1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_dp_helper.h>
35 #include <drm/drm_simple_kms_helper.h>
36
37 #include "gma_display.h"
38 #include "psb_drv.h"
39 #include "psb_intel_drv.h"
40 #include "psb_intel_reg.h"
41
42 /**
43 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
44 * aux algorithm
45 * @running: set by the algo indicating whether an i2c is ongoing or whether
46 * the i2c bus is quiescent
47 * @address: i2c target address for the currently ongoing transfer
48 * @aux_ch: driver callback to transfer a single byte of the i2c payload
49 */
50 struct i2c_algo_dp_aux_data {
51 bool running;
52 u16 address;
53 int (*aux_ch) (struct i2c_adapter *adapter,
54 int mode, uint8_t write_byte,
55 uint8_t *read_byte);
56 };
57
58 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
59 static int
i2c_algo_dp_aux_transaction(struct i2c_adapter * adapter,int mode,uint8_t write_byte,uint8_t * read_byte)60 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
61 uint8_t write_byte, uint8_t *read_byte)
62 {
63 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
64 int ret;
65
66 ret = (*algo_data->aux_ch)(adapter, mode,
67 write_byte, read_byte);
68 return ret;
69 }
70
71 /*
72 * I2C over AUX CH
73 */
74
75 /*
76 * Send the address. If the I2C link is running, this 'restarts'
77 * the connection with the new address, this is used for doing
78 * a write followed by a read (as needed for DDC)
79 */
80 static int
i2c_algo_dp_aux_address(struct i2c_adapter * adapter,u16 address,bool reading)81 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
82 {
83 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
84 int mode = MODE_I2C_START;
85 int ret;
86
87 if (reading)
88 mode |= MODE_I2C_READ;
89 else
90 mode |= MODE_I2C_WRITE;
91 algo_data->address = address;
92 algo_data->running = true;
93 ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
94 return ret;
95 }
96
97 /*
98 * Stop the I2C transaction. This closes out the link, sending
99 * a bare address packet with the MOT bit turned off
100 */
101 static void
i2c_algo_dp_aux_stop(struct i2c_adapter * adapter,bool reading)102 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
103 {
104 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
105 int mode = MODE_I2C_STOP;
106
107 if (reading)
108 mode |= MODE_I2C_READ;
109 else
110 mode |= MODE_I2C_WRITE;
111 if (algo_data->running) {
112 (void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
113 algo_data->running = false;
114 }
115 }
116
117 /*
118 * Write a single byte to the current I2C address, the
119 * the I2C link must be running or this returns -EIO
120 */
121 static int
i2c_algo_dp_aux_put_byte(struct i2c_adapter * adapter,u8 byte)122 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
123 {
124 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
125 int ret;
126
127 if (!algo_data->running)
128 return -EIO;
129
130 ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
131 return ret;
132 }
133
134 /*
135 * Read a single byte from the current I2C address, the
136 * I2C link must be running or this returns -EIO
137 */
138 static int
i2c_algo_dp_aux_get_byte(struct i2c_adapter * adapter,u8 * byte_ret)139 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
140 {
141 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
142 int ret;
143
144 if (!algo_data->running)
145 return -EIO;
146
147 ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
148 return ret;
149 }
150
151 static int
i2c_algo_dp_aux_xfer(struct i2c_adapter * adapter,struct i2c_msg * msgs,int num)152 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
153 struct i2c_msg *msgs,
154 int num)
155 {
156 int ret = 0;
157 bool reading = false;
158 int m;
159 int b;
160
161 for (m = 0; m < num; m++) {
162 u16 len = msgs[m].len;
163 u8 *buf = msgs[m].buf;
164 reading = (msgs[m].flags & I2C_M_RD) != 0;
165 ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
166 if (ret < 0)
167 break;
168 if (reading) {
169 for (b = 0; b < len; b++) {
170 ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
171 if (ret < 0)
172 break;
173 }
174 } else {
175 for (b = 0; b < len; b++) {
176 ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
177 if (ret < 0)
178 break;
179 }
180 }
181 if (ret < 0)
182 break;
183 }
184 if (ret >= 0)
185 ret = num;
186 i2c_algo_dp_aux_stop(adapter, reading);
187 DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
188 return ret;
189 }
190
191 static u32
i2c_algo_dp_aux_functionality(struct i2c_adapter * adapter)192 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
193 {
194 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
195 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
196 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
197 I2C_FUNC_10BIT_ADDR;
198 }
199
200 static const struct i2c_algorithm i2c_dp_aux_algo = {
201 .master_xfer = i2c_algo_dp_aux_xfer,
202 .functionality = i2c_algo_dp_aux_functionality,
203 };
204
205 static void
i2c_dp_aux_reset_bus(struct i2c_adapter * adapter)206 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
207 {
208 (void) i2c_algo_dp_aux_address(adapter, 0, false);
209 (void) i2c_algo_dp_aux_stop(adapter, false);
210 }
211
212 static int
i2c_dp_aux_prepare_bus(struct i2c_adapter * adapter)213 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
214 {
215 adapter->algo = &i2c_dp_aux_algo;
216 adapter->retries = 3;
217 i2c_dp_aux_reset_bus(adapter);
218 return 0;
219 }
220
221 /*
222 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
223 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
224 */
225 static int
i2c_dp_aux_add_bus(struct i2c_adapter * adapter)226 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
227 {
228 int error;
229
230 error = i2c_dp_aux_prepare_bus(adapter);
231 if (error)
232 return error;
233 error = i2c_add_adapter(adapter);
234 return error;
235 }
236
237 #define _wait_for(COND, MS, W) ({ \
238 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
239 int ret__ = 0; \
240 while (! (COND)) { \
241 if (time_after(jiffies, timeout__)) { \
242 ret__ = -ETIMEDOUT; \
243 break; \
244 } \
245 if (W && !in_dbg_master()) msleep(W); \
246 } \
247 ret__; \
248 })
249
250 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
251
252 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
253
254 #define DP_LINK_CONFIGURATION_SIZE 9
255
256 #define CDV_FAST_LINK_TRAIN 1
257
258 struct cdv_intel_dp {
259 uint32_t output_reg;
260 uint32_t DP;
261 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
262 bool has_audio;
263 int force_audio;
264 uint32_t color_range;
265 uint8_t link_bw;
266 uint8_t lane_count;
267 uint8_t dpcd[4];
268 struct gma_encoder *encoder;
269 struct i2c_adapter adapter;
270 struct i2c_algo_dp_aux_data algo;
271 uint8_t train_set[4];
272 uint8_t link_status[DP_LINK_STATUS_SIZE];
273 int panel_power_up_delay;
274 int panel_power_down_delay;
275 int panel_power_cycle_delay;
276 int backlight_on_delay;
277 int backlight_off_delay;
278 struct drm_display_mode *panel_fixed_mode; /* for eDP */
279 bool panel_on;
280 };
281
282 struct ddi_regoff {
283 uint32_t PreEmph1;
284 uint32_t PreEmph2;
285 uint32_t VSwing1;
286 uint32_t VSwing2;
287 uint32_t VSwing3;
288 uint32_t VSwing4;
289 uint32_t VSwing5;
290 };
291
292 static struct ddi_regoff ddi_DP_train_table[] = {
293 {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
294 .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
295 .VSwing5 = 0x8158,},
296 {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
297 .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
298 .VSwing5 = 0x8258,},
299 };
300
301 static uint32_t dp_vswing_premph_table[] = {
302 0x55338954, 0x4000,
303 0x554d8954, 0x2000,
304 0x55668954, 0,
305 0x559ac0d4, 0x6000,
306 };
307 /**
308 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
309 * @intel_dp: DP struct
310 *
311 * If a CPU or PCH DP output is attached to an eDP panel, this function
312 * will return true, and false otherwise.
