• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright Linus Torvalds 1999
4  * (C) Copyright Johannes Erdfelt 1999-2001
5  * (C) Copyright Andreas Gal 1999
6  * (C) Copyright Gregory P. Smith 1999
7  * (C) Copyright Deti Fliegl 1999
8  * (C) Copyright Randy Dunlap 2000
9  * (C) Copyright David Brownell 2000-2002
10  */
11 
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35 
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40 
41 #include "usb.h"
42 #include "phy.h"
43 
44 
45 /*-------------------------------------------------------------------------*/
46 
47 /*
48  * USB Host Controller Driver framework
49  *
50  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51  * HCD-specific behaviors/bugs.
52  *
53  * This does error checks, tracks devices and urbs, and delegates to a
54  * "hc_driver" only for code (and data) that really needs to know about
55  * hardware differences.  That includes root hub registers, i/o queues,
56  * and so on ... but as little else as possible.
57  *
58  * Shared code includes most of the "root hub" code (these are emulated,
59  * though each HC's hardware works differently) and PCI glue, plus request
60  * tracking overhead.  The HCD code should only block on spinlocks or on
61  * hardware handshaking; blocking on software events (such as other kernel
62  * threads releasing resources, or completing actions) is all generic.
63  *
64  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66  * only by the hub driver ... and that neither should be seen or used by
67  * usb client device drivers.
68  *
69  * Contributors of ideas or unattributed patches include: David Brownell,
70  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71  *
72  * HISTORY:
73  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
74  *		associated cleanup.  "usb_hcd" still != "usb_bus".
75  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
76  */
77 
78 /*-------------------------------------------------------------------------*/
79 
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83 
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87 
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS		64
90 
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94 
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97 
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100 
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103 
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106 
107 /*-------------------------------------------------------------------------*/
108 
109 /*
110  * Sharable chunks of root hub code.
111  */
112 
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
115 #define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
116 
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 	0x12,       /*  __u8  bLength; */
120 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
122 
123 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
124 	0x00,	    /*  __u8  bDeviceSubClass; */
125 	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
126 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
127 
128 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
129 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
130 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
131 
132 	0x03,       /*  __u8  iManufacturer; */
133 	0x02,       /*  __u8  iProduct; */
134 	0x01,       /*  __u8  iSerialNumber; */
135 	0x01        /*  __u8  bNumConfigurations; */
136 };
137 
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 	0x12,       /*  __u8  bLength; */
141 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
143 
144 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
145 	0x00,	    /*  __u8  bDeviceSubClass; */
146 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
147 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
148 
149 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
150 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
151 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
152 
153 	0x03,       /*  __u8  iManufacturer; */
154 	0x02,       /*  __u8  iProduct; */
155 	0x01,       /*  __u8  iSerialNumber; */
156 	0x01        /*  __u8  bNumConfigurations; */
157 };
158 
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 	0x12,       /*  __u8  bLength; */
162 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
164 
165 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
166 	0x00,	    /*  __u8  bDeviceSubClass; */
167 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
168 	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169 
170 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
171 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
172 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
173 
174 	0x03,       /*  __u8  iManufacturer; */
175 	0x02,       /*  __u8  iProduct; */
176 	0x01,       /*  __u8  iSerialNumber; */
177 	0x01        /*  __u8  bNumConfigurations; */
178 };
179 
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 	0x12,       /*  __u8  bLength; */
183 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
185 
186 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
187 	0x00,	    /*  __u8  bDeviceSubClass; */
188 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
189 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
190 
191 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
192 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
193 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
194 
195 	0x03,       /*  __u8  iManufacturer; */
196 	0x02,       /*  __u8  iProduct; */
197 	0x01,       /*  __u8  iSerialNumber; */
198 	0x01        /*  __u8  bNumConfigurations; */
199 };
200 
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202 
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 	0x12,       /*  __u8  bLength; */
206 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
208 
209 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
210 	0x00,	    /*  __u8  bDeviceSubClass; */
211 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
212 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
213 
214 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
215 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
216 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
217 
218 	0x03,       /*  __u8  iManufacturer; */
219 	0x02,       /*  __u8  iProduct; */
220 	0x01,       /*  __u8  iSerialNumber; */
221 	0x01        /*  __u8  bNumConfigurations; */
222 };
223 
224 
225 /*-------------------------------------------------------------------------*/
226 
227 /* Configuration descriptors for our root hubs */
228 
229 static const u8 fs_rh_config_descriptor[] = {
230 
231 	/* one configuration */
232 	0x09,       /*  __u8  bLength; */
233 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 	0x19, 0x00, /*  __le16 wTotalLength; */
235 	0x01,       /*  __u8  bNumInterfaces; (1) */
236 	0x01,       /*  __u8  bConfigurationValue; */
237 	0x00,       /*  __u8  iConfiguration; */
238 	0xc0,       /*  __u8  bmAttributes;
239 				 Bit 7: must be set,
240 				     6: Self-powered,
241 				     5: Remote wakeup,
242 				     4..0: resvd */
243 	0x00,       /*  __u8  MaxPower; */
244 
245 	/* USB 1.1:
246 	 * USB 2.0, single TT organization (mandatory):
247 	 *	one interface, protocol 0
248 	 *
249 	 * USB 2.0, multiple TT organization (optional):
250 	 *	two interfaces, protocols 1 (like single TT)
251 	 *	and 2 (multiple TT mode) ... config is
252 	 *	sometimes settable
253 	 *	NOT IMPLEMENTED
254 	 */
255 
256 	/* one interface */
257 	0x09,       /*  __u8  if_bLength; */
258 	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
259 	0x00,       /*  __u8  if_bInterfaceNumber; */
260 	0x00,       /*  __u8  if_bAlternateSetting; */
261 	0x01,       /*  __u8  if_bNumEndpoints; */
262 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
263 	0x00,       /*  __u8  if_bInterfaceSubClass; */
264 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
265 	0x00,       /*  __u8  if_iInterface; */
266 
267 	/* one endpoint (status change endpoint) */
268 	0x07,       /*  __u8  ep_bLength; */
269 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
271 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
272 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275 
276 static const u8 hs_rh_config_descriptor[] = {
277 
278 	/* one configuration */
279 	0x09,       /*  __u8  bLength; */
280 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 	0x19, 0x00, /*  __le16 wTotalLength; */
282 	0x01,       /*  __u8  bNumInterfaces; (1) */
283 	0x01,       /*  __u8  bConfigurationValue; */
284 	0x00,       /*  __u8  iConfiguration; */
285 	0xc0,       /*  __u8  bmAttributes;
286 				 Bit 7: must be set,
287 				     6: Self-powered,
288 				     5: Remote wakeup,
289 				     4..0: resvd */
290 	0x00,       /*  __u8  MaxPower; */
291 
292 	/* USB 1.1:
293 	 * USB 2.0, single TT organization (mandatory):
294 	 *	one interface, protocol 0
295 	 *
296 	 * USB 2.0, multiple TT organization (optional):
297 	 *	two interfaces, protocols 1 (like single TT)
298 	 *	and 2 (multiple TT mode) ... config is
299 	 *	sometimes settable
300 	 *	NOT IMPLEMENTED
301 	 */
302 
303 	/* one interface */
304 	0x09,       /*  __u8  if_bLength; */
305 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 	0x00,       /*  __u8  if_bInterfaceNumber; */
307 	0x00,       /*  __u8  if_bAlternateSetting; */
308 	0x01,       /*  __u8  if_bNumEndpoints; */
309 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
310 	0x00,       /*  __u8  if_bInterfaceSubClass; */
311 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
312 	0x00,       /*  __u8  if_iInterface; */
313 
314 	/* one endpoint (status change endpoint) */
315 	0x07,       /*  __u8  ep_bLength; */
316 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
318 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
319 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 		     * see hub.c:hub_configure() for details. */
321 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324 
325 static const u8 ss_rh_config_descriptor[] = {
326 	/* one configuration */
327 	0x09,       /*  __u8  bLength; */
328 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 	0x1f, 0x00, /*  __le16 wTotalLength; */
330 	0x01,       /*  __u8  bNumInterfaces; (1) */
331 	0x01,       /*  __u8  bConfigurationValue; */
332 	0x00,       /*  __u8  iConfiguration; */
333 	0xc0,       /*  __u8  bmAttributes;
334 				 Bit 7: must be set,
335 				     6: Self-powered,
336 				     5: Remote wakeup,
337 				     4..0: resvd */
338 	0x00,       /*  __u8  MaxPower; */
339 
340 	/* one interface */
341 	0x09,       /*  __u8  if_bLength; */
342 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 	0x00,       /*  __u8  if_bInterfaceNumber; */
344 	0x00,       /*  __u8  if_bAlternateSetting; */
345 	0x01,       /*  __u8  if_bNumEndpoints; */
346 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
347 	0x00,       /*  __u8  if_bInterfaceSubClass; */
348 	0x00,       /*  __u8  if_bInterfaceProtocol; */
349 	0x00,       /*  __u8  if_iInterface; */
350 
351 	/* one endpoint (status change endpoint) */
352 	0x07,       /*  __u8  ep_bLength; */
353 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
355 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
356 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 		     * see hub.c:hub_configure() for details. */
358 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
360 
361 	/* one SuperSpeed endpoint companion descriptor */
362 	0x06,        /* __u8 ss_bLength */
363 	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 		     /* Companion */
365 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
367 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369 
370 /* authorized_default behaviour:
371  * -1 is authorized for all devices except wireless (old behaviour)
372  * 0 is unauthorized for all devices
373  * 1 is authorized for all devices
374  * 2 is authorized for internal devices
375  */
376 #define USB_AUTHORIZE_WIRED	-1
377 #define USB_AUTHORIZE_NONE	0
378 #define USB_AUTHORIZE_ALL	1
379 #define USB_AUTHORIZE_INTERNAL	2
380 
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 		"Default USB device authorization: 0 is not authorized, 1 is "
385 		"authorized, 2 is authorized for internal devices, -1 is "
386 		"authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388 
389 /**
390  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391  * @s: Null-terminated ASCII (actually ISO-8859-1) string
392  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393  * @len: Length (in bytes; may be odd) of descriptor buffer.
394  *
395  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396  * whichever is less.
397  *
398  * Note:
399  * USB String descriptors can contain at most 126 characters; input
400  * strings longer than that are truncated.
401  */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 	unsigned n, t = 2 + 2*strlen(s);
406 
407 	if (t > 254)
408 		t = 254;	/* Longest possible UTF string descriptor */
409 	if (len > t)
410 		len = t;
411 
412 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
413 
414 	n = len;
415 	while (n--) {
416 		*buf++ = t;
417 		if (!n--)
418 			break;
419 		*buf++ = t >> 8;
420 		t = (unsigned char)*s++;
421 	}
422 	return len;
423 }
424 
425 /**
426  * rh_string() - provides string descriptors for root hub
427  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428  * @hcd: the host controller for this root hub
429  * @data: buffer for output packet
430  * @len: length of the provided buffer
431  *
432  * Produces either a manufacturer, product or serial number string for the
433  * virtual root hub device.
434  *
435  * Return: The number of bytes filled in: the length of the descriptor or
436  * of the provided buffer, whichever is less.
