• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_dp_helper.h>
35 #include <drm/drm_simple_kms_helper.h>
36 
37 #include "gma_display.h"
38 #include "psb_drv.h"
39 #include "psb_intel_drv.h"
40 #include "psb_intel_reg.h"
41 
42 /**
43  * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
44  * 				 aux algorithm
45  * @running: set by the algo indicating whether an i2c is ongoing or whether
46  * 	     the i2c bus is quiescent
47  * @address: i2c target address for the currently ongoing transfer
48  * @aux_ch: driver callback to transfer a single byte of the i2c payload
49  */
50 struct i2c_algo_dp_aux_data {
51 	bool running;
52 	u16 address;
53 	int (*aux_ch) (struct i2c_adapter *adapter,
54 		       int mode, uint8_t write_byte,
55 		       uint8_t *read_byte);
56 };
57 
58 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
59 static int
i2c_algo_dp_aux_transaction(struct i2c_adapter * adapter,int mode,uint8_t write_byte,uint8_t * read_byte)60 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
61 			    uint8_t write_byte, uint8_t *read_byte)
62 {
63 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
64 	int ret;
65 
66 	ret = (*algo_data->aux_ch)(adapter, mode,
67 				   write_byte, read_byte);
68 	return ret;
69 }
70 
71 /*
72  * I2C over AUX CH
73  */
74 
75 /*
76  * Send the address. If the I2C link is running, this 'restarts'
77  * the connection with the new address, this is used for doing
78  * a write followed by a read (as needed for DDC)
79  */
80 static int
i2c_algo_dp_aux_address(struct i2c_adapter * adapter,u16 address,bool reading)81 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
82 {
83 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
84 	int mode = MODE_I2C_START;
85 	int ret;
86 
87 	if (reading)
88 		mode |= MODE_I2C_READ;
89 	else
90 		mode |= MODE_I2C_WRITE;
91 	algo_data->address = address;
92 	algo_data->running = true;
93 	ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
94 	return ret;
95 }
96 
97 /*
98  * Stop the I2C transaction. This closes out the link, sending
99  * a bare address packet with the MOT bit turned off
100  */
101 static void
i2c_algo_dp_aux_stop(struct i2c_adapter * adapter,bool reading)102 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
103 {
104 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
105 	int mode = MODE_I2C_STOP;
106 
107 	if (reading)
108 		mode |= MODE_I2C_READ;
109 	else
110 		mode |= MODE_I2C_WRITE;
111 	if (algo_data->running) {
112 		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
113 		algo_data->running = false;
114 	}
115 }
116 
117 /*
118  * Write a single byte to the current I2C address, the
119  * the I2C link must be running or this returns -EIO
120  */
121 static int
i2c_algo_dp_aux_put_byte(struct i2c_adapter * adapter,u8 byte)122 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
123 {
124 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
125 	int ret;
126 
127 	if (!algo_data->running)
128 		return -EIO;
129 
130 	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
131 	return ret;
132 }
133 
134 /*
135  * Read a single byte from the current I2C address, the
136  * I2C link must be running or this returns -EIO
137  */
138 static int
i2c_algo_dp_aux_get_byte(struct i2c_adapter * adapter,u8 * byte_ret)139 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
140 {
141 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
142 	int ret;
143 
144 	if (!algo_data->running)
145 		return -EIO;
146 
147 	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
148 	return ret;
149 }
150 
151 static int
i2c_algo_dp_aux_xfer(struct i2c_adapter * adapter,struct i2c_msg * msgs,int num)152 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
153 		     struct i2c_msg *msgs,
154 		     int num)
155 {
156 	int ret = 0;
157 	bool reading = false;
158 	int m;
159 	int b;
160 
161 	for (m = 0; m < num; m++) {
162 		u16 len = msgs[m].len;
163 		u8 *buf = msgs[m].buf;
164 		reading = (msgs[m].flags & I2C_M_RD) != 0;
165 		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
166 		if (ret < 0)
167 			break;
168 		if (reading) {
169 			for (b = 0; b < len; b++) {
170 				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
171 				if (ret < 0)
172 					break;
173 			}
174 		} else {
175 			for (b = 0; b < len; b++) {
176 				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
177 				if (ret < 0)
178 					break;
179 			}
180 		}
181 		if (ret < 0)
182 			break;
183 	}
184 	if (ret >= 0)
185 		ret = num;
186 	i2c_algo_dp_aux_stop(adapter, reading);
187 	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
188 	return ret;
189 }
190 
191 static u32
i2c_algo_dp_aux_functionality(struct i2c_adapter * adapter)192 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
193 {
194 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
195 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
196 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
197 	       I2C_FUNC_10BIT_ADDR;
198 }
199 
200 static const struct i2c_algorithm i2c_dp_aux_algo = {
201 	.master_xfer	= i2c_algo_dp_aux_xfer,
202 	.functionality	= i2c_algo_dp_aux_functionality,
203 };
204 
205 static void
i2c_dp_aux_reset_bus(struct i2c_adapter * adapter)206 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
207 {
208 	(void) i2c_algo_dp_aux_address(adapter, 0, false);
209 	(void) i2c_algo_dp_aux_stop(adapter, false);
210 }
211 
212 static int
i2c_dp_aux_prepare_bus(struct i2c_adapter * adapter)213 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
214 {
215 	adapter->algo = &i2c_dp_aux_algo;
216 	adapter->retries = 3;
217 	i2c_dp_aux_reset_bus(adapter);
218 	return 0;
219 }
220 
221 /*
222  * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
223  * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
224  */
225 static int
i2c_dp_aux_add_bus(struct i2c_adapter * adapter)226 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
227 {
228 	int error;
229 
230 	error = i2c_dp_aux_prepare_bus(adapter);
231 	if (error)
232 		return error;
233 	error = i2c_add_adapter(adapter);
234 	return error;
235 }
236 
237 #define _wait_for(COND, MS, W) ({ \
238         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
239         int ret__ = 0;                                                  \
240         while (! (COND)) {                                              \
241                 if (time_after(jiffies, timeout__)) {                   \
242                         ret__ = -ETIMEDOUT;                             \
243                         break;                                          \
244                 }                                                       \
245                 if (W && !in_dbg_master()) msleep(W);                   \
246         }                                                               \
247         ret__;                                                          \
248 })
249 
250 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
251 
252 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
253 
254 #define DP_LINK_CONFIGURATION_SIZE	9
255 
256 #define CDV_FAST_LINK_TRAIN	1
257 
258 struct cdv_intel_dp {
259 	uint32_t output_reg;
260 	uint32_t DP;
261 	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
262 	bool has_audio;
263 	int force_audio;
264 	uint32_t color_range;
265 	uint8_t link_bw;
266 	uint8_t lane_count;
267 	uint8_t dpcd[4];
268 	struct gma_encoder *encoder;
269 	struct i2c_adapter adapter;
270 	struct i2c_algo_dp_aux_data algo;
271 	uint8_t	train_set[4];
272 	uint8_t link_status[DP_LINK_STATUS_SIZE];
273 	int panel_power_up_delay;
274 	int panel_power_down_delay;
275 	int panel_power_cycle_delay;
276 	int backlight_on_delay;
277 	int backlight_off_delay;
278 	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
279 	bool panel_on;
280 };
281 
282 struct ddi_regoff {
283 	uint32_t	PreEmph1;
284 	uint32_t	PreEmph2;
285 	uint32_t	VSwing1;
286 	uint32_t	VSwing2;
287 	uint32_t	VSwing3;
288 	uint32_t	VSwing4;
289 	uint32_t	VSwing5;
290 };
291 
292 static struct ddi_regoff ddi_DP_train_table[] = {
293 	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
294 	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
295 	.VSwing5 = 0x8158,},
296 	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
297 	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
298 	.VSwing5 = 0x8258,},
299 };
300 
301 static uint32_t dp_vswing_premph_table[] = {
302         0x55338954,	0x4000,
303         0x554d8954,	0x2000,
304         0x55668954,	0,
305         0x559ac0d4,	0x6000,
306 };
307 /**
308  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
309  * @intel_dp: DP struct
310  *
311  * If a CPU or PCH DP output is attached to an eDP panel, this function
312  * will return true, and false otherwise.
