• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <linux/key-type.h>
38 #include <keys/user-type.h>
39 #include <keys/encrypted-type.h>
40 
41 #include <linux/device-mapper.h>
42 
43 #define DM_MSG_PREFIX "crypt"
44 
45 /*
46  * context holding the current state of a multi-part conversion
47  */
48 struct convert_context {
49 	struct completion restart;
50 	struct bio *bio_in;
51 	struct bio *bio_out;
52 	struct bvec_iter iter_in;
53 	struct bvec_iter iter_out;
54 	u64 cc_sector;
55 	atomic_t cc_pending;
56 	union {
57 		struct skcipher_request *req;
58 		struct aead_request *req_aead;
59 	} r;
60 
61 };
62 
63 /*
64  * per bio private data
65  */
66 struct dm_crypt_io {
67 	struct crypt_config *cc;
68 	struct bio *base_bio;
69 	u8 *integrity_metadata;
70 	bool integrity_metadata_from_pool:1;
71 	bool in_tasklet:1;
72 
73 	struct work_struct work;
74 	struct tasklet_struct tasklet;
75 
76 	struct convert_context ctx;
77 
78 	atomic_t io_pending;
79 	blk_status_t error;
80 	sector_t sector;
81 
82 	struct rb_node rb_node;
83 } CRYPTO_MINALIGN_ATTR;
84 
85 struct dm_crypt_request {
86 	struct convert_context *ctx;
87 	struct scatterlist sg_in[4];
88 	struct scatterlist sg_out[4];
89 	u64 iv_sector;
90 };
91 
92 struct crypt_config;
93 
94 struct crypt_iv_operations {
95 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
96 		   const char *opts);
97 	void (*dtr)(struct crypt_config *cc);
98 	int (*init)(struct crypt_config *cc);
99 	int (*wipe)(struct crypt_config *cc);
100 	int (*generator)(struct crypt_config *cc, u8 *iv,
101 			 struct dm_crypt_request *dmreq);
102 	int (*post)(struct crypt_config *cc, u8 *iv,
103 		    struct dm_crypt_request *dmreq);
104 };
105 
106 struct iv_benbi_private {
107 	int shift;
108 };
109 
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private {
112 	struct crypto_shash *hash_tfm;
113 	u8 *seed;
114 };
115 
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private {
118 	struct crypto_shash *crc32_tfm;
119 	u8 *iv_seed;
120 	u8 *whitening;
121 };
122 
123 #define ELEPHANT_MAX_KEY_SIZE 32
124 struct iv_elephant_private {
125 	struct crypto_skcipher *tfm;
126 };
127 
128 /*
129  * Crypt: maps a linear range of a block device
130  * and encrypts / decrypts at the same time.
131  */
132 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
133 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
134 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
135 	     DM_CRYPT_WRITE_INLINE };
136 
137 enum cipher_flags {
138 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cihper */
139 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
140 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
141 };
142 
143 /*
144  * The fields in here must be read only after initialization.
145  */
146 struct crypt_config {
147 	struct dm_dev *dev;
148 	sector_t start;
149 
150 	struct percpu_counter n_allocated_pages;
151 
152 	struct workqueue_struct *io_queue;
153 	struct workqueue_struct *crypt_queue;
154 
155 	spinlock_t write_thread_lock;
156 	struct task_struct *write_thread;
157 	struct rb_root write_tree;
158 
159 	char *cipher_string;
160 	char *cipher_auth;
161 	char *key_string;
162 
163 	const struct crypt_iv_operations *iv_gen_ops;
164 	union {
165 		struct iv_benbi_private benbi;
166 		struct iv_lmk_private lmk;
167 		struct iv_tcw_private tcw;
168 		struct iv_elephant_private elephant;
169 	} iv_gen_private;
170 	u64 iv_offset;
171 	unsigned int iv_size;
172 	unsigned short int sector_size;
173 	unsigned char sector_shift;
174 
175 	union {
176 		struct crypto_skcipher **tfms;
177 		struct crypto_aead **tfms_aead;
178 	} cipher_tfm;
179 	unsigned tfms_count;
180 	unsigned long cipher_flags;
181 
182 	/*
183 	 * Layout of each crypto request:
184 	 *
185 	 *   struct skcipher_request
186 	 *      context
187 	 *      padding
188 	 *   struct dm_crypt_request
189 	 *      padding
190 	 *   IV
191 	 *
192 	 * The padding is added so that dm_crypt_request and the IV are
193 	 * correctly aligned.
194 	 */
195 	unsigned int dmreq_start;
196 
197 	unsigned int per_bio_data_size;
198 
199 	unsigned long flags;
200 	unsigned int key_size;
201 	unsigned int key_parts;      /* independent parts in key buffer */
202 	unsigned int key_extra_size; /* additional keys length */
203 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
204 
205 	unsigned int integrity_tag_size;
206 	unsigned int integrity_iv_size;
207 	unsigned int on_disk_tag_size;
208 
209 	/*
210 	 * pool for per bio private data, crypto requests,
211 	 * encryption requeusts/buffer pages and integrity tags
212 	 */
213 	unsigned tag_pool_max_sectors;
214 	mempool_t tag_pool;
215 	mempool_t req_pool;
216 	mempool_t page_pool;
217 
218 	struct bio_set bs;
219 	struct mutex bio_alloc_lock;
220 
221 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
222 	u8 key[];
223 };
224 
225 #define MIN_IOS		64
226 #define MAX_TAG_SIZE	480
227 #define POOL_ENTRY_SIZE	512
228 
229 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
230 static unsigned dm_crypt_clients_n = 0;
231 static volatile unsigned long dm_crypt_pages_per_client;
232 #define DM_CRYPT_MEMORY_PERCENT			2
233 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_PAGES * 16)
234 
235 static void clone_init(struct dm_crypt_io *, struct bio *);
236 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
237 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
238 					     struct scatterlist *sg);
239 
240 static bool crypt_integrity_aead(struct crypt_config *cc);
241 
242 /*
243  * Use this to access cipher attributes that are independent of the key.
244  */
any_tfm(struct crypt_config * cc)245 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
246 {
247 	return cc->cipher_tfm.tfms[0];
248 }
249 
any_tfm_aead(struct crypt_config * cc)250 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
251 {
252 	return cc->cipher_tfm.tfms_aead[0];
253 }
254 
255 /*
256  * Different IV generation algorithms:
257  *
258  * plain: the initial vector is the 32-bit little-endian version of the sector
259  *        number, padded with zeros if necessary.
260  *
261  * plain64: the initial vector is the 64-bit little-endian version of the sector
262  *        number, padded with zeros if necessary.
263  *
264  * plain64be: the initial vector is the 64-bit big-endian version of the sector
265  *        number, padded with zeros if necessary.
266  *
267  * essiv: "encrypted sector|salt initial vector", the sector number is
268  *        encrypted with the bulk cipher using a salt as key. The salt
269  *        should be derived from the bulk cipher's key via hashing.
270  *
271  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
272  *        (needed for LRW-32-AES and possible other narrow block modes)
273  *
274  * null: the initial vector is always zero.  Provides compatibility with
275  *       obsolete loop_fish2 devices.  Do not use for new devices.
276  *
277  * lmk:  Compatible implementation of the block chaining mode used
278  *       by the Loop-AES block device encryption system
279  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
280  *       It operates on full 512 byte sectors and uses CBC
281  *       with an IV derived from the sector number, the data and
282  *       optionally extra IV seed.
283  *       This means that after decryption the first block
284  *       of sector must be tweaked according to decrypted data.
285  *       Loop-AES can use three encryption schemes:
286  *         version 1: is plain aes-cbc mode
287  *         version 2: uses 64 multikey scheme with lmk IV generator
288  *         version 3: the same as version 2 with additional IV seed
289  *                   (it uses 65 keys, last key is used as IV seed)
290  *
291  * tcw:  Compatible implementation of the block chaining mode used
292  *       by the TrueCrypt device encryption system (prior to version 4.1).
293  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
294  *       It operates on full 512 byte sectors and uses CBC
295  *       with an IV derived from initial key and the sector number.
296  *       In addition, whitening value is applied on every sector, whitening
297  *       is calculated from initial key, sector number and mixed using CRC32.
298  *       Note that this encryption scheme is vulnerable to watermarking attacks
299  *       and should be used for old compatible containers access only.
300  *
301  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
302  *        The IV is encrypted little-endian byte-offset (with the same key
303  *        and cipher as the volume).
304  *
305  * elephant: The extended version of eboiv with additional Elephant diffuser
306  *           used with Bitlocker CBC mode.
307  *           This mode was used in older Windows systems
308  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
309  */
310 
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)311 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
312 			      struct dm_crypt_request *dmreq)
313 {
314 	memset(iv, 0, cc->iv_size);
315 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
316 
317 	return 0;
318 }
319 
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)320 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
321 				struct dm_crypt_request *dmreq)
322 {
323 	memset(iv, 0, cc->iv_size);
324 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
325 
326 	return 0;
327 }
328 
crypt_iv_plain64be_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)329 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
330 				  struct dm_crypt_request *dmreq)
331 {
332 	memset(iv, 0, cc->iv_size);
333 	/* iv_size is at least of size u64; usually it is 16 bytes */
334 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
335 
336 	return 0;
337 }
338 
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)339 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
340 			      struct dm_crypt_request *dmreq)
341 {
342 	/*
343 	 * ESSIV encryption of the IV is now handled by the crypto API,
344 	 * so just pass the plain sector number here.
345 	 */
346 	memset(iv, 0, cc->iv_size);
347 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
348 
349 	return 0;
350 }
351 
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)352 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
353 			      const char *opts)
354 {
355 	unsigned bs;
356 	int log;
357 
358 	if (crypt_integrity_aead(cc))
359 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
360 	else
361 		bs = crypto_skcipher_blocksize(any_tfm(cc));
362 	log = ilog2(bs);
363 
364 	/* we need to calculate how far we must shift the sector count
365 	 * to get the cipher block count, we use this shift in _gen */
366 
367 	if (1 << log != bs) {
368 		ti->error = "cypher blocksize is not a power of 2";
369 		return -EINVAL;
370 	}
371 
372 	if (log > 9) {
373 		ti->error = "cypher blocksize is > 512";
374 		return -EINVAL;
375 	}
376 
377 	cc->iv_gen_private.benbi.shift = 9 - log;
378 
379 	return 0;
380 }
381 
crypt_iv_benbi_dtr(struct crypt_config * cc)382 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
383 {
384 }
385 
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)386 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
387 			      struct dm_crypt_request *dmreq)
388 {
389 	__be64 val;
390 
391 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
392 
393 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
394 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
395 
396 	return 0;
397 }
398 
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)399 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
400 			     struct dm_crypt_request *dmreq)
401 {
402 	memset(iv, 0, cc->iv_size);
403 
404 	return 0;
405 }
406 
crypt_iv_lmk_dtr(struct crypt_config * cc)407 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
408 {
409 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
410 
411 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
412 		crypto_free_shash(lmk->hash_tfm);
413 	lmk->hash_tfm = NULL;
414 
415 	kfree_sensitive(lmk->seed);
416 	lmk->seed = NULL;
417 }
418 
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)419 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
420 			    const char *opts)
421 {
422 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
423 
424 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
425 		ti->error = "Unsupported sector size for LMK";
426 		return -EINVAL;
427 	}
428 
429 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
430 					   CRYPTO_ALG_ALLOCATES_MEMORY);
431 	if (IS_ERR(lmk->hash_tfm)) {
432 		ti->error = "Error initializing LMK hash";
433 		return PTR_ERR(lmk->hash_tfm);
434 	}
435 
436 	/* No seed in LMK version 2 */
437 	if (cc->key_parts == cc->tfms_count) {
438 		lmk->seed = NULL;
439 		return 0;
440 	}
441 
442 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
443 	if (!lmk->seed) {
444 		crypt_iv_lmk_dtr(cc);
445 		ti->error = "Error kmallocing seed storage in LMK";
446 		return -ENOMEM;
447 	}
448 
449 	return 0;
450 }
451 
crypt_iv_lmk_init(struct crypt_config * cc)452 static int crypt_iv_lmk_init(struct crypt_config *cc)
453 {
454 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
455 	int subkey_size = cc->key_size / cc->key_parts;
456 
457 	/* LMK seed is on the position of LMK_KEYS + 1 key */
458 	if (lmk->seed)
459 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
460 		       crypto_shash_digestsize(lmk->hash_tfm));
461 
462 	return 0;
463 }
464 
crypt_iv_lmk_wipe(struct crypt_config * cc)465 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
466 {
467 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
468 
469 	if (lmk->seed)
470 		memset(lmk->seed, 0, LMK_SEED_SIZE);
471 
472 	return 0;
473 }
474 
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)475 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
476 			    struct dm_crypt_request *dmreq,
477 			    u8 *data)
478 {
479 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
480 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
481 	struct md5_state md5state;
482 	__le32 buf[4];
483 	int i, r;
484 
485 	desc->tfm = lmk->hash_tfm;
486 
487 	r = crypto_shash_init(desc);
488 	if (r)
489 		return r;
490 
491 	if (lmk->seed) {
492 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
493 		if (r)
494 			return r;
495 	}
496 
497 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
498 	r = crypto_shash_update(desc, data + 16, 16 * 31);
499 	if (r)
500 		return r;
501 
502 	/* Sector is cropped to 56 bits here */
503 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
504 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
505 	buf[2] = cpu_to_le32(4024);
506 	buf[3] = 0;
507 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
508 	if (r)
509 		return r;
510 
511 	/* No MD5 padding here */
512 	r = crypto_shash_export(desc, &md5state);
513 	if (r)
514 		return r;
515 
516 	for (i = 0; i < MD5_HASH_WORDS; i++)
517 		__cpu_to_le32s(&md5state.hash[i]);
518 	memcpy(iv, &md5state.hash, cc->iv_size);
519 
520 	return 0;
521 }
522 
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)523 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
524 			    struct dm_crypt_request *dmreq)
525 {
