1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2004 Texas Instruments, Inc.
4 *
5 * Some parts based tps65010.c:
6 * Copyright (C) 2004 Texas Instruments and
7 * Copyright (C) 2004-2005 David Brownell
8 *
9 * Some parts based on tlv320aic24.c:
10 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
11 *
12 * Changes for interrupt handling and clean-up by
13 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
14 * Cleanup and generalized support for voltage setting by
15 * Juha Yrjola
16 * Added support for controlling VCORE and regulator sleep states,
17 * Amit Kucheria <amit.kucheria@nokia.com>
18 * Copyright (C) 2005, 2006 Nokia Corporation
19 */
20
21 #include <linux/module.h>
22 #include <linux/i2c.h>
23 #include <linux/interrupt.h>
24 #include <linux/sched.h>
25 #include <linux/mutex.h>
26 #include <linux/workqueue.h>
27 #include <linux/delay.h>
28 #include <linux/rtc.h>
29 #include <linux/bcd.h>
30 #include <linux/slab.h>
31 #include <linux/mfd/menelaus.h>
32 #include <linux/gpio.h>
33
34 #include <asm/mach/irq.h>
35
36
37 #define DRIVER_NAME "menelaus"
38
39 #define MENELAUS_I2C_ADDRESS 0x72
40
41 #define MENELAUS_REV 0x01
42 #define MENELAUS_VCORE_CTRL1 0x02
43 #define MENELAUS_VCORE_CTRL2 0x03
44 #define MENELAUS_VCORE_CTRL3 0x04
45 #define MENELAUS_VCORE_CTRL4 0x05
46 #define MENELAUS_VCORE_CTRL5 0x06
47 #define MENELAUS_DCDC_CTRL1 0x07
48 #define MENELAUS_DCDC_CTRL2 0x08
49 #define MENELAUS_DCDC_CTRL3 0x09
50 #define MENELAUS_LDO_CTRL1 0x0A
51 #define MENELAUS_LDO_CTRL2 0x0B
52 #define MENELAUS_LDO_CTRL3 0x0C
53 #define MENELAUS_LDO_CTRL4 0x0D
54 #define MENELAUS_LDO_CTRL5 0x0E
55 #define MENELAUS_LDO_CTRL6 0x0F
56 #define MENELAUS_LDO_CTRL7 0x10
57 #define MENELAUS_LDO_CTRL8 0x11
58 #define MENELAUS_SLEEP_CTRL1 0x12
59 #define MENELAUS_SLEEP_CTRL2 0x13
60 #define MENELAUS_DEVICE_OFF 0x14
61 #define MENELAUS_OSC_CTRL 0x15
62 #define MENELAUS_DETECT_CTRL 0x16
63 #define MENELAUS_INT_MASK1 0x17
64 #define MENELAUS_INT_MASK2 0x18
65 #define MENELAUS_INT_STATUS1 0x19
66 #define MENELAUS_INT_STATUS2 0x1A
67 #define MENELAUS_INT_ACK1 0x1B
68 #define MENELAUS_INT_ACK2 0x1C
69 #define MENELAUS_GPIO_CTRL 0x1D
70 #define MENELAUS_GPIO_IN 0x1E
71 #define MENELAUS_GPIO_OUT 0x1F
72 #define MENELAUS_BBSMS 0x20
73 #define MENELAUS_RTC_CTRL 0x21
74 #define MENELAUS_RTC_UPDATE 0x22
75 #define MENELAUS_RTC_SEC 0x23
76 #define MENELAUS_RTC_MIN 0x24
77 #define MENELAUS_RTC_HR 0x25
78 #define MENELAUS_RTC_DAY 0x26
79 #define MENELAUS_RTC_MON 0x27
80 #define MENELAUS_RTC_YR 0x28
81 #define MENELAUS_RTC_WKDAY 0x29
82 #define MENELAUS_RTC_AL_SEC 0x2A
83 #define MENELAUS_RTC_AL_MIN 0x2B
84 #define MENELAUS_RTC_AL_HR 0x2C
85 #define MENELAUS_RTC_AL_DAY 0x2D
86 #define MENELAUS_RTC_AL_MON 0x2E
87 #define MENELAUS_RTC_AL_YR 0x2F
88 #define MENELAUS_RTC_COMP_MSB 0x30
89 #define MENELAUS_RTC_COMP_LSB 0x31
90 #define MENELAUS_S1_PULL_EN 0x32
91 #define MENELAUS_S1_PULL_DIR 0x33
92 #define MENELAUS_S2_PULL_EN 0x34
93 #define MENELAUS_S2_PULL_DIR 0x35
94 #define MENELAUS_MCT_CTRL1 0x36
95 #define MENELAUS_MCT_CTRL2 0x37
96 #define MENELAUS_MCT_CTRL3 0x38
97 #define MENELAUS_MCT_PIN_ST 0x39
98 #define MENELAUS_DEBOUNCE1 0x3A
99
100 #define IH_MENELAUS_IRQS 12
101 #define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */
102 #define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */
103 #define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */
104 #define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */
105 #define MENELAUS_LOWBAT_IRQ 4 /* Low battery */
106 #define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */
107 #define MENELAUS_UVLO_IRQ 6 /* UVLO detect */
108 #define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */
109 #define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */
110 #define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */
111 #define MENELAUS_RTCERR_IRQ 10 /* RTC error */
112 #define MENELAUS_PSHBTN_IRQ 11 /* Push button */
113 #define MENELAUS_RESERVED12_IRQ 12 /* Reserved */
114 #define MENELAUS_RESERVED13_IRQ 13 /* Reserved */
115 #define MENELAUS_RESERVED14_IRQ 14 /* Reserved */
