1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68 #include <net/xfrm.h>
69 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
70 #include <net/tls.h>
71 #endif
72
73 #include "cxgb4.h"
74 #include "cxgb4_filter.h"
75 #include "t4_regs.h"
76 #include "t4_values.h"
77 #include "t4_msg.h"
78 #include "t4fw_api.h"
79 #include "t4fw_version.h"
80 #include "cxgb4_dcb.h"
81 #include "srq.h"
82 #include "cxgb4_debugfs.h"
83 #include "clip_tbl.h"
84 #include "l2t.h"
85 #include "smt.h"
86 #include "sched.h"
87 #include "cxgb4_tc_u32.h"
88 #include "cxgb4_tc_flower.h"
89 #include "cxgb4_tc_mqprio.h"
90 #include "cxgb4_tc_matchall.h"
91 #include "cxgb4_ptp.h"
92 #include "cxgb4_cudbg.h"
93
94 char cxgb4_driver_name[] = KBUILD_MODNAME;
95
96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97
98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101
102 /* Macros needed to support the PCI Device ID Table ...
103 */
104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
105 static const struct pci_device_id cxgb4_pci_tbl[] = {
106 #define CXGB4_UNIFIED_PF 0x4
107
108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109
110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
111 * called for both.
112 */
113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114
115 #define CH_PCI_ID_TABLE_ENTRY(devid) \
116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
119 { 0, } \
120 }
121
122 #include "t4_pci_id_tbl.h"
123
124 #define FW4_FNAME "cxgb4/t4fw.bin"
125 #define FW5_FNAME "cxgb4/t5fw.bin"
126 #define FW6_FNAME "cxgb4/t6fw.bin"
127 #define FW4_CFNAME "cxgb4/t4-config.txt"
128 #define FW5_CFNAME "cxgb4/t5-config.txt"
129 #define FW6_CFNAME "cxgb4/t6-config.txt"
130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
132 #define PHY_AQ1202_DEVICEID 0x4409
133 #define PHY_BCM84834_DEVICEID 0x4486
134
135 MODULE_DESCRIPTION(DRV_DESC);
136 MODULE_AUTHOR("Chelsio Communications");
137 MODULE_LICENSE("Dual BSD/GPL");
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
142
143 /*
144 * The driver uses the best interrupt scheme available on a platform in the
145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
146 * of these schemes the driver may consider as follows:
147 *
148 * msi = 2: choose from among all three options
149 * msi = 1: only consider MSI and INTx interrupts
150 * msi = 0: force INTx interrupts
151 */
152 static int msi = 2;
153
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
156
157 /*
158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159 * offset by 2 bytes in order to have the IP headers line up on 4-byte
160 * boundaries. This is a requirement for many architectures which will throw
161 * a machine check fault if an attempt is made to access one of the 4-byte IP
162 * header fields on a non-4-byte boundary. And it's a major performance issue
163 * even on some architectures which allow it like some implementations of the
164 * x86 ISA. However, some architectures don't mind this and for some very
165 * edge-case performance sensitive applications (like forwarding large volumes
166 * of small packets), setting this DMA offset to 0 will decrease the number of
167 * PCI-E Bus transfers enough to measurably affect performance.
168 */
169 static int rx_dma_offset = 2;
170
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172 * queue. Select between the kernel provided function (select_queue=0) or user
173 * cxgb_select_queue function (select_queue=1)
174 *
175 * Default: select_queue=0
176 */
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
181
182 static struct dentry *cxgb4_debugfs_root;
183
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
186 LIST_HEAD(uld_list);
187
188 static int cfg_queues(struct adapter *adap);
189
link_report(struct net_device * dev)190 static void link_report(struct net_device *dev)
191 {
192 if (!netif_carrier_ok(dev))
193 netdev_info(dev, "link down\n");
194 else {
195 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
196
197 const char *s;
198 const struct port_info *p = netdev_priv(dev);
199
200 switch (p->link_cfg.speed) {
201 case 100:
202 s = "100Mbps";
203 break;
204 case 1000:
205 s = "1Gbps";
206 break;
207 case 10000:
208 s = "10Gbps";
209 break;
210 case 25000:
211 s = "25Gbps";
212 break;
213 case 40000:
214 s = "40Gbps";
215 break;
216 case 50000:
217 s = "50Gbps";
218 break;
219 case 100000:
220 s = "100Gbps";
221 break;
222 default:
223 pr_info("%s: unsupported speed: %d\n",
224 dev->name, p->link_cfg.speed);
225 return;
226 }
227
228 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
229 fc[p->link_cfg.fc]);
230 }
231 }
232
233 #ifdef CONFIG_CHELSIO_T4_DCB
234 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)235 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
236 {
237 struct port_info *pi = netdev_priv(dev);
238 struct adapter *adap = pi->adapter;
239 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
240 int i;
241
242 /* We use a simple mapping of Port TX Queue Index to DCB
243 * Priority when we're enabling DCB.
244 */
245 for (i = 0; i < pi->nqsets; i++, txq++) {
246 u32 name, value;
247 int err;
248
249 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
250 FW_PARAMS_PARAM_X_V(
251 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
252 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
253 value = enable ? i : 0xffffffff;
254
255 /* Since we can be called while atomic (from "interrupt
256 * level") we need to issue the Set Parameters Commannd
257 * without sleeping (timeout < 0).
258 */
259 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
260 &name, &value,
261 -FW_CMD_MAX_TIMEOUT);
262
263 if (err)
264 dev_err(adap->pdev_dev,
265 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
266 enable ? "set" : "unset", pi->port_id, i, -err);
267 else
268 txq->dcb_prio = enable ? value : 0;
269 }
270 }
271
cxgb4_dcb_enabled(const struct net_device * dev)272 int cxgb4_dcb_enabled(const struct net_device *dev)
273 {
274 struct port_info *pi = netdev_priv(dev);
275
276 if (!pi->dcb.enabled)
277 return 0;
278
279 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
280 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
281 }
282 #endif /* CONFIG_CHELSIO_T4_DCB */
283
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)284 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
285 {
286 struct net_device *dev = adapter->port[port_id];
287
288 /* Skip changes from disabled ports. */
289 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
290 if (link_stat)
291 netif_carrier_on(dev);
292 else {
293 #ifdef CONFIG_CHELSIO_T4_DCB
294 if (cxgb4_dcb_enabled(dev)) {
295 cxgb4_dcb_reset(dev);
296 dcb_tx_queue_prio_enable(dev, false);
297 }
298 #endif /* CONFIG_CHELSIO_T4_DCB */
299 netif_carrier_off(dev);
300 }
301
302 link_report(dev);
303 }
304 }
305
t4_os_portmod_changed(struct adapter * adap,int port_id)306 void t4_os_portmod_changed(struct adapter *adap, int port_id)
307 {
308 static const char *mod_str[] = {
309 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
310 };
311
312 struct net_device *dev = adap->port[port_id];
313 struct port_info *pi = netdev_priv(dev);
314
315 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
316 netdev_info(dev, "port module unplugged\n");
317 else if (pi->mod_type < ARRAY_SIZE(mod_str))
318 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
319 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
320 netdev_info(dev, "%s: unsupported port module inserted\n",
321 dev->name);
322 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
323 netdev_info(dev, "%s: unknown port module inserted\n",
324 dev->name);
325 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
326 netdev_info(dev, "%s: transceiver module error\n", dev->name);
327 else
328 netdev_info(dev, "%s: unknown module type %d inserted\n",
329 dev->name, pi->mod_type);
330
331 /* If the interface is running, then we'll need any "sticky" Link
332 * Parameters redone with a new Transceiver Module.
333 */
334 pi->link_cfg.redo_l1cfg = netif_running(dev);
335 }
336
337 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
338 module_param(dbfifo_int_thresh, int, 0644);
339 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
340
341 /*
342 * usecs to sleep while draining the dbfifo
343 */
344 static int dbfifo_drain_delay = 1000;
345 module_param(dbfifo_drain_delay, int, 0644);
346 MODULE_PARM_DESC(dbfifo_drain_delay,
347 "usecs to sleep while draining the dbfifo");
348
cxgb4_set_addr_hash(struct port_info * pi)349 static inline int cxgb4_set_addr_hash(struct port_info *pi)
350 {
351 struct adapter *adap = pi->adapter;
352 u64 vec = 0;
353 bool ucast = false;
354 struct hash_mac_addr *entry;
355
356 /* Calculate the hash vector for the updated list and program it */
357 list_for_each_entry(entry, &adap->mac_hlist, list) {
358 ucast |= is_unicast_ether_addr(entry->addr);
359 vec |= (1ULL << hash_mac_addr(entry->addr));
360 }
361 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
362 vec, false);
363 }
364
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)365 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
366 {
367 struct port_info *pi = netdev_priv(netdev);
368 struct adapter *adap = pi->adapter;
369 int ret;
370 u64 mhash = 0;
371 u64 uhash = 0;
372 /* idx stores the index of allocated filters,
373 * its size should be modified based on the number of
374 * MAC addresses that we allocate filters for
375 */
376
377 u16 idx[1] = {};
378 bool free = false;
379 bool ucast = is_unicast_ether_addr(mac_addr);
380 const u8 *maclist[1] = {mac_addr};
381 struct hash_mac_addr *new_entry;
382
383 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
384 idx, ucast ? &uhash : &mhash, false);
385 if (ret < 0)
386 goto out;
387 /* if hash != 0, then add the addr to hash addr list
388 * so on the end we will calculate the hash for the
389 * list and program it
390 */
391 if (uhash || mhash) {
392 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
393 if (!new_entry)
394 return -ENOMEM;
395 ether_addr_copy(new_entry->addr, mac_addr);
396 list_add_tail(&new_entry->list, &adap->mac_hlist);
397 ret = cxgb4_set_addr_hash(pi);
398 }
399 out:
400 return ret < 0 ? ret : 0;
401 }
402
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)403 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
404 {
405 struct port_info *pi = netdev_priv(netdev);
406 struct adapter *adap = pi->adapter;
407 int ret;
408 const u8 *maclist[1] = {mac_addr};
409 struct hash_mac_addr *entry, *tmp;
410
411 /* If the MAC address to be removed is in the hash addr
412 * list, delete it from the list and update hash vector
413 */
414 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
415 if (ether_addr_equal(entry->addr, mac_addr)) {
416 list_del(&entry->list);
417 kfree(entry);
418 return cxgb4_set_addr_hash(pi);
419 }
420 }
421
422 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
423 return ret < 0 ? -EINVAL : 0;
424 }
425
426 /*
427 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
428 * If @mtu is -1 it is left unchanged.
429 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)430 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
431 {
432 struct port_info *pi = netdev_priv(dev);
433 struct adapter *adapter = pi->adapter;
434
435 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
437
438 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
439 mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
440 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
441 sleep_ok);
442 }
443
444 /**
445 * cxgb4_change_mac - Update match filter for a MAC address.
446 * @pi: the port_info
447 * @viid: the VI id
448 * @tcam_idx: TCAM index of existing filter for old value of MAC address,
449 * or -1
450 * @addr: the new MAC address value
451 * @persist: whether a new MAC allocation should be persistent
452 * @smt_idx: the destination to store the new SMT index.
453 *
454 * Modifies an MPS filter and sets it to the new MAC address if
455 * @tcam_idx >= 0, or adds the MAC address to a new filter if
456 * @tcam_idx < 0. In the latter case the address is added persistently
457 * if @persist is %true.
458 * Addresses are programmed to hash region, if tcam runs out of entries.
459 *
460 */
cxgb4_change_mac(struct port_info * pi,unsigned int viid,int * tcam_idx,const u8 * addr,bool persist,u8 * smt_idx)461 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
462 int *tcam_idx, const u8 *addr, bool persist,
463 u8 *smt_idx)
464 {
465 struct adapter *adapter = pi->adapter;
466 struct hash_mac_addr *entry, *new_entry;
467 int ret;
468
469 ret = t4_change_mac(adapter, adapter->mbox, viid,
470 *tcam_idx, addr, persist, smt_idx);
471 /* We ran out of TCAM entries. try programming hash region. */
472 if (ret == -ENOMEM) {
473 /* If the MAC address to be updated is in the hash addr
474 * list, update it from the list
475 */
476 list_for_each_entry(entry, &adapter->mac_hlist, list) {
477 if (entry->iface_mac) {
478 ether_addr_copy(entry->addr, addr);
479 goto set_hash;
480 }
481 }
482 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
483 if (!new_entry)
484 return -ENOMEM;
485 ether_addr_copy(new_entry->addr, addr);
486 new_entry->iface_mac = true;
487 list_add_tail(&new_entry->list, &adapter->mac_hlist);
488 set_hash:
489 ret = cxgb4_set_addr_hash(pi);
490 } else if (ret >= 0) {
491 *tcam_idx = ret;
492 ret = 0;
493 }
494
495 return ret;
496 }
497
498 /*
499 * link_start - enable a port
500 * @dev: the port to enable
501 *
502 * Performs the MAC and PHY actions needed to enable a port.
503 */
link_start(struct net_device * dev)504 static int link_start(struct net_device *dev)
505 {
506 struct port_info *pi = netdev_priv(dev);
507 unsigned int mb = pi->adapter->mbox;
508 int ret;
509
510 /*
511 * We do not set address filters and promiscuity here, the stack does
512 * that step explicitly.
513 */
514 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
515 dev->mtu, -1, -1, -1,
516 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
517 if (ret == 0)
518 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
519 dev->dev_addr, true, &pi->smt_idx);
520 if (ret == 0)
521 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
522 &pi->link_cfg);
523 if (ret == 0) {
524 local_bh_disable();
525 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
526 true, CXGB4_DCB_ENABLED);
527 local_bh_enable();
528 }
529
530 return ret;
531 }
532
533 #ifdef CONFIG_CHELSIO_T4_DCB
534 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)535 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
536 {
537 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
538 struct net_device *dev = adap->port[adap->chan_map[port]];
539 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
540 int new_dcb_enabled;
541
542 cxgb4_dcb_handle_fw_update(adap, pcmd);
543 new_dcb_enabled = cxgb4_dcb_enabled(dev);
544
545 /* If the DCB has become enabled or disabled on the port then we're
546 * going to need to set up/tear down DCB Priority parameters for the
547 * TX Queues associated with the port.
548 */
549 if (new_dcb_enabled != old_dcb_enabled)
550 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
551 }
552 #endif /* CONFIG_CHELSIO_T4_DCB */
553
554 /* Response queue handler for the FW event queue.
555 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)556 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
557 const struct pkt_gl *gl)
558 {
559 u8 opcode = ((const struct rss_header *)rsp)->opcode;
560
561 rsp++; /* skip RSS header */
562
563 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
564 */
565 if (unlikely(opcode == CPL_FW4_MSG &&
566 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
567 rsp++;
568 opcode = ((const struct rss_header *)rsp)->opcode;
569 rsp++;
570 if (opcode != CPL_SGE_EGR_UPDATE) {
571 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
572 , opcode);
573 goto out;
574 }
575 }
576
577 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
578 const struct cpl_sge_egr_update *p = (void *)rsp;
579 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
580 struct sge_txq *txq;
581
582 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
583 txq->restarts++;
584 if (txq->q_type == CXGB4_TXQ_ETH) {
585 struct sge_eth_txq *eq;
586
587 eq = container_of(txq, struct sge_eth_txq, q);
588 t4_sge_eth_txq_egress_update(q->adap, eq, -1);
589 } else {
590 struct sge_uld_txq *oq;
591
592 oq = container_of(txq, struct sge_uld_txq, q);
593 tasklet_schedule(&oq->qresume_tsk);
594 }
595 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
596 const struct cpl_fw6_msg *p = (void *)rsp;
597
598 #ifdef CONFIG_CHELSIO_T4_DCB
599 const struct fw_port_cmd *pcmd = (const void *)p->data;
600 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
601 unsigned int action =
602 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
603
604 if (cmd == FW_PORT_CMD &&
605 (action == FW_PORT_ACTION_GET_PORT_INFO ||
606 action == FW_PORT_ACTION_GET_PORT_INFO32)) {
607 int port = FW_PORT_CMD_PORTID_G(
608 be32_to_cpu(pcmd->op_to_portid));
609 struct net_device *dev;
610 int dcbxdis, state_input;
611
612 dev = q->adap->port[q->adap->chan_map[port]];
613 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
614 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
615 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
616 & FW_PORT_CMD_DCBXDIS32_F));
617 state_input = (dcbxdis
618 ? CXGB4_DCB_INPUT_FW_DISABLED
619 : CXGB4_DCB_INPUT_FW_ENABLED);
620
621 cxgb4_dcb_state_fsm(dev, state_input);
622 }
623
624 if (cmd == FW_PORT_CMD &&
625 action == FW_PORT_ACTION_L2_DCB_CFG)
626 dcb_rpl(q->adap, pcmd);
627 else
628 #endif
629 if (p->type == 0)
630 t4_handle_fw_rpl(q->adap, p->data);
631 } else if (opcode == CPL_L2T_WRITE_RPL) {
632 const struct cpl_l2t_write_rpl *p = (void *)rsp;
633
634 do_l2t_write_rpl(q->adap, p);
635 } else if (opcode == CPL_SMT_WRITE_RPL) {
636 const struct cpl_smt_write_rpl *p = (void *)rsp;
637
638 do_smt_write_rpl(q->adap, p);
639 } else if (opcode == CPL_SET_TCB_RPL) {
640 const struct cpl_set_tcb_rpl *p = (void *)rsp;
641
642 filter_rpl(q->adap, p);
643 } else if (opcode == CPL_ACT_OPEN_RPL) {
644 const struct cpl_act_open_rpl *p = (void *)rsp;
645
646 hash_filter_rpl(q->adap, p);
647 } else if (opcode == CPL_ABORT_RPL_RSS) {
648 const struct cpl_abort_rpl_rss *p = (void *)rsp;
649
650 hash_del_filter_rpl(q->adap, p);
651 } else if (opcode == CPL_SRQ_TABLE_RPL) {
652 const struct cpl_srq_table_rpl *p = (void *)rsp;
653
654 do_srq_table_rpl(q->adap, p);
655 } else
656 dev_err(q->adap->pdev_dev,
657 "unexpected CPL %#x on FW event queue\n", opcode);
658 out:
659 return 0;
660 }
661
disable_msi(struct adapter * adapter)662 static void disable_msi(struct adapter *adapter)
663 {
664 if (adapter->flags & CXGB4_USING_MSIX) {
665 pci_disable_msix(adapter->pdev);
666 adapter->flags &= ~CXGB4_USING_MSIX;
667 } else if (adapter->flags & CXGB4_USING_MSI) {
668 pci_disable_msi(adapter->pdev);
669 adapter->flags &= ~CXGB4_USING_MSI;
670 }
671 }
672
673 /*
674 * Interrupt handler for non-data events used with MSI-X.
675 */
t4_nondata_intr(int irq,void * cookie)676 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
677 {
678 struct adapter *adap = cookie;
679 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
680
681 if (v & PFSW_F) {
682 adap->swintr = 1;
683 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
684 }
685 if (adap->flags & CXGB4_MASTER_PF)
686 t4_slow_intr_handler(adap);
687 return IRQ_HANDLED;
688 }
689
cxgb4_set_msix_aff(struct adapter * adap,unsigned short vec,cpumask_var_t * aff_mask,int idx)690 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
691 cpumask_var_t *aff_mask, int idx)
692 {
693 int rv;
694
695 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
696 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
697 return -ENOMEM;
698 }
699
700 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
701 *aff_mask);
702
703 rv = irq_set_affinity_hint(vec, *aff_mask);
704 if (rv)
705 dev_warn(adap->pdev_dev,
706 "irq_set_affinity_hint %u failed %d\n",
707 vec, rv);
708
709 return 0;
710 }
711
cxgb4_clear_msix_aff(unsigned short vec,cpumask_var_t aff_mask)712 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
713 {
714 irq_set_affinity_hint(vec, NULL);
715 free_cpumask_var(aff_mask);
716 }
717
request_msix_queue_irqs(struct adapter * adap)718 static int request_msix_queue_irqs(struct adapter *adap)
719 {
720 struct sge *s = &adap->sge;
721 struct msix_info *minfo;
722 int err, ethqidx;
723
724 if (s->fwevtq_msix_idx < 0)
725 return -ENOMEM;
726
727 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
728 t4_sge_intr_msix, 0,
729 adap->msix_info[s->fwevtq_msix_idx].desc,
730 &s->fw_evtq);
731 if (err)
732 return err;
733
734 for_each_ethrxq(s, ethqidx) {
735 minfo = s->ethrxq[ethqidx].msix;
736 err = request_irq(minfo->vec,
737 t4_sge_intr_msix, 0,
738 minfo->desc,
739 &s->ethrxq[ethqidx].rspq);
740 if (err)
741 goto unwind;
742
743 cxgb4_set_msix_aff(adap, minfo->vec,
744 &minfo->aff_mask, ethqidx);
745 }
746 return 0;
747
748 unwind:
749 while (--ethqidx >= 0) {
750 minfo = s->ethrxq[ethqidx].msix;
751 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
752 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
753 }
754 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
755 return err;
756 }
757
free_msix_queue_irqs(struct adapter * adap)758 static void free_msix_queue_irqs(struct adapter *adap)
759 {
760 struct sge *s = &adap->sge;
761 struct msix_info *minfo;
762 int i;
763
764 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
765 for_each_ethrxq(s, i) {
766 minfo = s->ethrxq[i].msix;
767 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
768 free_irq(minfo->vec, &s->ethrxq[i].rspq);
769 }
770 }
771
setup_ppod_edram(struct adapter * adap)772 static int setup_ppod_edram(struct adapter *adap)
773 {
774 unsigned int param, val;
775 int ret;
776
777 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
778 * if firmware supports ppod edram feature or not. If firmware
779 * returns 1, then driver can enable this feature by sending
780 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
781 * enable ppod edram feature.
782 */
783 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
784 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
785
786 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
787 if (ret < 0) {
788 dev_warn(adap->pdev_dev,
789 "querying PPOD_EDRAM support failed: %d\n",
790 ret);
791 return -1;
792 }
793
794 if (val != 1)
795 return -1;
796
797 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
798 if (ret < 0) {
799 dev_err(adap->pdev_dev,
800 "setting PPOD_EDRAM failed: %d\n", ret);
801 return -1;
802 }
803 return 0;
804 }
805
adap_config_hpfilter(struct adapter * adapter)806 static void adap_config_hpfilter(struct adapter *adapter)
807 {
808 u32 param, val = 0;
809 int ret;
810
811 /* Enable HP filter region. Older fw will fail this request and
812 * it is fine.
813 */
814 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
815 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
816 1, ¶m, &val);
817
818 /* An error means FW doesn't know about HP filter support,
819 * it's not a problem, don't return an error.
820 */
821 if (ret < 0)
822 dev_err(adapter->pdev_dev,
823 "HP filter region isn't supported by FW\n");
824 }
825
cxgb4_config_rss(const struct port_info * pi,u16 * rss,u16 rss_size,u16 viid)826 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
827 u16 rss_size, u16 viid)
828 {
829 struct adapter *adap = pi->adapter;
830 int ret;
831
832 ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
833 rss_size);
834 if (ret)
835 return ret;
836
837 /* If Tunnel All Lookup isn't specified in the global RSS
838 * Configuration, then we need to specify a default Ingress
839 * Queue for any ingress packets which aren't hashed. We'll
840 * use our first ingress queue ...
841 */
842 return t4_config_vi_rss(adap, adap->mbox, viid,
843 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
844 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
845 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
846 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
847 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
848 rss[0]);
849 }
850
851 /**
852 * cxgb4_write_rss - write the RSS table for a given port
853 * @pi: the port
854 * @queues: array of queue indices for RSS
855 *
856 * Sets up the portion of the HW RSS table for the port's VI to distribute
857 * packets to the Rx queues in @queues.
858 * Should never be called before setting up sge eth rx queues
859 */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)860 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
861 {
862 struct adapter *adapter = pi->adapter;
863 const struct sge_eth_rxq *rxq;
864 int i, err;
865 u16 *rss;
866
867 rxq = &adapter->sge.ethrxq[pi->first_qset];
868 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
869 if (!rss)
870 return -ENOMEM;
871
872 /* map the queue indices to queue ids */
873 for (i = 0; i < pi->rss_size; i++, queues++)
874 rss[i] = rxq[*queues].rspq.abs_id;
875
876 err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
877 kfree(rss);
878 return err;
879 }
880
881 /**
882 * setup_rss - configure RSS
883 * @adap: the adapter
884 *
885 * Sets up RSS for each port.
886 */
setup_rss(struct adapter * adap)887 static int setup_rss(struct adapter *adap)
888 {
889 int i, j, err;
890
891 for_each_port(adap, i) {
892 const struct port_info *pi = adap2pinfo(adap, i);
893
894 /* Fill default values with equal distribution */
895 for (j = 0; j < pi->rss_size; j++)
896 pi->rss[j] = j % pi->nqsets;
897
898 err = cxgb4_write_rss(pi, pi->rss);
899 if (err)
900 return err;
901 }
902 return 0;
903 }
904
905 /*
906 * Return the channel of the ingress queue with the given qid.
907 */
rxq_to_chan(const struct sge * p,unsigned int qid)908 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
909 {
910 qid -= p->ingr_start;
911 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
912 }
913
cxgb4_quiesce_rx(struct sge_rspq * q)914 void cxgb4_quiesce_rx(struct sge_rspq *q)
915 {
916 if (q->handler)
917 napi_disable(&q->napi);
918 }
919
920 /*
921 * Wait until all NAPI handlers are descheduled.
922 */
quiesce_rx(struct adapter * adap)923 static void quiesce_rx(struct adapter *adap)
924 {
925 int i;
926
927 for (i = 0; i < adap->sge.ingr_sz; i++) {
928 struct sge_rspq *q = adap->sge.ingr_map[i];
929
930 if (!q)
931 continue;
932
933 cxgb4_quiesce_rx(q);
934 }
935 }
936
937 /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)938 static void disable_interrupts(struct adapter *adap)
939 {
940 struct sge *s = &adap->sge;
941
942 if (adap->flags & CXGB4_FULL_INIT_DONE) {
943 t4_intr_disable(adap);
944 if (adap->flags & CXGB4_USING_MSIX) {
945 free_msix_queue_irqs(adap);
946 free_irq(adap->msix_info[s->nd_msix_idx].vec,
947 adap);
948 } else {
949 free_irq(adap->pdev->irq, adap);
950 }
951 quiesce_rx(adap);
952 }
953 }
954
cxgb4_enable_rx(struct adapter * adap,struct sge_rspq * q)955 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
956 {
957 if (q->handler)
958 napi_enable(&q->napi);
959
960 /* 0-increment GTS to start the timer and enable interrupts */
961 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
962 SEINTARM_V(q->intr_params) |
963 INGRESSQID_V(q->cntxt_id));
964 }
965
966 /*
967 * Enable NAPI scheduling and interrupt generation for all Rx queues.
968 */
enable_rx(struct adapter * adap)969 static void enable_rx(struct adapter *adap)
970 {
971 int i;
972
973 for (i = 0; i < adap->sge.ingr_sz; i++) {
974 struct sge_rspq *q = adap->sge.ingr_map[i];
975
976 if (!q)
977 continue;
978
979 cxgb4_enable_rx(adap, q);
980 }
981 }
982
setup_non_data_intr(struct adapter * adap)983 static int setup_non_data_intr(struct adapter *adap)
984 {
985 int msix;
986
987 adap->sge.nd_msix_idx = -1;
988 if (!(adap->flags & CXGB4_USING_MSIX))
989 return 0;
990
991 /* Request MSI-X vector for non-data interrupt */
992 msix = cxgb4_get_msix_idx_from_bmap(adap);
993 if (msix < 0)
994 return -ENOMEM;
995
996 snprintf(adap->msix_info[msix].desc,
997 sizeof(adap->msix_info[msix].desc),
998 "%s", adap->port[0]->name);
999
1000 adap->sge.nd_msix_idx = msix;
1001 return 0;
1002 }
1003
setup_fw_sge_queues(struct adapter * adap)1004 static int setup_fw_sge_queues(struct adapter *adap)
1005 {
1006 struct sge *s = &adap->sge;
1007 int msix, err = 0;
1008
1009 bitmap_zero(s->starving_fl, s->egr_sz);
1010 bitmap_zero(s->txq_maperr, s->egr_sz);
1011
1012 if (adap->flags & CXGB4_USING_MSIX) {
1013 s->fwevtq_msix_idx = -1;
1014 msix = cxgb4_get_msix_idx_from_bmap(adap);
1015 if (msix < 0)
1016 return -ENOMEM;
1017
1018 snprintf(adap->msix_info[msix].desc,
1019 sizeof(adap->msix_info[msix].desc),
1020 "%s-FWeventq", adap->port[0]->name);
1021 } else {
1022 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1023 NULL, NULL, NULL, -1);
1024 if (err)
1025 return err;
1026 msix = -((int)s->intrq.abs_id + 1);
1027 }
1028
1029 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1030 msix, NULL, fwevtq_handler, NULL, -1);
1031 if (err && msix >= 0)
1032 cxgb4_free_msix_idx_in_bmap(adap, msix);
1033
1034 s->fwevtq_msix_idx = msix;
1035 return err;
1036 }
1037
1038 /**
1039 * setup_sge_queues - configure SGE Tx/Rx/response queues
1040 * @adap: the adapter
1041 *
1042 * Determines how many sets of SGE queues to use and initializes them.