526 	struct scatterlist *sg;
527 	u8 *src;
528 	int r = 0;
529 
530 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
531 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
532 		src = kmap_atomic(sg_page(sg));
533 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
534 		kunmap_atomic(src);
535 	} else
536 		memset(iv, 0, cc->iv_size);
537 
538 	return r;
539 }
540 
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)541 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
542 			     struct dm_crypt_request *dmreq)
543 {
544 	struct scatterlist *sg;
545 	u8 *dst;
546 	int r;
547 
548 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
549 		return 0;
550 
551 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
552 	dst = kmap_atomic(sg_page(sg));
553 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
554 
555 	/* Tweak the first block of plaintext sector */
556 	if (!r)
557 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
558 
559 	kunmap_atomic(dst);
560 	return r;
561 }
562 
crypt_iv_tcw_dtr(struct crypt_config * cc)563 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
564 {
565 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
566 
567 	kfree_sensitive(tcw->iv_seed);
568 	tcw->iv_seed = NULL;
569 	kfree_sensitive(tcw->whitening);
570 	tcw->whitening = NULL;
571 
572 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
573 		crypto_free_shash(tcw->crc32_tfm);
574 	tcw->crc32_tfm = NULL;
575 }
576 
crypt_iv_tcw_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)577 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
578 			    const char *opts)
579 {
580 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
581 
582 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
583 		ti->error = "Unsupported sector size for TCW";
584 		return -EINVAL;
585 	}
586 
587 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
588 		ti->error = "Wrong key size for TCW";
589 		return -EINVAL;
590 	}
591 
592 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
593 					    CRYPTO_ALG_ALLOCATES_MEMORY);
594 	if (IS_ERR(tcw->crc32_tfm)) {
595 		ti->error = "Error initializing CRC32 in TCW";
596 		return PTR_ERR(tcw->crc32_tfm);
597 	}
598 
599 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
600 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
601 	if (!tcw->iv_seed || !tcw->whitening) {
602 		crypt_iv_tcw_dtr(cc);
603 		ti->error = "Error allocating seed storage in TCW";
604 		return -ENOMEM;
605 	}
606 
607 	return 0;
608 }
609 
crypt_iv_tcw_init(struct crypt_config * cc)610 static int crypt_iv_tcw_init(struct crypt_config *cc)
611 {
612 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
613 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
614 
615 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
616 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
617 	       TCW_WHITENING_SIZE);
618 
619 	return 0;
620 }
621 
crypt_iv_tcw_wipe(struct crypt_config * cc)622 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
623 {
624 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
625 
626 	memset(tcw->iv_seed, 0, cc->iv_size);
627 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
628 
629 	return 0;
630 }
631 
crypt_iv_tcw_whitening(struct crypt_config * cc,struct dm_crypt_request * dmreq,u8 * data)632 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
633 				  struct dm_crypt_request *dmreq,
634 				  u8 *data)
635 {
636 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
637 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
638 	u8 buf[TCW_WHITENING_SIZE];
639 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
640 	int i, r;
641 
642 	/* xor whitening with sector number */
643 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
644 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
645 
646 	/* calculate crc32 for every 32bit part and xor it */
647 	desc->tfm = tcw->crc32_tfm;
648 	for (i = 0; i < 4; i++) {
649 		r = crypto_shash_init(desc);
650 		if (r)
651 			goto out;
652 		r = crypto_shash_update(desc, &buf[i * 4], 4);
653 		if (r)
654 			goto out;
655 		r = crypto_shash_final(desc, &buf[i * 4]);
656 		if (r)
657 			goto out;
658 	}
659 	crypto_xor(&buf[0], &buf[12], 4);
660 	crypto_xor(&buf[4], &buf[8], 4);
661 
662 	/* apply whitening (8 bytes) to whole sector */
663 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
664 		crypto_xor(data + i * 8, buf, 8);
665 out:
666 	memzero_explicit(buf, sizeof(buf));
667 	return r;
668 }
669 
crypt_iv_tcw_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)670 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
671 			    struct dm_crypt_request *dmreq)
672 {
673 	struct scatterlist *sg;
674 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
675 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
676 	u8 *src;
677 	int r = 0;
678 
679 	/* Remove whitening from ciphertext */
680 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
681 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
682 		src = kmap_atomic(sg_page(sg));
683 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
684 		kunmap_atomic(src);
685 	}
686 
687 	/* Calculate IV */
688 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
689 	if (cc->iv_size > 8)
690 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
691 			       cc->iv_size - 8);
692 
693 	return r;
694 }
695 
crypt_iv_tcw_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)696 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
697 			     struct dm_crypt_request *dmreq)
698 {
699 	struct scatterlist *sg;
700 	u8 *dst;
701 	int r;
702 
703 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
704 		return 0;
705 
706 	/* Apply whitening on ciphertext */
707 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
708 	dst = kmap_atomic(sg_page(sg));
709 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
710 	kunmap_atomic(dst);
711 
712 	return r;
713 }
714 
crypt_iv_random_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)715 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
716 				struct dm_crypt_request *dmreq)
717 {
718 	/* Used only for writes, there must be an additional space to store IV */
719 	get_random_bytes(iv, cc->iv_size);
720 	return 0;
721 }
722 
crypt_iv_eboiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)723 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
724 			    const char *opts)
725 {
726 	if (crypt_integrity_aead(cc)) {
727 		ti->error = "AEAD transforms not supported for EBOIV";
728 		return -EINVAL;
729 	}
730 
731 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
732 		ti->error = "Block size of EBOIV cipher does "
733 			    "not match IV size of block cipher";
734 		return -EINVAL;
735 	}
736 
737 	return 0;
738 }
739 
crypt_iv_eboiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)740 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
741 			    struct dm_crypt_request *dmreq)
742 {
743 	u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
744 	struct skcipher_request *req;
745 	struct scatterlist src, dst;
746 	DECLARE_CRYPTO_WAIT(wait);
747 	int err;
748 
749 	req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
750 	if (!req)
751 		return -ENOMEM;
752 
753 	memset(buf, 0, cc->iv_size);
754 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
755 
756 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
757 	sg_init_one(&dst, iv, cc->iv_size);
758 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
759 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
760 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
761 	skcipher_request_free(req);
762 
763 	return err;
764 }
765 
crypt_iv_elephant_dtr(struct crypt_config * cc)766 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
767 {
768 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
769 
770 	crypto_free_skcipher(elephant->tfm);
771 	elephant->tfm = NULL;
772 }
773 
crypt_iv_elephant_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)774 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
775 			    const char *opts)
776 {
777 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
778 	int r;
779 
780 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
781 					      CRYPTO_ALG_ALLOCATES_MEMORY);
782 	if (IS_ERR(elephant->tfm)) {
783 		r = PTR_ERR(elephant->tfm);
784 		elephant->tfm = NULL;
785 		return r;
786 	}
787 
788 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
789 	if (r)
790 		crypt_iv_elephant_dtr(cc);
791 	return r;
792 }
793 
diffuser_disk_to_cpu(u32 * d,size_t n)794 static void diffuser_disk_to_cpu(u32 *d, size_t n)
795 {
796 #ifndef __LITTLE_ENDIAN
797 	int i;
798 
799 	for (i = 0; i < n; i++)
800 		d[i] = le32_to_cpu((__le32)d[i]);
801 #endif
802 }
803 
diffuser_cpu_to_disk(__le32 * d,size_t n)804 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
805 {
806 #ifndef __LITTLE_ENDIAN
807 	int i;
808 
809 	for (i = 0; i < n; i++)
810 		d[i] = cpu_to_le32((u32)d[i]);
811 #endif
812 }
813 
diffuser_a_decrypt(u32 * d,size_t n)814 static void diffuser_a_decrypt(u32 *d, size_t n)
815 {
816 	int i, i1, i2, i3;
817 
818 	for (i = 0; i < 5; i++) {
819 		i1 = 0;
820 		i2 = n - 2;
821 		i3 = n - 5;
822 
823 		while (i1 < (n - 1)) {
824 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
825 			i1++; i2++; i3++;
826 
827 			if (i3 >= n)
828 				i3 -= n;
829 
830 			d[i1] += d[i2] ^ d[i3];
831 			i1++; i2++; i3++;
832 
833 			if (i2 >= n)
834 				i2 -= n;
835 
836 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
837 			i1++; i2++; i3++;
838 
839 			d[i1] += d[i2] ^ d[i3];
840 			i1++; i2++; i3++;
841 		}
842 	}
843 }
844 
diffuser_a_encrypt(u32 * d,size_t n)845 static void diffuser_a_encrypt(u32 *d, size_t n)
846 {
847 	int i, i1, i2, i3;
848 
849 	for (i = 0; i < 5; i++) {
850 		i1 = n - 1;
851 		i2 = n - 2 - 1;
852 		i3 = n - 5 - 1;
853 
854 		while (i1 > 0) {
855 			d[i1] -= d[i2] ^ d[i3];
856 			i1--; i2--; i3--;
857 
858 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
859 			i1--; i2--; i3--;
860 
861 			if (i2 < 0)
862 				i2 += n;
863 
864 			d[i1] -= d[i2] ^ d[i3];
865 			i1--; i2--; i3--;
866 
867 			if (i3 < 0)
868 				i3 += n;
869 
870 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
871 			i1--; i2--; i3--;
872 		}
873 	}
874 }
875 
diffuser_b_decrypt(u32 * d,size_t n)876 static void diffuser_b_decrypt(u32 *d, size_t n)
877 {
878 	int i, i1, i2, i3;
879 
880 	for (i = 0; i < 3; i++) {
881 		i1 = 0;
882 		i2 = 2;
883 		i3 = 5;
884 
885 		while (i1 < (n - 1)) {
886 			d[i1] += d[i2] ^ d[i3];
887 			i1++; i2++; i3++;
888 
889 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
890 			i1++; i2++; i3++;
891 
892 			if (i2 >= n)
893 				i2 -= n;
894 
895 			d[i1] += d[i2] ^ d[i3];
896 			i1++; i2++; i3++;
897 
898 			if (i3 >= n)
899 				i3 -= n;
900 
901 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
902 			i1++; i2++; i3++;
903 		}
904 	}
905 }
906 
diffuser_b_encrypt(u32 * d,size_t n)907 static void diffuser_b_encrypt(u32 *d, size_t n)
908 {
909 	int i, i1, i2, i3;
910 
911 	for (i = 0; i < 3; i++) {
912 		i1 = n - 1;
913 		i2 = 2 - 1;
914 		i3 = 5 - 1;
915 
916 		while (i1 > 0) {
917 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
918 			i1--; i2--; i3--;
919 
920 			if (i3 < 0)
921 				i3 += n;
922 
923 			d[i1] -= d[i2] ^ d[i3];
924 			i1--; i2--; i3--;
925 
926 			if (i2 < 0)
927 				i2 += n;
928 
929 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
930 			i1--; i2--; i3--;
931 
932 			d[i1] -= d[i2] ^ d[i3];
933 			i1--; i2--; i3--;
934 		}
935 	}
936 }
937 
crypt_iv_elephant(struct crypt_config * cc,struct dm_crypt_request * dmreq)938 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
939 {
940 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
941 	u8 *es, *ks, *data, *data2, *data_offset;
942 	struct skcipher_request *req;
943 	struct scatterlist *sg, *sg2, src, dst;
944 	DECLARE_CRYPTO_WAIT(wait);
945 	int i, r;
946 
947 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
948 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
949 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
950 
951 	if (!req || !es || !ks) {
952 		r = -ENOMEM;
953 		goto out;
954 	}
955 
956 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
957 
958 	/* E(Ks, e(s)) */
959 	sg_init_one(&src, es, 16);
960 	sg_init_one(&dst, ks, 16);
961 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
962 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
963 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
964 	if (r)
965 		goto out;
966 
967 	/* E(Ks, e'(s)) */
968 	es[15] = 0x80;
969 	sg_init_one(&dst, &ks[16], 16);
970 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
971 	if (r)
972 		goto out;
973 
974 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
975 	data = kmap_atomic(sg_page(sg));
976 	data_offset = data + sg->offset;
977 
978 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
979 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
980 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
981 		data2 = kmap_atomic(sg_page(sg2));
982 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
983 		kunmap_atomic(data2);
984 	}
985 
986 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
987 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
988 		diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
989 		diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
990 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
991 	}
992 
993 	for (i = 0; i < (cc->sector_size / 32); i++)
994 		crypto_xor(data_offset + i * 32, ks, 32);
995 
996 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
997 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
998 		diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
999 		diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
1000 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
1001 	}
1002 
1003 	kunmap_atomic(data);
1004 out:
1005 	kfree_sensitive(ks);
1006 	kfree_sensitive(es);
1007 	skcipher_request_free(req);
1008 	return r;
1009 }
1010 
crypt_iv_elephant_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1011 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1012 			    struct dm_crypt_request *dmreq)
1013 {
1014 	int r;
1015 
1016 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1017 		r = crypt_iv_elephant(cc, dmreq);
1018 		if (r)
1019 			return r;
1020 	}
1021 
1022 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1023 }
1024 
crypt_iv_elephant_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1025 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1026 				  struct dm_crypt_request *dmreq)
1027 {
1028 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1029 		return crypt_iv_elephant(cc, dmreq);
1030 
1031 	return 0;
1032 }
1033 
crypt_iv_elephant_init(struct crypt_config * cc)1034 static int crypt_iv_elephant_init(struct crypt_config *cc)
1035 {
1036 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1037 	int key_offset = cc->key_size - cc->key_extra_size;
1038 
1039 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1040 }
1041 
crypt_iv_elephant_wipe(struct crypt_config * cc)1042 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1043 {
1044 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1045 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1046 