313 */
is_edp(struct gma_encoder * encoder)314 static bool is_edp(struct gma_encoder *encoder)
315 {
316 return encoder->type == INTEL_OUTPUT_EDP;
317 }
318
319
320 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
321 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
322 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
323
324 static int
cdv_intel_dp_max_lane_count(struct gma_encoder * encoder)325 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
326 {
327 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
328 int max_lane_count = 4;
329
330 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
331 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
332 switch (max_lane_count) {
333 case 1: case 2: case 4:
334 break;
335 default:
336 max_lane_count = 4;
337 }
338 }
339 return max_lane_count;
340 }
341
342 static int
cdv_intel_dp_max_link_bw(struct gma_encoder * encoder)343 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
344 {
345 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
346 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
347
348 switch (max_link_bw) {
349 case DP_LINK_BW_1_62:
350 case DP_LINK_BW_2_7:
351 break;
352 default:
353 max_link_bw = DP_LINK_BW_1_62;
354 break;
355 }
356 return max_link_bw;
357 }
358
359 static int
cdv_intel_dp_link_clock(uint8_t link_bw)360 cdv_intel_dp_link_clock(uint8_t link_bw)
361 {
362 if (link_bw == DP_LINK_BW_2_7)
363 return 270000;
364 else
365 return 162000;
366 }
367
368 static int
cdv_intel_dp_link_required(int pixel_clock,int bpp)369 cdv_intel_dp_link_required(int pixel_clock, int bpp)
370 {
371 return (pixel_clock * bpp + 7) / 8;
372 }
373
374 static int
cdv_intel_dp_max_data_rate(int max_link_clock,int max_lanes)375 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
376 {
377 return (max_link_clock * max_lanes * 19) / 20;
378 }
379
cdv_intel_edp_panel_vdd_on(struct gma_encoder * intel_encoder)380 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
381 {
382 struct drm_device *dev = intel_encoder->base.dev;
383 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
384 u32 pp;
385
386 if (intel_dp->panel_on) {
387 DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
388 return;
389 }
390 DRM_DEBUG_KMS("\n");
391
392 pp = REG_READ(PP_CONTROL);
393
394 pp |= EDP_FORCE_VDD;
395 REG_WRITE(PP_CONTROL, pp);
396 REG_READ(PP_CONTROL);
397 msleep(intel_dp->panel_power_up_delay);
398 }
399
cdv_intel_edp_panel_vdd_off(struct gma_encoder * intel_encoder)400 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
401 {
402 struct drm_device *dev = intel_encoder->base.dev;
403 u32 pp;
404
405 DRM_DEBUG_KMS("\n");
406 pp = REG_READ(PP_CONTROL);
407
408 pp &= ~EDP_FORCE_VDD;
409 REG_WRITE(PP_CONTROL, pp);
410 REG_READ(PP_CONTROL);
411
412 }
413
414 /* Returns true if the panel was already on when called */
cdv_intel_edp_panel_on(struct gma_encoder * intel_encoder)415 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
416 {
417 struct drm_device *dev = intel_encoder->base.dev;
418 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
419 u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
420
421 if (intel_dp->panel_on)
422 return true;
423
424 DRM_DEBUG_KMS("\n");
425 pp = REG_READ(PP_CONTROL);
426 pp &= ~PANEL_UNLOCK_MASK;
427
428 pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
429 REG_WRITE(PP_CONTROL, pp);
430 REG_READ(PP_CONTROL);
431
432 if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
433 DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
434 intel_dp->panel_on = false;
435 } else
436 intel_dp->panel_on = true;
437 msleep(intel_dp->panel_power_up_delay);
438
439 return false;
440 }
441
cdv_intel_edp_panel_off(struct gma_encoder * intel_encoder)442 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
443 {
444 struct drm_device *dev = intel_encoder->base.dev;
445 u32 pp, idle_off_mask = PP_ON ;
446 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
447
448 DRM_DEBUG_KMS("\n");
449
450 pp = REG_READ(PP_CONTROL);
451
452 if ((pp & POWER_TARGET_ON) == 0)
453 return;
454
455 intel_dp->panel_on = false;
456 pp &= ~PANEL_UNLOCK_MASK;
457 /* ILK workaround: disable reset around power sequence */
458
459 pp &= ~POWER_TARGET_ON;
460 pp &= ~EDP_FORCE_VDD;
461 pp &= ~EDP_BLC_ENABLE;
462 REG_WRITE(PP_CONTROL, pp);
463 REG_READ(PP_CONTROL);
464 DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
465
466 if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
467 DRM_DEBUG_KMS("Error in turning off Panel\n");
468 }
469
470 msleep(intel_dp->panel_power_cycle_delay);
471 DRM_DEBUG_KMS("Over\n");
472 }
473
cdv_intel_edp_backlight_on(struct gma_encoder * intel_encoder)474 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
475 {
476 struct drm_device *dev = intel_encoder->base.dev;
477 u32 pp;
478
479 DRM_DEBUG_KMS("\n");
480 /*
481 * If we enable the backlight right away following a panel power
482 * on, we may see slight flicker as the panel syncs with the eDP
483 * link. So delay a bit to make sure the image is solid before
484 * allowing it to appear.
485 */
486 msleep(300);
487 pp = REG_READ(PP_CONTROL);
488
489 pp |= EDP_BLC_ENABLE;
490 REG_WRITE(PP_CONTROL, pp);
491 gma_backlight_enable(dev);
492 }
493
cdv_intel_edp_backlight_off(struct gma_encoder * intel_encoder)494 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
495 {
496 struct drm_device *dev = intel_encoder->base.dev;
497 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
498 u32 pp;
499
500 DRM_DEBUG_KMS("\n");
501 gma_backlight_disable(dev);
502 msleep(10);
503 pp = REG_READ(PP_CONTROL);
504
505 pp &= ~EDP_BLC_ENABLE;
506 REG_WRITE(PP_CONTROL, pp);
507 msleep(intel_dp->backlight_off_delay);
508 }
509
510 static enum drm_mode_status
cdv_intel_dp_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)511 cdv_intel_dp_mode_valid(struct drm_connector *connector,
512 struct drm_display_mode *mode)
513 {
514 struct gma_encoder *encoder = gma_attached_encoder(connector);
515 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
516 int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
517 int max_lanes = cdv_intel_dp_max_lane_count(encoder);
518 struct drm_psb_private *dev_priv = connector->dev->dev_private;
519
520 if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
521 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
522 return MODE_PANEL;
523 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
524 return MODE_PANEL;
525 }
526
527 /* only refuse the mode on non eDP since we have seen some weird eDP panels
528 which are outside spec tolerances but somehow work by magic */
529 if (!is_edp(encoder) &&
530 (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
531 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
532 return MODE_CLOCK_HIGH;
533
534 if (is_edp(encoder)) {
535 if (cdv_intel_dp_link_required(mode->clock, 24)
536 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
537 return MODE_CLOCK_HIGH;
538
539 }
540 if (mode->clock < 10000)
541 return MODE_CLOCK_LOW;
542
543 return MODE_OK;
544 }
545
546 static uint32_t
pack_aux(uint8_t * src,int src_bytes)547 pack_aux(uint8_t *src, int src_bytes)
548 {
549 int i;
550 uint32_t v = 0;
551
552 if (src_bytes > 4)
553 src_bytes = 4;
554 for (i = 0; i < src_bytes; i++)
555 v |= ((uint32_t) src[i]) << ((3-i) * 8);
556 return v;
557 }
558
559 static void
unpack_aux(uint32_t src,uint8_t * dst,int dst_bytes)560 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
561 {
562 int i;
563 if (dst_bytes > 4)
564 dst_bytes = 4;
565 for (i = 0; i < dst_bytes; i++)
566 dst[i] = src >> ((3-i) * 8);
567 }
568
569 static int
cdv_intel_dp_aux_ch(struct gma_encoder * encoder,uint8_t * send,int send_bytes,uint8_t * recv,int recv_size)570 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
571 uint8_t *send, int send_bytes,
572 uint8_t *recv, int recv_size)
573 {
574 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
575 uint32_t output_reg = intel_dp->output_reg;
576 struct drm_device *dev = encoder->base.dev;
577 uint32_t ch_ctl = output_reg + 0x10;
578 uint32_t ch_data = ch_ctl + 4;
579 int i;
580 int recv_bytes;
581 uint32_t status;
582 uint32_t aux_clock_divider;
583 int try, precharge;
584
585 /* The clock divider is based off the hrawclk,
586 * and would like to run at 2MHz. So, take the
587 * hrawclk value and divide by 2 and use that
588 * On CDV platform it uses 200MHz as hrawclk.