1043 * We support multiple queue sets per port if we have MSI-X, otherwise
1044 * just one queue set per port.
1045 */
setup_sge_queues(struct adapter * adap)1046 static int setup_sge_queues(struct adapter *adap)
1047 {
1048 struct sge_uld_rxq_info *rxq_info = NULL;
1049 struct sge *s = &adap->sge;
1050 unsigned int cmplqid = 0;
1051 int err, i, j, msix = 0;
1052
1053 if (is_uld(adap))
1054 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1055
1056 if (!(adap->flags & CXGB4_USING_MSIX))
1057 msix = -((int)s->intrq.abs_id + 1);
1058
1059 for_each_port(adap, i) {
1060 struct net_device *dev = adap->port[i];
1061 struct port_info *pi = netdev_priv(dev);
1062 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1063 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1064
1065 for (j = 0; j < pi->nqsets; j++, q++) {
1066 if (msix >= 0) {
1067 msix = cxgb4_get_msix_idx_from_bmap(adap);
1068 if (msix < 0) {
1069 err = msix;
1070 goto freeout;
1071 }
1072
1073 snprintf(adap->msix_info[msix].desc,
1074 sizeof(adap->msix_info[msix].desc),
1075 "%s-Rx%d", dev->name, j);
1076 q->msix = &adap->msix_info[msix];
1077 }
1078
1079 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1080 msix, &q->fl,
1081 t4_ethrx_handler,
1082 NULL,
1083 t4_get_tp_ch_map(adap,
1084 pi->tx_chan));
1085 if (err)
1086 goto freeout;
1087 q->rspq.idx = j;
1088 memset(&q->stats, 0, sizeof(q->stats));
1089 }
1090
1091 q = &s->ethrxq[pi->first_qset];
1092 for (j = 0; j < pi->nqsets; j++, t++, q++) {
1093 err = t4_sge_alloc_eth_txq(adap, t, dev,
1094 netdev_get_tx_queue(dev, j),
1095 q->rspq.cntxt_id,
1096 !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1097 if (err)
1098 goto freeout;
1099 }
1100 }
1101
1102 for_each_port(adap, i) {
1103 /* Note that cmplqid below is 0 if we don't
1104 * have RDMA queues, and that's the right value.
1105 */
1106 if (rxq_info)
1107 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1108
1109 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1110 s->fw_evtq.cntxt_id, cmplqid);
1111 if (err)
1112 goto freeout;
1113 }
1114
1115 if (!is_t4(adap->params.chip)) {
1116 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1117 netdev_get_tx_queue(adap->port[0], 0)
1118 , s->fw_evtq.cntxt_id, false);
1119 if (err)
1120 goto freeout;
1121 }
1122
1123 t4_write_reg(adap, is_t4(adap->params.chip) ?
1124 MPS_TRC_RSS_CONTROL_A :
1125 MPS_T5_TRC_RSS_CONTROL_A,
1126 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1127 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1128 return 0;
1129 freeout:
1130 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1131 t4_free_sge_resources(adap);
1132 return err;
1133 }
1134
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1135 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1136 struct net_device *sb_dev)
1137 {
1138 int txq;
1139
1140 #ifdef CONFIG_CHELSIO_T4_DCB
1141 /* If a Data Center Bridging has been successfully negotiated on this
1142 * link then we'll use the skb's priority to map it to a TX Queue.
1143 * The skb's priority is determined via the VLAN Tag Priority Code
1144 * Point field.
1145 */
1146 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1147 u16 vlan_tci;
1148 int err;
1149
1150 err = vlan_get_tag(skb, &vlan_tci);
1151 if (unlikely(err)) {
1152 if (net_ratelimit())
1153 netdev_warn(dev,
1154 "TX Packet without VLAN Tag on DCB Link\n");
1155 txq = 0;
1156 } else {
1157 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1158 #ifdef CONFIG_CHELSIO_T4_FCOE
1159 if (skb->protocol == htons(ETH_P_FCOE))
1160 txq = skb->priority & 0x7;
1161 #endif /* CONFIG_CHELSIO_T4_FCOE */
1162 }
1163 return txq;
1164 }
1165 #endif /* CONFIG_CHELSIO_T4_DCB */
1166
1167 if (dev->num_tc) {
1168 struct port_info *pi = netdev2pinfo(dev);
1169 u8 ver, proto;
1170
1171 ver = ip_hdr(skb)->version;
1172 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1173 ip_hdr(skb)->protocol;
1174
1175 /* Send unsupported traffic pattern to normal NIC queues. */
1176 txq = netdev_pick_tx(dev, skb, sb_dev);
1177 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1178 skb->encapsulation ||
1179 cxgb4_is_ktls_skb(skb) ||
1180 (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1181 txq = txq % pi->nqsets;
1182
1183 return txq;
1184 }
1185
1186 if (select_queue) {
1187 txq = (skb_rx_queue_recorded(skb)
1188 ? skb_get_rx_queue(skb)
1189 : smp_processor_id());
1190
1191 while (unlikely(txq >= dev->real_num_tx_queues))
1192 txq -= dev->real_num_tx_queues;
1193
1194 return txq;
1195 }
1196
1197 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1198 }
1199
closest_timer(const struct sge * s,int time)1200 static int closest_timer(const struct sge *s, int time)
1201 {
1202 int i, delta, match = 0, min_delta = INT_MAX;
1203
1204 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1205 delta = time - s->timer_val[i];
1206 if (delta < 0)
1207 delta = -delta;
1208 if (delta < min_delta) {
1209 min_delta = delta;
1210 match = i;
1211 }
1212 }
1213 return match;
1214 }
1215
closest_thres(const struct sge * s,int thres)1216 static int closest_thres(const struct sge *s, int thres)
1217 {
1218 int i, delta, match = 0, min_delta = INT_MAX;
1219
1220 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1221 delta = thres - s->counter_val[i];
1222 if (delta < 0)
1223 delta = -delta;
1224 if (delta < min_delta) {
1225 min_delta = delta;
1226 match = i;
1227 }
1228 }
1229 return match;
1230 }
1231
1232 /**
1233 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1234 * @q: the Rx queue
1235 * @us: the hold-off time in us, or 0 to disable timer
1236 * @cnt: the hold-off packet count, or 0 to disable counter
1237 *
1238 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1239 * one of the two needs to be enabled for the queue to generate interrupts.
1240 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)1241 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1242 unsigned int us, unsigned int cnt)
1243 {
1244 struct adapter *adap = q->adap;
1245
1246 if ((us | cnt) == 0)
1247 cnt = 1;
1248
1249 if (cnt) {
1250 int err;
1251 u32 v, new_idx;
1252
1253 new_idx = closest_thres(&adap->sge, cnt);
1254 if (q->desc && q->pktcnt_idx != new_idx) {
1255 /* the queue has already been created, update it */
1256 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1257 FW_PARAMS_PARAM_X_V(
1258 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1259 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1260 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1261 &v, &new_idx);
1262 if (err)
1263 return err;
1264 }
1265 q->pktcnt_idx = new_idx;
1266 }
1267
1268 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1269 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1270 return 0;
1271 }
1272
cxgb_set_features(struct net_device * dev,netdev_features_t features)1273 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1274 {
1275 netdev_features_t changed = dev->features ^ features;
1276 const struct port_info *pi = netdev_priv(dev);
1277 int err;
1278
1279 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1280 return 0;
1281
1282 err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1283 pi->viid_mirror, -1, -1, -1, -1,
1284 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1285 if (unlikely(err))
1286 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1287 return err;
1288 }
1289
setup_debugfs(struct adapter * adap)1290 static int setup_debugfs(struct adapter *adap)
1291 {
1292 if (IS_ERR_OR_NULL(adap->debugfs_root))
1293 return -1;
1294
1295 #ifdef CONFIG_DEBUG_FS
1296 t4_setup_debugfs(adap);
1297 #endif
1298 return 0;
1299 }
1300
cxgb4_port_mirror_free_rxq(struct adapter * adap,struct sge_eth_rxq * mirror_rxq)1301 static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1302 struct sge_eth_rxq *mirror_rxq)
1303 {
1304 if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1305 !(adap->flags & CXGB4_SHUTTING_DOWN))
1306 cxgb4_quiesce_rx(&mirror_rxq->rspq);
1307
1308 if (adap->flags & CXGB4_USING_MSIX) {
1309 cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1310 mirror_rxq->msix->aff_mask);
1311 free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1312 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1313 }
1314
1315 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1316 }
1317
cxgb4_port_mirror_alloc_queues(struct net_device * dev)1318 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1319 {
1320 struct port_info *pi = netdev2pinfo(dev);
1321 struct adapter *adap = netdev2adap(dev);
1322 struct sge_eth_rxq *mirror_rxq;
1323 struct sge *s = &adap->sge;
1324 int ret = 0, msix = 0;
1325 u16 i, rxqid;
1326 u16 *rss;
1327
1328 if (!pi->vi_mirror_count)
1329 return 0;
1330
1331 if (s->mirror_rxq[pi->port_id])
1332 return 0;
1333
1334 mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1335 if (!mirror_rxq)
1336 return -ENOMEM;
1337
1338 s->mirror_rxq[pi->port_id] = mirror_rxq;
1339
1340 if (!(adap->flags & CXGB4_USING_MSIX))
1341 msix = -((int)adap->sge.intrq.abs_id + 1);
1342
1343 for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1344 mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1345
1346 /* Allocate Mirror Rxqs */
1347 if (msix >= 0) {
1348 msix = cxgb4_get_msix_idx_from_bmap(adap);
1349 if (msix < 0) {
1350 ret = msix;
1351 goto out_free_queues;
1352 }
1353
1354 mirror_rxq->msix = &adap->msix_info[msix];
1355 snprintf(mirror_rxq->msix->desc,
1356 sizeof(mirror_rxq->msix->desc),
1357 "%s-mirrorrxq%d", dev->name, i);
1358 }
1359
1360 init_rspq(adap, &mirror_rxq->rspq,
1361 CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1362 CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1363 CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1364 CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1365
1366 mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1367
1368 ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1369 dev, msix, &mirror_rxq->fl,
1370 t4_ethrx_handler, NULL, 0);
1371 if (ret)
1372 goto out_free_msix_idx;
1373
1374 /* Setup MSI-X vectors for Mirror Rxqs */
1375 if (adap->flags & CXGB4_USING_MSIX) {
1376 ret = request_irq(mirror_rxq->msix->vec,
1377 t4_sge_intr_msix, 0,
1378 mirror_rxq->msix->desc,
1379 &mirror_rxq->rspq);
1380 if (ret)
1381 goto out_free_rxq;
1382
1383 cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1384 &mirror_rxq->msix->aff_mask, i);
1385 }
1386
1387 /* Start NAPI for Mirror Rxqs */
1388 cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1389 }
1390
1391 /* Setup RSS for Mirror Rxqs */
1392 rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1393 if (!rss) {
1394 ret = -ENOMEM;
1395 goto out_free_queues;
1396 }
1397
1398 mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1399 for (i = 0; i < pi->rss_size; i++)
1400 rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1401
1402 ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1403 kfree(rss);
1404 if (ret)
1405 goto out_free_queues;
1406
1407 return 0;
1408
1409 out_free_rxq:
1410 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1411
1412 out_free_msix_idx:
1413 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1414
1415 out_free_queues:
1416 while (rxqid-- > 0)
1417 cxgb4_port_mirror_free_rxq(adap,
1418 &s->mirror_rxq[pi->port_id][rxqid]);
1419
1420 kfree(s->mirror_rxq[pi->port_id]);
1421 s->mirror_rxq[pi->port_id] = NULL;
1422 return ret;
1423 }
1424
cxgb4_port_mirror_free_queues(struct net_device * dev)1425 static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1426 {
1427 struct port_info *pi = netdev2pinfo(dev);
1428 struct adapter *adap = netdev2adap(dev);
1429 struct sge *s = &adap->sge;
1430 u16 i;
1431
1432 if (!pi->vi_mirror_count)
1433 return;
1434
1435 if (!s->mirror_rxq[pi->port_id])
1436 return;
1437
1438 for (i = 0; i < pi->nmirrorqsets; i++)
1439 cxgb4_port_mirror_free_rxq(adap,
1440 &s->mirror_rxq[pi->port_id][i]);
1441
1442 kfree(s->mirror_rxq[pi->port_id]);
1443 s->mirror_rxq[pi->port_id] = NULL;
1444 }
1445
cxgb4_port_mirror_start(struct net_device * dev)1446 static int cxgb4_port_mirror_start(struct net_device *dev)
1447 {
1448 struct port_info *pi = netdev2pinfo(dev);
1449 struct adapter *adap = netdev2adap(dev);
1450 int ret, idx = -1;
1451
1452 if (!pi->vi_mirror_count)
1453 return 0;
1454
1455 /* Mirror VIs can be created dynamically after stack had
1456 * already setup Rx modes like MTU, promisc, allmulti, etc.
1457 * on main VI. So, parse what the stack had setup on the
1458 * main VI and update the same on the mirror VI.
1459 */
1460 ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1461 dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1462 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1463 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1464 if (ret) {
1465 dev_err(adap->pdev_dev,
1466 "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1467 pi->viid_mirror, ret);
1468 return ret;
1469 }
1470
1471 /* Enable replication bit for the device's MAC address
1472 * in MPS TCAM, so that the packets for the main VI are
1473 * replicated to mirror VI.
1474 */
1475 ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1476 dev->dev_addr, true, NULL);
1477 if (ret) {
1478 dev_err(adap->pdev_dev,
1479 "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1480 pi->viid_mirror, ret);
1481 return ret;
1482 }
1483
1484 /* Enabling a Virtual Interface can result in an interrupt
1485 * during the processing of the VI Enable command and, in some
1486 * paths, result in an attempt to issue another command in the
1487 * interrupt context. Thus, we disable interrupts during the
1488 * course of the VI Enable command ...
1489 */
1490 local_bh_disable();
1491 ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1492 false);
1493 local_bh_enable();
1494 if (ret)
1495 dev_err(adap->pdev_dev,
1496 "Failed starting Mirror VI 0x%x, ret: %d\n",
1497 pi->viid_mirror, ret);
1498
1499 return ret;
1500 }
1501
cxgb4_port_mirror_stop(struct net_device * dev)1502 static void cxgb4_port_mirror_stop(struct net_device *dev)
1503 {
1504 struct port_info *pi = netdev2pinfo(dev);
1505 struct adapter *adap = netdev2adap(dev);
1506
1507 if (!pi->vi_mirror_count)
1508 return;
1509
1510 t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1511 false);
1512 }
1513
cxgb4_port_mirror_alloc(struct net_device * dev)1514 int cxgb4_port_mirror_alloc(struct net_device *dev)
1515 {
1516 struct port_info *pi = netdev2pinfo(dev);
1517 struct adapter *adap = netdev2adap(dev);
1518 int ret = 0;
1519
1520 if (!pi->nmirrorqsets)
1521 return -EOPNOTSUPP;
1522
1523 mutex_lock(&pi->vi_mirror_mutex);
1524 if (pi->viid_mirror) {
1525 pi->vi_mirror_count++;
1526 goto out_unlock;
1527 }
1528
1529 ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1530 &pi->viid_mirror);
1531 if (ret)
1532 goto out_unlock;
1533
1534 pi->vi_mirror_count = 1;
1535
1536 if (adap->flags & CXGB4_FULL_INIT_DONE) {
1537 ret = cxgb4_port_mirror_alloc_queues(dev);
1538 if (ret)
1539 goto out_free_vi;
1540
1541 ret = cxgb4_port_mirror_start(dev);
1542 if (ret)
1543 goto out_free_queues;
1544 }
1545
1546 mutex_unlock(&pi->vi_mirror_mutex);
1547 return 0;
1548
1549 out_free_queues:
1550 cxgb4_port_mirror_free_queues(dev);
1551
1552 out_free_vi:
1553 pi->vi_mirror_count = 0;
1554 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1555 pi->viid_mirror = 0;
1556
1557 out_unlock:
1558 mutex_unlock(&pi->vi_mirror_mutex);
1559 return ret;
1560 }
1561
cxgb4_port_mirror_free(struct net_device * dev)1562 void cxgb4_port_mirror_free(struct net_device *dev)
1563 {
1564 struct port_info *pi = netdev2pinfo(dev);
1565 struct adapter *adap = netdev2adap(dev);
1566
1567 mutex_lock(&pi->vi_mirror_mutex);
1568 if (!pi->viid_mirror)
1569 goto out_unlock;
1570
1571 if (pi->vi_mirror_count > 1) {
1572 pi->vi_mirror_count--;
1573 goto out_unlock;
1574 }
1575
1576 cxgb4_port_mirror_stop(dev);
1577 cxgb4_port_mirror_free_queues(dev);
1578
1579 pi->vi_mirror_count = 0;
1580 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1581 pi->viid_mirror = 0;
1582
1583 out_unlock:
1584 mutex_unlock(&pi->vi_mirror_mutex);
1585 }
1586
1587 /*
1588 * upper-layer driver support
1589 */
1590
1591 /*
1592 * Allocate an active-open TID and set it to the supplied value.
1593 */
cxgb4_alloc_atid(struct tid_info * t,void * data)1594 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1595 {
1596 int atid = -1;
1597
1598 spin_lock_bh(&t->atid_lock);
1599 if (t->afree) {
1600 union aopen_entry *p = t->afree;
1601
1602 atid = (p - t->atid_tab) + t->atid_base;
1603 t->afree = p->next;
1604 p->data = data;
1605 t->atids_in_use++;
1606 }
1607 spin_unlock_bh(&t->atid_lock);
1608 return atid;
1609 }
1610 EXPORT_SYMBOL(cxgb4_alloc_atid);
1611
1612 /*
1613 * Release an active-open TID.
1614 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1615 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1616 {
1617 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1618
1619 spin_lock_bh(&t->atid_lock);
1620 p->next = t->afree;
1621 t->afree = p;
1622 t->atids_in_use--;
1623 spin_unlock_bh(&t->atid_lock);
1624 }
1625 EXPORT_SYMBOL(cxgb4_free_atid);
1626
1627 /*
1628 * Allocate a server TID and set it to the supplied value.
1629 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1630 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1631 {
1632 int stid;
1633
1634 spin_lock_bh(&t->stid_lock);
1635 if (family == PF_INET) {
1636 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1637 if (stid < t->nstids)
1638 __set_bit(stid, t->stid_bmap);
1639 else
1640 stid = -1;
1641 } else {
1642 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1643 if (stid < 0)
1644 stid = -1;
1645 }
1646 if (stid >= 0) {
1647 t->stid_tab[stid].data = data;
1648 stid += t->stid_base;
1649 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1650 * This is equivalent to 4 TIDs. With CLIP enabled it
1651 * needs 2 TIDs.
1652 */
1653 if (family == PF_INET6) {
1654 t->stids_in_use += 2;
1655 t->v6_stids_in_use += 2;
1656 } else {
1657 t->stids_in_use++;
1658 }
1659 }
1660 spin_unlock_bh(&t->stid_lock);
1661 return stid;
1662 }
1663 EXPORT_SYMBOL(cxgb4_alloc_stid);
1664
1665 /* Allocate a server filter TID and set it to the supplied value.
1666 */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1667 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1668 {
1669 int stid;
1670
1671 spin_lock_bh(&t->stid_lock);
1672 if (family == PF_INET) {
1673 stid = find_next_zero_bit(t->stid_bmap,
1674 t->nstids + t->nsftids, t->nstids);
1675 if (stid < (t->nstids + t->nsftids))
1676 __set_bit(stid, t->stid_bmap);
1677 else
1678 stid = -1;
1679 } else {
1680 stid = -1;
1681 }
1682 if (stid >= 0) {
1683 t->stid_tab[stid].data = data;
1684 stid -= t->nstids;
1685 stid += t->sftid_base;
1686 t->sftids_in_use++;
1687 }
1688 spin_unlock_bh(&t->stid_lock);
1689 return stid;
1690 }
1691 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1692
1693 /* Release a server TID.
1694 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1695 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1696 {
1697 /* Is it a server filter TID? */
1698 if (t->nsftids && (stid >= t->sftid_base)) {
1699 stid -= t->sftid_base;
1700 stid += t->nstids;
1701 } else {
1702 stid -= t->stid_base;
1703 }
1704
1705 spin_lock_bh(&t->stid_lock);
1706 if (family == PF_INET)
1707 __clear_bit(stid, t->stid_bmap);
1708 else
1709 bitmap_release_region(t->stid_bmap, stid, 1);
1710 t->stid_tab[stid].data = NULL;
1711 if (stid < t->nstids) {
1712 if (family == PF_INET6) {
1713 t->stids_in_use -= 2;
1714 t->v6_stids_in_use -= 2;
1715 } else {
1716 t->stids_in_use--;
1717 }
1718 } else {
1719 t->sftids_in_use--;
1720 }
1721
1722 spin_unlock_bh(&t->stid_lock);
1723 }
1724 EXPORT_SYMBOL(cxgb4_free_stid);
1725
1726 /*
1727 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1728 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1729 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1730 unsigned int tid)
1731 {
1732 struct cpl_tid_release *req;
1733
1734 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1735 req = __skb_put(skb, sizeof(*req));
1736 INIT_TP_WR(req, tid);
1737 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1738 }
1739
1740 /*
1741 * Queue a TID release request and if necessary schedule a work queue to
1742 * process it.
1743 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1744 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1745 unsigned int tid)
1746 {
1747 struct adapter *adap = container_of(t, struct adapter, tids);
1748 void **p = &t->tid_tab[tid - t->tid_base];
1749
1750 spin_lock_bh(&adap->tid_release_lock);
1751 *p = adap->tid_release_head;
1752 /* Low 2 bits encode the Tx channel number */
1753 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1754 if (!adap->tid_release_task_busy) {
1755 adap->tid_release_task_busy = true;
1756 queue_work(adap->workq, &adap->tid_release_task);
1757 }
1758 spin_unlock_bh(&adap->tid_release_lock);
1759 }
1760
1761 /*
1762 * Process the list of pending TID release requests.
1763 */
process_tid_release_list(struct work_struct * work)1764 static void process_tid_release_list(struct work_struct *work)
1765 {
1766 struct sk_buff *skb;
1767 struct adapter *adap;
1768
1769 adap = container_of(work, struct adapter, tid_release_task);
1770
1771 spin_lock_bh(&adap->tid_release_lock);
1772 while (adap->tid_release_head) {
1773 void **p = adap->tid_release_head;
1774 unsigned int chan = (uintptr_t)p & 3;
1775 p = (void *)p - chan;
1776
1777 adap->tid_release_head = *p;
1778 *p = NULL;
1779 spin_unlock_bh(&adap->tid_release_lock);
1780
1781 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1782 GFP_KERNEL)))
1783 schedule_timeout_uninterruptible(1);
1784
1785 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1786 t4_ofld_send(adap, skb);
1787 spin_lock_bh(&adap->tid_release_lock);
1788 }
1789 adap->tid_release_task_busy = false;
1790 spin_unlock_bh(&adap->tid_release_lock);
1791 }
1792
1793 /*
1794 * Release a TID and inform HW. If we are unable to allocate the release
1795 * message we defer to a work queue.
1796 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)1797 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1798 unsigned short family)
1799 {
1800 struct adapter *adap = container_of(t, struct adapter, tids);
1801 struct sk_buff *skb;
1802
1803 WARN_ON(tid_out_of_range(&adap->tids, tid));
1804
1805 if (t->tid_tab[tid - adap->tids.tid_base]) {
1806 t->tid_tab[tid - adap->tids.tid_base] = NULL;
1807 atomic_dec(&t->conns_in_use);
1808 if (t->hash_base && (tid >= t->hash_base)) {
1809 if (family == AF_INET6)
1810 atomic_sub(2, &t->hash_tids_in_use);
1811 else
1812 atomic_dec(&t->hash_tids_in_use);
1813 } else {
1814 if (family == AF_INET6)
1815 atomic_sub(2, &t->tids_in_use);
1816 else
1817 atomic_dec(&t->tids_in_use);
1818 }
1819 }
1820
1821 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1822 if (likely(skb)) {
1823 mk_tid_release(skb, chan, tid);
1824 t4_ofld_send(adap, skb);
1825 } else
1826 cxgb4_queue_tid_release(t, chan, tid);
1827 }
1828 EXPORT_SYMBOL(cxgb4_remove_tid);
1829
1830 /*
1831 * Allocate and initialize the TID tables. Returns 0 on success.
1832 */
tid_init(struct tid_info * t)1833 static int tid_init(struct tid_info *t)
1834 {
1835 struct adapter *adap = container_of(t, struct adapter, tids);
1836 unsigned int max_ftids = t->nftids + t->nsftids;
1837 unsigned int natids = t->natids;
1838 unsigned int hpftid_bmap_size;
1839 unsigned int eotid_bmap_size;
1840 unsigned int stid_bmap_size;
1841 unsigned int ftid_bmap_size;
1842 size_t size;
1843
1844 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1845 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1846 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1847 eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1848 size = t->ntids * sizeof(*t->tid_tab) +
1849 natids * sizeof(*t->atid_tab) +
1850 t->nstids * sizeof(*t->stid_tab) +
1851 t->nsftids * sizeof(*t->stid_tab) +
1852 stid_bmap_size * sizeof(long) +
1853 t->nhpftids * sizeof(*t->hpftid_tab) +
1854 hpftid_bmap_size * sizeof(long) +
1855 max_ftids * sizeof(*t->ftid_tab) +
1856 ftid_bmap_size * sizeof(long) +
1857 t->neotids * sizeof(*t->eotid_tab) +
1858 eotid_bmap_size * sizeof(long);
1859
1860 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1861 if (!t->tid_tab)
1862 return -ENOMEM;
1863
1864 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1865 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1866 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1867 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1868 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1869 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1870 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1871 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1872 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1873 spin_lock_init(&t->stid_lock);
1874 spin_lock_init(&t->atid_lock);
1875 spin_lock_init(&t->ftid_lock);
1876
1877 t->stids_in_use = 0;
1878 t->v6_stids_in_use = 0;
1879 t->sftids_in_use = 0;
1880 t->afree = NULL;
1881 t->atids_in_use = 0;
1882 atomic_set(&t->tids_in_use, 0);
1883 atomic_set(&t->conns_in_use, 0);
1884 atomic_set(&t->hash_tids_in_use, 0);
1885 atomic_set(&t->eotids_in_use, 0);
1886
1887 /* Setup the free list for atid_tab and clear the stid bitmap. */
1888 if (natids) {
1889 while (--natids)
1890 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1891 t->afree = t->atid_tab;
1892 }
1893
1894 if (is_offload(adap)) {
1895 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1896 /* Reserve stid 0 for T4/T5 adapters */
1897 if (!t->stid_base &&
1898 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1899 __set_bit(0, t->stid_bmap);
1900
1901 if (t->neotids)
1902 bitmap_zero(t->eotid_bmap, t->neotids);
1903 }
1904
1905 if (t->nhpftids)
1906 bitmap_zero(t->hpftid_bmap, t->nhpftids);
1907 bitmap_zero(t->ftid_bmap, t->nftids);
1908 return 0;
1909 }
1910
1911 /**
1912 * cxgb4_create_server - create an IP server
1913 * @dev: the device
1914 * @stid: the server TID
1915 * @sip: local IP address to bind server to
1916 * @sport: the server's TCP port
1917 * @vlan: the VLAN header information
1918 * @queue: queue to direct messages from this server to
1919 *
1920 * Create an IP server for the given port and address.