1047 	memset(key, 0, cc->key_extra_size);
1048 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1049 }
1050 
1051 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1052 	.generator = crypt_iv_plain_gen
1053 };
1054 
1055 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1056 	.generator = crypt_iv_plain64_gen
1057 };
1058 
1059 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1060 	.generator = crypt_iv_plain64be_gen
1061 };
1062 
1063 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1064 	.generator = crypt_iv_essiv_gen
1065 };
1066 
1067 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1068 	.ctr	   = crypt_iv_benbi_ctr,
1069 	.dtr	   = crypt_iv_benbi_dtr,
1070 	.generator = crypt_iv_benbi_gen
1071 };
1072 
1073 static const struct crypt_iv_operations crypt_iv_null_ops = {
1074 	.generator = crypt_iv_null_gen
1075 };
1076 
1077 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1078 	.ctr	   = crypt_iv_lmk_ctr,
1079 	.dtr	   = crypt_iv_lmk_dtr,
1080 	.init	   = crypt_iv_lmk_init,
1081 	.wipe	   = crypt_iv_lmk_wipe,
1082 	.generator = crypt_iv_lmk_gen,
1083 	.post	   = crypt_iv_lmk_post
1084 };
1085 
1086 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1087 	.ctr	   = crypt_iv_tcw_ctr,
1088 	.dtr	   = crypt_iv_tcw_dtr,
1089 	.init	   = crypt_iv_tcw_init,
1090 	.wipe	   = crypt_iv_tcw_wipe,
1091 	.generator = crypt_iv_tcw_gen,
1092 	.post	   = crypt_iv_tcw_post
1093 };
1094 
1095 static struct crypt_iv_operations crypt_iv_random_ops = {
1096 	.generator = crypt_iv_random_gen
1097 };
1098 
1099 static struct crypt_iv_operations crypt_iv_eboiv_ops = {
1100 	.ctr	   = crypt_iv_eboiv_ctr,
1101 	.generator = crypt_iv_eboiv_gen
1102 };
1103 
1104 static struct crypt_iv_operations crypt_iv_elephant_ops = {
1105 	.ctr	   = crypt_iv_elephant_ctr,
1106 	.dtr	   = crypt_iv_elephant_dtr,
1107 	.init	   = crypt_iv_elephant_init,
1108 	.wipe	   = crypt_iv_elephant_wipe,
1109 	.generator = crypt_iv_elephant_gen,
1110 	.post	   = crypt_iv_elephant_post
1111 };
1112 
1113 /*
1114  * Integrity extensions
1115  */
crypt_integrity_aead(struct crypt_config * cc)1116 static bool crypt_integrity_aead(struct crypt_config *cc)
1117 {
1118 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1119 }
1120 
crypt_integrity_hmac(struct crypt_config * cc)1121 static bool crypt_integrity_hmac(struct crypt_config *cc)
1122 {
1123 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1124 }
1125 
1126 /* Get sg containing data */
crypt_get_sg_data(struct crypt_config * cc,struct scatterlist * sg)1127 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1128 					     struct scatterlist *sg)
1129 {
1130 	if (unlikely(crypt_integrity_aead(cc)))
1131 		return &sg[2];
1132 
1133 	return sg;
1134 }
1135 
dm_crypt_integrity_io_alloc(struct dm_crypt_io * io,struct bio * bio)1136 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1137 {
1138 	struct bio_integrity_payload *bip;
1139 	unsigned int tag_len;
1140 	int ret;
1141 
1142 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1143 		return 0;
1144 
1145 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1146 	if (IS_ERR(bip))
1147 		return PTR_ERR(bip);
1148 
1149 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1150 
1151 	bip->bip_iter.bi_size = tag_len;
1152 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1153 
1154 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1155 				     tag_len, offset_in_page(io->integrity_metadata));
1156 	if (unlikely(ret != tag_len))
1157 		return -ENOMEM;
1158 
1159 	return 0;
1160 }
1161 
crypt_integrity_ctr(struct crypt_config * cc,struct dm_target * ti)1162 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1163 {
1164 #ifdef CONFIG_BLK_DEV_INTEGRITY
1165 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1166 	struct mapped_device *md = dm_table_get_md(ti->table);
1167 
1168 	/* From now we require underlying device with our integrity profile */
1169 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1170 		ti->error = "Integrity profile not supported.";
1171 		return -EINVAL;
1172 	}
1173 
1174 	if (bi->tag_size != cc->on_disk_tag_size ||
1175 	    bi->tuple_size != cc->on_disk_tag_size) {
1176 		ti->error = "Integrity profile tag size mismatch.";
1177 		return -EINVAL;
1178 	}
1179 	if (1 << bi->interval_exp != cc->sector_size) {
1180 		ti->error = "Integrity profile sector size mismatch.";
1181 		return -EINVAL;
1182 	}
1183 
1184 	if (crypt_integrity_aead(cc)) {
1185 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1186 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1187 		       cc->integrity_tag_size, cc->integrity_iv_size);
1188 
1189 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1190 			ti->error = "Integrity AEAD auth tag size is not supported.";
1191 			return -EINVAL;
1192 		}
1193 	} else if (cc->integrity_iv_size)
1194 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1195 		       cc->integrity_iv_size);
1196 
1197 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1198 		ti->error = "Not enough space for integrity tag in the profile.";
1199 		return -EINVAL;
1200 	}
1201 
1202 	return 0;
1203 #else
1204 	ti->error = "Integrity profile not supported.";
1205 	return -EINVAL;
1206 #endif
1207 }
1208 
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)1209 static void crypt_convert_init(struct crypt_config *cc,
1210 			       struct convert_context *ctx,
1211 			       struct bio *bio_out, struct bio *bio_in,
1212 			       sector_t sector)
1213 {
1214 	ctx->bio_in = bio_in;
1215 	ctx->bio_out = bio_out;
1216 	if (bio_in)
1217 		ctx->iter_in = bio_in->bi_iter;
1218 	if (bio_out)
1219 		ctx->iter_out = bio_out->bi_iter;
1220 	ctx->cc_sector = sector + cc->iv_offset;
1221 	init_completion(&ctx->restart);
1222 }
1223 
dmreq_of_req(struct crypt_config * cc,void * req)1224 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1225 					     void *req)
1226 {
1227 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1228 }
1229 
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1230 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1231 {
1232 	return (void *)((char *)dmreq - cc->dmreq_start);
1233 }
1234 
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1235 static u8 *iv_of_dmreq(struct crypt_config *cc,
1236 		       struct dm_crypt_request *dmreq)
1237 {
1238 	if (crypt_integrity_aead(cc))
1239 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1240 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1241 	else
1242 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1243 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1244 }
1245 
org_iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1246 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1247 		       struct dm_crypt_request *dmreq)
1248 {
1249 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1250 }
1251 
org_sector_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1252 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1253 		       struct dm_crypt_request *dmreq)
1254 {
1255 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1256 	return (__le64 *) ptr;
1257 }
1258 
org_tag_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1259 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1260 		       struct dm_crypt_request *dmreq)
1261 {
1262 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1263 		  cc->iv_size + sizeof(uint64_t);
1264 	return (unsigned int*)ptr;
1265 }
1266 
tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1267 static void *tag_from_dmreq(struct crypt_config *cc,
1268 				struct dm_crypt_request *dmreq)
1269 {
1270 	struct convert_context *ctx = dmreq->ctx;
1271 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1272 
1273 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1274 		cc->on_disk_tag_size];
1275 }
1276 
iv_tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1277 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1278 			       struct dm_crypt_request *dmreq)
1279 {
1280 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1281 }
1282 
crypt_convert_block_aead(struct crypt_config * cc,struct convert_context * ctx,struct aead_request * req,unsigned int tag_offset)1283 static int crypt_convert_block_aead(struct crypt_config *cc,
1284 				     struct convert_context *ctx,
1285 				     struct aead_request *req,
1286 				     unsigned int tag_offset)
1287 {
1288 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1289 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1290 	struct dm_crypt_request *dmreq;
1291 	u8 *iv, *org_iv, *tag_iv, *tag;
1292 	__le64 *sector;
1293 	int r = 0;
1294 
1295 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1296 
1297 	/* Reject unexpected unaligned bio. */
1298 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1299 		return -EIO;
1300 
1301 	dmreq = dmreq_of_req(cc, req);
1302 	dmreq->iv_sector = ctx->cc_sector;
1303 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1304 		dmreq->iv_sector >>= cc->sector_shift;
1305 	dmreq->ctx = ctx;
1306 
1307 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1308 
1309 	sector = org_sector_of_dmreq(cc, dmreq);
1310 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1311 
1312 	iv = iv_of_dmreq(cc, dmreq);
1313 	org_iv = org_iv_of_dmreq(cc, dmreq);
1314 	tag = tag_from_dmreq(cc, dmreq);
1315 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1316 
1317 	/* AEAD request:
1318 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1319 	 *  | (authenticated) | (auth+encryption) |              |
1320 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1321 	 */
1322 	sg_init_table(dmreq->sg_in, 4);
1323 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1324 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1325 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1326 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1327 
1328 	sg_init_table(dmreq->sg_out, 4);
1329 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1330 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1331 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1332 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1333 
1334 	if (cc->iv_gen_ops) {
1335 		/* For READs use IV stored in integrity metadata */
1336 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1337 			memcpy(org_iv, tag_iv, cc->iv_size);
1338 		} else {
1339 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1340 			if (r < 0)
1341 				return r;
1342 			/* Store generated IV in integrity metadata */
1343 			if (cc->integrity_iv_size)
1344 				memcpy(tag_iv, org_iv, cc->iv_size);
1345 		}
1346 		/* Working copy of IV, to be modified in crypto API */
1347 		memcpy(iv, org_iv, cc->iv_size);
1348 	}
1349 
1350 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1351 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1352 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1353 				       cc->sector_size, iv);
1354 		r = crypto_aead_encrypt(req);
1355 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1356 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1357 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1358 	} else {
1359 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1360 				       cc->sector_size + cc->integrity_tag_size, iv);
1361 		r = crypto_aead_decrypt(req);
1362 	}
1363 
1364 	if (r == -EBADMSG) {
1365 		char b[BDEVNAME_SIZE];
1366 		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1367 			    (unsigned long long)le64_to_cpu(*sector));
1368 	}
1369 
1370 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1371 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1372 
1373 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1374 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1375 
1376 	return r;
1377 }
1378 
crypt_convert_block_skcipher(struct crypt_config * cc,struct convert_context * ctx,struct skcipher_request * req,unsigned int tag_offset)1379 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1380 					struct convert_context *ctx,
1381 					struct skcipher_request *req,
1382 					unsigned int tag_offset)
1383 {
1384 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1385 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1386 	struct scatterlist *sg_in, *sg_out;
1387 	struct dm_crypt_request *dmreq;
1388 	u8 *iv, *org_iv, *tag_iv;
1389 	__le64 *sector;
1390 	int r = 0;
1391 
1392 	/* Reject unexpected unaligned bio. */
1393 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1394 		return -EIO;
1395 
1396 	dmreq = dmreq_of_req(cc, req);
1397 	dmreq->iv_sector = ctx->cc_sector;
1398 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1399 		dmreq->iv_sector >>= cc->sector_shift;
1400 	dmreq->ctx = ctx;
1401 
1402 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1403 
1404 	iv = iv_of_dmreq(cc, dmreq);
1405 	org_iv = org_iv_of_dmreq(cc, dmreq);
1406 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1407 
1408 	sector = org_sector_of_dmreq(cc, dmreq);
1409 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1410 
1411 	/* For skcipher we use only the first sg item */
1412 	sg_in  = &dmreq->sg_in[0];
1413 	sg_out = &dmreq->sg_out[0];
1414 
1415 	sg_init_table(sg_in, 1);
1416 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1417 
1418 	sg_init_table(sg_out, 1);
1419 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1420 
1421 	if (cc->iv_gen_ops) {
1422 		/* For READs use IV stored in integrity metadata */
1423 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1424 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1425 		} else {
1426 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1427 			if (r < 0)
1428 				return r;
1429 			/* Data can be already preprocessed in generator */
1430 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1431 				sg_in = sg_out;
1432 			/* Store generated IV in integrity metadata */
1433 			if (cc->integrity_iv_size)
1434 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1435 		}
1436 		/* Working copy of IV, to be modified in crypto API */
1437 		memcpy(iv, org_iv, cc->iv_size);
1438 	}
1439 
1440 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1441 
1442 	if (bio_data_dir(ctx->bio_in) == WRITE)
1443 		r = crypto_skcipher_encrypt(req);
1444 	else
1445 		r = crypto_skcipher_decrypt(req);
1446 
1447 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1448 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1449 
1450 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1451 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1452 
1453 	return r;
1454 }
1455 
1456 static void kcryptd_async_done(struct crypto_async_request *async_req,
1457 			       int error);
1458 
crypt_alloc_req_skcipher(struct crypt_config * cc,struct convert_context * ctx)1459 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1460 				     struct convert_context *ctx)
1461 {
1462 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1463 
1464 	if (!ctx->r.req) {
1465 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1466 		if (!ctx->r.req)
1467 			return -ENOMEM;
1468 	}
1469 
1470 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1471 
1472 	/*
1473 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1474 	 * requests if driver request queue is full.
