• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/module.h>
14 #include <linux/sbitmap.h>
15 
16 #include "blk.h"
17 #include "blk-mq.h"
18 #include "blk-mq-debugfs.h"
19 #include "blk-mq-sched.h"
20 #include "blk-mq-tag.h"
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/kyber.h>
24 
25 /*
26  * Scheduling domains: the device is divided into multiple domains based on the
27  * request type.
28  */
29 enum {
30 	KYBER_READ,
31 	KYBER_WRITE,
32 	KYBER_DISCARD,
33 	KYBER_OTHER,
34 	KYBER_NUM_DOMAINS,
35 };
36 
37 static const char *kyber_domain_names[] = {
38 	[KYBER_READ] = "READ",
39 	[KYBER_WRITE] = "WRITE",
40 	[KYBER_DISCARD] = "DISCARD",
41 	[KYBER_OTHER] = "OTHER",
42 };
43 
44 enum {
45 	/*
46 	 * In order to prevent starvation of synchronous requests by a flood of
47 	 * asynchronous requests, we reserve 25% of requests for synchronous
48 	 * operations.
49 	 */
50 	KYBER_ASYNC_PERCENT = 75,
51 };
52 
53 /*
54  * Maximum device-wide depth for each scheduling domain.
55  *
56  * Even for fast devices with lots of tags like NVMe, you can saturate the
57  * device with only a fraction of the maximum possible queue depth. So, we cap
58  * these to a reasonable value.
59  */
60 static const unsigned int kyber_depth[] = {
61 	[KYBER_READ] = 256,
62 	[KYBER_WRITE] = 128,
63 	[KYBER_DISCARD] = 64,
64 	[KYBER_OTHER] = 16,
65 };
66 
67 /*
68  * Default latency targets for each scheduling domain.
69  */
70 static const u64 kyber_latency_targets[] = {
71 	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72 	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73 	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
74 };
75 
76 /*
77  * Batch size (number of requests we'll dispatch in a row) for each scheduling
78  * domain.
79  */
80 static const unsigned int kyber_batch_size[] = {
81 	[KYBER_READ] = 16,
82 	[KYBER_WRITE] = 8,
83 	[KYBER_DISCARD] = 1,
84 	[KYBER_OTHER] = 1,
85 };
86 
87 /*
88  * Requests latencies are recorded in a histogram with buckets defined relative
89  * to the target latency:
90  *
91  * <= 1/4 * target latency
92  * <= 1/2 * target latency
93  * <= 3/4 * target latency
94  * <= target latency
95  * <= 1 1/4 * target latency
96  * <= 1 1/2 * target latency
97  * <= 1 3/4 * target latency
98  * > 1 3/4 * target latency
99  */
100 enum {
101 	/*
102 	 * The width of the latency histogram buckets is
103 	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
104 	 */
105 	KYBER_LATENCY_SHIFT = 2,
106 	/*
107 	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
108 	 * thus, "good".
109 	 */
110 	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111 	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112 	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
113 };
114 
115 /*
116  * We measure both the total latency and the I/O latency (i.e., latency after
117  * submitting to the device).
118  */
119 enum {
120 	KYBER_TOTAL_LATENCY,
121 	KYBER_IO_LATENCY,
122 };
123 
124 static const char *kyber_latency_type_names[] = {
125 	[KYBER_TOTAL_LATENCY] = "total",
126 	[KYBER_IO_LATENCY] = "I/O",
127 };
128 
129 /*
130  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131  * domain except for KYBER_OTHER.
132  */
133 struct kyber_cpu_latency {
134 	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
135 };
136 
137 /*
138  * There is a same mapping between ctx & hctx and kcq & khd,
139  * we use request->mq_ctx->index_hw to index the kcq in khd.
140  */
141 struct kyber_ctx_queue {
142 	/*
143 	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144 	 * Also protect the rqs on rq_list when merge.
145 	 */
146 	spinlock_t lock;
147 	struct list_head rq_list[KYBER_NUM_DOMAINS];
148 } ____cacheline_aligned_in_smp;
149 
150 struct kyber_queue_data {
151 	struct request_queue *q;
152 
153 	/*
154 	 * Each scheduling domain has a limited number of in-flight requests
155 	 * device-wide, limited by these tokens.