116 #define MENELAUS_RESERVED15_IRQ 15 /* Reserved */
117
118 /* VCORE_CTRL1 register */
119 #define VCORE_CTRL1_BYP_COMP (1 << 5)
120 #define VCORE_CTRL1_HW_NSW (1 << 7)
121
122 /* GPIO_CTRL register */
123 #define GPIO_CTRL_SLOTSELEN (1 << 5)
124 #define GPIO_CTRL_SLPCTLEN (1 << 6)
125 #define GPIO1_DIR_INPUT (1 << 0)
126 #define GPIO2_DIR_INPUT (1 << 1)
127 #define GPIO3_DIR_INPUT (1 << 2)
128
129 /* MCT_CTRL1 register */
130 #define MCT_CTRL1_S1_CMD_OD (1 << 2)
131 #define MCT_CTRL1_S2_CMD_OD (1 << 3)
132
133 /* MCT_CTRL2 register */
134 #define MCT_CTRL2_VS2_SEL_D0 (1 << 0)
135 #define MCT_CTRL2_VS2_SEL_D1 (1 << 1)
136 #define MCT_CTRL2_S1CD_BUFEN (1 << 4)
137 #define MCT_CTRL2_S2CD_BUFEN (1 << 5)
138 #define MCT_CTRL2_S1CD_DBEN (1 << 6)
139 #define MCT_CTRL2_S2CD_BEN (1 << 7)
140
141 /* MCT_CTRL3 register */
142 #define MCT_CTRL3_SLOT1_EN (1 << 0)
143 #define MCT_CTRL3_SLOT2_EN (1 << 1)
144 #define MCT_CTRL3_S1_AUTO_EN (1 << 2)
145 #define MCT_CTRL3_S2_AUTO_EN (1 << 3)
146
147 /* MCT_PIN_ST register */
148 #define MCT_PIN_ST_S1_CD_ST (1 << 0)
149 #define MCT_PIN_ST_S2_CD_ST (1 << 1)
150
151 static void menelaus_work(struct work_struct *_menelaus);
152
153 struct menelaus_chip {
154 struct mutex lock;
155 struct i2c_client *client;
156 struct work_struct work;
157 #ifdef CONFIG_RTC_DRV_TWL92330
158 struct rtc_device *rtc;
159 u8 rtc_control;
160 unsigned uie:1;
161 #endif
162 unsigned vcore_hw_mode:1;
163 u8 mask1, mask2;
164 void (*handlers[16])(struct menelaus_chip *);
165 void (*mmc_callback)(void *data, u8 mask);
166 void *mmc_callback_data;
167 };
168
169 static struct menelaus_chip *the_menelaus;
170
menelaus_write_reg(int reg,u8 value)171 static int menelaus_write_reg(int reg, u8 value)
172 {
173 int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
174
175 if (val < 0) {
176 pr_err(DRIVER_NAME ": write error");
177 return val;
178 }
179
180 return 0;
181 }
182
menelaus_read_reg(int reg)183 static int menelaus_read_reg(int reg)
184 {
185 int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
186
187 if (val < 0)
188 pr_err(DRIVER_NAME ": read error");
189
190 return val;
191 }
192
menelaus_enable_irq(int irq)193 static int menelaus_enable_irq(int irq)
194 {
195 if (irq > 7) {
196 irq -= 8;
197 the_menelaus->mask2 &= ~(1 << irq);
198 return menelaus_write_reg(MENELAUS_INT_MASK2,
199 the_menelaus->mask2);
200 } else {
201 the_menelaus->mask1 &= ~(1 << irq);
202 return menelaus_write_reg(MENELAUS_INT_MASK1,
203 the_menelaus->mask1);
204 }
205 }
206
menelaus_disable_irq(int irq)207 static int menelaus_disable_irq(int irq)
208 {
209 if (irq > 7) {
210 irq -= 8;
211 the_menelaus->mask2 |= (1 << irq);
212 return menelaus_write_reg(MENELAUS_INT_MASK2,
213 the_menelaus->mask2);
214 } else {
215 the_menelaus->mask1 |= (1 << irq);
216 return menelaus_write_reg(MENELAUS_INT_MASK1,
217 the_menelaus->mask1);
218 }
219 }
220
menelaus_ack_irq(int irq)221 static int menelaus_ack_irq(int irq)
222 {
223 if (irq > 7)
224 return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
225 else
226 return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
227 }
228
229 /* Adds a handler for an interrupt. Does not run in interrupt context */
menelaus_add_irq_work(int irq,void (* handler)(struct menelaus_chip *))230 static int menelaus_add_irq_work(int irq,
231 void (*handler)(struct menelaus_chip *))
232 {
233 int ret = 0;
234
235 mutex_lock(&the_menelaus->lock);
236 the_menelaus->handlers[irq] = handler;
237 ret = menelaus_enable_irq(irq);
238 mutex_unlock(&the_menelaus->lock);
239
240 return ret;
241 }
242
243 /* Removes handler for an interrupt */
menelaus_remove_irq_work(int irq)244 static int menelaus_remove_irq_work(int irq)
245 {
246 int ret = 0;
247
248 mutex_lock(&the_menelaus->lock);
249 ret = menelaus_disable_irq(irq);
250 the_menelaus->handlers[irq] = NULL;
251 mutex_unlock(&the_menelaus->lock);
252
253 return ret;
254 }
255
256 /*
257 * Gets scheduled when a card detect interrupt happens. Note that in some cases
258 * this line is wired to card cover switch rather than the card detect switch
259 * in each slot. In this case the cards are not seen by menelaus.
