1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 * root
61 * / \
62 * A (w:100) B (w:300)
63 * / \
64 * A0 (w:100) A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The ouput looks like the following.
159 *
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
164 *
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
173 */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
196 do { \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
203 ##__VA_ARGS__); \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
205 } \
206 } while (0)
207
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
211
212 enum {
213 MILLION = 1000000,
214
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
218
219 /*
220 * iocg->vtime is targeted at 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
223 */
224 MARGIN_MIN_PCT = 10,
225 MARGIN_LOW_PCT = 20,
226 MARGIN_TARGET_PCT = 50,
227
228 INUSE_ADJ_STEP_PCT = 25,
229
230 /* Have some play in timer operations */
231 TIMER_SLACK_PCT = 1,
232
233 /* 1/64k is granular enough and can easily be handled w/ u32 */
234 WEIGHT_ONE = 1 << 16,
235 };
236
237 enum {
238 /*
239 * As vtime is used to calculate the cost of each IO, it needs to
240 * be fairly high precision. For example, it should be able to
241 * represent the cost of a single page worth of discard with
242 * suffificient accuracy. At the same time, it should be able to
243 * represent reasonably long enough durations to be useful and
244 * convenient during operation.
245 *
246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
247 * granularity and days of wrap-around time even at extreme vrates.
248 */
249 VTIME_PER_SEC_SHIFT = 37,
250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
253
254 /* bound vrate adjustments within two orders of magnitude */
255 VRATE_MIN_PPM = 10000, /* 1% */
256 VRATE_MAX_PPM = 100000000, /* 10000% */
257
258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259 VRATE_CLAMP_ADJ_PCT = 4,
260
261 /* switch iff the conditions are met for longer than this */
262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
263 };
264
265 enum {
266 /* if IOs end up waiting for requests, issue less */
267 RQ_WAIT_BUSY_PCT = 5,
268
269 /* unbusy hysterisis */
270 UNBUSY_THR_PCT = 75,
271
272 /*
273 * The effect of delay is indirect and non-linear and a huge amount of
274 * future debt can accumulate abruptly while unthrottled. Linearly scale
275 * up delay as debt is going up and then let it decay exponentially.
276 * This gives us quick ramp ups while delay is accumulating and long
277 * tails which can help reducing the frequency of debt explosions on
278 * unthrottle. The parameters are experimentally determined.
279 *
280 * The delay mechanism provides adequate protection and behavior in many
281 * cases. However, this is far from ideal and falls shorts on both
282 * fronts. The debtors are often throttled too harshly costing a
283 * significant level of fairness and possibly total work while the
284 * protection against their impacts on the system can be choppy and
285 * unreliable.
286 *
287 * The shortcoming primarily stems from the fact that, unlike for page
288 * cache, the kernel doesn't have well-defined back-pressure propagation
289 * mechanism and policies for anonymous memory. Fully addressing this
290 * issue will likely require substantial improvements in the area.
291 */
292 MIN_DELAY_THR_PCT = 500,
293 MAX_DELAY_THR_PCT = 25000,
294 MIN_DELAY = 250,
295 MAX_DELAY = 250 * USEC_PER_MSEC,
296
297 /* halve debts if avg usage over 100ms is under 50% */
298 DFGV_USAGE_PCT = 50,
299 DFGV_PERIOD = 100 * USEC_PER_MSEC,
300
301 /* don't let cmds which take a very long time pin lagging for too long */
302 MAX_LAGGING_PERIODS = 10,
303
304 /*
305 * Count IO size in 4k pages. The 12bit shift helps keeping
306 * size-proportional components of cost calculation in closer
307 * numbers of digits to per-IO cost components.
308 */
309 IOC_PAGE_SHIFT = 12,
310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
312
313 /* if apart further than 16M, consider randio for linear model */
314 LCOEF_RANDIO_PAGES = 4096,
315 };
316
317 enum ioc_running {
318 IOC_IDLE,
319 IOC_RUNNING,
320 IOC_STOP,
321 };
322
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325 QOS_ENABLE,
326 QOS_CTRL,
327 NR_QOS_CTRL_PARAMS,
328 };
329
330 /* io.cost.qos params */
331 enum {
332 QOS_RPPM,
333 QOS_RLAT,
334 QOS_WPPM,
335 QOS_WLAT,
336 QOS_MIN,
337 QOS_MAX,
338 NR_QOS_PARAMS,
339 };
340
341 /* io.cost.model controls */
342 enum {
343 COST_CTRL,
344 COST_MODEL,
345 NR_COST_CTRL_PARAMS,
346 };
347
348 /* builtin linear cost model coefficients */
349 enum {
350 I_LCOEF_RBPS,
351 I_LCOEF_RSEQIOPS,
352 I_LCOEF_RRANDIOPS,
353 I_LCOEF_WBPS,
354 I_LCOEF_WSEQIOPS,
355 I_LCOEF_WRANDIOPS,
356 NR_I_LCOEFS,
357 };
358
359 enum {
360 LCOEF_RPAGE,
361 LCOEF_RSEQIO,
362 LCOEF_RRANDIO,
363 LCOEF_WPAGE,
364 LCOEF_WSEQIO,
365 LCOEF_WRANDIO,
366 NR_LCOEFS,
367 };
368
369 enum {
370 AUTOP_INVALID,
371 AUTOP_HDD,
372 AUTOP_SSD_QD1,
373 AUTOP_SSD_DFL,
374 AUTOP_SSD_FAST,
375 };
376
377 struct ioc_gq;
378
379 struct ioc_params {
380 u32 qos[NR_QOS_PARAMS];
381 u64 i_lcoefs[NR_I_LCOEFS];
382 u64 lcoefs[NR_LCOEFS];
383 u32 too_fast_vrate_pct;
384 u32 too_slow_vrate_pct;
385 };
386
387 struct ioc_margins {
388 s64 min;
389 s64 low;
390 s64 target;
391 };
392
393 struct ioc_missed {
394 local_t nr_met;
395 local_t nr_missed;
396 u32 last_met;
397 u32 last_missed;
398 };
399
400 struct ioc_pcpu_stat {
401 struct ioc_missed missed[2];
402
403 local64_t rq_wait_ns;
404 u64 last_rq_wait_ns;
405 };
406
407 /* per device */
408 struct ioc {
409 struct rq_qos rqos;
410
411 bool enabled;
412
413 struct ioc_params params;
414 struct ioc_margins margins;
415 u32 period_us;
416 u32 timer_slack_ns;
417 u64 vrate_min;
418 u64 vrate_max;
419
420 spinlock_t lock;
421 struct timer_list timer;
422 struct list_head active_iocgs; /* active cgroups */
423 struct ioc_pcpu_stat __percpu *pcpu_stat;
424
425 enum ioc_running running;
426 atomic64_t vtime_rate;
427 u64 vtime_base_rate;
428 s64 vtime_err;
429
430 seqcount_spinlock_t period_seqcount;
431 u64 period_at; /* wallclock starttime */
432 u64 period_at_vtime; /* vtime starttime */
433
434 atomic64_t cur_period; /* inc'd each period */
435 int busy_level; /* saturation history */
436
437 bool weights_updated;
438 atomic_t hweight_gen; /* for lazy hweights */
439
440 /* debt forgivness */
441 u64 dfgv_period_at;
442 u64 dfgv_period_rem;
443 u64 dfgv_usage_us_sum;
444
445 u64 autop_too_fast_at;
446 u64 autop_too_slow_at;
447 int autop_idx;
448 bool user_qos_params:1;
449 bool user_cost_model:1;
450 };
451
452 struct iocg_pcpu_stat {
453 local64_t abs_vusage;
454 };
455
456 struct iocg_stat {
457 u64 usage_us;
458 u64 wait_us;
459 u64 indebt_us;
460 u64 indelay_us;
461 };
462
463 /* per device-cgroup pair */
464 struct ioc_gq {
465 struct blkg_policy_data pd;
466 struct ioc *ioc;
467
468 /*
469 * A iocg can get its weight from two sources - an explicit
470 * per-device-cgroup configuration or the default weight of the
471 * cgroup. `cfg_weight` is the explicit per-device-cgroup
472 * configuration. `weight` is the effective considering both
473 * sources.
474 *
475 * When an idle cgroup becomes active its `active` goes from 0 to
476 * `weight`. `inuse` is the surplus adjusted active weight.
477 * `active` and `inuse` are used to calculate `hweight_active` and
478 * `hweight_inuse`.
479 *
480 * `last_inuse` remembers `inuse` while an iocg is idle to persist
481 * surplus adjustments.
482 *
483 * `inuse` may be adjusted dynamically during period. `saved_*` are used
484 * to determine and track adjustments.
485 */
486 u32 cfg_weight;
487 u32 weight;
488 u32 active;
489 u32 inuse;
490
491 u32 last_inuse;
492 s64 saved_margin;
493
494 sector_t cursor; /* to detect randio */
495
496 /*
497 * `vtime` is this iocg's vtime cursor which progresses as IOs are
498 * issued. If lagging behind device vtime, the delta represents
499 * the currently available IO budget. If runnning ahead, the
500 * overage.
501 *
502 * `vtime_done` is the same but progressed on completion rather
503 * than issue. The delta behind `vtime` represents the cost of
504 * currently in-flight IOs.
505 */
506 atomic64_t vtime;
507 atomic64_t done_vtime;
508 u64 abs_vdebt;
509
510 /* current delay in effect and when it started */
511 u64 delay;
512 u64 delay_at;
513
514 /*
515 * The period this iocg was last active in. Used for deactivation
516 * and invalidating `vtime`.
517 */
518 atomic64_t active_period;
519 struct list_head active_list;
520
521 /* see __propagate_weights() and current_hweight() for details */
522 u64 child_active_sum;
523 u64 child_inuse_sum;
524 u64 child_adjusted_sum;
525 int hweight_gen;
526 u32 hweight_active;
527 u32 hweight_inuse;
528 u32 hweight_donating;
529 u32 hweight_after_donation;
530
531 struct list_head walk_list;
532 struct list_head surplus_list;
533
534 struct wait_queue_head waitq;
535 struct hrtimer waitq_timer;
536
537 /* timestamp at the latest activation */
538 u64 activated_at;
539
540 /* statistics */
541 struct iocg_pcpu_stat __percpu *pcpu_stat;
542 struct iocg_stat local_stat;
543 struct iocg_stat desc_stat;
544 struct iocg_stat last_stat;
545 u64 last_stat_abs_vusage;
546 u64 usage_delta_us;
547 u64 wait_since;
548 u64 indebt_since;
549 u64 indelay_since;
550
551 /* this iocg's depth in the hierarchy and ancestors including self */
552 int level;
553 struct ioc_gq *ancestors[];
554 };
555
556 /* per cgroup */
557 struct ioc_cgrp {
558 struct blkcg_policy_data cpd;
559 unsigned int dfl_weight;
560 };
561
562 struct ioc_now {
563 u64 now_ns;
564 u64 now;
565 u64 vnow;
566 u64 vrate;
567 };
568
569 struct iocg_wait {
570 struct wait_queue_entry wait;
571 struct bio *bio;
572 u64 abs_cost;
573 bool committed;
574 };
575
576 struct iocg_wake_ctx {
577 struct ioc_gq *iocg;
578 u32 hw_inuse;
579 s64 vbudget;
580 };
581
582 static const struct ioc_params autop[] = {
583 [AUTOP_HDD] = {
584 .qos = {
585 [QOS_RLAT] = 250000, /* 250ms */
586 [QOS_WLAT] = 250000,
587 [QOS_MIN] = VRATE_MIN_PPM,
588 [QOS_MAX] = VRATE_MAX_PPM,
589 },
590 .i_lcoefs = {
591 [I_LCOEF_RBPS] = 174019176,
592 [I_LCOEF_RSEQIOPS] = 41708,
593 [I_LCOEF_RRANDIOPS] = 370,
594 [I_LCOEF_WBPS] = 178075866,
595 [I_LCOEF_WSEQIOPS] = 42705,
596 [I_LCOEF_WRANDIOPS] = 378,
597 },
598 },
599 [AUTOP_SSD_QD1] = {
600 .qos = {
601 [QOS_RLAT] = 25000, /* 25ms */
602 [QOS_WLAT] = 25000,
603 [QOS_MIN] = VRATE_MIN_PPM,
604 [QOS_MAX] = VRATE_MAX_PPM,
605 },
606 .i_lcoefs = {
607 [I_LCOEF_RBPS] = 245855193,
608 [I_LCOEF_RSEQIOPS] = 61575,
609 [I_LCOEF_RRANDIOPS] = 6946,
610 [I_LCOEF_WBPS] = 141365009,
611 [I_LCOEF_WSEQIOPS] = 33716,
612 [I_LCOEF_WRANDIOPS] = 26796,
613 },
614 },
615 [AUTOP_SSD_DFL] = {
616 .qos = {
617 [QOS_RLAT] = 25000, /* 25ms */
618 [QOS_WLAT] = 25000,
619 [QOS_MIN] = VRATE_MIN_PPM,
620 [QOS_MAX] = VRATE_MAX_PPM,
621 },
622 .i_lcoefs = {
623 [I_LCOEF_RBPS] = 488636629,
624 [I_LCOEF_RSEQIOPS] = 8932,
625 [I_LCOEF_RRANDIOPS] = 8518,
626 [I_LCOEF_WBPS] = 427891549,
627 [I_LCOEF_WSEQIOPS] = 28755,
628 [I_LCOEF_WRANDIOPS] = 21940,
629 },
630 .too_fast_vrate_pct = 500,
631 },
632 [AUTOP_SSD_FAST] = {
633 .qos = {
634 [QOS_RLAT] = 5000, /* 5ms */
635 [QOS_WLAT] = 5000,
636 [QOS_MIN] = VRATE_MIN_PPM,
637 [QOS_MAX] = VRATE_MAX_PPM,
638 },
639 .i_lcoefs = {
640 [I_LCOEF_RBPS] = 3102524156LLU,
641 [I_LCOEF_RSEQIOPS] = 724816,
642 [I_LCOEF_RRANDIOPS] = 778122,
643 [I_LCOEF_WBPS] = 1742780862LLU,
644 [I_LCOEF_WSEQIOPS] = 425702,
645 [I_LCOEF_WRANDIOPS] = 443193,
646 },
647 .too_slow_vrate_pct = 10,
648 },
649 };
650
651 /*
652 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
653 * vtime credit shortage and down on device saturation.