437  */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 	char buf[100];
442 	char const *s;
443 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444 
445 	/* language ids */
446 	switch (id) {
447 	case 0:
448 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 		if (len > 4)
451 			len = 4;
452 		memcpy(data, langids, len);
453 		return len;
454 	case 1:
455 		/* Serial number */
456 		s = hcd->self.bus_name;
457 		break;
458 	case 2:
459 		/* Product name */
460 		s = hcd->product_desc;
461 		break;
462 	case 3:
463 		/* Manufacturer */
464 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 			init_utsname()->release, hcd->driver->description);
466 		s = buf;
467 		break;
468 	default:
469 		/* Can't happen; caller guarantees it */
470 		return 0;
471 	}
472 
473 	return ascii2desc(s, data, len);
474 }
475 
476 
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 	struct usb_ctrlrequest *cmd;
481 	u16		typeReq, wValue, wIndex, wLength;
482 	u8		*ubuf = urb->transfer_buffer;
483 	unsigned	len = 0;
484 	int		status;
485 	u8		patch_wakeup = 0;
486 	u8		patch_protocol = 0;
487 	u16		tbuf_size;
488 	u8		*tbuf = NULL;
489 	const u8	*bufp;
490 
491 	might_sleep();
492 
493 	spin_lock_irq(&hcd_root_hub_lock);
494 	status = usb_hcd_link_urb_to_ep(hcd, urb);
495 	spin_unlock_irq(&hcd_root_hub_lock);
496 	if (status)
497 		return status;
498 	urb->hcpriv = hcd;	/* Indicate it's queued */
499 
500 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
502 	wValue   = le16_to_cpu (cmd->wValue);
503 	wIndex   = le16_to_cpu (cmd->wIndex);
504 	wLength  = le16_to_cpu (cmd->wLength);
505 
506 	if (wLength > urb->transfer_buffer_length)
507 		goto error;
508 
509 	/*
510 	 * tbuf should be at least as big as the
511 	 * USB hub descriptor.
512 	 */
513 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 	if (!tbuf) {
516 		status = -ENOMEM;
517 		goto err_alloc;
518 	}
519 
520 	bufp = tbuf;
521 
522 
523 	urb->actual_length = 0;
524 	switch (typeReq) {
525 
526 	/* DEVICE REQUESTS */
527 
528 	/* The root hub's remote wakeup enable bit is implemented using
529 	 * driver model wakeup flags.  If this system supports wakeup
530 	 * through USB, userspace may change the default "allow wakeup"
531 	 * policy through sysfs or these calls.
532 	 *
533 	 * Most root hubs support wakeup from downstream devices, for
534 	 * runtime power management (disabling USB clocks and reducing
535 	 * VBUS power usage).  However, not all of them do so; silicon,
536 	 * board, and BIOS bugs here are not uncommon, so these can't
537 	 * be treated quite like external hubs.
538 	 *
539 	 * Likewise, not all root hubs will pass wakeup events upstream,
540 	 * to wake up the whole system.  So don't assume root hub and
541 	 * controller capabilities are identical.
542 	 */
543 
544 	case DeviceRequest | USB_REQ_GET_STATUS:
545 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 					<< USB_DEVICE_REMOTE_WAKEUP)
547 				| (1 << USB_DEVICE_SELF_POWERED);
548 		tbuf[1] = 0;
549 		len = 2;
550 		break;
551 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 		else
555 			goto error;
556 		break;
557 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 		if (device_can_wakeup(&hcd->self.root_hub->dev)
559 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
560 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 		else
562 			goto error;
563 		break;
564 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 		tbuf[0] = 1;
566 		len = 1;
567 		fallthrough;
568 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 		break;
570 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 		switch (wValue & 0xff00) {
572 		case USB_DT_DEVICE << 8:
573 			switch (hcd->speed) {
574 			case HCD_USB32:
575 			case HCD_USB31:
576 				bufp = usb31_rh_dev_descriptor;
577 				break;
578 			case HCD_USB3:
579 				bufp = usb3_rh_dev_descriptor;
580 				break;
581 			case HCD_USB25:
582 				bufp = usb25_rh_dev_descriptor;
583 				break;
584 			case HCD_USB2:
585 				bufp = usb2_rh_dev_descriptor;
586 				break;
587 			case HCD_USB11:
588 				bufp = usb11_rh_dev_descriptor;
589 				break;
590 			default:
591 				goto error;
592 			}
593 			len = 18;
594 			if (hcd->has_tt)
595 				patch_protocol = 1;
596 			break;
597 		case USB_DT_CONFIG << 8:
598 			switch (hcd->speed) {
599 			case HCD_USB32:
600 			case HCD_USB31:
601 			case HCD_USB3:
602 				bufp = ss_rh_config_descriptor;
603 				len = sizeof ss_rh_config_descriptor;
604 				break;
605 			case HCD_USB25:
606 			case HCD_USB2:
607 				bufp = hs_rh_config_descriptor;
608 				len = sizeof hs_rh_config_descriptor;
609 				break;
610 			case HCD_USB11:
611 				bufp = fs_rh_config_descriptor;
612 				len = sizeof fs_rh_config_descriptor;
613 				break;
614 			default:
615 				goto error;
616 			}
617 			if (device_can_wakeup(&hcd->self.root_hub->dev))
618 				patch_wakeup = 1;
619 			break;
620 		case USB_DT_STRING << 8:
621 			if ((wValue & 0xff) < 4)
622 				urb->actual_length = rh_string(wValue & 0xff,
623 						hcd, ubuf, wLength);
624 			else /* unsupported IDs --> "protocol stall" */
625 				goto error;
626 			break;
627 		case USB_DT_BOS << 8:
628 			goto nongeneric;
629 		default:
630 			goto error;
631 		}
632 		break;
633 	case DeviceRequest | USB_REQ_GET_INTERFACE:
634 		tbuf[0] = 0;
635 		len = 1;
636 		fallthrough;
637 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 		break;
639 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 		/* wValue == urb->dev->devaddr */
641 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 			wValue);
643 		break;
644 
645 	/* INTERFACE REQUESTS (no defined feature/status flags) */
646 
647 	/* ENDPOINT REQUESTS */
648 
649 	case EndpointRequest | USB_REQ_GET_STATUS:
650 		/* ENDPOINT_HALT flag */
651 		tbuf[0] = 0;
652 		tbuf[1] = 0;
653 		len = 2;
654 		fallthrough;
655 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 		break;
659 
660 	/* CLASS REQUESTS (and errors) */
661 
662 	default:
663 nongeneric:
664 		/* non-generic request */
665 		switch (typeReq) {
666 		case GetHubStatus:
667 			len = 4;
668 			break;
669 		case GetPortStatus:
670 			if (wValue == HUB_PORT_STATUS)
671 				len = 4;
672 			else
673 				/* other port status types return 8 bytes */
674 				len = 8;
675 			break;
676 		case GetHubDescriptor:
677 			len = sizeof (struct usb_hub_descriptor);
678 			break;
679 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 			/* len is returned by hub_control */
681 			break;
682 		}
683 		status = hcd->driver->hub_control (hcd,
684 			typeReq, wValue, wIndex,
685 			tbuf, wLength);
686 
687 		if (typeReq == GetHubDescriptor)
688 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 				(struct usb_hub_descriptor *)tbuf);
690 		break;
691 error:
692 		/* "protocol stall" on error */
693 		status = -EPIPE;
694 	}
695 
696 	if (status < 0) {
697 		len = 0;
698 		if (status != -EPIPE) {
699 			dev_dbg (hcd->self.controller,
700 				"CTRL: TypeReq=0x%x val=0x%x "
701 				"idx=0x%x len=%d ==> %d\n",
702 				typeReq, wValue, wIndex,
703 				wLength, status);
704 		}
705 	} else if (status > 0) {
706 		/* hub_control may return the length of data copied. */
707 		len = status;
708 		status = 0;
709 	}
710 	if (len) {
711 		if (urb->transfer_buffer_length < len)
712 			len = urb->transfer_buffer_length;
713 		urb->actual_length = len;
714 		/* always USB_DIR_IN, toward host */
715 		memcpy (ubuf, bufp, len);
716 
717 		/* report whether RH hardware supports remote wakeup */
718 		if (patch_wakeup &&
719 				len > offsetof (struct usb_config_descriptor,
720 						bmAttributes))
721 			((struct usb_config_descriptor *)ubuf)->bmAttributes
722 				|= USB_CONFIG_ATT_WAKEUP;
723 
724 		/* report whether RH hardware has an integrated TT */
725 		if (patch_protocol &&
726 				len > offsetof(struct usb_device_descriptor,
727 						bDeviceProtocol))
728 			((struct usb_device_descriptor *) ubuf)->
729 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 	}
731 
732 	kfree(tbuf);
733  err_alloc:
734 
735 	/* any errors get returned through the urb completion */
736 	spin_lock_irq(&hcd_root_hub_lock);
737 	usb_hcd_unlink_urb_from_ep(hcd, urb);
738 	usb_hcd_giveback_urb(hcd, urb, status);
739 	spin_unlock_irq(&hcd_root_hub_lock);
740 	return 0;
741 }
742 
743 /*-------------------------------------------------------------------------*/
744 
745 /*
746  * Root Hub interrupt transfers are polled using a timer if the
747  * driver requests it; otherwise the driver is responsible for
748  * calling usb_hcd_poll_rh_status() when an event occurs.
749  *
750  * Completions are called in_interrupt(), but they may or may not
751  * be in_irq().
752  */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)753 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
754 {
755 	struct urb	*urb;
756 	int		length;
757 	int		status;
758 	unsigned long	flags;
759 	char		buffer[6];	/* Any root hubs with > 31 ports? */
760 
761 	if (unlikely(!hcd->rh_pollable))
762 		return;
763 	if (!hcd->uses_new_polling && !hcd->status_urb)
764 		return;
765 
766 	length = hcd->driver->hub_status_data(hcd, buffer);
767 	if (length > 0) {
768 
769 		/* try to complete the status urb */
770 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
771 		urb = hcd->status_urb;
772 		if (urb) {
773 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
774 			hcd->status_urb = NULL;
775 			if (urb->transfer_buffer_length >= length) {
776 				status = 0;
777 			} else {
778 				status = -EOVERFLOW;
779 				length = urb->transfer_buffer_length;
780 			}
781 			urb->actual_length = length;
782 			memcpy(urb->transfer_buffer, buffer, length);
783 
784 			usb_hcd_unlink_urb_from_ep(hcd, urb);
785 			usb_hcd_giveback_urb(hcd, urb, status);
786 		} else {
787 			length = 0;
788 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
789 		}
790 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
791 	}
792 
793 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
794 	 * exceed that limit if HZ is 100. The math is more clunky than
795 	 * maybe expected, this is to make sure that all timers for USB devices
796 	 * fire at the same time to give the CPU a break in between */
797 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
798 			(length == 0 && hcd->status_urb != NULL))
799 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
800 }
801 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
802 
803 /* timer callback */
rh_timer_func(struct timer_list * t)804 static void rh_timer_func (struct timer_list *t)
805 {
806 	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
807 
808 	usb_hcd_poll_rh_status(_hcd);
809 }
810 
811 /*-------------------------------------------------------------------------*/
812 
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)813 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
814 {
815 	int		retval;
816 	unsigned long	flags;
817 	unsigned	len = 1 + (urb->dev->maxchild / 8);
818 
819 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
820 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
821 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
822 		retval = -EINVAL;
823 		goto done;
824 	}
825 
826 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
827 	if (retval)
828 		goto done;
829 
830 	hcd->status_urb = urb;
831 	urb->hcpriv = hcd;	/* indicate it's queued */
832 	if (!hcd->uses_new_polling)
833 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
834 
835 	/* If a status change has already occurred, report it ASAP */
836 	else if (HCD_POLL_PENDING(hcd))
837 		mod_timer(&hcd->rh_timer, jiffies);
838 	retval = 0;
839  done:
840 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
841 	return retval;
842 }
843 
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)844 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
845 {
846 	if (usb_endpoint_xfer_int(&urb->ep->desc))
847 		return rh_queue_status (hcd, urb);
848 	if (usb_endpoint_xfer_control(&urb->ep->desc))
849 		return rh_call_control (hcd, urb);
850 	return -EINVAL;
851 }
852 
853 /*-------------------------------------------------------------------------*/
854 
855 /* Unlinks of root-hub control URBs are legal, but they don't do anything
856  * since these URBs always execute synchronously.