313  */
is_edp(struct gma_encoder * encoder)314 static bool is_edp(struct gma_encoder *encoder)
315 {
316 	return encoder->type == INTEL_OUTPUT_EDP;
317 }
318 
319 
320 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
321 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
322 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
323 
324 static int
cdv_intel_dp_max_lane_count(struct gma_encoder * encoder)325 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
326 {
327 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
328 	int max_lane_count = 4;
329 
330 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
331 		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
332 		switch (max_lane_count) {
333 		case 1: case 2: case 4:
334 			break;
335 		default:
336 			max_lane_count = 4;
337 		}
338 	}
339 	return max_lane_count;
340 }
341 
342 static int
cdv_intel_dp_max_link_bw(struct gma_encoder * encoder)343 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
344 {
345 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
346 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
347 
348 	switch (max_link_bw) {
349 	case DP_LINK_BW_1_62:
350 	case DP_LINK_BW_2_7:
351 		break;
352 	default:
353 		max_link_bw = DP_LINK_BW_1_62;
354 		break;
355 	}
356 	return max_link_bw;
357 }
358 
359 static int
cdv_intel_dp_link_clock(uint8_t link_bw)360 cdv_intel_dp_link_clock(uint8_t link_bw)
361 {
362 	if (link_bw == DP_LINK_BW_2_7)
363 		return 270000;
364 	else
365 		return 162000;
366 }
367 
368 static int
cdv_intel_dp_link_required(int pixel_clock,int bpp)369 cdv_intel_dp_link_required(int pixel_clock, int bpp)
370 {
371 	return (pixel_clock * bpp + 7) / 8;
372 }
373 
374 static int
cdv_intel_dp_max_data_rate(int max_link_clock,int max_lanes)375 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
376 {
377 	return (max_link_clock * max_lanes * 19) / 20;
378 }
379 
cdv_intel_edp_panel_vdd_on(struct gma_encoder * intel_encoder)380 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
381 {
382 	struct drm_device *dev = intel_encoder->base.dev;
383 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
384 	u32 pp;
385 
386 	if (intel_dp->panel_on) {
387 		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
388 		return;
389 	}
390 	DRM_DEBUG_KMS("\n");
391 
392 	pp = REG_READ(PP_CONTROL);
393 
394 	pp |= EDP_FORCE_VDD;
395 	REG_WRITE(PP_CONTROL, pp);
396 	REG_READ(PP_CONTROL);
397 	msleep(intel_dp->panel_power_up_delay);
398 }
399 
cdv_intel_edp_panel_vdd_off(struct gma_encoder * intel_encoder)400 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
401 {
402 	struct drm_device *dev = intel_encoder->base.dev;
403 	u32 pp;
404 
405 	DRM_DEBUG_KMS("\n");
406 	pp = REG_READ(PP_CONTROL);
407 
408 	pp &= ~EDP_FORCE_VDD;
409 	REG_WRITE(PP_CONTROL, pp);
410 	REG_READ(PP_CONTROL);
411 
412 }
413 
414 /* Returns true if the panel was already on when called */
cdv_intel_edp_panel_on(struct gma_encoder * intel_encoder)415 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
416 {
417 	struct drm_device *dev = intel_encoder->base.dev;
418 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
419 	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
420 
421 	if (intel_dp->panel_on)
422 		return true;
423 
424 	DRM_DEBUG_KMS("\n");
425 	pp = REG_READ(PP_CONTROL);
426 	pp &= ~PANEL_UNLOCK_MASK;
427 
428 	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
429 	REG_WRITE(PP_CONTROL, pp);
430 	REG_READ(PP_CONTROL);
431 
432 	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
433 		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
434 		intel_dp->panel_on = false;
435 	} else
436 		intel_dp->panel_on = true;
437 	msleep(intel_dp->panel_power_up_delay);
438 
439 	return false;
440 }
441 
cdv_intel_edp_panel_off(struct gma_encoder * intel_encoder)442 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
443 {
444 	struct drm_device *dev = intel_encoder->base.dev;
445 	u32 pp, idle_off_mask = PP_ON ;
446 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
447 
448 	DRM_DEBUG_KMS("\n");
449 
450 	pp = REG_READ(PP_CONTROL);
451 
452 	if ((pp & POWER_TARGET_ON) == 0)
453 		return;
454 
455 	intel_dp->panel_on = false;
456 	pp &= ~PANEL_UNLOCK_MASK;
457 	/* ILK workaround: disable reset around power sequence */
458 
459 	pp &= ~POWER_TARGET_ON;
460 	pp &= ~EDP_FORCE_VDD;
461 	pp &= ~EDP_BLC_ENABLE;
462 	REG_WRITE(PP_CONTROL, pp);
463 	REG_READ(PP_CONTROL);
464 	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
465 
466 	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
467 		DRM_DEBUG_KMS("Error in turning off Panel\n");
468 	}
469 
470 	msleep(intel_dp->panel_power_cycle_delay);
471 	DRM_DEBUG_KMS("Over\n");
472 }
473 
cdv_intel_edp_backlight_on(struct gma_encoder * intel_encoder)474 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
475 {
476 	struct drm_device *dev = intel_encoder->base.dev;
477 	u32 pp;
478 
479 	DRM_DEBUG_KMS("\n");
480 	/*
481 	 * If we enable the backlight right away following a panel power
482 	 * on, we may see slight flicker as the panel syncs with the eDP
483 	 * link.  So delay a bit to make sure the image is solid before
484 	 * allowing it to appear.
485 	 */
486 	msleep(300);
487 	pp = REG_READ(PP_CONTROL);
488 
489 	pp |= EDP_BLC_ENABLE;
490 	REG_WRITE(PP_CONTROL, pp);
491 	gma_backlight_enable(dev);
492 }
493 
cdv_intel_edp_backlight_off(struct gma_encoder * intel_encoder)494 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
495 {
496 	struct drm_device *dev = intel_encoder->base.dev;
497 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
498 	u32 pp;
499 
500 	DRM_DEBUG_KMS("\n");
501 	gma_backlight_disable(dev);
502 	msleep(10);
503 	pp = REG_READ(PP_CONTROL);
504 
505 	pp &= ~EDP_BLC_ENABLE;
506 	REG_WRITE(PP_CONTROL, pp);
507 	msleep(intel_dp->backlight_off_delay);
508 }
509 
510 static enum drm_mode_status
cdv_intel_dp_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)511 cdv_intel_dp_mode_valid(struct drm_connector *connector,
512 		    struct drm_display_mode *mode)
513 {
514 	struct gma_encoder *encoder = gma_attached_encoder(connector);
515 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
516 	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
517 	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
518 	struct drm_psb_private *dev_priv = connector->dev->dev_private;
519 
520 	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
521 		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
522 			return MODE_PANEL;
523 		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
524 			return MODE_PANEL;
525 	}
526 
527 	/* only refuse the mode on non eDP since we have seen some weird eDP panels
528 	   which are outside spec tolerances but somehow work by magic */
529 	if (!is_edp(encoder) &&
530 	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
531 	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
532 		return MODE_CLOCK_HIGH;
533 
534 	if (is_edp(encoder)) {
535 	    if (cdv_intel_dp_link_required(mode->clock, 24)
536 	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
537 		return MODE_CLOCK_HIGH;
538 
539 	}
540 	if (mode->clock < 10000)
541 		return MODE_CLOCK_LOW;
542 
543 	return MODE_OK;
544 }
545 
546 static uint32_t
pack_aux(uint8_t * src,int src_bytes)547 pack_aux(uint8_t *src, int src_bytes)
548 {
549 	int	i;
550 	uint32_t v = 0;
551 
552 	if (src_bytes > 4)
553 		src_bytes = 4;
554 	for (i = 0; i < src_bytes; i++)
555 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
556 	return v;
557 }
558 
559 static void
unpack_aux(uint32_t src,uint8_t * dst,int dst_bytes)560 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
561 {
562 	int i;
563 	if (dst_bytes > 4)
564 		dst_bytes = 4;
565 	for (i = 0; i < dst_bytes; i++)
566 		dst[i] = src >> ((3-i) * 8);
567 }
568 
569 static int
cdv_intel_dp_aux_ch(struct gma_encoder * encoder,uint8_t * send,int send_bytes,uint8_t * recv,int recv_size)570 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
571 		uint8_t *send, int send_bytes,
572 		uint8_t *recv, int recv_size)
573 {
574 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
575 	uint32_t output_reg = intel_dp->output_reg;
576 	struct drm_device *dev = encoder->base.dev;
577 	uint32_t ch_ctl = output_reg + 0x10;
578 	uint32_t ch_data = ch_ctl + 4;
579 	int i;
580 	int recv_bytes;
581 	uint32_t status;
582 	uint32_t aux_clock_divider;
583 	int try, precharge;
584 
585 	/* The clock divider is based off the hrawclk,
586 	 * and would like to run at 2MHz. So, take the
587 	 * hrawclk value and divide by 2 and use that
588 	 * On CDV platform it uses 200MHz as hrawclk.
