1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/block_dev.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7 */
8
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/pseudo_fs.h>
29 #include <linux/uio.h>
30 #include <linux/namei.h>
31 #include <linux/log2.h>
32 #include <linux/cleancache.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include <linux/suspend.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
BDEV_I(struct inode * inode)46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
I_BDEV(struct inode * inode)51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
bdev_write_inode(struct block_device * bdev)57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)78 static void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88
89 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)90 void invalidate_bdev(struct block_device *bdev)
91 {
92 struct address_space *mapping = bdev->bd_inode->i_mapping;
93
94 if (mapping->nrpages) {
95 invalidate_bh_lrus();
96 lru_add_drain_all(); /* make sure all lru add caches are flushed */
97 invalidate_mapping_pages(mapping, 0, -1);
98 }
99 /* 99% of the time, we don't need to flush the cleancache on the bdev.
100 * But, for the strange corners, lets be cautious
101 */
102 cleancache_invalidate_inode(mapping);
103 }
104 EXPORT_SYMBOL(invalidate_bdev);
105
106 /*
107 * Drop all buffers & page cache for given bdev range. This function bails
108 * with error if bdev has other exclusive owner (such as filesystem).
109 */
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)110 int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
111 loff_t lstart, loff_t lend)
112 {
113 struct block_device *claimed_bdev = NULL;
114 int err;
115
116 /*
117 * If we don't hold exclusive handle for the device, upgrade to it
118 * while we discard the buffer cache to avoid discarding buffers
119 * under live filesystem.
120 */
121 if (!(mode & FMODE_EXCL)) {
122 claimed_bdev = bdev->bd_contains;
123 err = bd_prepare_to_claim(bdev, claimed_bdev,
124 truncate_bdev_range);
125 if (err)
126 goto invalidate;
127 }
128 truncate_inode_pages_range(bdev->bd_inode->i_mapping, lstart, lend);
129 if (claimed_bdev)
130 bd_abort_claiming(bdev, claimed_bdev, truncate_bdev_range);
131 return 0;
132
133 invalidate:
134 /*
135 * Someone else has handle exclusively open. Try invalidating instead.
136 * The 'end' argument is inclusive so the rounding is safe.
137 */
138 return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping,
139 lstart >> PAGE_SHIFT,
140 lend >> PAGE_SHIFT);
141 }
142 EXPORT_SYMBOL(truncate_bdev_range);
143
set_init_blocksize(struct block_device * bdev)144 static void set_init_blocksize(struct block_device *bdev)
145 {
146 unsigned int bsize = bdev_logical_block_size(bdev);
147 loff_t size = i_size_read(bdev->bd_inode);
148
149 while (bsize < PAGE_SIZE) {
150 if (size & bsize)
151 break;
152 bsize <<= 1;
153 }
154 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
155 }
156
set_blocksize(struct block_device * bdev,int size)157 int set_blocksize(struct block_device *bdev, int size)
158 {
159 /* Size must be a power of two, and between 512 and PAGE_SIZE */
160 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
161 return -EINVAL;
162
163 /* Size cannot be smaller than the size supported by the device */
164 if (size < bdev_logical_block_size(bdev))
165 return -EINVAL;
166
167 /* Don't change the size if it is same as current */
168 if (bdev->bd_inode->i_blkbits != blksize_bits(size)) {
169 sync_blockdev(bdev);
170 bdev->bd_inode->i_blkbits = blksize_bits(size);
171 kill_bdev(bdev);
172 }
173 return 0;
174 }
175
176 EXPORT_SYMBOL(set_blocksize);
177
sb_set_blocksize(struct super_block * sb,int size)178 int sb_set_blocksize(struct super_block *sb, int size)
179 {