260 * FIXME: Add handling for D1 too
261 */
menelaus_mmc_cd_work(struct menelaus_chip * menelaus_hw)262 static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
263 {
264 int reg;
265 unsigned char card_mask = 0;
266
267 reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
268 if (reg < 0)
269 return;
270
271 if (!(reg & 0x1))
272 card_mask |= MCT_PIN_ST_S1_CD_ST;
273
274 if (!(reg & 0x2))
275 card_mask |= MCT_PIN_ST_S2_CD_ST;
276
277 if (menelaus_hw->mmc_callback)
278 menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
279 card_mask);
280 }
281
282 /*
283 * Toggles the MMC slots between open-drain and push-pull mode.
284 */
menelaus_set_mmc_opendrain(int slot,int enable)285 int menelaus_set_mmc_opendrain(int slot, int enable)
286 {
287 int ret, val;
288
289 if (slot != 1 && slot != 2)
290 return -EINVAL;
291 mutex_lock(&the_menelaus->lock);
292 ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
293 if (ret < 0) {
294 mutex_unlock(&the_menelaus->lock);
295 return ret;
296 }
297 val = ret;
298 if (slot == 1) {
299 if (enable)
300 val |= MCT_CTRL1_S1_CMD_OD;
301 else
302 val &= ~MCT_CTRL1_S1_CMD_OD;
303 } else {
304 if (enable)
305 val |= MCT_CTRL1_S2_CMD_OD;
306 else
307 val &= ~MCT_CTRL1_S2_CMD_OD;
308 }
309 ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
310 mutex_unlock(&the_menelaus->lock);
311
312 return ret;
313 }
314 EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
315
menelaus_set_slot_sel(int enable)316 int menelaus_set_slot_sel(int enable)
317 {
318 int ret;
319
320 mutex_lock(&the_menelaus->lock);
321 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
322 if (ret < 0)
323 goto out;
324 ret |= GPIO2_DIR_INPUT;
325 if (enable)
326 ret |= GPIO_CTRL_SLOTSELEN;
327 else
328 ret &= ~GPIO_CTRL_SLOTSELEN;
329 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
330 out:
331 mutex_unlock(&the_menelaus->lock);
332 return ret;
333 }
334 EXPORT_SYMBOL(menelaus_set_slot_sel);
335
menelaus_set_mmc_slot(int slot,int enable,int power,int cd_en)336 int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
337 {
338 int ret, val;
339
340 if (slot != 1 && slot != 2)
341 return -EINVAL;
342 if (power >= 3)
343 return -EINVAL;
344
345 mutex_lock(&the_menelaus->lock);
346
347 ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
348 if (ret < 0)
349 goto out;
350 val = ret;
351 if (slot == 1) {
352 if (cd_en)
353 val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN;
354 else
355 val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN);
356 } else {
357 if (cd_en)
358 val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN;
359 else
360 val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN);
361 }
362 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
363 if (ret < 0)
364 goto out;
365
366 ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
367 if (ret < 0)
368 goto out;
369 val = ret;
370 if (slot == 1) {
371 if (enable)
372 val |= MCT_CTRL3_SLOT1_EN;
373 else
374 val &= ~MCT_CTRL3_SLOT1_EN;
375 } else {
376 int b;
377
378 if (enable)
379 val |= MCT_CTRL3_SLOT2_EN;
380 else
381 val &= ~MCT_CTRL3_SLOT2_EN;
382 b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
383 b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1);
384 b |= power;
385 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
386 if (ret < 0)
387 goto out;
388 }
389 /* Disable autonomous shutdown */
390 val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN);
391 ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
392 out:
393 mutex_unlock(&the_menelaus->lock);
394 return ret;
395 }
396 EXPORT_SYMBOL(menelaus_set_mmc_slot);
397
menelaus_register_mmc_callback(void (* callback)(void * data,u8 card_mask),void * data)398 int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
399 void *data)
400 {
401 int ret = 0;
402
403 the_menelaus->mmc_callback_data = data;
404 the_menelaus->mmc_callback = callback;
405 ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
406 menelaus_mmc_cd_work);
407 if (ret < 0)
408 return ret;
409 ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
410 menelaus_mmc_cd_work);
411 if (ret < 0)
412 return ret;
413 ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
414 menelaus_mmc_cd_work);
415 if (ret < 0)
416 return ret;
417 ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
418 menelaus_mmc_cd_work);
419
420 return ret;
421 }
422 EXPORT_SYMBOL(menelaus_register_mmc_callback);
423
menelaus_unregister_mmc_callback(void)424 void menelaus_unregister_mmc_callback(void)
425 {
426 menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
427 menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
428 menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
429 menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