589 *
590 */
591 aux_clock_divider = 200 / 2;
592
593 precharge = 4;
594 if (is_edp(encoder))
595 precharge = 10;
596
597 if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
598 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
599 REG_READ(ch_ctl));
600 return -EBUSY;
601 }
602
603 /* Must try at least 3 times according to DP spec */
604 for (try = 0; try < 5; try++) {
605 /* Load the send data into the aux channel data registers */
606 for (i = 0; i < send_bytes; i += 4)
607 REG_WRITE(ch_data + i,
608 pack_aux(send + i, send_bytes - i));
609
610 /* Send the command and wait for it to complete */
611 REG_WRITE(ch_ctl,
612 DP_AUX_CH_CTL_SEND_BUSY |
613 DP_AUX_CH_CTL_TIME_OUT_400us |
614 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
615 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
616 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
617 DP_AUX_CH_CTL_DONE |
618 DP_AUX_CH_CTL_TIME_OUT_ERROR |
619 DP_AUX_CH_CTL_RECEIVE_ERROR);
620 for (;;) {
621 status = REG_READ(ch_ctl);
622 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
623 break;
624 udelay(100);
625 }
626
627 /* Clear done status and any errors */
628 REG_WRITE(ch_ctl,
629 status |
630 DP_AUX_CH_CTL_DONE |
631 DP_AUX_CH_CTL_TIME_OUT_ERROR |
632 DP_AUX_CH_CTL_RECEIVE_ERROR);
633 if (status & DP_AUX_CH_CTL_DONE)
634 break;
635 }
636
637 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
638 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
639 return -EBUSY;
640 }
641
642 /* Check for timeout or receive error.
643 * Timeouts occur when the sink is not connected
644 */
645 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
646 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
647 return -EIO;
648 }
649
650 /* Timeouts occur when the device isn't connected, so they're
651 * "normal" -- don't fill the kernel log with these */
652 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
653 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
654 return -ETIMEDOUT;
655 }
656
657 /* Unload any bytes sent back from the other side */
658 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
659 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
660 if (recv_bytes > recv_size)
661 recv_bytes = recv_size;
662
663 for (i = 0; i < recv_bytes; i += 4)
664 unpack_aux(REG_READ(ch_data + i),
665 recv + i, recv_bytes - i);
666
667 return recv_bytes;
668 }
669
670 /* Write data to the aux channel in native mode */
671 static int
cdv_intel_dp_aux_native_write(struct gma_encoder * encoder,uint16_t address,uint8_t * send,int send_bytes)672 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
673 uint16_t address, uint8_t *send, int send_bytes)
674 {
675 int ret;
676 uint8_t msg[20];
677 int msg_bytes;
678 uint8_t ack;
679
680 if (send_bytes > 16)
681 return -1;
682 msg[0] = DP_AUX_NATIVE_WRITE << 4;
683 msg[1] = address >> 8;
684 msg[2] = address & 0xff;
685 msg[3] = send_bytes - 1;
686 memcpy(&msg[4], send, send_bytes);
687 msg_bytes = send_bytes + 4;
688 for (;;) {
689 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
690 if (ret < 0)
691 return ret;
692 ack >>= 4;
693 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
694 break;
695 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
696 udelay(100);
697 else
698 return -EIO;
699 }
700 return send_bytes;
701 }
702
703 /* Write a single byte to the aux channel in native mode */
704 static int
cdv_intel_dp_aux_native_write_1(struct gma_encoder * encoder,uint16_t address,uint8_t byte)705 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
706 uint16_t address, uint8_t byte)
707 {
708 return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
709 }
710
711 /* read bytes from a native aux channel */
712 static int
cdv_intel_dp_aux_native_read(struct gma_encoder * encoder,uint16_t address,uint8_t * recv,int recv_bytes)713 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
714 uint16_t address, uint8_t *recv, int recv_bytes)
715 {
716 uint8_t msg[4];
717 int msg_bytes;
718 uint8_t reply[20];
719 int reply_bytes;
720 uint8_t ack;
721 int ret;
722
723 msg[0] = DP_AUX_NATIVE_READ << 4;
724 msg[1] = address >> 8;
725 msg[2] = address & 0xff;
726 msg[3] = recv_bytes - 1;
727
728 msg_bytes = 4;
729 reply_bytes = recv_bytes + 1;
730
731 for (;;) {
732 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
733 reply, reply_bytes);
734 if (ret == 0)
735 return -EPROTO;
736 if (ret < 0)
737 return ret;
738 ack = reply[0] >> 4;
739 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
740 memcpy(recv, reply + 1, ret - 1);
741 return ret - 1;
742 }
743 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
744 udelay(100);
745 else
746 return -EIO;
747 }
748 }
749
750 static int
cdv_intel_dp_i2c_aux_ch(struct i2c_adapter * adapter,int mode,uint8_t write_byte,uint8_t * read_byte)751 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
752 uint8_t write_byte, uint8_t *read_byte)
753 {
754 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
755 struct cdv_intel_dp *intel_dp = container_of(adapter,
756 struct cdv_intel_dp,
757 adapter);
758 struct gma_encoder *encoder = intel_dp->encoder;
759 uint16_t address = algo_data->address;
760 uint8_t msg[5];
761 uint8_t reply[2];
762 unsigned retry;
763 int msg_bytes;
764 int reply_bytes;
765 int ret;
766
767 /* Set up the command byte */
768 if (mode & MODE_I2C_READ)
769 msg[0] = DP_AUX_I2C_READ << 4;
770 else
771 msg[0] = DP_AUX_I2C_WRITE << 4;
772
773 if (!(mode & MODE_I2C_STOP))
774 msg[0] |= DP_AUX_I2C_MOT << 4;
775
776 msg[1] = address >> 8;
777 msg[2] = address;
778
779 switch (mode) {
780 case MODE_I2C_WRITE:
781 msg[3] = 0;
782 msg[4] = write_byte;
783 msg_bytes = 5;
784 reply_bytes = 1;
785 break;
786 case MODE_I2C_READ:
787 msg[3] = 0;
788 msg_bytes = 4;
789 reply_bytes = 2;
790 break;
791 default:
792 msg_bytes = 3;
793 reply_bytes = 1;
794 break;
795 }
796
797 for (retry = 0; retry < 5; retry++) {
798 ret = cdv_intel_dp_aux_ch(encoder,
799 msg, msg_bytes,
800 reply, reply_bytes);
801 if (ret < 0) {
802 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
803 return ret;
804 }
805
806 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
807 case DP_AUX_NATIVE_REPLY_ACK:
808 /* I2C-over-AUX Reply field is only valid
809 * when paired with AUX ACK.
