantees.
5730 			 */
5731 			return;
5732 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
5733 			bfq_bfqq_expire(bfqd, bfqq, false,
5734 					BFQQE_BUDGET_TIMEOUT);
5735 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5736 			 (bfqq->dispatched == 0 ||
5737 			  !bfq_better_to_idle(bfqq)))
5738 			bfq_bfqq_expire(bfqd, bfqq, false,
5739 					BFQQE_NO_MORE_REQUESTS);
5740 	}
5741 
5742 	if (!bfqd->rq_in_driver)
5743 		bfq_schedule_dispatch(bfqd);
5744 }
5745 
bfq_finish_requeue_request_body(struct bfq_queue * bfqq)5746 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
5747 {
5748 	bfqq->allocated--;
5749 
5750 	bfq_put_queue(bfqq);
5751 }
5752 
5753 /*
5754  * The processes associated with bfqq may happen to generate their
5755  * cumulative I/O at a lower rate than the rate at which the device
5756  * could serve the same I/O. This is rather probable, e.g., if only
5757  * one process is associated with bfqq and the device is an SSD. It
5758  * results in bfqq becoming often empty while in service. In this
5759  * respect, if BFQ is allowed to switch to another queue when bfqq
5760  * remains empty, then the device goes on being fed with I/O requests,
5761  * and the throughput is not affected. In contrast, if BFQ is not
5762  * allowed to switch to another queue---because bfqq is sync and
5763  * I/O-dispatch needs to be plugged while bfqq is temporarily
5764  * empty---then, during the service of bfqq, there will be frequent
5765  * "service holes", i.e., time intervals during which bfqq gets empty
5766  * and the device can only consume the I/O already queued in its
5767  * hardware queues. During service holes, the device may even get to
5768  * remaining idle. In the end, during the service of bfqq, the device
5769  * is driven at a lower speed than the one it can reach with the kind
5770  * of I/O flowing through bfqq.
5771  *
5772  * To counter this loss of throughput, BFQ implements a "request
5773  * injection mechanism", which tries to fill the above service holes
5774  * with I/O requests taken from other queues. The hard part in this
5775  * mechanism is finding the right amount of I/O to inject, so as to
5776  * both boost throughput and not break bfqq's bandwidth and latency
5777  * guarantees. In this respect, the mechanism maintains a per-queue
5778  * inject limit, computed as below. While bfqq is empty, the injection
5779  * mechanism dispatches extra I/O requests only until the total number
5780  * of I/O requests in flight---i.e., already dispatched but not yet
5781  * completed---remains lower than this limit.
5782  *
5783  * A first definition comes in handy to introduce the algorithm by
5784  * which the inject limit is computed.  We define as first request for
5785  * bfqq, an I/O request for bfqq that arrives while bfqq is in
5786  * service, and causes bfqq to switch from empty to non-empty. The
5787  * algorithm updates the limit as a function of the effect of
5788  * injection on the service times of only the first requests of
5789  * bfqq. The reason for this restriction is that these are the
5790  * requests whose service time is affected most, because they are the
5791  * first to arrive after injection possibly occurred.
5792  *
5793  * To evaluate the effect of injection, the algorithm measures the
5794  * "total service time" of first requests. We define as total service
5795  * time of an I/O request, the time that elapses since when the
5796  * request is enqueued into bfqq, to when it is completed. This
5797  * quantity allows the whole effect of injection to be measured. It is
5798  * easy to see why. Suppose that some requests of other queues are
5799  * actually injected while bfqq is empty, and that a new request R
5800  * then arrives for bfqq. If the device does start to serve all or
5801  * part of the injected requests during the service hole, then,
5802  * because of this extra service, it may delay the next invocation of
5803  * the dispatch hook of BFQ. Then, even after R gets eventually
5804  * dispatched, the device may delay the actual service of R if it is
5805  * still busy serving the extra requests, or if it decides to serve,
5806  * before R, some extra request still present in its queues. As a
5807  * conclusion, the cumulative extra delay caused by injection can be
5808  * easily evaluated by just comparing the total service time of first
5809  * requests with and without injection.
5810  *
5811  * The limit-update algorithm works as follows. On the arrival of a
5812  * first request of bfqq, the algorithm measures the total time of the
5813  * request only if one of the three cases below holds, and, for each
5814  * case, it updates the limit as described below:
5815  *
5816  * (1) If there is no in-flight request. This gives a baseline for the
5817  *     total service time of the requests of bfqq. If the baseline has
5818  *     not been computed yet, then, after computing it, the limit is
5819  *     set to 1, to start boosting throughput, and to prepare the
5820  *     ground for the next case. If the baseline has already been
5821  *     computed, then it is updated, in case it results to be lower
5822  *     than the previous value.
5823  *
5824  * (2) If the limit is higher than 0 and there are in-flight
5825  *     requests. By comparing the total service time in this case with
5826  *     the above baseline, it is possible to know at which extent the
5827  *     current value of the limit is inflating the total service
5828  *     time. If the inflation is below a certain threshold, then bfqq
5829  *     is assumed to be suffering from no perceivable loss of its
5830  *     service guarantees, and the limit is even tentatively
5831  *     increased. If the inflation is above the threshold, then the
5832  *     limit is decreased. Due to the lack of any hysteresis, this
5833  *     logic makes the limit oscillate even in steady workload
5834  *     conditions. Yet we opted for it, because it is fast in reaching
5835  *     the best value for the limit, as a function of the current I/O
5836  *     workload. To reduce oscillations, this step is disabled for a
5837  *     short time interval after the limit happens to be decreased.