156 	 */
157 	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
158 
159 	/*
160 	 * Async request percentage, converted to per-word depth for
161 	 * sbitmap_get_shallow().
162 	 */
163 	unsigned int async_depth;
164 
165 	struct kyber_cpu_latency __percpu *cpu_latency;
166 
167 	/* Timer for stats aggregation and adjusting domain tokens. */
168 	struct timer_list timer;
169 
170 	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
171 
172 	unsigned long latency_timeout[KYBER_OTHER];
173 
174 	int domain_p99[KYBER_OTHER];
175 
176 	/* Target latencies in nanoseconds. */
177 	u64 latency_targets[KYBER_OTHER];
178 };
179 
180 struct kyber_hctx_data {
181 	spinlock_t lock;
182 	struct list_head rqs[KYBER_NUM_DOMAINS];
183 	unsigned int cur_domain;
184 	unsigned int batching;
185 	struct kyber_ctx_queue *kcqs;
186 	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
187 	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
188 	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
189 	atomic_t wait_index[KYBER_NUM_DOMAINS];
190 };
191 
192 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
193 			     void *key);
194 
kyber_sched_domain(unsigned int op)195 static unsigned int kyber_sched_domain(unsigned int op)
196 {
197 	switch (op & REQ_OP_MASK) {
198 	case REQ_OP_READ:
199 		return KYBER_READ;
200 	case REQ_OP_WRITE:
201 		return KYBER_WRITE;
202 	case REQ_OP_DISCARD:
203 		return KYBER_DISCARD;
204 	default:
205 		return KYBER_OTHER;
206 	}
207 }
208 
flush_latency_buckets(struct kyber_queue_data * kqd,struct kyber_cpu_latency * cpu_latency,unsigned int sched_domain,unsigned int type)209 static void flush_latency_buckets(struct kyber_queue_data *kqd,
210 				  struct kyber_cpu_latency *cpu_latency,
211 				  unsigned int sched_domain, unsigned int type)
212 {
213 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
214 	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
215 	unsigned int bucket;
216 
217 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
218 		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
219 }
220 
221 /*
222  * Calculate the histogram bucket with the given percentile rank, or -1 if there
223  * aren't enough samples yet.
224  */
calculate_percentile(struct kyber_queue_data * kqd,unsigned int sched_domain,unsigned int type,unsigned int percentile)225 static int calculate_percentile(struct kyber_queue_data *kqd,
226 				unsigned int sched_domain, unsigned int type,
227 				unsigned int percentile)
228 {
229 	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
230 	unsigned int bucket, samples = 0, percentile_samples;
231 
232 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
233 		samples += buckets[bucket];
234 
235 	if (!samples)
236 		return -1;
237 
238 	/*
239 	 * We do the calculation once we have 500 samples or one second passes
240 	 * since the first sample was recorded, whichever comes first.
241 	 */
242 	if (!kqd->latency_timeout[sched_domain])
243 		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
244 	if (samples < 500 &&
245 	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
246 		return -1;
247 	}
248 	kqd->latency_timeout[sched_domain] = 0;
249 
250 	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
251 	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
252 		if (buckets[bucket] >= percentile_samples)
253 			break;
254 		percentile_samples -= buckets[bucket];
255 	}
256 	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
257 
258 	trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
259 			    kyber_latency_type_names[type], percentile,
260 			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
261 
262 	return bucket;
263 }
264 
kyber_resize_domain(struct kyber_queue_data * kqd,unsigned int sched_domain,unsigned int depth)265 static void kyber_resize_domain(struct kyber_queue_data *kqd,
266 				unsigned int sched_domain, unsigned int depth)
267 {
268 	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
269 	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
270 		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
271 		trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
272 				   depth);
273 	}
274 }
275 
kyber_timer_fn(struct timer_list * t)276 static void kyber_timer_fn(struct timer_list *t)
277 {
278 	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
279 	unsigned int sched_domain;
280 	int cpu;
281 	bool bad = false;
282 
283 	/* Sum all of the per-cpu latency histograms. */
284 	for_each_online_cpu(cpu) {
285 		struct kyber_cpu_latency *cpu_latency;
286 
287 		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
288 		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
289 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
290 					      KYBER_TOTAL_LATENCY);
291 			flush_latency_buckets(kqd, cpu_latency, sched_domain,
292 					      KYBER_IO_LATENCY);
293 		}
294 	}
295 
296 	/*
297 	 * Check if any domains have a high I/O latency, which might indicate
298 	 * congestion in the device. Note that we use the p90; we don't want to
299 	 * be too sensitive to outliers here.