810 */
811 break;
812 case DP_AUX_NATIVE_REPLY_NACK:
813 DRM_DEBUG_KMS("aux_ch native nack\n");
814 return -EREMOTEIO;
815 case DP_AUX_NATIVE_REPLY_DEFER:
816 udelay(100);
817 continue;
818 default:
819 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
820 reply[0]);
821 return -EREMOTEIO;
822 }
823
824 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
825 case DP_AUX_I2C_REPLY_ACK:
826 if (mode == MODE_I2C_READ) {
827 *read_byte = reply[1];
828 }
829 return reply_bytes - 1;
830 case DP_AUX_I2C_REPLY_NACK:
831 DRM_DEBUG_KMS("aux_i2c nack\n");
832 return -EREMOTEIO;
833 case DP_AUX_I2C_REPLY_DEFER:
834 DRM_DEBUG_KMS("aux_i2c defer\n");
835 udelay(100);
836 break;
837 default:
838 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
839 return -EREMOTEIO;
840 }
841 }
842
843 DRM_ERROR("too many retries, giving up\n");
844 return -EREMOTEIO;
845 }
846
847 static int
cdv_intel_dp_i2c_init(struct gma_connector * connector,struct gma_encoder * encoder,const char * name)848 cdv_intel_dp_i2c_init(struct gma_connector *connector,
849 struct gma_encoder *encoder, const char *name)
850 {
851 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
852 int ret;
853
854 DRM_DEBUG_KMS("i2c_init %s\n", name);
855
856 intel_dp->algo.running = false;
857 intel_dp->algo.address = 0;
858 intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
859
860 memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
861 intel_dp->adapter.owner = THIS_MODULE;
862 intel_dp->adapter.class = I2C_CLASS_DDC;
863 strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
864 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
865 intel_dp->adapter.algo_data = &intel_dp->algo;
866 intel_dp->adapter.dev.parent = connector->base.kdev;
867
868 if (is_edp(encoder))
869 cdv_intel_edp_panel_vdd_on(encoder);
870 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
871 if (is_edp(encoder))
872 cdv_intel_edp_panel_vdd_off(encoder);
873
874 return ret;
875 }
876
cdv_intel_fixed_panel_mode(struct drm_display_mode * fixed_mode,struct drm_display_mode * adjusted_mode)877 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
878 struct drm_display_mode *adjusted_mode)
879 {
880 adjusted_mode->hdisplay = fixed_mode->hdisplay;
881 adjusted_mode->hsync_start = fixed_mode->hsync_start;
882 adjusted_mode->hsync_end = fixed_mode->hsync_end;
883 adjusted_mode->htotal = fixed_mode->htotal;
884
885 adjusted_mode->vdisplay = fixed_mode->vdisplay;
886 adjusted_mode->vsync_start = fixed_mode->vsync_start;
887 adjusted_mode->vsync_end = fixed_mode->vsync_end;
888 adjusted_mode->vtotal = fixed_mode->vtotal;
889
890 adjusted_mode->clock = fixed_mode->clock;
891
892 drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
893 }
894
895 static bool
cdv_intel_dp_mode_fixup(struct drm_encoder * encoder,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)896 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
897 struct drm_display_mode *adjusted_mode)
898 {
899 struct drm_psb_private *dev_priv = encoder->dev->dev_private;
900 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
901 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
902 int lane_count, clock;
903 int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
904 int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
905 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
906 int refclock = mode->clock;
907 int bpp = 24;
908
909 if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
910 cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
911 refclock = intel_dp->panel_fixed_mode->clock;
912 bpp = dev_priv->edp.bpp;
913 }
914
915 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
916 for (clock = max_clock; clock >= 0; clock--) {
917 int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
918
919 if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
920 intel_dp->link_bw = bws[clock];
921 intel_dp->lane_count = lane_count;
922 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
923 DRM_DEBUG_KMS("Display port link bw %02x lane "
924 "count %d clock %d\n",
925 intel_dp->link_bw, intel_dp->lane_count,
926 adjusted_mode->clock);
927 return true;
928 }
929 }
930 }
931 if (is_edp(intel_encoder)) {
932 /* okay we failed just pick the highest */
933 intel_dp->lane_count = max_lane_count;
934 intel_dp->link_bw = bws[max_clock];
935 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
936 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
937 "count %d clock %d\n",
938 intel_dp->link_bw, intel_dp->lane_count,
939 adjusted_mode->clock);
940
941 return true;
942 }
943 return false;
944 }
945
946 struct cdv_intel_dp_m_n {
947 uint32_t tu;
948 uint32_t gmch_m;
949 uint32_t gmch_n;
950 uint32_t link_m;
951 uint32_t link_n;
952 };
953
954 static void
cdv_intel_reduce_ratio(uint32_t * num,uint32_t * den)955 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
956 {
957 /*
958 while (*num > 0xffffff || *den > 0xffffff) {
959 *num >>= 1;
960 *den >>= 1;
961 }*/
962 uint64_t value, m;
963 m = *num;
964 value = m * (0x800000);
965 m = do_div(value, *den);
966 *num = value;
967 *den = 0x800000;
968 }
969
970 static void
cdv_intel_dp_compute_m_n(int bpp,int nlanes,int pixel_clock,int link_clock,struct cdv_intel_dp_m_n * m_n)971 cdv_intel_dp_compute_m_n(int bpp,
972 int nlanes,
973 int pixel_clock,
974 int link_clock,
975 struct cdv_intel_dp_m_n *m_n)
976 {
977 m_n->tu = 64;
978 m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
979 m_n->gmch_n = link_clock * nlanes;
980 cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
981 m_n->link_m = pixel_clock;
982 m_n->link_n = link_clock;
983 cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
984 }
985
986 void
cdv_intel_dp_set_m_n(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)987 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
988 struct drm_display_mode *adjusted_mode)
989 {
990 struct drm_device *dev = crtc->dev;
991 struct drm_psb_private *dev_priv = dev->dev_private;
992 struct drm_mode_config *mode_config = &dev->mode_config;
993 struct drm_encoder *encoder;
994 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
995 int lane_count = 4, bpp = 24;
996 struct cdv_intel_dp_m_n m_n;
997 int pipe = gma_crtc->pipe;
998
999 /*
1000 * Find the lane count in the intel_encoder private
1001 */
1002 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1003 struct gma_encoder *intel_encoder;
1004 struct cdv_intel_dp *intel_dp;
1005
1006 if (encoder->crtc != crtc)
1007 continue;
1008
1009 intel_encoder = to_gma_encoder(encoder);
1010 intel_dp = intel_encoder->dev_priv;
1011 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1012 lane_count = intel_dp->lane_count;
1013 break;
1014 } else if (is_edp(intel_encoder)) {
1015 lane_count = intel_dp->lane_count;
1016 bpp = dev_priv->edp.bpp;
1017 break;
1018 }
1019 }
1020
1021 /*
1022 * Compute the GMCH and Link ratios. The '3' here is
1023 * the number of bytes_per_pixel post-LUT, which we always
1024 * set up for 8-bits of R/G/B, or 3 bytes total.