654 */
655 static u32 vrate_adj_pct[] =
656 { 0, 0, 0, 0,
657 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
658 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
659 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
660
661 static struct blkcg_policy blkcg_policy_iocost;
662
663 /* accessors and helpers */
rqos_to_ioc(struct rq_qos * rqos)664 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
665 {
666 return container_of(rqos, struct ioc, rqos);
667 }
668
q_to_ioc(struct request_queue * q)669 static struct ioc *q_to_ioc(struct request_queue *q)
670 {
671 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
672 }
673
q_name(struct request_queue * q)674 static const char *q_name(struct request_queue *q)
675 {
676 if (blk_queue_registered(q))
677 return kobject_name(q->kobj.parent);
678 else
679 return "<unknown>";
680 }
681
ioc_name(struct ioc * ioc)682 static const char __maybe_unused *ioc_name(struct ioc *ioc)
683 {
684 return q_name(ioc->rqos.q);
685 }
686
pd_to_iocg(struct blkg_policy_data * pd)687 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
688 {
689 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
690 }
691
blkg_to_iocg(struct blkcg_gq * blkg)692 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
693 {
694 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
695 }
696
iocg_to_blkg(struct ioc_gq * iocg)697 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
698 {
699 return pd_to_blkg(&iocg->pd);
700 }
701
blkcg_to_iocc(struct blkcg * blkcg)702 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
703 {
704 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
705 struct ioc_cgrp, cpd);
706 }
707
708 /*
709 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
710 * weight, the more expensive each IO. Must round up.
711 */
abs_cost_to_cost(u64 abs_cost,u32 hw_inuse)712 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
713 {
714 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
715 }
716
717 /*
718 * The inverse of abs_cost_to_cost(). Must round up.
719 */
cost_to_abs_cost(u64 cost,u32 hw_inuse)720 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
721 {
722 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
723 }
724
iocg_commit_bio(struct ioc_gq * iocg,struct bio * bio,u64 abs_cost,u64 cost)725 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
726 u64 abs_cost, u64 cost)
727 {
728 struct iocg_pcpu_stat *gcs;
729
730 bio->bi_iocost_cost = cost;
731 atomic64_add(cost, &iocg->vtime);
732
733 gcs = get_cpu_ptr(iocg->pcpu_stat);
734 local64_add(abs_cost, &gcs->abs_vusage);
735 put_cpu_ptr(gcs);
736 }
737
iocg_lock(struct ioc_gq * iocg,bool lock_ioc,unsigned long * flags)738 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
739 {
740 if (lock_ioc) {
741 spin_lock_irqsave(&iocg->ioc->lock, *flags);
742 spin_lock(&iocg->waitq.lock);
743 } else {
744 spin_lock_irqsave(&iocg->waitq.lock, *flags);
745 }
746 }
747
iocg_unlock(struct ioc_gq * iocg,bool unlock_ioc,unsigned long * flags)748 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
749 {
750 if (unlock_ioc) {
751 spin_unlock(&iocg->waitq.lock);
752 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
753 } else {
754 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
755 }
756 }
757
758 #define CREATE_TRACE_POINTS
759 #include <trace/events/iocost.h>
760
ioc_refresh_margins(struct ioc * ioc)761 static void ioc_refresh_margins(struct ioc *ioc)
762 {
763 struct ioc_margins *margins = &ioc->margins;
764 u32 period_us = ioc->period_us;
765 u64 vrate = ioc->vtime_base_rate;
766
767 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
768 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
769 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
770 }
771
772 /* latency Qos params changed, update period_us and all the dependent params */
ioc_refresh_period_us(struct ioc * ioc)773 static void ioc_refresh_period_us(struct ioc *ioc)
774 {
775 u32 ppm, lat, multi, period_us;
776
777 lockdep_assert_held(&ioc->lock);
778
779 /* pick the higher latency target */
780 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
781 ppm = ioc->params.qos[QOS_RPPM];
782 lat = ioc->params.qos[QOS_RLAT];
783 } else {
784 ppm = ioc->params.qos[QOS_WPPM];
785 lat = ioc->params.qos[QOS_WLAT];
786 }
787
788 /*
789 * We want the period to be long enough to contain a healthy number
790 * of IOs while short enough for granular control. Define it as a
791 * multiple of the latency target. Ideally, the multiplier should
792 * be scaled according to the percentile so that it would nominally
793 * contain a certain number of requests. Let's be simpler and
794 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
795 */
796 if (ppm)
797 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
798 else
799 multi = 2;
800 period_us = multi * lat;
801 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
802
803 /* calculate dependent params */
804 ioc->period_us = period_us;
805 ioc->timer_slack_ns = div64_u64(
806 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
807 100);
808 ioc_refresh_margins(ioc);
809 }
810
ioc_autop_idx(struct ioc * ioc)811 static int ioc_autop_idx(struct ioc *ioc)
812 {
813 int idx = ioc->autop_idx;
814 const struct ioc_params *p = &autop[idx];
815 u32 vrate_pct;
816 u64 now_ns;
817
818 /* rotational? */
819 if (!blk_queue_nonrot(ioc->rqos.q))
820 return AUTOP_HDD;
821
822 /* handle SATA SSDs w/ broken NCQ */
823 if (blk_queue_depth(ioc->rqos.q) == 1)
824 return AUTOP_SSD_QD1;
825
826 /* use one of the normal ssd sets */
827 if (idx < AUTOP_SSD_DFL)
828 return AUTOP_SSD_DFL;
829
830 /* if user is overriding anything, maintain what was there */
831 if (ioc->user_qos_params || ioc->user_cost_model)
832 return idx;
833
834 /* step up/down based on the vrate */
835 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
836 now_ns = ktime_get_ns();
837
838 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
839 if (!ioc->autop_too_fast_at)
840 ioc->autop_too_fast_at = now_ns;
841 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
842 return idx + 1;
843 } else {
844 ioc->autop_too_fast_at = 0;
845 }
846
847 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
848 if (!ioc->autop_too_slow_at)
849 ioc->autop_too_slow_at = now_ns;
850 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
851 return idx - 1;
852 } else {
853 ioc->autop_too_slow_at = 0;
854 }
855
856 return idx;
857 }
858
859 /*
860 * Take the followings as input
861 *
862 * @bps maximum sequential throughput
863 * @seqiops maximum sequential 4k iops
864 * @randiops maximum random 4k iops
865 *
866 * and calculate the linear model cost coefficients.
867 *
868 * *@page per-page cost 1s / (@bps / 4096)
869 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
870 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
871 */
calc_lcoefs(u64 bps,u64 seqiops,u64 randiops,u64 * page,u64 * seqio,u64 * randio)872 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
873 u64 *page, u64 *seqio, u64 *randio)
874 {
875 u64 v;
876
877 *page = *seqio = *randio = 0;
878
879 if (bps) {
880 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
881
882 if (bps_pages)
883 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
884 else
885 *page = 1;
886 }
887
888 if (seqiops) {
889 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
890 if (v > *page)
891 *seqio = v - *page;
892 }
893
894 if (randiops) {
895 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
896 if (v > *page)
897 *randio = v - *page;
898 }
899 }
900
ioc_refresh_lcoefs(struct ioc * ioc)901 static void ioc_refresh_lcoefs(struct ioc *ioc)
902 {
903 u64 *u = ioc->params.i_lcoefs;
904 u64 *c = ioc->params.lcoefs;
905
906 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
907 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
908 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
909 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
910 }
911
ioc_refresh_params(struct ioc * ioc,bool force)912 static bool ioc_refresh_params(struct ioc *ioc, bool force)
913 {
914 const struct ioc_params *p;
915 int idx;
916
917 lockdep_assert_held(&ioc->lock);
918
919 idx = ioc_autop_idx(ioc);
920 p = &autop[idx];
921
922 if (idx == ioc->autop_idx && !force)
923 return false;
924
925 if (idx != ioc->autop_idx)
926 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
927
928 ioc->autop_idx = idx;
929 ioc->autop_too_fast_at = 0;
930 ioc->autop_too_slow_at = 0;
931
932 if (!ioc->user_qos_params)
933 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
934 if (!ioc->user_cost_model)
935 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
936
937 ioc_refresh_period_us(ioc);
938 ioc_refresh_lcoefs(ioc);
939
940 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
941 VTIME_PER_USEC, MILLION);
942 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
943 VTIME_PER_USEC, MILLION);
944
945 return true;
946 }
947
948 /*
949 * When an iocg accumulates too much vtime or gets deactivated, we throw away
950 * some vtime, which lowers the overall device utilization. As the exact amount
951 * which is being thrown away is known, we can compensate by accelerating the
952 * vrate accordingly so that the extra vtime generated in the current period
953 * matches what got lost.
954 */
ioc_refresh_vrate(struct ioc * ioc,struct ioc_now * now)955 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
956 {
957 s64 pleft = ioc->period_at + ioc->period_us - now->now;
958 s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
959 s64 vcomp, vcomp_min, vcomp_max;
960
961 lockdep_assert_held(&ioc->lock);
962
963 /* we need some time left in this period */
964 if (pleft <= 0)
965 goto done;
966
967 /*
968 * Calculate how much vrate should be adjusted to offset the error.
969 * Limit the amount of adjustment and deduct the adjusted amount from
970 * the error.
971 */
972 vcomp = -div64_s64(ioc->vtime_err, pleft);
973 vcomp_min = -(ioc->vtime_base_rate >> 1);
974 vcomp_max = ioc->vtime_base_rate;
975 vcomp = clamp(vcomp, vcomp_min, vcomp_max);
976
977 ioc->vtime_err += vcomp * pleft;
978
979 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
980 done:
981 /* bound how much error can accumulate */
982 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
983 }
984
985 /* take a snapshot of the current [v]time and vrate */
ioc_now(struct ioc * ioc,struct ioc_now * now)986 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
987 {
988 unsigned seq;
989
990 now->now_ns = ktime_get();
991 now->now = ktime_to_us(now->now_ns);
992 now->vrate = atomic64_read(&ioc->vtime_rate);
993
994 /*
995 * The current vtime is
996 *
997 * vtime at period start + (wallclock time since the start) * vrate
998 *
999 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1000 * needed, they're seqcount protected.
1001 */
1002 do {
1003 seq = read_seqcount_begin(&ioc->period_seqcount);
1004 now->vnow = ioc->period_at_vtime +
1005 (now->now - ioc->period_at) * now->vrate;
1006 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1007 }
1008
ioc_start_period(struct ioc * ioc,struct ioc_now * now)1009 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1010 {
1011 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1012
1013 write_seqcount_begin(&ioc->period_seqcount);
1014 ioc->period_at = now->now;
1015 ioc->period_at_vtime = now->vnow;
1016 write_seqcount_end(&ioc->period_seqcount);
1017
1018 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1019 add_timer(&ioc->timer);
1020 }
1021
1022 /*
1023 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1024 * weight sums and propagate upwards accordingly. If @save, the current margin
1025 * is saved to be used as reference for later inuse in-period adjustments.
1026 */
__propagate_weights(struct ioc_gq * iocg,u32 active,u32 inuse,bool save,struct ioc_now * now)1027 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1028 bool save, struct ioc_now *now)
1029 {
1030 struct ioc *ioc = iocg->ioc;
1031 int lvl;
1032
1033 lockdep_assert_held(&ioc->lock);
1034
1035 /*
1036 * For an active leaf node, its inuse shouldn't be zero or exceed
1037 * @active. An active internal node's inuse is solely determined by the
1038 * inuse to active ratio of its children regardless of @inuse.
1039 */
1040 if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1041 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1042 iocg->child_active_sum);
1043 } else {
1044 inuse = clamp_t(u32, inuse, 1, active);
1045 }
1046
1047 iocg->last_inuse = iocg->inuse;
1048 if (save)
1049 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1050
1051 if (active == iocg->active && inuse == iocg->inuse)
1052 return;
1053
1054 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1055 struct ioc_gq *parent = iocg->ancestors[lvl];
1056 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1057 u32 parent_active = 0, parent_inuse = 0;
1058
1059 /* update the level sums */
1060 parent->child_active_sum += (s32)(active - child->active);
1061 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1062 /* apply the updates */
1063 child->active = active;
1064 child->inuse = inuse;
1065
1066 /*
1067 * The delta between inuse and active sums indicates that
1068 * that much of weight is being given away. Parent's inuse
1069 * and active should reflect the ratio.