180 if (set_blocksize(sb->s_bdev, size))
181 return 0;
182 /* If we get here, we know size is power of two
183 * and it's value is between 512 and PAGE_SIZE */
184 sb->s_blocksize = size;
185 sb->s_blocksize_bits = blksize_bits(size);
186 return sb->s_blocksize;
187 }
188
189 EXPORT_SYMBOL_NS(sb_set_blocksize, ANDROID_GKI_VFS_EXPORT_ONLY);
190
sb_min_blocksize(struct super_block * sb,int size)191 int sb_min_blocksize(struct super_block *sb, int size)
192 {
193 int minsize = bdev_logical_block_size(sb->s_bdev);
194 if (size < minsize)
195 size = minsize;
196 return sb_set_blocksize(sb, size);
197 }
198
199 EXPORT_SYMBOL_NS(sb_min_blocksize, ANDROID_GKI_VFS_EXPORT_ONLY);
200
201 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)202 blkdev_get_block(struct inode *inode, sector_t iblock,
203 struct buffer_head *bh, int create)
204 {
205 bh->b_bdev = I_BDEV(inode);
206 bh->b_blocknr = iblock;
207 set_buffer_mapped(bh);
208 return 0;
209 }
210
bdev_file_inode(struct file * file)211 static struct inode *bdev_file_inode(struct file *file)
212 {
213 return file->f_mapping->host;
214 }
215
dio_bio_write_op(struct kiocb * iocb)216 static unsigned int dio_bio_write_op(struct kiocb *iocb)
217 {
218 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
219
220 /* avoid the need for a I/O completion work item */
221 if (iocb->ki_flags & IOCB_DSYNC)
222 op |= REQ_FUA;
223 return op;
224 }
225
226 #define DIO_INLINE_BIO_VECS 4
227
blkdev_bio_end_io_simple(struct bio * bio)228 static void blkdev_bio_end_io_simple(struct bio *bio)
229 {
230 struct task_struct *waiter = bio->bi_private;
231
232 WRITE_ONCE(bio->bi_private, NULL);
233 blk_wake_io_task(waiter);
234 }
235
236 static ssize_t
__blkdev_direct_IO_simple(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)237 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
238 int nr_pages)
239 {
240 struct file *file = iocb->ki_filp;
241 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
242 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
243 loff_t pos = iocb->ki_pos;
244 bool should_dirty = false;
245 struct bio bio;
246 ssize_t ret;
247 blk_qc_t qc;
248
249 if ((pos | iov_iter_alignment(iter)) &
250 (bdev_logical_block_size(bdev) - 1))
251 return -EINVAL;
252
253 if (nr_pages <= DIO_INLINE_BIO_VECS)
254 vecs = inline_vecs;
255 else {
256 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
257 GFP_KERNEL);
258 if (!vecs)
259 return -ENOMEM;
260 }
261
262 bio_init(&bio, vecs, nr_pages);
263 bio_set_dev(&bio, bdev);
264 bio.bi_iter.bi_sector = pos >> 9;
265 bio.bi_write_hint = iocb->ki_hint;
266 bio.bi_private = current;
267 bio.bi_end_io = blkdev_bio_end_io_simple;
268 bio.bi_ioprio = iocb->ki_ioprio;
269
270 ret = bio_iov_iter_get_pages(&bio, iter);
271 if (unlikely(ret))
272 goto out;
273 ret = bio.bi_iter.bi_size;
274
275 if (iov_iter_rw(iter) == READ) {
276 bio.bi_opf = REQ_OP_READ;
277 if (iter_is_iovec(iter))
278 should_dirty = true;
279 } else {
280 bio.bi_opf = dio_bio_write_op(iocb);
281 task_io_account_write(ret);
282 }
283 if (iocb->ki_flags & IOCB_NOWAIT)
284 bio.bi_opf |= REQ_NOWAIT;
285 if (iocb->ki_flags & IOCB_HIPRI)
286 bio_set_polled(&bio, iocb);
287
288 qc = submit_bio(&bio);
289 for (;;) {
290 set_current_state(TASK_UNINTERRUPTIBLE);
291 if (!READ_ONCE(bio.bi_private))
292 break;
293 if (!(iocb->ki_flags & IOCB_HIPRI) ||
294 !blk_poll(bdev_get_queue(bdev), qc, true))
295 blk_io_schedule();
296 }
297 __set_current_state(TASK_RUNNING);
298
299 bio_release_pages(&bio, should_dirty);
300 if (unlikely(bio.bi_status))
301 ret = blk_status_to_errno(bio.bi_status);
302
303 out:
304 if (vecs != inline_vecs)
305 kfree(vecs);
306
307 bio_uninit(&bio);
308
309 return ret;
310 }
311
312 struct blkdev_dio {
313 union {
314 struct kiocb *iocb;
315 struct task_struct *waiter;
316 };
317 size_t size;