1025 */
1026 cdv_intel_dp_compute_m_n(bpp, lane_count,
1027 mode->clock, adjusted_mode->clock, &m_n);
1028
1029 {
1030 REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1031 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1032 m_n.gmch_m);
1033 REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1034 REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1035 REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1036 }
1037 }
1038
1039 static void
cdv_intel_dp_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)1040 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1041 struct drm_display_mode *adjusted_mode)
1042 {
1043 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1044 struct drm_crtc *crtc = encoder->crtc;
1045 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1046 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1047 struct drm_device *dev = encoder->dev;
1048
1049 intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1050 intel_dp->DP |= intel_dp->color_range;
1051
1052 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1053 intel_dp->DP |= DP_SYNC_HS_HIGH;
1054 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1055 intel_dp->DP |= DP_SYNC_VS_HIGH;
1056
1057 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1058
1059 switch (intel_dp->lane_count) {
1060 case 1:
1061 intel_dp->DP |= DP_PORT_WIDTH_1;
1062 break;
1063 case 2:
1064 intel_dp->DP |= DP_PORT_WIDTH_2;
1065 break;
1066 case 4:
1067 intel_dp->DP |= DP_PORT_WIDTH_4;
1068 break;
1069 }
1070 if (intel_dp->has_audio)
1071 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1072
1073 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1074 intel_dp->link_configuration[0] = intel_dp->link_bw;
1075 intel_dp->link_configuration[1] = intel_dp->lane_count;
1076
1077 /*
1078 * Check for DPCD version > 1.1 and enhanced framing support
1079 */
1080 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1081 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1082 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1083 intel_dp->DP |= DP_ENHANCED_FRAMING;
1084 }
1085
1086 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
1087 if (gma_crtc->pipe == 1)
1088 intel_dp->DP |= DP_PIPEB_SELECT;
1089
1090 REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1091 DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1092 if (is_edp(intel_encoder)) {
1093 uint32_t pfit_control;
1094 cdv_intel_edp_panel_on(intel_encoder);
1095
1096 if (mode->hdisplay != adjusted_mode->hdisplay ||
1097 mode->vdisplay != adjusted_mode->vdisplay)
1098 pfit_control = PFIT_ENABLE;
1099 else
1100 pfit_control = 0;
1101
1102 pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1103
1104 REG_WRITE(PFIT_CONTROL, pfit_control);
1105 }
1106 }
1107
1108
1109 /* If the sink supports it, try to set the power state appropriately */
cdv_intel_dp_sink_dpms(struct gma_encoder * encoder,int mode)1110 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1111 {
1112 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1113 int ret, i;
1114
1115 /* Should have a valid DPCD by this point */
1116 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1117 return;
1118
1119 if (mode != DRM_MODE_DPMS_ON) {
1120 ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1121 DP_SET_POWER_D3);
1122 if (ret != 1)
1123 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1124 } else {
1125 /*
1126 * When turning on, we need to retry for 1ms to give the sink
1127 * time to wake up.
1128 */
1129 for (i = 0; i < 3; i++) {
1130 ret = cdv_intel_dp_aux_native_write_1(encoder,
1131 DP_SET_POWER,
1132 DP_SET_POWER_D0);
1133 if (ret == 1)
1134 break;
1135 udelay(1000);
1136 }
1137 }
1138 }
1139
cdv_intel_dp_prepare(struct drm_encoder * encoder)1140 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1141 {
1142 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1143 int edp = is_edp(intel_encoder);
1144
1145 if (edp) {
1146 cdv_intel_edp_backlight_off(intel_encoder);
1147 cdv_intel_edp_panel_off(intel_encoder);
1148 cdv_intel_edp_panel_vdd_on(intel_encoder);
1149 }
1150 /* Wake up the sink first */
1151 cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1152 cdv_intel_dp_link_down(intel_encoder);
1153 if (edp)
1154 cdv_intel_edp_panel_vdd_off(intel_encoder);
1155 }
1156
cdv_intel_dp_commit(struct drm_encoder * encoder)1157 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1158 {
1159 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1160 int edp = is_edp(intel_encoder);
1161
1162 if (edp)
1163 cdv_intel_edp_panel_on(intel_encoder);
1164 cdv_intel_dp_start_link_train(intel_encoder);
1165 cdv_intel_dp_complete_link_train(intel_encoder);
1166 if (edp)
1167 cdv_intel_edp_backlight_on(intel_encoder);
1168 }
1169
1170 static void
cdv_intel_dp_dpms(struct drm_encoder * encoder,int mode)1171 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1172 {
1173 struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1174 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1175 struct drm_device *dev = encoder->dev;
1176 uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1177 int edp = is_edp(intel_encoder);
1178
1179 if (mode != DRM_MODE_DPMS_ON) {
1180 if (edp) {
1181 cdv_intel_edp_backlight_off(intel_encoder);
1182 cdv_intel_edp_panel_vdd_on(intel_encoder);
1183 }
1184 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1185 cdv_intel_dp_link_down(intel_encoder);
1186 if (edp) {
1187 cdv_intel_edp_panel_vdd_off(intel_encoder);
1188 cdv_intel_edp_panel_off(intel_encoder);
1189 }
1190 } else {
1191 if (edp)
1192 cdv_intel_edp_panel_on(intel_encoder);
1193 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1194 if (!(dp_reg & DP_PORT_EN)) {
1195 cdv_intel_dp_start_link_train(intel_encoder);
1196 cdv_intel_dp_complete_link_train(intel_encoder);
1197 }
1198 if (edp)
1199 cdv_intel_edp_backlight_on(intel_encoder);
1200 }
1201 }
1202
1203 /*
1204 * Native read with retry for link status and receiver capability reads for
1205 * cases where the sink may still be asleep.
1206 */
1207 static bool
cdv_intel_dp_aux_native_read_retry(struct gma_encoder * encoder,uint16_t address,uint8_t * recv,int recv_bytes)1208 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1209 uint8_t *recv, int recv_bytes)
1210 {
1211 int ret, i;
1212
1213 /*
1214 * Sinks are *supposed* to come up within 1ms from an off state,
1215 * but we're also supposed to retry 3 times per the spec.
1216 */
1217 for (i = 0; i < 3; i++) {
1218 ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1219 recv_bytes);
1220 if (ret == recv_bytes)
1221 return true;
1222 udelay(1000);
1223 }
1224
1225 return false;
1226 }
1227
1228 /*
1229 * Fetch AUX CH registers 0x202 - 0x207 which contain
1230 * link status information
1231 */
1232 static bool
cdv_intel_dp_get_link_status(struct gma_encoder * encoder)1233 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1234 {
1235 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1236 return cdv_intel_dp_aux_native_read_retry(encoder,
1237 DP_LANE0_1_STATUS,
1238 intel_dp->link_status,
1239 DP_LINK_STATUS_SIZE);
1240 }
1241
1242 static uint8_t
cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],int r)1243 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1244 int r)
1245 {
1246 return link_status[r - DP_LANE0_1_STATUS];
1247 }
1248
1249 static uint8_t
cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane)1250 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1251 int lane)
1252 {
1253 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1254 int s = ((lane & 1) ?
1255 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1256 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1257 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1258
1259 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1260 }
1261
1262 static uint8_t
cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane)1263 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1264 int lane)
1265 {
1266 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1267 int s = ((lane & 1) ?
