1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/dm-bufio.h>
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21
22 #include <trace/hooks/mm.h>
23
24 #define DM_MSG_PREFIX "bufio"
25
26 /*
27 * Memory management policy:
28 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
29 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
30 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
31 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
32 * dirty buffers.
33 */
34 #define DM_BUFIO_MIN_BUFFERS 8
35
36 #define DM_BUFIO_MEMORY_PERCENT 2
37 #define DM_BUFIO_VMALLOC_PERCENT 25
38 #define DM_BUFIO_WRITEBACK_RATIO 3
39 #define DM_BUFIO_LOW_WATERMARK_RATIO 16
40
41 /*
42 * Check buffer ages in this interval (seconds)
43 */
44 #define DM_BUFIO_WORK_TIMER_SECS 30
45
46 /*
47 * Free buffers when they are older than this (seconds)
48 */
49 #define DM_BUFIO_DEFAULT_AGE_SECS 300
50
51 /*
52 * The nr of bytes of cached data to keep around.
53 */
54 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
55
56 /*
57 * Align buffer writes to this boundary.
58 * Tests show that SSDs have the highest IOPS when using 4k writes.
59 */
60 #define DM_BUFIO_WRITE_ALIGN 4096
61
62 /*
63 * dm_buffer->list_mode
64 */
65 #define LIST_CLEAN 0
66 #define LIST_DIRTY 1
67 #define LIST_SIZE 2
68
69 /*
70 * Linking of buffers:
71 * All buffers are linked to buffer_tree with their node field.
72 *
73 * Clean buffers that are not being written (B_WRITING not set)
74 * are linked to lru[LIST_CLEAN] with their lru_list field.
75 *
76 * Dirty and clean buffers that are being written are linked to
77 * lru[LIST_DIRTY] with their lru_list field. When the write
78 * finishes, the buffer cannot be relinked immediately (because we
79 * are in an interrupt context and relinking requires process
80 * context), so some clean-not-writing buffers can be held on
81 * dirty_lru too. They are later added to lru in the process
82 * context.
83 */
84 struct dm_bufio_client {
85 struct mutex lock;
86
87 struct list_head lru[LIST_SIZE];
88 unsigned long n_buffers[LIST_SIZE];
89
90 struct block_device *bdev;
91 unsigned block_size;
92 s8 sectors_per_block_bits;
93 void (*alloc_callback)(struct dm_buffer *);
94 void (*write_callback)(struct dm_buffer *);
95
96 struct kmem_cache *slab_buffer;
97 struct kmem_cache *slab_cache;
98 struct dm_io_client *dm_io;
99
100 struct list_head reserved_buffers;
101 unsigned need_reserved_buffers;
102
103 unsigned minimum_buffers;
104
105 struct rb_root buffer_tree;
106 wait_queue_head_t free_buffer_wait;
107
108 sector_t start;
109
110 int async_write_error;
111
112 struct list_head client_list;
113
114 struct shrinker shrinker;
115 struct work_struct shrink_work;
116 atomic_long_t need_shrink;
117 };
118
119 /*
120 * Buffer state bits.
121 */
122 #define B_READING 0
123 #define B_WRITING 1
124 #define B_DIRTY 2
125
126 /*
127 * Describes how the block was allocated:
128 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
129 * See the comment at alloc_buffer_data.
130 */
131 enum data_mode {
132 DATA_MODE_SLAB = 0,
133 DATA_MODE_GET_FREE_PAGES = 1,
134 DATA_MODE_VMALLOC = 2,
135 DATA_MODE_LIMIT = 3
136 };
137
138 struct dm_buffer {
139 struct rb_node node;
140 struct list_head lru_list;
141 struct list_head global_list;
142 sector_t block;
143 void *data;
144 unsigned char data_mode; /* DATA_MODE_* */
145 unsigned char list_mode; /* LIST_* */
146 blk_status_t read_error;
147 blk_status_t write_error;
148 unsigned accessed;
149 unsigned hold_count;
150 unsigned long state;
151 unsigned long last_accessed;
152 unsigned dirty_start;
153 unsigned dirty_end;
154 unsigned write_start;
155 unsigned write_end;
156 struct dm_bufio_client *c;
157 struct list_head write_list;
158 void (*end_io)(struct dm_buffer *, blk_status_t);
159 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
160 #define MAX_STACK 10
161 unsigned int stack_len;
162 unsigned long stack_entries[MAX_STACK];
163 #endif
164 };
165
166 /*----------------------------------------------------------------*/
167
168 #define dm_bufio_in_request() (!!current->bio_list)
169
dm_bufio_lock(struct dm_bufio_client * c)170 static void dm_bufio_lock(struct dm_bufio_client *c)
171 {
172 mutex_lock_nested(&c->lock, dm_bufio_in_request());
173 }
174
dm_bufio_trylock(struct dm_bufio_client * c)175 static int dm_bufio_trylock(struct dm_bufio_client *c)
176 {
177 return mutex_trylock(&c->lock);
178 }
179
dm_bufio_unlock(struct dm_bufio_client * c)180 static void dm_bufio_unlock(struct dm_bufio_client *c)
181 {
182 mutex_unlock(&c->lock);
183 }
184
185 /*----------------------------------------------------------------*/
186
187 /*
188 * Default cache size: available memory divided by the ratio.
189 */
190 static unsigned long dm_bufio_default_cache_size;
191
192 /*
193 * Total cache size set by the user.
194 */
195 static unsigned long dm_bufio_cache_size;
196
197 /*
198 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
199 * at any time. If it disagrees, the user has changed cache size.
200 */
201 static unsigned long dm_bufio_cache_size_latch;
202
203 static DEFINE_SPINLOCK(global_spinlock);
204
205 static LIST_HEAD(global_queue);
206
207 static unsigned long global_num = 0;
208
209 /*
210 * Buffers are freed after this timeout
211 */
212 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
213 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
214
215 static unsigned long dm_bufio_peak_allocated;
216 static unsigned long dm_bufio_allocated_kmem_cache;
217 static unsigned long dm_bufio_allocated_get_free_pages;
218 static unsigned long dm_bufio_allocated_vmalloc;
219 static unsigned long dm_bufio_current_allocated;
220
221 /*----------------------------------------------------------------*/
222
223 /*
224 * The current number of clients.
225 */
226 static int dm_bufio_client_count;
227
228 /*
229 * The list of all clients.
230 */
231 static LIST_HEAD(dm_bufio_all_clients);
232
233 /*
234 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
235 */
236 static DEFINE_MUTEX(dm_bufio_clients_lock);
237
238 static struct workqueue_struct *dm_bufio_wq;
239 static struct delayed_work dm_bufio_cleanup_old_work;
240 static struct work_struct dm_bufio_replacement_work;
241
242
243 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
buffer_record_stack(struct dm_buffer * b)244 static void buffer_record_stack(struct dm_buffer *b)
245 {
246 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
247 }
248 #endif
249
250 /*----------------------------------------------------------------
251 * A red/black tree acts as an index for all the buffers.
252 *--------------------------------------------------------------*/
__find(struct dm_bufio_client * c,sector_t block)253 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
254 {
255 struct rb_node *n = c->buffer_tree.rb_node;
256 struct dm_buffer *b;
257
258 while (n) {
259 b = container_of(n, struct dm_buffer, node);
260
261 if (b->block == block)
262 return b;
263
264 n = block < b->block ? n->rb_left : n->rb_right;
265 }
266
267 return NULL;
268 }
269
__find_next(struct dm_bufio_client * c,sector_t block)270 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
271 {
272 struct rb_node *n = c->buffer_tree.rb_node;
273 struct dm_buffer *b;
274 struct dm_buffer *best = NULL;
275
276 while (n) {
277 b = container_of(n, struct dm_buffer, node);
278
279 if (b->block == block)
280 return b;
281
282 if (block <= b->block) {
283 n = n->rb_left;
284 best = b;
285 } else {
286 n = n->rb_right;
287 }
288 }
289
290 return best;
291 }
292
__insert(struct dm_bufio_client * c,struct dm_buffer * b)293 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
294 {
295 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
296 struct dm_buffer *found;
297
298 while (*new) {
299 found = container_of(*new, struct dm_buffer, node);
300
301 if (found->block == b->block) {
302 BUG_ON(found != b);
303 return;
304 }
305
306 parent = *new;
307 new = b->block < found->block ?