1070 */
1071 if (parent->child_active_sum) {
1072 parent_active = parent->weight;
1073 parent_inuse = DIV64_U64_ROUND_UP(
1074 parent_active * parent->child_inuse_sum,
1075 parent->child_active_sum);
1076 }
1077
1078 /* do we need to keep walking up? */
1079 if (parent_active == parent->active &&
1080 parent_inuse == parent->inuse)
1081 break;
1082
1083 active = parent_active;
1084 inuse = parent_inuse;
1085 }
1086
1087 ioc->weights_updated = true;
1088 }
1089
commit_weights(struct ioc * ioc)1090 static void commit_weights(struct ioc *ioc)
1091 {
1092 lockdep_assert_held(&ioc->lock);
1093
1094 if (ioc->weights_updated) {
1095 /* paired with rmb in current_hweight(), see there */
1096 smp_wmb();
1097 atomic_inc(&ioc->hweight_gen);
1098 ioc->weights_updated = false;
1099 }
1100 }
1101
propagate_weights(struct ioc_gq * iocg,u32 active,u32 inuse,bool save,struct ioc_now * now)1102 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1103 bool save, struct ioc_now *now)
1104 {
1105 __propagate_weights(iocg, active, inuse, save, now);
1106 commit_weights(iocg->ioc);
1107 }
1108
current_hweight(struct ioc_gq * iocg,u32 * hw_activep,u32 * hw_inusep)1109 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1110 {
1111 struct ioc *ioc = iocg->ioc;
1112 int lvl;
1113 u32 hwa, hwi;
1114 int ioc_gen;
1115
1116 /* hot path - if uptodate, use cached */
1117 ioc_gen = atomic_read(&ioc->hweight_gen);
1118 if (ioc_gen == iocg->hweight_gen)
1119 goto out;
1120
1121 /*
1122 * Paired with wmb in commit_weights(). If we saw the updated
1123 * hweight_gen, all the weight updates from __propagate_weights() are
1124 * visible too.
1125 *
1126 * We can race with weight updates during calculation and get it
1127 * wrong. However, hweight_gen would have changed and a future
1128 * reader will recalculate and we're guaranteed to discard the
1129 * wrong result soon.
1130 */
1131 smp_rmb();
1132
1133 hwa = hwi = WEIGHT_ONE;
1134 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1135 struct ioc_gq *parent = iocg->ancestors[lvl];
1136 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1137 u64 active_sum = READ_ONCE(parent->child_active_sum);
1138 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1139 u32 active = READ_ONCE(child->active);
1140 u32 inuse = READ_ONCE(child->inuse);
1141
1142 /* we can race with deactivations and either may read as zero */
1143 if (!active_sum || !inuse_sum)
1144 continue;
1145
1146 active_sum = max_t(u64, active, active_sum);
1147 hwa = div64_u64((u64)hwa * active, active_sum);
1148
1149 inuse_sum = max_t(u64, inuse, inuse_sum);
1150 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1151 }
1152
1153 iocg->hweight_active = max_t(u32, hwa, 1);
1154 iocg->hweight_inuse = max_t(u32, hwi, 1);
1155 iocg->hweight_gen = ioc_gen;
1156 out:
1157 if (hw_activep)
1158 *hw_activep = iocg->hweight_active;
1159 if (hw_inusep)
1160 *hw_inusep = iocg->hweight_inuse;
1161 }
1162
1163 /*
1164 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1165 * other weights stay unchanged.
1166 */
current_hweight_max(struct ioc_gq * iocg)1167 static u32 current_hweight_max(struct ioc_gq *iocg)
1168 {
1169 u32 hwm = WEIGHT_ONE;
1170 u32 inuse = iocg->active;
1171 u64 child_inuse_sum;
1172 int lvl;
1173
1174 lockdep_assert_held(&iocg->ioc->lock);
1175
1176 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1177 struct ioc_gq *parent = iocg->ancestors[lvl];
1178 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1179
1180 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1181 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1182 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1183 parent->child_active_sum);
1184 }
1185
1186 return max_t(u32, hwm, 1);
1187 }
1188
weight_updated(struct ioc_gq * iocg,struct ioc_now * now)1189 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1190 {
1191 struct ioc *ioc = iocg->ioc;
1192 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1193 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1194 u32 weight;
1195
1196 lockdep_assert_held(&ioc->lock);
1197
1198 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1199 if (weight != iocg->weight && iocg->active)
1200 propagate_weights(iocg, weight, iocg->inuse, true, now);
1201 iocg->weight = weight;
1202 }
1203
iocg_activate(struct ioc_gq * iocg,struct ioc_now * now)1204 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1205 {
1206 struct ioc *ioc = iocg->ioc;
1207 u64 last_period, cur_period;
1208 u64 vtime, vtarget;
1209 int i;
1210
1211 /*
1212 * If seem to be already active, just update the stamp to tell the
1213 * timer that we're still active. We don't mind occassional races.
1214 */
1215 if (!list_empty(&iocg->active_list)) {
1216 ioc_now(ioc, now);
1217 cur_period = atomic64_read(&ioc->cur_period);
1218 if (atomic64_read(&iocg->active_period) != cur_period)
1219 atomic64_set(&iocg->active_period, cur_period);
1220 return true;
1221 }
1222
1223 /* racy check on internal node IOs, treat as root level IOs */
1224 if (iocg->child_active_sum)
1225 return false;
1226
1227 spin_lock_irq(&ioc->lock);
1228
1229 ioc_now(ioc, now);
1230
1231 /* update period */
1232 cur_period = atomic64_read(&ioc->cur_period);
1233 last_period = atomic64_read(&iocg->active_period);
1234 atomic64_set(&iocg->active_period, cur_period);
1235
1236 /* already activated or breaking leaf-only constraint? */
1237 if (!list_empty(&iocg->active_list))
1238 goto succeed_unlock;
1239 for (i = iocg->level - 1; i > 0; i--)
1240 if (!list_empty(&iocg->ancestors[i]->active_list))
1241 goto fail_unlock;
1242
1243 if (iocg->child_active_sum)
1244 goto fail_unlock;
1245
1246 /*
1247 * Always start with the target budget. On deactivation, we throw away
1248 * anything above it.
1249 */
1250 vtarget = now->vnow - ioc->margins.target;
1251 vtime = atomic64_read(&iocg->vtime);
1252
1253 atomic64_add(vtarget - vtime, &iocg->vtime);
1254 atomic64_add(vtarget - vtime, &iocg->done_vtime);
1255 vtime = vtarget;
1256
1257 /*
1258 * Activate, propagate weight and start period timer if not
1259 * running. Reset hweight_gen to avoid accidental match from
1260 * wrapping.
1261 */
1262 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1263 list_add(&iocg->active_list, &ioc->active_iocgs);
1264
1265 propagate_weights(iocg, iocg->weight,
1266 iocg->last_inuse ?: iocg->weight, true, now);
1267
1268 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1269 last_period, cur_period, vtime);
1270
1271 iocg->activated_at = now->now;
1272
1273 if (ioc->running == IOC_IDLE) {
1274 ioc->running = IOC_RUNNING;
1275 ioc->dfgv_period_at = now->now;
1276 ioc->dfgv_period_rem = 0;
1277 ioc_start_period(ioc, now);
1278 }
1279
1280 succeed_unlock:
1281 spin_unlock_irq(&ioc->lock);
1282 return true;
1283
1284 fail_unlock:
1285 spin_unlock_irq(&ioc->lock);
1286 return false;
1287 }
1288
iocg_kick_delay(struct ioc_gq * iocg,struct ioc_now * now)1289 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1290 {
1291 struct ioc *ioc = iocg->ioc;
1292 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1293 u64 tdelta, delay, new_delay;
1294 s64 vover, vover_pct;
1295 u32 hwa;
1296
1297 lockdep_assert_held(&iocg->waitq.lock);
1298
1299 /*
1300 * If the delay is set by another CPU, we may be in the past. No need to
1301 * change anything if so. This avoids decay calculation underflow.
1302 */
1303 if (time_before64(now->now, iocg->delay_at))
1304 return false;
1305
1306 /* calculate the current delay in effect - 1/2 every second */
1307 tdelta = now->now - iocg->delay_at;
1308 if (iocg->delay)
1309 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1310 else
1311 delay = 0;
1312
1313 /* calculate the new delay from the debt amount */
1314 current_hweight(iocg, &hwa, NULL);
1315 vover = atomic64_read(&iocg->vtime) +
1316 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1317 vover_pct = div64_s64(100 * vover,
1318 ioc->period_us * ioc->vtime_base_rate);
1319
1320 if (vover_pct <= MIN_DELAY_THR_PCT)
1321 new_delay = 0;
1322 else if (vover_pct >= MAX_DELAY_THR_PCT)
1323 new_delay = MAX_DELAY;
1324 else
1325 new_delay = MIN_DELAY +
1326 div_u64((MAX_DELAY - MIN_DELAY) *
1327 (vover_pct - MIN_DELAY_THR_PCT),
1328 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1329
1330 /* pick the higher one and apply */
1331 if (new_delay > delay) {
1332 iocg->delay = new_delay;
1333 iocg->delay_at = now->now;
1334 delay = new_delay;
1335 }
1336
1337 if (delay >= MIN_DELAY) {
1338 if (!iocg->indelay_since)
1339 iocg->indelay_since = now->now;
1340 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1341 return true;
1342 } else {
1343 if (iocg->indelay_since) {
1344 iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1345 iocg->indelay_since = 0;
1346 }
1347 iocg->delay = 0;
1348 blkcg_clear_delay(blkg);
1349 return false;
1350 }
1351 }
1352
iocg_incur_debt(struct ioc_gq * iocg,u64 abs_cost,struct ioc_now * now)1353 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1354 struct ioc_now *now)
1355 {
1356 struct iocg_pcpu_stat *gcs;
1357
1358 lockdep_assert_held(&iocg->ioc->lock);
1359 lockdep_assert_held(&iocg->waitq.lock);
1360 WARN_ON_ONCE(list_empty(&iocg->active_list));
1361
1362 /*
1363 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1364 * inuse donating all of it share to others until its debt is paid off.
1365 */
1366 if (!iocg->abs_vdebt && abs_cost) {
1367 iocg->indebt_since = now->now;
1368 propagate_weights(iocg, iocg->active, 0, false, now);
1369 }
1370
1371 iocg->abs_vdebt += abs_cost;
1372
1373 gcs = get_cpu_ptr(iocg->pcpu_stat);
1374 local64_add(abs_cost, &gcs->abs_vusage);
1375 put_cpu_ptr(gcs);
1376 }
1377
iocg_pay_debt(struct ioc_gq * iocg,u64 abs_vpay,struct ioc_now * now)1378 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1379 struct ioc_now *now)
1380 {
1381 lockdep_assert_held(&iocg->ioc->lock);
1382 lockdep_assert_held(&iocg->waitq.lock);
1383
1384 /* make sure that nobody messed with @iocg */
1385 WARN_ON_ONCE(list_empty(&iocg->active_list));
1386 WARN_ON_ONCE(iocg->inuse > 1);
1387
1388 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1389
1390 /* if debt is paid in full, restore inuse */
1391 if (!iocg->abs_vdebt) {
1392 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1393 iocg->indebt_since = 0;
1394
1395 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1396 false, now);
1397 }
1398 }
1399
iocg_wake_fn(struct wait_queue_entry * wq_entry,unsigned mode,int flags,void * key)1400 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1401 int flags, void *key)
1402 {
1403 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1404 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1405 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1406
1407 ctx->vbudget -= cost;
1408
1409 if (ctx->vbudget < 0)
1410 return -1;
1411
1412 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1413 wait->committed = true;
1414
1415 /*
1416 * autoremove_wake_function() removes the wait entry only when it
1417 * actually changed the task state. We want the wait always removed.
1418 * Remove explicitly and use default_wake_function(). Note that the
1419 * order of operations is important as finish_wait() tests whether
1420 * @wq_entry is removed without grabbing the lock.
1421 */
1422 default_wake_function(wq_entry, mode, flags, key);
1423 list_del_init_careful(&wq_entry->entry);
1424 return 0;
1425 }
1426
1427 /*
1428 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1429 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1430 * addition to iocg->waitq.lock.
1431 */
iocg_kick_waitq(struct ioc_gq * iocg,bool pay_debt,struct ioc_now * now)1432 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1433 struct ioc_now *now)
1434 {
1435 struct ioc *ioc = iocg->ioc;
1436 struct iocg_wake_ctx ctx = { .iocg = iocg };
1437 u64 vshortage, expires, oexpires;
1438 s64 vbudget;
1439 u32 hwa;
1440
1441 lockdep_assert_held(&iocg->waitq.lock);
1442
1443 current_hweight(iocg, &hwa, NULL);
1444 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1445
1446 /* pay off debt */
1447 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1448 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1449 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1450 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1451
1452 lockdep_assert_held(&ioc->lock);
1453
1454 atomic64_add(vpay, &iocg->vtime);
1455 atomic64_add(vpay, &iocg->done_vtime);
1456 iocg_pay_debt(iocg, abs_vpay, now);
1457 vbudget -= vpay;
1458 }
1459
1460 if (iocg->abs_vdebt || iocg->delay)
1461 iocg_kick_delay(iocg, now);
1462
1463 /*
1464 * Debt can still be outstanding if we haven't paid all yet or the
1465 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1466 * under debt. Make sure @vbudget reflects the outstanding amount and is
1467 * not positive.