1921 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1922 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1923 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1924 __be32 sip, __be16 sport, __be16 vlan,
1925 unsigned int queue)
1926 {
1927 unsigned int chan;
1928 struct sk_buff *skb;
1929 struct adapter *adap;
1930 struct cpl_pass_open_req *req;
1931 int ret;
1932
1933 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1934 if (!skb)
1935 return -ENOMEM;
1936
1937 adap = netdev2adap(dev);
1938 req = __skb_put(skb, sizeof(*req));
1939 INIT_TP_WR(req, 0);
1940 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1941 req->local_port = sport;
1942 req->peer_port = htons(0);
1943 req->local_ip = sip;
1944 req->peer_ip = htonl(0);
1945 chan = rxq_to_chan(&adap->sge, queue);
1946 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1947 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1948 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1949 ret = t4_mgmt_tx(adap, skb);
1950 return net_xmit_eval(ret);
1951 }
1952 EXPORT_SYMBOL(cxgb4_create_server);
1953
1954 /* cxgb4_create_server6 - create an IPv6 server
1955 * @dev: the device
1956 * @stid: the server TID
1957 * @sip: local IPv6 address to bind server to
1958 * @sport: the server's TCP port
1959 * @queue: queue to direct messages from this server to
1960 *
1961 * Create an IPv6 server for the given port and address.
1962 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1963 */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1964 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1965 const struct in6_addr *sip, __be16 sport,
1966 unsigned int queue)
1967 {
1968 unsigned int chan;
1969 struct sk_buff *skb;
1970 struct adapter *adap;
1971 struct cpl_pass_open_req6 *req;
1972 int ret;
1973
1974 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1975 if (!skb)
1976 return -ENOMEM;
1977
1978 adap = netdev2adap(dev);
1979 req = __skb_put(skb, sizeof(*req));
1980 INIT_TP_WR(req, 0);
1981 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1982 req->local_port = sport;
1983 req->peer_port = htons(0);
1984 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1985 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1986 req->peer_ip_hi = cpu_to_be64(0);
1987 req->peer_ip_lo = cpu_to_be64(0);
1988 chan = rxq_to_chan(&adap->sge, queue);
1989 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1990 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1991 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1992 ret = t4_mgmt_tx(adap, skb);
1993 return net_xmit_eval(ret);
1994 }
1995 EXPORT_SYMBOL(cxgb4_create_server6);
1996
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1997 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1998 unsigned int queue, bool ipv6)
1999 {
2000 struct sk_buff *skb;
2001 struct adapter *adap;
2002 struct cpl_close_listsvr_req *req;
2003 int ret;
2004
2005 adap = netdev2adap(dev);
2006
2007 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2008 if (!skb)
2009 return -ENOMEM;
2010
2011 req = __skb_put(skb, sizeof(*req));
2012 INIT_TP_WR(req, 0);
2013 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2014 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2015 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2016 ret = t4_mgmt_tx(adap, skb);
2017 return net_xmit_eval(ret);
2018 }
2019 EXPORT_SYMBOL(cxgb4_remove_server);
2020
2021 /**
2022 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2023 * @mtus: the HW MTU table
2024 * @mtu: the target MTU
2025 * @idx: index of selected entry in the MTU table
2026 *
2027 * Returns the index and the value in the HW MTU table that is closest to
2028 * but does not exceed @mtu, unless @mtu is smaller than any value in the
2029 * table, in which case that smallest available value is selected.
2030 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)2031 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2032 unsigned int *idx)
2033 {
2034 unsigned int i = 0;
2035
2036 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2037 ++i;
2038 if (idx)
2039 *idx = i;
2040 return mtus[i];
2041 }
2042 EXPORT_SYMBOL(cxgb4_best_mtu);
2043
2044 /**
2045 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2046 * @mtus: the HW MTU table
2047 * @header_size: Header Size
2048 * @data_size_max: maximum Data Segment Size
2049 * @data_size_align: desired Data Segment Size Alignment (2^N)
2050 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2051 *
2052 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
2053 * MTU Table based solely on a Maximum MTU parameter, we break that
2054 * parameter up into a Header Size and Maximum Data Segment Size, and
2055 * provide a desired Data Segment Size Alignment. If we find an MTU in
2056 * the Hardware MTU Table which will result in a Data Segment Size with
2057 * the requested alignment _and_ that MTU isn't "too far" from the
2058 * closest MTU, then we'll return that rather than the closest MTU.
2059 */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)2060 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2061 unsigned short header_size,
2062 unsigned short data_size_max,
2063 unsigned short data_size_align,
2064 unsigned int *mtu_idxp)
2065 {
2066 unsigned short max_mtu = header_size + data_size_max;
2067 unsigned short data_size_align_mask = data_size_align - 1;
2068 int mtu_idx, aligned_mtu_idx;
2069
2070 /* Scan the MTU Table till we find an MTU which is larger than our
2071 * Maximum MTU or we reach the end of the table. Along the way,
2072 * record the last MTU found, if any, which will result in a Data
2073 * Segment Length matching the requested alignment.
2074 */
2075 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2076 unsigned short data_size = mtus[mtu_idx] - header_size;
2077
2078 /* If this MTU minus the Header Size would result in a
2079 * Data Segment Size of the desired alignment, remember it.
2080 */
2081 if ((data_size & data_size_align_mask) == 0)
2082 aligned_mtu_idx = mtu_idx;
2083
2084 /* If we're not at the end of the Hardware MTU Table and the
2085 * next element is larger than our Maximum MTU, drop out of
2086 * the loop.
2087 */
2088 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2089 break;
2090 }
2091
2092 /* If we fell out of the loop because we ran to the end of the table,
2093 * then we just have to use the last [largest] entry.
2094 */
2095 if (mtu_idx == NMTUS)
2096 mtu_idx--;
2097
2098 /* If we found an MTU which resulted in the requested Data Segment
2099 * Length alignment and that's "not far" from the largest MTU which is
2100 * less than or equal to the maximum MTU, then use that.
2101 */
2102 if (aligned_mtu_idx >= 0 &&
2103 mtu_idx - aligned_mtu_idx <= 1)
2104 mtu_idx = aligned_mtu_idx;
2105
2106 /* If the caller has passed in an MTU Index pointer, pass the
2107 * MTU Index back. Return the MTU value.
2108 */
2109 if (mtu_idxp)
2110 *mtu_idxp = mtu_idx;
2111 return mtus[mtu_idx];
2112 }
2113 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2114
2115 /**
2116 * cxgb4_port_chan - get the HW channel of a port
2117 * @dev: the net device for the port
2118 *
2119 * Return the HW Tx channel of the given port.
2120 */
cxgb4_port_chan(const struct net_device * dev)2121 unsigned int cxgb4_port_chan(const struct net_device *dev)
2122 {
2123 return netdev2pinfo(dev)->tx_chan;
2124 }
2125 EXPORT_SYMBOL(cxgb4_port_chan);
2126
2127 /**
2128 * cxgb4_port_e2cchan - get the HW c-channel of a port
2129 * @dev: the net device for the port
2130 *
2131 * Return the HW RX c-channel of the given port.
2132 */
cxgb4_port_e2cchan(const struct net_device * dev)2133 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2134 {
2135 return netdev2pinfo(dev)->rx_cchan;
2136 }
2137 EXPORT_SYMBOL(cxgb4_port_e2cchan);
2138
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)2139 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2140 {
2141 struct adapter *adap = netdev2adap(dev);
2142 u32 v1, v2, lp_count, hp_count;
2143
2144 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2145 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2146 if (is_t4(adap->params.chip)) {
2147 lp_count = LP_COUNT_G(v1);
2148 hp_count = HP_COUNT_G(v1);
2149 } else {
2150 lp_count = LP_COUNT_T5_G(v1);
2151 hp_count = HP_COUNT_T5_G(v2);
2152 }
2153 return lpfifo ? lp_count : hp_count;
2154 }
2155 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2156
2157 /**
2158 * cxgb4_port_viid - get the VI id of a port
2159 * @dev: the net device for the port
2160 *
2161 * Return the VI id of the given port.
2162 */
cxgb4_port_viid(const struct net_device * dev)2163 unsigned int cxgb4_port_viid(const struct net_device *dev)
2164 {
2165 return netdev2pinfo(dev)->viid;
2166 }
2167 EXPORT_SYMBOL(cxgb4_port_viid);
2168
2169 /**
2170 * cxgb4_port_idx - get the index of a port
2171 * @dev: the net device for the port
2172 *
2173 * Return the index of the given port.
2174 */
cxgb4_port_idx(const struct net_device * dev)2175 unsigned int cxgb4_port_idx(const struct net_device *dev)
2176 {
2177 return netdev2pinfo(dev)->port_id;
2178 }
2179 EXPORT_SYMBOL(cxgb4_port_idx);
2180
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)2181 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2182 struct tp_tcp_stats *v6)
2183 {
2184 struct adapter *adap = pci_get_drvdata(pdev);
2185
2186 spin_lock(&adap->stats_lock);
2187 t4_tp_get_tcp_stats(adap, v4, v6, false);
2188 spin_unlock(&adap->stats_lock);
2189 }
2190 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2191
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)2192 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2193 const unsigned int *pgsz_order)
2194 {
2195 struct adapter *adap = netdev2adap(dev);
2196
2197 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2198 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2199 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2200 HPZ3_V(pgsz_order[3]));
2201 }
2202 EXPORT_SYMBOL(cxgb4_iscsi_init);
2203
cxgb4_flush_eq_cache(struct net_device * dev)2204 int cxgb4_flush_eq_cache(struct net_device *dev)
2205 {
2206 struct adapter *adap = netdev2adap(dev);
2207
2208 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2209 }
2210 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2211
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)2212 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2213 {
2214 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2215 __be64 indices;
2216 int ret;
2217
2218 spin_lock(&adap->win0_lock);
2219 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2220 sizeof(indices), (__be32 *)&indices,
2221 T4_MEMORY_READ);
2222 spin_unlock(&adap->win0_lock);
2223 if (!ret) {
2224 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2225 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2226 }
2227 return ret;
2228 }
2229
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)2230 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2231 u16 size)
2232 {
2233 struct adapter *adap = netdev2adap(dev);
2234 u16 hw_pidx, hw_cidx;
2235 int ret;
2236
2237 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2238 if (ret)
2239 goto out;
2240
2241 if (pidx != hw_pidx) {
2242 u16 delta;
2243 u32 val;
2244
2245 if (pidx >= hw_pidx)
2246 delta = pidx - hw_pidx;
2247 else
2248 delta = size - hw_pidx + pidx;
2249
2250 if (is_t4(adap->params.chip))
2251 val = PIDX_V(delta);
2252 else
2253 val = PIDX_T5_V(delta);
2254 wmb();
2255 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2256 QID_V(qid) | val);
2257 }
2258 out:
2259 return ret;
2260 }
2261 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2262
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)2263 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2264 {
2265 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2266 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2267 u32 offset, memtype, memaddr;
2268 struct adapter *adap;
2269 u32 hma_size = 0;
2270 int ret;
2271
2272 adap = netdev2adap(dev);
2273
2274 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2275
2276 /* Figure out where the offset lands in the Memory Type/Address scheme.
2277 * This code assumes that the memory is laid out starting at offset 0
2278 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2279 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2280 * MC0, and some have both MC0 and MC1.
2281 */
2282 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2283 edc0_size = EDRAM0_SIZE_G(size) << 20;
2284 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2285 edc1_size = EDRAM1_SIZE_G(size) << 20;
2286 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2287 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2288
2289 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2290 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2291 hma_size = EXT_MEM1_SIZE_G(size) << 20;
2292 }
2293 edc0_end = edc0_size;
2294 edc1_end = edc0_end + edc1_size;
2295 mc0_end = edc1_end + mc0_size;
2296
2297 if (offset < edc0_end) {
2298 memtype = MEM_EDC0;
2299 memaddr = offset;
2300 } else if (offset < edc1_end) {
2301 memtype = MEM_EDC1;
2302 memaddr = offset - edc0_end;
2303 } else {
2304 if (hma_size && (offset < (edc1_end + hma_size))) {
2305 memtype = MEM_HMA;
2306 memaddr = offset - edc1_end;
2307 } else if (offset < mc0_end) {
2308 memtype = MEM_MC0;
2309 memaddr = offset - edc1_end;
2310 } else if (is_t5(adap->params.chip)) {
2311 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2312 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2313 mc1_end = mc0_end + mc1_size;
2314 if (offset < mc1_end) {
2315 memtype = MEM_MC1;
2316 memaddr = offset - mc0_end;
2317 } else {
2318 /* offset beyond the end of any memory */
2319 goto err;
2320 }
2321 } else {
2322 /* T4/T6 only has a single memory channel */
2323 goto err;
2324 }
2325 }
2326
2327 spin_lock(&adap->win0_lock);
2328 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2329 spin_unlock(&adap->win0_lock);
2330 return ret;
2331
2332 err:
2333 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2334 stag, offset);
2335 return -EINVAL;
2336 }
2337 EXPORT_SYMBOL(cxgb4_read_tpte);
2338
cxgb4_read_sge_timestamp(struct net_device * dev)2339 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2340 {
2341 u32 hi, lo;
2342 struct adapter *adap;
2343
2344 adap = netdev2adap(dev);
2345 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2346 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2347
2348 return ((u64)hi << 32) | (u64)lo;
2349 }
2350 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2351
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)2352 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2353 unsigned int qid,
2354 enum cxgb4_bar2_qtype qtype,
2355 int user,
2356 u64 *pbar2_qoffset,
2357 unsigned int *pbar2_qid)
2358 {
2359 return t4_bar2_sge_qregs(netdev2adap(dev),
2360 qid,
2361 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2362 ? T4_BAR2_QTYPE_EGRESS
2363 : T4_BAR2_QTYPE_INGRESS),
2364 user,
2365 pbar2_qoffset,
2366 pbar2_qid);
2367 }
2368 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2369
2370 static struct pci_driver cxgb4_driver;
2371
check_neigh_update(struct neighbour * neigh)2372 static void check_neigh_update(struct neighbour *neigh)
2373 {
2374 const struct device *parent;
2375 const struct net_device *netdev = neigh->dev;
2376
2377 if (is_vlan_dev(netdev))
2378 netdev = vlan_dev_real_dev(netdev);
2379 parent = netdev->dev.parent;
2380 if (parent && parent->driver == &cxgb4_driver.driver)
2381 t4_l2t_update(dev_get_drvdata(parent), neigh);
2382 }
2383
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)2384 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2385 void *data)
2386 {
2387 switch (event) {
2388 case NETEVENT_NEIGH_UPDATE:
2389 check_neigh_update(data);
2390 break;
2391 case NETEVENT_REDIRECT:
2392 default:
2393 break;
2394 }
2395 return 0;
2396 }
2397
2398 static bool netevent_registered;
2399 static struct notifier_block cxgb4_netevent_nb = {
2400 .notifier_call = netevent_cb
2401 };
2402
drain_db_fifo(struct adapter * adap,int usecs)2403 static void drain_db_fifo(struct adapter *adap, int usecs)
2404 {
2405 u32 v1, v2, lp_count, hp_count;
2406
2407 do {
2408 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2409 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2410 if (is_t4(adap->params.chip)) {
2411 lp_count = LP_COUNT_G(v1);
2412 hp_count = HP_COUNT_G(v1);
2413 } else {
2414 lp_count = LP_COUNT_T5_G(v1);
2415 hp_count = HP_COUNT_T5_G(v2);
2416 }
2417
2418 if (lp_count == 0 && hp_count == 0)
2419 break;
2420 set_current_state(TASK_UNINTERRUPTIBLE);
2421 schedule_timeout(usecs_to_jiffies(usecs));
2422 } while (1);
2423 }
2424
disable_txq_db(struct sge_txq * q)2425 static void disable_txq_db(struct sge_txq *q)
2426 {
2427 unsigned long flags;
2428
2429 spin_lock_irqsave(&q->db_lock, flags);
2430 q->db_disabled = 1;
2431 spin_unlock_irqrestore(&q->db_lock, flags);
2432 }
2433
enable_txq_db(struct adapter * adap,struct sge_txq * q)2434 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2435 {
2436 spin_lock_irq(&q->db_lock);
2437 if (q->db_pidx_inc) {
2438 /* Make sure that all writes to the TX descriptors
2439 * are committed before we tell HW about them.
2440 */
2441 wmb();
2442 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2443 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2444 q->db_pidx_inc = 0;
2445 }
2446 q->db_disabled = 0;
2447 spin_unlock_irq(&q->db_lock);
2448 }
2449
disable_dbs(struct adapter * adap)2450 static void disable_dbs(struct adapter *adap)
2451 {
2452 int i;
2453
2454 for_each_ethrxq(&adap->sge, i)
2455 disable_txq_db(&adap->sge.ethtxq[i].q);
2456 if (is_offload(adap)) {
2457 struct sge_uld_txq_info *txq_info =
2458 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2459
2460 if (txq_info) {
2461 for_each_ofldtxq(&adap->sge, i) {
2462 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2463
2464 disable_txq_db(&txq->q);
2465 }
2466 }
2467 }
2468 for_each_port(adap, i)
2469 disable_txq_db(&adap->sge.ctrlq[i].q);
2470 }
2471
enable_dbs(struct adapter * adap)2472 static void enable_dbs(struct adapter *adap)
2473 {
2474 int i;
2475
2476 for_each_ethrxq(&adap->sge, i)
2477 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2478 if (is_offload(adap)) {
2479 struct sge_uld_txq_info *txq_info =
2480 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2481
2482 if (txq_info) {
2483 for_each_ofldtxq(&adap->sge, i) {
2484 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2485
2486 enable_txq_db(adap, &txq->q);
2487 }
2488 }
2489 }
2490 for_each_port(adap, i)
2491 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2492 }
2493
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)2494 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2495 {
2496 enum cxgb4_uld type = CXGB4_ULD_RDMA;
2497
2498 if (adap->uld && adap->uld[type].handle)
2499 adap->uld[type].control(adap->uld[type].handle, cmd);
2500 }
2501
process_db_full(struct work_struct * work)2502 static void process_db_full(struct work_struct *work)
2503 {
2504 struct adapter *adap;
2505
2506 adap = container_of(work, struct adapter, db_full_task);
2507
2508 drain_db_fifo(adap, dbfifo_drain_delay);
2509 enable_dbs(adap);
2510 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2511 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2512 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2513 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2514 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2515 else
2516 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2517 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2518 }
2519
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)2520 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2521 {
2522 u16 hw_pidx, hw_cidx;
2523 int ret;
2524
2525 spin_lock_irq(&q->db_lock);
2526 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2527 if (ret)
2528 goto out;
2529 if (q->db_pidx != hw_pidx) {
2530 u16 delta;
2531 u32 val;
2532
2533 if (q->db_pidx >= hw_pidx)
2534 delta = q->db_pidx - hw_pidx;
2535 else
2536 delta = q->size - hw_pidx + q->db_pidx;
2537
2538 if (is_t4(adap->params.chip))
2539 val = PIDX_V(delta);
2540 else
2541 val = PIDX_T5_V(delta);
2542 wmb();
2543 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2544 QID_V(q->cntxt_id) | val);
2545 }
2546 out:
2547 q->db_disabled = 0;
2548 q->db_pidx_inc = 0;
2549 spin_unlock_irq(&q->db_lock);
2550 if (ret)
2551 CH_WARN(adap, "DB drop recovery failed.\n");
2552 }
2553
recover_all_queues(struct adapter * adap)2554 static void recover_all_queues(struct adapter *adap)
2555 {
2556 int i;
2557
2558 for_each_ethrxq(&adap->sge, i)
2559 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2560 if (is_offload(adap)) {
2561 struct sge_uld_txq_info *txq_info =
2562 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2563 if (txq_info) {
2564 for_each_ofldtxq(&adap->sge, i) {
2565 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2566
2567 sync_txq_pidx(adap, &txq->q);
2568 }
2569 }
2570 }
2571 for_each_port(adap, i)
2572 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2573 }
2574
process_db_drop(struct work_struct * work)2575 static void process_db_drop(struct work_struct *work)
2576 {
2577 struct adapter *adap;
2578
2579 adap = container_of(work, struct adapter, db_drop_task);
2580
2581 if (is_t4(adap->params.chip)) {
2582 drain_db_fifo(adap, dbfifo_drain_delay);
2583 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2584 drain_db_fifo(adap, dbfifo_drain_delay);
2585 recover_all_queues(adap);
2586 drain_db_fifo(adap, dbfifo_drain_delay);
2587 enable_dbs(adap);
2588 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2589 } else if (is_t5(adap->params.chip)) {
2590 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2591 u16 qid = (dropped_db >> 15) & 0x1ffff;
2592 u16 pidx_inc = dropped_db & 0x1fff;
2593 u64 bar2_qoffset;
2594 unsigned int bar2_qid;
2595 int ret;
2596
2597 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2598 0, &bar2_qoffset, &bar2_qid);
2599 if (ret)
2600 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2601 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2602 else
2603 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2604 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2605
2606 /* Re-enable BAR2 WC */
2607 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2608 }
2609
2610 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2611 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2612 }
2613
t4_db_full(struct adapter * adap)2614 void t4_db_full(struct adapter *adap)
2615 {
2616 if (is_t4(adap->params.chip)) {
2617 disable_dbs(adap);
2618 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2619 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2620 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2621 queue_work(adap->workq, &adap->db_full_task);
2622 }
2623 }
2624
t4_db_dropped(struct adapter * adap)2625 void t4_db_dropped(struct adapter *adap)
2626 {
2627 if (is_t4(adap->params.chip)) {
2628 disable_dbs(adap);
2629 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2630 }
2631 queue_work(adap->workq, &adap->db_drop_task);
2632 }
2633
t4_register_netevent_notifier(void)2634 void t4_register_netevent_notifier(void)
2635 {
2636 if (!netevent_registered) {
2637 register_netevent_notifier(&cxgb4_netevent_nb);
2638 netevent_registered = true;
2639 }
2640 }
2641
detach_ulds(struct adapter * adap)2642 static void detach_ulds(struct adapter *adap)
2643 {
2644 unsigned int i;
2645
2646 if (!is_uld(adap))
2647 return;
2648
2649 mutex_lock(&uld_mutex);
2650 list_del(&adap->list_node);
2651
2652 for (i = 0; i < CXGB4_ULD_MAX; i++)
2653 if (adap->uld && adap->uld[i].handle)
2654 adap->uld[i].state_change(adap->uld[i].handle,
2655 CXGB4_STATE_DETACH);
2656
2657 if (netevent_registered && list_empty(&adapter_list)) {
2658 unregister_netevent_notifier(&cxgb4_netevent_nb);
2659 netevent_registered = false;
2660 }
2661 mutex_unlock(&uld_mutex);
2662 }
2663
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2664 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2665 {
2666 unsigned int i;
2667
2668 mutex_lock(&uld_mutex);
2669 for (i = 0; i < CXGB4_ULD_MAX; i++)
2670 if (adap->uld && adap->uld[i].handle)
2671 adap->uld[i].state_change(adap->uld[i].handle,
2672 new_state);
2673 mutex_unlock(&uld_mutex);
2674 }
2675
2676 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2677 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2678 unsigned long event, void *data)
2679 {
2680 struct inet6_ifaddr *ifa = data;
2681 struct net_device *event_dev = ifa->idev->dev;
2682 const struct device *parent = NULL;
2683 #if IS_ENABLED(CONFIG_BONDING)
2684 struct adapter *adap;
2685 #endif
2686 if (is_vlan_dev(event_dev))
2687 event_dev = vlan_dev_real_dev(event_dev);
2688 #if IS_ENABLED(CONFIG_BONDING)
2689 if (event_dev->flags & IFF_MASTER) {
2690 list_for_each_entry(adap, &adapter_list, list_node) {
2691 switch (event) {
2692 case NETDEV_UP:
2693 cxgb4_clip_get(adap->port[0],
2694 (const u32 *)ifa, 1);
2695 break;
2696 case NETDEV_DOWN:
2697 cxgb4_clip_release(adap->port[0],
2698 (const u32 *)ifa, 1);
2699 break;
2700 default:
2701 break;
2702 }
2703 }
2704 return NOTIFY_OK;
2705 }
2706 #endif
2707
2708 if (event_dev)
2709 parent = event_dev->dev.parent;
2710
2711 if (parent && parent->driver == &cxgb4_driver.driver) {
2712 switch (event) {
2713 case NETDEV_UP:
2714 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2715 break;
2716 case NETDEV_DOWN:
2717 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2718 break;
2719 default:
2720 break;
2721 }
2722 }
2723 return NOTIFY_OK;
2724 }
2725
2726 static bool inet6addr_registered;
2727 static struct notifier_block cxgb4_inet6addr_notifier = {
2728 .notifier_call = cxgb4_inet6addr_handler
2729 };
2730
update_clip(const struct adapter * adap)2731 static void update_clip(const struct adapter *adap)
2732 {
2733 int i;
2734 struct net_device *dev;
2735 int ret;
2736
2737 rcu_read_lock();
2738
2739 for (i = 0; i < MAX_NPORTS; i++) {
2740 dev = adap->port[i];
2741 ret = 0;
2742
2743 if (dev)
2744 ret = cxgb4_update_root_dev_clip(dev);
2745
2746 if (ret < 0)
2747 break;
2748 }
2749 rcu_read_unlock();
2750 }
2751 #endif /* IS_ENABLED(CONFIG_IPV6) */
2752
2753 /**
2754 * cxgb_up - enable the adapter
2755 * @adap: adapter being enabled
2756 *
2757 * Called when the first port is enabled, this function performs the
2758 * actions necessary to make an adapter operational, such as completing
2759 * the initialization of HW modules, and enabling interrupts.
2760 *
2761 * Must be called with the rtnl lock held.
2762 */
cxgb_up(struct adapter * adap)2763 static int cxgb_up(struct adapter *adap)
2764 {
2765 struct sge *s = &adap->sge;
2766 int err;
2767
2768 mutex_lock(&uld_mutex);
2769 err = setup_sge_queues(adap);
2770 if (err)
2771 goto rel_lock;
2772 err = setup_rss(adap);
2773 if (err)
2774 goto freeq;
2775
2776 if (adap->flags & CXGB4_USING_MSIX) {
2777 if (s->nd_msix_idx < 0) {
2778 err = -ENOMEM;
2779 goto irq_err;
2780 }
2781
2782 err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2783 t4_nondata_intr, 0,
2784 adap->msix_info[s->nd_msix_idx].desc, adap);
2785 if (err)
2786 goto irq_err;
2787
2788 err = request_msix_queue_irqs(adap);
2789 if (err)
2790 goto irq_err_free_nd_msix;
2791 } else {
2792 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2793 (adap->flags & CXGB4_USING_MSI) ? 0
2794 : IRQF_SHARED,
2795 adap->port[0]->name, adap);
2796 if (err)
2797 goto irq_err;
2798 }
2799
2800 enable_rx(adap);
2801 t4_sge_start(adap);
2802 t4_intr_enable(adap);
2803 adap->flags |= CXGB4_FULL_INIT_DONE;
2804 mutex_unlock(&uld_mutex);
2805
2806 notify_ulds(adap, CXGB4_STATE_UP);
2807 #if IS_ENABLED(CONFIG_IPV6)
2808 update_clip(adap);
2809 #endif
2810 return err;
2811
2812 irq_err_free_nd_msix:
2813 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2814 irq_err:
2815 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2816 freeq:
2817 t4_free_sge_resources(adap);
2818 rel_lock:
2819 mutex_unlock(&uld_mutex);
2820 return err;
2821 }
2822
cxgb_down(struct adapter * adapter)2823 static void cxgb_down(struct adapter *adapter)
2824 {
2825 cancel_work_sync(&adapter->tid_release_task);
2826 cancel_work_sync(&adapter->db_full_task);
2827 cancel_work_sync(&adapter->db_drop_task);
2828 adapter->tid_release_task_busy = false;
2829 adapter->tid_release_head = NULL;
2830
2831 t4_sge_stop(adapter);
2832 t4_free_sge_resources(adapter);
2833
2834 adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2835 }
2836
2837 /*
2838 * net_device operations
2839 */
cxgb_open(struct net_device * dev)2840 static int cxgb_open(struct net_device *dev)
2841 {
2842 struct port_info *pi = netdev_priv(dev);
2843 struct adapter *adapter = pi->adapter;
2844 int err;
2845
2846 netif_carrier_off(dev);
2847
2848 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2849 err = cxgb_up(adapter);
2850 if (err < 0)
2851 return err;
2852 }
2853
2854 /* It's possible that the basic port information could have
2855 * changed since we first read it.