308 &found->node.rb_left : &found->node.rb_right;
309 }
310
311 rb_link_node(&b->node, parent, new);
312 rb_insert_color(&b->node, &c->buffer_tree);
313 }
314
__remove(struct dm_bufio_client * c,struct dm_buffer * b)315 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
316 {
317 rb_erase(&b->node, &c->buffer_tree);
318 }
319
320 /*----------------------------------------------------------------*/
321
adjust_total_allocated(struct dm_buffer * b,bool unlink)322 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
323 {
324 unsigned char data_mode;
325 long diff;
326
327 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
328 &dm_bufio_allocated_kmem_cache,
329 &dm_bufio_allocated_get_free_pages,
330 &dm_bufio_allocated_vmalloc,
331 };
332
333 data_mode = b->data_mode;
334 diff = (long)b->c->block_size;
335 if (unlink)
336 diff = -diff;
337
338 spin_lock(&global_spinlock);
339
340 *class_ptr[data_mode] += diff;
341
342 dm_bufio_current_allocated += diff;
343
344 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
345 dm_bufio_peak_allocated = dm_bufio_current_allocated;
346
347 b->accessed = 1;
348
349 if (!unlink) {
350 list_add(&b->global_list, &global_queue);
351 global_num++;
352 if (dm_bufio_current_allocated > dm_bufio_cache_size)
353 queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
354 } else {
355 list_del(&b->global_list);
356 global_num--;
357 }
358
359 spin_unlock(&global_spinlock);
360 }
361
362 /*
363 * Change the number of clients and recalculate per-client limit.
364 */
__cache_size_refresh(void)365 static void __cache_size_refresh(void)
366 {
367 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
368 BUG_ON(dm_bufio_client_count < 0);
369
370 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
371
372 /*
373 * Use default if set to 0 and report the actual cache size used.
374 */
375 if (!dm_bufio_cache_size_latch) {
376 (void)cmpxchg(&dm_bufio_cache_size, 0,
377 dm_bufio_default_cache_size);
378 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
379 }
380 }
381
382 /*
383 * Allocating buffer data.
384 *
385 * Small buffers are allocated with kmem_cache, to use space optimally.
386 *
387 * For large buffers, we choose between get_free_pages and vmalloc.
388 * Each has advantages and disadvantages.
389 *
390 * __get_free_pages can randomly fail if the memory is fragmented.
391 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
392 * as low as 128M) so using it for caching is not appropriate.
393 *
394 * If the allocation may fail we use __get_free_pages. Memory fragmentation
395 * won't have a fatal effect here, but it just causes flushes of some other
396 * buffers and more I/O will be performed. Don't use __get_free_pages if it
397 * always fails (i.e. order >= MAX_ORDER).
398 *
399 * If the allocation shouldn't fail we use __vmalloc. This is only for the
400 * initial reserve allocation, so there's no risk of wasting all vmalloc
401 * space.
402 */
alloc_buffer_data(struct dm_bufio_client * c,gfp_t gfp_mask,unsigned char * data_mode)403 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
404 unsigned char *data_mode)
405 {
406 if (unlikely(c->slab_cache != NULL)) {
407 *data_mode = DATA_MODE_SLAB;
408 return kmem_cache_alloc(c->slab_cache, gfp_mask);
409 }
410
411 if (c->block_size <= KMALLOC_MAX_SIZE &&
412 gfp_mask & __GFP_NORETRY) {
413 *data_mode = DATA_MODE_GET_FREE_PAGES;
414 return (void *)__get_free_pages(gfp_mask,
415 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
416 }
417
418 *data_mode = DATA_MODE_VMALLOC;
419
420 /*
421 * __vmalloc allocates the data pages and auxiliary structures with
422 * gfp_flags that were specified, but pagetables are always allocated
423 * with GFP_KERNEL, no matter what was specified as gfp_mask.
424 *
425 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
426 * all allocations done by this process (including pagetables) are done
427 * as if GFP_NOIO was specified.
428 */
429 if (gfp_mask & __GFP_NORETRY) {
430 unsigned noio_flag = memalloc_noio_save();
431 void *ptr = __vmalloc(c->block_size, gfp_mask);
432
433 memalloc_noio_restore(noio_flag);
434 return ptr;
435 }
436
437 return __vmalloc(c->block_size, gfp_mask);
438 }
439
440 /*
441 * Free buffer's data.
442 */
free_buffer_data(struct dm_bufio_client * c,void * data,unsigned char data_mode)443 static void free_buffer_data(struct dm_bufio_client *c,
444 void *data, unsigned char data_mode)
445 {
446 switch (data_mode) {
447 case DATA_MODE_SLAB:
448 kmem_cache_free(c->slab_cache, data);
449 break;
450
451 case DATA_MODE_GET_FREE_PAGES:
452 free_pages((unsigned long)data,
453 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
454 break;
455
456 case DATA_MODE_VMALLOC:
457 vfree(data);
458 break;
459
460 default:
461 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
462 data_mode);
463 BUG();
464 }
465 }
466
467 /*
468 * Allocate buffer and its data.
469 */
alloc_buffer(struct dm_bufio_client * c,gfp_t gfp_mask)470 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
471 {
472 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
473
474 if (!b)
475 return NULL;
476
477 b->c = c;
478
479 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
480 if (!b->data) {
481 kmem_cache_free(c->slab_buffer, b);
482 return NULL;
483 }
484
485 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
486 b->stack_len = 0;
487 #endif
488 return b;
489 }
490
491 /*
492 * Free buffer and its data.
493 */
free_buffer(struct dm_buffer * b)494 static void free_buffer(struct dm_buffer *b)
495 {
496 struct dm_bufio_client *c = b->c;
497
498 free_buffer_data(c, b->data, b->data_mode);
499 kmem_cache_free(c->slab_buffer, b);
500 }
501
502 /*
503 * Link buffer to the buffer tree and clean or dirty queue.
504 */
__link_buffer(struct dm_buffer * b,sector_t block,int dirty)505 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
506 {
507 struct dm_bufio_client *c = b->c;
508
509 c->n_buffers[dirty]++;
510 b->block = block;
511 b->list_mode = dirty;
512 list_add(&b->lru_list, &c->lru[dirty]);
513 __insert(b->c, b);
514 b->last_accessed = jiffies;
515
516 adjust_total_allocated(b, false);
517 }
518
519 /*
520 * Unlink buffer from the buffer tree and dirty or clean queue.
521 */
__unlink_buffer(struct dm_buffer * b)522 static void __unlink_buffer(struct dm_buffer *b)
523 {
524 struct dm_bufio_client *c = b->c;
525
526 BUG_ON(!c->n_buffers[b->list_mode]);
527
528 c->n_buffers[b->list_mode]--;
529 __remove(b->c, b);
530 list_del(&b->lru_list);
531
532 adjust_total_allocated(b, true);
533 }
534
535 /*
536 * Place the buffer to the head of dirty or clean LRU queue.
537 */
__relink_lru(struct dm_buffer * b,int dirty)538 static void __relink_lru(struct dm_buffer *b, int dirty)
539 {
540 struct dm_bufio_client *c = b->c;
541
542 b->accessed = 1;
543
544 BUG_ON(!c->n_buffers[b->list_mode]);
545
546 c->n_buffers[b->list_mode]--;
547 c->n_buffers[dirty]++;
548 b->list_mode = dirty;
549 list_move(&b->lru_list, &c->lru[dirty]);
550 b->last_accessed = jiffies;
551 }
552
553 /*----------------------------------------------------------------
554 * Submit I/O on the buffer.
555 *
556 * Bio interface is faster but it has some problems:
557 * the vector list is limited (increasing this limit increases
558 * memory-consumption per buffer, so it is not viable);
559 *
560 * the memory must be direct-mapped, not vmalloced;
561 *
562 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
563 * it is not vmalloced, try using the bio interface.
564 *
565 * If the buffer is big, if it is vmalloced or if the underlying device
566 * rejects the bio because it is too large, use dm-io layer to do the I/O.