5838  *
5839  * (3) Periodically, after resetting the limit, to make sure that the
5840  *     limit eventually drops in case the workload changes. This is
5841  *     needed because, after the limit has gone safely up for a
5842  *     certain workload, it is impossible to guess whether the
5843  *     baseline total service time may have changed, without measuring
5844  *     it again without injection. A more effective version of this
5845  *     step might be to just sample the baseline, by interrupting
5846  *     injection only once, and then to reset/lower the limit only if
5847  *     the total service time with the current limit does happen to be
5848  *     too large.
5849  *
5850  * More details on each step are provided in the comments on the
5851  * pieces of code that implement these steps: the branch handling the
5852  * transition from empty to non empty in bfq_add_request(), the branch
5853  * handling injection in bfq_select_queue(), and the function
5854  * bfq_choose_bfqq_for_injection(). These comments also explain some
5855  * exceptions, made by the injection mechanism in some special cases.
5856  */
bfq_update_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)5857 static void bfq_update_inject_limit(struct bfq_data *bfqd,
5858 				    struct bfq_queue *bfqq)
5859 {
5860 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5861 	unsigned int old_limit = bfqq->inject_limit;
5862 
5863 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
5864 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5865 
5866 		if (tot_time_ns >= threshold && old_limit > 0) {
5867 			bfqq->inject_limit--;
5868 			bfqq->decrease_time_jif = jiffies;
5869 		} else if (tot_time_ns < threshold &&
5870 			   old_limit <= bfqd->max_rq_in_driver)
5871 			bfqq->inject_limit++;
5872 	}
5873 
5874 	/*
5875 	 * Either we still have to compute the base value for the
5876 	 * total service time, and there seem to be the right
5877 	 * conditions to do it, or we can lower the last base value
5878 	 * computed.
5879 	 *
5880 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
5881 	 * request in flight, because this function is in the code
5882 	 * path that handles the completion of a request of bfqq, and,
5883 	 * in particular, this function is executed before
5884 	 * bfqd->rq_in_driver is decremented in such a code path.
5885 	 */
5886 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
5887 	    tot_time_ns < bfqq->last_serv_time_ns) {
5888 		if (bfqq->last_serv_time_ns == 0) {
5889 			/*
5890 			 * Now we certainly have a base value: make sure we
5891 			 * start trying injection.
5892 			 */
5893 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5894 		}
5895 		bfqq->last_serv_time_ns = tot_time_ns;
5896 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
5897 		/*
5898 		 * No I/O injected and no request still in service in
5899 		 * the drive: these are the exact conditions for
5900 		 * computing the base value of the total service time
5901 		 * for bfqq. So let's update this value, because it is
5902 		 * rather variable. For example, it varies if the size
5903 		 * or the spatial locality of the I/O requests in bfqq
5904 		 * change.
5905 		 */
5906 		bfqq->last_serv_time_ns = tot_time_ns;
5907 
5908 
5909 	/* update complete, not waiting for any request completion any longer */
5910 	bfqd->waited_rq = NULL;
5911 	bfqd->rqs_injected = false;
5912 }
5913 
5914 /*
5915  * Handle either a requeue or a finish for rq. The things to do are
5916  * the same in both cases: all references to rq are to be dropped. In
5917  * particular, rq is considered completed from the point of view of
5918  * the scheduler.
5919  */
bfq_finish_requeue_request(struct request * rq)5920 static void bfq_finish_requeue_request(struct request *rq)
5921 {
5922 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
5923 	struct bfq_data *bfqd;
5924 
5925 	/*
5926 	 * rq either is not associated with any icq, or is an already
5927 	 * requeued request that has not (yet) been re-inserted into
5928 	 * a bfq_queue.
5929 	 */
5930 	if (!rq->elv.icq || !bfqq)
5931 		return;
5932 
5933 	bfqd = bfqq->bfqd;
5934 
5935 	if (rq->rq_flags & RQF_STARTED)
5936 		bfqg_stats_update_completion(bfqq_group(bfqq),
5937 					     rq->start_time_ns,
5938 					     rq->io_start_time_ns,
5939 					     rq->cmd_flags);
5940 
5941 	if (likely(rq->rq_flags & RQF_STARTED)) {
5942 		unsigned long flags;
5943 
5944 		spin_lock_irqsave(&bfqd->lock, flags);
5945 
5946 		if (rq == bfqd->waited_rq)
5947 			bfq_update_inject_limit(bfqd, bfqq);
5948 
5949 		bfq_completed_request(bfqq, bfqd);
5950 		bfq_finish_requeue_request_body(bfqq);
5951 
5952 		spin_unlock_irqrestore(&bfqd->lock, flags);
5953 	} else {
5954 		/*
5955 		 * Request rq may be still/already in the scheduler,
5956 		 * in which case we need to remove it (this should
5957 		 * never happen in case of requeue). And we cannot
5958 		 * defer such a check and removal, to avoid
5959 		 * inconsistencies in the time interval from the end
5960 		 * of this function to the start of the deferred work.
5961 		 * This situation seems to occur only in process
5962 		 * context, as a consequence of a merge. In the
5963 		 * current version of the code, this implies that the
5964 		 * lock is held.