318 atomic_t ref;
319 bool multi_bio : 1;
320 bool should_dirty : 1;
321 bool is_sync : 1;
322 struct bio bio;
323 };
324
325 static struct bio_set blkdev_dio_pool;
326
blkdev_iopoll(struct kiocb * kiocb,bool wait)327 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
328 {
329 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
330 struct request_queue *q = bdev_get_queue(bdev);
331
332 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
333 }
334
blkdev_bio_end_io(struct bio * bio)335 static void blkdev_bio_end_io(struct bio *bio)
336 {
337 struct blkdev_dio *dio = bio->bi_private;
338 bool should_dirty = dio->should_dirty;
339
340 if (bio->bi_status && !dio->bio.bi_status)
341 dio->bio.bi_status = bio->bi_status;
342
343 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
344 if (!dio->is_sync) {
345 struct kiocb *iocb = dio->iocb;
346 ssize_t ret;
347
348 if (likely(!dio->bio.bi_status)) {
349 ret = dio->size;
350 iocb->ki_pos += ret;
351 } else {
352 ret = blk_status_to_errno(dio->bio.bi_status);
353 }
354
355 dio->iocb->ki_complete(iocb, ret, 0);
356 if (dio->multi_bio)
357 bio_put(&dio->bio);
358 } else {
359 struct task_struct *waiter = dio->waiter;
360
361 WRITE_ONCE(dio->waiter, NULL);
362 blk_wake_io_task(waiter);
363 }
364 }
365
366 if (should_dirty) {
367 bio_check_pages_dirty(bio);
368 } else {
369 bio_release_pages(bio, false);
370 bio_put(bio);
371 }
372 }
373
374 static ssize_t
__blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)375 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
376 {
377 struct file *file = iocb->ki_filp;
378 struct inode *inode = bdev_file_inode(file);
379 struct block_device *bdev = I_BDEV(inode);
380 struct blk_plug plug;
381 struct blkdev_dio *dio;
382 struct bio *bio;
383 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
384 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
385 loff_t pos = iocb->ki_pos;
386 blk_qc_t qc = BLK_QC_T_NONE;
387 int ret = 0;
388
389 if ((pos | iov_iter_alignment(iter)) &
390 (bdev_logical_block_size(bdev) - 1))
391 return -EINVAL;
392
393 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
394
395 dio = container_of(bio, struct blkdev_dio, bio);
396 dio->is_sync = is_sync = is_sync_kiocb(iocb);
397 if (dio->is_sync) {
398 dio->waiter = current;
399 bio_get(bio);
400 } else {
401 dio->iocb = iocb;
402 }
403
404 dio->size = 0;
405 dio->multi_bio = false;
406 dio->should_dirty = is_read && iter_is_iovec(iter);
407
408 /*
409 * Don't plug for HIPRI/polled IO, as those should go straight
410 * to issue
411 */
412 if (!is_poll)
413 blk_start_plug(&plug);
414
415 for (;;) {
416 bio_set_dev(bio, bdev);
417 bio->bi_iter.bi_sector = pos >> 9;
418 bio->bi_write_hint = iocb->ki_hint;
419 bio->bi_private = dio;
420 bio->bi_end_io = blkdev_bio_end_io;
421 bio->bi_ioprio = iocb->ki_ioprio;
422
423 ret = bio_iov_iter_get_pages(bio, iter);
424 if (unlikely(ret)) {
425 bio->bi_status = BLK_STS_IOERR;
426 bio_endio(bio);
427 break;
428 }
429
430 if (is_read) {
431 bio->bi_opf = REQ_OP_READ;
432 if (dio->should_dirty)
433 bio_set_pages_dirty(bio);
434 } else {
435 bio->bi_opf = dio_bio_write_op(iocb);
436 task_io_account_write(bio->bi_iter.bi_size);
437 }
438 if (iocb->ki_flags & IOCB_NOWAIT)
439 bio->bi_opf |= REQ_NOWAIT;
440
441 dio->size += bio->bi_iter.bi_size;
442 pos += bio->bi_iter.bi_size;
443
444 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
445 if (!nr_pages) {
446 bool polled = false;
447
448 if (iocb->ki_flags & IOCB_HIPRI) {
449 bio_set_polled(bio, iocb);
450 polled = true;
451 }
452
453 qc = submit_bio(bio);
454
455 if (polled)
456 WRITE_ONCE(iocb->ki_cookie, qc);
457 break;
458 }
459
460 if (!dio->multi_bio) {
461 /*
462 * AIO needs an extra reference to ensure the dio
463 * structure which is embedded into the first bio
464 * stays around.