430
431 the_menelaus->mmc_callback = NULL;
432 the_menelaus->mmc_callback_data = NULL;
433 }
434 EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
435
436 struct menelaus_vtg {
437 const char *name;
438 u8 vtg_reg;
439 u8 vtg_shift;
440 u8 vtg_bits;
441 u8 mode_reg;
442 };
443
444 struct menelaus_vtg_value {
445 u16 vtg;
446 u16 val;
447 };
448
menelaus_set_voltage(const struct menelaus_vtg * vtg,int mV,int vtg_val,int mode)449 static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
450 int vtg_val, int mode)
451 {
452 int val, ret;
453 struct i2c_client *c = the_menelaus->client;
454
455 mutex_lock(&the_menelaus->lock);
456
457 ret = menelaus_read_reg(vtg->vtg_reg);
458 if (ret < 0)
459 goto out;
460 val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
461 val |= vtg_val << vtg->vtg_shift;
462
463 dev_dbg(&c->dev, "Setting voltage '%s'"
464 "to %d mV (reg 0x%02x, val 0x%02x)\n",
465 vtg->name, mV, vtg->vtg_reg, val);
466
467 ret = menelaus_write_reg(vtg->vtg_reg, val);
468 if (ret < 0)
469 goto out;
470 ret = menelaus_write_reg(vtg->mode_reg, mode);
471 out:
472 mutex_unlock(&the_menelaus->lock);
473 if (ret == 0) {
474 /* Wait for voltage to stabilize */
475 msleep(1);
476 }
477 return ret;
478 }
479
menelaus_get_vtg_value(int vtg,const struct menelaus_vtg_value * tbl,int n)480 static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
481 int n)
482 {
483 int i;
484
485 for (i = 0; i < n; i++, tbl++)
486 if (tbl->vtg == vtg)
487 return tbl->val;
488 return -EINVAL;
489 }
490
491 /*
492 * Vcore can be programmed in two ways:
493 * SW-controlled: Required voltage is programmed into VCORE_CTRL1
494 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
495 * and VCORE_CTRL4
496 *
497 * Call correct 'set' function accordingly
498 */
499
500 static const struct menelaus_vtg_value vcore_values[] = {
501 { 1000, 0 },
502 { 1025, 1 },
503 { 1050, 2 },
504 { 1075, 3 },
505 { 1100, 4 },
506 { 1125, 5 },
507 { 1150, 6 },
508 { 1175, 7 },
509 { 1200, 8 },
510 { 1225, 9 },
511 { 1250, 10 },
512 { 1275, 11 },
513 { 1300, 12 },
514 { 1325, 13 },
515 { 1350, 14 },
516 { 1375, 15 },
517 { 1400, 16 },
518 { 1425, 17 },
519 { 1450, 18 },
520 };
521
menelaus_set_vcore_hw(unsigned int roof_mV,unsigned int floor_mV)522 int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
523 {
524 int fval, rval, val, ret;
525 struct i2c_client *c = the_menelaus->client;
526
527 rval = menelaus_get_vtg_value(roof_mV, vcore_values,
528 ARRAY_SIZE(vcore_values));
529 if (rval < 0)
530 return -EINVAL;
531 fval = menelaus_get_vtg_value(floor_mV, vcore_values,
532 ARRAY_SIZE(vcore_values));
533 if (fval < 0)
534 return -EINVAL;
535
536 dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
537 floor_mV, roof_mV);
538
539 mutex_lock(&the_menelaus->lock);
540 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
541 if (ret < 0)
542 goto out;
543 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
544 if (ret < 0)
545 goto out;
546 if (!the_menelaus->vcore_hw_mode) {
547 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
548 /* HW mode, turn OFF byte comparator */
549 val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP);
550 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
551 the_menelaus->vcore_hw_mode = 1;
552 }
553 msleep(1);
554 out:
555 mutex_unlock(&the_menelaus->lock);
556 return ret;
557 }
558
559 static const struct menelaus_vtg vmem_vtg = {
560 .name = "VMEM",
561 .vtg_reg = MENELAUS_LDO_CTRL1,
562 .vtg_shift = 0,
563 .vtg_bits = 2,
564 .mode_reg = MENELAUS_LDO_CTRL3,
565 };
566
567 static const struct menelaus_vtg_value vmem_values[] = {
568 { 1500, 0 },
569 { 1800, 1 },
570 { 1900, 2 },
571 { 2500, 3 },
572 };
573
menelaus_set_vmem(unsigned int mV)574 int menelaus_set_vmem(unsigned int mV)
575 {
576 int val;
577
578 if (mV == 0)
579 return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
580
581 val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
582 if (val < 0)
583 return -EINVAL;
584 return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
585 }
586 EXPORT_SYMBOL(menelaus_set_vmem);
587
588 static const struct menelaus_vtg vio_vtg = {
589 .name = "VIO",
590 .vtg_reg = MENELAUS_LDO_CTRL1,
591 .vtg_shift = 2,
592 .vtg_bits = 2,
593 .mode_reg = MENELAUS_LDO_CTRL4,
594 };
595
596 static const struct menelaus_vtg_value vio_values[] = {
597 { 1500, 0 },
598 { 1800, 1 },
599 { 2500, 2 },
600 { 2800, 3 },
601 };
602
menelaus_set_vio(unsigned int mV)603 int menelaus_set_vio(unsigned int mV)
604 {
605 int val;
606
607 if (mV == 0)
608 return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
609
610 val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
611 if (val < 0)
612 return -EINVAL;