1475 	 */
1476 	skcipher_request_set_callback(ctx->r.req,
1477 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1478 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1479 
1480 	return 0;
1481 }
1482 
crypt_alloc_req_aead(struct crypt_config * cc,struct convert_context * ctx)1483 static int crypt_alloc_req_aead(struct crypt_config *cc,
1484 				 struct convert_context *ctx)
1485 {
1486 	if (!ctx->r.req_aead) {
1487 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1488 		if (!ctx->r.req_aead)
1489 			return -ENOMEM;
1490 	}
1491 
1492 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1493 
1494 	/*
1495 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1496 	 * requests if driver request queue is full.
1497 	 */
1498 	aead_request_set_callback(ctx->r.req_aead,
1499 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1500 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1501 
1502 	return 0;
1503 }
1504 
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)1505 static int crypt_alloc_req(struct crypt_config *cc,
1506 			    struct convert_context *ctx)
1507 {
1508 	if (crypt_integrity_aead(cc))
1509 		return crypt_alloc_req_aead(cc, ctx);
1510 	else
1511 		return crypt_alloc_req_skcipher(cc, ctx);
1512 }
1513 
crypt_free_req_skcipher(struct crypt_config * cc,struct skcipher_request * req,struct bio * base_bio)1514 static void crypt_free_req_skcipher(struct crypt_config *cc,
1515 				    struct skcipher_request *req, struct bio *base_bio)
1516 {
1517 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1518 
1519 	if ((struct skcipher_request *)(io + 1) != req)
1520 		mempool_free(req, &cc->req_pool);
1521 }
1522 
crypt_free_req_aead(struct crypt_config * cc,struct aead_request * req,struct bio * base_bio)1523 static void crypt_free_req_aead(struct crypt_config *cc,
1524 				struct aead_request *req, struct bio *base_bio)
1525 {
1526 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1527 
1528 	if ((struct aead_request *)(io + 1) != req)
1529 		mempool_free(req, &cc->req_pool);
1530 }
1531 
crypt_free_req(struct crypt_config * cc,void * req,struct bio * base_bio)1532 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1533 {
1534 	if (crypt_integrity_aead(cc))
1535 		crypt_free_req_aead(cc, req, base_bio);
1536 	else
1537 		crypt_free_req_skcipher(cc, req, base_bio);
1538 }
1539 
1540 /*
1541  * Encrypt / decrypt data from one bio to another one (can be the same one)
1542  */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx,bool atomic,bool reset_pending)1543 static blk_status_t crypt_convert(struct crypt_config *cc,
1544 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1545 {
1546 	unsigned int tag_offset = 0;
1547 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1548 	int r;
1549 
1550 	/*
1551 	 * if reset_pending is set we are dealing with the bio for the first time,
1552 	 * else we're continuing to work on the previous bio, so don't mess with
1553 	 * the cc_pending counter
1554 	 */
1555 	if (reset_pending)
1556 		atomic_set(&ctx->cc_pending, 1);
1557 
1558 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1559 
1560 		r = crypt_alloc_req(cc, ctx);
1561 		if (r) {
1562 			complete(&ctx->restart);
1563 			return BLK_STS_DEV_RESOURCE;
1564 		}
1565 
1566 		atomic_inc(&ctx->cc_pending);
1567 
1568 		if (crypt_integrity_aead(cc))
1569 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1570 		else
1571 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1572 
1573 		switch (r) {
1574 		/*
1575 		 * The request was queued by a crypto driver
1576 		 * but the driver request queue is full, let's wait.
1577 		 */
1578 		case -EBUSY:
1579 			if (in_interrupt()) {
1580 				if (try_wait_for_completion(&ctx->restart)) {
1581 					/*
1582 					 * we don't have to block to wait for completion,
1583 					 * so proceed
1584 					 */
1585 				} else {
1586 					/*
1587 					 * we can't wait for completion without blocking
1588 					 * exit and continue processing in a workqueue
1589 					 */
1590 					ctx->r.req = NULL;
1591 					ctx->cc_sector += sector_step;
1592 					tag_offset++;
1593 					return BLK_STS_DEV_RESOURCE;
1594 				}
1595 			} else {
1596 				wait_for_completion(&ctx->restart);
1597 			}
1598 			reinit_completion(&ctx->restart);
1599 			fallthrough;
1600 		/*
1601 		 * The request is queued and processed asynchronously,
1602 		 * completion function kcryptd_async_done() will be called.
1603 		 */
1604 		case -EINPROGRESS:
1605 			ctx->r.req = NULL;
1606 			ctx->cc_sector += sector_step;
1607 			tag_offset++;
1608 			continue;
1609 		/*
1610 		 * The request was already processed (synchronously).
1611 		 */
1612 		case 0:
1613 			atomic_dec(&ctx->cc_pending);
1614 			ctx->cc_sector += sector_step;
1615 			tag_offset++;
1616 			if (!atomic)
1617 				cond_resched();
1618 			continue;
1619 		/*
1620 		 * There was a data integrity error.
1621 		 */
1622 		case -EBADMSG:
1623 			atomic_dec(&ctx->cc_pending);
1624 			return BLK_STS_PROTECTION;
1625 		/*
1626 		 * There was an error while processing the request.
1627 		 */
1628 		default:
1629 			atomic_dec(&ctx->cc_pending);
1630 			return BLK_STS_IOERR;
1631 		}
1632 	}
1633 
1634 	return 0;
1635 }
1636 
1637 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1638 
1639 /*
1640  * Generate a new unfragmented bio with the given size
1641  * This should never violate the device limitations (but only because
1642  * max_segment_size is being constrained to PAGE_SIZE).
1643  *
1644  * This function may be called concurrently. If we allocate from the mempool
1645  * concurrently, there is a possibility of deadlock. For example, if we have
1646  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1647  * the mempool concurrently, it may deadlock in a situation where both processes
1648  * have allocated 128 pages and the mempool is exhausted.
1649  *
1650  * In order to avoid this scenario we allocate the pages under a mutex.
1651  *
1652  * In order to not degrade performance with excessive locking, we try
1653  * non-blocking allocations without a mutex first but on failure we fallback
1654  * to blocking allocations with a mutex.
1655  */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned size)1656 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1657 {
1658 	struct crypt_config *cc = io->cc;
1659 	struct bio *clone;
1660 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1661 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1662 	unsigned i, len, remaining_size;
1663 	struct page *page;
1664 
1665 retry:
1666 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1667 		mutex_lock(&cc->bio_alloc_lock);
1668 
1669 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1670 	if (!clone)
1671 		goto out;
1672 
1673 	clone_init(io, clone);
1674 
1675 	remaining_size = size;
1676 
1677 	for (i = 0; i < nr_iovecs; i++) {
1678 		page = mempool_alloc(&cc->page_pool, gfp_mask);
1679 		if (!page) {
1680 			crypt_free_buffer_pages(cc, clone);
1681 			bio_put(clone);
1682 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1683 			goto retry;
1684 		}
1685 
1686 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1687 
1688 		bio_add_page(clone, page, len, 0);
1689 
1690 		remaining_size -= len;
1691 	}
1692 
1693 	/* Allocate space for integrity tags */
1694 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1695 		crypt_free_buffer_pages(cc, clone);
1696 		bio_put(clone);
1697 		clone = NULL;
1698 	}
1699 out:
1700 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1701 		mutex_unlock(&cc->bio_alloc_lock);
1702 
1703 	return clone;
1704 }
1705 
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)1706 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1707 {
1708 	struct bio_vec *bv;
1709 	struct bvec_iter_all iter_all;
1710 
1711 	bio_for_each_segment_all(bv, clone, iter_all) {
1712 		BUG_ON(!bv->bv_page);
1713 		mempool_free(bv->bv_page, &cc->page_pool);
1714 	}
1715 }
1716 
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)1717 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1718 			  struct bio *bio, sector_t sector)
1719 {
1720 	io->cc = cc;
1721 	io->base_bio = bio;
1722 	io->sector = sector;
1723 	io->error = 0;
1724 	io->ctx.r.req = NULL;
1725 	io->integrity_metadata = NULL;
1726 	io->integrity_metadata_from_pool = false;
1727 	io->in_tasklet = false;
1728 	atomic_set(&io->io_pending, 0);
1729 }
1730 
crypt_inc_pending(struct dm_crypt_io * io)1731 static void crypt_inc_pending(struct dm_crypt_io *io)
1732 {
1733 	atomic_inc(&io->io_pending);
1734 }
1735 
kcryptd_io_bio_endio(struct work_struct * work)1736 static void kcryptd_io_bio_endio(struct work_struct *work)
1737 {
1738 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1739 	bio_endio(io->base_bio);
1740 }
1741 
1742 /*
1743  * One of the bios was finished. Check for completion of
1744  * the whole request and correctly clean up the buffer.
1745  */
crypt_dec_pending(struct dm_crypt_io * io)1746 static void crypt_dec_pending(struct dm_crypt_io *io)
1747 {
1748 	struct crypt_config *cc = io->cc;
1749 	struct bio *base_bio = io->base_bio;
1750 	blk_status_t error = io->error;
1751 
1752 	if (!atomic_dec_and_test(&io->io_pending))
1753 		return;
1754 
1755 	if (io->ctx.r.req)
1756 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1757 
1758 	if (unlikely(io->integrity_metadata_from_pool))
1759 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1760 	else
1761 		kfree(io->integrity_metadata);
1762 
1763 	base_bio->bi_status = error;
1764 
1765 	/*
1766 	 * If we are running this function from our tasklet,
1767 	 * we can't call bio_endio() here, because it will call
1768 	 * clone_endio() from dm.c, which in turn will
1769 	 * free the current struct dm_crypt_io structure with
1770 	 * our tasklet. In this case we need to delay bio_endio()
1771 	 * execution to after the tasklet is done and dequeued.
1772 	 */
1773 	if (io->in_tasklet) {
1774 		INIT_WORK(&io->work, kcryptd_io_bio_endio);
1775 		queue_work(cc->io_queue, &io->work);
1776 		return;
1777 	}
1778 
1779 	bio_endio(base_bio);
1780 }
1781 
1782 /*
1783  * kcryptd/kcryptd_io:
1784  *
1785  * Needed because it would be very unwise to do decryption in an
1786  * interrupt context.
1787  *
1788  * kcryptd performs the actual encryption or decryption.
1789  *
1790  * kcryptd_io performs the IO submission.
1791  *
1792  * They must be separated as otherwise the final stages could be
1793  * starved by new requests which can block in the first stages due
1794  * to memory allocation.
1795  *
1796  * The work is done per CPU global for all dm-crypt instances.
1797  * They should not depend on each other and do not block.
1798  */
crypt_endio(struct bio * clone)1799 static void crypt_endio(struct bio *clone)
1800 {
1801 	struct dm_crypt_io *io = clone->bi_private;
1802 	struct crypt_config *cc = io->cc;
1803 	unsigned rw = bio_data_dir(clone);
1804 	blk_status_t error;
1805 
1806 	/*
1807 	 * free the processed pages
1808 	 */
1809 	if (rw == WRITE)
1810 		crypt_free_buffer_pages(cc, clone);
1811 
1812 	error = clone->bi_status;
1813 	bio_put(clone);
1814 
1815 	if (rw == READ && !error) {
1816 		kcryptd_queue_crypt(io);
1817 		return;
1818 	}
1819 
1820 	if (unlikely(error))
1821 		io->error = error;
1822 
1823 	crypt_dec_pending(io);
1824 }
1825 
clone_init(struct dm_crypt_io * io,struct bio * clone)1826 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1827 {
1828 	struct crypt_config *cc = io->cc;
1829 
1830 	clone->bi_private = io;
1831 	clone->bi_end_io  = crypt_endio;
1832 	bio_set_dev(clone, cc->dev->bdev);
1833 	clone->bi_opf	  = io->base_bio->bi_opf;
1834 }
1835 
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)1836 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1837 {
1838 	struct crypt_config *cc = io->cc;
1839 	struct bio *clone;
1840 
1841 	/*
1842 	 * We need the original biovec array in order to decrypt
1843 	 * the whole bio data *afterwards* -- thanks to immutable
1844 	 * biovecs we don't need to worry about the block layer
1845 	 * modifying the biovec array; so leverage bio_clone_fast().