1468 */
1469 if (iocg->abs_vdebt) {
1470 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1471 vbudget = min_t(s64, 0, vbudget - vdebt);
1472 }
1473
1474 /*
1475 * Wake up the ones which are due and see how much vtime we'll need for
1476 * the next one. As paying off debt restores hw_inuse, it must be read
1477 * after the above debt payment.
1478 */
1479 ctx.vbudget = vbudget;
1480 current_hweight(iocg, NULL, &ctx.hw_inuse);
1481
1482 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1483
1484 if (!waitqueue_active(&iocg->waitq)) {
1485 if (iocg->wait_since) {
1486 iocg->local_stat.wait_us += now->now - iocg->wait_since;
1487 iocg->wait_since = 0;
1488 }
1489 return;
1490 }
1491
1492 if (!iocg->wait_since)
1493 iocg->wait_since = now->now;
1494
1495 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1496 return;
1497
1498 /* determine next wakeup, add a timer margin to guarantee chunking */
1499 vshortage = -ctx.vbudget;
1500 expires = now->now_ns +
1501 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1502 NSEC_PER_USEC;
1503 expires += ioc->timer_slack_ns;
1504
1505 /* if already active and close enough, don't bother */
1506 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1507 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1508 abs(oexpires - expires) <= ioc->timer_slack_ns)
1509 return;
1510
1511 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1512 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1513 }
1514
iocg_waitq_timer_fn(struct hrtimer * timer)1515 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1516 {
1517 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1518 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1519 struct ioc_now now;
1520 unsigned long flags;
1521
1522 ioc_now(iocg->ioc, &now);
1523
1524 iocg_lock(iocg, pay_debt, &flags);
1525 iocg_kick_waitq(iocg, pay_debt, &now);
1526 iocg_unlock(iocg, pay_debt, &flags);
1527
1528 return HRTIMER_NORESTART;
1529 }
1530
ioc_lat_stat(struct ioc * ioc,u32 * missed_ppm_ar,u32 * rq_wait_pct_p)1531 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1532 {
1533 u32 nr_met[2] = { };
1534 u32 nr_missed[2] = { };
1535 u64 rq_wait_ns = 0;
1536 int cpu, rw;
1537
1538 for_each_online_cpu(cpu) {
1539 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1540 u64 this_rq_wait_ns;
1541
1542 for (rw = READ; rw <= WRITE; rw++) {
1543 u32 this_met = local_read(&stat->missed[rw].nr_met);
1544 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1545
1546 nr_met[rw] += this_met - stat->missed[rw].last_met;
1547 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1548 stat->missed[rw].last_met = this_met;
1549 stat->missed[rw].last_missed = this_missed;
1550 }
1551
1552 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1553 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1554 stat->last_rq_wait_ns = this_rq_wait_ns;
1555 }
1556
1557 for (rw = READ; rw <= WRITE; rw++) {
1558 if (nr_met[rw] + nr_missed[rw])
1559 missed_ppm_ar[rw] =
1560 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1561 nr_met[rw] + nr_missed[rw]);
1562 else
1563 missed_ppm_ar[rw] = 0;
1564 }
1565
1566 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1567 ioc->period_us * NSEC_PER_USEC);
1568 }
1569
1570 /* was iocg idle this period? */
iocg_is_idle(struct ioc_gq * iocg)1571 static bool iocg_is_idle(struct ioc_gq *iocg)
1572 {
1573 struct ioc *ioc = iocg->ioc;
1574
1575 /* did something get issued this period? */
1576 if (atomic64_read(&iocg->active_period) ==
1577 atomic64_read(&ioc->cur_period))
1578 return false;
1579
1580 /* is something in flight? */
1581 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1582 return false;
1583
1584 return true;
1585 }
1586
1587 /*
1588 * Call this function on the target leaf @iocg's to build pre-order traversal
1589 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1590 * ->walk_list and the caller is responsible for dissolving the list after use.
1591 */
iocg_build_inner_walk(struct ioc_gq * iocg,struct list_head * inner_walk)1592 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1593 struct list_head *inner_walk)
1594 {
1595 int lvl;
1596
1597 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1598
1599 /* find the first ancestor which hasn't been visited yet */
1600 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1601 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1602 break;
1603 }
1604
1605 /* walk down and visit the inner nodes to get pre-order traversal */
1606 while (++lvl <= iocg->level - 1) {
1607 struct ioc_gq *inner = iocg->ancestors[lvl];
1608
1609 /* record traversal order */
1610 list_add_tail(&inner->walk_list, inner_walk);
1611 }
1612 }
1613
1614 /* collect per-cpu counters and propagate the deltas to the parent */
iocg_flush_stat_one(struct ioc_gq * iocg,struct ioc_now * now)1615 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1616 {
1617 struct ioc *ioc = iocg->ioc;
1618 struct iocg_stat new_stat;
1619 u64 abs_vusage = 0;
1620 u64 vusage_delta;
1621 int cpu;
1622
1623 lockdep_assert_held(&iocg->ioc->lock);
1624
1625 /* collect per-cpu counters */
1626 for_each_possible_cpu(cpu) {
1627 abs_vusage += local64_read(
1628 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1629 }
1630 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1631 iocg->last_stat_abs_vusage = abs_vusage;
1632
1633 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1634 iocg->local_stat.usage_us += iocg->usage_delta_us;
1635
1636 /* propagate upwards */
1637 new_stat.usage_us =
1638 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1639 new_stat.wait_us =
1640 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1641 new_stat.indebt_us =
1642 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1643 new_stat.indelay_us =
1644 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1645
1646 /* propagate the deltas to the parent */
1647 if (iocg->level > 0) {
1648 struct iocg_stat *parent_stat =
1649 &iocg->ancestors[iocg->level - 1]->desc_stat;
1650
1651 parent_stat->usage_us +=
1652 new_stat.usage_us - iocg->last_stat.usage_us;
1653 parent_stat->wait_us +=
1654 new_stat.wait_us - iocg->last_stat.wait_us;
1655 parent_stat->indebt_us +=
1656 new_stat.indebt_us - iocg->last_stat.indebt_us;
1657 parent_stat->indelay_us +=
1658 new_stat.indelay_us - iocg->last_stat.indelay_us;
1659 }
1660
1661 iocg->last_stat = new_stat;
1662 }
1663
1664 /* get stat counters ready for reading on all active iocgs */
iocg_flush_stat(struct list_head * target_iocgs,struct ioc_now * now)1665 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1666 {
1667 LIST_HEAD(inner_walk);
1668 struct ioc_gq *iocg, *tiocg;
1669
1670 /* flush leaves and build inner node walk list */
1671 list_for_each_entry(iocg, target_iocgs, active_list) {
1672 iocg_flush_stat_one(iocg, now);
1673 iocg_build_inner_walk(iocg, &inner_walk);
1674 }
1675
1676 /* keep flushing upwards by walking the inner list backwards */
1677 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1678 iocg_flush_stat_one(iocg, now);
1679 list_del_init(&iocg->walk_list);
1680 }
1681 }
1682
1683 /*
1684 * Determine what @iocg's hweight_inuse should be after donating unused
1685 * capacity. @hwm is the upper bound and used to signal no donation. This
1686 * function also throws away @iocg's excess budget.
1687 */
hweight_after_donation(struct ioc_gq * iocg,u32 old_hwi,u32 hwm,u32 usage,struct ioc_now * now)1688 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1689 u32 usage, struct ioc_now *now)
1690 {
1691 struct ioc *ioc = iocg->ioc;
1692 u64 vtime = atomic64_read(&iocg->vtime);
1693 s64 excess, delta, target, new_hwi;
1694
1695 /* debt handling owns inuse for debtors */
1696 if (iocg->abs_vdebt)
1697 return 1;
1698
1699 /* see whether minimum margin requirement is met */
1700 if (waitqueue_active(&iocg->waitq) ||
1701 time_after64(vtime, now->vnow - ioc->margins.min))
1702 return hwm;
1703
1704 /* throw away excess above target */
1705 excess = now->vnow - vtime - ioc->margins.target;
1706 if (excess > 0) {
1707 atomic64_add(excess, &iocg->vtime);
1708 atomic64_add(excess, &iocg->done_vtime);
1709 vtime += excess;
1710 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1711 }
1712
1713 /*
1714 * Let's say the distance between iocg's and device's vtimes as a
1715 * fraction of period duration is delta. Assuming that the iocg will
1716 * consume the usage determined above, we want to determine new_hwi so
1717 * that delta equals MARGIN_TARGET at the end of the next period.
1718 *
1719 * We need to execute usage worth of IOs while spending the sum of the
1720 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1721 * (delta):
1722 *
1723 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1724 *
1725 * Therefore, the new_hwi is:
1726 *
1727 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1728 */
1729 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1730 now->vnow - ioc->period_at_vtime);
1731 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1732 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1733
1734 return clamp_t(s64, new_hwi, 1, hwm);
1735 }
1736
1737 /*
1738 * For work-conservation, an iocg which isn't using all of its share should
1739 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1740 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1741 *
1742 * #1 is mathematically simpler but has the drawback of requiring synchronous
1743 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1744 * change due to donation snapbacks as it has the possibility of grossly
1745 * overshooting what's allowed by the model and vrate.
1746 *
1747 * #2 is inherently safe with local operations. The donating iocg can easily
1748 * snap back to higher weights when needed without worrying about impacts on
1749 * other nodes as the impacts will be inherently correct. This also makes idle
1750 * iocg activations safe. The only effect activations have is decreasing
1751 * hweight_inuse of others, the right solution to which is for those iocgs to
1752 * snap back to higher weights.
1753 *
1754 * So, we go with #2. The challenge is calculating how each donating iocg's
1755 * inuse should be adjusted to achieve the target donation amounts. This is done
1756 * using Andy's method described in the following pdf.
1757 *
1758 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1759 *
1760 * Given the weights and target after-donation hweight_inuse values, Andy's
1761 * method determines how the proportional distribution should look like at each
1762 * sibling level to maintain the relative relationship between all non-donating
1763 * pairs. To roughly summarize, it divides the tree into donating and
1764 * non-donating parts, calculates global donation rate which is used to
1765 * determine the target hweight_inuse for each node, and then derives per-level
1766 * proportions.
1767 *
1768 * The following pdf shows that global distribution calculated this way can be
1769 * achieved by scaling inuse weights of donating leaves and propagating the
1770 * adjustments upwards proportionally.
1771 *
1772 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1773 *
1774 * Combining the above two, we can determine how each leaf iocg's inuse should
1775 * be adjusted to achieve the target donation.
1776 *
1777 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1778 *
1779 * The inline comments use symbols from the last pdf.
1780 *
1781 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1782 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1783 * t is the sum of the absolute budgets of donating nodes in the subtree.
1784 * w is the weight of the node. w = w_f + w_t
1785 * w_f is the non-donating portion of w. w_f = w * f / b
1786 * w_b is the donating portion of w. w_t = w * t / b
1787 * s is the sum of all sibling weights. s = Sum(w) for siblings
1788 * s_f and s_t are the non-donating and donating portions of s.
1789 *
1790 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1791 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1792 * after adjustments. Subscript r denotes the root node's values.
1793 */
transfer_surpluses(struct list_head * surpluses,struct ioc_now * now)1794 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1795 {
1796 LIST_HEAD(over_hwa);
1797 LIST_HEAD(inner_walk);
1798 struct ioc_gq *iocg, *tiocg, *root_iocg;
1799 u32 after_sum, over_sum, over_target, gamma;
1800
1801 /*
1802 * It's pretty unlikely but possible for the total sum of
1803 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1804 * confuse the following calculations. If such condition is detected,
1805 * scale down everyone over its full share equally to keep the sum below
1806 * WEIGHT_ONE.
1807 */
1808 after_sum = 0;
1809 over_sum = 0;
1810 list_for_each_entry(iocg, surpluses, surplus_list) {
1811 u32 hwa;
1812
1813 current_hweight(iocg, &hwa, NULL);
1814 after_sum += iocg->hweight_after_donation;
1815
1816 if (iocg->hweight_after_donation > hwa) {
1817 over_sum += iocg->hweight_after_donation;
1818 list_add(&iocg->walk_list, &over_hwa);
1819 }
1820 }
1821
1822 if (after_sum >= WEIGHT_ONE) {
1823 /*
1824 * The delta should be deducted from the over_sum, calculate
1825 * target over_sum value.
1826 */
1827 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1828 WARN_ON_ONCE(over_sum <= over_delta);
1829 over_target = over_sum - over_delta;
1830 } else {
1831 over_target = 0;
1832 }
1833
1834 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1835 if (over_target)
1836 iocg->hweight_after_donation =
1837 div_u64((u64)iocg->hweight_after_donation *
1838 over_target, over_sum);
1839 list_del_init(&iocg->walk_list);
1840 }
1841
1842 /*
1843 * Build pre-order inner node walk list and prepare for donation
1844 * adjustment calculations.