300 	 */
301 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
302 		int p90;
303 
304 		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
305 					   90);
306 		if (p90 >= KYBER_GOOD_BUCKETS)
307 			bad = true;
308 	}
309 
310 	/*
311 	 * Adjust the scheduling domain depths. If we determined that there was
312 	 * congestion, we throttle all domains with good latencies. Either way,
313 	 * we ease up on throttling domains with bad latencies.
314 	 */
315 	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
316 		unsigned int orig_depth, depth;
317 		int p99;
318 
319 		p99 = calculate_percentile(kqd, sched_domain,
320 					   KYBER_TOTAL_LATENCY, 99);
321 		/*
322 		 * This is kind of subtle: different domains will not
323 		 * necessarily have enough samples to calculate the latency
324 		 * percentiles during the same window, so we have to remember
325 		 * the p99 for the next time we observe congestion; once we do,
326 		 * we don't want to throttle again until we get more data, so we
327 		 * reset it to -1.
328 		 */
329 		if (bad) {
330 			if (p99 < 0)
331 				p99 = kqd->domain_p99[sched_domain];
332 			kqd->domain_p99[sched_domain] = -1;
333 		} else if (p99 >= 0) {
334 			kqd->domain_p99[sched_domain] = p99;
335 		}
336 		if (p99 < 0)
337 			continue;
338 
339 		/*
340 		 * If this domain has bad latency, throttle less. Otherwise,
341 		 * throttle more iff we determined that there is congestion.
342 		 *
343 		 * The new depth is scaled linearly with the p99 latency vs the
344 		 * latency target. E.g., if the p99 is 3/4 of the target, then
345 		 * we throttle down to 3/4 of the current depth, and if the p99
346 		 * is 2x the target, then we double the depth.
347 		 */
348 		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
349 			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
350 			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
351 			kyber_resize_domain(kqd, sched_domain, depth);
352 		}
353 	}
354 }
355 
kyber_sched_tags_shift(struct request_queue * q)356 static unsigned int kyber_sched_tags_shift(struct request_queue *q)
357 {
358 	/*
359 	 * All of the hardware queues have the same depth, so we can just grab
360 	 * the shift of the first one.
361 	 */
362 	return q->queue_hw_ctx[0]->sched_tags->bitmap_tags->sb.shift;
363 }
364 
kyber_queue_data_alloc(struct request_queue * q)365 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
366 {
367 	struct kyber_queue_data *kqd;
368 	unsigned int shift;
369 	int ret = -ENOMEM;
370 	int i;
371 
372 	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
373 	if (!kqd)
374 		goto err;
375 
376 	kqd->q = q;
377 
378 	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
379 					    GFP_KERNEL | __GFP_ZERO);
380 	if (!kqd->cpu_latency)
381 		goto err_kqd;
382 
383 	timer_setup(&kqd->timer, kyber_timer_fn, 0);
384 
385 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
386 		WARN_ON(!kyber_depth[i]);
387 		WARN_ON(!kyber_batch_size[i]);
388 		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
389 					      kyber_depth[i], -1, false,
390 					      GFP_KERNEL, q->node);
391 		if (ret) {
392 			while (--i >= 0)
393 				sbitmap_queue_free(&kqd->domain_tokens[i]);
394 			goto err_buckets;
395 		}
396 	}
397 
398 	for (i = 0; i < KYBER_OTHER; i++) {
399 		kqd->domain_p99[i] = -1;
400 		kqd->latency_targets[i] = kyber_latency_targets[i];
401 	}
402 
403 	shift = kyber_sched_tags_shift(q);
404 	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
405 
406 	return kqd;
407 
408 err_buckets:
409 	free_percpu(kqd->cpu_latency);
410 err_kqd:
411 	kfree(kqd);
412 err:
413 	return ERR_PTR(ret);
414 }
415 
kyber_init_sched(struct request_queue * q,struct elevator_type * e)416 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
417 {
418 	struct kyber_queue_data *kqd;
419 	struct elevator_queue *eq;
420 
421 	eq = elevator_alloc(q, e);
422 	if (!eq)