465 */
466 if (!is_sync)
467 bio_get(bio);
468 dio->multi_bio = true;
469 atomic_set(&dio->ref, 2);
470 } else {
471 atomic_inc(&dio->ref);
472 }
473
474 submit_bio(bio);
475 bio = bio_alloc(GFP_KERNEL, nr_pages);
476 }
477
478 if (!is_poll)
479 blk_finish_plug(&plug);
480
481 if (!is_sync)
482 return -EIOCBQUEUED;
483
484 for (;;) {
485 set_current_state(TASK_UNINTERRUPTIBLE);
486 if (!READ_ONCE(dio->waiter))
487 break;
488
489 if (!(iocb->ki_flags & IOCB_HIPRI) ||
490 !blk_poll(bdev_get_queue(bdev), qc, true))
491 blk_io_schedule();
492 }
493 __set_current_state(TASK_RUNNING);
494
495 if (!ret)
496 ret = blk_status_to_errno(dio->bio.bi_status);
497 if (likely(!ret))
498 ret = dio->size;
499
500 bio_put(&dio->bio);
501 return ret;
502 }
503
504 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)505 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
506 {
507 int nr_pages;
508
509 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
510 if (!nr_pages)
511 return 0;
512 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
513 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
514
515 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
516 }
517
blkdev_init(void)518 static __init int blkdev_init(void)
519 {
520 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
521 }
522 module_init(blkdev_init);
523
__sync_blockdev(struct block_device * bdev,int wait)524 int __sync_blockdev(struct block_device *bdev, int wait)
525 {
526 if (!bdev)
527 return 0;
528 if (!wait)
529 return filemap_flush(bdev->bd_inode->i_mapping);
530 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
531 }
532
533 /*
534 * Write out and wait upon all the dirty data associated with a block
535 * device via its mapping. Does not take the superblock lock.
536 */
sync_blockdev(struct block_device * bdev)537 int sync_blockdev(struct block_device *bdev)
538 {
539 return __sync_blockdev(bdev, 1);
540 }
541 EXPORT_SYMBOL(sync_blockdev);
542
543 /*
544 * Write out and wait upon all dirty data associated with this
545 * device. Filesystem data as well as the underlying block
546 * device. Takes the superblock lock.
547 */
fsync_bdev(struct block_device * bdev)548 int fsync_bdev(struct block_device *bdev)
549 {
550 struct super_block *sb = get_super(bdev);
551 if (sb) {
552 int res = sync_filesystem(sb);
553 drop_super(sb);
554 return res;
555 }
556 return sync_blockdev(bdev);
557 }
558 EXPORT_SYMBOL(fsync_bdev);
559
560 /**
561 * freeze_bdev -- lock a filesystem and force it into a consistent state
562 * @bdev: blockdevice to lock
563 *
564 * If a superblock is found on this device, we take the s_umount semaphore
565 * on it to make sure nobody unmounts until the snapshot creation is done.
566 * The reference counter (bd_fsfreeze_count) guarantees that only the last
567 * unfreeze process can unfreeze the frozen filesystem actually when multiple
568 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
569 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
570 * actually.
571 */
freeze_bdev(struct block_device * bdev)572 int freeze_bdev(struct block_device *bdev)
573 {
574 struct super_block *sb;
575 int error = 0;
576
577 mutex_lock(&bdev->bd_fsfreeze_mutex);
578 if (++bdev->bd_fsfreeze_count > 1)
579 goto done;
580
581 sb = get_active_super(bdev);
582 if (!sb)
583 goto sync;
584 if (sb->s_op->freeze_super)
585 error = sb->s_op->freeze_super(sb);
586 else
587 error = freeze_super(sb);
588 deactivate_super(sb);
589
590 if (error) {
591 bdev->bd_fsfreeze_count--;
592 goto done;
593 }
594 bdev->bd_fsfreeze_sb = sb;
595
596 sync:
597 sync_blockdev(bdev);
598 done:
599 mutex_unlock(&bdev->bd_fsfreeze_mutex);
600 return error;
601 }
602 EXPORT_SYMBOL(freeze_bdev);
603
604 /**
605 * thaw_bdev -- unlock filesystem
606 * @bdev: blockdevice to unlock
607 *
608 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
609 */
thaw_bdev(struct block_device * bdev)610 int thaw_bdev(struct block_device *bdev)
611 {
612 struct super_block *sb;
613 int error = -EINVAL;
614
615 mutex_lock(&bdev->bd_fsfreeze_mutex);
616 if (!bdev->bd_fsfreeze_count)
617 goto out;
618
619 error = 0;
620 if (--bdev->bd_fsfreeze_count > 0)
621 goto out;
622
623 sb = bdev->bd_fsfreeze_sb;
624 if (!sb)
625 goto out;
626
627 if (sb->s_op->thaw_super)
628 error = sb->s_op->thaw_super(sb);
629 else
630 error = thaw_super(sb);
631 if (error)
632 bdev->bd_fsfreeze_count++;
633 out:
634 mutex_unlock(&bdev->bd_fsfreeze_mutex);
635 return error;
636 }
637 EXPORT_SYMBOL(thaw_bdev);
638
blkdev_writepage(struct page * page,struct writeback_control * wbc)639 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
640 {