1845 */
1846 list_for_each_entry(iocg, surpluses, surplus_list) {
1847 iocg_build_inner_walk(iocg, &inner_walk);
1848 }
1849
1850 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1851 WARN_ON_ONCE(root_iocg->level > 0);
1852
1853 list_for_each_entry(iocg, &inner_walk, walk_list) {
1854 iocg->child_adjusted_sum = 0;
1855 iocg->hweight_donating = 0;
1856 iocg->hweight_after_donation = 0;
1857 }
1858
1859 /*
1860 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1861 * up the hierarchy.
1862 */
1863 list_for_each_entry(iocg, surpluses, surplus_list) {
1864 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1865
1866 parent->hweight_donating += iocg->hweight_donating;
1867 parent->hweight_after_donation += iocg->hweight_after_donation;
1868 }
1869
1870 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1871 if (iocg->level > 0) {
1872 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1873
1874 parent->hweight_donating += iocg->hweight_donating;
1875 parent->hweight_after_donation += iocg->hweight_after_donation;
1876 }
1877 }
1878
1879 /*
1880 * Calculate inner hwa's (b) and make sure the donation values are
1881 * within the accepted ranges as we're doing low res calculations with
1882 * roundups.
1883 */
1884 list_for_each_entry(iocg, &inner_walk, walk_list) {
1885 if (iocg->level) {
1886 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1887
1888 iocg->hweight_active = DIV64_U64_ROUND_UP(
1889 (u64)parent->hweight_active * iocg->active,
1890 parent->child_active_sum);
1891
1892 }
1893
1894 iocg->hweight_donating = min(iocg->hweight_donating,
1895 iocg->hweight_active);
1896 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1897 iocg->hweight_donating - 1);
1898 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1899 iocg->hweight_donating <= 1 ||
1900 iocg->hweight_after_donation == 0)) {
1901 pr_warn("iocg: invalid donation weights in ");
1902 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1903 pr_cont(": active=%u donating=%u after=%u\n",
1904 iocg->hweight_active, iocg->hweight_donating,
1905 iocg->hweight_after_donation);
1906 }
1907 }
1908
1909 /*
1910 * Calculate the global donation rate (gamma) - the rate to adjust
1911 * non-donating budgets by.
1912 *
1913 * No need to use 64bit multiplication here as the first operand is
1914 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1915 *
1916 * We know that there are beneficiary nodes and the sum of the donating
1917 * hweights can't be whole; however, due to the round-ups during hweight
1918 * calculations, root_iocg->hweight_donating might still end up equal to
1919 * or greater than whole. Limit the range when calculating the divider.
1920 *
1921 * gamma = (1 - t_r') / (1 - t_r)
1922 */
1923 gamma = DIV_ROUND_UP(
1924 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1925 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1926
1927 /*
1928 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1929 * nodes.
1930 */
1931 list_for_each_entry(iocg, &inner_walk, walk_list) {
1932 struct ioc_gq *parent;
1933 u32 inuse, wpt, wptp;
1934 u64 st, sf;
1935
1936 if (iocg->level == 0) {
1937 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1938 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1939 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1940 WEIGHT_ONE - iocg->hweight_after_donation);
1941 continue;
1942 }
1943
1944 parent = iocg->ancestors[iocg->level - 1];
1945
1946 /* b' = gamma * b_f + b_t' */
1947 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1948 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1949 WEIGHT_ONE) + iocg->hweight_after_donation;
1950
1951 /* w' = s' * b' / b'_p */
1952 inuse = DIV64_U64_ROUND_UP(
1953 (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1954 parent->hweight_inuse);
1955
1956 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1957 st = DIV64_U64_ROUND_UP(
1958 iocg->child_active_sum * iocg->hweight_donating,
1959 iocg->hweight_active);
1960 sf = iocg->child_active_sum - st;
1961 wpt = DIV64_U64_ROUND_UP(
1962 (u64)iocg->active * iocg->hweight_donating,
1963 iocg->hweight_active);
1964 wptp = DIV64_U64_ROUND_UP(
1965 (u64)inuse * iocg->hweight_after_donation,
1966 iocg->hweight_inuse);
1967
1968 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1969 }
1970
1971 /*
1972 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1973 * we can finally determine leaf adjustments.
1974 */
1975 list_for_each_entry(iocg, surpluses, surplus_list) {
1976 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1977 u32 inuse;
1978
1979 /*
1980 * In-debt iocgs participated in the donation calculation with
1981 * the minimum target hweight_inuse. Configuring inuse
1982 * accordingly would work fine but debt handling expects
1983 * @iocg->inuse stay at the minimum and we don't wanna
1984 * interfere.
1985 */
1986 if (iocg->abs_vdebt) {
1987 WARN_ON_ONCE(iocg->inuse > 1);
1988 continue;
1989 }
1990
1991 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
1992 inuse = DIV64_U64_ROUND_UP(
1993 parent->child_adjusted_sum * iocg->hweight_after_donation,
1994 parent->hweight_inuse);
1995
1996 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
1997 iocg->inuse, inuse,
1998 iocg->hweight_inuse,
1999 iocg->hweight_after_donation);
2000
2001 __propagate_weights(iocg, iocg->active, inuse, true, now);
2002 }
2003
2004 /* walk list should be dissolved after use */
2005 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2006 list_del_init(&iocg->walk_list);
2007 }
2008
2009 /*
2010 * A low weight iocg can amass a large amount of debt, for example, when
2011 * anonymous memory gets reclaimed aggressively. If the system has a lot of
2012 * memory paired with a slow IO device, the debt can span multiple seconds or
2013 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2014 * up blocked paying its debt while the IO device is idle.
2015 *
2016 * The following protects against such cases. If the device has been
2017 * sufficiently idle for a while, the debts are halved and delays are
2018 * recalculated.
2019 */
ioc_forgive_debts(struct ioc * ioc,u64 usage_us_sum,int nr_debtors,struct ioc_now * now)2020 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2021 struct ioc_now *now)
2022 {
2023 struct ioc_gq *iocg;
2024 u64 dur, usage_pct, nr_cycles;
2025
2026 /* if no debtor, reset the cycle */
2027 if (!nr_debtors) {
2028 ioc->dfgv_period_at = now->now;
2029 ioc->dfgv_period_rem = 0;
2030 ioc->dfgv_usage_us_sum = 0;
2031 return;
2032 }
2033
2034 /*
2035 * Debtors can pass through a lot of writes choking the device and we
2036 * don't want to be forgiving debts while the device is struggling from
2037 * write bursts. If we're missing latency targets, consider the device
2038 * fully utilized.
2039 */
2040 if (ioc->busy_level > 0)
2041 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2042
2043 ioc->dfgv_usage_us_sum += usage_us_sum;
2044 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2045 return;
2046
2047 /*
2048 * At least DFGV_PERIOD has passed since the last period. Calculate the
2049 * average usage and reset the period counters.
2050 */
2051 dur = now->now - ioc->dfgv_period_at;
2052 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2053
2054 ioc->dfgv_period_at = now->now;
2055 ioc->dfgv_usage_us_sum = 0;
2056
2057 /* if was too busy, reset everything */
2058 if (usage_pct > DFGV_USAGE_PCT) {
2059 ioc->dfgv_period_rem = 0;
2060 return;
2061 }
2062
2063 /*
2064 * Usage is lower than threshold. Let's forgive some debts. Debt
2065 * forgiveness runs off of the usual ioc timer but its period usually
2066 * doesn't match ioc's. Compensate the difference by performing the
2067 * reduction as many times as would fit in the duration since the last
2068 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2069 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2070 * reductions is doubled.
2071 */
2072 nr_cycles = dur + ioc->dfgv_period_rem;
2073 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2074
2075 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2076 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2077
2078 if (!iocg->abs_vdebt && !iocg->delay)
2079 continue;
2080
2081 spin_lock(&iocg->waitq.lock);
2082
2083 old_debt = iocg->abs_vdebt;
2084 old_delay = iocg->delay;
2085
2086 if (iocg->abs_vdebt)
2087 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2088 if (iocg->delay)
2089 iocg->delay = iocg->delay >> nr_cycles ?: 1;
2090
2091 iocg_kick_waitq(iocg, true, now);
2092
2093 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2094 old_debt, iocg->abs_vdebt,
2095 old_delay, iocg->delay);
2096
2097 spin_unlock(&iocg->waitq.lock);
2098 }
2099 }
2100
ioc_timer_fn(struct timer_list * timer)2101 static void ioc_timer_fn(struct timer_list *timer)
2102 {
2103 struct ioc *ioc = container_of(timer, struct ioc, timer);
2104 struct ioc_gq *iocg, *tiocg;
2105 struct ioc_now now;
2106 LIST_HEAD(surpluses);
2107 int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
2108 u64 usage_us_sum = 0;
2109 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2110 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2111 u32 missed_ppm[2], rq_wait_pct;
2112 u64 period_vtime;
2113 int prev_busy_level;
2114
2115 /* how were the latencies during the period? */
2116 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2117
2118 /* take care of active iocgs */
2119 spin_lock_irq(&ioc->lock);
2120
2121 ioc_now(ioc, &now);
2122
2123 period_vtime = now.vnow - ioc->period_at_vtime;
2124 if (WARN_ON_ONCE(!period_vtime)) {
2125 spin_unlock_irq(&ioc->lock);
2126 return;
2127 }
2128
2129 /*
2130 * Waiters determine the sleep durations based on the vrate they
2131 * saw at the time of sleep. If vrate has increased, some waiters
2132 * could be sleeping for too long. Wake up tardy waiters which
2133 * should have woken up in the last period and expire idle iocgs.
2134 */
2135 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2136 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2137 !iocg->delay && !iocg_is_idle(iocg))
2138 continue;
2139
2140 spin_lock(&iocg->waitq.lock);
2141
2142 /* flush wait and indebt stat deltas */
2143 if (iocg->wait_since) {
2144 iocg->local_stat.wait_us += now.now - iocg->wait_since;
2145 iocg->wait_since = now.now;
2146 }
2147 if (iocg->indebt_since) {
2148 iocg->local_stat.indebt_us +=
2149 now.now - iocg->indebt_since;
2150 iocg->indebt_since = now.now;
2151 }
2152 if (iocg->indelay_since) {
2153 iocg->local_stat.indelay_us +=
2154 now.now - iocg->indelay_since;
2155 iocg->indelay_since = now.now;
2156 }
2157
2158 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2159 iocg->delay) {
2160 /* might be oversleeping vtime / hweight changes, kick */
2161 iocg_kick_waitq(iocg, true, &now);
2162 if (iocg->abs_vdebt || iocg->delay)
2163 nr_debtors++;
2164 } else if (iocg_is_idle(iocg)) {
2165 /* no waiter and idle, deactivate */
2166 u64 vtime = atomic64_read(&iocg->vtime);
2167 s64 excess;
2168
2169 /*
2170 * @iocg has been inactive for a full duration and will
2171 * have a high budget. Account anything above target as
2172 * error and throw away. On reactivation, it'll start
2173 * with the target budget.
2174 */
2175 excess = now.vnow - vtime - ioc->margins.target;
2176 if (excess > 0) {
2177 u32 old_hwi;
2178
2179 current_hweight(iocg, NULL, &old_hwi);
2180 ioc->vtime_err -= div64_u64(excess * old_hwi,
2181 WEIGHT_ONE);
2182 }
2183
2184 __propagate_weights(iocg, 0, 0, false, &now);
2185 list_del_init(&iocg->active_list);
2186 }
2187
2188 spin_unlock(&iocg->waitq.lock);
2189 }
2190 commit_weights(ioc);
2191
2192 /*
2193 * Wait and indebt stat are flushed above and the donation calculation
2194 * below needs updated usage stat. Let's bring stat up-to-date.
2195 */
2196 iocg_flush_stat(&ioc->active_iocgs, &now);
2197
2198 /* calc usage and see whether some weights need to be moved around */
2199 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2200 u64 vdone, vtime, usage_us, usage_dur;
2201 u32 usage, hw_active, hw_inuse;
2202
2203 /*
2204 * Collect unused and wind vtime closer to vnow to prevent
2205 * iocgs from accumulating a large amount of budget.
2206 */
2207 vdone = atomic64_read(&iocg->done_vtime);
2208 vtime = atomic64_read(&iocg->vtime);
2209 current_hweight(iocg, &hw_active, &hw_inuse);
2210
2211 /*
2212 * Latency QoS detection doesn't account for IOs which are
2213 * in-flight for longer than a period. Detect them by
2214 * comparing vdone against period start. If lagging behind
2215 * IOs from past periods, don't increase vrate.
2216 */
2217 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2218 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2219 time_after64(vtime, vdone) &&
2220 time_after64(vtime, now.vnow -
2221 MAX_LAGGING_PERIODS * period_vtime) &&
2222 time_before64(vdone, now.vnow - period_vtime))
2223 nr_lagging++;
2224
2225 /*
2226 * Determine absolute usage factoring in in-flight IOs to avoid
2227 * high-latency completions appearing as idle.