589 	 *
590 	 */
591 	aux_clock_divider = 200 / 2;
592 
593 	precharge = 4;
594 	if (is_edp(encoder))
595 		precharge = 10;
596 
597 	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
598 		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
599 			  REG_READ(ch_ctl));
600 		return -EBUSY;
601 	}
602 
603 	/* Must try at least 3 times according to DP spec */
604 	for (try = 0; try < 5; try++) {
605 		/* Load the send data into the aux channel data registers */
606 		for (i = 0; i < send_bytes; i += 4)
607 			REG_WRITE(ch_data + i,
608 				   pack_aux(send + i, send_bytes - i));
609 
610 		/* Send the command and wait for it to complete */
611 		REG_WRITE(ch_ctl,
612 			   DP_AUX_CH_CTL_SEND_BUSY |
613 			   DP_AUX_CH_CTL_TIME_OUT_400us |
614 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
615 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
616 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
617 			   DP_AUX_CH_CTL_DONE |
618 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
619 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
620 		for (;;) {
621 			status = REG_READ(ch_ctl);
622 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
623 				break;
624 			udelay(100);
625 		}
626 
627 		/* Clear done status and any errors */
628 		REG_WRITE(ch_ctl,
629 			   status |
630 			   DP_AUX_CH_CTL_DONE |
631 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
632 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
633 		if (status & DP_AUX_CH_CTL_DONE)
634 			break;
635 	}
636 
637 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
638 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
639 		return -EBUSY;
640 	}
641 
642 	/* Check for timeout or receive error.
643 	 * Timeouts occur when the sink is not connected
644 	 */
645 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
646 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
647 		return -EIO;
648 	}
649 
650 	/* Timeouts occur when the device isn't connected, so they're
651 	 * "normal" -- don't fill the kernel log with these */
652 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
653 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
654 		return -ETIMEDOUT;
655 	}
656 
657 	/* Unload any bytes sent back from the other side */
658 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
659 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
660 	if (recv_bytes > recv_size)
661 		recv_bytes = recv_size;
662 
663 	for (i = 0; i < recv_bytes; i += 4)
664 		unpack_aux(REG_READ(ch_data + i),
665 			   recv + i, recv_bytes - i);
666 
667 	return recv_bytes;
668 }
669 
670 /* Write data to the aux channel in native mode */
671 static int
cdv_intel_dp_aux_native_write(struct gma_encoder * encoder,uint16_t address,uint8_t * send,int send_bytes)672 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
673 			  uint16_t address, uint8_t *send, int send_bytes)
674 {
675 	int ret;
676 	uint8_t	msg[20];
677 	int msg_bytes;
678 	uint8_t	ack;
679 
680 	if (send_bytes > 16)
681 		return -1;
682 	msg[0] = DP_AUX_NATIVE_WRITE << 4;
683 	msg[1] = address >> 8;
684 	msg[2] = address & 0xff;
685 	msg[3] = send_bytes - 1;
686 	memcpy(&msg[4], send, send_bytes);
687 	msg_bytes = send_bytes + 4;
688 	for (;;) {
689 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
690 		if (ret < 0)
691 			return ret;
692 		ack >>= 4;
693 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
694 			break;
695 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
696 			udelay(100);
697 		else
698 			return -EIO;
699 	}
700 	return send_bytes;
701 }
702 
703 /* Write a single byte to the aux channel in native mode */
704 static int
cdv_intel_dp_aux_native_write_1(struct gma_encoder * encoder,uint16_t address,uint8_t byte)705 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
706 			    uint16_t address, uint8_t byte)
707 {
708 	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
709 }
710 
711 /* read bytes from a native aux channel */
712 static int
cdv_intel_dp_aux_native_read(struct gma_encoder * encoder,uint16_t address,uint8_t * recv,int recv_bytes)713 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
714 			 uint16_t address, uint8_t *recv, int recv_bytes)
715 {
716 	uint8_t msg[4];
717 	int msg_bytes;
718 	uint8_t reply[20];
719 	int reply_bytes;
720 	uint8_t ack;
721 	int ret;
722 
723 	msg[0] = DP_AUX_NATIVE_READ << 4;
724 	msg[1] = address >> 8;
725 	msg[2] = address & 0xff;
726 	msg[3] = recv_bytes - 1;
727 
728 	msg_bytes = 4;
729 	reply_bytes = recv_bytes + 1;
730 
731 	for (;;) {
732 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
733 				      reply, reply_bytes);
734 		if (ret == 0)
735 			return -EPROTO;
736 		if (ret < 0)
737 			return ret;
738 		ack = reply[0] >> 4;
739 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
740 			memcpy(recv, reply + 1, ret - 1);
741 			return ret - 1;
742 		}
743 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
744 			udelay(100);
745 		else
746 			return -EIO;
747 	}
748 }
749 
750 static int
cdv_intel_dp_i2c_aux_ch(struct i2c_adapter * adapter,int mode,uint8_t write_byte,uint8_t * read_byte)751 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
752 		    uint8_t write_byte, uint8_t *read_byte)
753 {
754 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
755 	struct cdv_intel_dp *intel_dp = container_of(adapter,
756 						struct cdv_intel_dp,
757 						adapter);
758 	struct gma_encoder *encoder = intel_dp->encoder;
759 	uint16_t address = algo_data->address;
760 	uint8_t msg[5];
761 	uint8_t reply[2];
762 	unsigned retry;
763 	int msg_bytes;
764 	int reply_bytes;
765 	int ret;
766 
767 	/* Set up the command byte */
768 	if (mode & MODE_I2C_READ)
769 		msg[0] = DP_AUX_I2C_READ << 4;
770 	else
771 		msg[0] = DP_AUX_I2C_WRITE << 4;
772 
773 	if (!(mode & MODE_I2C_STOP))
774 		msg[0] |= DP_AUX_I2C_MOT << 4;
775 
776 	msg[1] = address >> 8;
777 	msg[2] = address;
778 
779 	switch (mode) {
780 	case MODE_I2C_WRITE:
781 		msg[3] = 0;
782 		msg[4] = write_byte;
783 		msg_bytes = 5;
784 		reply_bytes = 1;
785 		break;
786 	case MODE_I2C_READ:
787 		msg[3] = 0;
788 		msg_bytes = 4;
789 		reply_bytes = 2;
790 		break;
791 	default:
792 		msg_bytes = 3;
793 		reply_bytes = 1;
794 		break;
795 	}
796 
797 	for (retry = 0; retry < 5; retry++) {
798 		ret = cdv_intel_dp_aux_ch(encoder,
799 				      msg, msg_bytes,
800 				      reply, reply_bytes);
801 		if (ret < 0) {
802 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
803 			return ret;
804 		}
805 
806 		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
807 		case DP_AUX_NATIVE_REPLY_ACK:
808 			/* I2C-over-AUX Reply field is only valid
809 			 * when paired with AUX ACK.