5965 		 */
5966 
5967 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
5968 			bfq_remove_request(rq->q, rq);
5969 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
5970 						    rq->cmd_flags);
5971 		}
5972 		bfq_finish_requeue_request_body(bfqq);
5973 	}
5974 
5975 	/*
5976 	 * Reset private fields. In case of a requeue, this allows
5977 	 * this function to correctly do nothing if it is spuriously
5978 	 * invoked again on this same request (see the check at the
5979 	 * beginning of the function). Probably, a better general
5980 	 * design would be to prevent blk-mq from invoking the requeue
5981 	 * or finish hooks of an elevator, for a request that is not
5982 	 * referred by that elevator.
5983 	 *
5984 	 * Resetting the following fields would break the
5985 	 * request-insertion logic if rq is re-inserted into a bfq
5986 	 * internal queue, without a re-preparation. Here we assume
5987 	 * that re-insertions of requeued requests, without
5988 	 * re-preparation, can happen only for pass_through or at_head
5989 	 * requests (which are not re-inserted into bfq internal
5990 	 * queues).
5991 	 */
5992 	rq->elv.priv[0] = NULL;
5993 	rq->elv.priv[1] = NULL;
5994 }
5995 
5996 /*
5997  * Removes the association between the current task and bfqq, assuming
5998  * that bic points to the bfq iocontext of the task.
5999  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6000  * was the last process referring to that bfqq.
6001  */
6002 static struct bfq_queue *
bfq_split_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq)6003 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6004 {
6005 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6006 
6007 	if (bfqq_process_refs(bfqq) == 1) {
6008 		bfqq->pid = current->pid;
6009 		bfq_clear_bfqq_coop(bfqq);
6010 		bfq_clear_bfqq_split_coop(bfqq);
6011 		return bfqq;
6012 	}
6013 
6014 	bic_set_bfqq(bic, NULL, true);
6015 
6016 	bfq_put_cooperator(bfqq);
6017 
6018 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6019 	return NULL;
6020 }
6021 
bfq_get_bfqq_handle_split(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bio * bio,bool split,bool is_sync,bool * new_queue)6022 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6023 						   struct bfq_io_cq *bic,
6024 						   struct bio *bio,
6025 						   bool split, bool is_sync,
6026 						   bool *new_queue)
6027 {
6028 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6029 
6030 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6031 		return bfqq;
6032 
6033 	if (new_queue)
6034 		*new_queue = true;
6035 
6036 	if (bfqq)
6037 		bfq_put_queue(bfqq);
6038 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
6039 
6040 	bic_set_bfqq(bic, bfqq, is_sync);
6041 	if (split && is_sync) {
6042 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6043 		    bic->saved_in_large_burst)
6044 			bfq_mark_bfqq_in_large_burst(bfqq);
6045 		else {
6046 			bfq_clear_bfqq_in_large_burst(bfqq);
6047 			if (bic->was_in_burst_list)
6048 				/*
6049 				 * If bfqq was in the current
6050 				 * burst list before being
6051 				 * merged, then we have to add
6052 				 * it back. And we do not need
6053 				 * to increase burst_size, as
6054 				 * we did not decrement
6055 				 * burst_size when we removed
6056 				 * bfqq from the burst list as
6057 				 * a consequence of a merge
6058 				 * (see comments in
6059 				 * bfq_put_queue). In this
6060 				 * respect, it would be rather
6061 				 * costly to know whether the
6062 				 * current burst list is still
6063 				 * the same burst list from
6064 				 * which bfqq was removed on
6065 				 * the merge. To avoid this
6066 				 * cost, if bfqq was in a
6067 				 * burst list, then we add
6068 				 * bfqq to the current burst
6069 				 * list without any further
6070 				 * check. This can cause
6071 				 * inappropriate insertions,
6072 				 * but rarely enough to not
6073 				 * harm the detection of large
6074 				 * bursts significantly.
6075 				 */
6076 				hlist_add_head(&bfqq->burst_list_node,
6077 					       &bfqd->burst_list);
6078 		}
6079 		bfqq->split_time = jiffies;
6080 	}
6081 
6082 	return bfqq;
6083 }
6084 
6085 /*
6086  * Only reset private fields. The actual request preparation will be
6087  * performed by bfq_init_rq, when rq is either inserted or merged. See
6088  * comments on bfq_init_rq for the reason behind this delayed
6089  * preparation.
6090  */
bfq_prepare_request(struct request * rq)6091 static void bfq_prepare_request(struct request *rq)
6092 {
6093 	/*
6094 	 * Regardless of whether we have an icq attached, we have to
6095 	 * clear the scheduler pointers, as they might point to
6096 	 * previously allocated bic/bfqq structs.
6097 	 */
6098 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6099 }
6100 
6101 /*
6102  * If needed, init rq, allocate bfq data structures associated with
6103  * rq, and increment reference counters in the destination bfq_queue
6104  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6105  * not associated with any bfq_queue.
6106  *
6107  * This function is invoked by the functions that perform rq insertion
6108  * or merging. One may have expected the above preparation operations
6109  * to be performed in bfq_prepare_request, and not delayed to when rq
6110  * is inserted or merged. The rationale behind this delayed
6111  * preparation is that, after the prepare_request hook is invoked for
6112  * rq, rq may still be transformed into a request with no icq, i.e., a
6113  * request not associated with any queue. No bfq hook is invoked to
6114  * signal this transformation. As a consequence, should these
6115  * preparation operations be performed when the prepare_request hook
6116  * is invoked, and should rq be transformed one moment later, bfq
6117  * would end up in an inconsistent state, because it would have
6118  * incremented some queue counters for an rq destined to
6119  * transformation, without any chance to correctly lower these
6120  * counters back. In contrast, no transformation can still happen for
6121  * rq after rq has been inserted or merged. So, it is safe to execute
6122  * these preparation operations when rq is finally inserted or merged.