613 return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
614 }
615 EXPORT_SYMBOL(menelaus_set_vio);
616
617 static const struct menelaus_vtg_value vdcdc_values[] = {
618 { 1500, 0 },
619 { 1800, 1 },
620 { 2000, 2 },
621 { 2200, 3 },
622 { 2400, 4 },
623 { 2800, 5 },
624 { 3000, 6 },
625 { 3300, 7 },
626 };
627
628 static const struct menelaus_vtg vdcdc2_vtg = {
629 .name = "VDCDC2",
630 .vtg_reg = MENELAUS_DCDC_CTRL1,
631 .vtg_shift = 0,
632 .vtg_bits = 3,
633 .mode_reg = MENELAUS_DCDC_CTRL2,
634 };
635
636 static const struct menelaus_vtg vdcdc3_vtg = {
637 .name = "VDCDC3",
638 .vtg_reg = MENELAUS_DCDC_CTRL1,
639 .vtg_shift = 3,
640 .vtg_bits = 3,
641 .mode_reg = MENELAUS_DCDC_CTRL3,
642 };
643
menelaus_set_vdcdc(int dcdc,unsigned int mV)644 int menelaus_set_vdcdc(int dcdc, unsigned int mV)
645 {
646 const struct menelaus_vtg *vtg;
647 int val;
648
649 if (dcdc != 2 && dcdc != 3)
650 return -EINVAL;
651 if (dcdc == 2)
652 vtg = &vdcdc2_vtg;
653 else
654 vtg = &vdcdc3_vtg;
655
656 if (mV == 0)
657 return menelaus_set_voltage(vtg, 0, 0, 0);
658
659 val = menelaus_get_vtg_value(mV, vdcdc_values,
660 ARRAY_SIZE(vdcdc_values));
661 if (val < 0)
662 return -EINVAL;
663 return menelaus_set_voltage(vtg, mV, val, 0x03);
664 }
665
666 static const struct menelaus_vtg_value vmmc_values[] = {
667 { 1850, 0 },
668 { 2800, 1 },
669 { 3000, 2 },
670 { 3100, 3 },
671 };
672
673 static const struct menelaus_vtg vmmc_vtg = {
674 .name = "VMMC",
675 .vtg_reg = MENELAUS_LDO_CTRL1,
676 .vtg_shift = 6,
677 .vtg_bits = 2,
678 .mode_reg = MENELAUS_LDO_CTRL7,
679 };
680
menelaus_set_vmmc(unsigned int mV)681 int menelaus_set_vmmc(unsigned int mV)
682 {
683 int val;
684
685 if (mV == 0)
686 return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
687
688 val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
689 if (val < 0)
690 return -EINVAL;
691 return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
692 }
693 EXPORT_SYMBOL(menelaus_set_vmmc);
694
695
696 static const struct menelaus_vtg_value vaux_values[] = {
697 { 1500, 0 },
698 { 1800, 1 },
699 { 2500, 2 },
700 { 2800, 3 },
701 };
702
703 static const struct menelaus_vtg vaux_vtg = {
704 .name = "VAUX",
705 .vtg_reg = MENELAUS_LDO_CTRL1,
706 .vtg_shift = 4,
707 .vtg_bits = 2,
708 .mode_reg = MENELAUS_LDO_CTRL6,
709 };
710
menelaus_set_vaux(unsigned int mV)711 int menelaus_set_vaux(unsigned int mV)
712 {
713 int val;
714
715 if (mV == 0)
716 return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
717
718 val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
719 if (val < 0)
720 return -EINVAL;
721 return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
722 }
723 EXPORT_SYMBOL(menelaus_set_vaux);
724
menelaus_get_slot_pin_states(void)725 int menelaus_get_slot_pin_states(void)
726 {
727 return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
728 }
729 EXPORT_SYMBOL(menelaus_get_slot_pin_states);
730
menelaus_set_regulator_sleep(int enable,u32 val)731 int menelaus_set_regulator_sleep(int enable, u32 val)
732 {
733 int t, ret;
734 struct i2c_client *c = the_menelaus->client;
735
736 mutex_lock(&the_menelaus->lock);
737 ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
738 if (ret < 0)
739 goto out;
740
741 dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
742
743 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
744 if (ret < 0)
745 goto out;
746 t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT);
747 if (enable)
748 ret |= t;
749 else
750 ret &= ~t;
751 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
752 out:
753 mutex_unlock(&the_menelaus->lock);
754 return ret;
755 }
756
757 /*-----------------------------------------------------------------------*/
758
759 /* Handles Menelaus interrupts. Does not run in interrupt context */
menelaus_work(struct work_struct * _menelaus)760 static void menelaus_work(struct work_struct *_menelaus)
761 {
762 struct menelaus_chip *menelaus =
763 container_of(_menelaus, struct menelaus_chip, work);
764 void (*handler)(struct menelaus_chip *menelaus);
765
766 while (1) {
767 unsigned isr;
768
769 isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
770 & ~menelaus->mask2) << 8;
771 isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
772 & ~menelaus->mask1;
773 if (!isr)
774 break;
775
776 while (isr) {
777 int irq = fls(isr) - 1;
778 isr &= ~(1 << irq);
779
780 mutex_lock(&menelaus->lock);
781 menelaus_disable_irq(irq);
782 menelaus_ack_irq(irq);
783 handler = menelaus->handlers[irq];
784 if (handler)
785 handler(menelaus);
786 menelaus_enable_irq(irq);
787 mutex_unlock(&menelaus->lock);
788 }
789 }
790 enable_irq(menelaus->client->irq);
791 }
792
793 /*
794 * We cannot use I2C in interrupt context, so we just schedule work.