810 			 */
811 			break;
812 		case DP_AUX_NATIVE_REPLY_NACK:
813 			DRM_DEBUG_KMS("aux_ch native nack\n");
814 			return -EREMOTEIO;
815 		case DP_AUX_NATIVE_REPLY_DEFER:
816 			udelay(100);
817 			continue;
818 		default:
819 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
820 				  reply[0]);
821 			return -EREMOTEIO;
822 		}
823 
824 		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
825 		case DP_AUX_I2C_REPLY_ACK:
826 			if (mode == MODE_I2C_READ) {
827 				*read_byte = reply[1];
828 			}
829 			return reply_bytes - 1;
830 		case DP_AUX_I2C_REPLY_NACK:
831 			DRM_DEBUG_KMS("aux_i2c nack\n");
832 			return -EREMOTEIO;
833 		case DP_AUX_I2C_REPLY_DEFER:
834 			DRM_DEBUG_KMS("aux_i2c defer\n");
835 			udelay(100);
836 			break;
837 		default:
838 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
839 			return -EREMOTEIO;
840 		}
841 	}
842 
843 	DRM_ERROR("too many retries, giving up\n");
844 	return -EREMOTEIO;
845 }
846 
847 static int
cdv_intel_dp_i2c_init(struct gma_connector * connector,struct gma_encoder * encoder,const char * name)848 cdv_intel_dp_i2c_init(struct gma_connector *connector,
849 		      struct gma_encoder *encoder, const char *name)
850 {
851 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
852 	int ret;
853 
854 	DRM_DEBUG_KMS("i2c_init %s\n", name);
855 
856 	intel_dp->algo.running = false;
857 	intel_dp->algo.address = 0;
858 	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
859 
860 	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
861 	intel_dp->adapter.owner = THIS_MODULE;
862 	intel_dp->adapter.class = I2C_CLASS_DDC;
863 	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
864 	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
865 	intel_dp->adapter.algo_data = &intel_dp->algo;
866 	intel_dp->adapter.dev.parent = connector->base.kdev;
867 
868 	if (is_edp(encoder))
869 		cdv_intel_edp_panel_vdd_on(encoder);
870 	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
871 	if (is_edp(encoder))
872 		cdv_intel_edp_panel_vdd_off(encoder);
873 
874 	return ret;
875 }
876 
cdv_intel_fixed_panel_mode(struct drm_display_mode * fixed_mode,struct drm_display_mode * adjusted_mode)877 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
878 	struct drm_display_mode *adjusted_mode)
879 {
880 	adjusted_mode->hdisplay = fixed_mode->hdisplay;
881 	adjusted_mode->hsync_start = fixed_mode->hsync_start;
882 	adjusted_mode->hsync_end = fixed_mode->hsync_end;
883 	adjusted_mode->htotal = fixed_mode->htotal;
884 
885 	adjusted_mode->vdisplay = fixed_mode->vdisplay;
886 	adjusted_mode->vsync_start = fixed_mode->vsync_start;
887 	adjusted_mode->vsync_end = fixed_mode->vsync_end;
888 	adjusted_mode->vtotal = fixed_mode->vtotal;
889 
890 	adjusted_mode->clock = fixed_mode->clock;
891 
892 	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
893 }
894 
895 static bool
cdv_intel_dp_mode_fixup(struct drm_encoder * encoder,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)896 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
897 		    struct drm_display_mode *adjusted_mode)
898 {
899 	struct drm_psb_private *dev_priv = encoder->dev->dev_private;
900 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
901 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
902 	int lane_count, clock;
903 	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
904 	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
905 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
906 	int refclock = mode->clock;
907 	int bpp = 24;
908 
909 	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
910 		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
911 		refclock = intel_dp->panel_fixed_mode->clock;
912 		bpp = dev_priv->edp.bpp;
913 	}
914 
915 	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
916 		for (clock = max_clock; clock >= 0; clock--) {
917 			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
918 
919 			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
920 				intel_dp->link_bw = bws[clock];
921 				intel_dp->lane_count = lane_count;
922 				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
923 				DRM_DEBUG_KMS("Display port link bw %02x lane "
924 						"count %d clock %d\n",
925 				       intel_dp->link_bw, intel_dp->lane_count,
926 				       adjusted_mode->clock);
927 				return true;
928 			}
929 		}
930 	}
931 	if (is_edp(intel_encoder)) {
932 		/* okay we failed just pick the highest */
933 		intel_dp->lane_count = max_lane_count;
934 		intel_dp->link_bw = bws[max_clock];
935 		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
936 		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
937 			      "count %d clock %d\n",
938 			      intel_dp->link_bw, intel_dp->lane_count,
939 			      adjusted_mode->clock);
940 
941 		return true;
942 	}
943 	return false;
944 }
945 
946 struct cdv_intel_dp_m_n {
947 	uint32_t	tu;
948 	uint32_t	gmch_m;
949 	uint32_t	gmch_n;
950 	uint32_t	link_m;
951 	uint32_t	link_n;
952 };
953 
954 static void
cdv_intel_reduce_ratio(uint32_t * num,uint32_t * den)955 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
956 {
957 	/*
958 	while (*num > 0xffffff || *den > 0xffffff) {
959 		*num >>= 1;
960 		*den >>= 1;
961 	}*/
962 	uint64_t value, m;
963 	m = *num;
964 	value = m * (0x800000);
965 	m = do_div(value, *den);
966 	*num = value;
967 	*den = 0x800000;
968 }
969 
970 static void
cdv_intel_dp_compute_m_n(int bpp,int nlanes,int pixel_clock,int link_clock,struct cdv_intel_dp_m_n * m_n)971 cdv_intel_dp_compute_m_n(int bpp,
972 		     int nlanes,
973 		     int pixel_clock,
974 		     int link_clock,
975 		     struct cdv_intel_dp_m_n *m_n)
976 {
977 	m_n->tu = 64;
978 	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
979 	m_n->gmch_n = link_clock * nlanes;
980 	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
981 	m_n->link_m = pixel_clock;
982 	m_n->link_n = link_clock;
983 	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
984 }
985 
986 void
cdv_intel_dp_set_m_n(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)987 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
988 		 struct drm_display_mode *adjusted_mode)
989 {
990 	struct drm_device *dev = crtc->dev;
991 	struct drm_psb_private *dev_priv = dev->dev_private;
992 	struct drm_mode_config *mode_config = &dev->mode_config;
993 	struct drm_encoder *encoder;
994 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
995 	int lane_count = 4, bpp = 24;
996 	struct cdv_intel_dp_m_n m_n;
997 	int pipe = gma_crtc->pipe;
998 
999 	/*
1000 	 * Find the lane count in the intel_encoder private
1001 	 */
1002 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1003 		struct gma_encoder *intel_encoder;
1004 		struct cdv_intel_dp *intel_dp;
1005 
1006 		if (encoder->crtc != crtc)
1007 			continue;
1008 
1009 		intel_encoder = to_gma_encoder(encoder);
1010 		intel_dp = intel_encoder->dev_priv;
1011 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1012 			lane_count = intel_dp->lane_count;
1013 			break;
1014 		} else if (is_edp(intel_encoder)) {
1015 			lane_count = intel_dp->lane_count;
1016 			bpp = dev_priv->edp.bpp;
1017 			break;
1018 		}
1019 	}
1020 
1021 	/*
1022 	 * Compute the GMCH and Link ratios. The '3' here is
1023 	 * the number of bytes_per_pixel post-LUT, which we always
1024 	 * set up for 8-bits of R/G/B, or 3 bytes total.