6123  */
bfq_init_rq(struct request * rq)6124 static struct bfq_queue *bfq_init_rq(struct request *rq)
6125 {
6126 	struct request_queue *q = rq->q;
6127 	struct bio *bio = rq->bio;
6128 	struct bfq_data *bfqd = q->elevator->elevator_data;
6129 	struct bfq_io_cq *bic;
6130 	const int is_sync = rq_is_sync(rq);
6131 	struct bfq_queue *bfqq;
6132 	bool new_queue = false;
6133 	bool bfqq_already_existing = false, split = false;
6134 
6135 	if (unlikely(!rq->elv.icq))
6136 		return NULL;
6137 
6138 	/*
6139 	 * Assuming that elv.priv[1] is set only if everything is set
6140 	 * for this rq. This holds true, because this function is
6141 	 * invoked only for insertion or merging, and, after such
6142 	 * events, a request cannot be manipulated any longer before
6143 	 * being removed from bfq.
6144 	 */
6145 	if (rq->elv.priv[1])
6146 		return rq->elv.priv[1];
6147 
6148 	bic = icq_to_bic(rq->elv.icq);
6149 
6150 	bfq_check_ioprio_change(bic, bio);
6151 
6152 	bfq_bic_update_cgroup(bic, bio);
6153 
6154 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6155 					 &new_queue);
6156 
6157 	if (likely(!new_queue)) {
6158 		/* If the queue was seeky for too long, break it apart. */
6159 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
6160 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
6161 
6162 			/* Update bic before losing reference to bfqq */
6163 			if (bfq_bfqq_in_large_burst(bfqq))
6164 				bic->saved_in_large_burst = true;
6165 
6166 			bfqq = bfq_split_bfqq(bic, bfqq);
6167 			split = true;
6168 
6169 			if (!bfqq)
6170 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6171 								 true, is_sync,
6172 								 NULL);
6173 			else
6174 				bfqq_already_existing = true;
6175 		}
6176 	}
6177 
6178 	bfqq->allocated++;
6179 	bfqq->ref++;
6180 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6181 		     rq, bfqq, bfqq->ref);
6182 
6183 	rq->elv.priv[0] = bic;
6184 	rq->elv.priv[1] = bfqq;
6185 
6186 	/*
6187 	 * If a bfq_queue has only one process reference, it is owned
6188 	 * by only this bic: we can then set bfqq->bic = bic. in
6189 	 * addition, if the queue has also just been split, we have to
6190 	 * resume its state.
6191 	 */
6192 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6193 		bfqq->bic = bic;
6194 		if (split) {
6195 			/*
6196 			 * The queue has just been split from a shared
6197 			 * queue: restore the idle window and the
6198 			 * possible weight raising period.
6199 			 */
6200 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6201 					      bfqq_already_existing);
6202 		}
6203 	}
6204 
6205 	/*
6206 	 * Consider bfqq as possibly belonging to a burst of newly
6207 	 * created queues only if:
6208 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6209 	 * or
6210 	 * 2) There is no other active queue. In fact, if, in
6211 	 *    contrast, there are active queues not belonging to the
6212 	 *    possible burst bfqq may belong to, then there is no gain
6213 	 *    in considering bfqq as belonging to a burst, and
6214 	 *    therefore in not weight-raising bfqq. See comments on
6215 	 *    bfq_handle_burst().
6216 	 *
6217 	 * This filtering also helps eliminating false positives,
6218 	 * occurring when bfqq does not belong to an actual large
6219 	 * burst, but some background task (e.g., a service) happens
6220 	 * to trigger the creation of new queues very close to when
6221 	 * bfqq and its possible companion queues are created. See
6222 	 * comments on bfq_handle_burst() for further details also on
6223 	 * this issue.
6224 	 */
6225 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6226 		     (bfqd->burst_size > 0 ||
6227 		      bfq_tot_busy_queues(bfqd) == 0)))
6228 		bfq_handle_burst(bfqd, bfqq);
6229 
6230 	return bfqq;
6231 }
6232 
6233 static void
bfq_idle_slice_timer_body(struct bfq_data * bfqd,struct bfq_queue * bfqq)6234 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6235 {
6236 	enum bfqq_expiration reason;
6237 	unsigned long flags;
6238 
6239 	spin_lock_irqsave(&bfqd->lock, flags);
6240 
6241 	/*
6242 	 * Considering that bfqq may be in race, we should firstly check
6243 	 * whether bfqq is in service before doing something on it. If
6244 	 * the bfqq in race is not in service, it has already been expired
6245 	 * through __bfq_bfqq_expire func and its wait_request flags has
6246 	 * been cleared in __bfq_bfqd_reset_in_service func.