423 		return -ENOMEM;
424 
425 	kqd = kyber_queue_data_alloc(q);
426 	if (IS_ERR(kqd)) {
427 		kobject_put(&eq->kobj);
428 		return PTR_ERR(kqd);
429 	}
430 
431 	blk_stat_enable_accounting(q);
432 
433 	eq->elevator_data = kqd;
434 	q->elevator = eq;
435 
436 	return 0;
437 }
438 
kyber_exit_sched(struct elevator_queue * e)439 static void kyber_exit_sched(struct elevator_queue *e)
440 {
441 	struct kyber_queue_data *kqd = e->elevator_data;
442 	int i;
443 
444 	del_timer_sync(&kqd->timer);
445 
446 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
447 		sbitmap_queue_free(&kqd->domain_tokens[i]);
448 	free_percpu(kqd->cpu_latency);
449 	kfree(kqd);
450 }
451 
kyber_ctx_queue_init(struct kyber_ctx_queue * kcq)452 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
453 {
454 	unsigned int i;
455 
456 	spin_lock_init(&kcq->lock);
457 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
458 		INIT_LIST_HEAD(&kcq->rq_list[i]);
459 }
460 
kyber_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)461 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
462 {
463 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
464 	struct kyber_hctx_data *khd;
465 	int i;
466 
467 	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
468 	if (!khd)
469 		return -ENOMEM;
470 
471 	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
472 				       sizeof(struct kyber_ctx_queue),
473 				       GFP_KERNEL, hctx->numa_node);
474 	if (!khd->kcqs)
475 		goto err_khd;
476 
477 	for (i = 0; i < hctx->nr_ctx; i++)
478 		kyber_ctx_queue_init(&khd->kcqs[i]);
479 
480 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
481 		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
482 				      ilog2(8), GFP_KERNEL, hctx->numa_node)) {
483 			while (--i >= 0)
484 				sbitmap_free(&khd->kcq_map[i]);
485 			goto err_kcqs;
486 		}
487 	}
488 
489 	spin_lock_init(&khd->lock);
490 
491 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
492 		INIT_LIST_HEAD(&khd->rqs[i]);
493 		khd->domain_wait[i].sbq = NULL;
494 		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
495 					  kyber_domain_wake);
496 		khd->domain_wait[i].wait.private = hctx;
497 		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
498 		atomic_set(&khd->wait_index[i], 0);
499 	}
500 
501 	khd->cur_domain = 0;
502 	khd->batching = 0;
503 
504 	hctx->sched_data = khd;
505 	sbitmap_queue_min_shallow_depth(hctx->sched_tags->bitmap_tags,
506 					kqd->async_depth);
507 
508 	return 0;
509 
510 err_kcqs:
511 	kfree(khd->kcqs);
512 err_khd:
513 	kfree(khd);
514 	return -ENOMEM;
515 }
516 
kyber_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)517 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
518 {
519 	struct kyber_hctx_data *khd = hctx->sched_data;
520 	int i;
521 
522 	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
523 		sbitmap_free(&khd->kcq_map[i]);
524 	kfree(khd->kcqs);
525 	kfree(hctx->sched_data);
526 }
527 
rq_get_domain_token(struct request * rq)528 static int rq_get_domain_token(struct request *rq)
529 {
530 	return (long)rq->elv.priv[0];
531 }
532 
rq_set_domain_token(struct request * rq,int token)533 static void rq_set_domain_token(struct request *rq, int token)
534 {
535 	rq->elv.priv[0] = (void *)(long)token;
536 }
537 
rq_clear_domain_token(struct kyber_queue_data * kqd,struct request * rq)538 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
539 				  struct request *rq)
540 {
541 	unsigned int sched_domain;
542 	int nr;
543 
544 	nr = rq_get_domain_token(rq);
545 	if (nr != -1) {
546 		sched_domain = kyber_sched_domain(rq->cmd_flags);
547 		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
548 				    rq->mq_ctx->cpu);
549 	}
550 }
551 
kyber_limit_depth(unsigned int op,struct blk_mq_alloc_data * data)552 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
553 {
554 	/*
555 	 * We use the scheduler tags as per-hardware queue queueing tokens.