641 return block_write_full_page(page, blkdev_get_block, wbc);
642 }
643
blkdev_readpage(struct file * file,struct page * page)644 static int blkdev_readpage(struct file * file, struct page * page)
645 {
646 return block_read_full_page(page, blkdev_get_block);
647 }
648
blkdev_readahead(struct readahead_control * rac)649 static void blkdev_readahead(struct readahead_control *rac)
650 {
651 mpage_readahead(rac, blkdev_get_block);
652 }
653
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)654 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
655 loff_t pos, unsigned len, unsigned flags,
656 struct page **pagep, void **fsdata)
657 {
658 return block_write_begin(mapping, pos, len, flags, pagep,
659 blkdev_get_block);
660 }
661
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)662 static int blkdev_write_end(struct file *file, struct address_space *mapping,
663 loff_t pos, unsigned len, unsigned copied,
664 struct page *page, void *fsdata)
665 {
666 int ret;
667 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
668
669 unlock_page(page);
670 put_page(page);
671
672 return ret;
673 }
674
675 /*
676 * private llseek:
677 * for a block special file file_inode(file)->i_size is zero
678 * so we compute the size by hand (just as in block_read/write above)
679 */
block_llseek(struct file * file,loff_t offset,int whence)680 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
681 {
682 struct inode *bd_inode = bdev_file_inode(file);
683 loff_t retval;
684
685 inode_lock(bd_inode);
686 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
687 inode_unlock(bd_inode);
688 return retval;
689 }
690
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)691 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
692 {
693 struct inode *bd_inode = bdev_file_inode(filp);
694 struct block_device *bdev = I_BDEV(bd_inode);
695 int error;
696
697 error = file_write_and_wait_range(filp, start, end);
698 if (error)
699 return error;
700
701 /*
702 * There is no need to serialise calls to blkdev_issue_flush with
703 * i_mutex and doing so causes performance issues with concurrent
704 * O_SYNC writers to a block device.
705 */
706 error = blkdev_issue_flush(bdev, GFP_KERNEL);
707 if (error == -EOPNOTSUPP)
708 error = 0;
709
710 return error;
711 }
712 EXPORT_SYMBOL(blkdev_fsync);
713
714 /**
715 * bdev_read_page() - Start reading a page from a block device
716 * @bdev: The device to read the page from
717 * @sector: The offset on the device to read the page to (need not be aligned)
718 * @page: The page to read
719 *
720 * On entry, the page should be locked. It will be unlocked when the page
721 * has been read. If the block driver implements rw_page synchronously,
722 * that will be true on exit from this function, but it need not be.
723 *
724 * Errors returned by this function are usually "soft", eg out of memory, or
725 * queue full; callers should try a different route to read this page rather
726 * than propagate an error back up the stack.
727 *
728 * Return: negative errno if an error occurs, 0 if submission was successful.
729 */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)730 int bdev_read_page(struct block_device *bdev, sector_t sector,
731 struct page *page)
732 {
733 const struct block_device_operations *ops = bdev->bd_disk->fops;
734 int result = -EOPNOTSUPP;
735
736 if (!ops->rw_page || bdev_get_integrity(bdev))
737 return result;
738
739 result = blk_queue_enter(bdev->bd_disk->queue, 0);
740 if (result)
741 return result;
742 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
743 REQ_OP_READ);
744 blk_queue_exit(bdev->bd_disk->queue);
745 return result;
746 }
747
748 /**
749 * bdev_write_page() - Start writing a page to a block device
750 * @bdev: The device to write the page to
751 * @sector: The offset on the device to write the page to (need not be aligned)
752 * @page: The page to write
753 * @wbc: The writeback_control for the write
754 *
755 * On entry, the page should be locked and not currently under writeback.
756 * On exit, if the write started successfully, the page will be unlocked and
757 * under writeback. If the write failed already (eg the driver failed to
758 * queue the page to the device), the page will still be locked. If the
759 * caller is a ->writepage implementation, it will need to unlock the page.
760 *
761 * Errors returned by this function are usually "soft", eg out of memory, or
762 * queue full; callers should try a different route to write this page rather
763 * than propagate an error back up the stack.
764 *
765 * Return: negative errno if an error occurs, 0 if submission was successful.