6247 	 */
6248 	if (bfqq != bfqd->in_service_queue) {
6249 		spin_unlock_irqrestore(&bfqd->lock, flags);
6250 		return;
6251 	}
6252 
6253 	bfq_clear_bfqq_wait_request(bfqq);
6254 
6255 	if (bfq_bfqq_budget_timeout(bfqq))
6256 		/*
6257 		 * Also here the queue can be safely expired
6258 		 * for budget timeout without wasting
6259 		 * guarantees
6260 		 */
6261 		reason = BFQQE_BUDGET_TIMEOUT;
6262 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6263 		/*
6264 		 * The queue may not be empty upon timer expiration,
6265 		 * because we may not disable the timer when the
6266 		 * first request of the in-service queue arrives
6267 		 * during disk idling.
6268 		 */
6269 		reason = BFQQE_TOO_IDLE;
6270 	else
6271 		goto schedule_dispatch;
6272 
6273 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6274 
6275 schedule_dispatch:
6276 	bfq_schedule_dispatch(bfqd);
6277 	spin_unlock_irqrestore(&bfqd->lock, flags);
6278 }
6279 
6280 /*
6281  * Handler of the expiration of the timer running if the in-service queue
6282  * is idling inside its time slice.
6283  */
bfq_idle_slice_timer(struct hrtimer * timer)6284 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6285 {
6286 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6287 					     idle_slice_timer);
6288 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6289 
6290 	/*
6291 	 * Theoretical race here: the in-service queue can be NULL or
6292 	 * different from the queue that was idling if a new request
6293 	 * arrives for the current queue and there is a full dispatch
6294 	 * cycle that changes the in-service queue.  This can hardly
6295 	 * happen, but in the worst case we just expire a queue too
6296 	 * early.
6297 	 */
6298 	if (bfqq)
6299 		bfq_idle_slice_timer_body(bfqd, bfqq);
6300 
6301 	return HRTIMER_NORESTART;
6302 }
6303 
__bfq_put_async_bfqq(struct bfq_data * bfqd,struct bfq_queue ** bfqq_ptr)6304 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6305 				 struct bfq_queue **bfqq_ptr)
6306 {
6307 	struct bfq_queue *bfqq = *bfqq_ptr;
6308 
6309 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6310 	if (bfqq) {
6311 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6312 
6313 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6314 			     bfqq, bfqq->ref);
6315 		bfq_put_queue(bfqq);
6316 		*bfqq_ptr = NULL;
6317 	}
6318 }
6319 
6320 /*
6321  * Release all the bfqg references to its async queues.  If we are
6322  * deallocating the group these queues may still contain requests, so
6323  * we reparent them to the root cgroup (i.e., the only one that will
6324  * exist for sure until all the requests on a device are gone).
6325  */
bfq_put_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)6326 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6327 {
6328 	int i, j;
6329 
6330 	for (i = 0; i < 2; i++)
6331 		for (j = 0; j < IOPRIO_BE_NR; j++)
6332 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6333 
6334 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6335 }
6336 
6337 /*
6338  * See the comments on bfq_limit_depth for the purpose of
6339  * the depths set in the function. Return minimum shallow depth we'll use.
6340  */
bfq_update_depths(struct bfq_data * bfqd,struct sbitmap_queue * bt)6341 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6342 				      struct sbitmap_queue *bt)
6343 {
6344 	unsigned int i, j, min_shallow = UINT_MAX;
6345 
6346 	/*
6347 	 * In-word depths if no bfq_queue is being weight-raised:
6348 	 * leaving 25% of tags only for sync reads.
6349 	 *
6350 	 * In next formulas, right-shift the value
6351 	 * (1U<<bt->sb.shift), instead of computing directly
6352 	 * (1U<<(bt->sb.shift - something)), to be robust against
6353 	 * any possible value of bt->sb.shift, without having to
6354 	 * limit 'something'.
6355 	 */
6356 	/* no more than 50% of tags for async I/O */
6357 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
6358 	/*
6359 	 * no more than 75% of tags for sync writes (25% extra tags
6360 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6361 	 * writes)
6362 	 */
6363 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
6364 
6365 	/*
6366 	 * In-word depths in case some bfq_queue is being weight-
6367 	 * raised: leaving ~63% of tags for sync reads. This is the
6368 	 * highest percentage for which, in our tests, application
6369 	 * start-up times didn't suffer from any regression due to tag
6370 	 * shortage.