1846 	 */
1847 	clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1848 	if (!clone)
1849 		return 1;
1850 
1851 	crypt_inc_pending(io);
1852 
1853 	clone_init(io, clone);
1854 	clone->bi_iter.bi_sector = cc->start + io->sector;
1855 
1856 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1857 		crypt_dec_pending(io);
1858 		bio_put(clone);
1859 		return 1;
1860 	}
1861 
1862 	submit_bio_noacct(clone);
1863 	return 0;
1864 }
1865 
kcryptd_io_read_work(struct work_struct * work)1866 static void kcryptd_io_read_work(struct work_struct *work)
1867 {
1868 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1869 
1870 	crypt_inc_pending(io);
1871 	if (kcryptd_io_read(io, GFP_NOIO))
1872 		io->error = BLK_STS_RESOURCE;
1873 	crypt_dec_pending(io);
1874 }
1875 
kcryptd_queue_read(struct dm_crypt_io * io)1876 static void kcryptd_queue_read(struct dm_crypt_io *io)
1877 {
1878 	struct crypt_config *cc = io->cc;
1879 
1880 	INIT_WORK(&io->work, kcryptd_io_read_work);
1881 	queue_work(cc->io_queue, &io->work);
1882 }
1883 
kcryptd_io_write(struct dm_crypt_io * io)1884 static void kcryptd_io_write(struct dm_crypt_io *io)
1885 {
1886 	struct bio *clone = io->ctx.bio_out;
1887 
1888 	submit_bio_noacct(clone);
1889 }
1890 
1891 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1892 
dmcrypt_write(void * data)1893 static int dmcrypt_write(void *data)
1894 {
1895 	struct crypt_config *cc = data;
1896 	struct dm_crypt_io *io;
1897 
1898 	while (1) {
1899 		struct rb_root write_tree;
1900 		struct blk_plug plug;
1901 
1902 		spin_lock_irq(&cc->write_thread_lock);
1903 continue_locked:
1904 
1905 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1906 			goto pop_from_list;
1907 
1908 		set_current_state(TASK_INTERRUPTIBLE);
1909 
1910 		spin_unlock_irq(&cc->write_thread_lock);
1911 
1912 		if (unlikely(kthread_should_stop())) {
1913 			set_current_state(TASK_RUNNING);
1914 			break;
1915 		}
1916 
1917 		schedule();
1918 
1919 		set_current_state(TASK_RUNNING);
1920 		spin_lock_irq(&cc->write_thread_lock);
1921 		goto continue_locked;
1922 
1923 pop_from_list:
1924 		write_tree = cc->write_tree;
1925 		cc->write_tree = RB_ROOT;
1926 		spin_unlock_irq(&cc->write_thread_lock);
1927 
1928 		BUG_ON(rb_parent(write_tree.rb_node));
1929 
1930 		/*
1931 		 * Note: we cannot walk the tree here with rb_next because
1932 		 * the structures may be freed when kcryptd_io_write is called.
1933 		 */
1934 		blk_start_plug(&plug);
1935 		do {
1936 			io = crypt_io_from_node(rb_first(&write_tree));
1937 			rb_erase(&io->rb_node, &write_tree);
1938 			kcryptd_io_write(io);
1939 			cond_resched();
1940 		} while (!RB_EMPTY_ROOT(&write_tree));
1941 		blk_finish_plug(&plug);
1942 	}
1943 	return 0;
1944 }
1945 
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)1946 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1947 {
1948 	struct bio *clone = io->ctx.bio_out;
1949 	struct crypt_config *cc = io->cc;
1950 	unsigned long flags;
1951 	sector_t sector;
1952 	struct rb_node **rbp, *parent;
1953 
1954 	if (unlikely(io->error)) {
1955 		crypt_free_buffer_pages(cc, clone);
1956 		bio_put(clone);
1957 		crypt_dec_pending(io);
1958 		return;
1959 	}
1960 
1961 	/* crypt_convert should have filled the clone bio */
1962 	BUG_ON(io->ctx.iter_out.bi_size);
1963 
1964 	clone->bi_iter.bi_sector = cc->start + io->sector;
1965 
1966 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1967 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1968 		submit_bio_noacct(clone);
1969 		return;
1970 	}
1971 
1972 	spin_lock_irqsave(&cc->write_thread_lock, flags);
1973 	if (RB_EMPTY_ROOT(&cc->write_tree))
1974 		wake_up_process(cc->write_thread);
1975 	rbp = &cc->write_tree.rb_node;
1976 	parent = NULL;
1977 	sector = io->sector;
1978 	while (*rbp) {
1979 		parent = *rbp;
1980 		if (sector < crypt_io_from_node(parent)->sector)
1981 			rbp = &(*rbp)->rb_left;
1982 		else
1983 			rbp = &(*rbp)->rb_right;
1984 	}
1985 	rb_link_node(&io->rb_node, parent, rbp);
1986 	rb_insert_color(&io->rb_node, &cc->write_tree);
1987 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1988 }
1989 
kcryptd_crypt_write_inline(struct crypt_config * cc,struct convert_context * ctx)1990 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
1991 				       struct convert_context *ctx)
1992 
1993 {
1994 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
1995 		return false;
1996 
1997 	/*
1998 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
1999 	 * constraints so they do not need to be issued inline by
2000 	 * kcryptd_crypt_write_convert().
2001 	 */
2002 	switch (bio_op(ctx->bio_in)) {
2003 	case REQ_OP_WRITE:
2004 	case REQ_OP_WRITE_SAME:
2005 	case REQ_OP_WRITE_ZEROES:
2006 		return true;
2007 	default:
2008 		return false;
2009 	}
2010 }
2011 
kcryptd_crypt_write_continue(struct work_struct * work)2012 static void kcryptd_crypt_write_continue(struct work_struct *work)
2013 {
2014 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2015 	struct crypt_config *cc = io->cc;
2016 	struct convert_context *ctx = &io->ctx;
2017 	int crypt_finished;
2018 	sector_t sector = io->sector;
2019 	blk_status_t r;
2020 
2021 	wait_for_completion(&ctx->restart);
2022 	reinit_completion(&ctx->restart);
2023 
2024 	r = crypt_convert(cc, &io->ctx, true, false);
2025 	if (r)
2026 		io->error = r;
2027 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2028 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2029 		/* Wait for completion signaled by kcryptd_async_done() */
2030 		wait_for_completion(&ctx->restart);
2031 		crypt_finished = 1;
2032 	}
2033 
2034 	/* Encryption was already finished, submit io now */
2035 	if (crypt_finished) {
2036 		kcryptd_crypt_write_io_submit(io, 0);
2037 		io->sector = sector;
2038 	}
2039 
2040 	crypt_dec_pending(io);
2041 }
2042 
kcryptd_crypt_write_convert(struct dm_crypt_io * io)2043 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2044 {
2045 	struct crypt_config *cc = io->cc;
2046 	struct convert_context *ctx = &io->ctx;
2047 	struct bio *clone;
2048 	int crypt_finished;
2049 	sector_t sector = io->sector;
2050 	blk_status_t r;
2051 
2052 	/*
2053 	 * Prevent io from disappearing until this function completes.
2054 	 */
2055 	crypt_inc_pending(io);
2056 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2057 
2058 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2059 	if (unlikely(!clone)) {
2060 		io->error = BLK_STS_IOERR;
2061 		goto dec;
2062 	}
2063 
2064 	io->ctx.bio_out = clone;
2065 	io->ctx.iter_out = clone->bi_iter;
2066 
2067 	if (crypt_integrity_aead(cc)) {
2068 		bio_copy_data(clone, io->base_bio);
2069 		io->ctx.bio_in = clone;
2070 		io->ctx.iter_in = clone->bi_iter;
2071 	}
2072 
2073 	sector += bio_sectors(clone);
2074 
2075 	crypt_inc_pending(io);
2076 	r = crypt_convert(cc, ctx,
2077 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2078 	/*
2079 	 * Crypto API backlogged the request, because its queue was full
2080 	 * and we're in softirq context, so continue from a workqueue
2081 	 * (TODO: is it actually possible to be in softirq in the write path?)
2082 	 */
2083 	if (r == BLK_STS_DEV_RESOURCE) {
2084 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2085 		queue_work(cc->crypt_queue, &io->work);
2086 		return;
2087 	}
2088 	if (r)
2089 		io->error = r;
2090 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2091 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2092 		/* Wait for completion signaled by kcryptd_async_done() */
2093 		wait_for_completion(&ctx->restart);
2094 		crypt_finished = 1;
2095 	}
2096 
2097 	/* Encryption was already finished, submit io now */
2098 	if (crypt_finished) {
2099 		kcryptd_crypt_write_io_submit(io, 0);
2100 		io->sector = sector;
2101 	}
2102 
2103 dec:
2104 	crypt_dec_pending(io);
2105 }
2106 
kcryptd_crypt_read_done(struct dm_crypt_io * io)2107 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2108 {
2109 	crypt_dec_pending(io);
2110 }
2111 
kcryptd_crypt_read_continue(struct work_struct * work)2112 static void kcryptd_crypt_read_continue(struct work_struct *work)
2113 {
2114 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2115 	struct crypt_config *cc = io->cc;
2116 	blk_status_t r;
2117 
2118 	wait_for_completion(&io->ctx.restart);
2119 	reinit_completion(&io->ctx.restart);
2120 
2121 	r = crypt_convert(cc, &io->ctx, true, false);
2122 	if (r)
2123 		io->error = r;
2124 
2125 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2126 		kcryptd_crypt_read_done(io);
2127 
2128 	crypt_dec_pending(io);
2129 }
2130 
kcryptd_crypt_read_convert(struct dm_crypt_io * io)2131 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2132 {
2133 	struct crypt_config *cc = io->cc;
2134 	blk_status_t r;
2135 
2136 	crypt_inc_pending(io);
2137 
2138 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2139 			   io->sector);
2140 
2141 	r = crypt_convert(cc, &io->ctx,
2142 			  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2143 	/*
2144 	 * Crypto API backlogged the request, because its queue was full
2145 	 * and we're in softirq context, so continue from a workqueue
2146 	 */
2147 	if (r == BLK_STS_DEV_RESOURCE) {
2148 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2149 		queue_work(cc->crypt_queue, &io->work);
2150 		return;
2151 	}
2152 	if (r)
2153 		io->error = r;
2154 
2155 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2156 		kcryptd_crypt_read_done(io);
2157 
2158 	crypt_dec_pending(io);
2159 }
2160 
kcryptd_async_done(struct crypto_async_request * async_req,int error)2161 static void kcryptd_async_done(struct crypto_async_request *async_req,
2162 			       int error)
2163 {
2164 	struct dm_crypt_request *dmreq = async_req->data;
2165 	struct convert_context *ctx = dmreq->ctx;
2166 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2167 	struct crypt_config *cc = io->cc;
2168 
2169 	/*
2170 	 * A request from crypto driver backlog is going to be processed now,
2171 	 * finish the completion and continue in crypt_convert().
2172 	 * (Callback will be called for the second time for this request.)
2173 	 */
2174 	if (error == -EINPROGRESS) {
2175 		complete(&ctx->restart);
2176 		return;
2177 	}
2178 
2179 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2180 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2181 
2182 	if (error == -EBADMSG) {
2183 		char b[BDEVNAME_SIZE];
2184 		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
2185 			    (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
2186 		io->error = BLK_STS_PROTECTION;
2187 	} else if (error < 0)
2188 		io->error = BLK_STS_IOERR;
2189 
2190 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2191 
2192 	if (!atomic_dec_and_test(&ctx->cc_pending))
2193 		return;
2194 
2195 	/*
2196 	 * The request is fully completed: for inline writes, let
2197 	 * kcryptd_crypt_write_convert() do the IO submission.
2198 	 */
2199 	if (bio_data_dir(io->base_bio) == READ) {
2200 		kcryptd_crypt_read_done(io);
2201 		return;
2202 	}
2203 
2204 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2205 		complete(&ctx->restart);
2206 		return;
2207 	}
2208 
2209 	kcryptd_crypt_write_io_submit(io, 1);
2210 }
2211 
kcryptd_crypt(struct work_struct * work)2212 static void kcryptd_crypt(struct work_struct *work)
2213 {
2214 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2215 
2216 	if (bio_data_dir(io->base_bio) == READ)
2217 		kcryptd_crypt_read_convert(io);
2218 	else
2219 		kcryptd_crypt_write_convert(io);
2220 }
2221 
kcryptd_crypt_tasklet(unsigned long work)2222 static void kcryptd_crypt_tasklet(unsigned long work)
2223 {
2224 	kcryptd_crypt((struct work_struct *)work);
2225 }
2226 
kcryptd_queue_crypt(struct dm_crypt_io * io)2227 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2228 {
2229 	struct crypt_config *cc = io->cc;
2230 
2231 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2232 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2233 		/*
2234 		 * in_irq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2235 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2236 		 * it is being executed with irqs disabled.
2237 		 */
2238 		if (in_irq() || irqs_disabled()) {
2239 			io->in_tasklet = true;
2240 			tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2241 			tasklet_schedule(&io->tasklet);
2242 			return;
2243 		}
2244 
2245 		kcryptd_crypt(&io->work);
2246 		return;
2247 	}
2248 
2249 	INIT_WORK(&io->work, kcryptd_crypt);
2250 	queue_work(cc->crypt_queue, &io->work);
2251 }
2252 
crypt_free_tfms_aead(struct crypt_config * cc)2253 static void crypt_free_tfms_aead(struct crypt_config *cc)
2254 {
2255 	if (!cc->cipher_tfm.tfms_aead)
2256 		return;
2257 
2258 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2259 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2260 		cc->cipher_tfm.tfms_aead[0] = NULL;
2261 	}
2262 
2263 	kfree(cc->cipher_tfm.tfms_aead);
2264 	cc->cipher_tfm.tfms_aead = NULL;
2265 }
2266 
crypt_free_tfms_skcipher(struct crypt_config * cc)2267 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2268 {
2269 	unsigned i;
2270 
2271 	if (!cc->cipher_tfm.tfms)
2272 		return;
2273 
2274 	for (i = 0; i < cc->tfms_count; i++)
2275 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2276 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2277 			cc->cipher_tfm.tfms[i] = NULL;
2278 		}
2279 
2280 	kfree(cc->cipher_tfm.tfms);
2281 	cc->cipher_tfm.tfms = NULL;
2282 }
2283 
crypt_free_tfms(struct crypt_config * cc)2284 static void crypt_free_tfms(struct crypt_config *cc)
2285 {
2286 	if (crypt_integrity_aead(cc))
2287 		crypt_free_tfms_aead(cc);
2288 	else
2289 		crypt_free_tfms_skcipher(cc);
2290 }
2291 
crypt_alloc_tfms_skcipher(struct crypt_config * cc,char * ciphermode)2292 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2293 {
2294 	unsigned i;
2295 	int err;
2296 
2297 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2298 				      sizeof(struct crypto_skcipher *),
2299 				      GFP_KERNEL);
2300 	if (!cc->cipher_tfm.tfms)
2301 		return -ENOMEM;
2302 
2303 	for (i = 0; i < cc->tfms_count; i++) {
2304 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2305 						CRYPTO_ALG_ALLOCATES_MEMORY);
2306 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2307 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2308 			crypt_free_tfms(cc);
2309 			return err;
2310 		}
2311 	}
2312 
2313 	/*
2314 	 * dm-crypt performance can vary greatly depending on which crypto
2315 	 * algorithm implementation is used.  Help people debug performance
2316 	 * problems by logging the ->cra_driver_name.