1025 	 */
1026 	cdv_intel_dp_compute_m_n(bpp, lane_count,
1027 			     mode->clock, adjusted_mode->clock, &m_n);
1028 
1029 	{
1030 		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1031 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1032 			   m_n.gmch_m);
1033 		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1034 		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1035 		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1036 	}
1037 }
1038 
1039 static void
cdv_intel_dp_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)1040 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1041 		  struct drm_display_mode *adjusted_mode)
1042 {
1043 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1044 	struct drm_crtc *crtc = encoder->crtc;
1045 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1046 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1047 	struct drm_device *dev = encoder->dev;
1048 
1049 	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1050 	intel_dp->DP |= intel_dp->color_range;
1051 
1052 	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1053 		intel_dp->DP |= DP_SYNC_HS_HIGH;
1054 	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1055 		intel_dp->DP |= DP_SYNC_VS_HIGH;
1056 
1057 	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1058 
1059 	switch (intel_dp->lane_count) {
1060 	case 1:
1061 		intel_dp->DP |= DP_PORT_WIDTH_1;
1062 		break;
1063 	case 2:
1064 		intel_dp->DP |= DP_PORT_WIDTH_2;
1065 		break;
1066 	case 4:
1067 		intel_dp->DP |= DP_PORT_WIDTH_4;
1068 		break;
1069 	}
1070 	if (intel_dp->has_audio)
1071 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1072 
1073 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1074 	intel_dp->link_configuration[0] = intel_dp->link_bw;
1075 	intel_dp->link_configuration[1] = intel_dp->lane_count;
1076 
1077 	/*
1078 	 * Check for DPCD version > 1.1 and enhanced framing support
1079 	 */
1080 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1081 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1082 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1083 		intel_dp->DP |= DP_ENHANCED_FRAMING;
1084 	}
1085 
1086 	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1087 	if (gma_crtc->pipe == 1)
1088 		intel_dp->DP |= DP_PIPEB_SELECT;
1089 
1090 	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1091 	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1092 	if (is_edp(intel_encoder)) {
1093 		uint32_t pfit_control;
1094 		cdv_intel_edp_panel_on(intel_encoder);
1095 
1096 		if (mode->hdisplay != adjusted_mode->hdisplay ||
1097 			    mode->vdisplay != adjusted_mode->vdisplay)
1098 			pfit_control = PFIT_ENABLE;
1099 		else
1100 			pfit_control = 0;
1101 
1102 		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1103 
1104 		REG_WRITE(PFIT_CONTROL, pfit_control);
1105 	}
1106 }
1107 
1108 
1109 /* If the sink supports it, try to set the power state appropriately */
cdv_intel_dp_sink_dpms(struct gma_encoder * encoder,int mode)1110 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1111 {
1112 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1113 	int ret, i;
1114 
1115 	/* Should have a valid DPCD by this point */
1116 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1117 		return;
1118 
1119 	if (mode != DRM_MODE_DPMS_ON) {
1120 		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1121 						  DP_SET_POWER_D3);
1122 		if (ret != 1)
1123 			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1124 	} else {
1125 		/*
1126 		 * When turning on, we need to retry for 1ms to give the sink
1127 		 * time to wake up.
1128 		 */
1129 		for (i = 0; i < 3; i++) {
1130 			ret = cdv_intel_dp_aux_native_write_1(encoder,
1131 							  DP_SET_POWER,
1132 							  DP_SET_POWER_D0);
1133 			if (ret == 1)
1134 				break;
1135 			udelay(1000);
1136 		}
1137 	}
1138 }
1139 
cdv_intel_dp_prepare(struct drm_encoder * encoder)1140 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1141 {
1142 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1143 	int edp = is_edp(intel_encoder);
1144 
1145 	if (edp) {
1146 		cdv_intel_edp_backlight_off(intel_encoder);
1147 		cdv_intel_edp_panel_off(intel_encoder);
1148 		cdv_intel_edp_panel_vdd_on(intel_encoder);
1149         }
1150 	/* Wake up the sink first */
1151 	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1152 	cdv_intel_dp_link_down(intel_encoder);
1153 	if (edp)
1154 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1155 }
1156 
cdv_intel_dp_commit(struct drm_encoder * encoder)1157 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1158 {
1159 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1160 	int edp = is_edp(intel_encoder);
1161 
1162 	if (edp)
1163 		cdv_intel_edp_panel_on(intel_encoder);
1164 	cdv_intel_dp_start_link_train(intel_encoder);
1165 	cdv_intel_dp_complete_link_train(intel_encoder);
1166 	if (edp)
1167 		cdv_intel_edp_backlight_on(intel_encoder);
1168 }
1169 
1170 static void
cdv_intel_dp_dpms(struct drm_encoder * encoder,int mode)1171 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1172 {
1173 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1174 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1175 	struct drm_device *dev = encoder->dev;
1176 	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1177 	int edp = is_edp(intel_encoder);
1178 
1179 	if (mode != DRM_MODE_DPMS_ON) {
1180 		if (edp) {
1181 			cdv_intel_edp_backlight_off(intel_encoder);
1182 			cdv_intel_edp_panel_vdd_on(intel_encoder);
1183 		}
1184 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1185 		cdv_intel_dp_link_down(intel_encoder);
1186 		if (edp) {
1187 			cdv_intel_edp_panel_vdd_off(intel_encoder);
1188 			cdv_intel_edp_panel_off(intel_encoder);
1189 		}
1190 	} else {
1191         	if (edp)
1192 			cdv_intel_edp_panel_on(intel_encoder);
1193 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1194 		if (!(dp_reg & DP_PORT_EN)) {
1195 			cdv_intel_dp_start_link_train(intel_encoder);
1196 			cdv_intel_dp_complete_link_train(intel_encoder);
1197 		}
1198 		if (edp)
1199         		cdv_intel_edp_backlight_on(intel_encoder);
1200 	}
1201 }
1202 
1203 /*
1204  * Native read with retry for link status and receiver capability reads for
1205  * cases where the sink may still be asleep.
1206  */
1207 static bool
cdv_intel_dp_aux_native_read_retry(struct gma_encoder * encoder,uint16_t address,uint8_t * recv,int recv_bytes)1208 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1209 			       uint8_t *recv, int recv_bytes)
1210 {
1211 	int ret, i;
1212 
1213 	/*
1214 	 * Sinks are *supposed* to come up within 1ms from an off state,
1215 	 * but we're also supposed to retry 3 times per the spec.
1216 	 */
1217 	for (i = 0; i < 3; i++) {
1218 		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1219 					       recv_bytes);
1220 		if (ret == recv_bytes)
1221 			return true;
1222 		udelay(1000);
1223 	}
1224 
1225 	return false;
1226 }
1227 
1228 /*
1229  * Fetch AUX CH registers 0x202 - 0x207 which contain
1230  * link status information
1231  */
1232 static bool
cdv_intel_dp_get_link_status(struct gma_encoder * encoder)1233 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1234 {
1235 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1236 	return cdv_intel_dp_aux_native_read_retry(encoder,
1237 					      DP_LANE0_1_STATUS,
1238 					      intel_dp->link_status,
1239 					      DP_LINK_STATUS_SIZE);
1240 }
1241 
1242 static uint8_t
cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],int r)1243 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1244 		     int r)
1245 {
1246 	return link_status[r - DP_LANE0_1_STATUS];
1247 }
1248 
1249 static uint8_t
cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane)1250 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1251 				 int lane)
1252 {
1253 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1254 	int	    s = ((lane & 1) ?
1255 			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1256 			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1257 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1258 
1259 	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1260 }
1261 
1262 static uint8_t
cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane)1263 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1264 				      int lane)
1265 {
1266 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1267 	int	    s = ((lane & 1) ?