556 	 * Async requests can be limited at this stage.
557 	 */
558 	if (!op_is_sync(op)) {
559 		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
560 
561 		data->shallow_depth = kqd->async_depth;
562 	}
563 }
564 
kyber_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)565 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
566 		unsigned int nr_segs)
567 {
568 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
569 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
570 	struct kyber_hctx_data *khd = hctx->sched_data;
571 	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
572 	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
573 	struct list_head *rq_list = &kcq->rq_list[sched_domain];
574 	bool merged;
575 
576 	spin_lock(&kcq->lock);
577 	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
578 	spin_unlock(&kcq->lock);
579 
580 	return merged;
581 }
582 
kyber_prepare_request(struct request * rq)583 static void kyber_prepare_request(struct request *rq)
584 {
585 	rq_set_domain_token(rq, -1);
586 }
587 
kyber_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * rq_list,bool at_head)588 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
589 				  struct list_head *rq_list, bool at_head)
590 {
591 	struct kyber_hctx_data *khd = hctx->sched_data;
592 	struct request *rq, *next;
593 
594 	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
595 		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
596 		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
597 		struct list_head *head = &kcq->rq_list[sched_domain];
598 
599 		spin_lock(&kcq->lock);
600 		if (at_head)
601 			list_move(&rq->queuelist, head);
602 		else
603 			list_move_tail(&rq->queuelist, head);
604 		sbitmap_set_bit(&khd->kcq_map[sched_domain],
605 				rq->mq_ctx->index_hw[hctx->type]);
606 		blk_mq_sched_request_inserted(rq);
607 		spin_unlock(&kcq->lock);
608 	}
609 }
610 
kyber_finish_request(struct request * rq)611 static void kyber_finish_request(struct request *rq)
612 {
613 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
614 
615 	rq_clear_domain_token(kqd, rq);
616 }
617 
add_latency_sample(struct kyber_cpu_latency * cpu_latency,unsigned int sched_domain,unsigned int type,u64 target,u64 latency)618 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
619 			       unsigned int sched_domain, unsigned int type,
620 			       u64 target, u64 latency)
621 {
622 	unsigned int bucket;
623 	u64 divisor;
624 
625 	if (latency > 0) {
626 		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
627 		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
628 			       KYBER_LATENCY_BUCKETS - 1);
629 	} else {
630 		bucket = 0;
631 	}
632 
633 	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
634 }
635 
kyber_completed_request(struct request * rq,u64 now)636 static void kyber_completed_request(struct request *rq, u64 now)
637 {
638 	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
639 	struct kyber_cpu_latency *cpu_latency;
640 	unsigned int sched_domain;
641 	u64 target;
642 
643 	sched_domain = kyber_sched_domain(rq->cmd_flags);
644 	if (sched_domain == KYBER_OTHER)
645 		return;
646 
647 	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
648 	target = kqd->latency_targets[sched_domain];
649 	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
650 			   target, now - rq->start_time_ns);
651 	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
652 			   now - rq->io_start_time_ns);
653 	put_cpu_ptr(kqd->cpu_latency);
654 
655 	timer_reduce(&kqd->timer, jiffies + HZ / 10);
656 }
657 
658 struct flush_kcq_data {
659 	struct kyber_hctx_data *khd;
660 	unsigned int sched_domain;
661 	struct list_head *list;
662 };
663 
flush_busy_kcq(struct sbitmap * sb,unsigned int bitnr,void * data)664 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
665 {
666 	struct flush_kcq_data *flush_data = data;
667 	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
668 
669 	spin_lock(&kcq->lock);
670 	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
671 			      flush_data->list);
672 	sbitmap_clear_bit(sb, bitnr);
673 	spin_unlock(&kcq->lock);
674 
675 	return true;
676 }
677 
kyber_flush_busy_kcqs(struct kyber_hctx_data * khd,unsigned int sched_domain,struct list_head * list)678 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
679 				  unsigned int sched_domain,
680 				  struct list_head *list)
681 {
682 	struct flush_kcq_data data = {
683 		.khd = khd,
684 		.sched_domain = sched_domain,
685 		.list = list,
686 	};
687 
688 	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
689 			     flush_busy_kcq, &data);
690 }
691 
kyber_domain_wake(wait_queue_entry_t * wqe,unsigned mode,int flags,void * key)692 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
693 			     void *key)
694 {
695 	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
696 	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
697 
698 	sbitmap_del_wait_queue(wait);
699 	blk_mq_run_hw_queue(hctx, true);
700 	return 1;
701 }
702 
kyber_get_domain_token(struct kyber_queue_data * kqd,struct kyber_hctx_data * khd,struct blk_mq_hw_ctx * hctx)703 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
704 				  struct kyber_hctx_data *khd,
705 				  struct blk_mq_hw_ctx *hctx)
706 {
707 	unsigned int sched_domain = khd->cur_domain;
708 	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
709 	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
710 	struct sbq_wait_state *ws;
711 	int nr;
712 
713 	nr = __sbitmap_queue_get(domain_tokens);
714 
715 	/*
716 	 * If we failed to get a domain token, make sure the hardware queue is
717 	 * run when one becomes available. Note that this is serialized on
718 	 * khd->lock, but we still need to be careful about the waker.