1268 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1269 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1270 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1271
1272 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1273 }
1274
1275 #define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1276
1277 static void
cdv_intel_get_adjust_train(struct gma_encoder * encoder)1278 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1279 {
1280 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1281 uint8_t v = 0;
1282 uint8_t p = 0;
1283 int lane;
1284
1285 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1286 uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1287 uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1288
1289 if (this_v > v)
1290 v = this_v;
1291 if (this_p > p)
1292 p = this_p;
1293 }
1294
1295 if (v >= CDV_DP_VOLTAGE_MAX)
1296 v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1297
1298 if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1299 p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1300
1301 for (lane = 0; lane < 4; lane++)
1302 intel_dp->train_set[lane] = v | p;
1303 }
1304
1305
1306 static uint8_t
cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane)1307 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1308 int lane)
1309 {
1310 int i = DP_LANE0_1_STATUS + (lane >> 1);
1311 int s = (lane & 1) * 4;
1312 uint8_t l = cdv_intel_dp_link_status(link_status, i);
1313
1314 return (l >> s) & 0xf;
1315 }
1316
1317 /* Check for clock recovery is done on all channels */
1318 static bool
cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane_count)1319 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1320 {
1321 int lane;
1322 uint8_t lane_status;
1323
1324 for (lane = 0; lane < lane_count; lane++) {
1325 lane_status = cdv_intel_get_lane_status(link_status, lane);
1326 if ((lane_status & DP_LANE_CR_DONE) == 0)
1327 return false;
1328 }
1329 return true;
1330 }
1331
1332 /* Check to see if channel eq is done on all channels */
1333 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1334 DP_LANE_CHANNEL_EQ_DONE|\
1335 DP_LANE_SYMBOL_LOCKED)
1336 static bool
cdv_intel_channel_eq_ok(struct gma_encoder * encoder)1337 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1338 {
1339 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1340 uint8_t lane_align;
1341 uint8_t lane_status;
1342 int lane;
1343
1344 lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1345 DP_LANE_ALIGN_STATUS_UPDATED);
1346 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1347 return false;
1348 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1349 lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1350 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1351 return false;
1352 }
1353 return true;
1354 }
1355
1356 static bool
cdv_intel_dp_set_link_train(struct gma_encoder * encoder,uint32_t dp_reg_value,uint8_t dp_train_pat)1357 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1358 uint32_t dp_reg_value,
1359 uint8_t dp_train_pat)
1360 {
1361
1362 struct drm_device *dev = encoder->base.dev;
1363 int ret;
1364 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1365
1366 REG_WRITE(intel_dp->output_reg, dp_reg_value);
1367 REG_READ(intel_dp->output_reg);
1368
1369 ret = cdv_intel_dp_aux_native_write_1(encoder,
1370 DP_TRAINING_PATTERN_SET,
1371 dp_train_pat);
1372
1373 if (ret != 1) {
1374 DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1375 dp_train_pat);
1376 return false;
1377 }
1378
1379 return true;
1380 }
1381
1382
1383 static bool
cdv_intel_dplink_set_level(struct gma_encoder * encoder,uint8_t dp_train_pat)1384 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1385 uint8_t dp_train_pat)
1386 {
1387
1388 int ret;
1389 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1390
1391 ret = cdv_intel_dp_aux_native_write(encoder,
1392 DP_TRAINING_LANE0_SET,
1393 intel_dp->train_set,
1394 intel_dp->lane_count);
1395
1396 if (ret != intel_dp->lane_count) {
1397 DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1398 intel_dp->train_set[0], intel_dp->lane_count);
1399 return false;
1400 }
1401 return true;
1402 }
1403
1404 static void
cdv_intel_dp_set_vswing_premph(struct gma_encoder * encoder,uint8_t signal_level)1405 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1406 {
1407 struct drm_device *dev = encoder->base.dev;
1408 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1409 struct ddi_regoff *ddi_reg;
1410 int vswing, premph, index;
1411
1412 if (intel_dp->output_reg == DP_B)
1413 ddi_reg = &ddi_DP_train_table[0];
1414 else
1415 ddi_reg = &ddi_DP_train_table[1];
1416
1417 vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1418 premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1419 DP_TRAIN_PRE_EMPHASIS_SHIFT;
1420
1421 if (vswing + premph > 3)
1422 return;
1423 #ifdef CDV_FAST_LINK_TRAIN
1424 return;
1425 #endif
1426 DRM_DEBUG_KMS("Test2\n");
1427 //return ;
1428 cdv_sb_reset(dev);
1429 /* ;Swing voltage programming
1430 ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1431 cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1432
1433 /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1434 cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1435
1436 /* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1437 * The VSwing_PreEmph table is also considered based on the vswing/premp
1438 */
1439 index = (vswing + premph) * 2;
1440 if (premph == 1 && vswing == 1) {
1441 cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1442 } else
1443 cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1444
1445 /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1446 if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1447 cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1448 else
1449 cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1450
1451 /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1452 /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1453
1454 /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1455 cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1456
1457 /* ;Pre emphasis programming
1458 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1459 */
1460 cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1461
1462 /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1463 index = 2 * premph + 1;
1464 cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1465 return;
1466 }
1467
1468
1469 /* Enable corresponding port and start training pattern 1 */
1470 static void
cdv_intel_dp_start_link_train(struct gma_encoder * encoder)1471 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1472 {
1473 struct drm_device *dev = encoder->base.dev;
1474 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1475 int i;
1476 uint8_t voltage;
1477 bool clock_recovery = false;
1478 int tries;
1479 u32 reg;
1480 uint32_t DP = intel_dp->DP;
1481
1482 DP |= DP_PORT_EN;
1483 DP &= ~DP_LINK_TRAIN_MASK;
1484
1485 reg = DP;
1486 reg |= DP_LINK_TRAIN_PAT_1;
1487 /* Enable output, wait for it to become active */
1488 REG_WRITE(intel_dp->output_reg, reg);
1489 REG_READ(intel_dp->output_reg);
1490 gma_wait_for_vblank(dev);
1491
1492 DRM_DEBUG_KMS("Link config\n");
1493 /* Write the link configuration data */
1494 cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1495 intel_dp->link_configuration,
1496 2);
1497
1498 memset(intel_dp->train_set, 0, 4);
1499 voltage = 0;
1500 tries = 0;
1501 clock_recovery = false;
1502
1503 DRM_DEBUG_KMS("Start train\n");
1504 reg = DP | DP_LINK_TRAIN_PAT_1;
1505
1506
1507 for (;;) {
1508 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1509 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1510 intel_dp->train_set[0],
1511 intel_dp->link_configuration[0],
1512 intel_dp->link_configuration[1]);
1513
1514 if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1515 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1516 }
1517 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1518 /* Set training pattern 1 */
1519
1520 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1521
1522 udelay(200);
1523 if (!cdv_intel_dp_get_link_status(encoder))
1524 break;
1525
1526 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1527 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1528 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1529
1530 if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1531 DRM_DEBUG_KMS("PT1 train is done\n");
1532 clock_recovery = true;
1533 break;
1534 }
1535
1536 /* Check to see if we've tried the max voltage */
1537 for (i = 0; i < intel_dp->lane_count; i++)
1538 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1539 break;
1540 if (i == intel_dp->lane_count)
1541 break;
1542
1543 /* Check to see if we've tried the same voltage 5 times */
1544 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1545 ++tries;
1546 if (tries == 5)
1547 break;
1548 } else
1549 tries = 0;
1550 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1551
1552 /* Compute new intel_dp->train_set as requested by target */
1553 cdv_intel_get_adjust_train(encoder);
1554
1555 }
1556
1557 if (!clock_recovery) {
1558 DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1559 }
1560
1561 intel_dp->DP = DP;
1562 }
1563
1564 static void
cdv_intel_dp_complete_link_train(struct gma_encoder * encoder)1565 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1566 {
1567 struct drm_device *dev = encoder->base.dev;
1568 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1569 int tries, cr_tries;
1570 u32 reg;
1571 uint32_t DP = intel_dp->DP;
1572
1573 /* channel equalization */
1574 tries = 0;
1575 cr_tries = 0;
1576
1577 DRM_DEBUG_KMS("\n");
1578 reg = DP | DP_LINK_TRAIN_PAT_2;
1579
1580 for (;;) {
1581
1582 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1583 intel_dp->train_set[0],
1584 intel_dp->link_configuration[0],
1585 intel_dp->link_configuration[1]);
1586 /* channel eq pattern */
1587
1588 if (!cdv_intel_dp_set_link_train(encoder, reg,
1589 DP_TRAINING_PATTERN_2)) {
1590 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1591 }
1592 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1593
1594 if (cr_tries > 5) {
1595 DRM_ERROR("failed to train DP, aborting\n");
1596 cdv_intel_dp_link_down(encoder);
1597 break;
1598 }
1599
1600 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1601
1602 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1603
1604 udelay(1000);
1605 if (!cdv_intel_dp_get_link_status(encoder))
1606 break;
1607
1608 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1609 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1610 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1611
1612 /* Make sure clock is still ok */
1613 if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1614 cdv_intel_dp_start_link_train(encoder);
1615 cr_tries++;
1616 continue;
1617 }
1618
1619 if (cdv_intel_channel_eq_ok(encoder)) {
1620 DRM_DEBUG_KMS("PT2 train is done\n");
1621 break;
1622 }
1623
1624 /* Try 5 times, then try clock recovery if that fails */
1625 if (tries > 5) {
1626 cdv_intel_dp_link_down(encoder);
1627 cdv_intel_dp_start_link_train(encoder);
1628 tries = 0;
1629 cr_tries++;
1630 continue;
1631 }
1632
1633 /* Compute new intel_dp->train_set as requested by target */
1634 cdv_intel_get_adjust_train(encoder);
1635 ++tries;
1636
1637 }
1638
1639 reg = DP | DP_LINK_TRAIN_OFF;
1640
1641 REG_WRITE(intel_dp->output_reg, reg);
1642 REG_READ(intel_dp->output_reg);
1643 cdv_intel_dp_aux_native_write_1(encoder,
1644 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1645 }
1646
1647 static void
cdv_intel_dp_link_down(struct gma_encoder * encoder)1648 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1649 {
1650 struct drm_device *dev = encoder->base.dev;
1651 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1652 uint32_t DP = intel_dp->DP;
1653
1654 if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1655 return;
1656
1657 DRM_DEBUG_KMS("\n");
1658
1659
1660 {
1661 DP &= ~DP_LINK_TRAIN_MASK;
1662 REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1663 }
1664 REG_READ(intel_dp->output_reg);
1665
1666 msleep(17);
1667
1668 REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1669 REG_READ(intel_dp->output_reg);
1670 }
1671
cdv_dp_detect(struct gma_encoder * encoder)1672 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1673 {
1674 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1675 enum drm_connector_status status;
1676
1677 status = connector_status_disconnected;
1678 if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1679 sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1680 {
1681 if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1682 status = connector_status_connected;
1683 }
1684 if (status == connector_status_connected)
1685 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1686 intel_dp->dpcd[0], intel_dp->dpcd[1],
1687 intel_dp->dpcd[2], intel_dp->dpcd[3]);
1688 return status;
1689 }
1690
1691 /**
1692 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1693 *
1694 * \return true if DP port is connected.