567 * The dm-io layer splits the I/O into multiple requests, avoiding the above
568 * shortcomings.
569 *--------------------------------------------------------------*/
570
571 /*
572 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
573 * that the request was handled directly with bio interface.
574 */
dmio_complete(unsigned long error,void * context)575 static void dmio_complete(unsigned long error, void *context)
576 {
577 struct dm_buffer *b = context;
578
579 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
580 }
581
use_dmio(struct dm_buffer * b,int rw,sector_t sector,unsigned n_sectors,unsigned offset)582 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
583 unsigned n_sectors, unsigned offset)
584 {
585 int r;
586 struct dm_io_request io_req = {
587 .bi_op = rw,
588 .bi_op_flags = 0,
589 .notify.fn = dmio_complete,
590 .notify.context = b,
591 .client = b->c->dm_io,
592 };
593 struct dm_io_region region = {
594 .bdev = b->c->bdev,
595 .sector = sector,
596 .count = n_sectors,
597 };
598
599 if (b->data_mode != DATA_MODE_VMALLOC) {
600 io_req.mem.type = DM_IO_KMEM;
601 io_req.mem.ptr.addr = (char *)b->data + offset;
602 } else {
603 io_req.mem.type = DM_IO_VMA;
604 io_req.mem.ptr.vma = (char *)b->data + offset;
605 }
606
607 r = dm_io(&io_req, 1, ®ion, NULL);
608 if (unlikely(r))
609 b->end_io(b, errno_to_blk_status(r));
610 }
611
bio_complete(struct bio * bio)612 static void bio_complete(struct bio *bio)
613 {
614 struct dm_buffer *b = bio->bi_private;
615 blk_status_t status = bio->bi_status;
616 bio_put(bio);
617 b->end_io(b, status);
618 }
619
use_bio(struct dm_buffer * b,int rw,sector_t sector,unsigned n_sectors,unsigned offset)620 static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
621 unsigned n_sectors, unsigned offset)
622 {
623 struct bio *bio;
624 char *ptr;
625 unsigned vec_size, len;
626
627 vec_size = b->c->block_size >> PAGE_SHIFT;
628 if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
629 vec_size += 2;
630
631 bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
632 if (!bio) {
633 dmio:
634 use_dmio(b, rw, sector, n_sectors, offset);
635 return;
636 }
637
638 bio->bi_iter.bi_sector = sector;
639 bio_set_dev(bio, b->c->bdev);
640 bio_set_op_attrs(bio, rw, 0);
641 bio->bi_end_io = bio_complete;
642 bio->bi_private = b;
643
644 ptr = (char *)b->data + offset;
645 len = n_sectors << SECTOR_SHIFT;
646
647 do {
648 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
649 if (!bio_add_page(bio, virt_to_page(ptr), this_step,
650 offset_in_page(ptr))) {
651 bio_put(bio);
652 goto dmio;
653 }
654
655 len -= this_step;
656 ptr += this_step;
657 } while (len > 0);
658
659 submit_bio(bio);
660 }
661
block_to_sector(struct dm_bufio_client * c,sector_t block)662 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
663 {
664 sector_t sector;
665
666 if (likely(c->sectors_per_block_bits >= 0))
667 sector = block << c->sectors_per_block_bits;
668 else
669 sector = block * (c->block_size >> SECTOR_SHIFT);
670 sector += c->start;
671
672 return sector;
673 }
674
submit_io(struct dm_buffer * b,int rw,void (* end_io)(struct dm_buffer *,blk_status_t))675 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
676 {
677 unsigned n_sectors;
678 sector_t sector;
679 unsigned offset, end;
680
681 b->end_io = end_io;
682
683 sector = block_to_sector(b->c, b->block);
684
685 if (rw != REQ_OP_WRITE) {
686 n_sectors = b->c->block_size >> SECTOR_SHIFT;
687 offset = 0;
688 } else {
689 if (b->c->write_callback)
690 b->c->write_callback(b);
691 offset = b->write_start;
692 end = b->write_end;
693 offset &= -DM_BUFIO_WRITE_ALIGN;
694 end += DM_BUFIO_WRITE_ALIGN - 1;
695 end &= -DM_BUFIO_WRITE_ALIGN;
696 if (unlikely(end > b->c->block_size))
697 end = b->c->block_size;
698
699 sector += offset >> SECTOR_SHIFT;
700 n_sectors = (end - offset) >> SECTOR_SHIFT;
701 }
702
703 if (b->data_mode != DATA_MODE_VMALLOC)
704 use_bio(b, rw, sector, n_sectors, offset);
705 else
706 use_dmio(b, rw, sector, n_sectors, offset);
707 }
708
709 /*----------------------------------------------------------------
710 * Writing dirty buffers
711 *--------------------------------------------------------------*/
712
713 /*
714 * The endio routine for write.
715 *
716 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
717 * it.
718 */
write_endio(struct dm_buffer * b,blk_status_t status)719 static void write_endio(struct dm_buffer *b, blk_status_t status)
720 {
721 b->write_error = status;
722 if (unlikely(status)) {
723 struct dm_bufio_client *c = b->c;
724
725 (void)cmpxchg(&c->async_write_error, 0,
726 blk_status_to_errno(status));
727 }
728
729 BUG_ON(!test_bit(B_WRITING, &b->state));
730
731 smp_mb__before_atomic();
732 clear_bit(B_WRITING, &b->state);
733 smp_mb__after_atomic();
734
735 wake_up_bit(&b->state, B_WRITING);
736 }
737
738 /*
739 * Initiate a write on a dirty buffer, but don't wait for it.
740 *
741 * - If the buffer is not dirty, exit.
742 * - If there some previous write going on, wait for it to finish (we can't
743 * have two writes on the same buffer simultaneously).
744 * - Submit our write and don't wait on it. We set B_WRITING indicating
745 * that there is a write in progress.
746 */
__write_dirty_buffer(struct dm_buffer * b,struct list_head * write_list)747 static void __write_dirty_buffer(struct dm_buffer *b,
748 struct list_head *write_list)
749 {
750 if (!test_bit(B_DIRTY, &b->state))
751 return;
752
753 clear_bit(B_DIRTY, &b->state);
754 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
755
756 b->write_start = b->dirty_start;
757 b->write_end = b->dirty_end;
758
759 if (!write_list)
760 submit_io(b, REQ_OP_WRITE, write_endio);
761 else
762 list_add_tail(&b->write_list, write_list);
763 }
764
__flush_write_list(struct list_head * write_list)765 static void __flush_write_list(struct list_head *write_list)
766 {
767 struct blk_plug plug;
768 blk_start_plug(&plug);
769 while (!list_empty(write_list)) {
770 struct dm_buffer *b =
771 list_entry(write_list->next, struct dm_buffer, write_list);
772 list_del(&b->write_list);
773 submit_io(b, REQ_OP_WRITE, write_endio);
774 cond_resched();
775 }
776 blk_finish_plug(&plug);
777 }
778
779 /*
780 * Wait until any activity on the buffer finishes. Possibly write the
781 * buffer if it is dirty. When this function finishes, there is no I/O
782 * running on the buffer and the buffer is not dirty.
783 */
__make_buffer_clean(struct dm_buffer * b)784 static void __make_buffer_clean(struct dm_buffer *b)
785 {
786 BUG_ON(b->hold_count);
787
788 if (!b->state) /* fast case */
789 return;
790
791 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
792 __write_dirty_buffer(b, NULL);
793 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
794 }
795
796 /*
797 * Find some buffer that is not held by anybody, clean it, unlink it and
798 * return it.
799 */
__get_unclaimed_buffer(struct dm_bufio_client * c)800 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
801 {
802 struct dm_buffer *b;
803
804 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
805 BUG_ON(test_bit(B_WRITING, &b->state));
806 BUG_ON(test_bit(B_DIRTY, &b->state));
807
808 if (!b->hold_count) {
809 __make_buffer_clean(b);
810 __unlink_buffer(b);
811 return b;
812 }
813 cond_resched();
814 }
815
816 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
817 BUG_ON(test_bit(B_READING, &b->state));
818
819 if (!b->hold_count) {
820 __make_buffer_clean(b);
821 __unlink_buffer(b);
822 return b;
823 }
824 cond_resched();
825 }
826
827 return NULL;
828 }
829
830 /*
831 * Wait until some other threads free some buffer or release hold count on
832 * some buffer.