2856 */
2857 err = t4_update_port_info(pi);
2858 if (err < 0)
2859 return err;
2860
2861 err = link_start(dev);
2862 if (err)
2863 return err;
2864
2865 if (pi->nmirrorqsets) {
2866 mutex_lock(&pi->vi_mirror_mutex);
2867 err = cxgb4_port_mirror_alloc_queues(dev);
2868 if (err)
2869 goto out_unlock;
2870
2871 err = cxgb4_port_mirror_start(dev);
2872 if (err)
2873 goto out_free_queues;
2874 mutex_unlock(&pi->vi_mirror_mutex);
2875 }
2876
2877 netif_tx_start_all_queues(dev);
2878 return 0;
2879
2880 out_free_queues:
2881 cxgb4_port_mirror_free_queues(dev);
2882
2883 out_unlock:
2884 mutex_unlock(&pi->vi_mirror_mutex);
2885 return err;
2886 }
2887
cxgb_close(struct net_device * dev)2888 static int cxgb_close(struct net_device *dev)
2889 {
2890 struct port_info *pi = netdev_priv(dev);
2891 struct adapter *adapter = pi->adapter;
2892 int ret;
2893
2894 netif_tx_stop_all_queues(dev);
2895 netif_carrier_off(dev);
2896 ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2897 false, false, false);
2898 #ifdef CONFIG_CHELSIO_T4_DCB
2899 cxgb4_dcb_reset(dev);
2900 dcb_tx_queue_prio_enable(dev, false);
2901 #endif
2902 if (ret)
2903 return ret;
2904
2905 if (pi->nmirrorqsets) {
2906 mutex_lock(&pi->vi_mirror_mutex);
2907 cxgb4_port_mirror_stop(dev);
2908 cxgb4_port_mirror_free_queues(dev);
2909 mutex_unlock(&pi->vi_mirror_mutex);
2910 }
2911
2912 return 0;
2913 }
2914
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2915 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2916 __be32 sip, __be16 sport, __be16 vlan,
2917 unsigned int queue, unsigned char port, unsigned char mask)
2918 {
2919 int ret;
2920 struct filter_entry *f;
2921 struct adapter *adap;
2922 int i;
2923 u8 *val;
2924
2925 adap = netdev2adap(dev);
2926
2927 /* Adjust stid to correct filter index */
2928 stid -= adap->tids.sftid_base;
2929 stid += adap->tids.nftids;
2930
2931 /* Check to make sure the filter requested is writable ...
2932 */
2933 f = &adap->tids.ftid_tab[stid];
2934 ret = writable_filter(f);
2935 if (ret)
2936 return ret;
2937
2938 /* Clear out any old resources being used by the filter before
2939 * we start constructing the new filter.
2940 */
2941 if (f->valid)
2942 clear_filter(adap, f);
2943
2944 /* Clear out filter specifications */
2945 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2946 f->fs.val.lport = be16_to_cpu(sport);
2947 f->fs.mask.lport = ~0;
2948 val = (u8 *)&sip;
2949 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2950 for (i = 0; i < 4; i++) {
2951 f->fs.val.lip[i] = val[i];
2952 f->fs.mask.lip[i] = ~0;
2953 }
2954 if (adap->params.tp.vlan_pri_map & PORT_F) {
2955 f->fs.val.iport = port;
2956 f->fs.mask.iport = mask;
2957 }
2958 }
2959
2960 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2961 f->fs.val.proto = IPPROTO_TCP;
2962 f->fs.mask.proto = ~0;
2963 }
2964
2965 f->fs.dirsteer = 1;
2966 f->fs.iq = queue;
2967 /* Mark filter as locked */
2968 f->locked = 1;
2969 f->fs.rpttid = 1;
2970
2971 /* Save the actual tid. We need this to get the corresponding
2972 * filter entry structure in filter_rpl.
2973 */
2974 f->tid = stid + adap->tids.ftid_base;
2975 ret = set_filter_wr(adap, stid);
2976 if (ret) {
2977 clear_filter(adap, f);
2978 return ret;
2979 }
2980
2981 return 0;
2982 }
2983 EXPORT_SYMBOL(cxgb4_create_server_filter);
2984
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2985 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2986 unsigned int queue, bool ipv6)
2987 {
2988 struct filter_entry *f;
2989 struct adapter *adap;
2990
2991 adap = netdev2adap(dev);
2992
2993 /* Adjust stid to correct filter index */
2994 stid -= adap->tids.sftid_base;
2995 stid += adap->tids.nftids;
2996
2997 f = &adap->tids.ftid_tab[stid];
2998 /* Unlock the filter */
2999 f->locked = 0;
3000
3001 return delete_filter(adap, stid);
3002 }
3003 EXPORT_SYMBOL(cxgb4_remove_server_filter);
3004
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)3005 static void cxgb_get_stats(struct net_device *dev,
3006 struct rtnl_link_stats64 *ns)
3007 {
3008 struct port_stats stats;
3009 struct port_info *p = netdev_priv(dev);
3010 struct adapter *adapter = p->adapter;
3011
3012 /* Block retrieving statistics during EEH error
3013 * recovery. Otherwise, the recovery might fail
3014 * and the PCI device will be removed permanently
3015 */
3016 spin_lock(&adapter->stats_lock);
3017 if (!netif_device_present(dev)) {
3018 spin_unlock(&adapter->stats_lock);
3019 return;
3020 }
3021 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3022 &p->stats_base);
3023 spin_unlock(&adapter->stats_lock);
3024
3025 ns->tx_bytes = stats.tx_octets;
3026 ns->tx_packets = stats.tx_frames;
3027 ns->rx_bytes = stats.rx_octets;
3028 ns->rx_packets = stats.rx_frames;
3029 ns->multicast = stats.rx_mcast_frames;
3030
3031 /* detailed rx_errors */
3032 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3033 stats.rx_runt;
3034 ns->rx_over_errors = 0;
3035 ns->rx_crc_errors = stats.rx_fcs_err;
3036 ns->rx_frame_errors = stats.rx_symbol_err;
3037 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
3038 stats.rx_ovflow2 + stats.rx_ovflow3 +
3039 stats.rx_trunc0 + stats.rx_trunc1 +
3040 stats.rx_trunc2 + stats.rx_trunc3;
3041 ns->rx_missed_errors = 0;
3042
3043 /* detailed tx_errors */
3044 ns->tx_aborted_errors = 0;
3045 ns->tx_carrier_errors = 0;
3046 ns->tx_fifo_errors = 0;
3047 ns->tx_heartbeat_errors = 0;
3048 ns->tx_window_errors = 0;
3049
3050 ns->tx_errors = stats.tx_error_frames;
3051 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3052 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3053 }
3054
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)3055 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3056 {
3057 unsigned int mbox;
3058 int ret = 0, prtad, devad;
3059 struct port_info *pi = netdev_priv(dev);
3060 struct adapter *adapter = pi->adapter;
3061 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3062
3063 switch (cmd) {
3064 case SIOCGMIIPHY:
3065 if (pi->mdio_addr < 0)
3066 return -EOPNOTSUPP;
3067 data->phy_id = pi->mdio_addr;
3068 break;
3069 case SIOCGMIIREG:
3070 case SIOCSMIIREG:
3071 if (mdio_phy_id_is_c45(data->phy_id)) {
3072 prtad = mdio_phy_id_prtad(data->phy_id);
3073 devad = mdio_phy_id_devad(data->phy_id);
3074 } else if (data->phy_id < 32) {
3075 prtad = data->phy_id;
3076 devad = 0;
3077 data->reg_num &= 0x1f;
3078 } else
3079 return -EINVAL;
3080
3081 mbox = pi->adapter->pf;
3082 if (cmd == SIOCGMIIREG)
3083 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3084 data->reg_num, &data->val_out);
3085 else
3086 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3087 data->reg_num, data->val_in);
3088 break;
3089 case SIOCGHWTSTAMP:
3090 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3091 sizeof(pi->tstamp_config)) ?
3092 -EFAULT : 0;
3093 case SIOCSHWTSTAMP:
3094 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3095 sizeof(pi->tstamp_config)))
3096 return -EFAULT;
3097
3098 if (!is_t4(adapter->params.chip)) {
3099 switch (pi->tstamp_config.tx_type) {
3100 case HWTSTAMP_TX_OFF:
3101 case HWTSTAMP_TX_ON:
3102 break;
3103 default:
3104 return -ERANGE;
3105 }
3106
3107 switch (pi->tstamp_config.rx_filter) {
3108 case HWTSTAMP_FILTER_NONE:
3109 pi->rxtstamp = false;
3110 break;
3111 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3112 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3113 cxgb4_ptprx_timestamping(pi, pi->port_id,
3114 PTP_TS_L4);
3115 break;
3116 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3117 cxgb4_ptprx_timestamping(pi, pi->port_id,
3118 PTP_TS_L2_L4);
3119 break;
3120 case HWTSTAMP_FILTER_ALL:
3121 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3122 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3123 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3124 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3125 pi->rxtstamp = true;
3126 break;
3127 default:
3128 pi->tstamp_config.rx_filter =
3129 HWTSTAMP_FILTER_NONE;
3130 return -ERANGE;
3131 }
3132
3133 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3134 (pi->tstamp_config.rx_filter ==
3135 HWTSTAMP_FILTER_NONE)) {
3136 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3137 pi->ptp_enable = false;
3138 }
3139
3140 if (pi->tstamp_config.rx_filter !=
3141 HWTSTAMP_FILTER_NONE) {
3142 if (cxgb4_ptp_redirect_rx_packet(adapter,
3143 pi) >= 0)
3144 pi->ptp_enable = true;
3145 }
3146 } else {
3147 /* For T4 Adapters */
3148 switch (pi->tstamp_config.rx_filter) {
3149 case HWTSTAMP_FILTER_NONE:
3150 pi->rxtstamp = false;
3151 break;
3152 case HWTSTAMP_FILTER_ALL:
3153 pi->rxtstamp = true;
3154 break;
3155 default:
3156 pi->tstamp_config.rx_filter =
3157 HWTSTAMP_FILTER_NONE;
3158 return -ERANGE;
3159 }
3160 }
3161 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3162 sizeof(pi->tstamp_config)) ?
3163 -EFAULT : 0;
3164 default:
3165 return -EOPNOTSUPP;
3166 }
3167 return ret;
3168 }
3169
cxgb_set_rxmode(struct net_device * dev)3170 static void cxgb_set_rxmode(struct net_device *dev)
3171 {
3172 /* unfortunately we can't return errors to the stack */
3173 set_rxmode(dev, -1, false);
3174 }
3175
cxgb_change_mtu(struct net_device * dev,int new_mtu)3176 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3177 {
3178 struct port_info *pi = netdev_priv(dev);
3179 int ret;
3180
3181 ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3182 pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3183 if (!ret)
3184 dev->mtu = new_mtu;
3185 return ret;
3186 }
3187
3188 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_open(struct net_device * dev)3189 static int cxgb4_mgmt_open(struct net_device *dev)
3190 {
3191 /* Turn carrier off since we don't have to transmit anything on this
3192 * interface.
3193 */
3194 netif_carrier_off(dev);
3195 return 0;
3196 }
3197
3198 /* Fill MAC address that will be assigned by the FW */
cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter * adap)3199 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3200 {
3201 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3202 unsigned int i, vf, nvfs;
3203 u16 a, b;
3204 int err;
3205 u8 *na;
3206
3207 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
3208 PCI_CAP_ID_VPD);
3209 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3210 if (err)
3211 return;
3212
3213 na = adap->params.vpd.na;
3214 for (i = 0; i < ETH_ALEN; i++)
3215 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3216 hex2val(na[2 * i + 1]));
3217
3218 a = (hw_addr[0] << 8) | hw_addr[1];
3219 b = (hw_addr[1] << 8) | hw_addr[2];
3220 a ^= b;
3221 a |= 0x0200; /* locally assigned Ethernet MAC address */
3222 a &= ~0x0100; /* not a multicast Ethernet MAC address */
3223 macaddr[0] = a >> 8;
3224 macaddr[1] = a & 0xff;
3225
3226 for (i = 2; i < 5; i++)
3227 macaddr[i] = hw_addr[i + 1];
3228
3229 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3230 vf < nvfs; vf++) {
3231 macaddr[5] = adap->pf * nvfs + vf;
3232 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3233 }
3234 }
3235
cxgb4_mgmt_set_vf_mac(struct net_device * dev,int vf,u8 * mac)3236 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3237 {
3238 struct port_info *pi = netdev_priv(dev);
3239 struct adapter *adap = pi->adapter;
3240 int ret;
3241
3242 /* verify MAC addr is valid */
3243 if (!is_valid_ether_addr(mac)) {
3244 dev_err(pi->adapter->pdev_dev,
3245 "Invalid Ethernet address %pM for VF %d\n",
3246 mac, vf);
3247 return -EINVAL;
3248 }
3249
3250 dev_info(pi->adapter->pdev_dev,
3251 "Setting MAC %pM on VF %d\n", mac, vf);
3252 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3253 if (!ret)
3254 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3255 return ret;
3256 }
3257
cxgb4_mgmt_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)3258 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3259 int vf, struct ifla_vf_info *ivi)
3260 {
3261 struct port_info *pi = netdev_priv(dev);
3262 struct adapter *adap = pi->adapter;
3263 struct vf_info *vfinfo;
3264
3265 if (vf >= adap->num_vfs)
3266 return -EINVAL;
3267 vfinfo = &adap->vfinfo[vf];
3268
3269 ivi->vf = vf;
3270 ivi->max_tx_rate = vfinfo->tx_rate;
3271 ivi->min_tx_rate = 0;
3272 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3273 ivi->vlan = vfinfo->vlan;
3274 ivi->linkstate = vfinfo->link_state;
3275 return 0;
3276 }
3277
cxgb4_mgmt_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)3278 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3279 struct netdev_phys_item_id *ppid)
3280 {
3281 struct port_info *pi = netdev_priv(dev);
3282 unsigned int phy_port_id;
3283
3284 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3285 ppid->id_len = sizeof(phy_port_id);
3286 memcpy(ppid->id, &phy_port_id, ppid->id_len);
3287 return 0;
3288 }
3289
cxgb4_mgmt_set_vf_rate(struct net_device * dev,int vf,int min_tx_rate,int max_tx_rate)3290 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3291 int min_tx_rate, int max_tx_rate)
3292 {
3293 struct port_info *pi = netdev_priv(dev);
3294 struct adapter *adap = pi->adapter;
3295 unsigned int link_ok, speed, mtu;
3296 u32 fw_pfvf, fw_class;
3297 int class_id = vf;
3298 int ret;
3299 u16 pktsize;
3300
3301 if (vf >= adap->num_vfs)
3302 return -EINVAL;
3303
3304 if (min_tx_rate) {
3305 dev_err(adap->pdev_dev,
3306 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3307 min_tx_rate, vf);
3308 return -EINVAL;
3309 }
3310
3311 if (max_tx_rate == 0) {
3312 /* unbind VF to to any Traffic Class */
3313 fw_pfvf =
3314 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3315 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3316 fw_class = 0xffffffff;
3317 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3318 &fw_pfvf, &fw_class);
3319 if (ret) {
3320 dev_err(adap->pdev_dev,
3321 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3322 ret, adap->pf, vf);
3323 return -EINVAL;
3324 }
3325 dev_info(adap->pdev_dev,
3326 "PF %d VF %d is unbound from TX Rate Limiting\n",
3327 adap->pf, vf);
3328 adap->vfinfo[vf].tx_rate = 0;
3329 return 0;
3330 }
3331
3332 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3333 if (ret != FW_SUCCESS) {
3334 dev_err(adap->pdev_dev,
3335 "Failed to get link information for VF %d\n", vf);
3336 return -EINVAL;
3337 }
3338
3339 if (!link_ok) {
3340 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3341 return -EINVAL;
3342 }
3343
3344 if (max_tx_rate > speed) {
3345 dev_err(adap->pdev_dev,
3346 "Max tx rate %d for VF %d can't be > link-speed %u",
3347 max_tx_rate, vf, speed);
3348 return -EINVAL;
3349 }
3350
3351 pktsize = mtu;
3352 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3353 pktsize = pktsize - sizeof(struct ethhdr) - 4;
3354 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3355 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3356 /* configure Traffic Class for rate-limiting */
3357 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3358 SCHED_CLASS_LEVEL_CL_RL,
3359 SCHED_CLASS_MODE_CLASS,
3360 SCHED_CLASS_RATEUNIT_BITS,
3361 SCHED_CLASS_RATEMODE_ABS,
3362 pi->tx_chan, class_id, 0,
3363 max_tx_rate * 1000, 0, pktsize, 0);
3364 if (ret) {
3365 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3366 ret);
3367 return -EINVAL;
3368 }
3369 dev_info(adap->pdev_dev,
3370 "Class %d with MSS %u configured with rate %u\n",
3371 class_id, pktsize, max_tx_rate);
3372
3373 /* bind VF to configured Traffic Class */
3374 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3375 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3376 fw_class = class_id;
3377 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3378 &fw_class);
3379 if (ret) {
3380 dev_err(adap->pdev_dev,
3381 "Err %d in binding PF %d VF %d to Traffic Class %d\n",
3382 ret, adap->pf, vf, class_id);
3383 return -EINVAL;
3384 }
3385 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3386 adap->pf, vf, class_id);
3387 adap->vfinfo[vf].tx_rate = max_tx_rate;
3388 return 0;
3389 }
3390
cxgb4_mgmt_set_vf_vlan(struct net_device * dev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)3391 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3392 u16 vlan, u8 qos, __be16 vlan_proto)
3393 {
3394 struct port_info *pi = netdev_priv(dev);
3395 struct adapter *adap = pi->adapter;
3396 int ret;
3397
3398 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3399 return -EINVAL;
3400
3401 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3402 return -EPROTONOSUPPORT;
3403
3404 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3405 if (!ret) {
3406 adap->vfinfo[vf].vlan = vlan;
3407 return 0;
3408 }
3409
3410 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3411 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3412 return ret;
3413 }
3414
cxgb4_mgmt_set_vf_link_state(struct net_device * dev,int vf,int link)3415 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3416 int link)
3417 {
3418 struct port_info *pi = netdev_priv(dev);
3419 struct adapter *adap = pi->adapter;
3420 u32 param, val;
3421 int ret = 0;
3422
3423 if (vf >= adap->num_vfs)
3424 return -EINVAL;
3425
3426 switch (link) {
3427 case IFLA_VF_LINK_STATE_AUTO:
3428 val = FW_VF_LINK_STATE_AUTO;
3429 break;
3430
3431 case IFLA_VF_LINK_STATE_ENABLE:
3432 val = FW_VF_LINK_STATE_ENABLE;
3433 break;
3434
3435 case IFLA_VF_LINK_STATE_DISABLE:
3436 val = FW_VF_LINK_STATE_DISABLE;
3437 break;
3438
3439 default:
3440 return -EINVAL;
3441 }
3442
3443 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3444 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3445 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3446 ¶m, &val);
3447 if (ret) {
3448 dev_err(adap->pdev_dev,
3449 "Error %d in setting PF %d VF %d link state\n",
3450 ret, adap->pf, vf);
3451 return -EINVAL;
3452 }
3453
3454 adap->vfinfo[vf].link_state = link;
3455 return ret;
3456 }
3457 #endif /* CONFIG_PCI_IOV */
3458
cxgb_set_mac_addr(struct net_device * dev,void * p)3459 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3460 {
3461 int ret;
3462 struct sockaddr *addr = p;
3463 struct port_info *pi = netdev_priv(dev);
3464
3465 if (!is_valid_ether_addr(addr->sa_data))
3466 return -EADDRNOTAVAIL;
3467
3468 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3469 addr->sa_data, true, &pi->smt_idx);
3470 if (ret < 0)
3471 return ret;
3472
3473 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3474 return 0;
3475 }
3476
3477 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)3478 static void cxgb_netpoll(struct net_device *dev)
3479 {
3480 struct port_info *pi = netdev_priv(dev);
3481 struct adapter *adap = pi->adapter;
3482
3483 if (adap->flags & CXGB4_USING_MSIX) {
3484 int i;
3485 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3486
3487 for (i = pi->nqsets; i; i--, rx++)
3488 t4_sge_intr_msix(0, &rx->rspq);
3489 } else
3490 t4_intr_handler(adap)(0, adap);
3491 }
3492 #endif
3493
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)3494 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3495 {
3496 struct port_info *pi = netdev_priv(dev);
3497 struct adapter *adap = pi->adapter;
3498 struct ch_sched_queue qe = { 0 };
3499 struct ch_sched_params p = { 0 };
3500 struct sched_class *e;
3501 u32 req_rate;
3502 int err = 0;
3503
3504 if (!can_sched(dev))
3505 return -ENOTSUPP;
3506
3507 if (index < 0 || index > pi->nqsets - 1)
3508 return -EINVAL;
3509
3510 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3511 dev_err(adap->pdev_dev,
3512 "Failed to rate limit on queue %d. Link Down?\n",
3513 index);
3514 return -EINVAL;
3515 }
3516
3517 qe.queue = index;
3518 e = cxgb4_sched_queue_lookup(dev, &qe);
3519 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3520 dev_err(adap->pdev_dev,
3521 "Queue %u already bound to class %u of type: %u\n",
3522 index, e->idx, e->info.u.params.level);
3523 return -EBUSY;
3524 }
3525
3526 /* Convert from Mbps to Kbps */
3527 req_rate = rate * 1000;
3528
3529 /* Max rate is 100 Gbps */
3530 if (req_rate > SCHED_MAX_RATE_KBPS) {
3531 dev_err(adap->pdev_dev,
3532 "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3533 rate, SCHED_MAX_RATE_KBPS / 1000);
3534 return -ERANGE;
3535 }
3536
3537 /* First unbind the queue from any existing class */
3538 memset(&qe, 0, sizeof(qe));
3539 qe.queue = index;
3540 qe.class = SCHED_CLS_NONE;
3541
3542 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3543 if (err) {
3544 dev_err(adap->pdev_dev,
3545 "Unbinding Queue %d on port %d fail. Err: %d\n",
3546 index, pi->port_id, err);
3547 return err;
3548 }
3549
3550 /* Queue already unbound */
3551 if (!req_rate)
3552 return 0;
3553
3554 /* Fetch any available unused or matching scheduling class */
3555 p.type = SCHED_CLASS_TYPE_PACKET;
3556 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
3557 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
3558 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3559 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3560 p.u.params.channel = pi->tx_chan;
3561 p.u.params.class = SCHED_CLS_NONE;
3562 p.u.params.minrate = 0;
3563 p.u.params.maxrate = req_rate;
3564 p.u.params.weight = 0;
3565 p.u.params.pktsize = dev->mtu;
3566
3567 e = cxgb4_sched_class_alloc(dev, &p);
3568 if (!e)
3569 return -ENOMEM;
3570
3571 /* Bind the queue to a scheduling class */
3572 memset(&qe, 0, sizeof(qe));
3573 qe.queue = index;
3574 qe.class = e->idx;
3575
3576 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3577 if (err)
3578 dev_err(adap->pdev_dev,
3579 "Queue rate limiting failed. Err: %d\n", err);
3580 return err;
3581 }
3582
cxgb_setup_tc_flower(struct net_device * dev,struct flow_cls_offload * cls_flower)3583 static int cxgb_setup_tc_flower(struct net_device *dev,
3584 struct flow_cls_offload *cls_flower)
3585 {
3586 switch (cls_flower->command) {
3587 case FLOW_CLS_REPLACE:
3588 return cxgb4_tc_flower_replace(dev, cls_flower);
3589 case FLOW_CLS_DESTROY:
3590 return cxgb4_tc_flower_destroy(dev, cls_flower);
3591 case FLOW_CLS_STATS:
3592 return cxgb4_tc_flower_stats(dev, cls_flower);
3593 default:
3594 return -EOPNOTSUPP;
3595 }
3596 }
3597
cxgb_setup_tc_cls_u32(struct net_device * dev,struct tc_cls_u32_offload * cls_u32)3598 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3599 struct tc_cls_u32_offload *cls_u32)
3600 {
3601 switch (cls_u32->command) {
3602 case TC_CLSU32_NEW_KNODE:
3603 case TC_CLSU32_REPLACE_KNODE:
3604 return cxgb4_config_knode(dev, cls_u32);
3605 case TC_CLSU32_DELETE_KNODE:
3606 return cxgb4_delete_knode(dev, cls_u32);
3607 default:
3608 return -EOPNOTSUPP;
3609 }
3610 }
3611
cxgb_setup_tc_matchall(struct net_device * dev,struct tc_cls_matchall_offload * cls_matchall,bool ingress)3612 static int cxgb_setup_tc_matchall(struct net_device *dev,
3613 struct tc_cls_matchall_offload *cls_matchall,
3614 bool ingress)
3615 {
3616 struct adapter *adap = netdev2adap(dev);
3617
3618 if (!adap->tc_matchall)
3619 return -ENOMEM;
3620
3621 switch (cls_matchall->command) {
3622 case TC_CLSMATCHALL_REPLACE:
3623 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3624 case TC_CLSMATCHALL_DESTROY:
3625 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3626 case TC_CLSMATCHALL_STATS:
3627 if (ingress)
3628 return cxgb4_tc_matchall_stats(dev, cls_matchall);
3629 break;
3630 default:
3631 break;
3632 }
3633
3634 return -EOPNOTSUPP;
3635 }
3636
cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3637 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3638 void *type_data, void *cb_priv)
3639 {
3640 struct net_device *dev = cb_priv;
3641 struct port_info *pi = netdev2pinfo(dev);
3642 struct adapter *adap = netdev2adap(dev);
3643
3644 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3645 dev_err(adap->pdev_dev,
3646 "Failed to setup tc on port %d. Link Down?\n",
3647 pi->port_id);
3648 return -EINVAL;
3649 }
3650
3651 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3652 return -EOPNOTSUPP;
3653
3654 switch (type) {
3655 case TC_SETUP_CLSU32:
3656 return cxgb_setup_tc_cls_u32(dev, type_data);
3657 case TC_SETUP_CLSFLOWER:
3658 return cxgb_setup_tc_flower(dev, type_data);
3659 case TC_SETUP_CLSMATCHALL:
3660 return cxgb_setup_tc_matchall(dev, type_data, true);
3661 default:
3662 return -EOPNOTSUPP;
3663 }
3664 }
3665
cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3666 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3667 void *type_data, void *cb_priv)
3668 {
3669 struct net_device *dev = cb_priv;
3670 struct port_info *pi = netdev2pinfo(dev);
3671 struct adapter *adap = netdev2adap(dev);
3672
3673 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3674 dev_err(adap->pdev_dev,
3675 "Failed to setup tc on port %d. Link Down?\n",
3676 pi->port_id);
3677 return -EINVAL;
3678 }
3679
3680 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3681 return -EOPNOTSUPP;
3682
3683 switch (type) {
3684 case TC_SETUP_CLSMATCHALL:
3685 return cxgb_setup_tc_matchall(dev, type_data, false);
3686 default:
3687 break;
3688 }
3689
3690 return -EOPNOTSUPP;
3691 }
3692
cxgb_setup_tc_mqprio(struct net_device * dev,struct tc_mqprio_qopt_offload * mqprio)3693 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3694 struct tc_mqprio_qopt_offload *mqprio)
3695 {
3696 struct adapter *adap = netdev2adap(dev);
3697
3698 if (!is_ethofld(adap) || !adap->tc_mqprio)
3699 return -ENOMEM;
3700
3701 return cxgb4_setup_tc_mqprio(dev, mqprio);
3702 }
3703
3704 static LIST_HEAD(cxgb_block_cb_list);
3705
cxgb_setup_tc_block(struct net_device * dev,struct flow_block_offload * f)3706 static int cxgb_setup_tc_block(struct net_device *dev,
3707 struct flow_block_offload *f)
3708 {
3709 struct port_info *pi = netdev_priv(dev);
3710 flow_setup_cb_t *cb;
3711 bool ingress_only;
3712
3713 pi->tc_block_shared = f->block_shared;
3714 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3715 cb = cxgb_setup_tc_block_egress_cb;
3716 ingress_only = false;
3717 } else {
3718 cb = cxgb_setup_tc_block_ingress_cb;
3719 ingress_only = true;
3720 }
3721
3722 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3723 cb, pi, dev, ingress_only);
3724 }
3725
cxgb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)3726 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3727 void *type_data)
3728 {
3729 switch (type) {
3730 case TC_SETUP_QDISC_MQPRIO:
3731 return cxgb_setup_tc_mqprio(dev, type_data);
3732 case TC_SETUP_BLOCK:
3733 return cxgb_setup_tc_block(dev, type_data);
3734 default:
3735 return -EOPNOTSUPP;
3736 }
3737 }
3738
cxgb_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3739 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3740 unsigned int table, unsigned int entry,
3741 struct udp_tunnel_info *ti)
3742 {
3743 struct port_info *pi = netdev_priv(netdev);
3744 struct adapter *adapter = pi->adapter;
3745 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3746 int ret = 0, i;
3747
3748 switch (ti->type) {
3749 case UDP_TUNNEL_TYPE_VXLAN:
3750 adapter->vxlan_port = 0;
3751 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3752 break;
3753 case UDP_TUNNEL_TYPE_GENEVE:
3754 adapter->geneve_port = 0;
3755 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3756 break;
3757 default:
3758 return -EINVAL;
3759 }
3760
3761 /* Matchall mac entries can be deleted only after all tunnel ports
3762 * are brought down or removed.