1268 			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1269 			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1270 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1271 
1272 	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1273 }
1274 
1275 #define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1276 
1277 static void
cdv_intel_get_adjust_train(struct gma_encoder * encoder)1278 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1279 {
1280 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1281 	uint8_t v = 0;
1282 	uint8_t p = 0;
1283 	int lane;
1284 
1285 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1286 		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1287 		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1288 
1289 		if (this_v > v)
1290 			v = this_v;
1291 		if (this_p > p)
1292 			p = this_p;
1293 	}
1294 
1295 	if (v >= CDV_DP_VOLTAGE_MAX)
1296 		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1297 
1298 	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1299 		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1300 
1301 	for (lane = 0; lane < 4; lane++)
1302 		intel_dp->train_set[lane] = v | p;
1303 }
1304 
1305 
1306 static uint8_t
cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane)1307 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1308 		      int lane)
1309 {
1310 	int i = DP_LANE0_1_STATUS + (lane >> 1);
1311 	int s = (lane & 1) * 4;
1312 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1313 
1314 	return (l >> s) & 0xf;
1315 }
1316 
1317 /* Check for clock recovery is done on all channels */
1318 static bool
cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane_count)1319 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1320 {
1321 	int lane;
1322 	uint8_t lane_status;
1323 
1324 	for (lane = 0; lane < lane_count; lane++) {
1325 		lane_status = cdv_intel_get_lane_status(link_status, lane);
1326 		if ((lane_status & DP_LANE_CR_DONE) == 0)
1327 			return false;
1328 	}
1329 	return true;
1330 }
1331 
1332 /* Check to see if channel eq is done on all channels */
1333 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1334 			 DP_LANE_CHANNEL_EQ_DONE|\
1335 			 DP_LANE_SYMBOL_LOCKED)
1336 static bool
cdv_intel_channel_eq_ok(struct gma_encoder * encoder)1337 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1338 {
1339 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1340 	uint8_t lane_align;
1341 	uint8_t lane_status;
1342 	int lane;
1343 
1344 	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1345 					  DP_LANE_ALIGN_STATUS_UPDATED);
1346 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1347 		return false;
1348 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1349 		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1350 		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1351 			return false;
1352 	}
1353 	return true;
1354 }
1355 
1356 static bool
cdv_intel_dp_set_link_train(struct gma_encoder * encoder,uint32_t dp_reg_value,uint8_t dp_train_pat)1357 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1358 			uint32_t dp_reg_value,
1359 			uint8_t dp_train_pat)
1360 {
1361 
1362 	struct drm_device *dev = encoder->base.dev;
1363 	int ret;
1364 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1365 
1366 	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1367 	REG_READ(intel_dp->output_reg);
1368 
1369 	ret = cdv_intel_dp_aux_native_write_1(encoder,
1370 				    DP_TRAINING_PATTERN_SET,
1371 				    dp_train_pat);
1372 
1373 	if (ret != 1) {
1374 		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1375 				dp_train_pat);
1376 		return false;
1377 	}
1378 
1379 	return true;
1380 }
1381 
1382 
1383 static bool
cdv_intel_dplink_set_level(struct gma_encoder * encoder,uint8_t dp_train_pat)1384 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1385 			uint8_t dp_train_pat)
1386 {
1387 
1388 	int ret;
1389 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1390 
1391 	ret = cdv_intel_dp_aux_native_write(encoder,
1392 					DP_TRAINING_LANE0_SET,
1393 					intel_dp->train_set,
1394 					intel_dp->lane_count);
1395 
1396 	if (ret != intel_dp->lane_count) {
1397 		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1398 				intel_dp->train_set[0], intel_dp->lane_count);
1399 		return false;
1400 	}
1401 	return true;
1402 }
1403 
1404 static void
cdv_intel_dp_set_vswing_premph(struct gma_encoder * encoder,uint8_t signal_level)1405 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1406 {
1407 	struct drm_device *dev = encoder->base.dev;
1408 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1409 	struct ddi_regoff *ddi_reg;
1410 	int vswing, premph, index;
1411 
1412 	if (intel_dp->output_reg == DP_B)
1413 		ddi_reg = &ddi_DP_train_table[0];
1414 	else
1415 		ddi_reg = &ddi_DP_train_table[1];
1416 
1417 	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1418 	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1419 				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1420 
1421 	if (vswing + premph > 3)
1422 		return;
1423 #ifdef CDV_FAST_LINK_TRAIN
1424 	return;
1425 #endif
1426 	DRM_DEBUG_KMS("Test2\n");
1427 	//return ;
1428 	cdv_sb_reset(dev);
1429 	/* ;Swing voltage programming
1430         ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1431 	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1432 
1433 	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1434 	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1435 
1436 	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1437 	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1438 	 */
1439 	index = (vswing + premph) * 2;
1440 	if (premph == 1 && vswing == 1) {
1441 		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1442 	} else
1443 		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1444 
1445 	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1446 	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1447 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1448 	else
1449 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1450 
1451 	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1452 	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1453 
1454 	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1455 	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1456 
1457 	/* ;Pre emphasis programming
1458 	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1459 	 */
1460 	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1461 
1462 	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1463 	index = 2 * premph + 1;
1464 	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1465 	return;
1466 }
1467 
1468 
1469 /* Enable corresponding port and start training pattern 1 */
1470 static void
cdv_intel_dp_start_link_train(struct gma_encoder * encoder)1471 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1472 {
1473 	struct drm_device *dev = encoder->base.dev;
1474 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1475 	int i;
1476 	uint8_t voltage;
1477 	bool clock_recovery = false;
1478 	int tries;
1479 	u32 reg;
1480 	uint32_t DP = intel_dp->DP;
1481 
1482 	DP |= DP_PORT_EN;
1483 	DP &= ~DP_LINK_TRAIN_MASK;
1484 
1485 	reg = DP;
1486 	reg |= DP_LINK_TRAIN_PAT_1;
1487 	/* Enable output, wait for it to become active */
1488 	REG_WRITE(intel_dp->output_reg, reg);
1489 	REG_READ(intel_dp->output_reg);
1490 	gma_wait_for_vblank(dev);
1491 
1492 	DRM_DEBUG_KMS("Link config\n");
1493 	/* Write the link configuration data */
1494 	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1495 				  intel_dp->link_configuration,
1496 				  2);
1497 
1498 	memset(intel_dp->train_set, 0, 4);
1499 	voltage = 0;
1500 	tries = 0;
1501 	clock_recovery = false;
1502 
1503 	DRM_DEBUG_KMS("Start train\n");
1504 		reg = DP | DP_LINK_TRAIN_PAT_1;
1505 
1506 
1507 	for (;;) {
1508 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1509 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1510 				intel_dp->train_set[0],
1511 				intel_dp->link_configuration[0],
1512 				intel_dp->link_configuration[1]);
1513 
1514 		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1515 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1516 		}
1517 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1518 		/* Set training pattern 1 */
1519 
1520 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1521 
1522 		udelay(200);
1523 		if (!cdv_intel_dp_get_link_status(encoder))
1524 			break;
1525 
1526 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1527 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1528 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1529 
1530 		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1531 			DRM_DEBUG_KMS("PT1 train is done\n");
1532 			clock_recovery = true;
1533 			break;
1534 		}
1535 
1536 		/* Check to see if we've tried the max voltage */
1537 		for (i = 0; i < intel_dp->lane_count; i++)
1538 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1539 				break;
1540 		if (i == intel_dp->lane_count)
1541 			break;
1542 
1543 		/* Check to see if we've tried the same voltage 5 times */
1544 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1545 			++tries;