833 *
834 * This function is entered with c->lock held, drops it and regains it
835 * before exiting.
836 */
__wait_for_free_buffer(struct dm_bufio_client * c)837 static void __wait_for_free_buffer(struct dm_bufio_client *c)
838 {
839 DECLARE_WAITQUEUE(wait, current);
840
841 add_wait_queue(&c->free_buffer_wait, &wait);
842 set_current_state(TASK_UNINTERRUPTIBLE);
843 dm_bufio_unlock(c);
844
845 io_schedule();
846
847 remove_wait_queue(&c->free_buffer_wait, &wait);
848
849 dm_bufio_lock(c);
850 }
851
852 enum new_flag {
853 NF_FRESH = 0,
854 NF_READ = 1,
855 NF_GET = 2,
856 NF_PREFETCH = 3
857 };
858
859 /*
860 * Allocate a new buffer. If the allocation is not possible, wait until
861 * some other thread frees a buffer.
862 *
863 * May drop the lock and regain it.
864 */
__alloc_buffer_wait_no_callback(struct dm_bufio_client * c,enum new_flag nf)865 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
866 {
867 struct dm_buffer *b;
868 bool tried_noio_alloc = false;
869
870 /*
871 * dm-bufio is resistant to allocation failures (it just keeps
872 * one buffer reserved in cases all the allocations fail).
873 * So set flags to not try too hard:
874 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
875 * mutex and wait ourselves.
876 * __GFP_NORETRY: don't retry and rather return failure
877 * __GFP_NOMEMALLOC: don't use emergency reserves
878 * __GFP_NOWARN: don't print a warning in case of failure
879 *
880 * For debugging, if we set the cache size to 1, no new buffers will
881 * be allocated.
882 */
883 while (1) {
884 if (dm_bufio_cache_size_latch != 1) {
885 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
886 if (b)
887 return b;
888 }
889
890 if (nf == NF_PREFETCH)
891 return NULL;
892
893 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
894 dm_bufio_unlock(c);
895 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
896 dm_bufio_lock(c);
897 if (b)
898 return b;
899 tried_noio_alloc = true;
900 }
901
902 if (!list_empty(&c->reserved_buffers)) {
903 b = list_entry(c->reserved_buffers.next,
904 struct dm_buffer, lru_list);
905 list_del(&b->lru_list);
906 c->need_reserved_buffers++;
907
908 return b;
909 }
910
911 b = __get_unclaimed_buffer(c);
912 if (b)
913 return b;
914
915 __wait_for_free_buffer(c);
916 }
917 }
918
__alloc_buffer_wait(struct dm_bufio_client * c,enum new_flag nf)919 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
920 {
921 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
922
923 if (!b)
924 return NULL;
925
926 if (c->alloc_callback)
927 c->alloc_callback(b);
928
929 return b;
930 }
931
932 /*
933 * Free a buffer and wake other threads waiting for free buffers.
934 */
__free_buffer_wake(struct dm_buffer * b)935 static void __free_buffer_wake(struct dm_buffer *b)
936 {
937 struct dm_bufio_client *c = b->c;
938
939 if (!c->need_reserved_buffers)
940 free_buffer(b);
941 else {
942 list_add(&b->lru_list, &c->reserved_buffers);
943 c->need_reserved_buffers--;
944 }
945
946 wake_up(&c->free_buffer_wait);
947 }
948
__write_dirty_buffers_async(struct dm_bufio_client * c,int no_wait,struct list_head * write_list)949 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
950 struct list_head *write_list)
951 {
952 struct dm_buffer *b, *tmp;
953
954 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
955 BUG_ON(test_bit(B_READING, &b->state));
956
957 if (!test_bit(B_DIRTY, &b->state) &&
958 !test_bit(B_WRITING, &b->state)) {
959 __relink_lru(b, LIST_CLEAN);
960 continue;
961 }
962
963 if (no_wait && test_bit(B_WRITING, &b->state))
964 return;
965
966 __write_dirty_buffer(b, write_list);
967 cond_resched();
968 }
969 }
970
971 /*
972 * Check if we're over watermark.
973 * If we are over threshold_buffers, start freeing buffers.
974 * If we're over "limit_buffers", block until we get under the limit.
975 */
__check_watermark(struct dm_bufio_client * c,struct list_head * write_list)976 static void __check_watermark(struct dm_bufio_client *c,
977 struct list_head *write_list)
978 {
979 if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
980 __write_dirty_buffers_async(c, 1, write_list);
981 }
982
983 /*----------------------------------------------------------------
984 * Getting a buffer
985 *--------------------------------------------------------------*/
986
__bufio_new(struct dm_bufio_client * c,sector_t block,enum new_flag nf,int * need_submit,struct list_head * write_list)987 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
988 enum new_flag nf, int *need_submit,
989 struct list_head *write_list)
990 {
991 struct dm_buffer *b, *new_b = NULL;
992
993 *need_submit = 0;
994
995 b = __find(c, block);
996 if (b)
997 goto found_buffer;
998
999 if (nf == NF_GET)
1000 return NULL;
1001
1002 new_b = __alloc_buffer_wait(c, nf);
1003 if (!new_b)
1004 return NULL;
1005
1006 /*
1007 * We've had a period where the mutex was unlocked, so need to
1008 * recheck the buffer tree.
1009 */
1010 b = __find(c, block);
1011 if (b) {
1012 __free_buffer_wake(new_b);
1013 goto found_buffer;
1014 }
1015
1016 __check_watermark(c, write_list);
1017
1018 b = new_b;
1019 b->hold_count = 1;
1020 b->read_error = 0;
1021 b->write_error = 0;
1022 __link_buffer(b, block, LIST_CLEAN);
1023
1024 if (nf == NF_FRESH) {
1025 b->state = 0;
1026 return b;
1027 }
1028
1029 b->state = 1 << B_READING;
1030 *need_submit = 1;
1031
1032 return b;
1033
1034 found_buffer:
1035 if (nf == NF_PREFETCH)
1036 return NULL;
1037 /*
1038 * Note: it is essential that we don't wait for the buffer to be
1039 * read if dm_bufio_get function is used. Both dm_bufio_get and
1040 * dm_bufio_prefetch can be used in the driver request routine.
1041 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1042 * the same buffer, it would deadlock if we waited.
1043 */
1044 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1045 return NULL;
1046
1047 b->hold_count++;
1048 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1049 test_bit(B_WRITING, &b->state));
1050 return b;
1051 }
1052
1053 /*
1054 * The endio routine for reading: set the error, clear the bit and wake up
1055 * anyone waiting on the buffer.