857  */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)858 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
859 {
860 	unsigned long	flags;
861 	int		rc;
862 
863 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
864 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
865 	if (rc)
866 		goto done;
867 
868 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
869 		;	/* Do nothing */
870 
871 	} else {				/* Status URB */
872 		if (!hcd->uses_new_polling)
873 			del_timer (&hcd->rh_timer);
874 		if (urb == hcd->status_urb) {
875 			hcd->status_urb = NULL;
876 			usb_hcd_unlink_urb_from_ep(hcd, urb);
877 			usb_hcd_giveback_urb(hcd, urb, status);
878 		}
879 	}
880  done:
881 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
882 	return rc;
883 }
884 
885 
886 /*-------------------------------------------------------------------------*/
887 
888 /**
889  * usb_bus_init - shared initialization code
890  * @bus: the bus structure being initialized
891  *
892  * This code is used to initialize a usb_bus structure, memory for which is
893  * separately managed.
894  */
usb_bus_init(struct usb_bus * bus)895 static void usb_bus_init (struct usb_bus *bus)
896 {
897 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
898 
899 	bus->devnum_next = 1;
900 
901 	bus->root_hub = NULL;
902 	bus->busnum = -1;
903 	bus->bandwidth_allocated = 0;
904 	bus->bandwidth_int_reqs  = 0;
905 	bus->bandwidth_isoc_reqs = 0;
906 	mutex_init(&bus->devnum_next_mutex);
907 }
908 
909 /*-------------------------------------------------------------------------*/
910 
911 /**
912  * usb_register_bus - registers the USB host controller with the usb core
913  * @bus: pointer to the bus to register
914  * Context: !in_interrupt()
915  *
916  * Assigns a bus number, and links the controller into usbcore data
917  * structures so that it can be seen by scanning the bus list.
918  *
919  * Return: 0 if successful. A negative error code otherwise.
920  */
usb_register_bus(struct usb_bus * bus)921 static int usb_register_bus(struct usb_bus *bus)
922 {
923 	int result = -E2BIG;
924 	int busnum;
925 
926 	mutex_lock(&usb_bus_idr_lock);
927 	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 	if (busnum < 0) {
929 		pr_err("%s: failed to get bus number\n", usbcore_name);
930 		goto error_find_busnum;
931 	}
932 	bus->busnum = busnum;
933 	mutex_unlock(&usb_bus_idr_lock);
934 
935 	usb_notify_add_bus(bus);
936 
937 	dev_info (bus->controller, "new USB bus registered, assigned bus "
938 		  "number %d\n", bus->busnum);
939 	return 0;
940 
941 error_find_busnum:
942 	mutex_unlock(&usb_bus_idr_lock);
943 	return result;
944 }
945 
946 /**
947  * usb_deregister_bus - deregisters the USB host controller
948  * @bus: pointer to the bus to deregister
949  * Context: !in_interrupt()
950  *
951  * Recycles the bus number, and unlinks the controller from usbcore data
952  * structures so that it won't be seen by scanning the bus list.
953  */
usb_deregister_bus(struct usb_bus * bus)954 static void usb_deregister_bus (struct usb_bus *bus)
955 {
956 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
957 
958 	/*
959 	 * NOTE: make sure that all the devices are removed by the
960 	 * controller code, as well as having it call this when cleaning
961 	 * itself up
962 	 */
963 	mutex_lock(&usb_bus_idr_lock);
964 	idr_remove(&usb_bus_idr, bus->busnum);
965 	mutex_unlock(&usb_bus_idr_lock);
966 
967 	usb_notify_remove_bus(bus);
968 }
969 
970 /**
971  * register_root_hub - called by usb_add_hcd() to register a root hub
972  * @hcd: host controller for this root hub
973  *
974  * This function registers the root hub with the USB subsystem.  It sets up
975  * the device properly in the device tree and then calls usb_new_device()
976  * to register the usb device.  It also assigns the root hub's USB address
977  * (always 1).
978  *
979  * Return: 0 if successful. A negative error code otherwise.
980  */
register_root_hub(struct usb_hcd * hcd)981 static int register_root_hub(struct usb_hcd *hcd)
982 {
983 	struct device *parent_dev = hcd->self.controller;
984 	struct usb_device *usb_dev = hcd->self.root_hub;
985 	struct usb_device_descriptor *descr;
986 	const int devnum = 1;
987 	int retval;
988 
989 	usb_dev->devnum = devnum;
990 	usb_dev->bus->devnum_next = devnum + 1;
991 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
992 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
993 
994 	mutex_lock(&usb_bus_idr_lock);
995 
996 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
997 	descr = usb_get_device_descriptor(usb_dev);
998 	if (IS_ERR(descr)) {
999 		retval = PTR_ERR(descr);
1000 		mutex_unlock(&usb_bus_idr_lock);
1001 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1002 				dev_name(&usb_dev->dev), retval);
1003 		return retval;
1004 	}
1005 	usb_dev->descriptor = *descr;
1006 	kfree(descr);
1007 
1008 	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1009 		retval = usb_get_bos_descriptor(usb_dev);
1010 		if (!retval) {
1011 			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1012 		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1013 			mutex_unlock(&usb_bus_idr_lock);
1014 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1015 					dev_name(&usb_dev->dev), retval);
1016 			return retval;
1017 		}
1018 	}
1019 
1020 	retval = usb_new_device (usb_dev);
1021 	if (retval) {
1022 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1023 				dev_name(&usb_dev->dev), retval);
1024 	} else {
1025 		spin_lock_irq (&hcd_root_hub_lock);
1026 		hcd->rh_registered = 1;
1027 		spin_unlock_irq (&hcd_root_hub_lock);
1028 
1029 		/* Did the HC die before the root hub was registered? */
1030 		if (HCD_DEAD(hcd))
1031 			usb_hc_died (hcd);	/* This time clean up */
1032 	}
1033 	mutex_unlock(&usb_bus_idr_lock);
1034 
1035 	return retval;
1036 }
1037 
1038 /*
1039  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1040  * @bus: the bus which the root hub belongs to
1041  * @portnum: the port which is being resumed
1042  *
1043  * HCDs should call this function when they know that a resume signal is
1044  * being sent to a root-hub port.  The root hub will be prevented from
1045  * going into autosuspend until usb_hcd_end_port_resume() is called.
1046  *
1047  * The bus's private lock must be held by the caller.
1048  */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1049 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1050 {
1051 	unsigned bit = 1 << portnum;
1052 
1053 	if (!(bus->resuming_ports & bit)) {
1054 		bus->resuming_ports |= bit;
1055 		pm_runtime_get_noresume(&bus->root_hub->dev);
1056 	}
1057 }
1058 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1059 
1060 /*
1061  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1062  * @bus: the bus which the root hub belongs to
1063  * @portnum: the port which is being resumed
1064  *
1065  * HCDs should call this function when they know that a resume signal has
1066  * stopped being sent to a root-hub port.  The root hub will be allowed to
1067  * autosuspend again.
1068  *
1069  * The bus's private lock must be held by the caller.
1070  */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1071 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1072 {
1073 	unsigned bit = 1 << portnum;
1074 
1075 	if (bus->resuming_ports & bit) {
1076 		bus->resuming_ports &= ~bit;
1077 		pm_runtime_put_noidle(&bus->root_hub->dev);
1078 	}
1079 }
1080 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1081 
1082 /*-------------------------------------------------------------------------*/
1083 
1084 /**
1085  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1086  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1087  * @is_input: true iff the transaction sends data to the host
1088  * @isoc: true for isochronous transactions, false for interrupt ones
1089  * @bytecount: how many bytes in the transaction.
1090  *
1091  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1092  *
1093  * Note:
1094  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1095  * scheduled in software, this function is only used for such scheduling.
1096  */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1097 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1098 {
1099 	unsigned long	tmp;
1100 
1101 	switch (speed) {
1102 	case USB_SPEED_LOW: 	/* INTR only */
1103 		if (is_input) {
1104 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1105 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1106 		} else {
1107 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1108 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1109 		}
1110 	case USB_SPEED_FULL:	/* ISOC or INTR */
1111 		if (isoc) {
1112 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1113 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1114 		} else {
1115 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1116 			return 9107L + BW_HOST_DELAY + tmp;
1117 		}
1118 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1119 		/* FIXME adjust for input vs output */
1120 		if (isoc)
1121 			tmp = HS_NSECS_ISO (bytecount);
1122 		else
1123 			tmp = HS_NSECS (bytecount);
1124 		return tmp;
1125 	default:
1126 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1127 		return -1;
1128 	}
1129 }
1130 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1131 
1132 
1133 /*-------------------------------------------------------------------------*/
1134 
1135 /*
1136  * Generic HC operations.
1137  */
1138 
1139 /*-------------------------------------------------------------------------*/
1140 
1141 /**
1142  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1143  * @hcd: host controller to which @urb was submitted
1144  * @urb: URB being submitted
1145  *
1146  * Host controller drivers should call this routine in their enqueue()
1147  * method.  The HCD's private spinlock must be held and interrupts must
1148  * be disabled.  The actions carried out here are required for URB
1149  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1150  *
1151  * Return: 0 for no error, otherwise a negative error code (in which case
1152  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1153  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1154  * the private spinlock and returning.
1155  */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1156 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1157 {
1158 	int		rc = 0;
1159 
1160 	spin_lock(&hcd_urb_list_lock);
1161 
1162 	/* Check that the URB isn't being killed */
1163 	if (unlikely(atomic_read(&urb->reject))) {
1164 		rc = -EPERM;
1165 		goto done;
1166 	}
1167 
1168 	if (unlikely(!urb->ep->enabled)) {
1169 		rc = -ENOENT;
1170 		goto done;
1171 	}
1172 
1173 	if (unlikely(!urb->dev->can_submit)) {
1174 		rc = -EHOSTUNREACH;
1175 		goto done;
1176 	}
1177 
1178 	/*
1179 	 * Check the host controller's state and add the URB to the
1180 	 * endpoint's queue.
1181 	 */
1182 	if (HCD_RH_RUNNING(hcd)) {
1183 		urb->unlinked = 0;
1184 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1185 	} else {
1186 		rc = -ESHUTDOWN;
1187 		goto done;
1188 	}
1189  done:
1190 	spin_unlock(&hcd_urb_list_lock);
1191 	return rc;
1192 }
1193 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1194 
1195 /**
1196  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1197  * @hcd: host controller to which @urb was submitted
1198  * @urb: URB being checked for unlinkability
1199  * @status: error code to store in @urb if the unlink succeeds
1200  *
1201  * Host controller drivers should call this routine in their dequeue()
1202  * method.  The HCD's private spinlock must be held and interrupts must
1203  * be disabled.  The actions carried out here are required for making
1204  * sure than an unlink is valid.
1205  *
1206  * Return: 0 for no error, otherwise a negative error code (in which case
1207  * the dequeue() method must fail).  The possible error codes are:
1208  *
1209  *	-EIDRM: @urb was not submitted or has already completed.
1210  *		The completion function may not have been called yet.
1211  *
1212  *	-EBUSY: @urb has already been unlinked.
1213  */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1214 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1215 		int status)
1216 {
1217 	struct list_head	*tmp;
1218 
1219 	/* insist the urb is still queued */
1220 	list_for_each(tmp, &urb->ep->urb_list) {
1221 		if (tmp == &urb->urb_list)
1222 			break;
1223 	}
1224 	if (tmp != &urb->urb_list)
1225 		return -EIDRM;
1226 
1227 	/* Any status except -EINPROGRESS means something already started to
1228 	 * unlink this URB from the hardware.  So there's no more work to do.
1229 	 */
1230 	if (urb->unlinked)
1231 		return -EBUSY;
1232 	urb->unlinked = status;
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1236 
1237 /**
1238  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1239  * @hcd: host controller to which @urb was submitted
1240  * @urb: URB being unlinked
1241  *
1242  * Host controller drivers should call this routine before calling
1243  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1244  * interrupts must be disabled.  The actions carried out here are required
1245  * for URB completion.
1246  */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1247 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1248 {
1249 	/* clear all state linking urb to this dev (and hcd) */
1250 	spin_lock(&hcd_urb_list_lock);
1251 	list_del_init(&urb->urb_list);
1252 	spin_unlock(&hcd_urb_list_lock);
1253 }
1254 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1255 
1256 /*
1257  * Some usb host controllers can only perform dma using a small SRAM area.
1258  * The usb core itself is however optimized for host controllers that can dma
1259  * using regular system memory - like pci devices doing bus mastering.