3763 */
3764 if (!adapter->rawf_cnt)
3765 return 0;
3766 for_each_port(adapter, i) {
3767 pi = adap2pinfo(adapter, i);
3768 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3769 match_all_mac, match_all_mac,
3770 adapter->rawf_start + pi->port_id,
3771 1, pi->port_id, false);
3772 if (ret < 0) {
3773 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3774 i);
3775 return ret;
3776 }
3777 }
3778
3779 return 0;
3780 }
3781
cxgb_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3782 static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3783 unsigned int table, unsigned int entry,
3784 struct udp_tunnel_info *ti)
3785 {
3786 struct port_info *pi = netdev_priv(netdev);
3787 struct adapter *adapter = pi->adapter;
3788 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3789 int i, ret;
3790
3791 switch (ti->type) {
3792 case UDP_TUNNEL_TYPE_VXLAN:
3793 adapter->vxlan_port = ti->port;
3794 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3795 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3796 break;
3797 case UDP_TUNNEL_TYPE_GENEVE:
3798 adapter->geneve_port = ti->port;
3799 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3800 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3801 break;
3802 default:
3803 return -EINVAL;
3804 }
3805
3806 /* Create a 'match all' mac filter entry for inner mac,
3807 * if raw mac interface is supported. Once the linux kernel provides
3808 * driver entry points for adding/deleting the inner mac addresses,
3809 * we will remove this 'match all' entry and fallback to adding
3810 * exact match filters.
3811 */
3812 for_each_port(adapter, i) {
3813 pi = adap2pinfo(adapter, i);
3814
3815 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3816 match_all_mac,
3817 match_all_mac,
3818 adapter->rawf_start + pi->port_id,
3819 1, pi->port_id, false);
3820 if (ret < 0) {
3821 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3822 be16_to_cpu(ti->port));
3823 return ret;
3824 }
3825 }
3826
3827 return 0;
3828 }
3829
3830 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3831 .set_port = cxgb_udp_tunnel_set_port,
3832 .unset_port = cxgb_udp_tunnel_unset_port,
3833 .tables = {
3834 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
3835 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3836 },
3837 };
3838
cxgb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3839 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3840 struct net_device *dev,
3841 netdev_features_t features)
3842 {
3843 struct port_info *pi = netdev_priv(dev);
3844 struct adapter *adapter = pi->adapter;
3845
3846 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3847 return features;
3848
3849 /* Check if hw supports offload for this packet */
3850 if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3851 return features;
3852
3853 /* Offload is not supported for this encapsulated packet */
3854 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3855 }
3856
cxgb_fix_features(struct net_device * dev,netdev_features_t features)3857 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3858 netdev_features_t features)
3859 {
3860 /* Disable GRO, if RX_CSUM is disabled */
3861 if (!(features & NETIF_F_RXCSUM))
3862 features &= ~NETIF_F_GRO;
3863
3864 return features;
3865 }
3866
3867 static const struct net_device_ops cxgb4_netdev_ops = {
3868 .ndo_open = cxgb_open,
3869 .ndo_stop = cxgb_close,
3870 .ndo_start_xmit = t4_start_xmit,
3871 .ndo_select_queue = cxgb_select_queue,
3872 .ndo_get_stats64 = cxgb_get_stats,
3873 .ndo_set_rx_mode = cxgb_set_rxmode,
3874 .ndo_set_mac_address = cxgb_set_mac_addr,
3875 .ndo_set_features = cxgb_set_features,
3876 .ndo_validate_addr = eth_validate_addr,
3877 .ndo_do_ioctl = cxgb_ioctl,
3878 .ndo_change_mtu = cxgb_change_mtu,
3879 #ifdef CONFIG_NET_POLL_CONTROLLER
3880 .ndo_poll_controller = cxgb_netpoll,
3881 #endif
3882 #ifdef CONFIG_CHELSIO_T4_FCOE
3883 .ndo_fcoe_enable = cxgb_fcoe_enable,
3884 .ndo_fcoe_disable = cxgb_fcoe_disable,
3885 #endif /* CONFIG_CHELSIO_T4_FCOE */
3886 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
3887 .ndo_setup_tc = cxgb_setup_tc,
3888 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
3889 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
3890 .ndo_features_check = cxgb_features_check,
3891 .ndo_fix_features = cxgb_fix_features,
3892 };
3893
3894 #ifdef CONFIG_PCI_IOV
3895 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3896 .ndo_open = cxgb4_mgmt_open,
3897 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac,
3898 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config,
3899 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate,
3900 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3901 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan,
3902 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state,
3903 };
3904 #endif
3905
cxgb4_mgmt_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)3906 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3907 struct ethtool_drvinfo *info)
3908 {
3909 struct adapter *adapter = netdev2adap(dev);
3910
3911 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3912 strlcpy(info->bus_info, pci_name(adapter->pdev),
3913 sizeof(info->bus_info));
3914 }
3915
3916 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3917 .get_drvinfo = cxgb4_mgmt_get_drvinfo,
3918 };
3919
notify_fatal_err(struct work_struct * work)3920 static void notify_fatal_err(struct work_struct *work)
3921 {
3922 struct adapter *adap;
3923
3924 adap = container_of(work, struct adapter, fatal_err_notify_task);
3925 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3926 }
3927
t4_fatal_err(struct adapter * adap)3928 void t4_fatal_err(struct adapter *adap)
3929 {
3930 int port;
3931
3932 if (pci_channel_offline(adap->pdev))
3933 return;
3934
3935 /* Disable the SGE since ULDs are going to free resources that
3936 * could be exposed to the adapter. RDMA MWs for example...
3937 */
3938 t4_shutdown_adapter(adap);
3939 for_each_port(adap, port) {
3940 struct net_device *dev = adap->port[port];
3941
3942 /* If we get here in very early initialization the network
3943 * devices may not have been set up yet.
3944 */
3945 if (!dev)
3946 continue;
3947
3948 netif_tx_stop_all_queues(dev);
3949 netif_carrier_off(dev);
3950 }
3951 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3952 queue_work(adap->workq, &adap->fatal_err_notify_task);
3953 }
3954
setup_memwin(struct adapter * adap)3955 static void setup_memwin(struct adapter *adap)
3956 {
3957 u32 nic_win_base = t4_get_util_window(adap);
3958
3959 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3960 }
3961
setup_memwin_rdma(struct adapter * adap)3962 static void setup_memwin_rdma(struct adapter *adap)
3963 {
3964 if (adap->vres.ocq.size) {
3965 u32 start;
3966 unsigned int sz_kb;
3967
3968 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3969 start &= PCI_BASE_ADDRESS_MEM_MASK;
3970 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3971 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3972 t4_write_reg(adap,
3973 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3974 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3975 t4_write_reg(adap,
3976 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3977 adap->vres.ocq.start);
3978 t4_read_reg(adap,
3979 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3980 }
3981 }
3982
3983 /* HMA Definitions */
3984
3985 /* The maximum number of address that can be send in a single FW cmd */
3986 #define HMA_MAX_ADDR_IN_CMD 5
3987
3988 #define HMA_PAGE_SIZE PAGE_SIZE
3989
3990 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
3991
3992 #define HMA_PAGE_ORDER \
3993 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
3994 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3995
3996 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3997 * configuration(in units of MB).
3998 */
3999 #define HMA_MIN_TOTAL_SIZE 1
4000 #define HMA_MAX_TOTAL_SIZE \
4001 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
4002 HMA_MAX_NO_FW_ADDRESS) >> 20)
4003
adap_free_hma_mem(struct adapter * adapter)4004 static void adap_free_hma_mem(struct adapter *adapter)
4005 {
4006 struct scatterlist *iter;
4007 struct page *page;
4008 int i;
4009
4010 if (!adapter->hma.sgt)
4011 return;
4012
4013 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4014 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4015 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
4016 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4017 }
4018
4019 for_each_sg(adapter->hma.sgt->sgl, iter,
4020 adapter->hma.sgt->orig_nents, i) {
4021 page = sg_page(iter);
4022 if (page)
4023 __free_pages(page, HMA_PAGE_ORDER);
4024 }
4025
4026 kfree(adapter->hma.phy_addr);
4027 sg_free_table(adapter->hma.sgt);
4028 kfree(adapter->hma.sgt);
4029 adapter->hma.sgt = NULL;
4030 }
4031
adap_config_hma(struct adapter * adapter)4032 static int adap_config_hma(struct adapter *adapter)
4033 {
4034 struct scatterlist *sgl, *iter;
4035 struct sg_table *sgt;
4036 struct page *newpage;
4037 unsigned int i, j, k;
4038 u32 param, hma_size;
4039 unsigned int ncmds;
4040 size_t page_size;
4041 u32 page_order;
4042 int node, ret;
4043
4044 /* HMA is supported only for T6+ cards.
4045 * Avoid initializing HMA in kdump kernels.
4046 */
4047 if (is_kdump_kernel() ||
4048 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4049 return 0;
4050
4051 /* Get the HMA region size required by fw */
4052 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4053 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4054 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4055 1, ¶m, &hma_size);
4056 /* An error means card has its own memory or HMA is not supported by
4057 * the firmware. Return without any errors.
4058 */
4059 if (ret || !hma_size)
4060 return 0;
4061
4062 if (hma_size < HMA_MIN_TOTAL_SIZE ||
4063 hma_size > HMA_MAX_TOTAL_SIZE) {
4064 dev_err(adapter->pdev_dev,
4065 "HMA size %uMB beyond bounds(%u-%lu)MB\n",
4066 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4067 return -EINVAL;
4068 }
4069
4070 page_size = HMA_PAGE_SIZE;
4071 page_order = HMA_PAGE_ORDER;
4072 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4073 if (unlikely(!adapter->hma.sgt)) {
4074 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4075 return -ENOMEM;
4076 }
4077 sgt = adapter->hma.sgt;
4078 /* FW returned value will be in MB's
4079 */
4080 sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4081 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4082 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4083 kfree(adapter->hma.sgt);
4084 adapter->hma.sgt = NULL;
4085 return -ENOMEM;
4086 }
4087
4088 sgl = adapter->hma.sgt->sgl;
4089 node = dev_to_node(adapter->pdev_dev);
4090 for_each_sg(sgl, iter, sgt->orig_nents, i) {
4091 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4092 __GFP_ZERO, page_order);
4093 if (!newpage) {
4094 dev_err(adapter->pdev_dev,
4095 "Not enough memory for HMA page allocation\n");
4096 ret = -ENOMEM;
4097 goto free_hma;
4098 }
4099 sg_set_page(iter, newpage, page_size << page_order, 0);
4100 }
4101
4102 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4103 DMA_BIDIRECTIONAL);
4104 if (!sgt->nents) {
4105 dev_err(adapter->pdev_dev,
4106 "Not enough memory for HMA DMA mapping");
4107 ret = -ENOMEM;
4108 goto free_hma;
4109 }
4110 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4111
4112 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4113 GFP_KERNEL);
4114 if (unlikely(!adapter->hma.phy_addr))
4115 goto free_hma;
4116
4117 for_each_sg(sgl, iter, sgt->nents, i) {
4118 newpage = sg_page(iter);
4119 adapter->hma.phy_addr[i] = sg_dma_address(iter);
4120 }
4121
4122 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4123 /* Pass on the addresses to firmware */
4124 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4125 struct fw_hma_cmd hma_cmd;
4126 u8 naddr = HMA_MAX_ADDR_IN_CMD;
4127 u8 soc = 0, eoc = 0;
4128 u8 hma_mode = 1; /* Presently we support only Page table mode */
4129
4130 soc = (i == 0) ? 1 : 0;
4131 eoc = (i == ncmds - 1) ? 1 : 0;
4132
4133 /* For last cmd, set naddr corresponding to remaining
4134 * addresses
4135 */
4136 if (i == ncmds - 1) {
4137 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4138 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4139 }
4140 memset(&hma_cmd, 0, sizeof(hma_cmd));
4141 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4142 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4143 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4144
4145 hma_cmd.mode_to_pcie_params =
4146 htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4147 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4148
4149 /* HMA cmd size specified in MB's */
4150 hma_cmd.naddr_size =
4151 htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4152 FW_HMA_CMD_NADDR_V(naddr));
4153
4154 /* Total Page size specified in units of 4K */
4155 hma_cmd.addr_size_pkd =
4156 htonl(FW_HMA_CMD_ADDR_SIZE_V
4157 ((page_size << page_order) >> 12));
4158
4159 /* Fill the 5 addresses */
4160 for (j = 0; j < naddr; j++) {
4161 hma_cmd.phy_address[j] =
4162 cpu_to_be64(adapter->hma.phy_addr[j + k]);
4163 }
4164 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4165 sizeof(hma_cmd), &hma_cmd);
4166 if (ret) {
4167 dev_err(adapter->pdev_dev,
4168 "HMA FW command failed with err %d\n", ret);
4169 goto free_hma;
4170 }
4171 }
4172
4173 if (!ret)
4174 dev_info(adapter->pdev_dev,
4175 "Reserved %uMB host memory for HMA\n", hma_size);
4176 return ret;
4177
4178 free_hma:
4179 adap_free_hma_mem(adapter);
4180 return ret;
4181 }
4182
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)4183 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4184 {
4185 u32 v;
4186 int ret;
4187
4188 /* Now that we've successfully configured and initialized the adapter
4189 * can ask the Firmware what resources it has provisioned for us.
4190 */
4191 ret = t4_get_pfres(adap);
4192 if (ret) {
4193 dev_err(adap->pdev_dev,
4194 "Unable to retrieve resource provisioning information\n");
4195 return ret;
4196 }
4197
4198 /* get device capabilities */
4199 memset(c, 0, sizeof(*c));
4200 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4201 FW_CMD_REQUEST_F | FW_CMD_READ_F);
4202 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4203 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4204 if (ret < 0)
4205 return ret;
4206
4207 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4208 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4209 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4210 if (ret < 0)
4211 return ret;
4212
4213 ret = t4_config_glbl_rss(adap, adap->pf,
4214 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4215 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4216 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4217 if (ret < 0)
4218 return ret;
4219
4220 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4221 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4222 FW_CMD_CAP_PF);
4223 if (ret < 0)
4224 return ret;
4225
4226 t4_sge_init(adap);
4227
4228 /* tweak some settings */
4229 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4230 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4231 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4232 v = t4_read_reg(adap, TP_PIO_DATA_A);
4233 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4234
4235 /* first 4 Tx modulation queues point to consecutive Tx channels */
4236 adap->params.tp.tx_modq_map = 0xE4;
4237 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4238 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4239
4240 /* associate each Tx modulation queue with consecutive Tx channels */
4241 v = 0x84218421;
4242 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4243 &v, 1, TP_TX_SCHED_HDR_A);
4244 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4245 &v, 1, TP_TX_SCHED_FIFO_A);
4246 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4247 &v, 1, TP_TX_SCHED_PCMD_A);
4248
4249 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4250 if (is_offload(adap)) {
4251 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4252 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4253 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4254 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4255 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4256 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4257 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4258 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4259 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4260 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4261 }
4262
4263 /* get basic stuff going */
4264 return t4_early_init(adap, adap->pf);
4265 }
4266
4267 /*
4268 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
4269 */
4270 #define MAX_ATIDS 8192U
4271
4272 /*
4273 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4274 *
4275 * If the firmware we're dealing with has Configuration File support, then
4276 * we use that to perform all configuration
4277 */
4278
4279 /*
4280 * Tweak configuration based on module parameters, etc. Most of these have
4281 * defaults assigned to them by Firmware Configuration Files (if we're using
4282 * them) but need to be explicitly set if we're using hard-coded
4283 * initialization. But even in the case of using Firmware Configuration
4284 * Files, we'd like to expose the ability to change these via module
4285 * parameters so these are essentially common tweaks/settings for
4286 * Configuration Files and hard-coded initialization ...
4287 */
adap_init0_tweaks(struct adapter * adapter)4288 static int adap_init0_tweaks(struct adapter *adapter)
4289 {
4290 /*
4291 * Fix up various Host-Dependent Parameters like Page Size, Cache
4292 * Line Size, etc. The firmware default is for a 4KB Page Size and
4293 * 64B Cache Line Size ...
4294 */
4295 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4296
4297 /*
4298 * Process module parameters which affect early initialization.
4299 */
4300 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4301 dev_err(&adapter->pdev->dev,
4302 "Ignoring illegal rx_dma_offset=%d, using 2\n",
4303 rx_dma_offset);
4304 rx_dma_offset = 2;
4305 }
4306 t4_set_reg_field(adapter, SGE_CONTROL_A,
4307 PKTSHIFT_V(PKTSHIFT_M),
4308 PKTSHIFT_V(rx_dma_offset));
4309
4310 /*
4311 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4312 * adds the pseudo header itself.
4313 */
4314 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4315 CSUM_HAS_PSEUDO_HDR_F, 0);
4316
4317 return 0;
4318 }
4319
4320 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4321 * unto themselves and they contain their own firmware to perform their
4322 * tasks ...
4323 */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)4324 static int phy_aq1202_version(const u8 *phy_fw_data,
4325 size_t phy_fw_size)
4326 {
4327 int offset;
4328
4329 /* At offset 0x8 you're looking for the primary image's
4330 * starting offset which is 3 Bytes wide
4331 *
4332 * At offset 0xa of the primary image, you look for the offset
4333 * of the DRAM segment which is 3 Bytes wide.
4334 *
4335 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4336 * wide
4337 */
4338 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
4339 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4340 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
4341
4342 offset = le24(phy_fw_data + 0x8) << 12;
4343 offset = le24(phy_fw_data + offset + 0xa);
4344 return be16(phy_fw_data + offset + 0x27e);
4345
4346 #undef be16
4347 #undef le16
4348 #undef le24
4349 }
4350
4351 static struct info_10gbt_phy_fw {
4352 unsigned int phy_fw_id; /* PCI Device ID */
4353 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
4354 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4355 int phy_flash; /* Has FLASH for PHY Firmware */
4356 } phy_info_array[] = {
4357 {
4358 PHY_AQ1202_DEVICEID,
4359 PHY_AQ1202_FIRMWARE,
4360 phy_aq1202_version,
4361 1,
4362 },
4363 {
4364 PHY_BCM84834_DEVICEID,
4365 PHY_BCM84834_FIRMWARE,
4366 NULL,
4367 0,
4368 },
4369 { 0, NULL, NULL },
4370 };
4371
find_phy_info(int devid)4372 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4373 {
4374 int i;
4375
4376 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4377 if (phy_info_array[i].phy_fw_id == devid)
4378 return &phy_info_array[i];
4379 }
4380 return NULL;
4381 }
4382
4383 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
4384 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
4385 * we return a negative error number. If we transfer new firmware we return 1
4386 * (from t4_load_phy_fw()). If we don't do anything we return 0.
4387 */
adap_init0_phy(struct adapter * adap)4388 static int adap_init0_phy(struct adapter *adap)
4389 {
4390 const struct firmware *phyf;
4391 int ret;
4392 struct info_10gbt_phy_fw *phy_info;
4393
4394 /* Use the device ID to determine which PHY file to flash.
4395 */
4396 phy_info = find_phy_info(adap->pdev->device);
4397 if (!phy_info) {
4398 dev_warn(adap->pdev_dev,
4399 "No PHY Firmware file found for this PHY\n");
4400 return -EOPNOTSUPP;
4401 }
4402
4403 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4404 * use that. The adapter firmware provides us with a memory buffer
4405 * where we can load a PHY firmware file from the host if we want to
4406 * override the PHY firmware File in flash.
4407 */
4408 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4409 adap->pdev_dev);
4410 if (ret < 0) {
4411 /* For adapters without FLASH attached to PHY for their
4412 * firmware, it's obviously a fatal error if we can't get the
4413 * firmware to the adapter. For adapters with PHY firmware
4414 * FLASH storage, it's worth a warning if we can't find the
4415 * PHY Firmware but we'll neuter the error ...
4416 */
4417 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4418 "/lib/firmware/%s, error %d\n",
4419 phy_info->phy_fw_file, -ret);
4420 if (phy_info->phy_flash) {
4421 int cur_phy_fw_ver = 0;
4422
4423 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4424 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4425 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4426 ret = 0;
4427 }
4428
4429 return ret;
4430 }
4431
4432 /* Load PHY Firmware onto adapter.
4433 */
4434 ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4435 (u8 *)phyf->data, phyf->size);
4436 if (ret < 0)
4437 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4438 -ret);
4439 else if (ret > 0) {
4440 int new_phy_fw_ver = 0;
4441
4442 if (phy_info->phy_fw_version)
4443 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4444 phyf->size);
4445 dev_info(adap->pdev_dev, "Successfully transferred PHY "
4446 "Firmware /lib/firmware/%s, version %#x\n",
4447 phy_info->phy_fw_file, new_phy_fw_ver);
4448 }
4449
4450 release_firmware(phyf);
4451
4452 return ret;
4453 }
4454
4455 /*
4456 * Attempt to initialize the adapter via a Firmware Configuration File.
4457 */
adap_init0_config(struct adapter * adapter,int reset)4458 static int adap_init0_config(struct adapter *adapter, int reset)
4459 {
4460 char *fw_config_file, fw_config_file_path[256];
4461 u32 finiver, finicsum, cfcsum, param, val;
4462 struct fw_caps_config_cmd caps_cmd;
4463 unsigned long mtype = 0, maddr = 0;
4464 const struct firmware *cf;
4465 char *config_name = NULL;
4466 int config_issued = 0;
4467 int ret;
4468
4469 /*
4470 * Reset device if necessary.
4471 */
4472 if (reset) {
4473 ret = t4_fw_reset(adapter, adapter->mbox,
4474 PIORSTMODE_F | PIORST_F);
4475 if (ret < 0)
4476 goto bye;
4477 }
4478
4479 /* If this is a 10Gb/s-BT adapter make sure the chip-external
4480 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
4481 * to be performed after any global adapter RESET above since some
4482 * PHYs only have local RAM copies of the PHY firmware.
4483 */
4484 if (is_10gbt_device(adapter->pdev->device)) {
4485 ret = adap_init0_phy(adapter);
4486 if (ret < 0)
4487 goto bye;
4488 }
4489 /*
4490 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4491 * then use that. Otherwise, use the configuration file stored
4492 * in the adapter flash ...
4493 */
4494 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4495 case CHELSIO_T4:
4496 fw_config_file = FW4_CFNAME;
4497 break;
4498 case CHELSIO_T5:
4499 fw_config_file = FW5_CFNAME;
4500 break;
4501 case CHELSIO_T6:
4502 fw_config_file = FW6_CFNAME;
4503 break;
4504 default:
4505 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4506 adapter->pdev->device);
4507 ret = -EINVAL;
4508 goto bye;
4509 }
4510
4511 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4512 if (ret < 0) {
4513 config_name = "On FLASH";
4514 mtype = FW_MEMTYPE_CF_FLASH;
4515 maddr = t4_flash_cfg_addr(adapter);
4516 } else {
4517 u32 params[7], val[7];
4518
4519 sprintf(fw_config_file_path,
4520 "/lib/firmware/%s", fw_config_file);
4521 config_name = fw_config_file_path;
4522
4523 if (cf->size >= FLASH_CFG_MAX_SIZE)
4524 ret = -ENOMEM;
4525 else {
4526 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4527 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4528 ret = t4_query_params(adapter, adapter->mbox,
4529 adapter->pf, 0, 1, params, val);
4530 if (ret == 0) {
4531 /*
4532 * For t4_memory_rw() below addresses and
4533 * sizes have to be in terms of multiples of 4
4534 * bytes. So, if the Configuration File isn't
4535 * a multiple of 4 bytes in length we'll have
4536 * to write that out separately since we can't
4537 * guarantee that the bytes following the
4538 * residual byte in the buffer returned by
4539 * request_firmware() are zeroed out ...
4540 */
4541 size_t resid = cf->size & 0x3;
4542 size_t size = cf->size & ~0x3;
4543 __be32 *data = (__be32 *)cf->data;
4544
4545 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4546 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4547
4548 spin_lock(&adapter->win0_lock);
4549 ret = t4_memory_rw(adapter, 0, mtype, maddr,
4550 size, data, T4_MEMORY_WRITE);
4551 if (ret == 0 && resid != 0) {
4552 union {
4553 __be32 word;
4554 char buf[4];
4555 } last;
4556 int i;
4557
4558 last.word = data[size >> 2];
4559 for (i = resid; i < 4; i++)
4560 last.buf[i] = 0;
4561 ret = t4_memory_rw(adapter, 0, mtype,
4562 maddr + size,
4563 4, &last.word,
4564 T4_MEMORY_WRITE);
4565 }
4566 spin_unlock(&adapter->win0_lock);
4567 }
4568 }
4569
4570 release_firmware(cf);
4571 if (ret)
4572 goto bye;
4573 }
4574
4575 val = 0;
4576
4577 /* Ofld + Hash filter is supported. Older fw will fail this request and
4578 * it is fine.
4579 */
4580 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4581 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4582 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4583 1, ¶m, &val);
4584
4585 /* FW doesn't know about Hash filter + ofld support,
4586 * it's not a problem, don't return an error.
4587 */
4588 if (ret < 0) {
4589 dev_warn(adapter->pdev_dev,
4590 "Hash filter with ofld is not supported by FW\n");
4591 }
4592
4593 /*
4594 * Issue a Capability Configuration command to the firmware to get it
4595 * to parse the Configuration File. We don't use t4_fw_config_file()
4596 * because we want the ability to modify various features after we've
4597 * processed the configuration file ...
4598 */
4599 memset(&caps_cmd, 0, sizeof(caps_cmd));
4600 caps_cmd.op_to_write =
4601 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4602 FW_CMD_REQUEST_F |
4603 FW_CMD_READ_F);
4604 caps_cmd.cfvalid_to_len16 =
4605 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4606 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4607 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4608 FW_LEN16(caps_cmd));
4609 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4610 &caps_cmd);
4611
4612 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4613 * Configuration File in FLASH), our last gasp effort is to use the
4614 * Firmware Configuration File which is embedded in the firmware. A
4615 * very few early versions of the firmware didn't have one embedded
4616 * but we can ignore those.
4617 */
4618 if (ret == -ENOENT) {
4619 memset(&caps_cmd, 0, sizeof(caps_cmd));
4620 caps_cmd.op_to_write =
4621 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4622 FW_CMD_REQUEST_F |
4623 FW_CMD_READ_F);
4624 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4625 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4626 sizeof(caps_cmd), &caps_cmd);
4627 config_name = "Firmware Default";
4628 }
4629
4630 config_issued = 1;
4631 if (ret < 0)
4632 goto bye;
4633
4634 finiver = ntohl(caps_cmd.finiver);
4635 finicsum = ntohl(caps_cmd.finicsum);
4636 cfcsum = ntohl(caps_cmd.cfcsum);
4637 if (finicsum != cfcsum)
4638 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4639 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4640 finicsum, cfcsum);
4641
4642 /*
4643 * And now tell the firmware to use the configuration we just loaded.
4644 */
4645 caps_cmd.op_to_write =
4646 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4647 FW_CMD_REQUEST_F |
4648 FW_CMD_WRITE_F);
4649 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4650 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4651 NULL);
4652 if (ret < 0)
4653 goto bye;
4654
4655 /*
4656 * Tweak configuration based on system architecture, module
4657 * parameters, etc.
4658 */
4659 ret = adap_init0_tweaks(adapter);
4660 if (ret < 0)
4661 goto bye;
4662
4663 /* We will proceed even if HMA init fails. */
4664 ret = adap_config_hma(adapter);
4665 if (ret)
4666 dev_err(adapter->pdev_dev,
4667 "HMA configuration failed with error %d\n", ret);
4668
4669 if (is_t6(adapter->params.chip)) {
4670 adap_config_hpfilter(adapter);
4671 ret = setup_ppod_edram(adapter);
4672 if (!ret)
4673 dev_info(adapter->pdev_dev, "Successfully enabled "
4674 "ppod edram feature\n");
4675 }
4676
4677 /*
4678 * And finally tell the firmware to initialize itself using the
4679 * parameters from the Configuration File.