1056 */
read_endio(struct dm_buffer * b,blk_status_t status)1057 static void read_endio(struct dm_buffer *b, blk_status_t status)
1058 {
1059 b->read_error = status;
1060
1061 BUG_ON(!test_bit(B_READING, &b->state));
1062
1063 smp_mb__before_atomic();
1064 clear_bit(B_READING, &b->state);
1065 smp_mb__after_atomic();
1066
1067 wake_up_bit(&b->state, B_READING);
1068 }
1069
1070 /*
1071 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1072 * functions is similar except that dm_bufio_new doesn't read the
1073 * buffer from the disk (assuming that the caller overwrites all the data
1074 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1075 */
new_read(struct dm_bufio_client * c,sector_t block,enum new_flag nf,struct dm_buffer ** bp)1076 static void *new_read(struct dm_bufio_client *c, sector_t block,
1077 enum new_flag nf, struct dm_buffer **bp)
1078 {
1079 int need_submit;
1080 struct dm_buffer *b;
1081
1082 LIST_HEAD(write_list);
1083
1084 dm_bufio_lock(c);
1085 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1086 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1087 if (b && b->hold_count == 1)
1088 buffer_record_stack(b);
1089 #endif
1090 dm_bufio_unlock(c);
1091
1092 __flush_write_list(&write_list);
1093
1094 if (!b)
1095 return NULL;
1096
1097 if (need_submit)
1098 submit_io(b, REQ_OP_READ, read_endio);
1099
1100 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1101
1102 if (b->read_error) {
1103 int error = blk_status_to_errno(b->read_error);
1104
1105 dm_bufio_release(b);
1106
1107 return ERR_PTR(error);
1108 }
1109
1110 *bp = b;
1111
1112 return b->data;
1113 }
1114
dm_bufio_get(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1115 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1116 struct dm_buffer **bp)
1117 {
1118 return new_read(c, block, NF_GET, bp);
1119 }
1120 EXPORT_SYMBOL_GPL(dm_bufio_get);
1121
dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1122 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1123 struct dm_buffer **bp)
1124 {
1125 BUG_ON(dm_bufio_in_request());
1126
1127 return new_read(c, block, NF_READ, bp);
1128 }
1129 EXPORT_SYMBOL_GPL(dm_bufio_read);
1130
dm_bufio_new(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1131 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1132 struct dm_buffer **bp)
1133 {
1134 BUG_ON(dm_bufio_in_request());
1135
1136 return new_read(c, block, NF_FRESH, bp);
1137 }
1138 EXPORT_SYMBOL_GPL(dm_bufio_new);
1139
dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned n_blocks)1140 void dm_bufio_prefetch(struct dm_bufio_client *c,
1141 sector_t block, unsigned n_blocks)
1142 {
1143 struct blk_plug plug;
1144
1145 LIST_HEAD(write_list);
1146
1147 BUG_ON(dm_bufio_in_request());
1148
1149 blk_start_plug(&plug);
1150 dm_bufio_lock(c);
1151
1152 for (; n_blocks--; block++) {
1153 int need_submit;
1154 struct dm_buffer *b;
1155 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1156 &write_list);
1157 if (unlikely(!list_empty(&write_list))) {
1158 dm_bufio_unlock(c);
1159 blk_finish_plug(&plug);
1160 __flush_write_list(&write_list);
1161 blk_start_plug(&plug);
1162 dm_bufio_lock(c);
1163 }
1164 if (unlikely(b != NULL)) {
1165 dm_bufio_unlock(c);
1166
1167 if (need_submit)
1168 submit_io(b, REQ_OP_READ, read_endio);
1169 dm_bufio_release(b);
1170
1171 cond_resched();
1172
1173 if (!n_blocks)
1174 goto flush_plug;
1175 dm_bufio_lock(c);
1176 }
1177 }
1178
1179 dm_bufio_unlock(c);
1180
1181 flush_plug:
1182 blk_finish_plug(&plug);
1183 }
1184 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1185
dm_bufio_release(struct dm_buffer * b)1186 void dm_bufio_release(struct dm_buffer *b)
1187 {
1188 struct dm_bufio_client *c = b->c;
1189
1190 dm_bufio_lock(c);
1191
1192 BUG_ON(!b->hold_count);
1193
1194 b->hold_count--;
1195 if (!b->hold_count) {
1196 wake_up(&c->free_buffer_wait);
1197
1198 /*
1199 * If there were errors on the buffer, and the buffer is not
1200 * to be written, free the buffer. There is no point in caching
1201 * invalid buffer.
1202 */
1203 if ((b->read_error || b->write_error) &&
1204 !test_bit(B_READING, &b->state) &&
1205 !test_bit(B_WRITING, &b->state) &&
1206 !test_bit(B_DIRTY, &b->state)) {
1207 __unlink_buffer(b);
1208 __free_buffer_wake(b);
1209 }
1210 }
1211
1212 dm_bufio_unlock(c);
1213 }
1214 EXPORT_SYMBOL_GPL(dm_bufio_release);
1215
dm_bufio_mark_partial_buffer_dirty(struct dm_buffer * b,unsigned start,unsigned end)1216 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1217 unsigned start, unsigned end)
1218 {
1219 struct dm_bufio_client *c = b->c;
1220
1221 BUG_ON(start >= end);
1222 BUG_ON(end > b->c->block_size);
1223
1224 dm_bufio_lock(c);
1225
1226 BUG_ON(test_bit(B_READING, &b->state));
1227
1228 if (!test_and_set_bit(B_DIRTY, &b->state)) {
1229 b->dirty_start = start;
1230 b->dirty_end = end;
1231 __relink_lru(b, LIST_DIRTY);
1232 } else {
1233 if (start < b->dirty_start)
1234 b->dirty_start = start;
1235 if (end > b->dirty_end)
1236 b->dirty_end = end;
1237 }
1238
1239 dm_bufio_unlock(c);
1240 }
1241 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1242
dm_bufio_mark_buffer_dirty(struct dm_buffer * b)1243 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1244 {
1245 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1246 }
1247 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1248
dm_bufio_write_dirty_buffers_async(struct dm_bufio_client * c)1249 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1250 {
1251 LIST_HEAD(write_list);
1252
1253 BUG_ON(dm_bufio_in_request());
1254
1255 dm_bufio_lock(c);
1256 __write_dirty_buffers_async(c, 0, &write_list);
1257 dm_bufio_unlock(c);
1258 __flush_write_list(&write_list);
1259 }
1260 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1261
1262 /*
1263 * For performance, it is essential that the buffers are written asynchronously
1264 * and simultaneously (so that the block layer can merge the writes) and then
1265 * waited upon.
1266 *
1267 * Finally, we flush hardware disk cache.
1268 */
dm_bufio_write_dirty_buffers(struct dm_bufio_client * c)1269 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1270 {
1271 int a, f;
1272 unsigned long buffers_processed = 0;
1273 struct dm_buffer *b, *tmp;
1274
1275 LIST_HEAD(write_list);
1276
1277 dm_bufio_lock(c);
1278 __write_dirty_buffers_async(c, 0, &write_list);
1279 dm_bufio_unlock(c);
1280 __flush_write_list(&write_list);
1281 dm_bufio_lock(c);
1282
1283 again:
1284 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1285 int dropped_lock = 0;
1286
1287 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1288 buffers_processed++;
1289
1290 BUG_ON(test_bit(B_READING, &b->state));
1291
1292 if (test_bit(B_WRITING, &b->state)) {
1293 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1294 dropped_lock = 1;
1295 b->hold_count++;
1296 dm_bufio_unlock(c);
1297 wait_on_bit_io(&b->state, B_WRITING,
1298 TASK_UNINTERRUPTIBLE);
1299 dm_bufio_lock(c);
1300 b->hold_count--;
1301 } else
1302 wait_on_bit_io(&b->state, B_WRITING,
1303 TASK_UNINTERRUPTIBLE);
1304 }
1305
1306 if (!test_bit(B_DIRTY, &b->state) &&
1307 !test_bit(B_WRITING, &b->state))
1308 __relink_lru(b, LIST_CLEAN);
1309
1310 cond_resched();
1311
1312 /*
1313 * If we dropped the lock, the list is no longer consistent,
1314 * so we must restart the search.
1315 *
1316 * In the most common case, the buffer just processed is
1317 * relinked to the clean list, so we won't loop scanning the
1318 * same buffer again and again.
1319 *
1320 * This may livelock if there is another thread simultaneously
1321 * dirtying buffers, so we count the number of buffers walked
1322 * and if it exceeds the total number of buffers, it means that
1323 * someone is doing some writes simultaneously with us. In
1324 * this case, stop, dropping the lock.
1325 */
1326 if (dropped_lock)
1327 goto again;
1328 }
1329 wake_up(&c->free_buffer_wait);
1330 dm_bufio_unlock(c);
1331
1332 a = xchg(&c->async_write_error, 0);
1333 f = dm_bufio_issue_flush(c);
1334 if (a)
1335 return a;
1336
1337 return f;
1338 }
1339 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1340
1341 /*
1342 * Use dm-io to send an empty barrier to flush the device.