2317 	 */
2318 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2319 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2320 	return 0;
2321 }
2322 
crypt_alloc_tfms_aead(struct crypt_config * cc,char * ciphermode)2323 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2324 {
2325 	int err;
2326 
2327 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2328 	if (!cc->cipher_tfm.tfms)
2329 		return -ENOMEM;
2330 
2331 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2332 						CRYPTO_ALG_ALLOCATES_MEMORY);
2333 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2334 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2335 		crypt_free_tfms(cc);
2336 		return err;
2337 	}
2338 
2339 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2340 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2341 	return 0;
2342 }
2343 
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)2344 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2345 {
2346 	if (crypt_integrity_aead(cc))
2347 		return crypt_alloc_tfms_aead(cc, ciphermode);
2348 	else
2349 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2350 }
2351 
crypt_subkey_size(struct crypt_config * cc)2352 static unsigned crypt_subkey_size(struct crypt_config *cc)
2353 {
2354 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2355 }
2356 
crypt_authenckey_size(struct crypt_config * cc)2357 static unsigned crypt_authenckey_size(struct crypt_config *cc)
2358 {
2359 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2360 }
2361 
2362 /*
2363  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2364  * the key must be for some reason in special format.
2365  * This funcion converts cc->key to this special format.
2366  */
crypt_copy_authenckey(char * p,const void * key,unsigned enckeylen,unsigned authkeylen)2367 static void crypt_copy_authenckey(char *p, const void *key,
2368 				  unsigned enckeylen, unsigned authkeylen)
2369 {
2370 	struct crypto_authenc_key_param *param;
2371 	struct rtattr *rta;
2372 
2373 	rta = (struct rtattr *)p;
2374 	param = RTA_DATA(rta);
2375 	param->enckeylen = cpu_to_be32(enckeylen);
2376 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2377 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2378 	p += RTA_SPACE(sizeof(*param));
2379 	memcpy(p, key + enckeylen, authkeylen);
2380 	p += authkeylen;
2381 	memcpy(p, key, enckeylen);
2382 }
2383 
crypt_setkey(struct crypt_config * cc)2384 static int crypt_setkey(struct crypt_config *cc)
2385 {
2386 	unsigned subkey_size;
2387 	int err = 0, i, r;
2388 
2389 	/* Ignore extra keys (which are used for IV etc) */
2390 	subkey_size = crypt_subkey_size(cc);
2391 
2392 	if (crypt_integrity_hmac(cc)) {
2393 		if (subkey_size < cc->key_mac_size)
2394 			return -EINVAL;
2395 
2396 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2397 				      subkey_size - cc->key_mac_size,
2398 				      cc->key_mac_size);
2399 	}
2400 
2401 	for (i = 0; i < cc->tfms_count; i++) {
2402 		if (crypt_integrity_hmac(cc))
2403 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2404 				cc->authenc_key, crypt_authenckey_size(cc));
2405 		else if (crypt_integrity_aead(cc))
2406 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2407 					       cc->key + (i * subkey_size),
2408 					       subkey_size);
2409 		else
2410 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2411 						   cc->key + (i * subkey_size),
2412 						   subkey_size);
2413 		if (r)
2414 			err = r;
2415 	}
2416 
2417 	if (crypt_integrity_hmac(cc))
2418 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2419 
2420 	return err;
2421 }
2422 
2423 #ifdef CONFIG_KEYS
2424 
contains_whitespace(const char * str)2425 static bool contains_whitespace(const char *str)
2426 {
2427 	while (*str)
2428 		if (isspace(*str++))
2429 			return true;
2430 	return false;
2431 }
2432 
set_key_user(struct crypt_config * cc,struct key * key)2433 static int set_key_user(struct crypt_config *cc, struct key *key)
2434 {
2435 	const struct user_key_payload *ukp;
2436 
2437 	ukp = user_key_payload_locked(key);
2438 	if (!ukp)
2439 		return -EKEYREVOKED;
2440 
2441 	if (cc->key_size != ukp->datalen)
2442 		return -EINVAL;
2443 
2444 	memcpy(cc->key, ukp->data, cc->key_size);
2445 
2446 	return 0;
2447 }
2448 
2449 #if defined(CONFIG_ENCRYPTED_KEYS) || defined(CONFIG_ENCRYPTED_KEYS_MODULE)
set_key_encrypted(struct crypt_config * cc,struct key * key)2450 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2451 {
2452 	const struct encrypted_key_payload *ekp;
2453 
2454 	ekp = key->payload.data[0];
2455 	if (!ekp)
2456 		return -EKEYREVOKED;
2457 
2458 	if (cc->key_size != ekp->decrypted_datalen)
2459 		return -EINVAL;
2460 
2461 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2462 
2463 	return 0;
2464 }
2465 #endif /* CONFIG_ENCRYPTED_KEYS */
2466 
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2467 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2468 {
2469 	char *new_key_string, *key_desc;
2470 	int ret;
2471 	struct key_type *type;
2472 	struct key *key;
2473 	int (*set_key)(struct crypt_config *cc, struct key *key);
2474 
2475 	/*
2476 	 * Reject key_string with whitespace. dm core currently lacks code for
2477 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2478 	 */
2479 	if (contains_whitespace(key_string)) {
2480 		DMERR("whitespace chars not allowed in key string");
2481 		return -EINVAL;
2482 	}
2483 
2484 	/* look for next ':' separating key_type from key_description */
2485 	key_desc = strpbrk(key_string, ":");
2486 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2487 		return -EINVAL;
2488 
2489 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2490 		type = &key_type_logon;
2491 		set_key = set_key_user;
2492 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2493 		type = &key_type_user;
2494 		set_key = set_key_user;
2495 #if defined(CONFIG_ENCRYPTED_KEYS) || defined(CONFIG_ENCRYPTED_KEYS_MODULE)
2496 	} else if (!strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2497 		type = &key_type_encrypted;
2498 		set_key = set_key_encrypted;
2499 #endif
2500 	} else {
2501 		return -EINVAL;
2502 	}
2503 
2504 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2505 	if (!new_key_string)
2506 		return -ENOMEM;
2507 
2508 	key = request_key(type, key_desc + 1, NULL);
2509 	if (IS_ERR(key)) {
2510 		kfree_sensitive(new_key_string);
2511 		return PTR_ERR(key);
2512 	}
2513 
2514 	down_read(&key->sem);
2515 
2516 	ret = set_key(cc, key);
2517 	if (ret < 0) {
2518 		up_read(&key->sem);
2519 		key_put(key);
2520 		kfree_sensitive(new_key_string);
2521 		return ret;
2522 	}
2523 
2524 	up_read(&key->sem);
2525 	key_put(key);
2526 
2527 	/* clear the flag since following operations may invalidate previously valid key */
2528 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2529 
2530 	ret = crypt_setkey(cc);
2531 
2532 	if (!ret) {
2533 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2534 		kfree_sensitive(cc->key_string);
2535 		cc->key_string = new_key_string;
2536 	} else
2537 		kfree_sensitive(new_key_string);
2538 
2539 	return ret;
2540 }
2541 
get_key_size(char ** key_string)2542 static int get_key_size(char **key_string)
2543 {
2544 	char *colon, dummy;
2545 	int ret;
2546 
2547 	if (*key_string[0] != ':')
2548 		return strlen(*key_string) >> 1;
2549 
2550 	/* look for next ':' in key string */
2551 	colon = strpbrk(*key_string + 1, ":");
2552 	if (!colon)
2553 		return -EINVAL;
2554 
2555 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2556 		return -EINVAL;
2557 
2558 	*key_string = colon;
2559 
2560 	/* remaining key string should be :<logon|user>:<key_desc> */
2561 
2562 	return ret;
2563 }
2564 
2565 #else
2566 
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2567 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2568 {
2569 	return -EINVAL;
2570 }
2571 
get_key_size(char ** key_string)2572 static int get_key_size(char **key_string)
2573 {
2574 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2575 }
2576 
2577 #endif /* CONFIG_KEYS */
2578 
crypt_set_key(struct crypt_config * cc,char * key)2579 static int crypt_set_key(struct crypt_config *cc, char *key)
2580 {
2581 	int r = -EINVAL;
2582 	int key_string_len = strlen(key);
2583 
2584 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2585 	if (!cc->key_size && strcmp(key, "-"))
2586 		goto out;
2587 
2588 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2589 	if (key[0] == ':') {
2590 		r = crypt_set_keyring_key(cc, key + 1);
2591 		goto out;
2592 	}
2593 
2594 	/* clear the flag since following operations may invalidate previously valid key */
2595 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2596 
2597 	/* wipe references to any kernel keyring key */
2598 	kfree_sensitive(cc->key_string);
2599 	cc->key_string = NULL;
2600 
2601 	/* Decode key from its hex representation. */
2602 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2603 		goto out;
2604 
2605 	r = crypt_setkey(cc);
2606 	if (!r)
2607 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2608 
2609 out:
2610 	/* Hex key string not needed after here, so wipe it. */
2611 	memset(key, '0', key_string_len);
2612 
2613 	return r;
2614 }
2615 
crypt_wipe_key(struct crypt_config * cc)2616 static int crypt_wipe_key(struct crypt_config *cc)
2617 {
2618 	int r;
2619 
2620 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2621 	get_random_bytes(&cc->key, cc->key_size);
2622 
2623 	/* Wipe IV private keys */
2624 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2625 		r = cc->iv_gen_ops->wipe(cc);
2626 		if (r)
2627 			return r;
2628 	}
2629 
2630 	kfree_sensitive(cc->key_string);
2631 	cc->key_string = NULL;
2632 	r = crypt_setkey(cc);
2633 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2634 
2635 	return r;
2636 }
2637 
crypt_calculate_pages_per_client(void)2638 static void crypt_calculate_pages_per_client(void)
2639 {
2640 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2641 
2642 	if (!dm_crypt_clients_n)
2643 		return;
2644 
2645 	pages /= dm_crypt_clients_n;
2646 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2647 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2648 	dm_crypt_pages_per_client = pages;
2649 }
2650 
crypt_page_alloc(gfp_t gfp_mask,void * pool_data)2651 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2652 {
2653 	struct crypt_config *cc = pool_data;
2654 	struct page *page;
2655 
2656 	/*
2657 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2658 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2659 	 * but avoids potential spinlock contention of an exact result.
2660 	 */
2661 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2662 	    likely(gfp_mask & __GFP_NORETRY))
2663 		return NULL;
2664 
2665 	page = alloc_page(gfp_mask);
2666 	if (likely(page != NULL))
2667 		percpu_counter_add(&cc->n_allocated_pages, 1);
2668 
2669 	return page;
2670 }
2671 
crypt_page_free(void * page,void * pool_data)2672 static void crypt_page_free(void *page, void *pool_data)
2673 {
2674 	struct crypt_config *cc = pool_data;
2675 
2676 	__free_page(page);
2677 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2678 }
2679 
crypt_dtr(struct dm_target * ti)2680 static void crypt_dtr(struct dm_target *ti)
2681 {
2682 	struct crypt_config *cc = ti->private;
2683 
2684 	ti->private = NULL;
2685 
2686 	if (!cc)
2687 		return;
2688 
2689 	if (cc->write_thread)
2690 		kthread_stop(cc->write_thread);
2691 
2692 	if (cc->io_queue)
2693 		destroy_workqueue(cc->io_queue);
2694 	if (cc->crypt_queue)
2695 		destroy_workqueue(cc->crypt_queue);
2696 
2697 	crypt_free_tfms(cc);
2698 
2699 	bioset_exit(&cc->bs);
2700 
2701 	mempool_exit(&cc->page_pool);
2702 	mempool_exit(&cc->req_pool);
2703 	mempool_exit(&cc->tag_pool);
2704 
2705 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2706 	percpu_counter_destroy(&cc->n_allocated_pages);
2707 
2708 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2709 		cc->iv_gen_ops->dtr(cc);
2710 
2711 	if (cc->dev)
2712 		dm_put_device(ti, cc->dev);
2713 
2714 	kfree_sensitive(cc->cipher_string);
2715 	kfree_sensitive(cc->key_string);
2716 	kfree_sensitive(cc->cipher_auth);
2717 	kfree_sensitive(cc->authenc_key);
2718 
2719 	mutex_destroy(&cc->bio_alloc_lock);
2720 
2721 	/* Must zero key material before freeing */
2722 	kfree_sensitive(cc);
2723 
2724 	spin_lock(&dm_crypt_clients_lock);
2725 	WARN_ON(!dm_crypt_clients_n);
2726 	dm_crypt_clients_n--;
2727 	crypt_calculate_pages_per_client();
2728 	spin_unlock(&dm_crypt_clients_lock);
2729 }
2730 
crypt_ctr_ivmode(struct dm_target * ti,const char * ivmode)2731 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2732 {
2733 	struct crypt_config *cc = ti->private;
2734 
2735 	if (crypt_integrity_aead(cc))
2736 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2737 	else
2738 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2739 
2740 	if (cc->iv_size)
2741 		/* at least a 64 bit sector number should fit in our buffer */
2742 		cc->iv_size = max(cc->iv_size,
2743 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2744 	else if (ivmode) {
2745 		DMWARN("Selected cipher does not support IVs");
2746 		ivmode = NULL;
2747 	}
2748 
2749 	/* Choose ivmode, see comments at iv code. */
2750 	if (ivmode == NULL)
2751 		cc->iv_gen_ops = NULL;
2752 	else if (strcmp(ivmode, "plain") == 0)
2753 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2754 	else if (strcmp(ivmode, "plain64") == 0)
2755 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2756 	else if (strcmp(ivmode, "plain64be") == 0)
2757 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2758 	else if (strcmp(ivmode, "essiv") == 0)
2759 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2760 	else if (strcmp(ivmode, "benbi") == 0)
2761 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2762 	else if (strcmp(ivmode, "null") == 0)
2763 		cc->iv_gen_ops = &crypt_iv_null_ops;
2764 	else if (strcmp(ivmode, "eboiv") == 0)
2765 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2766 	else if (strcmp(ivmode, "elephant") == 0) {
2767 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2768 		cc->key_parts = 2;
2769 		cc->key_extra_size = cc->key_size / 2;
2770 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2771 			return -EINVAL;
2772 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2773 	} else if (strcmp(ivmode, "lmk") == 0) {
2774 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2775 		/*
2776 		 * Version 2 and 3 is recognised according
2777 		 * to length of provided multi-key string.