766 */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)767 int bdev_write_page(struct block_device *bdev, sector_t sector,
768 struct page *page, struct writeback_control *wbc)
769 {
770 int result;
771 const struct block_device_operations *ops = bdev->bd_disk->fops;
772
773 if (!ops->rw_page || bdev_get_integrity(bdev))
774 return -EOPNOTSUPP;
775 result = blk_queue_enter(bdev->bd_disk->queue, 0);
776 if (result)
777 return result;
778
779 set_page_writeback(page);
780 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
781 REQ_OP_WRITE);
782 if (result) {
783 end_page_writeback(page);
784 } else {
785 clean_page_buffers(page);
786 unlock_page(page);
787 }
788 blk_queue_exit(bdev->bd_disk->queue);
789 return result;
790 }
791
792 /*
793 * pseudo-fs
794 */
795
796 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
797 static struct kmem_cache * bdev_cachep __read_mostly;
798
bdev_alloc_inode(struct super_block * sb)799 static struct inode *bdev_alloc_inode(struct super_block *sb)
800 {
801 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
802 if (!ei)
803 return NULL;
804 return &ei->vfs_inode;
805 }
806
bdev_free_inode(struct inode * inode)807 static void bdev_free_inode(struct inode *inode)
808 {
809 kmem_cache_free(bdev_cachep, BDEV_I(inode));
810 }
811
init_once(void * foo)812 static void init_once(void *foo)
813 {
814 struct bdev_inode *ei = (struct bdev_inode *) foo;
815 struct block_device *bdev = &ei->bdev;
816
817 memset(bdev, 0, sizeof(*bdev));
818 mutex_init(&bdev->bd_mutex);
819 #ifdef CONFIG_SYSFS
820 INIT_LIST_HEAD(&bdev->bd_holder_disks);
821 #endif
822 bdev->bd_bdi = &noop_backing_dev_info;
823 inode_init_once(&ei->vfs_inode);
824 /* Initialize mutex for freeze. */
825 mutex_init(&bdev->bd_fsfreeze_mutex);
826 }
827
bdev_evict_inode(struct inode * inode)828 static void bdev_evict_inode(struct inode *inode)
829 {
830 struct block_device *bdev = &BDEV_I(inode)->bdev;
831 truncate_inode_pages_final(&inode->i_data);
832 invalidate_inode_buffers(inode); /* is it needed here? */
833 clear_inode(inode);
834 /* Detach inode from wb early as bdi_put() may free bdi->wb */
835 inode_detach_wb(inode);
836 if (bdev->bd_bdi != &noop_backing_dev_info) {
837 bdi_put(bdev->bd_bdi);
838 bdev->bd_bdi = &noop_backing_dev_info;
839 }
840 }
841
842 static const struct super_operations bdev_sops = {
843 .statfs = simple_statfs,
844 .alloc_inode = bdev_alloc_inode,
845 .free_inode = bdev_free_inode,
846 .drop_inode = generic_delete_inode,
847 .evict_inode = bdev_evict_inode,
848 };
849
bd_init_fs_context(struct fs_context * fc)850 static int bd_init_fs_context(struct fs_context *fc)
851 {
852 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
853 if (!ctx)
854 return -ENOMEM;
855 fc->s_iflags |= SB_I_CGROUPWB;
856 ctx->ops = &bdev_sops;
857 return 0;
858 }
859
860 static struct file_system_type bd_type = {
861 .name = "bdev",
862 .init_fs_context = bd_init_fs_context,
863 .kill_sb = kill_anon_super,
864 };
865
866 struct super_block *blockdev_superblock __read_mostly;
867 EXPORT_SYMBOL_GPL(blockdev_superblock);
868
bdev_cache_init(void)869 void __init bdev_cache_init(void)
870 {
871 int err;
872 static struct vfsmount *bd_mnt;
873
874 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
875 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
876 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
877 init_once);
878 err = register_filesystem(&bd_type);
879 if (err)
880 panic("Cannot register bdev pseudo-fs");
881 bd_mnt = kern_mount(&bd_type);
882 if (IS_ERR(bd_mnt))
883 panic("Cannot create bdev pseudo-fs");
884 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
885 }
886
887 /*
888 * Most likely _very_ bad one - but then it's hardly critical for small
889 * /dev and can be fixed when somebody will need really large one.
890 * Keep in mind that it will be fed through icache hash function too.
891 */
hash(dev_t dev)892 static inline unsigned long hash(dev_t dev)
893 {
894 return MAJOR(dev)+MINOR(dev);
895 }
896
bdev_test(struct inode * inode,void * data)897 static int bdev_test(struct inode *inode, void *data)
898 {
899 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
900 }
901
bdev_set(struct inode * inode,void * data)902 static int bdev_set(struct inode *inode, void *data)
903 {
904 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
905 return 0;
906 }
907
bdget(dev_t dev)908 static struct block_device *bdget(dev_t dev)
909 {
910 struct block_device *bdev;
911 struct inode *inode;
912
913 inode = iget5_locked(blockdev_superblock, hash(dev),
914 bdev_test, bdev_set, &dev);
915
916 if (!inode)
917 return NULL;
918
919 bdev = &BDEV_I(inode)->bdev;
920
921 if (inode->i_state & I_NEW) {
922 spin_lock_init(&bdev->bd_size_lock);
923 bdev->bd_contains = NULL;
924 bdev->bd_super = NULL;
925 bdev->bd_inode = inode;
926 bdev->bd_part_count = 0;
927 inode->i_mode = S_IFBLK;
928 inode->i_rdev = dev;
929 inode->i_bdev = bdev;
930 inode->i_data.a_ops = &def_blk_aops;
931 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
932 unlock_new_inode(inode);
933 }
934 return bdev;
935 }
936
937 /**
938 * bdgrab -- Grab a reference to an already referenced block device
939 * @bdev: Block device to grab a reference to.