1260  *
1261  * To support host controllers with limited dma capabilities we provide dma
1262  * bounce buffers. This feature can be enabled by initializing
1263  * hcd->localmem_pool using usb_hcd_setup_local_mem().
1264  *
1265  * The initialized hcd->localmem_pool then tells the usb code to allocate all
1266  * data for dma using the genalloc API.
1267  *
1268  * So, to summarize...
1269  *
1270  * - We need "local" memory, canonical example being
1271  *   a small SRAM on a discrete controller being the
1272  *   only memory that the controller can read ...
1273  *   (a) "normal" kernel memory is no good, and
1274  *   (b) there's not enough to share
1275  *
1276  * - So we use that, even though the primary requirement
1277  *   is that the memory be "local" (hence addressable
1278  *   by that device), not "coherent".
1279  *
1280  */
1281 
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1282 static int hcd_alloc_coherent(struct usb_bus *bus,
1283 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1284 			      void **vaddr_handle, size_t size,
1285 			      enum dma_data_direction dir)
1286 {
1287 	unsigned char *vaddr;
1288 
1289 	if (*vaddr_handle == NULL) {
1290 		WARN_ON_ONCE(1);
1291 		return -EFAULT;
1292 	}
1293 
1294 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1295 				 mem_flags, dma_handle);
1296 	if (!vaddr)
1297 		return -ENOMEM;
1298 
1299 	/*
1300 	 * Store the virtual address of the buffer at the end
1301 	 * of the allocated dma buffer. The size of the buffer
1302 	 * may be uneven so use unaligned functions instead
1303 	 * of just rounding up. It makes sense to optimize for
1304 	 * memory footprint over access speed since the amount
1305 	 * of memory available for dma may be limited.
1306 	 */
1307 	put_unaligned((unsigned long)*vaddr_handle,
1308 		      (unsigned long *)(vaddr + size));
1309 
1310 	if (dir == DMA_TO_DEVICE)
1311 		memcpy(vaddr, *vaddr_handle, size);
1312 
1313 	*vaddr_handle = vaddr;
1314 	return 0;
1315 }
1316 
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1317 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1318 			      void **vaddr_handle, size_t size,
1319 			      enum dma_data_direction dir)
1320 {
1321 	unsigned char *vaddr = *vaddr_handle;
1322 
1323 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1324 
1325 	if (dir == DMA_FROM_DEVICE)
1326 		memcpy(vaddr, *vaddr_handle, size);
1327 
1328 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1329 
1330 	*vaddr_handle = vaddr;
1331 	*dma_handle = 0;
1332 }
1333 
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1334 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1335 {
1336 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1337 	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1338 		dma_unmap_single(hcd->self.sysdev,
1339 				urb->setup_dma,
1340 				sizeof(struct usb_ctrlrequest),
1341 				DMA_TO_DEVICE);
1342 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1343 		hcd_free_coherent(urb->dev->bus,
1344 				&urb->setup_dma,
1345 				(void **) &urb->setup_packet,
1346 				sizeof(struct usb_ctrlrequest),
1347 				DMA_TO_DEVICE);
1348 
1349 	/* Make it safe to call this routine more than once */
1350 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1351 }
1352 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1353 
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1354 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1355 {
1356 	if (hcd->driver->unmap_urb_for_dma)
1357 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1358 	else
1359 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1360 }
1361 
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1362 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1363 {
1364 	enum dma_data_direction dir;
1365 
1366 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1367 
1368 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1369 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1370 	    (urb->transfer_flags & URB_DMA_MAP_SG))
1371 		dma_unmap_sg(hcd->self.sysdev,
1372 				urb->sg,
1373 				urb->num_sgs,
1374 				dir);
1375 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1376 		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1377 		dma_unmap_page(hcd->self.sysdev,
1378 				urb->transfer_dma,
1379 				urb->transfer_buffer_length,
1380 				dir);
1381 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1382 		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1383 		dma_unmap_single(hcd->self.sysdev,
1384 				urb->transfer_dma,
1385 				urb->transfer_buffer_length,
1386 				dir);
1387 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1388 		hcd_free_coherent(urb->dev->bus,
1389 				&urb->transfer_dma,
1390 				&urb->transfer_buffer,
1391 				urb->transfer_buffer_length,
1392 				dir);
1393 
1394 	/* Make it safe to call this routine more than once */
1395 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1396 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1397 }
1398 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1399 
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1400 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1401 			   gfp_t mem_flags)
1402 {
1403 	if (hcd->driver->map_urb_for_dma)
1404 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1405 	else
1406 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1407 }
1408 
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1409 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1410 			    gfp_t mem_flags)
1411 {
1412 	enum dma_data_direction dir;
1413 	int ret = 0;
1414 
1415 	/* Map the URB's buffers for DMA access.
1416 	 * Lower level HCD code should use *_dma exclusively,
1417 	 * unless it uses pio or talks to another transport,
1418 	 * or uses the provided scatter gather list for bulk.
1419 	 */
1420 
1421 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1422 		if (hcd->self.uses_pio_for_control)
1423 			return ret;
1424 		if (hcd->localmem_pool) {
1425 			ret = hcd_alloc_coherent(
1426 					urb->dev->bus, mem_flags,
1427 					&urb->setup_dma,
1428 					(void **)&urb->setup_packet,
1429 					sizeof(struct usb_ctrlrequest),
1430 					DMA_TO_DEVICE);
1431 			if (ret)
1432 				return ret;
1433 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1434 		} else if (hcd_uses_dma(hcd)) {
1435 			if (object_is_on_stack(urb->setup_packet)) {
1436 				WARN_ONCE(1, "setup packet is on stack\n");
1437 				return -EAGAIN;
1438 			}
1439 
1440 			urb->setup_dma = dma_map_single(
1441 					hcd->self.sysdev,
1442 					urb->setup_packet,
1443 					sizeof(struct usb_ctrlrequest),
1444 					DMA_TO_DEVICE);
1445 			if (dma_mapping_error(hcd->self.sysdev,
1446 						urb->setup_dma))
1447 				return -EAGAIN;
1448 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1449 		}
1450 	}
1451 
1452 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1453 	if (urb->transfer_buffer_length != 0
1454 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1455 		if (hcd->localmem_pool) {
1456 			ret = hcd_alloc_coherent(
1457 					urb->dev->bus, mem_flags,
1458 					&urb->transfer_dma,
1459 					&urb->transfer_buffer,
1460 					urb->transfer_buffer_length,
1461 					dir);
1462 			if (ret == 0)
1463 				urb->transfer_flags |= URB_MAP_LOCAL;
1464 		} else if (hcd_uses_dma(hcd)) {
1465 			if (urb->num_sgs) {
1466 				int n;
1467 
1468 				/* We don't support sg for isoc transfers ! */
1469 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1470 					WARN_ON(1);
1471 					return -EINVAL;
1472 				}
1473 
1474 				n = dma_map_sg(
1475 						hcd->self.sysdev,
1476 						urb->sg,
1477 						urb->num_sgs,
1478 						dir);
1479 				if (n <= 0)
1480 					ret = -EAGAIN;
1481 				else
1482 					urb->transfer_flags |= URB_DMA_MAP_SG;
1483 				urb->num_mapped_sgs = n;
1484 				if (n != urb->num_sgs)
1485 					urb->transfer_flags |=
1486 							URB_DMA_SG_COMBINED;
1487 			} else if (urb->sg) {
1488 				struct scatterlist *sg = urb->sg;
1489 				urb->transfer_dma = dma_map_page(
1490 						hcd->self.sysdev,
1491 						sg_page(sg),
1492 						sg->offset,
1493 						urb->transfer_buffer_length,
1494 						dir);
1495 				if (dma_mapping_error(hcd->self.sysdev,
1496 						urb->transfer_dma))
1497 					ret = -EAGAIN;
1498 				else
1499 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1500 			} else if (object_is_on_stack(urb->transfer_buffer)) {
1501 				WARN_ONCE(1, "transfer buffer is on stack\n");
1502 				ret = -EAGAIN;
1503 			} else {
1504 				urb->transfer_dma = dma_map_single(
1505 						hcd->self.sysdev,
1506 						urb->transfer_buffer,
1507 						urb->transfer_buffer_length,
1508 						dir);
1509 				if (dma_mapping_error(hcd->self.sysdev,
1510 						urb->transfer_dma))
1511 					ret = -EAGAIN;
1512 				else
1513 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1514 			}
1515 		}
1516 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1517 				URB_SETUP_MAP_LOCAL)))
1518 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1519 	}
1520 	return ret;
1521 }
1522 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1523 
1524 /*-------------------------------------------------------------------------*/
1525 
1526 /* may be called in any context with a valid urb->dev usecount
1527  * caller surrenders "ownership" of urb
1528  * expects usb_submit_urb() to have sanity checked and conditioned all
1529  * inputs in the urb
1530  */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1531 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1532 {
1533 	int			status;
1534 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1535 
1536 	/* increment urb's reference count as part of giving it to the HCD
1537 	 * (which will control it).  HCD guarantees that it either returns
1538 	 * an error or calls giveback(), but not both.
1539 	 */
1540 	usb_get_urb(urb);
1541 	atomic_inc(&urb->use_count);
1542 	atomic_inc(&urb->dev->urbnum);
1543 	usbmon_urb_submit(&hcd->self, urb);
1544 
1545 	/* NOTE requirements on root-hub callers (usbfs and the hub
1546 	 * driver, for now):  URBs' urb->transfer_buffer must be
1547 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1548 	 * they could clobber root hub response data.  Also, control
1549 	 * URBs must be submitted in process context with interrupts
1550 	 * enabled.
1551 	 */
1552 
1553 	if (is_root_hub(urb->dev)) {
1554 		status = rh_urb_enqueue(hcd, urb);
1555 	} else {
1556 		status = map_urb_for_dma(hcd, urb, mem_flags);
1557 		if (likely(status == 0)) {
1558 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1559 			if (unlikely(status))
1560 				unmap_urb_for_dma(hcd, urb);
1561 		}
1562 	}
1563 
1564 	if (unlikely(status)) {
1565 		usbmon_urb_submit_error(&hcd->self, urb, status);
1566 		urb->hcpriv = NULL;
1567 		INIT_LIST_HEAD(&urb->urb_list);
1568 		atomic_dec(&urb->use_count);
1569 		/*
1570 		 * Order the write of urb->use_count above before the read
1571 		 * of urb->reject below.  Pairs with the memory barriers in
1572 		 * usb_kill_urb() and usb_poison_urb().
1573 		 */
1574 		smp_mb__after_atomic();
1575 
1576 		atomic_dec(&urb->dev->urbnum);
1577 		if (atomic_read(&urb->reject))
1578 			wake_up(&usb_kill_urb_queue);
1579 		usb_put_urb(urb);
1580 	}
1581 	return status;
1582 }
1583 
1584 /*-------------------------------------------------------------------------*/
1585 
1586 /* this makes the hcd giveback() the urb more quickly, by kicking it
1587  * off hardware queues (which may take a while) and returning it as
1588  * soon as practical.  we've already set up the urb's return status,
1589  * but we can't know if the callback completed already.
1590  */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1591 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1592 {
1593 	int		value;
1594 
1595 	if (is_root_hub(urb->dev))
1596 		value = usb_rh_urb_dequeue(hcd, urb, status);
1597 	else {
1598 
1599 		/* The only reason an HCD might fail this call is if
1600 		 * it has not yet fully queued the urb to begin with.
1601 		 * Such failures should be harmless. */
1602 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1603 	}
1604 	return value;
1605 }
1606 
1607 /*
1608  * called in any context
1609  *
1610  * caller guarantees urb won't be recycled till both unlink()
1611  * and the urb's completion function return
1612  */
usb_hcd_unlink_urb(struct urb * urb,int status)1613 int usb_hcd_unlink_urb (struct urb *urb, int status)
1614 {
1615 	struct usb_hcd		*hcd;
1616 	struct usb_device	*udev = urb->dev;
1617 	int			retval = -EIDRM;
1618 	unsigned long		flags;
1619 
1620 	/* Prevent the device and bus from going away while
1621 	 * the unlink is carried out.  If they are already gone
1622 	 * then urb->use_count must be 0, since disconnected
1623 	 * devices can't have any active URBs.