2228 */
2229 usage_us = iocg->usage_delta_us;
2230 usage_us_sum += usage_us;
2231
2232 if (vdone != vtime) {
2233 u64 inflight_us = DIV64_U64_ROUND_UP(
2234 cost_to_abs_cost(vtime - vdone, hw_inuse),
2235 ioc->vtime_base_rate);
2236 usage_us = max(usage_us, inflight_us);
2237 }
2238
2239 /* convert to hweight based usage ratio */
2240 if (time_after64(iocg->activated_at, ioc->period_at))
2241 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2242 else
2243 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2244
2245 usage = clamp_t(u32,
2246 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2247 usage_dur),
2248 1, WEIGHT_ONE);
2249
2250 /* see whether there's surplus vtime */
2251 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2252 if (hw_inuse < hw_active ||
2253 (!waitqueue_active(&iocg->waitq) &&
2254 time_before64(vtime, now.vnow - ioc->margins.low))) {
2255 u32 hwa, old_hwi, hwm, new_hwi;
2256
2257 /*
2258 * Already donating or accumulated enough to start.
2259 * Determine the donation amount.
2260 */
2261 current_hweight(iocg, &hwa, &old_hwi);
2262 hwm = current_hweight_max(iocg);
2263 new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2264 usage, &now);
2265 /*
2266 * Donation calculation assumes hweight_after_donation
2267 * to be positive, a condition that a donor w/ hwa < 2
2268 * can't meet. Don't bother with donation if hwa is
2269 * below 2. It's not gonna make a meaningful difference
2270 * anyway.
2271 */
2272 if (new_hwi < hwm && hwa >= 2) {
2273 iocg->hweight_donating = hwa;
2274 iocg->hweight_after_donation = new_hwi;
2275 list_add(&iocg->surplus_list, &surpluses);
2276 } else if (!iocg->abs_vdebt) {
2277 /*
2278 * @iocg doesn't have enough to donate. Reset
2279 * its inuse to active.
2280 *
2281 * Don't reset debtors as their inuse's are
2282 * owned by debt handling. This shouldn't affect
2283 * donation calculuation in any meaningful way
2284 * as @iocg doesn't have a meaningful amount of
2285 * share anyway.
2286 */
2287 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2288 iocg->inuse, iocg->active,
2289 iocg->hweight_inuse, new_hwi);
2290
2291 __propagate_weights(iocg, iocg->active,
2292 iocg->active, true, &now);
2293 nr_shortages++;
2294 }
2295 } else {
2296 /* genuinely short on vtime */
2297 nr_shortages++;
2298 }
2299 }
2300
2301 if (!list_empty(&surpluses) && nr_shortages)
2302 transfer_surpluses(&surpluses, &now);
2303
2304 commit_weights(ioc);
2305
2306 /* surplus list should be dissolved after use */
2307 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2308 list_del_init(&iocg->surplus_list);
2309
2310 /*
2311 * If q is getting clogged or we're missing too much, we're issuing
2312 * too much IO and should lower vtime rate. If we're not missing
2313 * and experiencing shortages but not surpluses, we're too stingy
2314 * and should increase vtime rate.
2315 */
2316 prev_busy_level = ioc->busy_level;
2317 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2318 missed_ppm[READ] > ppm_rthr ||
2319 missed_ppm[WRITE] > ppm_wthr) {
2320 /* clearly missing QoS targets, slow down vrate */
2321 ioc->busy_level = max(ioc->busy_level, 0);
2322 ioc->busy_level++;
2323 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2324 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2325 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2326 /* QoS targets are being met with >25% margin */
2327 if (nr_shortages) {
2328 /*
2329 * We're throttling while the device has spare
2330 * capacity. If vrate was being slowed down, stop.
2331 */
2332 ioc->busy_level = min(ioc->busy_level, 0);
2333
2334 /*
2335 * If there are IOs spanning multiple periods, wait
2336 * them out before pushing the device harder.
2337 */
2338 if (!nr_lagging)
2339 ioc->busy_level--;
2340 } else {
2341 /*
2342 * Nobody is being throttled and the users aren't
2343 * issuing enough IOs to saturate the device. We
2344 * simply don't know how close the device is to
2345 * saturation. Coast.
2346 */
2347 ioc->busy_level = 0;
2348 }
2349 } else {
2350 /* inside the hysterisis margin, we're good */
2351 ioc->busy_level = 0;
2352 }
2353
2354 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2355
2356 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
2357 u64 vrate = ioc->vtime_base_rate;
2358 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
2359
2360 /* rq_wait signal is always reliable, ignore user vrate_min */
2361 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
2362 vrate_min = VRATE_MIN;
2363
2364 /*
2365 * If vrate is out of bounds, apply clamp gradually as the
2366 * bounds can change abruptly. Otherwise, apply busy_level
2367 * based adjustment.
2368 */
2369 if (vrate < vrate_min) {
2370 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
2371 100);
2372 vrate = min(vrate, vrate_min);
2373 } else if (vrate > vrate_max) {
2374 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
2375 100);
2376 vrate = max(vrate, vrate_max);
2377 } else {
2378 int idx = min_t(int, abs(ioc->busy_level),
2379 ARRAY_SIZE(vrate_adj_pct) - 1);
2380 u32 adj_pct = vrate_adj_pct[idx];
2381
2382 if (ioc->busy_level > 0)
2383 adj_pct = 100 - adj_pct;
2384 else
2385 adj_pct = 100 + adj_pct;
2386
2387 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
2388 vrate_min, vrate_max);
2389 }
2390
2391 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
2392 nr_lagging, nr_shortages);
2393
2394 ioc->vtime_base_rate = vrate;
2395 ioc_refresh_margins(ioc);
2396 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
2397 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
2398 missed_ppm, rq_wait_pct, nr_lagging,
2399 nr_shortages);
2400 }
2401
2402 ioc_refresh_params(ioc, false);
2403
2404 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2405
2406 /*
2407 * This period is done. Move onto the next one. If nothing's
2408 * going on with the device, stop the timer.
2409 */
2410 atomic64_inc(&ioc->cur_period);
2411
2412 if (ioc->running != IOC_STOP) {
2413 if (!list_empty(&ioc->active_iocgs)) {
2414 ioc_start_period(ioc, &now);
2415 } else {
2416 ioc->busy_level = 0;
2417 ioc->vtime_err = 0;
2418 ioc->running = IOC_IDLE;
2419 }
2420
2421 ioc_refresh_vrate(ioc, &now);
2422 }
2423
2424 spin_unlock_irq(&ioc->lock);
2425 }
2426
adjust_inuse_and_calc_cost(struct ioc_gq * iocg,u64 vtime,u64 abs_cost,struct ioc_now * now)2427 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2428 u64 abs_cost, struct ioc_now *now)
2429 {
2430 struct ioc *ioc = iocg->ioc;
2431 struct ioc_margins *margins = &ioc->margins;
2432 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2433 u32 hwi, adj_step;
2434 s64 margin;
2435 u64 cost, new_inuse;
2436 unsigned long flags;
2437
2438 current_hweight(iocg, NULL, &hwi);
2439 old_hwi = hwi;
2440 cost = abs_cost_to_cost(abs_cost, hwi);
2441 margin = now->vnow - vtime - cost;
2442
2443 /* debt handling owns inuse for debtors */
2444 if (iocg->abs_vdebt)
2445 return cost;
2446
2447 /*
2448 * We only increase inuse during period and do so iff the margin has
2449 * deteriorated since the previous adjustment.
2450 */
2451 if (margin >= iocg->saved_margin || margin >= margins->low ||
2452 iocg->inuse == iocg->active)
2453 return cost;
2454
2455 spin_lock_irqsave(&ioc->lock, flags);
2456
2457 /* we own inuse only when @iocg is in the normal active state */
2458 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2459 spin_unlock_irqrestore(&ioc->lock, flags);
2460 return cost;
2461 }
2462
2463 /*
2464 * Bump up inuse till @abs_cost fits in the existing budget.
2465 * adj_step must be determined after acquiring ioc->lock - we might
2466 * have raced and lost to another thread for activation and could
2467 * be reading 0 iocg->active before ioc->lock which will lead to
2468 * infinite loop.
2469 */
2470 new_inuse = iocg->inuse;
2471 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2472 do {
2473 new_inuse = new_inuse + adj_step;
2474 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2475 current_hweight(iocg, NULL, &hwi);
2476 cost = abs_cost_to_cost(abs_cost, hwi);
2477 } while (time_after64(vtime + cost, now->vnow) &&
2478 iocg->inuse != iocg->active);
2479
2480 spin_unlock_irqrestore(&ioc->lock, flags);
2481
2482 TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2483 old_inuse, iocg->inuse, old_hwi, hwi);
2484
2485 return cost;
2486 }
2487
calc_vtime_cost_builtin(struct bio * bio,struct ioc_gq * iocg,bool is_merge,u64 * costp)2488 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2489 bool is_merge, u64 *costp)
2490 {
2491 struct ioc *ioc = iocg->ioc;
2492 u64 coef_seqio, coef_randio, coef_page;
2493 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2494 u64 seek_pages = 0;
2495 u64 cost = 0;
2496
2497 switch (bio_op(bio)) {
2498 case REQ_OP_READ:
2499 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
2500 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
2501 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
2502 break;
2503 case REQ_OP_WRITE:
2504 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
2505 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
2506 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
2507 break;
2508 default:
2509 goto out;
2510 }
2511
2512 if (iocg->cursor) {
2513 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2514 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2515 }
2516
2517 if (!is_merge) {
2518 if (seek_pages > LCOEF_RANDIO_PAGES) {
2519 cost += coef_randio;
2520 } else {
2521 cost += coef_seqio;
2522 }
2523 }
2524 cost += pages * coef_page;
2525 out:
2526 *costp = cost;
2527 }
2528
calc_vtime_cost(struct bio * bio,struct ioc_gq * iocg,bool is_merge)2529 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2530 {
2531 u64 cost;
2532
2533 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2534 return cost;
2535 }
2536
calc_size_vtime_cost_builtin(struct request * rq,struct ioc * ioc,u64 * costp)2537 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2538 u64 *costp)
2539 {
2540 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2541
2542 switch (req_op(rq)) {
2543 case REQ_OP_READ:
2544 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2545 break;
2546 case REQ_OP_WRITE:
2547 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2548 break;
2549 default:
2550 *costp = 0;
2551 }
2552 }
2553
calc_size_vtime_cost(struct request * rq,struct ioc * ioc)2554 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2555 {
2556 u64 cost;
2557
2558 calc_size_vtime_cost_builtin(rq, ioc, &cost);
2559 return cost;
2560 }
2561
ioc_rqos_throttle(struct rq_qos * rqos,struct bio * bio)2562 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2563 {
2564 struct blkcg_gq *blkg = bio->bi_blkg;
2565 struct ioc *ioc = rqos_to_ioc(rqos);
2566 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2567 struct ioc_now now;
2568 struct iocg_wait wait;
2569 u64 abs_cost, cost, vtime;
2570 bool use_debt, ioc_locked;
2571 unsigned long flags;
2572
2573 /* bypass IOs if disabled, still initializing, or for root cgroup */
2574 if (!ioc->enabled || !iocg || !iocg->level)
2575 return;
2576
2577 /* calculate the absolute vtime cost */
2578 abs_cost = calc_vtime_cost(bio, iocg, false);
2579 if (!abs_cost)
2580 return;
2581
2582 if (!iocg_activate(iocg, &now))
2583 return;
2584
2585 iocg->cursor = bio_end_sector(bio);
2586 vtime = atomic64_read(&iocg->vtime);
2587 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2588
2589 /*
2590 * If no one's waiting and within budget, issue right away. The
2591 * tests are racy but the races aren't systemic - we only miss once
2592 * in a while which is fine.
2593 */
2594 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2595 time_before_eq64(vtime + cost, now.vnow)) {
2596 iocg_commit_bio(iocg, bio, abs_cost, cost);
2597 return;
2598 }
2599
2600 /*
2601 * We're over budget. This can be handled in two ways. IOs which may
2602 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2603 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2604 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2605 * whether debt handling is needed and acquire locks accordingly.
2606 */
2607 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2608 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2609 retry_lock:
2610 iocg_lock(iocg, ioc_locked, &flags);
2611
2612 /*
2613 * @iocg must stay activated for debt and waitq handling. Deactivation
2614 * is synchronized against both ioc->lock and waitq.lock and we won't
2615 * get deactivated as long as we're waiting or has debt, so we're good
2616 * if we're activated here. In the unlikely cases that we aren't, just
2617 * issue the IO.
2618 */
2619 if (unlikely(list_empty(&iocg->active_list))) {
2620 iocg_unlock(iocg, ioc_locked, &flags);
2621 iocg_commit_bio(iocg, bio, abs_cost, cost);
2622 return;
2623 }
2624
2625 /*
2626 * We're over budget. If @bio has to be issued regardless, remember
2627 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2628 * off the debt before waking more IOs.
2629 *
2630 * This way, the debt is continuously paid off each period with the
2631 * actual budget available to the cgroup. If we just wound vtime, we
2632 * would incorrectly use the current hw_inuse for the entire amount
2633 * which, for example, can lead to the cgroup staying blocked for a
2634 * long time even with substantially raised hw_inuse.
2635 *
2636 * An iocg with vdebt should stay online so that the timer can keep
2637 * deducting its vdebt and [de]activate use_delay mechanism
2638 * accordingly. We don't want to race against the timer trying to
2639 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2640 * penalizing the cgroup and its descendants.