940 */
bdgrab(struct block_device * bdev)941 struct block_device *bdgrab(struct block_device *bdev)
942 {
943 ihold(bdev->bd_inode);
944 return bdev;
945 }
946 EXPORT_SYMBOL(bdgrab);
947
bdget_part(struct hd_struct * part)948 struct block_device *bdget_part(struct hd_struct *part)
949 {
950 return bdget(part_devt(part));
951 }
952
nr_blockdev_pages(void)953 long nr_blockdev_pages(void)
954 {
955 struct inode *inode;
956 long ret = 0;
957
958 spin_lock(&blockdev_superblock->s_inode_list_lock);
959 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list)
960 ret += inode->i_mapping->nrpages;
961 spin_unlock(&blockdev_superblock->s_inode_list_lock);
962
963 return ret;
964 }
965
bdput(struct block_device * bdev)966 void bdput(struct block_device *bdev)
967 {
968 iput(bdev->bd_inode);
969 }
970
971 EXPORT_SYMBOL(bdput);
972
bd_acquire(struct inode * inode)973 static struct block_device *bd_acquire(struct inode *inode)
974 {
975 struct block_device *bdev;
976
977 spin_lock(&bdev_lock);
978 bdev = inode->i_bdev;
979 if (bdev && !inode_unhashed(bdev->bd_inode)) {
980 bdgrab(bdev);
981 spin_unlock(&bdev_lock);
982 return bdev;
983 }
984 spin_unlock(&bdev_lock);
985
986 /*
987 * i_bdev references block device inode that was already shut down
988 * (corresponding device got removed). Remove the reference and look
989 * up block device inode again just in case new device got
990 * reestablished under the same device number.
991 */
992 if (bdev)
993 bd_forget(inode);
994
995 bdev = bdget(inode->i_rdev);
996 if (bdev) {
997 spin_lock(&bdev_lock);
998 if (!inode->i_bdev) {
999 /*
1000 * We take an additional reference to bd_inode,
1001 * and it's released in clear_inode() of inode.
1002 * So, we can access it via ->i_mapping always
1003 * without igrab().
1004 */
1005 bdgrab(bdev);
1006 inode->i_bdev = bdev;
1007 inode->i_mapping = bdev->bd_inode->i_mapping;
1008 }
1009 spin_unlock(&bdev_lock);
1010 }
1011 return bdev;
1012 }
1013
1014 /* Call when you free inode */
1015
bd_forget(struct inode * inode)1016 void bd_forget(struct inode *inode)
1017 {
1018 struct block_device *bdev = NULL;
1019
1020 spin_lock(&bdev_lock);
1021 if (!sb_is_blkdev_sb(inode->i_sb))
1022 bdev = inode->i_bdev;
1023 inode->i_bdev = NULL;
1024 inode->i_mapping = &inode->i_data;
1025 spin_unlock(&bdev_lock);
1026
1027 if (bdev)
1028 bdput(bdev);
1029 }
1030
1031 /**
1032 * bd_may_claim - test whether a block device can be claimed
1033 * @bdev: block device of interest
1034 * @whole: whole block device containing @bdev, may equal @bdev
1035 * @holder: holder trying to claim @bdev
1036 *
1037 * Test whether @bdev can be claimed by @holder.
1038 *
1039 * CONTEXT:
1040 * spin_lock(&bdev_lock).
1041 *
1042 * RETURNS:
1043 * %true if @bdev can be claimed, %false otherwise.
1044 */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)1045 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1046 void *holder)
1047 {
1048 if (bdev->bd_holder == holder)
1049 return true; /* already a holder */
1050 else if (bdev->bd_holder != NULL)
1051 return false; /* held by someone else */
1052 else if (whole == bdev)
1053 return true; /* is a whole device which isn't held */
1054
1055 else if (whole->bd_holder == bd_may_claim)
1056 return true; /* is a partition of a device that is being partitioned */
1057 else if (whole->bd_holder != NULL)
1058 return false; /* is a partition of a held device */
1059 else
1060 return true; /* is a partition of an un-held device */
1061 }
1062
1063 /**
1064 * bd_prepare_to_claim - claim a block device
1065 * @bdev: block device of interest
1066 * @whole: the whole device containing @bdev, may equal @bdev
1067 * @holder: holder trying to claim @bdev
1068 *
1069 * Claim @bdev. This function fails if @bdev is already claimed by another
1070 * holder and waits if another claiming is in progress. return, the caller
1071 * has ownership of bd_claiming and bd_holder[s].