719 	 */
720 	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
721 		ws = sbq_wait_ptr(domain_tokens,
722 				  &khd->wait_index[sched_domain]);
723 		khd->domain_ws[sched_domain] = ws;
724 		sbitmap_add_wait_queue(domain_tokens, ws, wait);
725 
726 		/*
727 		 * Try again in case a token was freed before we got on the wait
728 		 * queue.
729 		 */
730 		nr = __sbitmap_queue_get(domain_tokens);
731 	}
732 
733 	/*
734 	 * If we got a token while we were on the wait queue, remove ourselves
735 	 * from the wait queue to ensure that all wake ups make forward
736 	 * progress. It's possible that the waker already deleted the entry
737 	 * between the !list_empty_careful() check and us grabbing the lock, but
738 	 * list_del_init() is okay with that.
739 	 */
740 	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
741 		ws = khd->domain_ws[sched_domain];
742 		spin_lock_irq(&ws->wait.lock);
743 		sbitmap_del_wait_queue(wait);
744 		spin_unlock_irq(&ws->wait.lock);
745 	}
746 
747 	return nr;
748 }
749 
750 static struct request *
kyber_dispatch_cur_domain(struct kyber_queue_data * kqd,struct kyber_hctx_data * khd,struct blk_mq_hw_ctx * hctx)751 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
752 			  struct kyber_hctx_data *khd,
753 			  struct blk_mq_hw_ctx *hctx)
754 {
755 	struct list_head *rqs;
756 	struct request *rq;
757 	int nr;
758 
759 	rqs = &khd->rqs[khd->cur_domain];
760 
761 	/*
762 	 * If we already have a flushed request, then we just need to get a
763 	 * token for it. Otherwise, if there are pending requests in the kcqs,
764 	 * flush the kcqs, but only if we can get a token. If not, we should
765 	 * leave the requests in the kcqs so that they can be merged. Note that
766 	 * khd->lock serializes the flushes, so if we observed any bit set in
767 	 * the kcq_map, we will always get a request.
768 	 */
769 	rq = list_first_entry_or_null(rqs, struct request, queuelist);
770 	if (rq) {
771 		nr = kyber_get_domain_token(kqd, khd, hctx);
772 		if (nr >= 0) {
773 			khd->batching++;
774 			rq_set_domain_token(rq, nr);
775 			list_del_init(&rq->queuelist);
776 			return rq;
777 		} else {
778 			trace_kyber_throttled(kqd->q,
779 					      kyber_domain_names[khd->cur_domain]);
780 		}
781 	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
782 		nr = kyber_get_domain_token(kqd, khd, hctx);
783 		if (nr >= 0) {
784 			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
785 			rq = list_first_entry(rqs, struct request, queuelist);
786 			khd->batching++;
787 			rq_set_domain_token(rq, nr);
788 			list_del_init(&rq->queuelist);
789 			return rq;
790 		} else {
791 			trace_kyber_throttled(kqd->q,
792 					      kyber_domain_names[khd->cur_domain]);
793 		}
794 	}
795 
796 	/* There were either no pending requests or no tokens. */
797 	return NULL;
798 }
799 
kyber_dispatch_request(struct blk_mq_hw_ctx * hctx)800 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
801 {
802 	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
803 	struct kyber_hctx_data *khd = hctx->sched_data;
804 	struct request *rq;
805 	int i;
806 
807 	spin_lock(&khd->lock);
808 
809 	/*
810 	 * First, if we are still entitled to batch, try to dispatch a request
811 	 * from the batch.