1343 */
dm_bufio_issue_flush(struct dm_bufio_client * c)1344 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1345 {
1346 struct dm_io_request io_req = {
1347 .bi_op = REQ_OP_WRITE,
1348 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1349 .mem.type = DM_IO_KMEM,
1350 .mem.ptr.addr = NULL,
1351 .client = c->dm_io,
1352 };
1353 struct dm_io_region io_reg = {
1354 .bdev = c->bdev,
1355 .sector = 0,
1356 .count = 0,
1357 };
1358
1359 BUG_ON(dm_bufio_in_request());
1360
1361 return dm_io(&io_req, 1, &io_reg, NULL);
1362 }
1363 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1364
1365 /*
1366 * Use dm-io to send a discard request to flush the device.
1367 */
dm_bufio_issue_discard(struct dm_bufio_client * c,sector_t block,sector_t count)1368 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1369 {
1370 struct dm_io_request io_req = {
1371 .bi_op = REQ_OP_DISCARD,
1372 .bi_op_flags = REQ_SYNC,
1373 .mem.type = DM_IO_KMEM,
1374 .mem.ptr.addr = NULL,
1375 .client = c->dm_io,
1376 };
1377 struct dm_io_region io_reg = {
1378 .bdev = c->bdev,
1379 .sector = block_to_sector(c, block),
1380 .count = block_to_sector(c, count),
1381 };
1382
1383 BUG_ON(dm_bufio_in_request());
1384
1385 return dm_io(&io_req, 1, &io_reg, NULL);
1386 }
1387 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1388
1389 /*
1390 * We first delete any other buffer that may be at that new location.
1391 *
1392 * Then, we write the buffer to the original location if it was dirty.
1393 *
1394 * Then, if we are the only one who is holding the buffer, relink the buffer
1395 * in the buffer tree for the new location.
1396 *
1397 * If there was someone else holding the buffer, we write it to the new
1398 * location but not relink it, because that other user needs to have the buffer
1399 * at the same place.
1400 */
dm_bufio_release_move(struct dm_buffer * b,sector_t new_block)1401 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1402 {
1403 struct dm_bufio_client *c = b->c;
1404 struct dm_buffer *new;
1405
1406 BUG_ON(dm_bufio_in_request());
1407
1408 dm_bufio_lock(c);
1409
1410 retry:
1411 new = __find(c, new_block);
1412 if (new) {
1413 if (new->hold_count) {
1414 __wait_for_free_buffer(c);
1415 goto retry;
1416 }
1417
1418 /*
1419 * FIXME: Is there any point waiting for a write that's going
1420 * to be overwritten in a bit?
1421 */
1422 __make_buffer_clean(new);
1423 __unlink_buffer(new);
1424 __free_buffer_wake(new);
1425 }
1426
1427 BUG_ON(!b->hold_count);
1428 BUG_ON(test_bit(B_READING, &b->state));
1429
1430 __write_dirty_buffer(b, NULL);
1431 if (b->hold_count == 1) {
1432 wait_on_bit_io(&b->state, B_WRITING,
1433 TASK_UNINTERRUPTIBLE);
1434 set_bit(B_DIRTY, &b->state);
1435 b->dirty_start = 0;
1436 b->dirty_end = c->block_size;
1437 __unlink_buffer(b);
1438 __link_buffer(b, new_block, LIST_DIRTY);
1439 } else {
1440 sector_t old_block;
1441 wait_on_bit_lock_io(&b->state, B_WRITING,
1442 TASK_UNINTERRUPTIBLE);
1443 /*
1444 * Relink buffer to "new_block" so that write_callback
1445 * sees "new_block" as a block number.
1446 * After the write, link the buffer back to old_block.
1447 * All this must be done in bufio lock, so that block number
1448 * change isn't visible to other threads.
1449 */
1450 old_block = b->block;
1451 __unlink_buffer(b);
1452 __link_buffer(b, new_block, b->list_mode);
1453 submit_io(b, REQ_OP_WRITE, write_endio);
1454 wait_on_bit_io(&b->state, B_WRITING,
1455 TASK_UNINTERRUPTIBLE);
1456 __unlink_buffer(b);
1457 __link_buffer(b, old_block, b->list_mode);
1458 }
1459
1460 dm_bufio_unlock(c);
1461 dm_bufio_release(b);
1462 }
1463 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1464
forget_buffer_locked(struct dm_buffer * b)1465 static void forget_buffer_locked(struct dm_buffer *b)
1466 {
1467 if (likely(!b->hold_count) && likely(!b->state)) {
1468 __unlink_buffer(b);
1469 __free_buffer_wake(b);
1470 }
1471 }
1472
1473 /*
1474 * Free the given buffer.
1475 *
1476 * This is just a hint, if the buffer is in use or dirty, this function
1477 * does nothing.
1478 */
dm_bufio_forget(struct dm_bufio_client * c,sector_t block)1479 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1480 {
1481 struct dm_buffer *b;
1482
1483 dm_bufio_lock(c);
1484
1485 b = __find(c, block);
1486 if (b)
1487 forget_buffer_locked(b);
1488
1489 dm_bufio_unlock(c);
1490 }
1491 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1492
dm_bufio_forget_buffers(struct dm_bufio_client * c,sector_t block,sector_t n_blocks)1493 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1494 {
1495 struct dm_buffer *b;
1496 sector_t end_block = block + n_blocks;
1497
1498 while (block < end_block) {
1499 dm_bufio_lock(c);
1500
1501 b = __find_next(c, block);
1502 if (b) {
1503 block = b->block + 1;
1504 forget_buffer_locked(b);
1505 }
1506
1507 dm_bufio_unlock(c);
1508
1509 if (!b)
1510 break;
1511 }
1512
1513 }
1514 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1515
dm_bufio_set_minimum_buffers(struct dm_bufio_client * c,unsigned n)1516 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1517 {
1518 c->minimum_buffers = n;
1519 }
1520 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1521
dm_bufio_get_block_size(struct dm_bufio_client * c)1522 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1523 {
1524 return c->block_size;
1525 }
1526 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1527
dm_bufio_get_device_size(struct dm_bufio_client * c)1528 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1529 {
1530 sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1531 if (s >= c->start)
1532 s -= c->start;
1533 else
1534 s = 0;
1535 if (likely(c->sectors_per_block_bits >= 0))
1536 s >>= c->sectors_per_block_bits;
1537 else
1538 sector_div(s, c->block_size >> SECTOR_SHIFT);
1539 return s;
1540 }
1541 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1542
dm_bufio_get_dm_io_client(struct dm_bufio_client * c)1543 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1544 {
1545 return c->dm_io;
1546 }
1547 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1548
dm_bufio_get_block_number(struct dm_buffer * b)1549 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1550 {
1551 return b->block;
1552 }
1553 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1554
dm_bufio_get_block_data(struct dm_buffer * b)1555 void *dm_bufio_get_block_data(struct dm_buffer *b)
1556 {
1557 return b->data;
1558 }
1559 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1560
dm_bufio_get_aux_data(struct dm_buffer * b)1561 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1562 {
1563 return b + 1;
1564 }
1565 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1566
dm_bufio_get_client(struct dm_buffer * b)1567 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1568 {
1569 return b->c;
1570 }
1571 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1572
drop_buffers(struct dm_bufio_client * c)1573 static void drop_buffers(struct dm_bufio_client *c)
1574 {
1575 struct dm_buffer *b;
1576 int i;
1577 bool warned = false;
1578
1579 BUG_ON(dm_bufio_in_request());
1580
1581 /*
1582 * An optimization so that the buffers are not written one-by-one.
1583 */
1584 dm_bufio_write_dirty_buffers_async(c);
1585
1586 dm_bufio_lock(c);
1587
1588 while ((b = __get_unclaimed_buffer(c)))
1589 __free_buffer_wake(b);
1590
1591 for (i = 0; i < LIST_SIZE; i++)
1592 list_for_each_entry(b, &c->lru[i], lru_list) {
1593 WARN_ON(!warned);
1594 warned = true;
1595 DMERR("leaked buffer %llx, hold count %u, list %d",
1596 (unsigned long long)b->block, b->hold_count, i);
1597 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1598 stack_trace_print(b->stack_entries, b->stack_len, 1);
1599 /* mark unclaimed to avoid BUG_ON below */
1600 b->hold_count = 0;
1601 #endif
1602 }
1603
1604 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1605 while ((b = __get_unclaimed_buffer(c)))
1606 __free_buffer_wake(b);
1607 #endif
1608
1609 for (i = 0; i < LIST_SIZE; i++)
1610 BUG_ON(!list_empty(&c->lru[i]));
1611
1612 dm_bufio_unlock(c);
1613 }
1614
1615 /*
1616 * We may not be able to evict this buffer if IO pending or the client
1617 * is still using it. Caller is expected to know buffer is too old.