1624 	 */
1625 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1626 	if (atomic_read(&urb->use_count) > 0) {
1627 		retval = 0;
1628 		usb_get_dev(udev);
1629 	}
1630 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1631 	if (retval == 0) {
1632 		hcd = bus_to_hcd(urb->dev->bus);
1633 		retval = unlink1(hcd, urb, status);
1634 		if (retval == 0)
1635 			retval = -EINPROGRESS;
1636 		else if (retval != -EIDRM && retval != -EBUSY)
1637 			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1638 					urb, retval);
1639 		usb_put_dev(udev);
1640 	}
1641 	return retval;
1642 }
1643 
1644 /*-------------------------------------------------------------------------*/
1645 
__usb_hcd_giveback_urb(struct urb * urb)1646 static void __usb_hcd_giveback_urb(struct urb *urb)
1647 {
1648 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1649 	struct usb_anchor *anchor = urb->anchor;
1650 	int status = urb->unlinked;
1651 
1652 	urb->hcpriv = NULL;
1653 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1654 	    urb->actual_length < urb->transfer_buffer_length &&
1655 	    !status))
1656 		status = -EREMOTEIO;
1657 
1658 	unmap_urb_for_dma(hcd, urb);
1659 	usbmon_urb_complete(&hcd->self, urb, status);
1660 	usb_anchor_suspend_wakeups(anchor);
1661 	usb_unanchor_urb(urb);
1662 	if (likely(status == 0))
1663 		usb_led_activity(USB_LED_EVENT_HOST);
1664 
1665 	/* pass ownership to the completion handler */
1666 	urb->status = status;
1667 	/*
1668 	 * This function can be called in task context inside another remote
1669 	 * coverage collection section, but KCOV doesn't support that kind of
1670 	 * recursion yet. Only collect coverage in softirq context for now.
1671 	 */
1672 	if (in_serving_softirq())
1673 		kcov_remote_start_usb((u64)urb->dev->bus->busnum);
1674 	urb->complete(urb);
1675 	if (in_serving_softirq())
1676 		kcov_remote_stop();
1677 
1678 	usb_anchor_resume_wakeups(anchor);
1679 	atomic_dec(&urb->use_count);
1680 	/*
1681 	 * Order the write of urb->use_count above before the read
1682 	 * of urb->reject below.  Pairs with the memory barriers in
1683 	 * usb_kill_urb() and usb_poison_urb().
1684 	 */
1685 	smp_mb__after_atomic();
1686 
1687 	if (unlikely(atomic_read(&urb->reject)))
1688 		wake_up(&usb_kill_urb_queue);
1689 	usb_put_urb(urb);
1690 }
1691 
usb_giveback_urb_bh(struct tasklet_struct * t)1692 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1693 {
1694 	struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1695 	struct list_head local_list;
1696 
1697 	spin_lock_irq(&bh->lock);
1698 	bh->running = true;
1699  restart:
1700 	list_replace_init(&bh->head, &local_list);
1701 	spin_unlock_irq(&bh->lock);
1702 
1703 	while (!list_empty(&local_list)) {
1704 		struct urb *urb;
1705 
1706 		urb = list_entry(local_list.next, struct urb, urb_list);
1707 		list_del_init(&urb->urb_list);
1708 		bh->completing_ep = urb->ep;
1709 		__usb_hcd_giveback_urb(urb);
1710 		bh->completing_ep = NULL;
1711 	}
1712 
1713 	/* check if there are new URBs to giveback */
1714 	spin_lock_irq(&bh->lock);
1715 	if (!list_empty(&bh->head))
1716 		goto restart;
1717 	bh->running = false;
1718 	spin_unlock_irq(&bh->lock);
1719 }
1720 
1721 /**
1722  * usb_hcd_giveback_urb - return URB from HCD to device driver
1723  * @hcd: host controller returning the URB
1724  * @urb: urb being returned to the USB device driver.
1725  * @status: completion status code for the URB.
1726  * Context: in_interrupt()
1727  *
1728  * This hands the URB from HCD to its USB device driver, using its
1729  * completion function.  The HCD has freed all per-urb resources
1730  * (and is done using urb->hcpriv).  It also released all HCD locks;
1731  * the device driver won't cause problems if it frees, modifies,
1732  * or resubmits this URB.
1733  *
1734  * If @urb was unlinked, the value of @status will be overridden by
1735  * @urb->unlinked.  Erroneous short transfers are detected in case
1736  * the HCD hasn't checked for them.
1737  */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1738 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1739 {
1740 	struct giveback_urb_bh *bh;
1741 	bool running, high_prio_bh;
1742 
1743 	/* pass status to tasklet via unlinked */
1744 	if (likely(!urb->unlinked))
1745 		urb->unlinked = status;
1746 
1747 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1748 		__usb_hcd_giveback_urb(urb);
1749 		return;
1750 	}
1751 
1752 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1753 		bh = &hcd->high_prio_bh;
1754 		high_prio_bh = true;
1755 	} else {
1756 		bh = &hcd->low_prio_bh;
1757 		high_prio_bh = false;
1758 	}
1759 
1760 	spin_lock(&bh->lock);
1761 	list_add_tail(&urb->urb_list, &bh->head);
1762 	running = bh->running;
1763 	spin_unlock(&bh->lock);
1764 
1765 	if (running)
1766 		;
1767 	else if (high_prio_bh)
1768 		tasklet_hi_schedule(&bh->bh);
1769 	else
1770 		tasklet_schedule(&bh->bh);
1771 }
1772 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1773 
1774 /*-------------------------------------------------------------------------*/
1775 
1776 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1777  * queue to drain completely.  The caller must first insure that no more
1778  * URBs can be submitted for this endpoint.
1779  */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1780 void usb_hcd_flush_endpoint(struct usb_device *udev,
1781 		struct usb_host_endpoint *ep)
1782 {
1783 	struct usb_hcd		*hcd;
1784 	struct urb		*urb;
1785 
1786 	if (!ep)
1787 		return;
1788 	might_sleep();
1789 	hcd = bus_to_hcd(udev->bus);
1790 
1791 	/* No more submits can occur */
1792 	spin_lock_irq(&hcd_urb_list_lock);
1793 rescan:
1794 	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1795 		int	is_in;
1796 
1797 		if (urb->unlinked)
1798 			continue;
1799 		usb_get_urb (urb);
1800 		is_in = usb_urb_dir_in(urb);
1801 		spin_unlock(&hcd_urb_list_lock);
1802 
1803 		/* kick hcd */
1804 		unlink1(hcd, urb, -ESHUTDOWN);
1805 		dev_dbg (hcd->self.controller,
1806 			"shutdown urb %pK ep%d%s-%s\n",
1807 			urb, usb_endpoint_num(&ep->desc),
1808 			is_in ? "in" : "out",
1809 			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1810 		usb_put_urb (urb);
1811 
1812 		/* list contents may have changed */
1813 		spin_lock(&hcd_urb_list_lock);
1814 		goto rescan;
1815 	}
1816 	spin_unlock_irq(&hcd_urb_list_lock);
1817 
1818 	/* Wait until the endpoint queue is completely empty */
1819 	while (!list_empty (&ep->urb_list)) {
1820 		spin_lock_irq(&hcd_urb_list_lock);
1821 
1822 		/* The list may have changed while we acquired the spinlock */
1823 		urb = NULL;
1824 		if (!list_empty (&ep->urb_list)) {
1825 			urb = list_entry (ep->urb_list.prev, struct urb,
1826 					urb_list);
1827 			usb_get_urb (urb);
1828 		}
1829 		spin_unlock_irq(&hcd_urb_list_lock);
1830 
1831 		if (urb) {
1832 			usb_kill_urb (urb);
1833 			usb_put_urb (urb);
1834 		}
1835 	}
1836 }
1837 
1838 /**
1839  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1840  *				the bus bandwidth
1841  * @udev: target &usb_device
1842  * @new_config: new configuration to install
1843  * @cur_alt: the current alternate interface setting
1844  * @new_alt: alternate interface setting that is being installed
1845  *
1846  * To change configurations, pass in the new configuration in new_config,
1847  * and pass NULL for cur_alt and new_alt.
1848  *
1849  * To reset a device's configuration (put the device in the ADDRESSED state),
1850  * pass in NULL for new_config, cur_alt, and new_alt.
1851  *
1852  * To change alternate interface settings, pass in NULL for new_config,
1853  * pass in the current alternate interface setting in cur_alt,
1854  * and pass in the new alternate interface setting in new_alt.
1855  *
1856  * Return: An error if the requested bandwidth change exceeds the
1857  * bus bandwidth or host controller internal resources.
1858  */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1859 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1860 		struct usb_host_config *new_config,
1861 		struct usb_host_interface *cur_alt,
1862 		struct usb_host_interface *new_alt)
1863 {
1864 	int num_intfs, i, j;
1865 	struct usb_host_interface *alt = NULL;
1866 	int ret = 0;
1867 	struct usb_hcd *hcd;
1868 	struct usb_host_endpoint *ep;
1869 
1870 	hcd = bus_to_hcd(udev->bus);
1871 	if (!hcd->driver->check_bandwidth)
1872 		return 0;
1873 
1874 	/* Configuration is being removed - set configuration 0 */
1875 	if (!new_config && !cur_alt) {
1876 		for (i = 1; i < 16; ++i) {
1877 			ep = udev->ep_out[i];
1878 			if (ep)
1879 				hcd->driver->drop_endpoint(hcd, udev, ep);
1880 			ep = udev->ep_in[i];
1881 			if (ep)
1882 				hcd->driver->drop_endpoint(hcd, udev, ep);
1883 		}
1884 		hcd->driver->check_bandwidth(hcd, udev);
1885 		return 0;
1886 	}
1887 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1888 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1889 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1890 	 * ok to exclude it.
1891 	 */
1892 	if (new_config) {
1893 		num_intfs = new_config->desc.bNumInterfaces;
1894 		/* Remove endpoints (except endpoint 0, which is always on the
1895 		 * schedule) from the old config from the schedule
1896 		 */
1897 		for (i = 1; i < 16; ++i) {
1898 			ep = udev->ep_out[i];
1899 			if (ep) {
1900 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1901 				if (ret < 0)
1902 					goto reset;
1903 			}
1904 			ep = udev->ep_in[i];
1905 			if (ep) {
1906 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1907 				if (ret < 0)
1908 					goto reset;
1909 			}
1910 		}
1911 		for (i = 0; i < num_intfs; ++i) {
1912 			struct usb_host_interface *first_alt;
1913 			int iface_num;
1914 
1915 			first_alt = &new_config->intf_cache[i]->altsetting[0];
1916 			iface_num = first_alt->desc.bInterfaceNumber;
1917 			/* Set up endpoints for alternate interface setting 0 */
1918 			alt = usb_find_alt_setting(new_config, iface_num, 0);
1919 			if (!alt)
1920 				/* No alt setting 0? Pick the first setting. */
1921 				alt = first_alt;
1922 
1923 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1924 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1925 				if (ret < 0)
1926 					goto reset;
1927 			}
1928 		}
1929 	}
1930 	if (cur_alt && new_alt) {
1931 		struct usb_interface *iface = usb_ifnum_to_if(udev,
1932 				cur_alt->desc.bInterfaceNumber);
1933 
1934 		if (!iface)
1935 			return -EINVAL;
1936 		if (iface->resetting_device) {
1937 			/*
1938 			 * The USB core just reset the device, so the xHCI host
1939 			 * and the device will think alt setting 0 is installed.
1940 			 * However, the USB core will pass in the alternate
1941 			 * setting installed before the reset as cur_alt.  Dig
1942 			 * out the alternate setting 0 structure, or the first
1943 			 * alternate setting if a broken device doesn't have alt
1944 			 * setting 0.