1695 * \return false if DP port is disconnected.
1696 */
1697 static enum drm_connector_status
cdv_intel_dp_detect(struct drm_connector * connector,bool force)1698 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1699 {
1700 struct gma_encoder *encoder = gma_attached_encoder(connector);
1701 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1702 enum drm_connector_status status;
1703 struct edid *edid = NULL;
1704 int edp = is_edp(encoder);
1705
1706 intel_dp->has_audio = false;
1707
1708 if (edp)
1709 cdv_intel_edp_panel_vdd_on(encoder);
1710 status = cdv_dp_detect(encoder);
1711 if (status != connector_status_connected) {
1712 if (edp)
1713 cdv_intel_edp_panel_vdd_off(encoder);
1714 return status;
1715 }
1716
1717 if (intel_dp->force_audio) {
1718 intel_dp->has_audio = intel_dp->force_audio > 0;
1719 } else {
1720 edid = drm_get_edid(connector, &intel_dp->adapter);
1721 if (edid) {
1722 intel_dp->has_audio = drm_detect_monitor_audio(edid);
1723 kfree(edid);
1724 }
1725 }
1726 if (edp)
1727 cdv_intel_edp_panel_vdd_off(encoder);
1728
1729 return connector_status_connected;
1730 }
1731
cdv_intel_dp_get_modes(struct drm_connector * connector)1732 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1733 {
1734 struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1735 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1736 struct edid *edid = NULL;
1737 int ret = 0;
1738 int edp = is_edp(intel_encoder);
1739
1740
1741 edid = drm_get_edid(connector, &intel_dp->adapter);
1742 if (edid) {
1743 drm_connector_update_edid_property(connector, edid);
1744 ret = drm_add_edid_modes(connector, edid);
1745 kfree(edid);
1746 }
1747
1748 if (is_edp(intel_encoder)) {
1749 struct drm_device *dev = connector->dev;
1750 struct drm_psb_private *dev_priv = dev->dev_private;
1751
1752 cdv_intel_edp_panel_vdd_off(intel_encoder);
1753 if (ret) {
1754 if (edp && !intel_dp->panel_fixed_mode) {
1755 struct drm_display_mode *newmode;
1756 list_for_each_entry(newmode, &connector->probed_modes,
1757 head) {
1758 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1759 intel_dp->panel_fixed_mode =
1760 drm_mode_duplicate(dev, newmode);
1761 break;
1762 }
1763 }
1764 }
1765
1766 return ret;
1767 }
1768 if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1769 intel_dp->panel_fixed_mode =
1770 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1771 if (intel_dp->panel_fixed_mode) {
1772 intel_dp->panel_fixed_mode->type |=
1773 DRM_MODE_TYPE_PREFERRED;
1774 }
1775 }
1776 if (intel_dp->panel_fixed_mode != NULL) {
1777 struct drm_display_mode *mode;
1778 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1779 drm_mode_probed_add(connector, mode);
1780 return 1;
1781 }
1782 }
1783
1784 return ret;
1785 }
1786
1787 static bool
cdv_intel_dp_detect_audio(struct drm_connector * connector)1788 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1789 {
1790 struct gma_encoder *encoder = gma_attached_encoder(connector);
1791 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1792 struct edid *edid;
1793 bool has_audio = false;
1794 int edp = is_edp(encoder);
1795
1796 if (edp)
1797 cdv_intel_edp_panel_vdd_on(encoder);
1798
1799 edid = drm_get_edid(connector, &intel_dp->adapter);
1800 if (edid) {
1801 has_audio = drm_detect_monitor_audio(edid);
1802 kfree(edid);
1803 }
1804 if (edp)
1805 cdv_intel_edp_panel_vdd_off(encoder);
1806
1807 return has_audio;
1808 }
1809
1810 static int
cdv_intel_dp_set_property(struct drm_connector * connector,struct drm_property * property,uint64_t val)1811 cdv_intel_dp_set_property(struct drm_connector *connector,
1812 struct drm_property *property,
1813 uint64_t val)
1814 {
1815 struct drm_psb_private *dev_priv = connector->dev->dev_private;
1816 struct gma_encoder *encoder = gma_attached_encoder(connector);
1817 struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1818 int ret;
1819
1820 ret = drm_object_property_set_value(&connector->base, property, val);
1821 if (ret)
1822 return ret;
1823
1824 if (property == dev_priv->force_audio_property) {
1825 int i = val;
1826 bool has_audio;
1827
1828 if (i == intel_dp->force_audio)
1829 return 0;
1830
1831 intel_dp->force_audio = i;
1832
1833 if (i == 0)
1834 has_audio = cdv_intel_dp_detect_audio(connector);
1835 else
1836 has_audio = i > 0;
1837
1838 if (has_audio == intel_dp->has_audio)
1839 return 0;
1840
1841 intel_dp->has_audio = has_audio;
1842 goto done;
1843 }
1844
1845 if (property == dev_priv->broadcast_rgb_property) {
1846 if (val == !!intel_dp->color_range)
1847 return 0;
1848
1849 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1850 goto done;
1851 }
1852
1853 return -EINVAL;
1854
1855 done:
1856 if (encoder->base.crtc) {
1857 struct drm_crtc *crtc = encoder->base.crtc;
1858 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1859 crtc->x, crtc->y,
1860 crtc->primary->fb);
1861 }
1862
1863 return 0;
1864 }
1865
1866 static void
cdv_intel_dp_destroy(struct drm_connector * connector)1867 cdv_intel_dp_destroy(struct drm_connector *connector)
1868 {
1869 struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1870 struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1871
1872 if (is_edp(gma_encoder)) {
1873 /* cdv_intel_panel_destroy_backlight(connector->dev); */
1874 kfree(intel_dp->panel_fixed_mode);
1875 intel_dp->panel_fixed_mode = NULL;
1876 }
1877 i2c_del_adapter(&intel_dp->adapter);
1878 drm_connector_unregister(connector);
1879 drm_connector_cleanup(connector);
1880 kfree(connector);
1881 }
1882
1883 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1884 .dpms = cdv_intel_dp_dpms,
1885 .mode_fixup = cdv_intel_dp_mode_fixup,
1886 .prepare = cdv_intel_dp_prepare,
1887 .mode_set = cdv_intel_dp_mode_set,
1888 .commit = cdv_intel_dp_commit,
1889 };
1890
1891 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1892 .dpms = drm_helper_connector_dpms,
1893 .detect = cdv_intel_dp_detect,
1894 .fill_modes = drm_helper_probe_single_connector_modes,
1895 .set_property = cdv_intel_dp_set_property,
1896 .destroy = cdv_intel_dp_destroy,
1897 };
1898
1899 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1900 .get_modes = cdv_intel_dp_get_modes,
1901 .mode_valid = cdv_intel_dp_mode_valid,
1902 .best_encoder = gma_best_encoder,
1903 };
1904
cdv_intel_dp_add_properties(struct drm_connector * connector)1905 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1906 {