6371 	 */
6372 	/* no more than ~18% of tags for async I/O */
6373 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
6374 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6375 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
6376 
6377 	for (i = 0; i < 2; i++)
6378 		for (j = 0; j < 2; j++)
6379 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6380 
6381 	return min_shallow;
6382 }
6383 
bfq_depth_updated(struct blk_mq_hw_ctx * hctx)6384 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6385 {
6386 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6387 	struct blk_mq_tags *tags = hctx->sched_tags;
6388 	unsigned int min_shallow;
6389 
6390 	min_shallow = bfq_update_depths(bfqd, tags->bitmap_tags);
6391 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, min_shallow);
6392 }
6393 
bfq_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int index)6394 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6395 {
6396 	bfq_depth_updated(hctx);
6397 	return 0;
6398 }
6399 
bfq_exit_queue(struct elevator_queue * e)6400 static void bfq_exit_queue(struct elevator_queue *e)
6401 {
6402 	struct bfq_data *bfqd = e->elevator_data;
6403 	struct bfq_queue *bfqq, *n;
6404 
6405 	hrtimer_cancel(&bfqd->idle_slice_timer);
6406 
6407 	spin_lock_irq(&bfqd->lock);
6408 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6409 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6410 	spin_unlock_irq(&bfqd->lock);
6411 
6412 	hrtimer_cancel(&bfqd->idle_slice_timer);
6413 
6414 	/* release oom-queue reference to root group */
6415 	bfqg_and_blkg_put(bfqd->root_group);
6416 
6417 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6418 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6419 #else
6420 	spin_lock_irq(&bfqd->lock);
6421 	bfq_put_async_queues(bfqd, bfqd->root_group);
6422 	kfree(bfqd->root_group);
6423 	spin_unlock_irq(&bfqd->lock);
6424 #endif
6425 
6426 	wbt_enable_default(bfqd->queue);
6427 
6428 	kfree(bfqd);
6429 }
6430 
bfq_init_root_group(struct bfq_group * root_group,struct bfq_data * bfqd)6431 static void bfq_init_root_group(struct bfq_group *root_group,
6432 				struct bfq_data *bfqd)
6433 {
6434 	int i;
6435 
6436 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6437 	root_group->entity.parent = NULL;
6438 	root_group->my_entity = NULL;
6439 	root_group->bfqd = bfqd;
6440 #endif
6441 	root_group->rq_pos_tree = RB_ROOT;
6442 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6443 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6444 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
6445 }
6446 
bfq_init_queue(struct request_queue * q,struct elevator_type * e)6447 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6448 {
6449 	struct bfq_data *bfqd;
6450 	struct elevator_queue *eq;
6451 
6452 	eq = elevator_alloc(q, e);
6453 	if (!eq)
6454 		return -ENOMEM;
6455 
6456 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6457 	if (!bfqd) {
6458 		kobject_put(&eq->kobj);
6459 		return -ENOMEM;
6460 	}
6461 	eq->elevator_data = bfqd;
6462 
6463 	spin_lock_irq(&q->queue_lock);
6464 	q->elevator = eq;
6465 	spin_unlock_irq(&q->queue_lock);
6466 
6467 	/*
6468 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6469 	 * Grab a permanent reference to it, so that the normal code flow
6470 	 * will not attempt to free it.
6471 	 */
6472 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6473 	bfqd->oom_bfqq.ref++;
6474 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6475 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6476 	bfqd->oom_bfqq.entity.new_weight =
6477 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
6478 
6479 	/* oom_bfqq does not participate to bursts */
6480 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6481 
6482 	/*
6483 	 * Trigger weight initialization, according to ioprio, at the
6484 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6485 	 * class won't be changed any more.
6486 	 */
6487 	bfqd->oom_bfqq.entity.prio_changed = 1;
6488 
6489 	bfqd->queue = q;
6490 
6491 	INIT_LIST_HEAD(&bfqd->dispatch);
6492 
6493 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6494 		     HRTIMER_MODE_REL);
6495 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6496 
6497 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
6498 	bfqd->num_groups_with_pending_reqs = 0;
6499 
6500 	INIT_LIST_HEAD(&bfqd->active_list);
6501 	INIT_LIST_HEAD(&bfqd->idle_list);
6502 	INIT_HLIST_HEAD(&bfqd->burst_list);
6503 
6504 	bfqd->hw_tag = -1;
6505 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
6506 
6507 	bfqd->bfq_max_budget = bfq_default_max_budget;
6508 
6509 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6510 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6511 	bfqd->bfq_back_max = bfq_back_max;
6512 	bfqd->bfq_back_penalty = bfq_back_penalty;
6513 	bfqd->bfq_slice_idle = bfq_slice_idle;
6514 	bfqd->bfq_timeout = bfq_timeout;
6515 
6516 	bfqd->bfq_requests_within_timer = 120;
6517 
6518 	bfqd->bfq_large_burst_thresh = 8;
6519 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6520 
6521 	bfqd->low_latency = true;
6522 
6523 	/*
6524 	 * Trade-off between responsiveness and fairness.
6525 	 */
6526 	bfqd->bfq_wr_coeff = 30;
6527 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
6528 	bfqd->bfq_wr_max_time = 0;
6529 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6530 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
6531 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
6532 					      * Approximate rate required
6533 					      * to playback or record a
6534 					      * high-definition compressed
6535 					      * video.
6536 					      */
6537 	bfqd->wr_busy_queues = 0;
6538 
6539 	/*
6540 	 * Begin by assuming, optimistically, that the device peak
6541 	 * rate is equal to 2/3 of the highest reference rate.
6542 	 */
6543 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6544 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6545 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
6546 
6547 	spin_lock_init(&bfqd->lock);
6548 
6549 	/*
6550 	 * The invocation of the next bfq_create_group_hierarchy
6551 	 * function is the head of a chain of function calls
6552 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6553 	 * blk_mq_freeze_queue) that may lead to the invocation of the
6554 	 * has_work hook function. For this reason,
6555 	 * bfq_create_group_hierarchy is invoked only after all
6556 	 * scheduler data has been initialized, apart from the fields
6557 	 * that can be initialized only after invoking
6558 	 * bfq_create_group_hierarchy. This, in particular, enables
6559 	 * has_work to correctly return false. Of course, to avoid
6560 	 * other inconsistencies, the blk-mq stack must then refrain
6561 	 * from invoking further scheduler hooks before this init
6562 	 * function is finished.