1945 			 */
1946 			cur_alt = usb_altnum_to_altsetting(iface, 0);
1947 			if (!cur_alt)
1948 				cur_alt = &iface->altsetting[0];
1949 		}
1950 
1951 		/* Drop all the endpoints in the current alt setting */
1952 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1953 			ret = hcd->driver->drop_endpoint(hcd, udev,
1954 					&cur_alt->endpoint[i]);
1955 			if (ret < 0)
1956 				goto reset;
1957 		}
1958 		/* Add all the endpoints in the new alt setting */
1959 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1960 			ret = hcd->driver->add_endpoint(hcd, udev,
1961 					&new_alt->endpoint[i]);
1962 			if (ret < 0)
1963 				goto reset;
1964 		}
1965 	}
1966 	ret = hcd->driver->check_bandwidth(hcd, udev);
1967 reset:
1968 	if (ret < 0)
1969 		hcd->driver->reset_bandwidth(hcd, udev);
1970 	return ret;
1971 }
1972 
1973 /* Disables the endpoint: synchronizes with the hcd to make sure all
1974  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1975  * have been called previously.  Use for set_configuration, set_interface,
1976  * driver removal, physical disconnect.
1977  *
1978  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1979  * type, maxpacket size, toggle, halt status, and scheduling.
1980  */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1981 void usb_hcd_disable_endpoint(struct usb_device *udev,
1982 		struct usb_host_endpoint *ep)
1983 {
1984 	struct usb_hcd		*hcd;
1985 
1986 	might_sleep();
1987 	hcd = bus_to_hcd(udev->bus);
1988 	if (hcd->driver->endpoint_disable)
1989 		hcd->driver->endpoint_disable(hcd, ep);
1990 }
1991 
1992 /**
1993  * usb_hcd_reset_endpoint - reset host endpoint state
1994  * @udev: USB device.
1995  * @ep:   the endpoint to reset.
1996  *
1997  * Resets any host endpoint state such as the toggle bit, sequence
1998  * number and current window.
1999  */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2000 void usb_hcd_reset_endpoint(struct usb_device *udev,
2001 			    struct usb_host_endpoint *ep)
2002 {
2003 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2004 
2005 	if (hcd->driver->endpoint_reset)
2006 		hcd->driver->endpoint_reset(hcd, ep);
2007 	else {
2008 		int epnum = usb_endpoint_num(&ep->desc);
2009 		int is_out = usb_endpoint_dir_out(&ep->desc);
2010 		int is_control = usb_endpoint_xfer_control(&ep->desc);
2011 
2012 		usb_settoggle(udev, epnum, is_out, 0);
2013 		if (is_control)
2014 			usb_settoggle(udev, epnum, !is_out, 0);
2015 	}
2016 }
2017 
2018 /**
2019  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2020  * @interface:		alternate setting that includes all endpoints.
2021  * @eps:		array of endpoints that need streams.
2022  * @num_eps:		number of endpoints in the array.
2023  * @num_streams:	number of streams to allocate.
2024  * @mem_flags:		flags hcd should use to allocate memory.
2025  *
2026  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2027  * Drivers may queue multiple transfers to different stream IDs, which may
2028  * complete in a different order than they were queued.
2029  *
2030  * Return: On success, the number of allocated streams. On failure, a negative
2031  * error code.
2032  */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2033 int usb_alloc_streams(struct usb_interface *interface,
2034 		struct usb_host_endpoint **eps, unsigned int num_eps,
2035 		unsigned int num_streams, gfp_t mem_flags)
2036 {
2037 	struct usb_hcd *hcd;
2038 	struct usb_device *dev;
2039 	int i, ret;
2040 
2041 	dev = interface_to_usbdev(interface);
2042 	hcd = bus_to_hcd(dev->bus);
2043 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2044 		return -EINVAL;
2045 	if (dev->speed < USB_SPEED_SUPER)
2046 		return -EINVAL;
2047 	if (dev->state < USB_STATE_CONFIGURED)
2048 		return -ENODEV;
2049 
2050 	for (i = 0; i < num_eps; i++) {
2051 		/* Streams only apply to bulk endpoints. */
2052 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2053 			return -EINVAL;
2054 		/* Re-alloc is not allowed */
2055 		if (eps[i]->streams)
2056 			return -EINVAL;
2057 	}
2058 
2059 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2060 			num_streams, mem_flags);
2061 	if (ret < 0)
2062 		return ret;
2063 
2064 	for (i = 0; i < num_eps; i++)
2065 		eps[i]->streams = ret;
2066 
2067 	return ret;
2068 }
2069 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2070 
2071 /**
2072  * usb_free_streams - free bulk endpoint stream IDs.
2073  * @interface:	alternate setting that includes all endpoints.
2074  * @eps:	array of endpoints to remove streams from.
2075  * @num_eps:	number of endpoints in the array.
2076  * @mem_flags:	flags hcd should use to allocate memory.
2077  *
2078  * Reverts a group of bulk endpoints back to not using stream IDs.
2079  * Can fail if we are given bad arguments, or HCD is broken.
2080  *
2081  * Return: 0 on success. On failure, a negative error code.
2082  */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2083 int usb_free_streams(struct usb_interface *interface,
2084 		struct usb_host_endpoint **eps, unsigned int num_eps,
2085 		gfp_t mem_flags)
2086 {
2087 	struct usb_hcd *hcd;
2088 	struct usb_device *dev;
2089 	int i, ret;
2090 
2091 	dev = interface_to_usbdev(interface);
2092 	hcd = bus_to_hcd(dev->bus);
2093 	if (dev->speed < USB_SPEED_SUPER)
2094 		return -EINVAL;
2095 
2096 	/* Double-free is not allowed */
2097 	for (i = 0; i < num_eps; i++)
2098 		if (!eps[i] || !eps[i]->streams)
2099 			return -EINVAL;
2100 
2101 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2102 	if (ret < 0)
2103 		return ret;
2104 
2105 	for (i = 0; i < num_eps; i++)
2106 		eps[i]->streams = 0;
2107 
2108 	return ret;
2109 }
2110 EXPORT_SYMBOL_GPL(usb_free_streams);
2111 
2112 /* Protect against drivers that try to unlink URBs after the device
2113  * is gone, by waiting until all unlinks for @udev are finished.
2114  * Since we don't currently track URBs by device, simply wait until
2115  * nothing is running in the locked region of usb_hcd_unlink_urb().
2116  */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2117 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2118 {
2119 	spin_lock_irq(&hcd_urb_unlink_lock);
2120 	spin_unlock_irq(&hcd_urb_unlink_lock);
2121 }
2122 
2123 /*-------------------------------------------------------------------------*/
2124 
2125 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2126 int usb_hcd_get_frame_number (struct usb_device *udev)
2127 {
2128 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2129 
2130 	if (!HCD_RH_RUNNING(hcd))
2131 		return -ESHUTDOWN;
2132 	return hcd->driver->get_frame_number (hcd);
2133 }
2134 
2135 /*-------------------------------------------------------------------------*/
2136 
2137 #ifdef	CONFIG_PM
2138 
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2139 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2140 {
2141 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2142 	int		status;
2143 	int		old_state = hcd->state;
2144 
2145 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2146 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2147 			rhdev->do_remote_wakeup);
2148 	if (HCD_DEAD(hcd)) {
2149 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2150 		return 0;
2151 	}
2152 
2153 	if (!hcd->driver->bus_suspend) {
2154 		status = -ENOENT;
2155 	} else {
2156 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2157 		hcd->state = HC_STATE_QUIESCING;
2158 		status = hcd->driver->bus_suspend(hcd);
2159 	}
2160 	if (status == 0) {
2161 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2162 		hcd->state = HC_STATE_SUSPENDED;
2163 
2164 		if (!PMSG_IS_AUTO(msg))
2165 			usb_phy_roothub_suspend(hcd->self.sysdev,
2166 						hcd->phy_roothub);
2167 
2168 		/* Did we race with a root-hub wakeup event? */
2169 		if (rhdev->do_remote_wakeup) {
2170 			char	buffer[6];
2171 
2172 			status = hcd->driver->hub_status_data(hcd, buffer);
2173 			if (status != 0) {
2174 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2175 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2176 				status = -EBUSY;
2177 			}
2178 		}
2179 	} else {
2180 		spin_lock_irq(&hcd_root_hub_lock);
2181 		if (!HCD_DEAD(hcd)) {
2182 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2183 			hcd->state = old_state;
2184 		}
2185 		spin_unlock_irq(&hcd_root_hub_lock);
2186 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2187 				"suspend", status);
2188 	}
2189 	return status;
2190 }
2191 
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2192 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2193 {
2194 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2195 	int		status;
2196 	int		old_state = hcd->state;
2197 
2198 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2199 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2200 	if (HCD_DEAD(hcd)) {
2201 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2202 		return 0;
2203 	}
2204 
2205 	if (!PMSG_IS_AUTO(msg)) {
2206 		status = usb_phy_roothub_resume(hcd->self.sysdev,
2207 						hcd->phy_roothub);
2208 		if (status)
2209 			return status;
2210 	}
2211 
2212 	if (!hcd->driver->bus_resume)
2213 		return -ENOENT;
2214 	if (HCD_RH_RUNNING(hcd))
2215 		return 0;
2216 
2217 	hcd->state = HC_STATE_RESUMING;
2218 	status = hcd->driver->bus_resume(hcd);
2219 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2220 	if (status == 0)
2221 		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2222 
2223 	if (status == 0) {
2224 		struct usb_device *udev;
2225 		int port1;
2226 
2227 		spin_lock_irq(&hcd_root_hub_lock);
2228 		if (!HCD_DEAD(hcd)) {
2229 			usb_set_device_state(rhdev, rhdev->actconfig
2230 					? USB_STATE_CONFIGURED
2231 					: USB_STATE_ADDRESS);
2232 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2233 			hcd->state = HC_STATE_RUNNING;
2234 		}
2235 		spin_unlock_irq(&hcd_root_hub_lock);
2236 
2237 		/*
2238 		 * Check whether any of the enabled ports on the root hub are
2239 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2240 		 * (this is what the USB-2 spec calls a "global resume").
2241 		 * Otherwise we can skip the delay.
2242 		 */
2243 		usb_hub_for_each_child(rhdev, port1, udev) {
2244 			if (udev->state != USB_STATE_NOTATTACHED &&
2245 					!udev->port_is_suspended) {
2246 				usleep_range(10000, 11000);	/* TRSMRCY */
2247 				break;
2248 			}
2249 		}
2250 	} else {
2251 		hcd->state = old_state;
2252 		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2253 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2254 				"resume", status);
2255 		if (status != -ESHUTDOWN)
2256 			usb_hc_died(hcd);
2257 	}
2258 	return status;
2259 }
2260 
2261 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2262 static void hcd_resume_work(struct work_struct *work)
2263 {
2264 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2265 	struct usb_device *udev = hcd->self.root_hub;
2266 
2267 	usb_remote_wakeup(udev);
2268 }
2269 
2270 /**
2271  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2272  * @hcd: host controller for this root hub
2273  *
2274  * The USB host controller calls this function when its root hub is
2275  * suspended (with the remote wakeup feature enabled) and a remote
2276  * wakeup request is received.  The routine submits a workqueue request
2277  * to resume the root hub (that is, manage its downstream ports again).
2278  */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2279 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2280 {
2281 	unsigned long flags;
2282 
2283 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2284 	if (hcd->rh_registered) {
2285 		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2286 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2287 		queue_work(pm_wq, &hcd->wakeup_work);
2288 	}
2289 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2290 }
2291 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2292 
2293 #endif	/* CONFIG_PM */
2294 
2295 /*-------------------------------------------------------------------------*/
2296 
2297 #ifdef	CONFIG_USB_OTG
2298 
2299 /**
2300  * usb_bus_start_enum - start immediate enumeration (for OTG)
2301  * @bus: the bus (must use hcd framework)
2302  * @port_num: 1-based number of port; usually bus->otg_port
2303  * Context: in_interrupt()
2304  *
2305  * Starts enumeration, with an immediate reset followed later by
2306  * hub_wq identifying and possibly configuring the device.