4680 */
4681 ret = t4_fw_initialize(adapter, adapter->mbox);
4682 if (ret < 0)
4683 goto bye;
4684
4685 /* Emit Firmware Configuration File information and return
4686 * successfully.
4687 */
4688 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4689 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4690 config_name, finiver, cfcsum);
4691 return 0;
4692
4693 /*
4694 * Something bad happened. Return the error ... (If the "error"
4695 * is that there's no Configuration File on the adapter we don't
4696 * want to issue a warning since this is fairly common.)
4697 */
4698 bye:
4699 if (config_issued && ret != -ENOENT)
4700 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4701 config_name, -ret);
4702 return ret;
4703 }
4704
4705 static struct fw_info fw_info_array[] = {
4706 {
4707 .chip = CHELSIO_T4,
4708 .fs_name = FW4_CFNAME,
4709 .fw_mod_name = FW4_FNAME,
4710 .fw_hdr = {
4711 .chip = FW_HDR_CHIP_T4,
4712 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4713 .intfver_nic = FW_INTFVER(T4, NIC),
4714 .intfver_vnic = FW_INTFVER(T4, VNIC),
4715 .intfver_ri = FW_INTFVER(T4, RI),
4716 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4717 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4718 },
4719 }, {
4720 .chip = CHELSIO_T5,
4721 .fs_name = FW5_CFNAME,
4722 .fw_mod_name = FW5_FNAME,
4723 .fw_hdr = {
4724 .chip = FW_HDR_CHIP_T5,
4725 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4726 .intfver_nic = FW_INTFVER(T5, NIC),
4727 .intfver_vnic = FW_INTFVER(T5, VNIC),
4728 .intfver_ri = FW_INTFVER(T5, RI),
4729 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4730 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4731 },
4732 }, {
4733 .chip = CHELSIO_T6,
4734 .fs_name = FW6_CFNAME,
4735 .fw_mod_name = FW6_FNAME,
4736 .fw_hdr = {
4737 .chip = FW_HDR_CHIP_T6,
4738 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4739 .intfver_nic = FW_INTFVER(T6, NIC),
4740 .intfver_vnic = FW_INTFVER(T6, VNIC),
4741 .intfver_ofld = FW_INTFVER(T6, OFLD),
4742 .intfver_ri = FW_INTFVER(T6, RI),
4743 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4744 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4745 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4746 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4747 },
4748 }
4749
4750 };
4751
find_fw_info(int chip)4752 static struct fw_info *find_fw_info(int chip)
4753 {
4754 int i;
4755
4756 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4757 if (fw_info_array[i].chip == chip)
4758 return &fw_info_array[i];
4759 }
4760 return NULL;
4761 }
4762
4763 /*
4764 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4765 */
adap_init0(struct adapter * adap,int vpd_skip)4766 static int adap_init0(struct adapter *adap, int vpd_skip)
4767 {
4768 struct fw_caps_config_cmd caps_cmd;
4769 u32 params[7], val[7];
4770 enum dev_state state;
4771 u32 v, port_vec;
4772 int reset = 1;
4773 int ret;
4774
4775 /* Grab Firmware Device Log parameters as early as possible so we have
4776 * access to it for debugging, etc.
4777 */
4778 ret = t4_init_devlog_params(adap);
4779 if (ret < 0)
4780 return ret;
4781
4782 /* Contact FW, advertising Master capability */
4783 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4784 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4785 if (ret < 0) {
4786 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4787 ret);
4788 return ret;
4789 }
4790 if (ret == adap->mbox)
4791 adap->flags |= CXGB4_MASTER_PF;
4792
4793 /*
4794 * If we're the Master PF Driver and the device is uninitialized,
4795 * then let's consider upgrading the firmware ... (We always want
4796 * to check the firmware version number in order to A. get it for
4797 * later reporting and B. to warn if the currently loaded firmware
4798 * is excessively mismatched relative to the driver.)
4799 */
4800
4801 t4_get_version_info(adap);
4802 ret = t4_check_fw_version(adap);
4803 /* If firmware is too old (not supported by driver) force an update. */
4804 if (ret)
4805 state = DEV_STATE_UNINIT;
4806 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4807 struct fw_info *fw_info;
4808 struct fw_hdr *card_fw;
4809 const struct firmware *fw;
4810 const u8 *fw_data = NULL;
4811 unsigned int fw_size = 0;
4812
4813 /* This is the firmware whose headers the driver was compiled
4814 * against
4815 */
4816 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4817 if (fw_info == NULL) {
4818 dev_err(adap->pdev_dev,
4819 "unable to get firmware info for chip %d.\n",
4820 CHELSIO_CHIP_VERSION(adap->params.chip));
4821 return -EINVAL;
4822 }
4823
4824 /* allocate memory to read the header of the firmware on the
4825 * card
4826 */
4827 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4828 if (!card_fw) {
4829 ret = -ENOMEM;
4830 goto bye;
4831 }
4832
4833 /* Get FW from from /lib/firmware/ */
4834 ret = request_firmware(&fw, fw_info->fw_mod_name,
4835 adap->pdev_dev);
4836 if (ret < 0) {
4837 dev_err(adap->pdev_dev,
4838 "unable to load firmware image %s, error %d\n",
4839 fw_info->fw_mod_name, ret);
4840 } else {
4841 fw_data = fw->data;
4842 fw_size = fw->size;
4843 }
4844
4845 /* upgrade FW logic */
4846 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4847 state, &reset);
4848
4849 /* Cleaning up */
4850 release_firmware(fw);
4851 kvfree(card_fw);
4852
4853 if (ret < 0)
4854 goto bye;
4855 }
4856
4857 /* If the firmware is initialized already, emit a simply note to that
4858 * effect. Otherwise, it's time to try initializing the adapter.
4859 */
4860 if (state == DEV_STATE_INIT) {
4861 ret = adap_config_hma(adap);
4862 if (ret)
4863 dev_err(adap->pdev_dev,
4864 "HMA configuration failed with error %d\n",
4865 ret);
4866 dev_info(adap->pdev_dev, "Coming up as %s: "\
4867 "Adapter already initialized\n",
4868 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4869 } else {
4870 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4871 "Initializing adapter\n");
4872
4873 /* Find out whether we're dealing with a version of the
4874 * firmware which has configuration file support.
4875 */
4876 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4877 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4878 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4879 params, val);
4880
4881 /* If the firmware doesn't support Configuration Files,
4882 * return an error.
4883 */
4884 if (ret < 0) {
4885 dev_err(adap->pdev_dev, "firmware doesn't support "
4886 "Firmware Configuration Files\n");
4887 goto bye;
4888 }
4889
4890 /* The firmware provides us with a memory buffer where we can
4891 * load a Configuration File from the host if we want to
4892 * override the Configuration File in flash.
4893 */
4894 ret = adap_init0_config(adap, reset);
4895 if (ret == -ENOENT) {
4896 dev_err(adap->pdev_dev, "no Configuration File "
4897 "present on adapter.\n");
4898 goto bye;
4899 }
4900 if (ret < 0) {
4901 dev_err(adap->pdev_dev, "could not initialize "
4902 "adapter, error %d\n", -ret);
4903 goto bye;
4904 }
4905 }
4906
4907 /* Now that we've successfully configured and initialized the adapter
4908 * (or found it already initialized), we can ask the Firmware what
4909 * resources it has provisioned for us.
4910 */
4911 ret = t4_get_pfres(adap);
4912 if (ret) {
4913 dev_err(adap->pdev_dev,
4914 "Unable to retrieve resource provisioning information\n");
4915 goto bye;
4916 }
4917
4918 /* Grab VPD parameters. This should be done after we establish a
4919 * connection to the firmware since some of the VPD parameters
4920 * (notably the Core Clock frequency) are retrieved via requests to
4921 * the firmware. On the other hand, we need these fairly early on
4922 * so we do this right after getting ahold of the firmware.
4923 *
4924 * We need to do this after initializing the adapter because someone
4925 * could have FLASHed a new VPD which won't be read by the firmware
4926 * until we do the RESET ...
4927 */
4928 if (!vpd_skip) {
4929 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4930 if (ret < 0)
4931 goto bye;
4932 }
4933
4934 /* Find out what ports are available to us. Note that we need to do
4935 * this before calling adap_init0_no_config() since it needs nports
4936 * and portvec ...
4937 */
4938 v =
4939 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4940 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4941 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4942 if (ret < 0)
4943 goto bye;
4944
4945 adap->params.nports = hweight32(port_vec);
4946 adap->params.portvec = port_vec;
4947
4948 /* Give the SGE code a chance to pull in anything that it needs ...
4949 * Note that this must be called after we retrieve our VPD parameters
4950 * in order to know how to convert core ticks to seconds, etc.
4951 */
4952 ret = t4_sge_init(adap);
4953 if (ret < 0)
4954 goto bye;
4955
4956 /* Grab the SGE Doorbell Queue Timer values. If successful, that
4957 * indicates that the Firmware and Hardware support this.
4958 */
4959 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4960 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4961 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4962 1, params, val);
4963
4964 if (!ret) {
4965 adap->sge.dbqtimer_tick = val[0];
4966 ret = t4_read_sge_dbqtimers(adap,
4967 ARRAY_SIZE(adap->sge.dbqtimer_val),
4968 adap->sge.dbqtimer_val);
4969 }
4970
4971 if (!ret)
4972 adap->flags |= CXGB4_SGE_DBQ_TIMER;
4973
4974 if (is_bypass_device(adap->pdev->device))
4975 adap->params.bypass = 1;
4976
4977 /*
4978 * Grab some of our basic fundamental operating parameters.
4979 */
4980 params[0] = FW_PARAM_PFVF(EQ_START);
4981 params[1] = FW_PARAM_PFVF(L2T_START);
4982 params[2] = FW_PARAM_PFVF(L2T_END);
4983 params[3] = FW_PARAM_PFVF(FILTER_START);
4984 params[4] = FW_PARAM_PFVF(FILTER_END);
4985 params[5] = FW_PARAM_PFVF(IQFLINT_START);
4986 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4987 if (ret < 0)
4988 goto bye;
4989 adap->sge.egr_start = val[0];
4990 adap->l2t_start = val[1];
4991 adap->l2t_end = val[2];
4992 adap->tids.ftid_base = val[3];
4993 adap->tids.nftids = val[4] - val[3] + 1;
4994 adap->sge.ingr_start = val[5];
4995
4996 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4997 params[0] = FW_PARAM_PFVF(HPFILTER_START);
4998 params[1] = FW_PARAM_PFVF(HPFILTER_END);
4999 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5000 params, val);
5001 if (ret < 0)
5002 goto bye;
5003
5004 adap->tids.hpftid_base = val[0];
5005 adap->tids.nhpftids = val[1] - val[0] + 1;
5006
5007 /* Read the raw mps entries. In T6, the last 2 tcam entries
5008 * are reserved for raw mac addresses (rawf = 2, one per port).
5009 */
5010 params[0] = FW_PARAM_PFVF(RAWF_START);
5011 params[1] = FW_PARAM_PFVF(RAWF_END);
5012 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5013 params, val);
5014 if (ret == 0) {
5015 adap->rawf_start = val[0];
5016 adap->rawf_cnt = val[1] - val[0] + 1;
5017 }
5018
5019 adap->tids.tid_base =
5020 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5021 }
5022
5023 /* qids (ingress/egress) returned from firmware can be anywhere
5024 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5025 * Hence driver needs to allocate memory for this range to
5026 * store the queue info. Get the highest IQFLINT/EQ index returned
5027 * in FW_EQ_*_CMD.alloc command.
5028 */
5029 params[0] = FW_PARAM_PFVF(EQ_END);
5030 params[1] = FW_PARAM_PFVF(IQFLINT_END);
5031 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5032 if (ret < 0)
5033 goto bye;
5034 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5035 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5036
5037 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5038 sizeof(*adap->sge.egr_map), GFP_KERNEL);
5039 if (!adap->sge.egr_map) {
5040 ret = -ENOMEM;
5041 goto bye;
5042 }
5043
5044 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5045 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5046 if (!adap->sge.ingr_map) {
5047 ret = -ENOMEM;
5048 goto bye;
5049 }
5050
5051 /* Allocate the memory for the vaious egress queue bitmaps
5052 * ie starving_fl, txq_maperr and blocked_fl.
5053 */
5054 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5055 sizeof(long), GFP_KERNEL);
5056 if (!adap->sge.starving_fl) {
5057 ret = -ENOMEM;
5058 goto bye;
5059 }
5060
5061 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5062 sizeof(long), GFP_KERNEL);
5063 if (!adap->sge.txq_maperr) {
5064 ret = -ENOMEM;
5065 goto bye;
5066 }
5067
5068 #ifdef CONFIG_DEBUG_FS
5069 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5070 sizeof(long), GFP_KERNEL);
5071 if (!adap->sge.blocked_fl) {
5072 ret = -ENOMEM;
5073 goto bye;
5074 }
5075 bitmap_zero(adap->sge.blocked_fl, adap->sge.egr_sz);
5076 #endif
5077
5078 params[0] = FW_PARAM_PFVF(CLIP_START);
5079 params[1] = FW_PARAM_PFVF(CLIP_END);
5080 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5081 if (ret < 0)
5082 goto bye;
5083 adap->clipt_start = val[0];
5084 adap->clipt_end = val[1];
5085
5086 /* Get the supported number of traffic classes */
5087 params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5088 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5089 if (ret < 0) {
5090 /* We couldn't retrieve the number of Traffic Classes
5091 * supported by the hardware/firmware. So we hard
5092 * code it here.
5093 */
5094 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5095 } else {
5096 adap->params.nsched_cls = val[0];
5097 }
5098
5099 /* query params related to active filter region */
5100 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5101 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5102 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5103 /* If Active filter size is set we enable establishing
5104 * offload connection through firmware work request
5105 */
5106 if ((val[0] != val[1]) && (ret >= 0)) {
5107 adap->flags |= CXGB4_FW_OFLD_CONN;
5108 adap->tids.aftid_base = val[0];
5109 adap->tids.aftid_end = val[1];
5110 }
5111
5112 /* If we're running on newer firmware, let it know that we're
5113 * prepared to deal with encapsulated CPL messages. Older
5114 * firmware won't understand this and we'll just get
5115 * unencapsulated messages ...
5116 */
5117 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5118 val[0] = 1;
5119 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5120
5121 /*
5122 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5123 * capability. Earlier versions of the firmware didn't have the
5124 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5125 * permission to use ULPTX MEMWRITE DSGL.
5126 */
5127 if (is_t4(adap->params.chip)) {
5128 adap->params.ulptx_memwrite_dsgl = false;
5129 } else {
5130 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5131 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5132 1, params, val);
5133 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5134 }
5135
5136 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5137 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5138 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5139 1, params, val);
5140 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5141
5142 /* See if FW supports FW_FILTER2 work request */
5143 if (is_t4(adap->params.chip)) {
5144 adap->params.filter2_wr_support = 0;
5145 } else {
5146 params[0] = FW_PARAM_DEV(FILTER2_WR);
5147 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5148 1, params, val);
5149 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5150 }
5151
5152 /* Check if FW supports returning vin and smt index.
5153 * If this is not supported, driver will interpret
5154 * these values from viid.
5155 */
5156 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5157 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5158 1, params, val);
5159 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5160
5161 /*
5162 * Get device capabilities so we can determine what resources we need
5163 * to manage.
5164 */
5165 memset(&caps_cmd, 0, sizeof(caps_cmd));
5166 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5167 FW_CMD_REQUEST_F | FW_CMD_READ_F);
5168 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5169 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5170 &caps_cmd);
5171 if (ret < 0)
5172 goto bye;
5173
5174 /* hash filter has some mandatory register settings to be tested and for
5175 * that it needs to test whether offload is enabled or not, hence
5176 * checking and setting it here.
5177 */
5178 if (caps_cmd.ofldcaps)
5179 adap->params.offload = 1;
5180
5181 if (caps_cmd.ofldcaps ||
5182 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5183 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5184 /* query offload-related parameters */
5185 params[0] = FW_PARAM_DEV(NTID);
5186 params[1] = FW_PARAM_PFVF(SERVER_START);
5187 params[2] = FW_PARAM_PFVF(SERVER_END);
5188 params[3] = FW_PARAM_PFVF(TDDP_START);
5189 params[4] = FW_PARAM_PFVF(TDDP_END);
5190 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5191 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5192 params, val);
5193 if (ret < 0)
5194 goto bye;
5195 adap->tids.ntids = val[0];
5196 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5197 adap->tids.stid_base = val[1];
5198 adap->tids.nstids = val[2] - val[1] + 1;
5199 /*
5200 * Setup server filter region. Divide the available filter
5201 * region into two parts. Regular filters get 1/3rd and server
5202 * filters get 2/3rd part. This is only enabled if workarond
5203 * path is enabled.
5204 * 1. For regular filters.
5205 * 2. Server filter: This are special filters which are used
5206 * to redirect SYN packets to offload queue.
5207 */
5208 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5209 adap->tids.sftid_base = adap->tids.ftid_base +
5210 DIV_ROUND_UP(adap->tids.nftids, 3);
5211 adap->tids.nsftids = adap->tids.nftids -
5212 DIV_ROUND_UP(adap->tids.nftids, 3);
5213 adap->tids.nftids = adap->tids.sftid_base -
5214 adap->tids.ftid_base;
5215 }
5216 adap->vres.ddp.start = val[3];
5217 adap->vres.ddp.size = val[4] - val[3] + 1;
5218 adap->params.ofldq_wr_cred = val[5];
5219
5220 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5221 init_hash_filter(adap);
5222 } else {
5223 adap->num_ofld_uld += 1;
5224 }
5225
5226 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5227 params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5228 params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5229 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5230 params, val);
5231 if (!ret) {
5232 adap->tids.eotid_base = val[0];
5233 adap->tids.neotids = min_t(u32, MAX_ATIDS,
5234 val[1] - val[0] + 1);
5235 adap->params.ethofld = 1;
5236 }
5237 }
5238 }
5239 if (caps_cmd.rdmacaps) {
5240 params[0] = FW_PARAM_PFVF(STAG_START);
5241 params[1] = FW_PARAM_PFVF(STAG_END);
5242 params[2] = FW_PARAM_PFVF(RQ_START);
5243 params[3] = FW_PARAM_PFVF(RQ_END);
5244 params[4] = FW_PARAM_PFVF(PBL_START);
5245 params[5] = FW_PARAM_PFVF(PBL_END);
5246 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5247 params, val);
5248 if (ret < 0)
5249 goto bye;
5250 adap->vres.stag.start = val[0];
5251 adap->vres.stag.size = val[1] - val[0] + 1;
5252 adap->vres.rq.start = val[2];
5253 adap->vres.rq.size = val[3] - val[2] + 1;
5254 adap->vres.pbl.start = val[4];
5255 adap->vres.pbl.size = val[5] - val[4] + 1;
5256
5257 params[0] = FW_PARAM_PFVF(SRQ_START);
5258 params[1] = FW_PARAM_PFVF(SRQ_END);
5259 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5260 params, val);
5261 if (!ret) {
5262 adap->vres.srq.start = val[0];
5263 adap->vres.srq.size = val[1] - val[0] + 1;
5264 }
5265 if (adap->vres.srq.size) {
5266 adap->srq = t4_init_srq(adap->vres.srq.size);
5267 if (!adap->srq)
5268 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5269 }
5270
5271 params[0] = FW_PARAM_PFVF(SQRQ_START);
5272 params[1] = FW_PARAM_PFVF(SQRQ_END);
5273 params[2] = FW_PARAM_PFVF(CQ_START);
5274 params[3] = FW_PARAM_PFVF(CQ_END);
5275 params[4] = FW_PARAM_PFVF(OCQ_START);
5276 params[5] = FW_PARAM_PFVF(OCQ_END);
5277 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5278 val);
5279 if (ret < 0)
5280 goto bye;
5281 adap->vres.qp.start = val[0];
5282 adap->vres.qp.size = val[1] - val[0] + 1;
5283 adap->vres.cq.start = val[2];
5284 adap->vres.cq.size = val[3] - val[2] + 1;
5285 adap->vres.ocq.start = val[4];
5286 adap->vres.ocq.size = val[5] - val[4] + 1;
5287
5288 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5289 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5290 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5291 val);
5292 if (ret < 0) {
5293 adap->params.max_ordird_qp = 8;
5294 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5295 ret = 0;
5296 } else {
5297 adap->params.max_ordird_qp = val[0];
5298 adap->params.max_ird_adapter = val[1];
5299 }
5300 dev_info(adap->pdev_dev,
5301 "max_ordird_qp %d max_ird_adapter %d\n",
5302 adap->params.max_ordird_qp,
5303 adap->params.max_ird_adapter);
5304
5305 /* Enable write_with_immediate if FW supports it */
5306 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5307 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5308 val);
5309 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5310
5311 /* Enable write_cmpl if FW supports it */
5312 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5313 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5314 val);
5315 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5316 adap->num_ofld_uld += 2;
5317 }
5318 if (caps_cmd.iscsicaps) {
5319 params[0] = FW_PARAM_PFVF(ISCSI_START);
5320 params[1] = FW_PARAM_PFVF(ISCSI_END);
5321 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5322 params, val);
5323 if (ret < 0)
5324 goto bye;
5325 adap->vres.iscsi.start = val[0];
5326 adap->vres.iscsi.size = val[1] - val[0] + 1;
5327 if (is_t6(adap->params.chip)) {
5328 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5329 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5330 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5331 params, val);
5332 if (!ret) {
5333 adap->vres.ppod_edram.start = val[0];
5334 adap->vres.ppod_edram.size =
5335 val[1] - val[0] + 1;
5336
5337 dev_info(adap->pdev_dev,
5338 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5339 val[0], val[1],
5340 adap->vres.ppod_edram.size);
5341 }
5342 }
5343 /* LIO target and cxgb4i initiaitor */
5344 adap->num_ofld_uld += 2;
5345 }
5346 if (caps_cmd.cryptocaps) {
5347 if (ntohs(caps_cmd.cryptocaps) &
5348 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5349 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5350 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5351 2, params, val);
5352 if (ret < 0) {
5353 if (ret != -EINVAL)
5354 goto bye;
5355 } else {
5356 adap->vres.ncrypto_fc = val[0];
5357 }
5358 adap->num_ofld_uld += 1;
5359 }
5360 if (ntohs(caps_cmd.cryptocaps) &
5361 FW_CAPS_CONFIG_TLS_INLINE) {
5362 params[0] = FW_PARAM_PFVF(TLS_START);
5363 params[1] = FW_PARAM_PFVF(TLS_END);
5364 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5365 2, params, val);
5366 if (ret < 0)
5367 goto bye;
5368 adap->vres.key.start = val[0];
5369 adap->vres.key.size = val[1] - val[0] + 1;
5370 adap->num_uld += 1;
5371 }
5372 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5373 }
5374
5375 /* The MTU/MSS Table is initialized by now, so load their values. If
5376 * we're initializing the adapter, then we'll make any modifications
5377 * we want to the MTU/MSS Table and also initialize the congestion
5378 * parameters.
5379 */
5380 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5381 if (state != DEV_STATE_INIT) {
5382 int i;
5383
5384 /* The default MTU Table contains values 1492 and 1500.
5385 * However, for TCP, it's better to have two values which are
5386 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5387 * This allows us to have a TCP Data Payload which is a
5388 * multiple of 8 regardless of what combination of TCP Options
5389 * are in use (always a multiple of 4 bytes) which is
5390 * important for performance reasons. For instance, if no
5391 * options are in use, then we have a 20-byte IP header and a
5392 * 20-byte TCP header. In this case, a 1500-byte MSS would
5393 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5394 * which is not a multiple of 8. So using an MSS of 1488 in
5395 * this case results in a TCP Data Payload of 1448 bytes which
5396 * is a multiple of 8. On the other hand, if 12-byte TCP Time
5397 * Stamps have been negotiated, then an MTU of 1500 bytes
5398 * results in a TCP Data Payload of 1448 bytes which, as
5399 * above, is a multiple of 8 bytes ...
5400 */
5401 for (i = 0; i < NMTUS; i++)
5402 if (adap->params.mtus[i] == 1492) {
5403 adap->params.mtus[i] = 1488;
5404 break;
5405 }
5406
5407 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5408 adap->params.b_wnd);
5409 }
5410 t4_init_sge_params(adap);
5411 adap->flags |= CXGB4_FW_OK;
5412 t4_init_tp_params(adap, true);
5413 return 0;
5414
5415 /*
5416 * Something bad happened. If a command timed out or failed with EIO
5417 * FW does not operate within its spec or something catastrophic
5418 * happened to HW/FW, stop issuing commands.
5419 */
5420 bye:
5421 adap_free_hma_mem(adap);
5422 kfree(adap->sge.egr_map);
5423 kfree(adap->sge.ingr_map);
5424 kfree(adap->sge.starving_fl);
5425 kfree(adap->sge.txq_maperr);
5426 #ifdef CONFIG_DEBUG_FS
5427 kfree(adap->sge.blocked_fl);
5428 #endif
5429 if (ret != -ETIMEDOUT && ret != -EIO)
5430 t4_fw_bye(adap, adap->mbox);
5431 return ret;
5432 }
5433
5434 /* EEH callbacks */
5435
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)5436 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5437 pci_channel_state_t state)
5438 {
5439 int i;
5440 struct adapter *adap = pci_get_drvdata(pdev);
5441
5442 if (!adap)
5443 goto out;
5444
5445 rtnl_lock();
5446 adap->flags &= ~CXGB4_FW_OK;
5447 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5448 spin_lock(&adap->stats_lock);
5449 for_each_port(adap, i) {
5450 struct net_device *dev = adap->port[i];
5451 if (dev) {
5452 netif_device_detach(dev);
5453 netif_carrier_off(dev);
5454 }
5455 }
5456 spin_unlock(&adap->stats_lock);
5457 disable_interrupts(adap);
5458 if (adap->flags & CXGB4_FULL_INIT_DONE)
5459 cxgb_down(adap);
5460 rtnl_unlock();
5461 if ((adap->flags & CXGB4_DEV_ENABLED)) {
5462 pci_disable_device(pdev);
5463 adap->flags &= ~CXGB4_DEV_ENABLED;
5464 }
5465 out: return state == pci_channel_io_perm_failure ?
5466 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5467 }
5468
eeh_slot_reset(struct pci_dev * pdev)5469 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5470 {
5471 int i, ret;
5472 struct fw_caps_config_cmd c;
5473 struct adapter *adap = pci_get_drvdata(pdev);
5474
5475 if (!adap) {
5476 pci_restore_state(pdev);
5477 pci_save_state(pdev);
5478 return PCI_ERS_RESULT_RECOVERED;
5479 }
5480
5481 if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5482 if (pci_enable_device(pdev)) {
5483 dev_err(&pdev->dev, "Cannot reenable PCI "
5484 "device after reset\n");
5485 return PCI_ERS_RESULT_DISCONNECT;
5486 }
5487 adap->flags |= CXGB4_DEV_ENABLED;
5488 }
5489
5490 pci_set_master(pdev);
5491 pci_restore_state(pdev);
5492 pci_save_state(pdev);
5493
5494 if (t4_wait_dev_ready(adap->regs) < 0)
5495 return PCI_ERS_RESULT_DISCONNECT;
5496 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5497 return PCI_ERS_RESULT_DISCONNECT;
5498 adap->flags |= CXGB4_FW_OK;
5499 if (adap_init1(adap, &c))
5500 return PCI_ERS_RESULT_DISCONNECT;
5501
5502 for_each_port(adap, i) {
5503 struct port_info *pi = adap2pinfo(adap, i);
5504 u8 vivld = 0, vin = 0;
5505
5506 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5507 NULL, NULL, &vivld, &vin);
5508 if (ret < 0)
5509 return PCI_ERS_RESULT_DISCONNECT;
5510 pi->viid = ret;
5511 pi->xact_addr_filt = -1;
5512 /* If fw supports returning the VIN as part of FW_VI_CMD,
5513 * save the returned values.