812 	 */
813 	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
814 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
815 		if (rq)
816 			goto out;
817 	}
818 
819 	/*
820 	 * Either,
821 	 * 1. We were no longer entitled to a batch.
822 	 * 2. The domain we were batching didn't have any requests.
823 	 * 3. The domain we were batching was out of tokens.
824 	 *
825 	 * Start another batch. Note that this wraps back around to the original
826 	 * domain if no other domains have requests or tokens.
827 	 */
828 	khd->batching = 0;
829 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
830 		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
831 			khd->cur_domain = 0;
832 		else
833 			khd->cur_domain++;
834 
835 		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
836 		if (rq)
837 			goto out;
838 	}
839 
840 	rq = NULL;
841 out:
842 	spin_unlock(&khd->lock);
843 	return rq;
844 }
845 
kyber_has_work(struct blk_mq_hw_ctx * hctx)846 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
847 {
848 	struct kyber_hctx_data *khd = hctx->sched_data;
849 	int i;
850 
851 	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
852 		if (!list_empty_careful(&khd->rqs[i]) ||
853 		    sbitmap_any_bit_set(&khd->kcq_map[i]))
854 			return true;
855 	}
856 
857 	return false;
858 }
859 
860 #define KYBER_LAT_SHOW_STORE(domain, name)				\
861 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
862 				       char *page)			\
863 {									\
864 	struct kyber_queue_data *kqd = e->elevator_data;		\
865 									\
866 	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
867 }									\
868 									\
869 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
870 					const char *page, size_t count)	\
871 {									\
872 	struct kyber_queue_data *kqd = e->elevator_data;		\
873 	unsigned long long nsec;					\
874 	int ret;							\
875 									\
876 	ret = kstrtoull(page, 10, &nsec);				\
877 	if (ret)							\
878 		return ret;						\
879 									\
880 	kqd->latency_targets[domain] = nsec;				\
881 									\
882 	return count;							\
883 }
884 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
885 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
886 #undef KYBER_LAT_SHOW_STORE
887 
888 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
889 static struct elv_fs_entry kyber_sched_attrs[] = {
890 	KYBER_LAT_ATTR(read),
891 	KYBER_LAT_ATTR(write),
892 	__ATTR_NULL
893 };
894 #undef KYBER_LAT_ATTR
895 
896 #ifdef CONFIG_BLK_DEBUG_FS
897 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
898 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
899 {									\
900 	struct request_queue *q = data;					\
901 	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
902 									\
903 	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
904 	return 0;							\
905 }									\
906 									\
907 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
908 	__acquires(&khd->lock)						\
909 {									\
910 	struct blk_mq_hw_ctx *hctx = m->private;			\
911 	struct kyber_hctx_data *khd = hctx->sched_data;			\
912 									\
913 	spin_lock(&khd->lock);						\
914 	return seq_list_start(&khd->rqs[domain], *pos);			\
915 }									\
916 									\
917 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
918 				     loff_t *pos)			\
919 {									\
920 	struct blk_mq_hw_ctx *hctx = m->private;			\
921 	struct kyber_hctx_data *khd = hctx->sched_data;			\
922 									\
923 	return seq_list_next(v, &khd->rqs[domain], pos);		\
924 }									\
925 									\
926 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
927 	__releases(&khd->lock)						\
928 {									\
929 	struct blk_mq_hw_ctx *hctx = m->private;			\
930 	struct kyber_hctx_data *khd = hctx->sched_data;			\
931 									\
932 	spin_unlock(&khd->lock);					\
933 }									\
934 									\
935 static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
936 	.start	= kyber_##name##_rqs_start,				\
937 	.next	= kyber_##name##_rqs_next,				\
938 	.stop	= kyber_##name##_rqs_stop,				\