2307  * This is needed by OTG controller drivers, where it helps meet
2308  * HNP protocol timing requirements for starting a port reset.
2309  *
2310  * Return: 0 if successful.
2311  */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2312 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2313 {
2314 	struct usb_hcd		*hcd;
2315 	int			status = -EOPNOTSUPP;
2316 
2317 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2318 	 * boards with root hubs hooked up to internal devices (instead of
2319 	 * just the OTG port) may need more attention to resetting...
2320 	 */
2321 	hcd = bus_to_hcd(bus);
2322 	if (port_num && hcd->driver->start_port_reset)
2323 		status = hcd->driver->start_port_reset(hcd, port_num);
2324 
2325 	/* allocate hub_wq shortly after (first) root port reset finishes;
2326 	 * it may issue others, until at least 50 msecs have passed.
2327 	 */
2328 	if (status == 0)
2329 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2330 	return status;
2331 }
2332 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2333 
2334 #endif
2335 
2336 /*-------------------------------------------------------------------------*/
2337 
2338 /**
2339  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2340  * @irq: the IRQ being raised
2341  * @__hcd: pointer to the HCD whose IRQ is being signaled
2342  *
2343  * If the controller isn't HALTed, calls the driver's irq handler.
2344  * Checks whether the controller is now dead.
2345  *
2346  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2347  */
usb_hcd_irq(int irq,void * __hcd)2348 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2349 {
2350 	struct usb_hcd		*hcd = __hcd;
2351 	irqreturn_t		rc;
2352 
2353 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2354 		rc = IRQ_NONE;
2355 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2356 		rc = IRQ_NONE;
2357 	else
2358 		rc = IRQ_HANDLED;
2359 
2360 	return rc;
2361 }
2362 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2363 
2364 /*-------------------------------------------------------------------------*/
2365 
2366 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2367 static void hcd_died_work(struct work_struct *work)
2368 {
2369 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2370 	static char *env[] = {
2371 		"ERROR=DEAD",
2372 		NULL
2373 	};
2374 
2375 	/* Notify user space that the host controller has died */
2376 	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2377 }
2378 
2379 /**
2380  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2381  * @hcd: pointer to the HCD representing the controller
2382  *
2383  * This is called by bus glue to report a USB host controller that died
2384  * while operations may still have been pending.  It's called automatically
2385  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2386  *
2387  * Only call this function with the primary HCD.
2388  */
usb_hc_died(struct usb_hcd * hcd)2389 void usb_hc_died (struct usb_hcd *hcd)
2390 {
2391 	unsigned long flags;
2392 
2393 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2394 
2395 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2396 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2397 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2398 	if (hcd->rh_registered) {
2399 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2400 
2401 		/* make hub_wq clean up old urbs and devices */
2402 		usb_set_device_state (hcd->self.root_hub,
2403 				USB_STATE_NOTATTACHED);
2404 		usb_kick_hub_wq(hcd->self.root_hub);
2405 	}
2406 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2407 		hcd = hcd->shared_hcd;
2408 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2409 		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2410 		if (hcd->rh_registered) {
2411 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2412 
2413 			/* make hub_wq clean up old urbs and devices */
2414 			usb_set_device_state(hcd->self.root_hub,
2415 					USB_STATE_NOTATTACHED);
2416 			usb_kick_hub_wq(hcd->self.root_hub);
2417 		}
2418 	}
2419 
2420 	/* Handle the case where this function gets called with a shared HCD */
2421 	if (usb_hcd_is_primary_hcd(hcd))
2422 		schedule_work(&hcd->died_work);
2423 	else
2424 		schedule_work(&hcd->primary_hcd->died_work);
2425 
2426 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2427 	/* Make sure that the other roothub is also deallocated. */
2428 }
2429 EXPORT_SYMBOL_GPL (usb_hc_died);
2430 
2431 /*-------------------------------------------------------------------------*/
2432 
init_giveback_urb_bh(struct giveback_urb_bh * bh)2433 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2434 {
2435 
2436 	spin_lock_init(&bh->lock);
2437 	INIT_LIST_HEAD(&bh->head);
2438 	tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2439 }
2440 
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2441 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2442 		struct device *sysdev, struct device *dev, const char *bus_name,
2443 		struct usb_hcd *primary_hcd)
2444 {
2445 	struct usb_hcd *hcd;
2446 
2447 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2448 	if (!hcd)
2449 		return NULL;
2450 	if (primary_hcd == NULL) {
2451 		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2452 				GFP_KERNEL);
2453 		if (!hcd->address0_mutex) {
2454 			kfree(hcd);
2455 			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2456 			return NULL;
2457 		}
2458 		mutex_init(hcd->address0_mutex);
2459 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2460 				GFP_KERNEL);
2461 		if (!hcd->bandwidth_mutex) {
2462 			kfree(hcd->address0_mutex);
2463 			kfree(hcd);
2464 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2465 			return NULL;
2466 		}
2467 		mutex_init(hcd->bandwidth_mutex);
2468 		dev_set_drvdata(dev, hcd);
2469 	} else {
2470 		mutex_lock(&usb_port_peer_mutex);
2471 		hcd->address0_mutex = primary_hcd->address0_mutex;
2472 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2473 		hcd->primary_hcd = primary_hcd;
2474 		primary_hcd->primary_hcd = primary_hcd;
2475 		hcd->shared_hcd = primary_hcd;
2476 		primary_hcd->shared_hcd = hcd;
2477 		mutex_unlock(&usb_port_peer_mutex);
2478 	}
2479 
2480 	kref_init(&hcd->kref);
2481 
2482 	usb_bus_init(&hcd->self);
2483 	hcd->self.controller = dev;
2484 	hcd->self.sysdev = sysdev;
2485 	hcd->self.bus_name = bus_name;
2486 
2487 	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2488 #ifdef CONFIG_PM
2489 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2490 #endif
2491 
2492 	INIT_WORK(&hcd->died_work, hcd_died_work);
2493 
2494 	hcd->driver = driver;
2495 	hcd->speed = driver->flags & HCD_MASK;
2496 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2497 			"USB Host Controller";
2498 	return hcd;
2499 }
2500 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2501 
2502 /**
2503  * usb_create_shared_hcd - create and initialize an HCD structure
2504  * @driver: HC driver that will use this hcd
2505  * @dev: device for this HC, stored in hcd->self.controller
2506  * @bus_name: value to store in hcd->self.bus_name
2507  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2508  *              PCI device.  Only allocate certain resources for the primary HCD
2509  * Context: !in_interrupt()
2510  *
2511  * Allocate a struct usb_hcd, with extra space at the end for the
2512  * HC driver's private data.  Initialize the generic members of the
2513  * hcd structure.
2514  *
2515  * Return: On success, a pointer to the created and initialized HCD structure.
2516  * On failure (e.g. if memory is unavailable), %NULL.
2517  */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2518 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2519 		struct device *dev, const char *bus_name,
2520 		struct usb_hcd *primary_hcd)
2521 {
2522 	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2523 }
2524 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2525 
2526 /**
2527  * usb_create_hcd - create and initialize an HCD structure
2528  * @driver: HC driver that will use this hcd
2529  * @dev: device for this HC, stored in hcd->self.controller
2530  * @bus_name: value to store in hcd->self.bus_name
2531  * Context: !in_interrupt()
2532  *
2533  * Allocate a struct usb_hcd, with extra space at the end for the
2534  * HC driver's private data.  Initialize the generic members of the
2535  * hcd structure.
2536  *
2537  * Return: On success, a pointer to the created and initialized HCD
2538  * structure. On failure (e.g. if memory is unavailable), %NULL.
2539  */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2540 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2541 		struct device *dev, const char *bus_name)
2542 {
2543 	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2544 }
2545 EXPORT_SYMBOL_GPL(usb_create_hcd);
2546 
2547 /*
2548  * Roothubs that share one PCI device must also share the bandwidth mutex.
2549  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2550  * deallocated.
2551  *
2552  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2553  * freed.  When hcd_release() is called for either hcd in a peer set,
2554  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2555  */
hcd_release(struct kref * kref)2556 static void hcd_release(struct kref *kref)
2557 {
2558 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2559 
2560 	mutex_lock(&usb_port_peer_mutex);
2561 	if (hcd->shared_hcd) {
2562 		struct usb_hcd *peer = hcd->shared_hcd;
2563 
2564 		peer->shared_hcd = NULL;
2565 		peer->primary_hcd = NULL;
2566 	} else {
2567 		kfree(hcd->address0_mutex);
2568 		kfree(hcd->bandwidth_mutex);
2569 	}
2570 	mutex_unlock(&usb_port_peer_mutex);
2571 	kfree(hcd);
2572 }
2573 
usb_get_hcd(struct usb_hcd * hcd)2574 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2575 {
2576 	if (hcd)
2577 		kref_get (&hcd->kref);
2578 	return hcd;
2579 }
2580 EXPORT_SYMBOL_GPL(usb_get_hcd);
2581 
usb_put_hcd(struct usb_hcd * hcd)2582 void usb_put_hcd (struct usb_hcd *hcd)
2583 {
2584 	if (hcd)
2585 		kref_put (&hcd->kref, hcd_release);
2586 }
2587 EXPORT_SYMBOL_GPL(usb_put_hcd);
2588 
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2589 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2590 {
2591 	if (!hcd->primary_hcd)
2592 		return 1;
2593 	return hcd == hcd->primary_hcd;
2594 }
2595 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2596 
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2597 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2598 {
2599 	if (!hcd->driver->find_raw_port_number)
2600 		return port1;
2601 
2602 	return hcd->driver->find_raw_port_number(hcd, port1);
2603 }
2604 
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2605 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2606 		unsigned int irqnum, unsigned long irqflags)
2607 {
2608 	int retval;
2609 
2610 	if (hcd->driver->irq) {
2611 
2612 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2613 				hcd->driver->description, hcd->self.busnum);
2614 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2615 				hcd->irq_descr, hcd);
2616 		if (retval != 0) {
2617 			dev_err(hcd->self.controller,
2618 					"request interrupt %d failed\n",
2619 					irqnum);
2620 			return retval;
2621 		}
2622 		hcd->irq = irqnum;
2623 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2624 				(hcd->driver->flags & HCD_MEMORY) ?
2625 					"io mem" : "io base",
2626 					(unsigned long long)hcd->rsrc_start);
2627 	} else {
2628 		hcd->irq = 0;
2629 		if (hcd->rsrc_start)
2630 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2631 					(hcd->driver->flags & HCD_MEMORY) ?
2632 					"io mem" : "io base",
2633 					(unsigned long long)hcd->rsrc_start);
2634 	}
2635 	return 0;
2636 }
2637 
2638 /*
2639  * Before we free this root hub, flush in-flight peering attempts
2640  * and disable peer lookups
2641  */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2642 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2643 {
2644 	struct usb_device *rhdev;
2645 
2646 	mutex_lock(&usb_port_peer_mutex);
2647 	rhdev = hcd->self.root_hub;
2648 	hcd->self.root_hub = NULL;
2649 	mutex_unlock(&usb_port_peer_mutex);
2650 	usb_put_dev(rhdev);
2651 }
2652 
2653 /**
2654  * usb_add_hcd - finish generic HCD structure initialization and register
2655  * @hcd: the usb_hcd structure to initialize
2656  * @irqnum: Interrupt line to allocate
2657  * @irqflags: Interrupt type flags
2658  *
2659  * Finish the remaining parts of generic HCD initialization: allocate the
2660  * buffers of consistent memory, register the bus, request the IRQ line,
2661  * and call the driver's reset() and start() routines.