1618 *
1619 * And if GFP_NOFS is used, we must not do any I/O because we hold
1620 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1621 * rerouted to different bufio client.
1622 */
__try_evict_buffer(struct dm_buffer * b,gfp_t gfp)1623 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1624 {
1625 if (!(gfp & __GFP_FS)) {
1626 if (test_bit(B_READING, &b->state) ||
1627 test_bit(B_WRITING, &b->state) ||
1628 test_bit(B_DIRTY, &b->state))
1629 return false;
1630 }
1631
1632 if (b->hold_count)
1633 return false;
1634
1635 __make_buffer_clean(b);
1636 __unlink_buffer(b);
1637 __free_buffer_wake(b);
1638
1639 return true;
1640 }
1641
get_retain_buffers(struct dm_bufio_client * c)1642 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1643 {
1644 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1645 if (likely(c->sectors_per_block_bits >= 0))
1646 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1647 else
1648 retain_bytes /= c->block_size;
1649 return retain_bytes;
1650 }
1651
__scan(struct dm_bufio_client * c)1652 static void __scan(struct dm_bufio_client *c)
1653 {
1654 int l;
1655 struct dm_buffer *b, *tmp;
1656 unsigned long freed = 0;
1657 unsigned long count = c->n_buffers[LIST_CLEAN] +
1658 c->n_buffers[LIST_DIRTY];
1659 unsigned long retain_target = get_retain_buffers(c);
1660
1661 for (l = 0; l < LIST_SIZE; l++) {
1662 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1663 if (count - freed <= retain_target)
1664 atomic_long_set(&c->need_shrink, 0);
1665 if (!atomic_long_read(&c->need_shrink))
1666 return;
1667 if (__try_evict_buffer(b, GFP_KERNEL)) {
1668 atomic_long_dec(&c->need_shrink);
1669 freed++;
1670 }
1671 cond_resched();
1672 }
1673 }
1674 }
1675
shrink_work(struct work_struct * w)1676 static void shrink_work(struct work_struct *w)
1677 {
1678 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1679
1680 dm_bufio_lock(c);
1681 __scan(c);
1682 dm_bufio_unlock(c);
1683 }
1684
dm_bufio_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1685 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1686 {
1687 struct dm_bufio_client *c;
1688 bool bypass = false;
1689
1690 trace_android_vh_dm_bufio_shrink_scan_bypass(
1691 dm_bufio_current_allocated,
1692 &bypass);
1693 if (bypass)
1694 return 0;
1695
1696 c = container_of(shrink, struct dm_bufio_client, shrinker);
1697 atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1698 queue_work(dm_bufio_wq, &c->shrink_work);
1699
1700 return sc->nr_to_scan;
1701 }
1702
dm_bufio_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1703 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1704 {
1705 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1706 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1707 READ_ONCE(c->n_buffers[LIST_DIRTY]);
1708 unsigned long retain_target = get_retain_buffers(c);
1709 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1710
1711 if (unlikely(count < retain_target))
1712 count = 0;
1713 else
1714 count -= retain_target;
1715
1716 if (unlikely(count < queued_for_cleanup))
1717 count = 0;
1718 else
1719 count -= queued_for_cleanup;
1720
1721 return count;
1722 }
1723
1724 /*
1725 * Create the buffering interface
1726 */
dm_bufio_client_create(struct block_device * bdev,unsigned block_size,unsigned reserved_buffers,unsigned aux_size,void (* alloc_callback)(struct dm_buffer *),void (* write_callback)(struct dm_buffer *))1727 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1728 unsigned reserved_buffers, unsigned aux_size,
1729 void (*alloc_callback)(struct dm_buffer *),
1730 void (*write_callback)(struct dm_buffer *))
1731 {
1732 int r;
1733 struct dm_bufio_client *c;
1734 unsigned i;
1735 char slab_name[27];
1736
1737 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1738 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1739 r = -EINVAL;
1740 goto bad_client;
1741 }
1742
1743 c = kzalloc(sizeof(*c), GFP_KERNEL);
1744 if (!c) {
1745 r = -ENOMEM;
1746 goto bad_client;
1747 }
1748 c->buffer_tree = RB_ROOT;
1749
1750 c->bdev = bdev;
1751 c->block_size = block_size;
1752 if (is_power_of_2(block_size))
1753 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1754 else
1755 c->sectors_per_block_bits = -1;
1756
1757 c->alloc_callback = alloc_callback;
1758 c->write_callback = write_callback;
1759
1760 for (i = 0; i < LIST_SIZE; i++) {
1761 INIT_LIST_HEAD(&c->lru[i]);
1762 c->n_buffers[i] = 0;
1763 }
1764
1765 mutex_init(&c->lock);
1766 INIT_LIST_HEAD(&c->reserved_buffers);
1767 c->need_reserved_buffers = reserved_buffers;
1768
1769 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1770
1771 init_waitqueue_head(&c->free_buffer_wait);
1772 c->async_write_error = 0;
1773
1774 c->dm_io = dm_io_client_create();
1775 if (IS_ERR(c->dm_io)) {
1776 r = PTR_ERR(c->dm_io);
1777 goto bad_dm_io;
1778 }
1779
1780 if (block_size <= KMALLOC_MAX_SIZE &&
1781 (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1782 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1783 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1784 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1785 SLAB_RECLAIM_ACCOUNT, NULL);
1786 if (!c->slab_cache) {
1787 r = -ENOMEM;
1788 goto bad;
1789 }
1790 }
1791 if (aux_size)
1792 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1793 else
1794 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1795 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1796 0, SLAB_RECLAIM_ACCOUNT, NULL);
1797 if (!c->slab_buffer) {
1798 r = -ENOMEM;
1799 goto bad;
1800 }
1801
1802 while (c->need_reserved_buffers) {
1803 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1804
1805 if (!b) {
1806 r = -ENOMEM;
1807 goto bad;
1808 }
1809 __free_buffer_wake(b);
1810 }
1811
1812 INIT_WORK(&c->shrink_work, shrink_work);
1813 atomic_long_set(&c->need_shrink, 0);
1814
1815 c->shrinker.count_objects = dm_bufio_shrink_count;
1816 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1817 c->shrinker.seeks = 1;
1818 c->shrinker.batch = 0;
1819 r = register_shrinker(&c->shrinker);
1820 if (r)
1821 goto bad;
1822
1823 mutex_lock(&dm_bufio_clients_lock);
1824 dm_bufio_client_count++;
1825 list_add(&c->client_list, &dm_bufio_all_clients);
1826 __cache_size_refresh();
1827 mutex_unlock(&dm_bufio_clients_lock);
1828
1829 return c;
1830
1831 bad:
1832 while (!list_empty(&c->reserved_buffers)) {
1833 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1834 struct dm_buffer, lru_list);
1835 list_del(&b->lru_list);
1836 free_buffer(b);
1837 }
1838 kmem_cache_destroy(c->slab_cache);
1839 kmem_cache_destroy(c->slab_buffer);
1840 dm_io_client_destroy(c->dm_io);
1841 bad_dm_io:
1842 mutex_destroy(&c->lock);
1843 kfree(c);
1844 bad_client:
1845 return ERR_PTR(r);
1846 }
1847 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1848
1849 /*
1850 * Free the buffering interface.
1851 * It is required that there are no references on any buffers.