939 	.show	= blk_mq_debugfs_rq_show,				\
940 };									\
941 									\
942 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
943 {									\
944 	struct blk_mq_hw_ctx *hctx = data;				\
945 	struct kyber_hctx_data *khd = hctx->sched_data;			\
946 	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
947 									\
948 	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
949 	return 0;							\
950 }
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ,read)951 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
952 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
953 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
954 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
955 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
956 
957 static int kyber_async_depth_show(void *data, struct seq_file *m)
958 {
959 	struct request_queue *q = data;
960 	struct kyber_queue_data *kqd = q->elevator->elevator_data;
961 
962 	seq_printf(m, "%u\n", kqd->async_depth);
963 	return 0;
964 }
965 
kyber_cur_domain_show(void * data,struct seq_file * m)966 static int kyber_cur_domain_show(void *data, struct seq_file *m)
967 {
968 	struct blk_mq_hw_ctx *hctx = data;
969 	struct kyber_hctx_data *khd = hctx->sched_data;
970 
971 	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
972 	return 0;
973 }
974 
kyber_batching_show(void * data,struct seq_file * m)975 static int kyber_batching_show(void *data, struct seq_file *m)
976 {
977 	struct blk_mq_hw_ctx *hctx = data;
978 	struct kyber_hctx_data *khd = hctx->sched_data;
979 
980 	seq_printf(m, "%u\n", khd->batching);
981 	return 0;
982 }
983 
984 #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
985 	{#name "_tokens", 0400, kyber_##name##_tokens_show}
986 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
987 	KYBER_QUEUE_DOMAIN_ATTRS(read),
988 	KYBER_QUEUE_DOMAIN_ATTRS(write),
989 	KYBER_QUEUE_DOMAIN_ATTRS(discard),
990 	KYBER_QUEUE_DOMAIN_ATTRS(other),
991 	{"async_depth", 0400, kyber_async_depth_show},
992 	{},
993 };
994 #undef KYBER_QUEUE_DOMAIN_ATTRS
995 
996 #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
997 	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
998 	{#name "_waiting", 0400, kyber_##name##_waiting_show}
999 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1000 	KYBER_HCTX_DOMAIN_ATTRS(read),
1001 	KYBER_HCTX_DOMAIN_ATTRS(write),
1002 	KYBER_HCTX_DOMAIN_ATTRS(discard),
1003 	KYBER_HCTX_DOMAIN_ATTRS(other),
1004 	{"cur_domain", 0400, kyber_cur_domain_show},
1005 	{"batching", 0400, kyber_batching_show},
1006 	{},
1007 };
1008 #undef KYBER_HCTX_DOMAIN_ATTRS
1009 #endif
1010 
1011 static struct elevator_type kyber_sched = {
1012 	.ops = {
1013 		.init_sched = kyber_init_sched,
1014 		.exit_sched = kyber_exit_sched,
1015 		.init_hctx = kyber_init_hctx,
1016 		.exit_hctx = kyber_exit_hctx,
1017 		.limit_depth = kyber_limit_depth,
1018 		.bio_merge = kyber_bio_merge,
1019 		.prepare_request = kyber_prepare_request,
1020 		.insert_requests = kyber_insert_requests,
1021 		.finish_request = kyber_finish_request,
1022 		.requeue_request = kyber_finish_request,
1023 		.completed_request = kyber_completed_request,
1024 		.dispatch_request = kyber_dispatch_request,
1025 		.has_work = kyber_has_work,
1026 	},
1027 #ifdef CONFIG_BLK_DEBUG_FS
1028 	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1029 	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1030 #endif
1031 	.elevator_attrs = kyber_sched_attrs,
1032 	.elevator_name = "kyber",
1033 	.elevator_features = ELEVATOR_F_MQ_AWARE,
1034 	.elevator_owner = THIS_MODULE,
1035 };
1036 
kyber_init(void)1037 static int __init kyber_init(void)
1038 {
1039 	return elv_register(&kyber_sched);
1040 }
1041 
kyber_exit(void)1042 static void __exit kyber_exit(void)
1043 {
1044 	elv_unregister(&kyber_sched);
1045 }
1046 
1047 module_init(kyber_init);
1048 module_exit(kyber_exit);
1049 
1050 MODULE_AUTHOR("Omar Sandoval");
1051 MODULE_LICENSE("GPL");
1052 MODULE_DESCRIPTION("Kyber I/O scheduler");
1053