2641 */
2642 if (use_debt) {
2643 iocg_incur_debt(iocg, abs_cost, &now);
2644 if (iocg_kick_delay(iocg, &now))
2645 blkcg_schedule_throttle(rqos->q,
2646 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2647 iocg_unlock(iocg, ioc_locked, &flags);
2648 return;
2649 }
2650
2651 /* guarantee that iocgs w/ waiters have maximum inuse */
2652 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2653 if (!ioc_locked) {
2654 iocg_unlock(iocg, false, &flags);
2655 ioc_locked = true;
2656 goto retry_lock;
2657 }
2658 propagate_weights(iocg, iocg->active, iocg->active, true,
2659 &now);
2660 }
2661
2662 /*
2663 * Append self to the waitq and schedule the wakeup timer if we're
2664 * the first waiter. The timer duration is calculated based on the
2665 * current vrate. vtime and hweight changes can make it too short
2666 * or too long. Each wait entry records the absolute cost it's
2667 * waiting for to allow re-evaluation using a custom wait entry.
2668 *
2669 * If too short, the timer simply reschedules itself. If too long,
2670 * the period timer will notice and trigger wakeups.
2671 *
2672 * All waiters are on iocg->waitq and the wait states are
2673 * synchronized using waitq.lock.
2674 */
2675 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2676 wait.wait.private = current;
2677 wait.bio = bio;
2678 wait.abs_cost = abs_cost;
2679 wait.committed = false; /* will be set true by waker */
2680
2681 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2682 iocg_kick_waitq(iocg, ioc_locked, &now);
2683
2684 iocg_unlock(iocg, ioc_locked, &flags);
2685
2686 while (true) {
2687 set_current_state(TASK_UNINTERRUPTIBLE);
2688 if (wait.committed)
2689 break;
2690 io_schedule();
2691 }
2692
2693 /* waker already committed us, proceed */
2694 finish_wait(&iocg->waitq, &wait.wait);
2695 }
2696
ioc_rqos_merge(struct rq_qos * rqos,struct request * rq,struct bio * bio)2697 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2698 struct bio *bio)
2699 {
2700 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2701 struct ioc *ioc = rqos_to_ioc(rqos);
2702 sector_t bio_end = bio_end_sector(bio);
2703 struct ioc_now now;
2704 u64 vtime, abs_cost, cost;
2705 unsigned long flags;
2706
2707 /* bypass if disabled, still initializing, or for root cgroup */
2708 if (!ioc->enabled || !iocg || !iocg->level)
2709 return;
2710
2711 abs_cost = calc_vtime_cost(bio, iocg, true);
2712 if (!abs_cost)
2713 return;
2714
2715 ioc_now(ioc, &now);
2716
2717 vtime = atomic64_read(&iocg->vtime);
2718 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2719
2720 /* update cursor if backmerging into the request at the cursor */
2721 if (blk_rq_pos(rq) < bio_end &&
2722 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2723 iocg->cursor = bio_end;
2724
2725 /*
2726 * Charge if there's enough vtime budget and the existing request has
2727 * cost assigned.
2728 */
2729 if (rq->bio && rq->bio->bi_iocost_cost &&
2730 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2731 iocg_commit_bio(iocg, bio, abs_cost, cost);
2732 return;
2733 }
2734
2735 /*
2736 * Otherwise, account it as debt if @iocg is online, which it should
2737 * be for the vast majority of cases. See debt handling in
2738 * ioc_rqos_throttle() for details.
2739 */
2740 spin_lock_irqsave(&ioc->lock, flags);
2741 spin_lock(&iocg->waitq.lock);
2742
2743 if (likely(!list_empty(&iocg->active_list))) {
2744 iocg_incur_debt(iocg, abs_cost, &now);
2745 if (iocg_kick_delay(iocg, &now))
2746 blkcg_schedule_throttle(rqos->q,
2747 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2748 } else {
2749 iocg_commit_bio(iocg, bio, abs_cost, cost);
2750 }
2751
2752 spin_unlock(&iocg->waitq.lock);
2753 spin_unlock_irqrestore(&ioc->lock, flags);
2754 }
2755
ioc_rqos_done_bio(struct rq_qos * rqos,struct bio * bio)2756 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2757 {
2758 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2759
2760 if (iocg && bio->bi_iocost_cost)
2761 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2762 }
2763
ioc_rqos_done(struct rq_qos * rqos,struct request * rq)2764 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2765 {
2766 struct ioc *ioc = rqos_to_ioc(rqos);
2767 struct ioc_pcpu_stat *ccs;
2768 u64 on_q_ns, rq_wait_ns, size_nsec;
2769 int pidx, rw;
2770
2771 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2772 return;
2773
2774 switch (req_op(rq) & REQ_OP_MASK) {
2775 case REQ_OP_READ:
2776 pidx = QOS_RLAT;
2777 rw = READ;
2778 break;
2779 case REQ_OP_WRITE:
2780 pidx = QOS_WLAT;
2781 rw = WRITE;
2782 break;
2783 default:
2784 return;
2785 }
2786
2787 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2788 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2789 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2790
2791 ccs = get_cpu_ptr(ioc->pcpu_stat);
2792
2793 if (on_q_ns <= size_nsec ||
2794 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2795 local_inc(&ccs->missed[rw].nr_met);
2796 else
2797 local_inc(&ccs->missed[rw].nr_missed);
2798
2799 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2800
2801 put_cpu_ptr(ccs);
2802 }
2803
ioc_rqos_queue_depth_changed(struct rq_qos * rqos)2804 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2805 {
2806 struct ioc *ioc = rqos_to_ioc(rqos);
2807
2808 spin_lock_irq(&ioc->lock);
2809 ioc_refresh_params(ioc, false);
2810 spin_unlock_irq(&ioc->lock);
2811 }
2812
ioc_rqos_exit(struct rq_qos * rqos)2813 static void ioc_rqos_exit(struct rq_qos *rqos)
2814 {
2815 struct ioc *ioc = rqos_to_ioc(rqos);
2816
2817 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2818
2819 spin_lock_irq(&ioc->lock);
2820 ioc->running = IOC_STOP;
2821 spin_unlock_irq(&ioc->lock);
2822
2823 del_timer_sync(&ioc->timer);
2824 free_percpu(ioc->pcpu_stat);
2825 kfree(ioc);
2826 }
2827
2828 static struct rq_qos_ops ioc_rqos_ops = {
2829 .throttle = ioc_rqos_throttle,
2830 .merge = ioc_rqos_merge,
2831 .done_bio = ioc_rqos_done_bio,
2832 .done = ioc_rqos_done,
2833 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2834 .exit = ioc_rqos_exit,
2835 };
2836
blk_iocost_init(struct request_queue * q)2837 static int blk_iocost_init(struct request_queue *q)
2838 {
2839 struct ioc *ioc;
2840 struct rq_qos *rqos;
2841 int i, cpu, ret;
2842
2843 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2844 if (!ioc)
2845 return -ENOMEM;
2846
2847 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2848 if (!ioc->pcpu_stat) {
2849 kfree(ioc);
2850 return -ENOMEM;
2851 }
2852
2853 for_each_possible_cpu(cpu) {
2854 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2855
2856 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2857 local_set(&ccs->missed[i].nr_met, 0);
2858 local_set(&ccs->missed[i].nr_missed, 0);
2859 }
2860 local64_set(&ccs->rq_wait_ns, 0);
2861 }
2862
2863 rqos = &ioc->rqos;
2864 rqos->id = RQ_QOS_COST;
2865 rqos->ops = &ioc_rqos_ops;
2866 rqos->q = q;
2867
2868 spin_lock_init(&ioc->lock);
2869 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2870 INIT_LIST_HEAD(&ioc->active_iocgs);
2871
2872 ioc->running = IOC_IDLE;
2873 ioc->vtime_base_rate = VTIME_PER_USEC;
2874 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2875 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2876 ioc->period_at = ktime_to_us(ktime_get());
2877 atomic64_set(&ioc->cur_period, 0);
2878 atomic_set(&ioc->hweight_gen, 0);
2879
2880 spin_lock_irq(&ioc->lock);
2881 ioc->autop_idx = AUTOP_INVALID;
2882 ioc_refresh_params(ioc, true);
2883 spin_unlock_irq(&ioc->lock);
2884
2885 /*
2886 * rqos must be added before activation to allow iocg_pd_init() to
2887 * lookup the ioc from q. This means that the rqos methods may get
2888 * called before policy activation completion, can't assume that the
2889 * target bio has an iocg associated and need to test for NULL iocg.
2890 */
2891 rq_qos_add(q, rqos);
2892 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2893 if (ret) {
2894 rq_qos_del(q, rqos);
2895 free_percpu(ioc->pcpu_stat);
2896 kfree(ioc);
2897 return ret;
2898 }
2899 return 0;
2900 }
2901
ioc_cpd_alloc(gfp_t gfp)2902 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2903 {
2904 struct ioc_cgrp *iocc;
2905
2906 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2907 if (!iocc)
2908 return NULL;
2909
2910 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2911 return &iocc->cpd;
2912 }
2913
ioc_cpd_free(struct blkcg_policy_data * cpd)2914 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2915 {
2916 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2917 }
2918
ioc_pd_alloc(gfp_t gfp,struct request_queue * q,struct blkcg * blkcg)2919 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2920 struct blkcg *blkcg)
2921 {
2922 int levels = blkcg->css.cgroup->level + 1;
2923 struct ioc_gq *iocg;
2924
2925 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2926 if (!iocg)
2927 return NULL;
2928
2929 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2930 if (!iocg->pcpu_stat) {
2931 kfree(iocg);
2932 return NULL;
2933 }
2934
2935 return &iocg->pd;
2936 }
2937
ioc_pd_init(struct blkg_policy_data * pd)2938 static void ioc_pd_init(struct blkg_policy_data *pd)
2939 {
2940 struct ioc_gq *iocg = pd_to_iocg(pd);
2941 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2942 struct ioc *ioc = q_to_ioc(blkg->q);
2943 struct ioc_now now;
2944 struct blkcg_gq *tblkg;
2945 unsigned long flags;
2946
2947 ioc_now(ioc, &now);
2948
2949 iocg->ioc = ioc;
2950 atomic64_set(&iocg->vtime, now.vnow);
2951 atomic64_set(&iocg->done_vtime, now.vnow);
2952 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2953 INIT_LIST_HEAD(&iocg->active_list);
2954 INIT_LIST_HEAD(&iocg->walk_list);
2955 INIT_LIST_HEAD(&iocg->surplus_list);
2956 iocg->hweight_active = WEIGHT_ONE;
2957 iocg->hweight_inuse = WEIGHT_ONE;
2958
2959 init_waitqueue_head(&iocg->waitq);
2960 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2961 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2962
2963 iocg->level = blkg->blkcg->css.cgroup->level;
2964
2965 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2966 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2967 iocg->ancestors[tiocg->level] = tiocg;
2968 }
2969
2970 spin_lock_irqsave(&ioc->lock, flags);
2971 weight_updated(iocg, &now);
2972 spin_unlock_irqrestore(&ioc->lock, flags);
2973 }
2974
ioc_pd_free(struct blkg_policy_data * pd)2975 static void ioc_pd_free(struct blkg_policy_data *pd)
2976 {
2977 struct ioc_gq *iocg = pd_to_iocg(pd);
2978 struct ioc *ioc = iocg->ioc;
2979 unsigned long flags;
2980
2981 if (ioc) {
2982 spin_lock_irqsave(&ioc->lock, flags);
2983
2984 if (!list_empty(&iocg->active_list)) {
2985 struct ioc_now now;
2986
2987 ioc_now(ioc, &now);
2988 propagate_weights(iocg, 0, 0, false, &now);
2989 list_del_init(&iocg->active_list);
2990 }
2991
2992 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2993 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2994
2995 spin_unlock_irqrestore(&ioc->lock, flags);
2996
2997 hrtimer_cancel(&iocg->waitq_timer);
2998 }
2999 free_percpu(iocg->pcpu_stat);
3000 kfree(iocg);
3001 }
3002
ioc_pd_stat(struct blkg_policy_data * pd,char * buf,size_t size)3003 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
3004 {
3005 struct ioc_gq *iocg = pd_to_iocg(pd);
3006 struct ioc *ioc = iocg->ioc;
3007 size_t pos = 0;
3008
3009 if (!ioc->enabled)
3010 return 0;
3011
3012 if (iocg->level == 0) {
3013 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3014 ioc->vtime_base_rate * 10000,
3015 VTIME_PER_USEC);
3016 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
3017 vp10k / 100, vp10k % 100);
3018 }
3019
3020 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
3021 iocg->last_stat.usage_us);
3022
3023 if (blkcg_debug_stats)
3024 pos += scnprintf(buf + pos, size - pos,