5514 */
5515 if (adap->params.viid_smt_extn_support) {
5516 pi->vivld = vivld;
5517 pi->vin = vin;
5518 } else {
5519 /* Retrieve the values from VIID */
5520 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5521 pi->vin = FW_VIID_VIN_G(pi->viid);
5522 }
5523 }
5524
5525 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5526 adap->params.b_wnd);
5527 setup_memwin(adap);
5528 if (cxgb_up(adap))
5529 return PCI_ERS_RESULT_DISCONNECT;
5530 return PCI_ERS_RESULT_RECOVERED;
5531 }
5532
eeh_resume(struct pci_dev * pdev)5533 static void eeh_resume(struct pci_dev *pdev)
5534 {
5535 int i;
5536 struct adapter *adap = pci_get_drvdata(pdev);
5537
5538 if (!adap)
5539 return;
5540
5541 rtnl_lock();
5542 for_each_port(adap, i) {
5543 struct net_device *dev = adap->port[i];
5544 if (dev) {
5545 if (netif_running(dev)) {
5546 link_start(dev);
5547 cxgb_set_rxmode(dev);
5548 }
5549 netif_device_attach(dev);
5550 }
5551 }
5552 rtnl_unlock();
5553 }
5554
eeh_reset_prepare(struct pci_dev * pdev)5555 static void eeh_reset_prepare(struct pci_dev *pdev)
5556 {
5557 struct adapter *adapter = pci_get_drvdata(pdev);
5558 int i;
5559
5560 if (adapter->pf != 4)
5561 return;
5562
5563 adapter->flags &= ~CXGB4_FW_OK;
5564
5565 notify_ulds(adapter, CXGB4_STATE_DOWN);
5566
5567 for_each_port(adapter, i)
5568 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5569 cxgb_close(adapter->port[i]);
5570
5571 disable_interrupts(adapter);
5572 cxgb4_free_mps_ref_entries(adapter);
5573
5574 adap_free_hma_mem(adapter);
5575
5576 if (adapter->flags & CXGB4_FULL_INIT_DONE)
5577 cxgb_down(adapter);
5578 }
5579
eeh_reset_done(struct pci_dev * pdev)5580 static void eeh_reset_done(struct pci_dev *pdev)
5581 {
5582 struct adapter *adapter = pci_get_drvdata(pdev);
5583 int err, i;
5584
5585 if (adapter->pf != 4)
5586 return;
5587
5588 err = t4_wait_dev_ready(adapter->regs);
5589 if (err < 0) {
5590 dev_err(adapter->pdev_dev,
5591 "Device not ready, err %d", err);
5592 return;
5593 }
5594
5595 setup_memwin(adapter);
5596
5597 err = adap_init0(adapter, 1);
5598 if (err) {
5599 dev_err(adapter->pdev_dev,
5600 "Adapter init failed, err %d", err);
5601 return;
5602 }
5603
5604 setup_memwin_rdma(adapter);
5605
5606 if (adapter->flags & CXGB4_FW_OK) {
5607 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5608 if (err) {
5609 dev_err(adapter->pdev_dev,
5610 "Port init failed, err %d", err);
5611 return;
5612 }
5613 }
5614
5615 err = cfg_queues(adapter);
5616 if (err) {
5617 dev_err(adapter->pdev_dev,
5618 "Config queues failed, err %d", err);
5619 return;
5620 }
5621
5622 cxgb4_init_mps_ref_entries(adapter);
5623
5624 err = setup_fw_sge_queues(adapter);
5625 if (err) {
5626 dev_err(adapter->pdev_dev,
5627 "FW sge queue allocation failed, err %d", err);
5628 return;
5629 }
5630
5631 for_each_port(adapter, i)
5632 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5633 cxgb_open(adapter->port[i]);
5634 }
5635
5636 static const struct pci_error_handlers cxgb4_eeh = {
5637 .error_detected = eeh_err_detected,
5638 .slot_reset = eeh_slot_reset,
5639 .resume = eeh_resume,
5640 .reset_prepare = eeh_reset_prepare,
5641 .reset_done = eeh_reset_done,
5642 };
5643
5644 /* Return true if the Link Configuration supports "High Speeds" (those greater
5645 * than 1Gb/s).
5646 */
is_x_10g_port(const struct link_config * lc)5647 static inline bool is_x_10g_port(const struct link_config *lc)
5648 {
5649 unsigned int speeds, high_speeds;
5650
5651 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5652 high_speeds = speeds &
5653 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5654
5655 return high_speeds != 0;
5656 }
5657
5658 /* Perform default configuration of DMA queues depending on the number and type
5659 * of ports we found and the number of available CPUs. Most settings can be
5660 * modified by the admin prior to actual use.
5661 */
cfg_queues(struct adapter * adap)5662 static int cfg_queues(struct adapter *adap)
5663 {
5664 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5665 u32 ncpus = num_online_cpus();
5666 u32 niqflint, neq, num_ulds;
5667 struct sge *s = &adap->sge;
5668 u32 i, n10g = 0, qidx = 0;
5669 u32 q10g = 0, q1g;
5670
5671 /* Reduce memory usage in kdump environment, disable all offload. */
5672 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5673 adap->params.offload = 0;
5674 adap->params.crypto = 0;
5675 adap->params.ethofld = 0;
5676 }
5677
5678 /* Calculate the number of Ethernet Queue Sets available based on
5679 * resources provisioned for us. We always have an Asynchronous
5680 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy
5681 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5682 * Ingress Queue. Meanwhile, we need two Egress Queues for each
5683 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5684 *
5685 * Note that we should also take into account all of the various
5686 * Offload Queues. But, in any situation where we're operating in
5687 * a Resource Constrained Provisioning environment, doing any Offload
5688 * at all is problematic ...
5689 */
5690 niqflint = adap->params.pfres.niqflint - 1;
5691 if (!(adap->flags & CXGB4_USING_MSIX))
5692 niqflint--;
5693 neq = adap->params.pfres.neq / 2;
5694 avail_qsets = min(niqflint, neq);
5695
5696 if (avail_qsets < adap->params.nports) {
5697 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5698 avail_qsets, adap->params.nports);
5699 return -ENOMEM;
5700 }
5701
5702 /* Count the number of 10Gb/s or better ports */
5703 for_each_port(adap, i)
5704 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5705
5706 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5707
5708 /* We default to 1 queue per non-10G port and up to # of cores queues
5709 * per 10G port.
5710 */
5711 if (n10g)
5712 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5713
5714 #ifdef CONFIG_CHELSIO_T4_DCB
5715 /* For Data Center Bridging support we need to be able to support up
5716 * to 8 Traffic Priorities; each of which will be assigned to its
5717 * own TX Queue in order to prevent Head-Of-Line Blocking.
5718 */
5719 q1g = 8;
5720 if (adap->params.nports * 8 > avail_eth_qsets) {
5721 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5722 avail_eth_qsets, adap->params.nports * 8);
5723 return -ENOMEM;
5724 }
5725
5726 if (adap->params.nports * ncpus < avail_eth_qsets)
5727 q10g = max(8U, ncpus);
5728 else
5729 q10g = max(8U, q10g);
5730
5731 while ((q10g * n10g) >
5732 (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5733 q10g--;
5734
5735 #else /* !CONFIG_CHELSIO_T4_DCB */
5736 q1g = 1;
5737 q10g = min(q10g, ncpus);
5738 #endif /* !CONFIG_CHELSIO_T4_DCB */
5739 if (is_kdump_kernel()) {
5740 q10g = 1;
5741 q1g = 1;
5742 }
5743
5744 for_each_port(adap, i) {
5745 struct port_info *pi = adap2pinfo(adap, i);
5746
5747 pi->first_qset = qidx;
5748 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5749 qidx += pi->nqsets;
5750 }
5751
5752 s->ethqsets = qidx;
5753 s->max_ethqsets = qidx; /* MSI-X may lower it later */
5754 avail_qsets -= qidx;
5755
5756 if (is_uld(adap)) {
5757 /* For offload we use 1 queue/channel if all ports are up to 1G,
5758 * otherwise we divide all available queues amongst the channels
5759 * capped by the number of available cores.
5760 */
5761 num_ulds = adap->num_uld + adap->num_ofld_uld;
5762 i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5763 avail_uld_qsets = roundup(i, adap->params.nports);
5764 if (avail_qsets < num_ulds * adap->params.nports) {
5765 adap->params.offload = 0;
5766 adap->params.crypto = 0;
5767 s->ofldqsets = 0;
5768 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5769 s->ofldqsets = adap->params.nports;
5770 } else {
5771 s->ofldqsets = avail_uld_qsets;
5772 }
5773
5774 avail_qsets -= num_ulds * s->ofldqsets;
5775 }
5776
5777 /* ETHOFLD Queues used for QoS offload should follow same
5778 * allocation scheme as normal Ethernet Queues.
5779 */
5780 if (is_ethofld(adap)) {
5781 if (avail_qsets < s->max_ethqsets) {
5782 adap->params.ethofld = 0;
5783 s->eoqsets = 0;
5784 } else {
5785 s->eoqsets = s->max_ethqsets;
5786 }
5787 avail_qsets -= s->eoqsets;
5788 }
5789
5790 /* Mirror queues must follow same scheme as normal Ethernet
5791 * Queues, when there are enough queues available. Otherwise,
5792 * allocate at least 1 queue per port. If even 1 queue is not
5793 * available, then disable mirror queues support.
5794 */
5795 if (avail_qsets >= s->max_ethqsets)
5796 s->mirrorqsets = s->max_ethqsets;
5797 else if (avail_qsets >= adap->params.nports)
5798 s->mirrorqsets = adap->params.nports;
5799 else
5800 s->mirrorqsets = 0;
5801 avail_qsets -= s->mirrorqsets;
5802
5803 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5804 struct sge_eth_rxq *r = &s->ethrxq[i];
5805
5806 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5807 r->fl.size = 72;
5808 }
5809
5810 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5811 s->ethtxq[i].q.size = 1024;
5812
5813 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5814 s->ctrlq[i].q.size = 512;
5815
5816 if (!is_t4(adap->params.chip))
5817 s->ptptxq.q.size = 8;
5818
5819 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5820 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5821
5822 return 0;
5823 }
5824
5825 /*
5826 * Reduce the number of Ethernet queues across all ports to at most n.
5827 * n provides at least one queue per port.
5828 */
reduce_ethqs(struct adapter * adap,int n)5829 static void reduce_ethqs(struct adapter *adap, int n)
5830 {
5831 int i;
5832 struct port_info *pi;
5833
5834 while (n < adap->sge.ethqsets)
5835 for_each_port(adap, i) {
5836 pi = adap2pinfo(adap, i);
5837 if (pi->nqsets > 1) {
5838 pi->nqsets--;
5839 adap->sge.ethqsets--;
5840 if (adap->sge.ethqsets <= n)
5841 break;
5842 }
5843 }
5844
5845 n = 0;
5846 for_each_port(adap, i) {
5847 pi = adap2pinfo(adap, i);
5848 pi->first_qset = n;
5849 n += pi->nqsets;
5850 }
5851 }
5852
alloc_msix_info(struct adapter * adap,u32 num_vec)5853 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5854 {
5855 struct msix_info *msix_info;
5856
5857 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5858 if (!msix_info)
5859 return -ENOMEM;
5860
5861 adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
5862 sizeof(long), GFP_KERNEL);
5863 if (!adap->msix_bmap.msix_bmap) {
5864 kfree(msix_info);
5865 return -ENOMEM;
5866 }
5867
5868 spin_lock_init(&adap->msix_bmap.lock);
5869 adap->msix_bmap.mapsize = num_vec;
5870
5871 adap->msix_info = msix_info;
5872 return 0;
5873 }
5874
free_msix_info(struct adapter * adap)5875 static void free_msix_info(struct adapter *adap)
5876 {
5877 kfree(adap->msix_bmap.msix_bmap);
5878 kfree(adap->msix_info);
5879 }
5880
cxgb4_get_msix_idx_from_bmap(struct adapter * adap)5881 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5882 {
5883 struct msix_bmap *bmap = &adap->msix_bmap;
5884 unsigned int msix_idx;
5885 unsigned long flags;
5886
5887 spin_lock_irqsave(&bmap->lock, flags);
5888 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5889 if (msix_idx < bmap->mapsize) {
5890 __set_bit(msix_idx, bmap->msix_bmap);
5891 } else {
5892 spin_unlock_irqrestore(&bmap->lock, flags);
5893 return -ENOSPC;
5894 }
5895
5896 spin_unlock_irqrestore(&bmap->lock, flags);
5897 return msix_idx;
5898 }
5899
cxgb4_free_msix_idx_in_bmap(struct adapter * adap,unsigned int msix_idx)5900 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5901 unsigned int msix_idx)
5902 {
5903 struct msix_bmap *bmap = &adap->msix_bmap;
5904 unsigned long flags;
5905
5906 spin_lock_irqsave(&bmap->lock, flags);
5907 __clear_bit(msix_idx, bmap->msix_bmap);
5908 spin_unlock_irqrestore(&bmap->lock, flags);
5909 }
5910
5911 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5912 #define EXTRA_VECS 2
5913
enable_msix(struct adapter * adap)5914 static int enable_msix(struct adapter *adap)
5915 {
5916 u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5917 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5918 u8 num_uld = 0, nchan = adap->params.nports;
5919 u32 i, want, need, num_vec;
5920 struct sge *s = &adap->sge;
5921 struct msix_entry *entries;
5922 struct port_info *pi;
5923 int allocated, ret;
5924
5925 want = s->max_ethqsets;
5926 #ifdef CONFIG_CHELSIO_T4_DCB
5927 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5928 * each port.
5929 */
5930 need = 8 * nchan;
5931 #else
5932 need = nchan;
5933 #endif
5934 eth_need = need;
5935 if (is_uld(adap)) {
5936 num_uld = adap->num_ofld_uld + adap->num_uld;
5937 want += num_uld * s->ofldqsets;
5938 uld_need = num_uld * nchan;
5939 need += uld_need;
5940 }
5941
5942 if (is_ethofld(adap)) {
5943 want += s->eoqsets;
5944 ethofld_need = eth_need;
5945 need += ethofld_need;
5946 }
5947
5948 if (s->mirrorqsets) {
5949 want += s->mirrorqsets;
5950 mirror_need = nchan;
5951 need += mirror_need;
5952 }
5953
5954 want += EXTRA_VECS;
5955 need += EXTRA_VECS;
5956
5957 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5958 if (!entries)
5959 return -ENOMEM;
5960
5961 for (i = 0; i < want; i++)
5962 entries[i].entry = i;
5963
5964 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5965 if (allocated < 0) {
5966 /* Disable offload and attempt to get vectors for NIC
5967 * only mode.
5968 */
5969 want = s->max_ethqsets + EXTRA_VECS;
5970 need = eth_need + EXTRA_VECS;
5971 allocated = pci_enable_msix_range(adap->pdev, entries,
5972 need, want);
5973 if (allocated < 0) {
5974 dev_info(adap->pdev_dev,
5975 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5976 ret = allocated;
5977 goto out_free;
5978 }
5979
5980 dev_info(adap->pdev_dev,
5981 "Disabling offload due to insufficient MSI-X vectors\n");
5982 adap->params.offload = 0;
5983 adap->params.crypto = 0;
5984 adap->params.ethofld = 0;
5985 s->ofldqsets = 0;
5986 s->eoqsets = 0;
5987 s->mirrorqsets = 0;
5988 uld_need = 0;
5989 ethofld_need = 0;
5990 mirror_need = 0;
5991 }
5992
5993 num_vec = allocated;
5994 if (num_vec < want) {
5995 /* Distribute available vectors to the various queue groups.
5996 * Every group gets its minimum requirement and NIC gets top
5997 * priority for leftovers.
5998 */
5999 ethqsets = eth_need;
6000 if (is_uld(adap))
6001 ofldqsets = nchan;
6002 if (is_ethofld(adap))
6003 eoqsets = ethofld_need;
6004 if (s->mirrorqsets)
6005 mirrorqsets = mirror_need;
6006
6007 num_vec -= need;
6008 while (num_vec) {
6009 if (num_vec < eth_need + ethofld_need ||
6010 ethqsets > s->max_ethqsets)
6011 break;
6012
6013 for_each_port(adap, i) {
6014 pi = adap2pinfo(adap, i);
6015 if (pi->nqsets < 2)
6016 continue;
6017
6018 ethqsets++;
6019 num_vec--;
6020 if (ethofld_need) {
6021 eoqsets++;
6022 num_vec--;
6023 }
6024 }
6025 }
6026
6027 if (is_uld(adap)) {
6028 while (num_vec) {
6029 if (num_vec < uld_need ||
6030 ofldqsets > s->ofldqsets)
6031 break;
6032
6033 ofldqsets++;
6034 num_vec -= uld_need;
6035 }
6036 }
6037
6038 if (s->mirrorqsets) {
6039 while (num_vec) {
6040 if (num_vec < mirror_need ||
6041 mirrorqsets > s->mirrorqsets)
6042 break;
6043
6044 mirrorqsets++;
6045 num_vec -= mirror_need;
6046 }
6047 }
6048 } else {
6049 ethqsets = s->max_ethqsets;
6050 if (is_uld(adap))
6051 ofldqsets = s->ofldqsets;
6052 if (is_ethofld(adap))
6053 eoqsets = s->eoqsets;
6054 if (s->mirrorqsets)
6055 mirrorqsets = s->mirrorqsets;
6056 }
6057
6058 if (ethqsets < s->max_ethqsets) {
6059 s->max_ethqsets = ethqsets;
6060 reduce_ethqs(adap, ethqsets);
6061 }
6062
6063 if (is_uld(adap)) {
6064 s->ofldqsets = ofldqsets;
6065 s->nqs_per_uld = s->ofldqsets;
6066 }
6067
6068 if (is_ethofld(adap))
6069 s->eoqsets = eoqsets;
6070
6071 if (s->mirrorqsets) {
6072 s->mirrorqsets = mirrorqsets;
6073 for_each_port(adap, i) {
6074 pi = adap2pinfo(adap, i);
6075 pi->nmirrorqsets = s->mirrorqsets / nchan;
6076 mutex_init(&pi->vi_mirror_mutex);
6077 }
6078 }
6079
6080 /* map for msix */
6081 ret = alloc_msix_info(adap, allocated);
6082 if (ret)
6083 goto out_disable_msix;
6084
6085 for (i = 0; i < allocated; i++) {
6086 adap->msix_info[i].vec = entries[i].vector;
6087 adap->msix_info[i].idx = i;
6088 }
6089
6090 dev_info(adap->pdev_dev,
6091 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6092 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6093 s->mirrorqsets);
6094
6095 kfree(entries);
6096 return 0;
6097
6098 out_disable_msix:
6099 pci_disable_msix(adap->pdev);
6100
6101 out_free:
6102 kfree(entries);
6103 return ret;
6104 }
6105
6106 #undef EXTRA_VECS
6107
init_rss(struct adapter * adap)6108 static int init_rss(struct adapter *adap)
6109 {
6110 unsigned int i;
6111 int err;
6112
6113 err = t4_init_rss_mode(adap, adap->mbox);
6114 if (err)
6115 return err;
6116
6117 for_each_port(adap, i) {
6118 struct port_info *pi = adap2pinfo(adap, i);
6119
6120 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6121 if (!pi->rss)
6122 return -ENOMEM;
6123 }
6124 return 0;
6125 }
6126
6127 /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)6128 static void print_adapter_info(struct adapter *adapter)
6129 {
6130 /* Hardware/Firmware/etc. Version/Revision IDs */
6131 t4_dump_version_info(adapter);
6132
6133 /* Software/Hardware configuration */
6134 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6135 is_offload(adapter) ? "R" : "",
6136 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6137 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6138 is_offload(adapter) ? "Offload" : "non-Offload");
6139 }
6140
print_port_info(const struct net_device * dev)6141 static void print_port_info(const struct net_device *dev)
6142 {
6143 char buf[80];
6144 char *bufp = buf;
6145 const struct port_info *pi = netdev_priv(dev);
6146 const struct adapter *adap = pi->adapter;
6147
6148 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6149 bufp += sprintf(bufp, "100M/");
6150 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6151 bufp += sprintf(bufp, "1G/");
6152 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6153 bufp += sprintf(bufp, "10G/");
6154 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6155 bufp += sprintf(bufp, "25G/");
6156 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6157 bufp += sprintf(bufp, "40G/");
6158 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6159 bufp += sprintf(bufp, "50G/");
6160 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6161 bufp += sprintf(bufp, "100G/");
6162 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6163 bufp += sprintf(bufp, "200G/");
6164 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6165 bufp += sprintf(bufp, "400G/");
6166 if (bufp != buf)
6167 --bufp;
6168 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6169
6170 netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
6171 dev->name, adap->params.vpd.id, adap->name, buf);
6172 }
6173
6174 /*
6175 * Free the following resources:
6176 * - memory used for tables
6177 * - MSI/MSI-X
6178 * - net devices
6179 * - resources FW is holding for us
6180 */
free_some_resources(struct adapter * adapter)6181 static void free_some_resources(struct adapter *adapter)
6182 {
6183 unsigned int i;
6184
6185 kvfree(adapter->smt);
6186 kvfree(adapter->l2t);
6187 kvfree(adapter->srq);
6188 t4_cleanup_sched(adapter);
6189 kvfree(adapter->tids.tid_tab);
6190 cxgb4_cleanup_tc_matchall(adapter);
6191 cxgb4_cleanup_tc_mqprio(adapter);
6192 cxgb4_cleanup_tc_flower(adapter);
6193 cxgb4_cleanup_tc_u32(adapter);
6194 cxgb4_cleanup_ethtool_filters(adapter);
6195 kfree(adapter->sge.egr_map);
6196 kfree(adapter->sge.ingr_map);
6197 kfree(adapter->sge.starving_fl);
6198 kfree(adapter->sge.txq_maperr);
6199 #ifdef CONFIG_DEBUG_FS
6200 kfree(adapter->sge.blocked_fl);
6201 #endif
6202 disable_msi(adapter);
6203
6204 for_each_port(adapter, i)
6205 if (adapter->port[i]) {
6206 struct port_info *pi = adap2pinfo(adapter, i);
6207
6208 if (pi->viid != 0)
6209 t4_free_vi(adapter, adapter->mbox, adapter->pf,
6210 0, pi->viid);
6211 kfree(adap2pinfo(adapter, i)->rss);
6212 free_netdev(adapter->port[i]);
6213 }
6214 if (adapter->flags & CXGB4_FW_OK)
6215 t4_fw_bye(adapter, adapter->pf);
6216 }
6217
6218 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6219 NETIF_F_GSO_UDP_L4)
6220 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6221 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6222 #define SEGMENT_SIZE 128
6223
t4_get_chip_type(struct adapter * adap,int ver)6224 static int t4_get_chip_type(struct adapter *adap, int ver)
6225 {
6226 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6227
6228 switch (ver) {
6229 case CHELSIO_T4:
6230 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6231 case CHELSIO_T5:
6232 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6233 case CHELSIO_T6:
6234 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6235 default:
6236 break;
6237 }
6238 return -EINVAL;
6239 }
6240
6241 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_setup(struct net_device * dev)6242 static void cxgb4_mgmt_setup(struct net_device *dev)
6243 {
6244 dev->type = ARPHRD_NONE;
6245 dev->mtu = 0;
6246 dev->hard_header_len = 0;
6247 dev->addr_len = 0;
6248 dev->tx_queue_len = 0;
6249 dev->flags |= IFF_NOARP;
6250 dev->priv_flags |= IFF_NO_QUEUE;
6251
6252 /* Initialize the device structure. */
6253 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6254 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6255 }
6256
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)6257 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6258 {
6259 struct adapter *adap = pci_get_drvdata(pdev);
6260 int err = 0;
6261 int current_vfs = pci_num_vf(pdev);
6262 u32 pcie_fw;
6263
6264 pcie_fw = readl(adap->regs + PCIE_FW_A);
6265 /* Check if fw is initialized */
6266 if (!(pcie_fw & PCIE_FW_INIT_F)) {
6267 dev_warn(&pdev->dev, "Device not initialized\n");
6268 return -EOPNOTSUPP;
6269 }
6270
6271 /* If any of the VF's is already assigned to Guest OS, then
6272 * SRIOV for the same cannot be modified
6273 */
6274 if (current_vfs && pci_vfs_assigned(pdev)) {
6275 dev_err(&pdev->dev,
6276 "Cannot modify SR-IOV while VFs are assigned\n");
6277 return current_vfs;
6278 }
6279 /* Note that the upper-level code ensures that we're never called with
6280 * a non-zero "num_vfs" when we already have VFs instantiated. But
6281 * it never hurts to code defensively.
6282 */
6283 if (num_vfs != 0 && current_vfs != 0)
6284 return -EBUSY;
6285
6286 /* Nothing to do for no change. */
6287 if (num_vfs == current_vfs)
6288 return num_vfs;
6289
6290 /* Disable SRIOV when zero is passed. */
6291 if (!num_vfs) {
6292 pci_disable_sriov(pdev);
6293 /* free VF Management Interface */
6294 unregister_netdev(adap->port[0]);
6295 free_netdev(adap->port[0]);
6296 adap->port[0] = NULL;
6297
6298 /* free VF resources */
6299 adap->num_vfs = 0;
6300 kfree(adap->vfinfo);
6301 adap->vfinfo = NULL;
6302 return 0;
6303 }
6304
6305 if (!current_vfs) {
6306 struct fw_pfvf_cmd port_cmd, port_rpl;
6307 struct net_device *netdev;
6308 unsigned int pmask, port;
6309 struct pci_dev *pbridge;
6310 struct port_info *pi;
6311 char name[IFNAMSIZ];
6312 u32 devcap2;
6313 u16 flags;
6314
6315 /* If we want to instantiate Virtual Functions, then our
6316 * parent bridge's PCI-E needs to support Alternative Routing
6317 * ID (ARI) because our VFs will show up at function offset 8
6318 * and above.
6319 */
6320 pbridge = pdev->bus->self;
6321 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6322 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6323
6324 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6325 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6326 /* Our parent bridge does not support ARI so issue a
6327 * warning and skip instantiating the VFs. They
6328 * won't be reachable.