6563 	 */
6564 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6565 	if (!bfqd->root_group)
6566 		goto out_free;
6567 	bfq_init_root_group(bfqd->root_group, bfqd);
6568 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6569 
6570 	wbt_disable_default(q);
6571 	return 0;
6572 
6573 out_free:
6574 	kfree(bfqd);
6575 	kobject_put(&eq->kobj);
6576 	return -ENOMEM;
6577 }
6578 
bfq_slab_kill(void)6579 static void bfq_slab_kill(void)
6580 {
6581 	kmem_cache_destroy(bfq_pool);
6582 }
6583 
bfq_slab_setup(void)6584 static int __init bfq_slab_setup(void)
6585 {
6586 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
6587 	if (!bfq_pool)
6588 		return -ENOMEM;
6589 	return 0;
6590 }
6591 
bfq_var_show(unsigned int var,char * page)6592 static ssize_t bfq_var_show(unsigned int var, char *page)
6593 {
6594 	return sprintf(page, "%u\n", var);
6595 }
6596 
bfq_var_store(unsigned long * var,const char * page)6597 static int bfq_var_store(unsigned long *var, const char *page)
6598 {
6599 	unsigned long new_val;
6600 	int ret = kstrtoul(page, 10, &new_val);
6601 
6602 	if (ret)
6603 		return ret;
6604 	*var = new_val;
6605 	return 0;
6606 }
6607 
6608 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
6609 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6610 {									\
6611 	struct bfq_data *bfqd = e->elevator_data;			\
6612 	u64 __data = __VAR;						\
6613 	if (__CONV == 1)						\
6614 		__data = jiffies_to_msecs(__data);			\
6615 	else if (__CONV == 2)						\
6616 		__data = div_u64(__data, NSEC_PER_MSEC);		\
6617 	return bfq_var_show(__data, (page));				\
6618 }
6619 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6620 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6621 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6622 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6623 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6624 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6625 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6626 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
6627 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
6628 #undef SHOW_FUNCTION
6629 
6630 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
6631 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6632 {									\
6633 	struct bfq_data *bfqd = e->elevator_data;			\
6634 	u64 __data = __VAR;						\
6635 	__data = div_u64(__data, NSEC_PER_USEC);			\
6636 	return bfq_var_show(__data, (page));				\
6637 }
6638 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6639 #undef USEC_SHOW_FUNCTION
6640 
6641 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
6642 static ssize_t								\
6643 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
6644 {									\
6645 	struct bfq_data *bfqd = e->elevator_data;			\
6646 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6647 	int ret;							\
6648 									\
6649 	ret = bfq_var_store(&__data, (page));				\
6650 	if (ret)							\
6651 		return ret;						\
6652 	if (__data < __min)						\
6653 		__data = __min;						\
6654 	else if (__data > __max)					\
6655 		__data = __max;						\
6656 	if (__CONV == 1)						\
6657 		*(__PTR) = msecs_to_jiffies(__data);			\
6658 	else if (__CONV == 2)						\
6659 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
6660 	else								\
6661 		*(__PTR) = __data;					\
6662 	return count;							\
6663 }
6664 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6665 		INT_MAX, 2);
6666 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6667 		INT_MAX, 2);
6668 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6669 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6670 		INT_MAX, 0);
6671 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6672 #undef STORE_FUNCTION
6673 
6674 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
6675 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6676 {									\
6677 	struct bfq_data *bfqd = e->elevator_data;			\
6678 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6679 	int ret;							\
6680 									\
6681 	ret = bfq_var_store(&__data, (page));				\
6682 	if (ret)							\
6683 		return ret;						\
6684 	if (__data < __min)						\
6685 		__data = __min;						\
6686 	else if (__data > __max)					\
6687 		__data = __max;						\
6688 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
6689 	return count;							\
6690 }
6691 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6692 		    UINT_MAX);
6693 #undef USEC_STORE_FUNCTION
6694 
bfq_max_budget_store(struct elevator_queue * e,const char * page,size_t count)6695 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6696 				    const char *page, size_t count)
6697 {
6698 	struct bfq_data *bfqd = e->elevator_data;
6699 	unsigned long __data;
6700 	int ret;
6701 
6702 	ret = bfq_var_store(&__data, (page));
6703 	if (ret)
6704 		return ret;
6705 
6706 	if (__data == 0)
6707 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6708 	else {
6709 		if (__data > INT_MAX)
6710 			__data = INT_MAX;
6711 		bfqd->bfq_max_budget = __data;
6712 	}
6713 
6714 	bfqd->bfq_user_max_budget = __data;
6715 
6716 	return count;
6717 }
6718 
6719 /*
6720  * Leaving this name to preserve name compatibility with cfq
6721  * parameters, but this timeout is used for both sync and async.