795 */
menelaus_irq(int irq,void * _menelaus)796 static irqreturn_t menelaus_irq(int irq, void *_menelaus)
797 {
798 struct menelaus_chip *menelaus = _menelaus;
799
800 disable_irq_nosync(irq);
801 (void)schedule_work(&menelaus->work);
802
803 return IRQ_HANDLED;
804 }
805
806 /*-----------------------------------------------------------------------*/
807
808 /*
809 * The RTC needs to be set once, then it runs on backup battery power.
810 * It supports alarms, including system wake alarms (from some modes);
811 * and 1/second IRQs if requested.
812 */
813 #ifdef CONFIG_RTC_DRV_TWL92330
814
815 #define RTC_CTRL_RTC_EN (1 << 0)
816 #define RTC_CTRL_AL_EN (1 << 1)
817 #define RTC_CTRL_MODE12 (1 << 2)
818 #define RTC_CTRL_EVERY_MASK (3 << 3)
819 #define RTC_CTRL_EVERY_SEC (0 << 3)
820 #define RTC_CTRL_EVERY_MIN (1 << 3)
821 #define RTC_CTRL_EVERY_HR (2 << 3)
822 #define RTC_CTRL_EVERY_DAY (3 << 3)
823
824 #define RTC_UPDATE_EVERY 0x08
825
826 #define RTC_HR_PM (1 << 7)
827
menelaus_to_time(char * regs,struct rtc_time * t)828 static void menelaus_to_time(char *regs, struct rtc_time *t)
829 {
830 t->tm_sec = bcd2bin(regs[0]);
831 t->tm_min = bcd2bin(regs[1]);
832 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
833 t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
834 if (regs[2] & RTC_HR_PM)
835 t->tm_hour += 12;
836 } else
837 t->tm_hour = bcd2bin(regs[2] & 0x3f);
838 t->tm_mday = bcd2bin(regs[3]);
839 t->tm_mon = bcd2bin(regs[4]) - 1;
840 t->tm_year = bcd2bin(regs[5]) + 100;
841 }
842
time_to_menelaus(struct rtc_time * t,int regnum)843 static int time_to_menelaus(struct rtc_time *t, int regnum)
844 {
845 int hour, status;
846
847 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
848 if (status < 0)
849 goto fail;
850
851 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
852 if (status < 0)
853 goto fail;
854
855 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
856 hour = t->tm_hour + 1;
857 if (hour > 12)
858 hour = RTC_HR_PM | bin2bcd(hour - 12);
859 else
860 hour = bin2bcd(hour);
861 } else
862 hour = bin2bcd(t->tm_hour);
863 status = menelaus_write_reg(regnum++, hour);
864 if (status < 0)
865 goto fail;
866
867 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
868 if (status < 0)
869 goto fail;
870
871 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
872 if (status < 0)
873 goto fail;
874
875 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
876 if (status < 0)
877 goto fail;
878
879 return 0;
880 fail:
881 dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
882 --regnum, status);
883 return status;
884 }
885
menelaus_read_time(struct device * dev,struct rtc_time * t)886 static int menelaus_read_time(struct device *dev, struct rtc_time *t)
887 {
888 struct i2c_msg msg[2];
889 char regs[7];
890 int status;
891
892 /* block read date and time registers */
893 regs[0] = MENELAUS_RTC_SEC;
894
895 msg[0].addr = MENELAUS_I2C_ADDRESS;
896 msg[0].flags = 0;
897 msg[0].len = 1;
898 msg[0].buf = regs;
899
900 msg[1].addr = MENELAUS_I2C_ADDRESS;
901 msg[1].flags = I2C_M_RD;
902 msg[1].len = sizeof(regs);
903 msg[1].buf = regs;
904
905 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
906 if (status != 2) {
907 dev_err(dev, "%s error %d\n", "read", status);
908 return -EIO;
909 }
910
911 menelaus_to_time(regs, t);
912 t->tm_wday = bcd2bin(regs[6]);
913
914 return 0;
915 }
916
menelaus_set_time(struct device * dev,struct rtc_time * t)917 static int menelaus_set_time(struct device *dev, struct rtc_time *t)
918 {
919 int status;
920
921 /* write date and time registers */
922 status = time_to_menelaus(t, MENELAUS_RTC_SEC);
923 if (status < 0)
924 return status;
925 status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
926 if (status < 0) {
927 dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
928 "err %d\n", MENELAUS_RTC_WKDAY, status);
929 return status;
930 }
931
932 /* now commit the write */
933 status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
934 if (status < 0)
935 dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
936 status);
937
938 return 0;
939 }
940
menelaus_read_alarm(struct device * dev,struct rtc_wkalrm * w)941 static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
942 {
943 struct i2c_msg msg[2];
944 char regs[6];
945 int status;
946
947 /* block read alarm registers */
948 regs[0] = MENELAUS_RTC_AL_SEC;
949
950 msg[0].addr = MENELAUS_I2C_ADDRESS;
951 msg[0].flags = 0;