3025 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3026 iocg->last_stat.wait_us,
3027 iocg->last_stat.indebt_us,
3028 iocg->last_stat.indelay_us);
3029
3030 return pos;
3031 }
3032
ioc_weight_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3033 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3034 int off)
3035 {
3036 const char *dname = blkg_dev_name(pd->blkg);
3037 struct ioc_gq *iocg = pd_to_iocg(pd);
3038
3039 if (dname && iocg->cfg_weight)
3040 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3041 return 0;
3042 }
3043
3044
ioc_weight_show(struct seq_file * sf,void * v)3045 static int ioc_weight_show(struct seq_file *sf, void *v)
3046 {
3047 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3048 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3049
3050 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3051 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3052 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3053 return 0;
3054 }
3055
ioc_weight_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3056 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3057 size_t nbytes, loff_t off)
3058 {
3059 struct blkcg *blkcg = css_to_blkcg(of_css(of));
3060 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3061 struct blkg_conf_ctx ctx;
3062 struct ioc_now now;
3063 struct ioc_gq *iocg;
3064 u32 v;
3065 int ret;
3066
3067 if (!strchr(buf, ':')) {
3068 struct blkcg_gq *blkg;
3069
3070 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3071 return -EINVAL;
3072
3073 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3074 return -EINVAL;
3075
3076 spin_lock_irq(&blkcg->lock);
3077 iocc->dfl_weight = v * WEIGHT_ONE;
3078 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3079 struct ioc_gq *iocg = blkg_to_iocg(blkg);
3080
3081 if (iocg) {
3082 spin_lock(&iocg->ioc->lock);
3083 ioc_now(iocg->ioc, &now);
3084 weight_updated(iocg, &now);
3085 spin_unlock(&iocg->ioc->lock);
3086 }
3087 }
3088 spin_unlock_irq(&blkcg->lock);
3089
3090 return nbytes;
3091 }
3092
3093 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3094 if (ret)
3095 return ret;
3096
3097 iocg = blkg_to_iocg(ctx.blkg);
3098
3099 if (!strncmp(ctx.body, "default", 7)) {
3100 v = 0;
3101 } else {
3102 if (!sscanf(ctx.body, "%u", &v))
3103 goto einval;
3104 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3105 goto einval;
3106 }
3107
3108 spin_lock(&iocg->ioc->lock);
3109 iocg->cfg_weight = v * WEIGHT_ONE;
3110 ioc_now(iocg->ioc, &now);
3111 weight_updated(iocg, &now);
3112 spin_unlock(&iocg->ioc->lock);
3113
3114 blkg_conf_finish(&ctx);
3115 return nbytes;
3116
3117 einval:
3118 blkg_conf_finish(&ctx);
3119 return -EINVAL;
3120 }
3121
ioc_qos_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3122 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3123 int off)
3124 {
3125 const char *dname = blkg_dev_name(pd->blkg);
3126 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3127
3128 if (!dname)
3129 return 0;
3130
3131 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3132 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3133 ioc->params.qos[QOS_RPPM] / 10000,
3134 ioc->params.qos[QOS_RPPM] % 10000 / 100,
3135 ioc->params.qos[QOS_RLAT],
3136 ioc->params.qos[QOS_WPPM] / 10000,
3137 ioc->params.qos[QOS_WPPM] % 10000 / 100,
3138 ioc->params.qos[QOS_WLAT],
3139 ioc->params.qos[QOS_MIN] / 10000,
3140 ioc->params.qos[QOS_MIN] % 10000 / 100,
3141 ioc->params.qos[QOS_MAX] / 10000,
3142 ioc->params.qos[QOS_MAX] % 10000 / 100);
3143 return 0;
3144 }
3145
ioc_qos_show(struct seq_file * sf,void * v)3146 static int ioc_qos_show(struct seq_file *sf, void *v)
3147 {
3148 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3149
3150 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3151 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3152 return 0;
3153 }
3154
3155 static const match_table_t qos_ctrl_tokens = {
3156 { QOS_ENABLE, "enable=%u" },
3157 { QOS_CTRL, "ctrl=%s" },
3158 { NR_QOS_CTRL_PARAMS, NULL },
3159 };
3160
3161 static const match_table_t qos_tokens = {
3162 { QOS_RPPM, "rpct=%s" },
3163 { QOS_RLAT, "rlat=%u" },
3164 { QOS_WPPM, "wpct=%s" },
3165 { QOS_WLAT, "wlat=%u" },
3166 { QOS_MIN, "min=%s" },
3167 { QOS_MAX, "max=%s" },
3168 { NR_QOS_PARAMS, NULL },
3169 };
3170
ioc_qos_write(struct kernfs_open_file * of,char * input,size_t nbytes,loff_t off)3171 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3172 size_t nbytes, loff_t off)
3173 {
3174 struct gendisk *disk;
3175 struct ioc *ioc;
3176 u32 qos[NR_QOS_PARAMS];
3177 bool enable, user;
3178 char *p;
3179 int ret;
3180
3181 disk = blkcg_conf_get_disk(&input);
3182 if (IS_ERR(disk))
3183 return PTR_ERR(disk);
3184
3185 ioc = q_to_ioc(disk->queue);
3186 if (!ioc) {
3187 ret = blk_iocost_init(disk->queue);
3188 if (ret)
3189 goto err;
3190 ioc = q_to_ioc(disk->queue);
3191 }
3192
3193 spin_lock_irq(&ioc->lock);
3194 memcpy(qos, ioc->params.qos, sizeof(qos));
3195 enable = ioc->enabled;
3196 user = ioc->user_qos_params;
3197 spin_unlock_irq(&ioc->lock);
3198
3199 while ((p = strsep(&input, " \t\n"))) {
3200 substring_t args[MAX_OPT_ARGS];
3201 char buf[32];
3202 int tok;
3203 s64 v;
3204
3205 if (!*p)
3206 continue;
3207
3208 switch (match_token(p, qos_ctrl_tokens, args)) {
3209 case QOS_ENABLE:
3210 match_u64(&args[0], &v);
3211 enable = v;
3212 continue;
3213 case QOS_CTRL:
3214 match_strlcpy(buf, &args[0], sizeof(buf));
3215 if (!strcmp(buf, "auto"))
3216 user = false;
3217 else if (!strcmp(buf, "user"))
3218 user = true;
3219 else
3220 goto einval;
3221 continue;
3222 }
3223
3224 tok = match_token(p, qos_tokens, args);
3225 switch (tok) {
3226 case QOS_RPPM:
3227 case QOS_WPPM:
3228 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3229 sizeof(buf))
3230 goto einval;
3231 if (cgroup_parse_float(buf, 2, &v))
3232 goto einval;
3233 if (v < 0 || v > 10000)
3234 goto einval;
3235 qos[tok] = v * 100;
3236 break;
3237 case QOS_RLAT:
3238 case QOS_WLAT:
3239 if (match_u64(&args[0], &v))
3240 goto einval;
3241 qos[tok] = v;
3242 break;
3243 case QOS_MIN:
3244 case QOS_MAX:
3245 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3246 sizeof(buf))
3247 goto einval;
3248 if (cgroup_parse_float(buf, 2, &v))
3249 goto einval;
3250 if (v < 0)
3251 goto einval;
3252 qos[tok] = clamp_t(s64, v * 100,
3253 VRATE_MIN_PPM, VRATE_MAX_PPM);
3254 break;
3255 default:
3256 goto einval;
3257 }
3258 user = true;
3259 }
3260
3261 if (qos[QOS_MIN] > qos[QOS_MAX])
3262 goto einval;
3263
3264 spin_lock_irq(&ioc->lock);
3265
3266 if (enable) {
3267 blk_stat_enable_accounting(ioc->rqos.q);
3268 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3269 ioc->enabled = true;
3270 } else {
3271 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3272 ioc->enabled = false;
3273 }
3274
3275 if (user) {
3276 memcpy(ioc->params.qos, qos, sizeof(qos));
3277 ioc->user_qos_params = true;
3278 } else {
3279 ioc->user_qos_params = false;
3280 }
3281
3282 ioc_refresh_params(ioc, true);
3283 spin_unlock_irq(&ioc->lock);
3284
3285 put_disk_and_module(disk);
3286 return nbytes;
3287 einval:
3288 ret = -EINVAL;
3289 err:
3290 put_disk_and_module(disk);
3291 return ret;
3292 }
3293
ioc_cost_model_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3294 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3295 struct blkg_policy_data *pd, int off)
3296 {
3297 const char *dname = blkg_dev_name(pd->blkg);
3298 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3299 u64 *u = ioc->params.i_lcoefs;
3300
3301 if (!dname)
3302 return 0;
3303
3304 seq_printf(sf, "%s ctrl=%s model=linear "
3305 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3306 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3307 dname, ioc->user_cost_model ? "user" : "auto",
3308 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3309 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3310 return 0;
3311 }
3312
ioc_cost_model_show(struct seq_file * sf,void * v)3313 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3314 {
3315 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3316
3317 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3318 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3319 return 0;
3320 }
3321
3322 static const match_table_t cost_ctrl_tokens = {
3323 { COST_CTRL, "ctrl=%s" },
3324 { COST_MODEL, "model=%s" },
3325 { NR_COST_CTRL_PARAMS, NULL },
3326 };
3327
3328 static const match_table_t i_lcoef_tokens = {
3329 { I_LCOEF_RBPS, "rbps=%u" },
3330 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
3331 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
3332 { I_LCOEF_WBPS, "wbps=%u" },
3333 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
3334 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
3335 { NR_I_LCOEFS, NULL },
3336 };
3337
ioc_cost_model_write(struct kernfs_open_file * of,char * input,size_t nbytes,loff_t off)3338 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3339 size_t nbytes, loff_t off)
3340 {
3341 struct gendisk *disk;
3342 struct ioc *ioc;
3343 u64 u[NR_I_LCOEFS];
3344 bool user;
3345 char *p;
3346 int ret;
3347
3348 disk = blkcg_conf_get_disk(&input);
3349 if (IS_ERR(disk))
3350 return PTR_ERR(disk);
3351
3352 ioc = q_to_ioc(disk->queue);
3353 if (!ioc) {
3354 ret = blk_iocost_init(disk->queue);
3355 if (ret)
3356 goto err;
3357 ioc = q_to_ioc(disk->queue);
3358 }
3359
3360 spin_lock_irq(&ioc->lock);
3361 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3362 user = ioc->user_cost_model;
3363 spin_unlock_irq(&ioc->lock);
3364
3365 while ((p = strsep(&input, " \t\n"))) {
3366 substring_t args[MAX_OPT_ARGS];
3367 char buf[32];
3368 int tok;
3369 u64 v;
3370
3371 if (!*p)
3372 continue;
3373
3374 switch (match_token(p, cost_ctrl_tokens, args)) {
3375 case COST_CTRL:
3376 match_strlcpy(buf, &args[0], sizeof(buf));
3377 if (!strcmp(buf, "auto"))
3378 user = false;
3379 else if (!strcmp(buf, "user"))
3380 user = true;
3381 else
3382 goto einval;
3383 continue;
3384 case COST_MODEL:
3385 match_strlcpy(buf, &args[0], sizeof(buf));
3386 if (strcmp(buf, "linear"))
3387 goto einval;
3388 continue;
3389 }
3390
3391 tok = match_token(p, i_lcoef_tokens, args);
3392 if (tok == NR_I_LCOEFS)
3393 goto einval;
3394 if (match_u64(&args[0], &v))
3395 goto einval;
3396 u[tok] = v;
3397 user = true;
3398 }
3399
3400 spin_lock_irq(&ioc->lock);
3401 if (user) {
3402 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3403 ioc->user_cost_model = true;
3404 } else {
3405 ioc->user_cost_model = false;
3406 }
3407 ioc_refresh_params(ioc, true);
3408 spin_unlock_irq(&ioc->lock);
3409
3410 put_disk_and_module(disk);
3411 return nbytes;
3412
3413 einval:
3414 ret = -EINVAL;
3415 err:
3416 put_disk_and_module(disk);
3417 return ret;
3418 }
3419
3420 static struct cftype ioc_files[] = {
3421 {
3422 .name = "weight",
3423 .flags = CFTYPE_NOT_ON_ROOT,
3424 .seq_show = ioc_weight_show,
3425 .write = ioc_weight_write,
3426 },
3427 {
3428 .name = "cost.qos",
3429 .flags = CFTYPE_ONLY_ON_ROOT,
3430 .seq_show = ioc_qos_show,
3431 .write = ioc_qos_write,
3432 },
3433 {
3434 .name = "cost.model",
3435 .flags = CFTYPE_ONLY_ON_ROOT,
3436 .seq_show = ioc_cost_model_show,
3437 .write = ioc_cost_model_write,
3438 },
3439 {}
3440 };
3441
3442 static struct blkcg_policy blkcg_policy_iocost = {
3443 .dfl_cftypes = ioc_files,
3444 .cpd_alloc_fn = ioc_cpd_alloc,
3445 .cpd_free_fn = ioc_cpd_free,
3446 .pd_alloc_fn = ioc_pd_alloc,
3447 .pd_init_fn = ioc_pd_init,
3448 .pd_free_fn = ioc_pd_free,
3449 .pd_stat_fn = ioc_pd_stat,
3450 };
3451
ioc_init(void)3452 static int __init ioc_init(void)
3453 {
3454 return blkcg_policy_register(&blkcg_policy_iocost);
3455 }
3456
ioc_exit(void)3457 static void __exit ioc_exit(void)
3458 {
3459 blkcg_policy_unregister(&blkcg_policy_iocost);
3460 }
3461
3462 module_init(ioc_init);
3463 module_exit(ioc_exit);
3464