6722  */
bfq_timeout_sync_store(struct elevator_queue * e,const char * page,size_t count)6723 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6724 				      const char *page, size_t count)
6725 {
6726 	struct bfq_data *bfqd = e->elevator_data;
6727 	unsigned long __data;
6728 	int ret;
6729 
6730 	ret = bfq_var_store(&__data, (page));
6731 	if (ret)
6732 		return ret;
6733 
6734 	if (__data < 1)
6735 		__data = 1;
6736 	else if (__data > INT_MAX)
6737 		__data = INT_MAX;
6738 
6739 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
6740 	if (bfqd->bfq_user_max_budget == 0)
6741 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6742 
6743 	return count;
6744 }
6745 
bfq_strict_guarantees_store(struct elevator_queue * e,const char * page,size_t count)6746 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6747 				     const char *page, size_t count)
6748 {
6749 	struct bfq_data *bfqd = e->elevator_data;
6750 	unsigned long __data;
6751 	int ret;
6752 
6753 	ret = bfq_var_store(&__data, (page));
6754 	if (ret)
6755 		return ret;
6756 
6757 	if (__data > 1)
6758 		__data = 1;
6759 	if (!bfqd->strict_guarantees && __data == 1
6760 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6761 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6762 
6763 	bfqd->strict_guarantees = __data;
6764 
6765 	return count;
6766 }
6767 
bfq_low_latency_store(struct elevator_queue * e,const char * page,size_t count)6768 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6769 				     const char *page, size_t count)
6770 {
6771 	struct bfq_data *bfqd = e->elevator_data;
6772 	unsigned long __data;
6773 	int ret;
6774 
6775 	ret = bfq_var_store(&__data, (page));
6776 	if (ret)
6777 		return ret;
6778 
6779 	if (__data > 1)
6780 		__data = 1;
6781 	if (__data == 0 && bfqd->low_latency != 0)
6782 		bfq_end_wr(bfqd);
6783 	bfqd->low_latency = __data;
6784 
6785 	return count;
6786 }
6787 
6788 #define BFQ_ATTR(name) \
6789 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6790 
6791 static struct elv_fs_entry bfq_attrs[] = {
6792 	BFQ_ATTR(fifo_expire_sync),
6793 	BFQ_ATTR(fifo_expire_async),
6794 	BFQ_ATTR(back_seek_max),
6795 	BFQ_ATTR(back_seek_penalty),
6796 	BFQ_ATTR(slice_idle),
6797 	BFQ_ATTR(slice_idle_us),
6798 	BFQ_ATTR(max_budget),
6799 	BFQ_ATTR(timeout_sync),
6800 	BFQ_ATTR(strict_guarantees),
6801 	BFQ_ATTR(low_latency),
6802 	__ATTR_NULL
6803 };
6804 
6805 static struct elevator_type iosched_bfq_mq = {
6806 	.ops = {
6807 		.limit_depth		= bfq_limit_depth,
6808 		.prepare_request	= bfq_prepare_request,
6809 		.requeue_request        = bfq_finish_requeue_request,
6810 		.finish_request		= bfq_finish_requeue_request,
6811 		.exit_icq		= bfq_exit_icq,
6812 		.insert_requests	= bfq_insert_requests,
6813 		.dispatch_request	= bfq_dispatch_request,
6814 		.next_request		= elv_rb_latter_request,
6815 		.former_request		= elv_rb_former_request,
6816 		.allow_merge		= bfq_allow_bio_merge,
6817 		.bio_merge		= bfq_bio_merge,
6818 		.request_merge		= bfq_request_merge,
6819 		.requests_merged	= bfq_requests_merged,
6820 		.request_merged		= bfq_request_merged,
6821 		.has_work		= bfq_has_work,
6822 		.depth_updated		= bfq_depth_updated,
6823 		.init_hctx		= bfq_init_hctx,
6824 		.init_sched		= bfq_init_queue,
6825 		.exit_sched		= bfq_exit_queue,
6826 	},
6827 
6828 	.icq_size =		sizeof(struct bfq_io_cq),
6829 	.icq_align =		__alignof__(struct bfq_io_cq),
6830 	.elevator_attrs =	bfq_attrs,
6831 	.elevator_name =	"bfq",
6832 	.elevator_owner =	THIS_MODULE,
6833 };
6834 MODULE_ALIAS("bfq-iosched");
6835 
bfq_init(void)6836 static int __init bfq_init(void)
6837 {
6838 	int ret;
6839 
6840 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6841 	ret = blkcg_policy_register(&blkcg_policy_bfq);
6842 	if (ret)
6843 		return ret;
6844 #endif
6845 
6846 	ret = -ENOMEM;
6847 	if (bfq_slab_setup())
6848 		goto err_pol_unreg;
6849 
6850 	/*
6851 	 * Times to load large popular applications for the typical
6852 	 * systems installed on the reference devices (see the
6853 	 * comments before the definition of the next
6854 	 * array). Actually, we use slightly lower values, as the
6855 	 * estimated peak rate tends to be smaller than the actual
6856 	 * peak rate.  The reason for this last fact is that estimates
6857 	 * are computed over much shorter time intervals than the long
6858 	 * intervals typically used for benchmarking. Why? First, to
6859 	 * adapt more quickly to variations. Second, because an I/O
6860 	 * scheduler cannot rely on a peak-rate-evaluation workload to
6861 	 * be run for a long time.
6862 	 */
6863 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6864 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
6865 
6866 	ret = elv_register(&iosched_bfq_mq);
6867 	if (ret)
6868 		goto slab_kill;
6869 
6870 	return 0;
6871 
6872 slab_kill:
6873 	bfq_slab_kill();
6874 err_pol_unreg:
6875 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6876 	blkcg_policy_unregister(&blkcg_policy_bfq);
6877 #endif
6878 	return ret;
6879 }
6880 
bfq_exit(void)6881 static void __exit bfq_exit(void)
6882 {
6883 	elv_unregister(&iosched_bfq_mq);
6884 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6885 	blkcg_policy_unregister(&blkcg_policy_bfq);
6886 #endif
6887 	bfq_slab_kill();
6888 }
6889 
6890 module_init(bfq_init);
6891 module_exit(bfq_exit);
6892 
6893 MODULE_AUTHOR("Paolo Valente");
6894 MODULE_LICENSE("GPL");
6895 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
6896