952 msg[0].len = 1;
953 msg[0].buf = regs;
954
955 msg[1].addr = MENELAUS_I2C_ADDRESS;
956 msg[1].flags = I2C_M_RD;
957 msg[1].len = sizeof(regs);
958 msg[1].buf = regs;
959
960 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
961 if (status != 2) {
962 dev_err(dev, "%s error %d\n", "alarm read", status);
963 return -EIO;
964 }
965
966 menelaus_to_time(regs, &w->time);
967
968 w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
969
970 /* NOTE we *could* check if actually pending... */
971 w->pending = 0;
972
973 return 0;
974 }
975
menelaus_set_alarm(struct device * dev,struct rtc_wkalrm * w)976 static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
977 {
978 int status;
979
980 if (the_menelaus->client->irq <= 0 && w->enabled)
981 return -ENODEV;
982
983 /* clear previous alarm enable */
984 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
985 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
986 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
987 the_menelaus->rtc_control);
988 if (status < 0)
989 return status;
990 }
991
992 /* write alarm registers */
993 status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
994 if (status < 0)
995 return status;
996
997 /* enable alarm if requested */
998 if (w->enabled) {
999 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1000 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1001 the_menelaus->rtc_control);
1002 }
1003
1004 return status;
1005 }
1006
1007 #ifdef CONFIG_RTC_INTF_DEV
1008
menelaus_rtc_update_work(struct menelaus_chip * m)1009 static void menelaus_rtc_update_work(struct menelaus_chip *m)
1010 {
1011 /* report 1/sec update */
1012 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1013 }
1014
menelaus_ioctl(struct device * dev,unsigned cmd,unsigned long arg)1015 static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1016 {
1017 int status;
1018
1019 if (the_menelaus->client->irq <= 0)
1020 return -ENOIOCTLCMD;
1021
1022 switch (cmd) {
1023 /* alarm IRQ */
1024 case RTC_AIE_ON:
1025 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1026 return 0;
1027 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1028 break;
1029 case RTC_AIE_OFF:
1030 if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1031 return 0;
1032 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1033 break;
1034 /* 1/second "update" IRQ */
1035 case RTC_UIE_ON:
1036 if (the_menelaus->uie)
1037 return 0;
1038 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1039 status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1040 menelaus_rtc_update_work);
1041 if (status == 0)
1042 the_menelaus->uie = 1;
1043 return status;
1044 case RTC_UIE_OFF:
1045 if (!the_menelaus->uie)
1046 return 0;
1047 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1048 if (status == 0)
1049 the_menelaus->uie = 0;
1050 return status;
1051 default:
1052 return -ENOIOCTLCMD;
1053 }
1054 return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1055 }
1056
1057 #else
1058 #define menelaus_ioctl NULL
1059 #endif
1060
1061 /* REVISIT no compensation register support ... */
1062
1063 static const struct rtc_class_ops menelaus_rtc_ops = {
1064 .ioctl = menelaus_ioctl,
1065 .read_time = menelaus_read_time,
1066 .set_time = menelaus_set_time,
1067 .read_alarm = menelaus_read_alarm,
1068 .set_alarm = menelaus_set_alarm,
1069 };
1070
menelaus_rtc_alarm_work(struct menelaus_chip * m)1071 static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1072 {
1073 /* report alarm */
1074 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1075
1076 /* then disable it; alarms are oneshot */
1077 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1078 menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1079 }
1080
menelaus_rtc_init(struct menelaus_chip * m)1081 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1082 {
1083 int alarm = (m->client->irq > 0);
1084 int err;
1085
1086 /* assume 32KDETEN pin is pulled high */
1087 if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1088 dev_dbg(&m->client->dev, "no 32k oscillator\n");
1089 return;
1090 }
1091
1092 m->rtc = devm_rtc_allocate_device(&m->client->dev);
1093 if (IS_ERR(m->rtc))
1094 return;
1095
1096 m->rtc->ops = &menelaus_rtc_ops;
1097
1098 /* support RTC alarm; it can issue wakeups */
1099 if (alarm) {
1100 if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1101 menelaus_rtc_alarm_work) < 0) {
1102 dev_err(&m->client->dev, "can't handle RTC alarm\n");