6329 */
6330 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6331 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6332 PCI_FUNC(pbridge->devfn));
6333 return -ENOTSUPP;
6334 }
6335 memset(&port_cmd, 0, sizeof(port_cmd));
6336 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6337 FW_CMD_REQUEST_F |
6338 FW_CMD_READ_F |
6339 FW_PFVF_CMD_PFN_V(adap->pf) |
6340 FW_PFVF_CMD_VFN_V(0));
6341 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6342 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6343 &port_rpl);
6344 if (err)
6345 return err;
6346 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6347 port = ffs(pmask) - 1;
6348 /* Allocate VF Management Interface. */
6349 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6350 adap->pf);
6351 netdev = alloc_netdev(sizeof(struct port_info),
6352 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6353 if (!netdev)
6354 return -ENOMEM;
6355
6356 pi = netdev_priv(netdev);
6357 pi->adapter = adap;
6358 pi->lport = port;
6359 pi->tx_chan = port;
6360 SET_NETDEV_DEV(netdev, &pdev->dev);
6361
6362 adap->port[0] = netdev;
6363 pi->port_id = 0;
6364
6365 err = register_netdev(adap->port[0]);
6366 if (err) {
6367 pr_info("Unable to register VF mgmt netdev %s\n", name);
6368 free_netdev(adap->port[0]);
6369 adap->port[0] = NULL;
6370 return err;
6371 }
6372 /* Allocate and set up VF Information. */
6373 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6374 sizeof(struct vf_info), GFP_KERNEL);
6375 if (!adap->vfinfo) {
6376 unregister_netdev(adap->port[0]);
6377 free_netdev(adap->port[0]);
6378 adap->port[0] = NULL;
6379 return -ENOMEM;
6380 }
6381 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6382 }
6383 /* Instantiate the requested number of VFs. */
6384 err = pci_enable_sriov(pdev, num_vfs);
6385 if (err) {
6386 pr_info("Unable to instantiate %d VFs\n", num_vfs);
6387 if (!current_vfs) {
6388 unregister_netdev(adap->port[0]);
6389 free_netdev(adap->port[0]);
6390 adap->port[0] = NULL;
6391 kfree(adap->vfinfo);
6392 adap->vfinfo = NULL;
6393 }
6394 return err;
6395 }
6396
6397 adap->num_vfs = num_vfs;
6398 return num_vfs;
6399 }
6400 #endif /* CONFIG_PCI_IOV */
6401
6402 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6403
chcr_offload_state(struct adapter * adap,enum cxgb4_netdev_tls_ops op_val)6404 static int chcr_offload_state(struct adapter *adap,
6405 enum cxgb4_netdev_tls_ops op_val)
6406 {
6407 switch (op_val) {
6408 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6409 case CXGB4_TLSDEV_OPS:
6410 if (!adap->uld[CXGB4_ULD_KTLS].handle) {
6411 dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
6412 return -EOPNOTSUPP;
6413 }
6414 if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
6415 dev_dbg(adap->pdev_dev,
6416 "ch_ktls driver has no registered tlsdev_ops\n");
6417 return -EOPNOTSUPP;
6418 }
6419 break;
6420 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6421 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6422 case CXGB4_XFRMDEV_OPS:
6423 if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
6424 dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
6425 return -EOPNOTSUPP;
6426 }
6427 if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
6428 dev_dbg(adap->pdev_dev,
6429 "chipsec driver has no registered xfrmdev_ops\n");
6430 return -EOPNOTSUPP;
6431 }
6432 break;
6433 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6434 default:
6435 dev_dbg(adap->pdev_dev,
6436 "driver has no support for offload %d\n", op_val);
6437 return -EOPNOTSUPP;
6438 }
6439
6440 return 0;
6441 }
6442
6443 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
6444
6445 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6446
cxgb4_ktls_dev_add(struct net_device * netdev,struct sock * sk,enum tls_offload_ctx_dir direction,struct tls_crypto_info * crypto_info,u32 tcp_sn)6447 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6448 enum tls_offload_ctx_dir direction,
6449 struct tls_crypto_info *crypto_info,
6450 u32 tcp_sn)
6451 {
6452 struct adapter *adap = netdev2adap(netdev);
6453 int ret;
6454
6455 mutex_lock(&uld_mutex);
6456 ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
6457 if (ret)
6458 goto out_unlock;
6459
6460 ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6461 if (ret)
6462 goto out_unlock;
6463
6464 ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
6465 direction,
6466 crypto_info,
6467 tcp_sn);
6468 /* if there is a failure, clear the refcount */
6469 if (ret)
6470 cxgb4_set_ktls_feature(adap,
6471 FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6472 out_unlock:
6473 mutex_unlock(&uld_mutex);
6474 return ret;
6475 }
6476
cxgb4_ktls_dev_del(struct net_device * netdev,struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)6477 static void cxgb4_ktls_dev_del(struct net_device *netdev,
6478 struct tls_context *tls_ctx,
6479 enum tls_offload_ctx_dir direction)
6480 {
6481 struct adapter *adap = netdev2adap(netdev);
6482
6483 mutex_lock(&uld_mutex);
6484 if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
6485 goto out_unlock;
6486
6487 adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6488 direction);
6489
6490 out_unlock:
6491 cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6492 mutex_unlock(&uld_mutex);
6493 }
6494
6495 static const struct tlsdev_ops cxgb4_ktls_ops = {
6496 .tls_dev_add = cxgb4_ktls_dev_add,
6497 .tls_dev_del = cxgb4_ktls_dev_del,
6498 };
6499 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6500
6501 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6502
cxgb4_xfrm_add_state(struct xfrm_state * x)6503 static int cxgb4_xfrm_add_state(struct xfrm_state *x)
6504 {
6505 struct adapter *adap = netdev2adap(x->xso.dev);
6506 int ret;
6507
6508 if (!mutex_trylock(&uld_mutex)) {
6509 dev_dbg(adap->pdev_dev,
6510 "crypto uld critical resource is under use\n");
6511 return -EBUSY;
6512 }
6513 ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
6514 if (ret)
6515 goto out_unlock;
6516
6517 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x);
6518
6519 out_unlock:
6520 mutex_unlock(&uld_mutex);
6521
6522 return ret;
6523 }
6524
cxgb4_xfrm_del_state(struct xfrm_state * x)6525 static void cxgb4_xfrm_del_state(struct xfrm_state *x)
6526 {
6527 struct adapter *adap = netdev2adap(x->xso.dev);
6528
6529 if (!mutex_trylock(&uld_mutex)) {
6530 dev_dbg(adap->pdev_dev,
6531 "crypto uld critical resource is under use\n");
6532 return;
6533 }
6534 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6535 goto out_unlock;
6536
6537 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
6538
6539 out_unlock:
6540 mutex_unlock(&uld_mutex);
6541 }
6542
cxgb4_xfrm_free_state(struct xfrm_state * x)6543 static void cxgb4_xfrm_free_state(struct xfrm_state *x)
6544 {
6545 struct adapter *adap = netdev2adap(x->xso.dev);
6546
6547 if (!mutex_trylock(&uld_mutex)) {
6548 dev_dbg(adap->pdev_dev,
6549 "crypto uld critical resource is under use\n");
6550 return;
6551 }
6552 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6553 goto out_unlock;
6554
6555 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
6556
6557 out_unlock:
6558 mutex_unlock(&uld_mutex);
6559 }
6560
cxgb4_ipsec_offload_ok(struct sk_buff * skb,struct xfrm_state * x)6561 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
6562 {
6563 struct adapter *adap = netdev2adap(x->xso.dev);
6564 bool ret = false;
6565
6566 if (!mutex_trylock(&uld_mutex)) {
6567 dev_dbg(adap->pdev_dev,
6568 "crypto uld critical resource is under use\n");
6569 return ret;
6570 }
6571 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6572 goto out_unlock;
6573
6574 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
6575
6576 out_unlock:
6577 mutex_unlock(&uld_mutex);
6578 return ret;
6579 }
6580
cxgb4_advance_esn_state(struct xfrm_state * x)6581 static void cxgb4_advance_esn_state(struct xfrm_state *x)
6582 {
6583 struct adapter *adap = netdev2adap(x->xso.dev);
6584
6585 if (!mutex_trylock(&uld_mutex)) {
6586 dev_dbg(adap->pdev_dev,
6587 "crypto uld critical resource is under use\n");
6588 return;
6589 }
6590 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6591 goto out_unlock;
6592
6593 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
6594
6595 out_unlock:
6596 mutex_unlock(&uld_mutex);
6597 }
6598
6599 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
6600 .xdo_dev_state_add = cxgb4_xfrm_add_state,
6601 .xdo_dev_state_delete = cxgb4_xfrm_del_state,
6602 .xdo_dev_state_free = cxgb4_xfrm_free_state,
6603 .xdo_dev_offload_ok = cxgb4_ipsec_offload_ok,
6604 .xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
6605 };
6606
6607 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6608
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)6609 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6610 {
6611 struct net_device *netdev;
6612 struct adapter *adapter;
6613 static int adap_idx = 1;
6614 int s_qpp, qpp, num_seg;
6615 struct port_info *pi;
6616 bool highdma = false;
6617 enum chip_type chip;
6618 void __iomem *regs;
6619 int func, chip_ver;
6620 u16 device_id;
6621 int i, err;
6622 u32 whoami;
6623
6624 err = pci_request_regions(pdev, KBUILD_MODNAME);
6625 if (err) {
6626 /* Just info, some other driver may have claimed the device. */
6627 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6628 return err;
6629 }
6630
6631 err = pci_enable_device(pdev);
6632 if (err) {
6633 dev_err(&pdev->dev, "cannot enable PCI device\n");
6634 goto out_release_regions;
6635 }
6636
6637 regs = pci_ioremap_bar(pdev, 0);
6638 if (!regs) {
6639 dev_err(&pdev->dev, "cannot map device registers\n");
6640 err = -ENOMEM;
6641 goto out_disable_device;
6642 }
6643
6644 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6645 if (!adapter) {
6646 err = -ENOMEM;
6647 goto out_unmap_bar0;
6648 }
6649
6650 adapter->regs = regs;
6651 err = t4_wait_dev_ready(regs);
6652 if (err < 0)
6653 goto out_free_adapter;
6654
6655 /* We control everything through one PF */
6656 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6657 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6658 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6659 if ((int)chip < 0) {
6660 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6661 err = chip;
6662 goto out_free_adapter;
6663 }
6664 chip_ver = CHELSIO_CHIP_VERSION(chip);
6665 func = chip_ver <= CHELSIO_T5 ?
6666 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6667
6668 adapter->pdev = pdev;
6669 adapter->pdev_dev = &pdev->dev;
6670 adapter->name = pci_name(pdev);
6671 adapter->mbox = func;
6672 adapter->pf = func;
6673 adapter->params.chip = chip;
6674 adapter->adap_idx = adap_idx;
6675 adapter->msg_enable = DFLT_MSG_ENABLE;
6676 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6677 (sizeof(struct mbox_cmd) *
6678 T4_OS_LOG_MBOX_CMDS),
6679 GFP_KERNEL);
6680 if (!adapter->mbox_log) {
6681 err = -ENOMEM;
6682 goto out_free_adapter;
6683 }
6684 spin_lock_init(&adapter->mbox_lock);
6685 INIT_LIST_HEAD(&adapter->mlist.list);
6686 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6687 pci_set_drvdata(pdev, adapter);
6688
6689 if (func != ent->driver_data) {
6690 pci_disable_device(pdev);
6691 pci_save_state(pdev); /* to restore SR-IOV later */
6692 return 0;
6693 }
6694
6695 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6696 highdma = true;
6697 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6698 if (err) {
6699 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6700 "coherent allocations\n");
6701 goto out_free_adapter;
6702 }
6703 } else {
6704 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6705 if (err) {
6706 dev_err(&pdev->dev, "no usable DMA configuration\n");
6707 goto out_free_adapter;
6708 }
6709 }
6710
6711 pci_enable_pcie_error_reporting(pdev);
6712 pci_set_master(pdev);
6713 pci_save_state(pdev);
6714 adap_idx++;
6715 adapter->workq = create_singlethread_workqueue("cxgb4");
6716 if (!adapter->workq) {
6717 err = -ENOMEM;
6718 goto out_free_adapter;
6719 }
6720
6721 /* PCI device has been enabled */
6722 adapter->flags |= CXGB4_DEV_ENABLED;
6723 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6724
6725 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6726 * Ingress Packet Data to Free List Buffers in order to allow for
6727 * chipset performance optimizations between the Root Complex and
6728 * Memory Controllers. (Messages to the associated Ingress Queue
6729 * notifying new Packet Placement in the Free Lists Buffers will be
6730 * send without the Relaxed Ordering Attribute thus guaranteeing that
6731 * all preceding PCIe Transaction Layer Packets will be processed
6732 * first.) But some Root Complexes have various issues with Upstream
6733 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6734 * The PCIe devices which under the Root Complexes will be cleared the
6735 * Relaxed Ordering bit in the configuration space, So we check our
6736 * PCIe configuration space to see if it's flagged with advice against
6737 * using Relaxed Ordering.
6738 */
6739 if (!pcie_relaxed_ordering_enabled(pdev))
6740 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6741
6742 spin_lock_init(&adapter->stats_lock);
6743 spin_lock_init(&adapter->tid_release_lock);
6744 spin_lock_init(&adapter->win0_lock);
6745
6746 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6747 INIT_WORK(&adapter->db_full_task, process_db_full);
6748 INIT_WORK(&adapter->db_drop_task, process_db_drop);
6749 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6750
6751 err = t4_prep_adapter(adapter);
6752 if (err)
6753 goto out_free_adapter;
6754
6755 if (is_kdump_kernel()) {
6756 /* Collect hardware state and append to /proc/vmcore */
6757 err = cxgb4_cudbg_vmcore_add_dump(adapter);
6758 if (err) {
6759 dev_warn(adapter->pdev_dev,
6760 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6761 err);
6762 err = 0;
6763 }
6764 }
6765
6766 if (!is_t4(adapter->params.chip)) {
6767 s_qpp = (QUEUESPERPAGEPF0_S +
6768 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6769 adapter->pf);
6770 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6771 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6772 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6773
6774 /* Each segment size is 128B. Write coalescing is enabled only
6775 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6776 * queue is less no of segments that can be accommodated in
6777 * a page size.
6778 */
6779 if (qpp > num_seg) {
6780 dev_err(&pdev->dev,
6781 "Incorrect number of egress queues per page\n");
6782 err = -EINVAL;
6783 goto out_free_adapter;
6784 }
6785 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6786 pci_resource_len(pdev, 2));
6787 if (!adapter->bar2) {
6788 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6789 err = -ENOMEM;
6790 goto out_free_adapter;
6791 }
6792 }
6793
6794 setup_memwin(adapter);
6795 err = adap_init0(adapter, 0);
6796 if (err)
6797 goto out_unmap_bar;
6798
6799 setup_memwin_rdma(adapter);
6800
6801 /* configure SGE_STAT_CFG_A to read WC stats */
6802 if (!is_t4(adapter->params.chip))
6803 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6804 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6805 T6_STATMODE_V(0)));
6806
6807 /* Initialize hash mac addr list */
6808 INIT_LIST_HEAD(&adapter->mac_hlist);
6809
6810 for_each_port(adapter, i) {
6811 /* For supporting MQPRIO Offload, need some extra
6812 * queues for each ETHOFLD TIDs. Keep it equal to
6813 * MAX_ATIDs for now. Once we connect to firmware
6814 * later and query the EOTID params, we'll come to
6815 * know the actual # of EOTIDs supported.
6816 */
6817 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6818 MAX_ETH_QSETS + MAX_ATIDS);
6819 if (!netdev) {
6820 err = -ENOMEM;
6821 goto out_free_dev;
6822 }
6823
6824 SET_NETDEV_DEV(netdev, &pdev->dev);
6825
6826 adapter->port[i] = netdev;
6827 pi = netdev_priv(netdev);
6828 pi->adapter = adapter;
6829 pi->xact_addr_filt = -1;
6830 pi->port_id = i;
6831 netdev->irq = pdev->irq;
6832
6833 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6834 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6835 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6836 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6837 NETIF_F_HW_TC | NETIF_F_NTUPLE;
6838
6839 if (chip_ver > CHELSIO_T5) {
6840 netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6841 NETIF_F_IPV6_CSUM |
6842 NETIF_F_RXCSUM |
6843 NETIF_F_GSO_UDP_TUNNEL |
6844 NETIF_F_GSO_UDP_TUNNEL_CSUM |
6845 NETIF_F_TSO | NETIF_F_TSO6;
6846
6847 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6848 NETIF_F_GSO_UDP_TUNNEL_CSUM |
6849 NETIF_F_HW_TLS_RECORD;
6850
6851 if (adapter->rawf_cnt)
6852 netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6853 }
6854
6855 if (highdma)
6856 netdev->hw_features |= NETIF_F_HIGHDMA;
6857 netdev->features |= netdev->hw_features;
6858 netdev->vlan_features = netdev->features & VLAN_FEAT;
6859 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6860 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6861 netdev->hw_features |= NETIF_F_HW_TLS_TX;
6862 netdev->tlsdev_ops = &cxgb4_ktls_ops;
6863 /* initialize the refcount */
6864 refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6865 }
6866 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6867 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6868 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
6869 netdev->hw_enc_features |= NETIF_F_HW_ESP;
6870 netdev->features |= NETIF_F_HW_ESP;
6871 netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
6872 }
6873 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6874
6875 netdev->priv_flags |= IFF_UNICAST_FLT;
6876
6877 /* MTU range: 81 - 9600 */
6878 netdev->min_mtu = 81; /* accommodate SACK */
6879 netdev->max_mtu = MAX_MTU;
6880
6881 netdev->netdev_ops = &cxgb4_netdev_ops;
6882 #ifdef CONFIG_CHELSIO_T4_DCB
6883 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6884 cxgb4_dcb_state_init(netdev);
6885 cxgb4_dcb_version_init(netdev);
6886 #endif
6887 cxgb4_set_ethtool_ops(netdev);
6888 }
6889
6890 cxgb4_init_ethtool_dump(adapter);
6891
6892 pci_set_drvdata(pdev, adapter);
6893
6894 if (adapter->flags & CXGB4_FW_OK) {
6895 err = t4_port_init(adapter, func, func, 0);
6896 if (err)
6897 goto out_free_dev;
6898 } else if (adapter->params.nports == 1) {
6899 /* If we don't have a connection to the firmware -- possibly
6900 * because of an error -- grab the raw VPD parameters so we
6901 * can set the proper MAC Address on the debug network
6902 * interface that we've created.
6903 */
6904 u8 hw_addr[ETH_ALEN];
6905 u8 *na = adapter->params.vpd.na;
6906
6907 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6908 if (!err) {
6909 for (i = 0; i < ETH_ALEN; i++)
6910 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6911 hex2val(na[2 * i + 1]));
6912 t4_set_hw_addr(adapter, 0, hw_addr);
6913 }
6914 }
6915
6916 if (!(adapter->flags & CXGB4_FW_OK))
6917 goto fw_attach_fail;
6918
6919 /* Configure queues and allocate tables now, they can be needed as
6920 * soon as the first register_netdev completes.
6921 */
6922 err = cfg_queues(adapter);
6923 if (err)
6924 goto out_free_dev;
6925
6926 adapter->smt = t4_init_smt();
6927 if (!adapter->smt) {
6928 /* We tolerate a lack of SMT, giving up some functionality */
6929 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6930 }
6931
6932 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6933 if (!adapter->l2t) {
6934 /* We tolerate a lack of L2T, giving up some functionality */
6935 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6936 adapter->params.offload = 0;
6937 }
6938
6939 #if IS_ENABLED(CONFIG_IPV6)
6940 if (chip_ver <= CHELSIO_T5 &&
6941 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6942 /* CLIP functionality is not present in hardware,
6943 * hence disable all offload features
6944 */
6945 dev_warn(&pdev->dev,
6946 "CLIP not enabled in hardware, continuing\n");
6947 adapter->params.offload = 0;
6948 } else {
6949 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6950 adapter->clipt_end);
6951 if (!adapter->clipt) {
6952 /* We tolerate a lack of clip_table, giving up
6953 * some functionality
6954 */
6955 dev_warn(&pdev->dev,
6956 "could not allocate Clip table, continuing\n");
6957 adapter->params.offload = 0;
6958 }
6959 }
6960 #endif
6961
6962 for_each_port(adapter, i) {
6963 pi = adap2pinfo(adapter, i);
6964 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6965 if (!pi->sched_tbl)
6966 dev_warn(&pdev->dev,
6967 "could not activate scheduling on port %d\n",
6968 i);
6969 }
6970
6971 if (is_offload(adapter) || is_hashfilter(adapter)) {
6972 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6973 u32 v;
6974
6975 v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6976 if (chip_ver <= CHELSIO_T5) {
6977 adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6978 v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6979 adapter->tids.hash_base = v / 4;
6980 } else {
6981 adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6982 v = t4_read_reg(adapter,
6983 T6_LE_DB_HASH_TID_BASE_A);
6984 adapter->tids.hash_base = v;
6985 }
6986 }
6987 }
6988
6989 if (tid_init(&adapter->tids) < 0) {
6990 dev_warn(&pdev->dev, "could not allocate TID table, "
6991 "continuing\n");
6992 adapter->params.offload = 0;
6993 } else {
6994 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6995 if (!adapter->tc_u32)
6996 dev_warn(&pdev->dev,
6997 "could not offload tc u32, continuing\n");
6998
6999 if (cxgb4_init_tc_flower(adapter))
7000 dev_warn(&pdev->dev,
7001 "could not offload tc flower, continuing\n");
7002
7003 if (cxgb4_init_tc_mqprio(adapter))
7004 dev_warn(&pdev->dev,
7005 "could not offload tc mqprio, continuing\n");
7006
7007 if (cxgb4_init_tc_matchall(adapter))
7008 dev_warn(&pdev->dev,
7009 "could not offload tc matchall, continuing\n");
7010 if (cxgb4_init_ethtool_filters(adapter))
7011 dev_warn(&pdev->dev,
7012 "could not initialize ethtool filters, continuing\n");
7013 }
7014
7015 /* See what interrupts we'll be using */
7016 if (msi > 1 && enable_msix(adapter) == 0)
7017 adapter->flags |= CXGB4_USING_MSIX;
7018 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
7019 adapter->flags |= CXGB4_USING_MSI;
7020 if (msi > 1)
7021 free_msix_info(adapter);
7022 }
7023
7024 /* check for PCI Express bandwidth capabiltites */
7025 pcie_print_link_status(pdev);
7026
7027 cxgb4_init_mps_ref_entries(adapter);
7028
7029 err = init_rss(adapter);
7030 if (err)
7031 goto out_free_dev;
7032
7033 err = setup_non_data_intr(adapter);
7034 if (err) {
7035 dev_err(adapter->pdev_dev,
7036 "Non Data interrupt allocation failed, err: %d\n", err);
7037 goto out_free_dev;
7038 }
7039
7040 err = setup_fw_sge_queues(adapter);
7041 if (err) {
7042 dev_err(adapter->pdev_dev,
7043 "FW sge queue allocation failed, err %d", err);
7044 goto out_free_dev;
7045 }
7046
7047 fw_attach_fail:
7048 /*
7049 * The card is now ready to go. If any errors occur during device
7050 * registration we do not fail the whole card but rather proceed only
7051 * with the ports we manage to register successfully. However we must
7052 * register at least one net device.
7053 */
7054 for_each_port(adapter, i) {
7055 pi = adap2pinfo(adapter, i);
7056 adapter->port[i]->dev_port = pi->lport;
7057 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
7058 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
7059
7060 netif_carrier_off(adapter->port[i]);
7061
7062 err = register_netdev(adapter->port[i]);
7063 if (err)
7064 break;
7065 adapter->chan_map[pi->tx_chan] = i;
7066 print_port_info(adapter->port[i]);
7067 }
7068 if (i == 0) {
7069 dev_err(&pdev->dev, "could not register any net devices\n");
7070 goto out_free_dev;
7071 }
7072 if (err) {
7073 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
7074 err = 0;
7075 }
7076
7077 if (cxgb4_debugfs_root) {
7078 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
7079 cxgb4_debugfs_root);
7080 setup_debugfs(adapter);
7081 }
7082
7083 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7084 pdev->needs_freset = 1;
7085
7086 if (is_uld(adapter))
7087 cxgb4_uld_enable(adapter);
7088
7089 if (!is_t4(adapter->params.chip))
7090 cxgb4_ptp_init(adapter);
7091
7092 if (IS_REACHABLE(CONFIG_THERMAL) &&
7093 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
7094 cxgb4_thermal_init(adapter);
7095
7096 print_adapter_info(adapter);
7097 return 0;
7098
7099 out_free_dev:
7100 t4_free_sge_resources(adapter);
7101 free_some_resources(adapter);
7102 if (adapter->flags & CXGB4_USING_MSIX)
7103 free_msix_info(adapter);
7104 if (adapter->num_uld || adapter->num_ofld_uld)
7105 t4_uld_mem_free(adapter);
7106 out_unmap_bar:
7107 if (!is_t4(adapter->params.chip))
7108 iounmap(adapter->bar2);
7109 out_free_adapter:
7110 if (adapter->workq)
7111 destroy_workqueue(adapter->workq);
7112
7113 kfree(adapter->mbox_log);
7114 kfree(adapter);
7115 out_unmap_bar0:
7116 iounmap(regs);
7117 out_disable_device:
7118 pci_disable_pcie_error_reporting(pdev);
7119 pci_disable_device(pdev);
7120 out_release_regions:
7121 pci_release_regions(pdev);
7122 return err;
7123 }
7124
remove_one(struct pci_dev * pdev)7125 static void remove_one(struct pci_dev *pdev)
7126 {
7127 struct adapter *adapter = pci_get_drvdata(pdev);
7128 struct hash_mac_addr *entry, *tmp;
7129
7130 if (!adapter) {
7131 pci_release_regions(pdev);
7132 return;
7133 }
7134
7135 /* If we allocated filters, free up state associated with any
7136 * valid filters ...
7137 */
7138 clear_all_filters(adapter);
7139
7140 adapter->flags |= CXGB4_SHUTTING_DOWN;
7141
7142 if (adapter->pf == 4) {
7143 int i;
7144
7145 /* Tear down per-adapter Work Queue first since it can contain
7146 * references to our adapter data structure.
7147 */
7148 destroy_workqueue(adapter->workq);
7149
7150 detach_ulds(adapter);
7151
7152 for_each_port(adapter, i)
7153 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7154 unregister_netdev(adapter->port[i]);
7155
7156 t4_uld_clean_up(adapter);
7157
7158 adap_free_hma_mem(adapter);
7159
7160 disable_interrupts(adapter);
7161
7162 cxgb4_free_mps_ref_entries(adapter);
7163
7164 debugfs_remove_recursive(adapter->debugfs_root);
7165
7166 if (!is_t4(adapter->params.chip))
7167 cxgb4_ptp_stop(adapter);
7168 if (IS_REACHABLE(CONFIG_THERMAL))
7169 cxgb4_thermal_remove(adapter);
7170
7171 if (adapter->flags & CXGB4_FULL_INIT_DONE)
7172 cxgb_down(adapter);
7173
7174 if (adapter->flags & CXGB4_USING_MSIX)
7175 free_msix_info(adapter);
7176 if (adapter->num_uld || adapter->num_ofld_uld)
7177 t4_uld_mem_free(adapter);
7178 free_some_resources(adapter);
7179 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7180 list) {
7181 list_del(&entry->list);
7182 kfree(entry);
7183 }
7184
7185 #if IS_ENABLED(CONFIG_IPV6)
7186 t4_cleanup_clip_tbl(adapter);
7187 #endif
7188 if (!is_t4(adapter->params.chip))
7189 iounmap(adapter->bar2);
7190 }
7191 #ifdef CONFIG_PCI_IOV
7192 else {
7193 cxgb4_iov_configure(adapter->pdev, 0);
7194 }
7195 #endif
7196 iounmap(adapter->regs);
7197 pci_disable_pcie_error_reporting(pdev);
7198 if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7199 pci_disable_device(pdev);
7200 adapter->flags &= ~CXGB4_DEV_ENABLED;
7201 }
7202 pci_release_regions(pdev);
7203 kfree(adapter->mbox_log);
7204 synchronize_rcu();
7205 kfree(adapter);
7206 }
7207
7208 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7209 * delivery. This is essentially a stripped down version of the PCI remove()
7210 * function where we do the minimal amount of work necessary to shutdown any
7211 * further activity.
7212 */
shutdown_one(struct pci_dev * pdev)7213 static void shutdown_one(struct pci_dev *pdev)
7214 {
7215 struct adapter *adapter = pci_get_drvdata(pdev);
7216
7217 /* As with remove_one() above (see extended comment), we only want do
7218 * do cleanup on PCI Devices which went all the way through init_one()
7219 * ...
7220 */
7221 if (!adapter) {
7222 pci_release_regions(pdev);
7223 return;
7224 }
7225
7226 adapter->flags |= CXGB4_SHUTTING_DOWN;
7227
7228 if (adapter->pf == 4) {
7229 int i;
7230
7231 for_each_port(adapter, i)
7232 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7233 cxgb_close(adapter->port[i]);
7234
7235 rtnl_lock();
7236 cxgb4_mqprio_stop_offload(adapter);
7237 rtnl_unlock();
7238
7239 if (is_uld(adapter)) {
7240 detach_ulds(adapter);
7241 t4_uld_clean_up(adapter);
7242 }
7243
7244 disable_interrupts(adapter);
7245 disable_msi(adapter);
7246
7247 t4_sge_stop(adapter);
7248 if (adapter->flags & CXGB4_FW_OK)
7249 t4_fw_bye(adapter, adapter->mbox);
7250 }
7251 }
7252
7253 static struct pci_driver cxgb4_driver = {
7254 .name = KBUILD_MODNAME,
7255 .id_table = cxgb4_pci_tbl,
7256 .probe = init_one,
7257 .remove = remove_one,
7258 .shutdown = shutdown_one,
7259 #ifdef CONFIG_PCI_IOV
7260 .sriov_configure = cxgb4_iov_configure,
7261 #endif
7262 .err_handler = &cxgb4_eeh,
7263 };
7264
cxgb4_init_module(void)7265 static int __init cxgb4_init_module(void)
7266 {
7267 int ret;
7268
7269 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7270
7271 ret = pci_register_driver(&cxgb4_driver);
7272 if (ret < 0)
7273 goto err_pci;
7274
7275 #if IS_ENABLED(CONFIG_IPV6)
7276 if (!inet6addr_registered) {
7277 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7278 if (ret)
7279 pci_unregister_driver(&cxgb4_driver);
7280 else
7281 inet6addr_registered = true;
7282 }
7283 #endif
7284
7285 if (ret == 0)
7286 return ret;
7287
7288 err_pci:
7289 debugfs_remove(cxgb4_debugfs_root);
7290
7291 return ret;
7292 }
7293
cxgb4_cleanup_module(void)7294 static void __exit cxgb4_cleanup_module(void)
7295 {
7296 #if IS_ENABLED(CONFIG_IPV6)
7297 if (inet6addr_registered) {
7298 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7299 inet6addr_registered = false;
7300 }
7301 #endif
7302 pci_unregister_driver(&cxgb4_driver);
7303 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
7304 }
7305
7306 module_init(cxgb4_init_module);
7307 module_exit(cxgb4_cleanup_module);
7308