1907 cdv_intel_attach_force_audio_property(connector);
1908 cdv_intel_attach_broadcast_rgb_property(connector);
1909 }
1910
1911 /* check the VBT to see whether the eDP is on DP-D port */
cdv_intel_dpc_is_edp(struct drm_device * dev)1912 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1913 {
1914 struct drm_psb_private *dev_priv = dev->dev_private;
1915 struct child_device_config *p_child;
1916 int i;
1917
1918 if (!dev_priv->child_dev_num)
1919 return false;
1920
1921 for (i = 0; i < dev_priv->child_dev_num; i++) {
1922 p_child = dev_priv->child_dev + i;
1923
1924 if (p_child->dvo_port == PORT_IDPC &&
1925 p_child->device_type == DEVICE_TYPE_eDP)
1926 return true;
1927 }
1928 return false;
1929 }
1930
1931 /* Cedarview display clock gating
1932
1933 We need this disable dot get correct behaviour while enabling
1934 DP/eDP. TODO - investigate if we can turn it back to normality
1935 after enabling */
cdv_disable_intel_clock_gating(struct drm_device * dev)1936 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1937 {
1938 u32 reg_value;
1939 reg_value = REG_READ(DSPCLK_GATE_D);
1940
1941 reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1942 DPUNIT_PIPEA_GATE_DISABLE |
1943 DPCUNIT_CLOCK_GATE_DISABLE |
1944 DPLSUNIT_CLOCK_GATE_DISABLE |
1945 DPOUNIT_CLOCK_GATE_DISABLE |
1946 DPIOUNIT_CLOCK_GATE_DISABLE);
1947
1948 REG_WRITE(DSPCLK_GATE_D, reg_value);
1949
1950 udelay(500);
1951 }
1952
1953 void
cdv_intel_dp_init(struct drm_device * dev,struct psb_intel_mode_device * mode_dev,int output_reg)1954 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1955 {
1956 struct gma_encoder *gma_encoder;
1957 struct gma_connector *gma_connector;
1958 struct drm_connector *connector;
1959 struct drm_encoder *encoder;
1960 struct cdv_intel_dp *intel_dp;
1961 const char *name = NULL;
1962 int type = DRM_MODE_CONNECTOR_DisplayPort;
1963
1964 gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1965 if (!gma_encoder)
1966 return;
1967 gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1968 if (!gma_connector)
1969 goto err_connector;
1970 intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1971 if (!intel_dp)
1972 goto err_priv;
1973
1974 if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1975 type = DRM_MODE_CONNECTOR_eDP;
1976
1977 connector = &gma_connector->base;
1978 encoder = &gma_encoder->base;
1979
1980 drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1981 drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1982
1983 gma_connector_attach_encoder(gma_connector, gma_encoder);
1984
1985 if (type == DRM_MODE_CONNECTOR_DisplayPort)
1986 gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1987 else
1988 gma_encoder->type = INTEL_OUTPUT_EDP;
1989
1990
1991 gma_encoder->dev_priv=intel_dp;
1992 intel_dp->encoder = gma_encoder;
1993 intel_dp->output_reg = output_reg;
1994
1995 drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1996 drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1997
1998 connector->polled = DRM_CONNECTOR_POLL_HPD;
1999 connector->interlace_allowed = false;
2000 connector->doublescan_allowed = false;
2001
2002 drm_connector_register(connector);
2003
2004 /* Set up the DDC bus. */
2005 switch (output_reg) {
2006 case DP_B:
2007 name = "DPDDC-B";
2008 gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2009 break;
2010 case DP_C:
2011 name = "DPDDC-C";
2012 gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2013 break;
2014 }
2015
2016 cdv_disable_intel_clock_gating(dev);
2017
2018 cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2019 /* FIXME:fail check */
2020 cdv_intel_dp_add_properties(connector);
2021
2022 if (is_edp(gma_encoder)) {
2023 int ret;
2024 struct edp_power_seq cur;
2025 u32 pp_on, pp_off, pp_div;
2026 u32 pwm_ctrl;
2027
2028 pp_on = REG_READ(PP_CONTROL);
2029 pp_on &= ~PANEL_UNLOCK_MASK;
2030 pp_on |= PANEL_UNLOCK_REGS;
2031
2032 REG_WRITE(PP_CONTROL, pp_on);
2033
2034 pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2035 pwm_ctrl |= PWM_PIPE_B;
2036 REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2037
2038 pp_on = REG_READ(PP_ON_DELAYS);
2039 pp_off = REG_READ(PP_OFF_DELAYS);
2040 pp_div = REG_READ(PP_DIVISOR);
2041
2042 /* Pull timing values out of registers */
2043 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2044 PANEL_POWER_UP_DELAY_SHIFT;
2045
2046 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2047 PANEL_LIGHT_ON_DELAY_SHIFT;
2048
2049 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2050 PANEL_LIGHT_OFF_DELAY_SHIFT;
2051
2052 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2053 PANEL_POWER_DOWN_DELAY_SHIFT;
2054
2055 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2056 PANEL_POWER_CYCLE_DELAY_SHIFT);
2057
2058 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2059 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2060
2061
2062 intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2063 intel_dp->backlight_on_delay = cur.t8 / 10;
2064 intel_dp->backlight_off_delay = cur.t9 / 10;
2065 intel_dp->panel_power_down_delay = cur.t10 / 10;
2066 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2067
2068 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2069 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2070 intel_dp->panel_power_cycle_delay);
2071
2072 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2073 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2074
2075
2076 cdv_intel_edp_panel_vdd_on(gma_encoder);
2077 ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2078 intel_dp->dpcd,
2079 sizeof(intel_dp->dpcd));
2080 cdv_intel_edp_panel_vdd_off(gma_encoder);
2081 if (ret <= 0) {
2082 /* if this fails, presume the device is a ghost */
2083 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2084 drm_encoder_cleanup(encoder);
2085 cdv_intel_dp_destroy(connector);
2086 goto err_connector;
2087 } else {
2088 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2089 intel_dp->dpcd[0], intel_dp->dpcd[1],
2090 intel_dp->dpcd[2], intel_dp->dpcd[3]);
2091
2092 }
2093 /* The CDV reference driver moves pnale backlight setup into the displays that
2094 have a backlight: this is a good idea and one we should probably adopt, however
2095 we need to migrate all the drivers before we can do that */
2096 /*cdv_intel_panel_setup_backlight(dev); */
2097 }
2098 return;
2099
2100 err_priv:
2101 kfree(gma_connector);
2102 err_connector:
2103 kfree(gma_encoder);
2104 }
2105