1103 return;
1104 }
1105 device_init_wakeup(&m->client->dev, 1);
1106 }
1107
1108 /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1109 m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1110 if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1111 || (m->rtc_control & RTC_CTRL_AL_EN)
1112 || (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1113 if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1114 dev_warn(&m->client->dev, "rtc clock needs setting\n");
1115 m->rtc_control |= RTC_CTRL_RTC_EN;
1116 }
1117 m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1118 m->rtc_control &= ~RTC_CTRL_AL_EN;
1119 menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1120 }
1121
1122 err = rtc_register_device(m->rtc);
1123 if (err) {
1124 if (alarm) {
1125 menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1126 device_init_wakeup(&m->client->dev, 0);
1127 }
1128 the_menelaus->rtc = NULL;
1129 }
1130 }
1131
1132 #else
1133
menelaus_rtc_init(struct menelaus_chip * m)1134 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1135 {
1136 /* nothing */
1137 }
1138
1139 #endif
1140
1141 /*-----------------------------------------------------------------------*/
1142
1143 static struct i2c_driver menelaus_i2c_driver;
1144
menelaus_probe(struct i2c_client * client,const struct i2c_device_id * id)1145 static int menelaus_probe(struct i2c_client *client,
1146 const struct i2c_device_id *id)
1147 {
1148 struct menelaus_chip *menelaus;
1149 int rev = 0;
1150 int err = 0;
1151 struct menelaus_platform_data *menelaus_pdata =
1152 dev_get_platdata(&client->dev);
1153
1154 if (the_menelaus) {
1155 dev_dbg(&client->dev, "only one %s for now\n",
1156 DRIVER_NAME);
1157 return -ENODEV;
1158 }
1159
1160 menelaus = devm_kzalloc(&client->dev, sizeof(*menelaus), GFP_KERNEL);
1161 if (!menelaus)
1162 return -ENOMEM;
1163
1164 i2c_set_clientdata(client, menelaus);
1165
1166 the_menelaus = menelaus;
1167 menelaus->client = client;
1168
1169 /* If a true probe check the device */
1170 rev = menelaus_read_reg(MENELAUS_REV);
1171 if (rev < 0) {
1172 pr_err(DRIVER_NAME ": device not found");
1173 return -ENODEV;
1174 }
1175
1176 /* Ack and disable all Menelaus interrupts */
1177 menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1178 menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1179 menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1180 menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1181 menelaus->mask1 = 0xff;
1182 menelaus->mask2 = 0xff;
1183
1184 /* Set output buffer strengths */
1185 menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1186
1187 if (client->irq > 0) {
1188 err = request_irq(client->irq, menelaus_irq, 0,
1189 DRIVER_NAME, menelaus);
1190 if (err) {
1191 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n",
1192 client->irq, err);
1193 return err;
1194 }
1195 }
1196
1197 mutex_init(&menelaus->lock);
1198 INIT_WORK(&menelaus->work, menelaus_work);
1199
1200 pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1201
1202 err = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1203 if (err < 0)
1204 goto fail;
1205 if (err & VCORE_CTRL1_HW_NSW)
1206 menelaus->vcore_hw_mode = 1;
1207 else
1208 menelaus->vcore_hw_mode = 0;
1209
1210 if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1211 err = menelaus_pdata->late_init(&client->dev);
1212 if (err < 0)
1213 goto fail;
1214 }
1215
1216 menelaus_rtc_init(menelaus);
1217
1218 return 0;
1219 fail:
1220 free_irq(client->irq, menelaus);
1221 flush_work(&menelaus->work);
1222 return err;
1223 }
1224
menelaus_remove(struct i2c_client * client)1225 static int menelaus_remove(struct i2c_client *client)
1226 {
1227 struct menelaus_chip *menelaus = i2c_get_clientdata(client);
1228
1229 free_irq(client->irq, menelaus);
1230 flush_work(&menelaus->work);
1231 the_menelaus = NULL;
1232 return 0;
1233 }
1234
1235 static const struct i2c_device_id menelaus_id[] = {
1236 { "menelaus", 0 },
1237 { }
1238 };
1239 MODULE_DEVICE_TABLE(i2c, menelaus_id);
1240
1241 static struct i2c_driver menelaus_i2c_driver = {
1242 .driver = {
1243 .name = DRIVER_NAME,
1244 },
1245 .probe = menelaus_probe,
1246 .remove = menelaus_remove,
1247 .id_table = menelaus_id,
1248 };
1249
1250 module_i2c_driver(menelaus_i2c_driver);
1251
1252 MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1253 MODULE_DESCRIPTION("I2C interface for Menelaus.");
1254 MODULE_LICENSE("GPL");
1255