2778 		 * If present (version 3), last key is used as IV seed.
2779 		 * All keys (including IV seed) are always the same size.
2780 		 */
2781 		if (cc->key_size % cc->key_parts) {
2782 			cc->key_parts++;
2783 			cc->key_extra_size = cc->key_size / cc->key_parts;
2784 		}
2785 	} else if (strcmp(ivmode, "tcw") == 0) {
2786 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2787 		cc->key_parts += 2; /* IV + whitening */
2788 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2789 	} else if (strcmp(ivmode, "random") == 0) {
2790 		cc->iv_gen_ops = &crypt_iv_random_ops;
2791 		/* Need storage space in integrity fields. */
2792 		cc->integrity_iv_size = cc->iv_size;
2793 	} else {
2794 		ti->error = "Invalid IV mode";
2795 		return -EINVAL;
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 /*
2802  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2803  * The HMAC is needed to calculate tag size (HMAC digest size).
2804  * This should be probably done by crypto-api calls (once available...)
2805  */
crypt_ctr_auth_cipher(struct crypt_config * cc,char * cipher_api)2806 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2807 {
2808 	char *start, *end, *mac_alg = NULL;
2809 	struct crypto_ahash *mac;
2810 
2811 	if (!strstarts(cipher_api, "authenc("))
2812 		return 0;
2813 
2814 	start = strchr(cipher_api, '(');
2815 	end = strchr(cipher_api, ',');
2816 	if (!start || !end || ++start > end)
2817 		return -EINVAL;
2818 
2819 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2820 	if (!mac_alg)
2821 		return -ENOMEM;
2822 	strncpy(mac_alg, start, end - start);
2823 
2824 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2825 	kfree(mac_alg);
2826 
2827 	if (IS_ERR(mac))
2828 		return PTR_ERR(mac);
2829 
2830 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2831 	crypto_free_ahash(mac);
2832 
2833 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2834 	if (!cc->authenc_key)
2835 		return -ENOMEM;
2836 
2837 	return 0;
2838 }
2839 
crypt_ctr_cipher_new(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2840 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2841 				char **ivmode, char **ivopts)
2842 {
2843 	struct crypt_config *cc = ti->private;
2844 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2845 	int ret = -EINVAL;
2846 
2847 	cc->tfms_count = 1;
2848 
2849 	/*
2850 	 * New format (capi: prefix)
2851 	 * capi:cipher_api_spec-iv:ivopts
2852 	 */
2853 	tmp = &cipher_in[strlen("capi:")];
2854 
2855 	/* Separate IV options if present, it can contain another '-' in hash name */
2856 	*ivopts = strrchr(tmp, ':');
2857 	if (*ivopts) {
2858 		**ivopts = '\0';
2859 		(*ivopts)++;
2860 	}
2861 	/* Parse IV mode */
2862 	*ivmode = strrchr(tmp, '-');
2863 	if (*ivmode) {
2864 		**ivmode = '\0';
2865 		(*ivmode)++;
2866 	}
2867 	/* The rest is crypto API spec */
2868 	cipher_api = tmp;
2869 
2870 	/* Alloc AEAD, can be used only in new format. */
2871 	if (crypt_integrity_aead(cc)) {
2872 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2873 		if (ret < 0) {
2874 			ti->error = "Invalid AEAD cipher spec";
2875 			return -ENOMEM;
2876 		}
2877 	}
2878 
2879 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2880 		cc->tfms_count = 64;
2881 
2882 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2883 		if (!*ivopts) {
2884 			ti->error = "Digest algorithm missing for ESSIV mode";
2885 			return -EINVAL;
2886 		}
2887 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2888 			       cipher_api, *ivopts);
2889 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2890 			ti->error = "Cannot allocate cipher string";
2891 			return -ENOMEM;
2892 		}
2893 		cipher_api = buf;
2894 	}
2895 
2896 	cc->key_parts = cc->tfms_count;
2897 
2898 	/* Allocate cipher */
2899 	ret = crypt_alloc_tfms(cc, cipher_api);
2900 	if (ret < 0) {
2901 		ti->error = "Error allocating crypto tfm";
2902 		return ret;
2903 	}
2904 
2905 	if (crypt_integrity_aead(cc))
2906 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2907 	else
2908 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2909 
2910 	return 0;
2911 }
2912 
crypt_ctr_cipher_old(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2913 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2914 				char **ivmode, char **ivopts)
2915 {
2916 	struct crypt_config *cc = ti->private;
2917 	char *tmp, *cipher, *chainmode, *keycount;
2918 	char *cipher_api = NULL;
2919 	int ret = -EINVAL;
2920 	char dummy;
2921 
2922 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2923 		ti->error = "Bad cipher specification";
2924 		return -EINVAL;
2925 	}
2926 
2927 	/*
2928 	 * Legacy dm-crypt cipher specification
2929 	 * cipher[:keycount]-mode-iv:ivopts
2930 	 */
2931 	tmp = cipher_in;
2932 	keycount = strsep(&tmp, "-");
2933 	cipher = strsep(&keycount, ":");
2934 
2935 	if (!keycount)
2936 		cc->tfms_count = 1;
2937 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2938 		 !is_power_of_2(cc->tfms_count)) {
2939 		ti->error = "Bad cipher key count specification";
2940 		return -EINVAL;
2941 	}
2942 	cc->key_parts = cc->tfms_count;
2943 
2944 	chainmode = strsep(&tmp, "-");
2945 	*ivmode = strsep(&tmp, ":");
2946 	*ivopts = tmp;
2947 
2948 	/*
2949 	 * For compatibility with the original dm-crypt mapping format, if
2950 	 * only the cipher name is supplied, use cbc-plain.
2951 	 */
2952 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2953 		chainmode = "cbc";
2954 		*ivmode = "plain";
2955 	}
2956 
2957 	if (strcmp(chainmode, "ecb") && !*ivmode) {
2958 		ti->error = "IV mechanism required";
2959 		return -EINVAL;
2960 	}
2961 
2962 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2963 	if (!cipher_api)
2964 		goto bad_mem;
2965 
2966 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2967 		if (!*ivopts) {
2968 			ti->error = "Digest algorithm missing for ESSIV mode";
2969 			kfree(cipher_api);
2970 			return -EINVAL;
2971 		}
2972 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2973 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2974 	} else {
2975 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2976 			       "%s(%s)", chainmode, cipher);
2977 	}
2978 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2979 		kfree(cipher_api);
2980 		goto bad_mem;
2981 	}
2982 
2983 	/* Allocate cipher */
2984 	ret = crypt_alloc_tfms(cc, cipher_api);
2985 	if (ret < 0) {
2986 		ti->error = "Error allocating crypto tfm";
2987 		kfree(cipher_api);
2988 		return ret;
2989 	}
2990 	kfree(cipher_api);
2991 
2992 	return 0;
2993 bad_mem:
2994 	ti->error = "Cannot allocate cipher strings";
2995 	return -ENOMEM;
2996 }
2997 
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)2998 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2999 {
3000 	struct crypt_config *cc = ti->private;
3001 	char *ivmode = NULL, *ivopts = NULL;
3002 	int ret;
3003 
3004 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3005 	if (!cc->cipher_string) {
3006 		ti->error = "Cannot allocate cipher strings";
3007 		return -ENOMEM;
3008 	}
3009 
3010 	if (strstarts(cipher_in, "capi:"))
3011 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3012 	else
3013 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3014 	if (ret)
3015 		return ret;
3016 
3017 	/* Initialize IV */
3018 	ret = crypt_ctr_ivmode(ti, ivmode);
3019 	if (ret < 0)
3020 		return ret;
3021 
3022 	/* Initialize and set key */
3023 	ret = crypt_set_key(cc, key);
3024 	if (ret < 0) {
3025 		ti->error = "Error decoding and setting key";
3026 		return ret;
3027 	}
3028 
3029 	/* Allocate IV */
3030 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3031 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3032 		if (ret < 0) {
3033 			ti->error = "Error creating IV";
3034 			return ret;
3035 		}
3036 	}
3037 
3038 	/* Initialize IV (set keys for ESSIV etc) */
3039 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3040 		ret = cc->iv_gen_ops->init(cc);
3041 		if (ret < 0) {
3042 			ti->error = "Error initialising IV";
3043 			return ret;
3044 		}
3045 	}
3046 
3047 	/* wipe the kernel key payload copy */
3048 	if (cc->key_string)
3049 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3050 
3051 	return ret;
3052 }
3053 
crypt_ctr_optional(struct dm_target * ti,unsigned int argc,char ** argv)3054 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3055 {
3056 	struct crypt_config *cc = ti->private;
3057 	struct dm_arg_set as;
3058 	static const struct dm_arg _args[] = {
3059 		{0, 8, "Invalid number of feature args"},
3060 	};
3061 	unsigned int opt_params, val;
3062 	const char *opt_string, *sval;
3063 	char dummy;
3064 	int ret;
3065 
3066 	/* Optional parameters */
3067 	as.argc = argc;
3068 	as.argv = argv;
3069 
3070 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3071 	if (ret)
3072 		return ret;
3073 
3074 	while (opt_params--) {
3075 		opt_string = dm_shift_arg(&as);
3076 		if (!opt_string) {
3077 			ti->error = "Not enough feature arguments";
3078 			return -EINVAL;
3079 		}
3080 
3081 		if (!strcasecmp(opt_string, "allow_discards"))
3082 			ti->num_discard_bios = 1;
3083 
3084 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3085 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3086 
3087 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3088 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3089 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3090 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3091 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3092 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3093 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3094 			if (val == 0 || val > MAX_TAG_SIZE) {
3095 				ti->error = "Invalid integrity arguments";
3096 				return -EINVAL;
3097 			}
3098 			cc->on_disk_tag_size = val;
3099 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3100 			if (!strcasecmp(sval, "aead")) {
3101 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3102 			} else  if (strcasecmp(sval, "none")) {
3103 				ti->error = "Unknown integrity profile";
3104 				return -EINVAL;
3105 			}
3106 
3107 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3108 			if (!cc->cipher_auth)
3109 				return -ENOMEM;
3110 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3111 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3112 			    cc->sector_size > 4096 ||
3113 			    (cc->sector_size & (cc->sector_size - 1))) {
3114 				ti->error = "Invalid feature value for sector_size";
3115 				return -EINVAL;
3116 			}
3117 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3118 				ti->error = "Device size is not multiple of sector_size feature";
3119 				return -EINVAL;
3120 			}
3121 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3122 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3123 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3124 		else {
3125 			ti->error = "Invalid feature arguments";
3126 			return -EINVAL;
3127 		}
3128 	}
3129 
3130 	return 0;
3131 }
3132 
3133 #ifdef CONFIG_BLK_DEV_ZONED
3134 
crypt_report_zones(struct dm_target * ti,struct dm_report_zones_args * args,unsigned int nr_zones)3135 static int crypt_report_zones(struct dm_target *ti,
3136 		struct dm_report_zones_args *args, unsigned int nr_zones)
3137 {
3138 	struct crypt_config *cc = ti->private;
3139 	sector_t sector = cc->start + dm_target_offset(ti, args->next_sector);
3140 
3141 	args->start = cc->start;
3142 	return blkdev_report_zones(cc->dev->bdev, sector, nr_zones,
3143 				   dm_report_zones_cb, args);
3144 }
3145 
3146 #endif
3147 
3148 /*
3149  * Construct an encryption mapping:
3150  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3151  */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3152 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3153 {
3154 	struct crypt_config *cc;
3155 	const char *devname = dm_table_device_name(ti->table);
3156 	int key_size;
3157 	unsigned int align_mask;
3158 	unsigned long long tmpll;
3159 	int ret;
3160 	size_t iv_size_padding, additional_req_size;
3161 	char dummy;
3162 
3163 	if (argc < 5) {
3164 		ti->error = "Not enough arguments";
3165 		return -EINVAL;
3166 	}
3167 
3168 	key_size = get_key_size(&argv[1]);
3169 	if (key_size < 0) {
3170 		ti->error = "Cannot parse key size";
3171 		return -EINVAL;
3172 	}
3173 
3174 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3175 	if (!cc) {
3176 		ti->error = "Cannot allocate encryption context";
3177 		return -ENOMEM;
3178 	}
3179 	cc->key_size = key_size;
3180 	cc->sector_size = (1 << SECTOR_SHIFT);
3181 	cc->sector_shift = 0;
3182 
3183 	ti->private = cc;
3184 
3185 	spin_lock(&dm_crypt_clients_lock);
3186 	dm_crypt_clients_n++;
3187 	crypt_calculate_pages_per_client();
3188 	spin_unlock(&dm_crypt_clients_lock);
3189 
3190 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3191 	if (ret < 0)
3192 		goto bad;
3193 
3194 	/* Optional parameters need to be read before cipher constructor */
3195 	if (argc > 5) {
3196 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3197 		if (ret)
3198 			goto bad;
3199 	}
3200 
3201 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3202 	if (ret < 0)
3203 		goto bad;
3204 
3205 	if (crypt_integrity_aead(cc)) {
3206 		cc->dmreq_start = sizeof(struct aead_request);
3207 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3208 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3209 	} else {
3210 		cc->dmreq_start = sizeof(struct skcipher_request);
3211 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3212 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3213 	}
3214 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3215 
3216 	if (align_mask < CRYPTO_MINALIGN) {
3217 		/* Allocate the padding exactly */
3218 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3219 				& align_mask;
3220 	} else {
3221 		/*
3222 		 * If the cipher requires greater alignment than kmalloc
3223 		 * alignment, we don't know the exact position of the
3224 		 * initialization vector. We must assume worst case.