1546 			if (tries == 5)
1547 				break;
1548 		} else
1549 			tries = 0;
1550 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1551 
1552 		/* Compute new intel_dp->train_set as requested by target */
1553 		cdv_intel_get_adjust_train(encoder);
1554 
1555 	}
1556 
1557 	if (!clock_recovery) {
1558 		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1559 	}
1560 
1561 	intel_dp->DP = DP;
1562 }
1563 
1564 static void
cdv_intel_dp_complete_link_train(struct gma_encoder * encoder)1565 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1566 {
1567 	struct drm_device *dev = encoder->base.dev;
1568 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1569 	int tries, cr_tries;
1570 	u32 reg;
1571 	uint32_t DP = intel_dp->DP;
1572 
1573 	/* channel equalization */
1574 	tries = 0;
1575 	cr_tries = 0;
1576 
1577 	DRM_DEBUG_KMS("\n");
1578 		reg = DP | DP_LINK_TRAIN_PAT_2;
1579 
1580 	for (;;) {
1581 
1582 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1583 				intel_dp->train_set[0],
1584 				intel_dp->link_configuration[0],
1585 				intel_dp->link_configuration[1]);
1586         	/* channel eq pattern */
1587 
1588 		if (!cdv_intel_dp_set_link_train(encoder, reg,
1589 					     DP_TRAINING_PATTERN_2)) {
1590 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1591 		}
1592 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1593 
1594 		if (cr_tries > 5) {
1595 			DRM_ERROR("failed to train DP, aborting\n");
1596 			cdv_intel_dp_link_down(encoder);
1597 			break;
1598 		}
1599 
1600 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1601 
1602 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1603 
1604 		udelay(1000);
1605 		if (!cdv_intel_dp_get_link_status(encoder))
1606 			break;
1607 
1608 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1609 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1610 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1611 
1612 		/* Make sure clock is still ok */
1613 		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1614 			cdv_intel_dp_start_link_train(encoder);
1615 			cr_tries++;
1616 			continue;
1617 		}
1618 
1619 		if (cdv_intel_channel_eq_ok(encoder)) {
1620 			DRM_DEBUG_KMS("PT2 train is done\n");
1621 			break;
1622 		}
1623 
1624 		/* Try 5 times, then try clock recovery if that fails */
1625 		if (tries > 5) {
1626 			cdv_intel_dp_link_down(encoder);
1627 			cdv_intel_dp_start_link_train(encoder);
1628 			tries = 0;
1629 			cr_tries++;
1630 			continue;
1631 		}
1632 
1633 		/* Compute new intel_dp->train_set as requested by target */
1634 		cdv_intel_get_adjust_train(encoder);
1635 		++tries;
1636 
1637 	}
1638 
1639 	reg = DP | DP_LINK_TRAIN_OFF;
1640 
1641 	REG_WRITE(intel_dp->output_reg, reg);
1642 	REG_READ(intel_dp->output_reg);
1643 	cdv_intel_dp_aux_native_write_1(encoder,
1644 				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1645 }
1646 
1647 static void
cdv_intel_dp_link_down(struct gma_encoder * encoder)1648 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1649 {
1650 	struct drm_device *dev = encoder->base.dev;
1651 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1652 	uint32_t DP = intel_dp->DP;
1653 
1654 	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1655 		return;
1656 
1657 	DRM_DEBUG_KMS("\n");
1658 
1659 
1660 	{
1661 		DP &= ~DP_LINK_TRAIN_MASK;
1662 		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1663 	}
1664 	REG_READ(intel_dp->output_reg);
1665 
1666 	msleep(17);
1667 
1668 	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1669 	REG_READ(intel_dp->output_reg);
1670 }
1671 
cdv_dp_detect(struct gma_encoder * encoder)1672 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1673 {
1674 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1675 	enum drm_connector_status status;
1676 
1677 	status = connector_status_disconnected;
1678 	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1679 				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1680 	{
1681 		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1682 			status = connector_status_connected;
1683 	}
1684 	if (status == connector_status_connected)
1685 		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1686 			intel_dp->dpcd[0], intel_dp->dpcd[1],
1687 			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1688 	return status;
1689 }
1690 
1691 /**
1692  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1693  *
1694  * \return true if DP port is connected.
1695  * \return false if DP port is disconnected.
1696  */
1697 static enum drm_connector_status
cdv_intel_dp_detect(struct drm_connector * connector,bool force)1698 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1699 {
1700 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1701 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1702 	enum drm_connector_status status;
1703 	struct edid *edid = NULL;
1704 	int edp = is_edp(encoder);
1705 
1706 	intel_dp->has_audio = false;
1707 
1708 	if (edp)
1709 		cdv_intel_edp_panel_vdd_on(encoder);
1710 	status = cdv_dp_detect(encoder);
1711 	if (status != connector_status_connected) {
1712 		if (edp)
1713 			cdv_intel_edp_panel_vdd_off(encoder);
1714 		return status;
1715         }
1716 
1717 	if (intel_dp->force_audio) {
1718 		intel_dp->has_audio = intel_dp->force_audio > 0;
1719 	} else {
1720 		edid = drm_get_edid(connector, &intel_dp->adapter);
1721 		if (edid) {
1722 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1723 			kfree(edid);
1724 		}
1725 	}
1726 	if (edp)
1727 		cdv_intel_edp_panel_vdd_off(encoder);
1728 
1729 	return connector_status_connected;
1730 }
1731 
cdv_intel_dp_get_modes(struct drm_connector * connector)1732 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1733 {
1734 	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1735 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1736 	struct edid *edid = NULL;
1737 	int ret = 0;
1738 	int edp = is_edp(intel_encoder);
1739 
1740 
1741 	edid = drm_get_edid(connector, &intel_dp->adapter);
1742 	if (edid) {
1743 		drm_connector_update_edid_property(connector, edid);
1744 		ret = drm_add_edid_modes(connector, edid);
1745 		kfree(edid);
1746 	}
1747 
1748 	if (is_edp(intel_encoder)) {
1749 		struct drm_device *dev = connector->dev;
1750 		struct drm_psb_private *dev_priv = dev->dev_private;
1751 
1752 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1753 		if (ret) {
1754 			if (edp && !intel_dp->panel_fixed_mode) {
1755 				struct drm_display_mode *newmode;
1756 				list_for_each_entry(newmode, &connector->probed_modes,
1757 					    head) {
1758 					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1759 						intel_dp->panel_fixed_mode =
1760 							drm_mode_duplicate(dev, newmode);
1761 						break;
1762 					}
1763 				}
1764 			}
1765 
1766 			return ret;
1767 		}
1768 		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1769 			intel_dp->panel_fixed_mode =
1770 				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1771 			if (intel_dp->panel_fixed_mode) {
1772 				intel_dp->panel_fixed_mode->type |=
1773 					DRM_MODE_TYPE_PREFERRED;
1774 			}
1775 		}
1776 		if (intel_dp->panel_fixed_mode != NULL) {
1777 			struct drm_display_mode *mode;
1778 			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1779 			drm_mode_probed_add(connector, mode);
1780 			return 1;
1781 		}
1782 	}
1783 
1784 	return ret;
1785 }
1786 
1787 static bool
cdv_intel_dp_detect_audio(struct drm_connector * connector)1788 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1789 {
1790 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1791 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1792 	struct edid *edid;
1793 	bool has_audio = false;
1794 	int edp = is_edp(encoder);
1795 
1796 	if (edp)
1797 		cdv_intel_edp_panel_vdd_on(encoder);
1798 
1799 	edid = drm_get_edid(connector, &intel_dp->adapter);
1800 	if (edid) {
1801 		has_audio = drm_detect_monitor_audio(edid);
1802 		kfree(edid);
1803 	}
1804 	if (edp)
1805 		cdv_intel_edp_panel_vdd_off(encoder);
1806 
1807 	return has_audio;
1808 }
1809 
1810 static int
cdv_intel_dp_set_property(struct drm_connector * connector,struct drm_property * property,uint64_t val)1811 cdv_intel_dp_set_property(struct drm_connector *connector,
1812 		      struct drm_property *property,
1813 		      uint64_t val)
1814 {
1815 	struct drm_psb_private *dev_priv = connector->dev->dev_private;
1816 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1817 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1818 	int ret;
1819 
1820 	ret = drm_object_property_set_value(&connector->base, property, val);
1821 	if (ret)
1822 		return ret;
1823 
1824 	if (property == dev_priv->force_audio_property) {
1825 		int i = val;
1826 		bool has_audio;
1827 
1828 		if (i == intel_dp->force_audio)
1829 			return 0;
1830 
1831 		intel_dp->force_audio = i;
1832 
1833 		if (i == 0)
1834 			has_audio = cdv_intel_dp_detect_audio(connector);
1835 		else
1836 			has_audio = i > 0;
1837 
1838 		if (has_audio == intel_dp->has_audio)
1839 			return 0;
1840 
1841 		intel_dp->has_audio = has_audio;
1842 		goto done;
1843 	}
1844 
1845 	if (property == dev_priv->broadcast_rgb_property) {