1852 */
dm_bufio_client_destroy(struct dm_bufio_client * c)1853 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1854 {
1855 unsigned i;
1856
1857 drop_buffers(c);
1858
1859 unregister_shrinker(&c->shrinker);
1860 flush_work(&c->shrink_work);
1861
1862 mutex_lock(&dm_bufio_clients_lock);
1863
1864 list_del(&c->client_list);
1865 dm_bufio_client_count--;
1866 __cache_size_refresh();
1867
1868 mutex_unlock(&dm_bufio_clients_lock);
1869
1870 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1871 BUG_ON(c->need_reserved_buffers);
1872
1873 while (!list_empty(&c->reserved_buffers)) {
1874 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1875 struct dm_buffer, lru_list);
1876 list_del(&b->lru_list);
1877 free_buffer(b);
1878 }
1879
1880 for (i = 0; i < LIST_SIZE; i++)
1881 if (c->n_buffers[i])
1882 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1883
1884 for (i = 0; i < LIST_SIZE; i++)
1885 BUG_ON(c->n_buffers[i]);
1886
1887 kmem_cache_destroy(c->slab_cache);
1888 kmem_cache_destroy(c->slab_buffer);
1889 dm_io_client_destroy(c->dm_io);
1890 mutex_destroy(&c->lock);
1891 kfree(c);
1892 }
1893 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1894
dm_bufio_set_sector_offset(struct dm_bufio_client * c,sector_t start)1895 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1896 {
1897 c->start = start;
1898 }
1899 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1900
get_max_age_hz(void)1901 static unsigned get_max_age_hz(void)
1902 {
1903 unsigned max_age = READ_ONCE(dm_bufio_max_age);
1904
1905 if (max_age > UINT_MAX / HZ)
1906 max_age = UINT_MAX / HZ;
1907
1908 return max_age * HZ;
1909 }
1910
older_than(struct dm_buffer * b,unsigned long age_hz)1911 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1912 {
1913 return time_after_eq(jiffies, b->last_accessed + age_hz);
1914 }
1915
__evict_old_buffers(struct dm_bufio_client * c,unsigned long age_hz)1916 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1917 {
1918 struct dm_buffer *b, *tmp;
1919 unsigned long retain_target = get_retain_buffers(c);
1920 unsigned long count;
1921 LIST_HEAD(write_list);
1922
1923 dm_bufio_lock(c);
1924
1925 __check_watermark(c, &write_list);
1926 if (unlikely(!list_empty(&write_list))) {
1927 dm_bufio_unlock(c);
1928 __flush_write_list(&write_list);
1929 dm_bufio_lock(c);
1930 }
1931
1932 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1933 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1934 if (count <= retain_target)
1935 break;
1936
1937 if (!older_than(b, age_hz))
1938 break;
1939
1940 if (__try_evict_buffer(b, 0))
1941 count--;
1942
1943 cond_resched();
1944 }
1945
1946 dm_bufio_unlock(c);
1947 }
1948
do_global_cleanup(struct work_struct * w)1949 static void do_global_cleanup(struct work_struct *w)
1950 {
1951 struct dm_bufio_client *locked_client = NULL;
1952 struct dm_bufio_client *current_client;
1953 struct dm_buffer *b;
1954 unsigned spinlock_hold_count;
1955 unsigned long threshold = dm_bufio_cache_size -
1956 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1957 unsigned long loops = global_num * 2;
1958
1959 mutex_lock(&dm_bufio_clients_lock);
1960
1961 while (1) {
1962 cond_resched();
1963
1964 spin_lock(&global_spinlock);
1965 if (unlikely(dm_bufio_current_allocated <= threshold))
1966 break;
1967
1968 spinlock_hold_count = 0;
1969 get_next:
1970 if (!loops--)
1971 break;
1972 if (unlikely(list_empty(&global_queue)))
1973 break;
1974 b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1975
1976 if (b->accessed) {
1977 b->accessed = 0;
1978 list_move(&b->global_list, &global_queue);
1979 if (likely(++spinlock_hold_count < 16))
1980 goto get_next;
1981 spin_unlock(&global_spinlock);
1982 continue;
1983 }
1984
1985 current_client = b->c;
1986 if (unlikely(current_client != locked_client)) {
1987 if (locked_client)
1988 dm_bufio_unlock(locked_client);
1989
1990 if (!dm_bufio_trylock(current_client)) {
1991 spin_unlock(&global_spinlock);
1992 dm_bufio_lock(current_client);
1993 locked_client = current_client;
1994 continue;
1995 }
1996
1997 locked_client = current_client;
1998 }
1999
2000 spin_unlock(&global_spinlock);
2001
2002 if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
2003 spin_lock(&global_spinlock);
2004 list_move(&b->global_list, &global_queue);
2005 spin_unlock(&global_spinlock);
2006 }
2007 }
2008
2009 spin_unlock(&global_spinlock);
2010
2011 if (locked_client)
2012 dm_bufio_unlock(locked_client);
2013
2014 mutex_unlock(&dm_bufio_clients_lock);
2015 }
2016
cleanup_old_buffers(void)2017 static void cleanup_old_buffers(void)
2018 {
2019 unsigned long max_age_hz = get_max_age_hz();
2020 struct dm_bufio_client *c;
2021 bool bypass = false;
2022
2023 trace_android_vh_cleanup_old_buffers_bypass(
2024 dm_bufio_current_allocated,
2025 &max_age_hz,
2026 &bypass);
2027 if (bypass)
2028 return;
2029
2030 mutex_lock(&dm_bufio_clients_lock);
2031
2032 __cache_size_refresh();
2033
2034 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2035 __evict_old_buffers(c, max_age_hz);
2036
2037 mutex_unlock(&dm_bufio_clients_lock);
2038 }
2039
work_fn(struct work_struct * w)2040 static void work_fn(struct work_struct *w)
2041 {
2042 cleanup_old_buffers();
2043
2044 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2045 DM_BUFIO_WORK_TIMER_SECS * HZ);
2046 }
2047
2048 /*----------------------------------------------------------------
2049 * Module setup
2050 *--------------------------------------------------------------*/
2051
2052 /*
2053 * This is called only once for the whole dm_bufio module.
2054 * It initializes memory limit.
2055 */
dm_bufio_init(void)2056 static int __init dm_bufio_init(void)
2057 {
2058 __u64 mem;
2059
2060 dm_bufio_allocated_kmem_cache = 0;
2061 dm_bufio_allocated_get_free_pages = 0;
2062 dm_bufio_allocated_vmalloc = 0;
2063 dm_bufio_current_allocated = 0;
2064
2065 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2066 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2067
2068 if (mem > ULONG_MAX)
2069 mem = ULONG_MAX;
2070
2071 #ifdef CONFIG_MMU
2072 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2073 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2074 #endif
2075
2076 dm_bufio_default_cache_size = mem;
2077
2078 mutex_lock(&dm_bufio_clients_lock);
2079 __cache_size_refresh();
2080 mutex_unlock(&dm_bufio_clients_lock);
2081
2082 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2083 if (!dm_bufio_wq)
2084 return -ENOMEM;
2085
2086 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2087 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2088 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2089 DM_BUFIO_WORK_TIMER_SECS * HZ);
2090
2091 return 0;
2092 }
2093
2094 /*
2095 * This is called once when unloading the dm_bufio module.
2096 */
dm_bufio_exit(void)2097 static void __exit dm_bufio_exit(void)
2098 {
2099 int bug = 0;
2100
2101 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2102 flush_workqueue(dm_bufio_wq);
2103 destroy_workqueue(dm_bufio_wq);
2104
2105 if (dm_bufio_client_count) {
2106 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2107 __func__, dm_bufio_client_count);
2108 bug = 1;
2109 }
2110
2111 if (dm_bufio_current_allocated) {
2112 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2113 __func__, dm_bufio_current_allocated);
2114 bug = 1;
2115 }
2116
2117 if (dm_bufio_allocated_get_free_pages) {
2118 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2119 __func__, dm_bufio_allocated_get_free_pages);
2120 bug = 1;
2121 }
2122
2123 if (dm_bufio_allocated_vmalloc) {
2124 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2125 __func__, dm_bufio_allocated_vmalloc);
2126 bug = 1;
2127 }
2128
2129 BUG_ON(bug);
2130 }
2131
2132 module_init(dm_bufio_init)
2133 module_exit(dm_bufio_exit)
2134
2135 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2136 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2137
2138 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2139 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2140
2141 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2142 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2143
2144 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2145 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2146
2147 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2148 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2149
2150 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2151 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2152
2153 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2154 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2155
2156 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2157 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2158
2159 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2160 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2161 MODULE_LICENSE("GPL");
2162