3225 		 */
3226 		iv_size_padding = align_mask;
3227 	}
3228 
3229 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3230 	additional_req_size = sizeof(struct dm_crypt_request) +
3231 		iv_size_padding + cc->iv_size +
3232 		cc->iv_size +
3233 		sizeof(uint64_t) +
3234 		sizeof(unsigned int);
3235 
3236 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3237 	if (ret) {
3238 		ti->error = "Cannot allocate crypt request mempool";
3239 		goto bad;
3240 	}
3241 
3242 	cc->per_bio_data_size = ti->per_io_data_size =
3243 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3244 		      ARCH_KMALLOC_MINALIGN);
3245 
3246 	ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
3247 	if (ret) {
3248 		ti->error = "Cannot allocate page mempool";
3249 		goto bad;
3250 	}
3251 
3252 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3253 	if (ret) {
3254 		ti->error = "Cannot allocate crypt bioset";
3255 		goto bad;
3256 	}
3257 
3258 	mutex_init(&cc->bio_alloc_lock);
3259 
3260 	ret = -EINVAL;
3261 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3262 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3263 		ti->error = "Invalid iv_offset sector";
3264 		goto bad;
3265 	}
3266 	cc->iv_offset = tmpll;
3267 
3268 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3269 	if (ret) {
3270 		ti->error = "Device lookup failed";
3271 		goto bad;
3272 	}
3273 
3274 	ret = -EINVAL;
3275 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3276 		ti->error = "Invalid device sector";
3277 		goto bad;
3278 	}
3279 	cc->start = tmpll;
3280 
3281 	/*
3282 	 * For zoned block devices, we need to preserve the issuer write
3283 	 * ordering. To do so, disable write workqueues and force inline
3284 	 * encryption completion.
3285 	 */
3286 	if (bdev_is_zoned(cc->dev->bdev)) {
3287 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3288 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3289 	}
3290 
3291 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3292 		ret = crypt_integrity_ctr(cc, ti);
3293 		if (ret)
3294 			goto bad;
3295 
3296 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3297 		if (!cc->tag_pool_max_sectors)
3298 			cc->tag_pool_max_sectors = 1;
3299 
3300 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3301 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3302 		if (ret) {
3303 			ti->error = "Cannot allocate integrity tags mempool";
3304 			goto bad;
3305 		}
3306 
3307 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3308 	}
3309 
3310 	ret = -ENOMEM;
3311 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3312 	if (!cc->io_queue) {
3313 		ti->error = "Couldn't create kcryptd io queue";
3314 		goto bad;
3315 	}
3316 
3317 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3318 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3319 						  1, devname);
3320 	else
3321 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3322 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3323 						  num_online_cpus(), devname);
3324 	if (!cc->crypt_queue) {
3325 		ti->error = "Couldn't create kcryptd queue";
3326 		goto bad;
3327 	}
3328 
3329 	spin_lock_init(&cc->write_thread_lock);
3330 	cc->write_tree = RB_ROOT;
3331 
3332 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3333 	if (IS_ERR(cc->write_thread)) {
3334 		ret = PTR_ERR(cc->write_thread);
3335 		cc->write_thread = NULL;
3336 		ti->error = "Couldn't spawn write thread";
3337 		goto bad;
3338 	}
3339 	wake_up_process(cc->write_thread);
3340 
3341 	ti->num_flush_bios = 1;
3342 	ti->limit_swap_bios = true;
3343 
3344 	return 0;
3345 
3346 bad:
3347 	crypt_dtr(ti);
3348 	return ret;
3349 }
3350 
crypt_map(struct dm_target * ti,struct bio * bio)3351 static int crypt_map(struct dm_target *ti, struct bio *bio)
3352 {
3353 	struct dm_crypt_io *io;
3354 	struct crypt_config *cc = ti->private;
3355 
3356 	/*
3357 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3358 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3359 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3360 	 */
3361 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3362 	    bio_op(bio) == REQ_OP_DISCARD)) {
3363 		bio_set_dev(bio, cc->dev->bdev);
3364 		if (bio_sectors(bio))
3365 			bio->bi_iter.bi_sector = cc->start +
3366 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3367 		return DM_MAPIO_REMAPPED;
3368 	}
3369 
3370 	/*
3371 	 * Check if bio is too large, split as needed.
3372 	 */
3373 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
3374 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3375 		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
3376 
3377 	/*
3378 	 * Ensure that bio is a multiple of internal sector encryption size
3379 	 * and is aligned to this size as defined in IO hints.
3380 	 */
3381 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3382 		return DM_MAPIO_KILL;
3383 
3384 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3385 		return DM_MAPIO_KILL;
3386 
3387 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3388 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3389 
3390 	if (cc->on_disk_tag_size) {
3391 		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3392 
3393 		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3394 		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3395 				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3396 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3397 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3398 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3399 			io->integrity_metadata_from_pool = true;
3400 		}
3401 	}
3402 
3403 	if (crypt_integrity_aead(cc))
3404 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3405 	else
3406 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3407 
3408 	if (bio_data_dir(io->base_bio) == READ) {
3409 		if (kcryptd_io_read(io, GFP_NOWAIT))
3410 			kcryptd_queue_read(io);
3411 	} else
3412 		kcryptd_queue_crypt(io);
3413 
3414 	return DM_MAPIO_SUBMITTED;
3415 }
3416 
hex2asc(unsigned char c)3417 static char hex2asc(unsigned char c)
3418 {
3419 	return c + '0' + ((unsigned)(9 - c) >> 4 & 0x27);
3420 }
3421 
crypt_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3422 static void crypt_status(struct dm_target *ti, status_type_t type,
3423 			 unsigned status_flags, char *result, unsigned maxlen)
3424 {
3425 	struct crypt_config *cc = ti->private;
3426 	unsigned i, sz = 0;
3427 	int num_feature_args = 0;
3428 
3429 	switch (type) {
3430 	case STATUSTYPE_INFO:
3431 		result[0] = '\0';
3432 		break;
3433 
3434 	case STATUSTYPE_TABLE:
3435 		DMEMIT("%s ", cc->cipher_string);
3436 
3437 		if (cc->key_size > 0) {
3438 			if (cc->key_string)
3439 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3440 			else {
3441 				for (i = 0; i < cc->key_size; i++) {
3442 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3443 					       hex2asc(cc->key[i] & 0xf));
3444 				}
3445 			}
3446 		} else
3447 			DMEMIT("-");
3448 
3449 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3450 				cc->dev->name, (unsigned long long)cc->start);
3451 
3452 		num_feature_args += !!ti->num_discard_bios;
3453 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3454 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3455 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3456 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3457 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3458 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3459 		if (cc->on_disk_tag_size)
3460 			num_feature_args++;
3461 		if (num_feature_args) {
3462 			DMEMIT(" %d", num_feature_args);
3463 			if (ti->num_discard_bios)
3464 				DMEMIT(" allow_discards");
3465 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3466 				DMEMIT(" same_cpu_crypt");
3467 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3468 				DMEMIT(" submit_from_crypt_cpus");
3469 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3470 				DMEMIT(" no_read_workqueue");
3471 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3472 				DMEMIT(" no_write_workqueue");
3473 			if (cc->on_disk_tag_size)
3474 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3475 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3476 				DMEMIT(" sector_size:%d", cc->sector_size);
3477 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3478 				DMEMIT(" iv_large_sectors");
3479 		}
3480 
3481 		break;
3482 	}
3483 }
3484 
crypt_postsuspend(struct dm_target * ti)3485 static void crypt_postsuspend(struct dm_target *ti)
3486 {
3487 	struct crypt_config *cc = ti->private;
3488 
3489 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3490 }
3491 
crypt_preresume(struct dm_target * ti)3492 static int crypt_preresume(struct dm_target *ti)
3493 {
3494 	struct crypt_config *cc = ti->private;
3495 
3496 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3497 		DMERR("aborting resume - crypt key is not set.");
3498 		return -EAGAIN;
3499 	}
3500 
3501 	return 0;
3502 }
3503 
crypt_resume(struct dm_target * ti)3504 static void crypt_resume(struct dm_target *ti)
3505 {
3506 	struct crypt_config *cc = ti->private;
3507 
3508 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3509 }
3510 
3511 /* Message interface
3512  *	key set <key>
3513  *	key wipe
3514  */
crypt_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)3515 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3516 			 char *result, unsigned maxlen)
3517 {
3518 	struct crypt_config *cc = ti->private;
3519 	int key_size, ret = -EINVAL;
3520 
3521 	if (argc < 2)
3522 		goto error;
3523 
3524 	if (!strcasecmp(argv[0], "key")) {
3525 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3526 			DMWARN("not suspended during key manipulation.");
3527 			return -EINVAL;
3528 		}
3529 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3530 			/* The key size may not be changed. */
3531 			key_size = get_key_size(&argv[2]);
3532 			if (key_size < 0 || cc->key_size != key_size) {
3533 				memset(argv[2], '0', strlen(argv[2]));
3534 				return -EINVAL;
3535 			}
3536 
3537 			ret = crypt_set_key(cc, argv[2]);
3538 			if (ret)
3539 				return ret;
3540 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3541 				ret = cc->iv_gen_ops->init(cc);
3542 			/* wipe the kernel key payload copy */
3543 			if (cc->key_string)
3544 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3545 			return ret;
3546 		}
3547 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3548 			return crypt_wipe_key(cc);
3549 	}
3550 
3551 error:
3552 	DMWARN("unrecognised message received.");
3553 	return -EINVAL;
3554 }
3555 
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3556 static int crypt_iterate_devices(struct dm_target *ti,
3557 				 iterate_devices_callout_fn fn, void *data)
3558 {
3559 	struct crypt_config *cc = ti->private;
3560 
3561 	return fn(ti, cc->dev, cc->start, ti->len, data);
3562 }
3563 
crypt_io_hints(struct dm_target * ti,struct queue_limits * limits)3564 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3565 {
3566 	struct crypt_config *cc = ti->private;
3567 
3568 	/*
3569 	 * Unfortunate constraint that is required to avoid the potential
3570 	 * for exceeding underlying device's max_segments limits -- due to
3571 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3572 	 * bio that are not as physically contiguous as the original bio.
3573 	 */
3574 	limits->max_segment_size = PAGE_SIZE;
3575 
3576 	limits->logical_block_size =
3577 		max_t(unsigned, limits->logical_block_size, cc->sector_size);
3578 	limits->physical_block_size =
3579 		max_t(unsigned, limits->physical_block_size, cc->sector_size);
3580 	limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3581 }
3582 
3583 static struct target_type crypt_target = {
3584 	.name   = "crypt",
3585 	.version = {1, 22, 0},
3586 	.module = THIS_MODULE,
3587 	.ctr    = crypt_ctr,
3588 	.dtr    = crypt_dtr,
3589 #ifdef CONFIG_BLK_DEV_ZONED
3590 	.features = DM_TARGET_ZONED_HM,
3591 	.report_zones = crypt_report_zones,
3592 #endif
3593 	.map    = crypt_map,
3594 	.status = crypt_status,
3595 	.postsuspend = crypt_postsuspend,
3596 	.preresume = crypt_preresume,
3597 	.resume = crypt_resume,
3598 	.message = crypt_message,
3599 	.iterate_devices = crypt_iterate_devices,
3600 	.io_hints = crypt_io_hints,
3601 };
3602 
dm_crypt_init(void)3603 static int __init dm_crypt_init(void)
3604 {
3605 	int r;
3606 
3607 	r = dm_register_target(&crypt_target);
3608 	if (r < 0)
3609 		DMERR("register failed %d", r);
3610 
3611 	return r;
3612 }
3613 
dm_crypt_exit(void)3614 static void __exit dm_crypt_exit(void)
3615 {
3616 	dm_unregister_target(&crypt_target);
3617 }
3618 
3619 module_init(dm_crypt_init);
3620 module_exit(dm_crypt_exit);
3621 
3622 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3623 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3624 MODULE_LICENSE("GPL");
3625