1846 		if (val == !!intel_dp->color_range)
1847 			return 0;
1848 
1849 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1850 		goto done;
1851 	}
1852 
1853 	return -EINVAL;
1854 
1855 done:
1856 	if (encoder->base.crtc) {
1857 		struct drm_crtc *crtc = encoder->base.crtc;
1858 		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1859 					 crtc->x, crtc->y,
1860 					 crtc->primary->fb);
1861 	}
1862 
1863 	return 0;
1864 }
1865 
1866 static void
cdv_intel_dp_destroy(struct drm_connector * connector)1867 cdv_intel_dp_destroy(struct drm_connector *connector)
1868 {
1869 	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1870 	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1871 
1872 	if (is_edp(gma_encoder)) {
1873 	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1874 		kfree(intel_dp->panel_fixed_mode);
1875 		intel_dp->panel_fixed_mode = NULL;
1876 	}
1877 	i2c_del_adapter(&intel_dp->adapter);
1878 	drm_connector_unregister(connector);
1879 	drm_connector_cleanup(connector);
1880 	kfree(connector);
1881 }
1882 
1883 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1884 	.dpms = cdv_intel_dp_dpms,
1885 	.mode_fixup = cdv_intel_dp_mode_fixup,
1886 	.prepare = cdv_intel_dp_prepare,
1887 	.mode_set = cdv_intel_dp_mode_set,
1888 	.commit = cdv_intel_dp_commit,
1889 };
1890 
1891 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1892 	.dpms = drm_helper_connector_dpms,
1893 	.detect = cdv_intel_dp_detect,
1894 	.fill_modes = drm_helper_probe_single_connector_modes,
1895 	.set_property = cdv_intel_dp_set_property,
1896 	.destroy = cdv_intel_dp_destroy,
1897 };
1898 
1899 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1900 	.get_modes = cdv_intel_dp_get_modes,
1901 	.mode_valid = cdv_intel_dp_mode_valid,
1902 	.best_encoder = gma_best_encoder,
1903 };
1904 
cdv_intel_dp_add_properties(struct drm_connector * connector)1905 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1906 {
1907 	cdv_intel_attach_force_audio_property(connector);
1908 	cdv_intel_attach_broadcast_rgb_property(connector);
1909 }
1910 
1911 /* check the VBT to see whether the eDP is on DP-D port */
cdv_intel_dpc_is_edp(struct drm_device * dev)1912 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1913 {
1914 	struct drm_psb_private *dev_priv = dev->dev_private;
1915 	struct child_device_config *p_child;
1916 	int i;
1917 
1918 	if (!dev_priv->child_dev_num)
1919 		return false;
1920 
1921 	for (i = 0; i < dev_priv->child_dev_num; i++) {
1922 		p_child = dev_priv->child_dev + i;
1923 
1924 		if (p_child->dvo_port == PORT_IDPC &&
1925 		    p_child->device_type == DEVICE_TYPE_eDP)
1926 			return true;
1927 	}
1928 	return false;
1929 }
1930 
1931 /* Cedarview display clock gating
1932 
1933    We need this disable dot get correct behaviour while enabling
1934    DP/eDP. TODO - investigate if we can turn it back to normality
1935    after enabling */
cdv_disable_intel_clock_gating(struct drm_device * dev)1936 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1937 {
1938 	u32 reg_value;
1939 	reg_value = REG_READ(DSPCLK_GATE_D);
1940 
1941 	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1942 			DPUNIT_PIPEA_GATE_DISABLE |
1943 			DPCUNIT_CLOCK_GATE_DISABLE |
1944 			DPLSUNIT_CLOCK_GATE_DISABLE |
1945 			DPOUNIT_CLOCK_GATE_DISABLE |
1946 		 	DPIOUNIT_CLOCK_GATE_DISABLE);
1947 
1948 	REG_WRITE(DSPCLK_GATE_D, reg_value);
1949 
1950 	udelay(500);
1951 }
1952 
1953 void
cdv_intel_dp_init(struct drm_device * dev,struct psb_intel_mode_device * mode_dev,int output_reg)1954 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1955 {
1956 	struct gma_encoder *gma_encoder;
1957 	struct gma_connector *gma_connector;
1958 	struct drm_connector *connector;
1959 	struct drm_encoder *encoder;
1960 	struct cdv_intel_dp *intel_dp;
1961 	const char *name = NULL;
1962 	int type = DRM_MODE_CONNECTOR_DisplayPort;
1963 
1964 	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1965 	if (!gma_encoder)
1966 		return;
1967         gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1968         if (!gma_connector)
1969                 goto err_connector;
1970 	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1971 	if (!intel_dp)
1972 	        goto err_priv;
1973 
1974 	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1975 		type = DRM_MODE_CONNECTOR_eDP;
1976 
1977 	connector = &gma_connector->base;
1978 	encoder = &gma_encoder->base;
1979 
1980 	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1981 	drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1982 
1983 	gma_connector_attach_encoder(gma_connector, gma_encoder);
1984 
1985 	if (type == DRM_MODE_CONNECTOR_DisplayPort)
1986 		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1987         else
1988 		gma_encoder->type = INTEL_OUTPUT_EDP;
1989 
1990 
1991 	gma_encoder->dev_priv=intel_dp;
1992 	intel_dp->encoder = gma_encoder;
1993 	intel_dp->output_reg = output_reg;
1994 
1995 	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1996 	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1997 
1998 	connector->polled = DRM_CONNECTOR_POLL_HPD;
1999 	connector->interlace_allowed = false;
2000 	connector->doublescan_allowed = false;
2001 
2002 	drm_connector_register(connector);
2003 
2004 	/* Set up the DDC bus. */
2005 	switch (output_reg) {
2006 		case DP_B:
2007 			name = "DPDDC-B";
2008 			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2009 			break;
2010 		case DP_C:
2011 			name = "DPDDC-C";
2012 			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2013 			break;
2014 	}
2015 
2016 	cdv_disable_intel_clock_gating(dev);
2017 
2018 	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2019         /* FIXME:fail check */
2020 	cdv_intel_dp_add_properties(connector);
2021 
2022 	if (is_edp(gma_encoder)) {
2023 		int ret;
2024 		struct edp_power_seq cur;
2025                 u32 pp_on, pp_off, pp_div;
2026 		u32 pwm_ctrl;
2027 
2028 		pp_on = REG_READ(PP_CONTROL);
2029 		pp_on &= ~PANEL_UNLOCK_MASK;
2030 	        pp_on |= PANEL_UNLOCK_REGS;
2031 
2032 		REG_WRITE(PP_CONTROL, pp_on);
2033 
2034 		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2035 		pwm_ctrl |= PWM_PIPE_B;
2036 		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2037 
2038                 pp_on = REG_READ(PP_ON_DELAYS);
2039                 pp_off = REG_READ(PP_OFF_DELAYS);
2040                 pp_div = REG_READ(PP_DIVISOR);
2041 
2042 		/* Pull timing values out of registers */
2043                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2044                         PANEL_POWER_UP_DELAY_SHIFT;
2045 
2046                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2047                         PANEL_LIGHT_ON_DELAY_SHIFT;
2048 
2049                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2050                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2051 
2052                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2053                         PANEL_POWER_DOWN_DELAY_SHIFT;
2054 
2055                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2056                                PANEL_POWER_CYCLE_DELAY_SHIFT);
2057 
2058                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2059                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2060 
2061 
2062 		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2063                 intel_dp->backlight_on_delay = cur.t8 / 10;
2064                 intel_dp->backlight_off_delay = cur.t9 / 10;
2065                 intel_dp->panel_power_down_delay = cur.t10 / 10;
2066                 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2067 
2068                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2069                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2070                               intel_dp->panel_power_cycle_delay);
2071 
2072                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2073                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2074 
2075 
2076 		cdv_intel_edp_panel_vdd_on(gma_encoder);
2077 		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2078 					       intel_dp->dpcd,
2079 					       sizeof(intel_dp->dpcd));
2080 		cdv_intel_edp_panel_vdd_off(gma_encoder);
2081 		if (ret <= 0) {
2082 			/* if this fails, presume the device is a ghost */
2083 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2084 			drm_encoder_cleanup(encoder);
2085 			cdv_intel_dp_destroy(connector);
2086 			goto err_connector;
2087 		} else {
2088         		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2089 				intel_dp->dpcd[0], intel_dp->dpcd[1],
2090 				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2091 
2092 		}
2093 		/* The CDV reference driver moves pnale backlight setup into the displays that
2094 		   have a backlight: this is a good idea and one we should probably adopt, however
2095 		   we need to migrate all the drivers before we can do that */
2096                 /*cdv_intel_panel_setup_backlight(dev); */
2097 	}
2098 	return;
2099 
2100 err_priv:
2101 	kfree(gma_connector);
2102 err_connector:
2103 	kfree(gma_encoder);
2104 }
2105