2662  */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2663 int usb_add_hcd(struct usb_hcd *hcd,
2664 		unsigned int irqnum, unsigned long irqflags)
2665 {
2666 	int retval;
2667 	struct usb_device *rhdev;
2668 	struct usb_hcd *shared_hcd;
2669 
2670 	if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2671 		hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2672 		if (IS_ERR(hcd->phy_roothub))
2673 			return PTR_ERR(hcd->phy_roothub);
2674 
2675 		retval = usb_phy_roothub_init(hcd->phy_roothub);
2676 		if (retval)
2677 			return retval;
2678 
2679 		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2680 						  PHY_MODE_USB_HOST_SS);
2681 		if (retval)
2682 			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2683 							  PHY_MODE_USB_HOST);
2684 		if (retval)
2685 			goto err_usb_phy_roothub_power_on;
2686 
2687 		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2688 		if (retval)
2689 			goto err_usb_phy_roothub_power_on;
2690 	}
2691 
2692 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2693 
2694 	switch (authorized_default) {
2695 	case USB_AUTHORIZE_NONE:
2696 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2697 		break;
2698 
2699 	case USB_AUTHORIZE_ALL:
2700 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2701 		break;
2702 
2703 	case USB_AUTHORIZE_INTERNAL:
2704 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2705 		break;
2706 
2707 	case USB_AUTHORIZE_WIRED:
2708 	default:
2709 		hcd->dev_policy = hcd->wireless ?
2710 			USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2711 		break;
2712 	}
2713 
2714 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2715 
2716 	/* per default all interfaces are authorized */
2717 	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2718 
2719 	/* HC is in reset state, but accessible.  Now do the one-time init,
2720 	 * bottom up so that hcds can customize the root hubs before hub_wq
2721 	 * starts talking to them.  (Note, bus id is assigned early too.)
2722 	 */
2723 	retval = hcd_buffer_create(hcd);
2724 	if (retval != 0) {
2725 		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2726 		goto err_create_buf;
2727 	}
2728 
2729 	retval = usb_register_bus(&hcd->self);
2730 	if (retval < 0)
2731 		goto err_register_bus;
2732 
2733 	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2734 	if (rhdev == NULL) {
2735 		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2736 		retval = -ENOMEM;
2737 		goto err_allocate_root_hub;
2738 	}
2739 	mutex_lock(&usb_port_peer_mutex);
2740 	hcd->self.root_hub = rhdev;
2741 	mutex_unlock(&usb_port_peer_mutex);
2742 
2743 	rhdev->rx_lanes = 1;
2744 	rhdev->tx_lanes = 1;
2745 
2746 	switch (hcd->speed) {
2747 	case HCD_USB11:
2748 		rhdev->speed = USB_SPEED_FULL;
2749 		break;
2750 	case HCD_USB2:
2751 		rhdev->speed = USB_SPEED_HIGH;
2752 		break;
2753 	case HCD_USB25:
2754 		rhdev->speed = USB_SPEED_WIRELESS;
2755 		break;
2756 	case HCD_USB3:
2757 		rhdev->speed = USB_SPEED_SUPER;
2758 		break;
2759 	case HCD_USB32:
2760 		rhdev->rx_lanes = 2;
2761 		rhdev->tx_lanes = 2;
2762 		fallthrough;
2763 	case HCD_USB31:
2764 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2765 		break;
2766 	default:
2767 		retval = -EINVAL;
2768 		goto err_set_rh_speed;
2769 	}
2770 
2771 	/* wakeup flag init defaults to "everything works" for root hubs,
2772 	 * but drivers can override it in reset() if needed, along with
2773 	 * recording the overall controller's system wakeup capability.
2774 	 */
2775 	device_set_wakeup_capable(&rhdev->dev, 1);
2776 
2777 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2778 	 * registered.  But since the controller can die at any time,
2779 	 * let's initialize the flag before touching the hardware.
2780 	 */
2781 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2782 
2783 	/* "reset" is misnamed; its role is now one-time init. the controller
2784 	 * should already have been reset (and boot firmware kicked off etc).
2785 	 */
2786 	if (hcd->driver->reset) {
2787 		retval = hcd->driver->reset(hcd);
2788 		if (retval < 0) {
2789 			dev_err(hcd->self.controller, "can't setup: %d\n",
2790 					retval);
2791 			goto err_hcd_driver_setup;
2792 		}
2793 	}
2794 	hcd->rh_pollable = 1;
2795 
2796 	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2797 	if (retval)
2798 		goto err_hcd_driver_setup;
2799 
2800 	/* NOTE: root hub and controller capabilities may not be the same */
2801 	if (device_can_wakeup(hcd->self.controller)
2802 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2803 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2804 
2805 	/* initialize tasklets */
2806 	init_giveback_urb_bh(&hcd->high_prio_bh);
2807 	init_giveback_urb_bh(&hcd->low_prio_bh);
2808 
2809 	/* enable irqs just before we start the controller,
2810 	 * if the BIOS provides legacy PCI irqs.
2811 	 */
2812 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2813 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2814 		if (retval)
2815 			goto err_request_irq;
2816 	}
2817 
2818 	hcd->state = HC_STATE_RUNNING;
2819 	retval = hcd->driver->start(hcd);
2820 	if (retval < 0) {
2821 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2822 		goto err_hcd_driver_start;
2823 	}
2824 
2825 	/* starting here, usbcore will pay attention to the shared HCD roothub */
2826 	shared_hcd = hcd->shared_hcd;
2827 	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2828 		retval = register_root_hub(shared_hcd);
2829 		if (retval != 0)
2830 			goto err_register_root_hub;
2831 
2832 		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2833 			usb_hcd_poll_rh_status(shared_hcd);
2834 	}
2835 
2836 	/* starting here, usbcore will pay attention to this root hub */
2837 	if (!HCD_DEFER_RH_REGISTER(hcd)) {
2838 		retval = register_root_hub(hcd);
2839 		if (retval != 0)
2840 			goto err_register_root_hub;
2841 
2842 		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2843 			usb_hcd_poll_rh_status(hcd);
2844 	}
2845 
2846 	return retval;
2847 
2848 err_register_root_hub:
2849 	hcd->rh_pollable = 0;
2850 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2851 	del_timer_sync(&hcd->rh_timer);
2852 	hcd->driver->stop(hcd);
2853 	hcd->state = HC_STATE_HALT;
2854 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2855 	del_timer_sync(&hcd->rh_timer);
2856 err_hcd_driver_start:
2857 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2858 		free_irq(irqnum, hcd);
2859 err_request_irq:
2860 err_hcd_driver_setup:
2861 err_set_rh_speed:
2862 	usb_put_invalidate_rhdev(hcd);
2863 err_allocate_root_hub:
2864 	usb_deregister_bus(&hcd->self);
2865 err_register_bus:
2866 	hcd_buffer_destroy(hcd);
2867 err_create_buf:
2868 	usb_phy_roothub_power_off(hcd->phy_roothub);
2869 err_usb_phy_roothub_power_on:
2870 	usb_phy_roothub_exit(hcd->phy_roothub);
2871 
2872 	return retval;
2873 }
2874 EXPORT_SYMBOL_GPL(usb_add_hcd);
2875 
2876 /**
2877  * usb_remove_hcd - shutdown processing for generic HCDs
2878  * @hcd: the usb_hcd structure to remove
2879  * Context: !in_interrupt()
2880  *
2881  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2882  * invoking the HCD's stop() method.
2883  */
usb_remove_hcd(struct usb_hcd * hcd)2884 void usb_remove_hcd(struct usb_hcd *hcd)
2885 {
2886 	struct usb_device *rhdev = hcd->self.root_hub;
2887 	bool rh_registered;
2888 
2889 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2890 
2891 	usb_get_dev(rhdev);
2892 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2893 	if (HC_IS_RUNNING (hcd->state))
2894 		hcd->state = HC_STATE_QUIESCING;
2895 
2896 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2897 	spin_lock_irq (&hcd_root_hub_lock);
2898 	rh_registered = hcd->rh_registered;
2899 	hcd->rh_registered = 0;
2900 	spin_unlock_irq (&hcd_root_hub_lock);
2901 
2902 #ifdef CONFIG_PM
2903 	cancel_work_sync(&hcd->wakeup_work);
2904 #endif
2905 	cancel_work_sync(&hcd->died_work);
2906 
2907 	mutex_lock(&usb_bus_idr_lock);
2908 	if (rh_registered)
2909 		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2910 	mutex_unlock(&usb_bus_idr_lock);
2911 
2912 	/*
2913 	 * tasklet_kill() isn't needed here because:
2914 	 * - driver's disconnect() called from usb_disconnect() should
2915 	 *   make sure its URBs are completed during the disconnect()
2916 	 *   callback
2917 	 *
2918 	 * - it is too late to run complete() here since driver may have
2919 	 *   been removed already now
2920 	 */
2921 
2922 	/* Prevent any more root-hub status calls from the timer.
2923 	 * The HCD might still restart the timer (if a port status change
2924 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2925 	 * the hub_status_data() callback.
2926 	 */
2927 	hcd->rh_pollable = 0;
2928 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2929 	del_timer_sync(&hcd->rh_timer);
2930 
2931 	hcd->driver->stop(hcd);
2932 	hcd->state = HC_STATE_HALT;
2933 
2934 	/* In case the HCD restarted the timer, stop it again. */
2935 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2936 	del_timer_sync(&hcd->rh_timer);
2937 
2938 	if (usb_hcd_is_primary_hcd(hcd)) {
2939 		if (hcd->irq > 0)
2940 			free_irq(hcd->irq, hcd);
2941 	}
2942 
2943 	usb_deregister_bus(&hcd->self);
2944 	hcd_buffer_destroy(hcd);
2945 
2946 	usb_phy_roothub_power_off(hcd->phy_roothub);
2947 	usb_phy_roothub_exit(hcd->phy_roothub);
2948 
2949 	usb_put_invalidate_rhdev(hcd);
2950 	hcd->flags = 0;
2951 }
2952 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2953 
2954 void
usb_hcd_platform_shutdown(struct platform_device * dev)2955 usb_hcd_platform_shutdown(struct platform_device *dev)
2956 {
2957 	struct usb_hcd *hcd = platform_get_drvdata(dev);
2958 
2959 	/* No need for pm_runtime_put(), we're shutting down */
2960 	pm_runtime_get_sync(&dev->dev);
2961 
2962 	if (hcd->driver->shutdown)
2963 		hcd->driver->shutdown(hcd);
2964 }
2965 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2966 
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)2967 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2968 			    dma_addr_t dma, size_t size)
2969 {
2970 	int err;
2971 	void *local_mem;
2972 
2973 	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2974 						  dev_to_node(hcd->self.sysdev),
2975 						  dev_name(hcd->self.sysdev));
2976 	if (IS_ERR(hcd->localmem_pool))
2977 		return PTR_ERR(hcd->localmem_pool);
2978 
2979 	local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2980 				  size, MEMREMAP_WC);
2981 	if (IS_ERR(local_mem))
2982 		return PTR_ERR(local_mem);
2983 
2984 	/*
2985 	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2986 	 * It's not backed by system memory and thus there's no kernel mapping
2987 	 * for it.
2988 	 */
2989 	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2990 				dma, size, dev_to_node(hcd->self.sysdev));
2991 	if (err < 0) {
2992 		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2993 			err);
2994 		return err;
2995 	}
2996 
2997 	return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3000 
3001 /*-------------------------------------------------------------------------*/
3002 
3003 #if IS_ENABLED(CONFIG_USB_MON)
3004 
3005 const struct usb_mon_operations *mon_ops;
3006 
3007 /*
3008  * The registration is unlocked.
3009  * We do it this way because we do not want to lock in hot paths.
3010  *
3011  * Notice that the code is minimally error-proof. Because usbmon needs
3012  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3013  */
3014 
usb_mon_register(const struct usb_mon_operations * ops)3015 int usb_mon_register(const struct usb_mon_operations *ops)
3016 {
3017 
3018 	if (mon_ops)
3019 		return -EBUSY;
3020 
3021 	mon_ops = ops;
3022 	mb();
3023 	return 0;
3024 }
3025 EXPORT_SYMBOL_GPL (usb_mon_register);
3026 
usb_mon_deregister(void)3027 void usb_mon_deregister (void)
3028 {
3029 
3030 	if (mon_ops == NULL) {
3031 		printk(KERN_ERR "USB: monitor was not registered\n");
3032 		return;
3033 	}
3034 	mon_ops = NULL;
3035 	mb();
3036 }
3037 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3038 
3039 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3040