1072 *
1073 * RETURNS:
1074 * 0 if @bdev can be claimed, -EBUSY otherwise.
1075 */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)1076 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
1077 void *holder)
1078 {
1079 retry:
1080 spin_lock(&bdev_lock);
1081 /* if someone else claimed, fail */
1082 if (!bd_may_claim(bdev, whole, holder)) {
1083 spin_unlock(&bdev_lock);
1084 return -EBUSY;
1085 }
1086
1087 /* if claiming is already in progress, wait for it to finish */
1088 if (whole->bd_claiming) {
1089 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1090 DEFINE_WAIT(wait);
1091
1092 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1093 spin_unlock(&bdev_lock);
1094 schedule();
1095 finish_wait(wq, &wait);
1096 goto retry;
1097 }
1098
1099 /* yay, all mine */
1100 whole->bd_claiming = holder;
1101 spin_unlock(&bdev_lock);
1102 return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */
1105
bdev_get_gendisk(struct block_device * bdev,int * partno)1106 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1107 {
1108 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1109
1110 if (!disk)
1111 return NULL;
1112 /*
1113 * Now that we hold gendisk reference we make sure bdev we looked up is
1114 * not stale. If it is, it means device got removed and created before
1115 * we looked up gendisk and we fail open in such case. Associating
1116 * unhashed bdev with newly created gendisk could lead to two bdevs
1117 * (and thus two independent caches) being associated with one device
1118 * which is bad.
1119 */
1120 if (inode_unhashed(bdev->bd_inode)) {
1121 put_disk_and_module(disk);
1122 return NULL;
1123 }
1124 return disk;
1125 }
1126
bd_clear_claiming(struct block_device * whole,void * holder)1127 static void bd_clear_claiming(struct block_device *whole, void *holder)
1128 {
1129 lockdep_assert_held(&bdev_lock);
1130 /* tell others that we're done */
1131 BUG_ON(whole->bd_claiming != holder);
1132 whole->bd_claiming = NULL;
1133 wake_up_bit(&whole->bd_claiming, 0);
1134 }
1135
1136 /**
1137 * bd_finish_claiming - finish claiming of a block device
1138 * @bdev: block device of interest
1139 * @whole: whole block device
1140 * @holder: holder that has claimed @bdev
1141 *
1142 * Finish exclusive open of a block device. Mark the device as exlusively
1143 * open by the holder and wake up all waiters for exclusive open to finish.
1144 */
bd_finish_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1145 static void bd_finish_claiming(struct block_device *bdev,
1146 struct block_device *whole, void *holder)
1147 {
1148 spin_lock(&bdev_lock);
1149 BUG_ON(!bd_may_claim(bdev, whole, holder));
1150 /*
1151 * Note that for a whole device bd_holders will be incremented twice,
1152 * and bd_holder will be set to bd_may_claim before being set to holder
1153 */
1154 whole->bd_holders++;
1155 whole->bd_holder = bd_may_claim;
1156 bdev->bd_holders++;
1157 bdev->bd_holder = holder;
1158 bd_clear_claiming(whole, holder);
1159 spin_unlock(&bdev_lock);
1160 }
1161
1162 /**
1163 * bd_abort_claiming - abort claiming of a block device
1164 * @bdev: block device of interest
1165 * @whole: whole block device
1166 * @holder: holder that has claimed @bdev
1167 *
1168 * Abort claiming of a block device when the exclusive open failed. This can be
1169 * also used when exclusive open is not actually desired and we just needed
1170 * to block other exclusive openers for a while.
1171 */
bd_abort_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1172 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1173 void *holder)
1174 {
1175 spin_lock(&bdev_lock);
1176 bd_clear_claiming(whole, holder);
1177 spin_unlock(&bdev_lock);
1178 }
1179 EXPORT_SYMBOL(bd_abort_claiming);
1180
1181 #ifdef CONFIG_SYSFS
1182 struct bd_holder_disk {
1183 struct list_head list;
1184 struct gendisk *disk;
1185 int refcnt;
1186 };
1187
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)1188 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1189 struct gendisk *disk)
1190 {
1191 struct bd_holder_disk *holder;
1192
1193 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1194 if (holder->disk == disk)
1195 return holder;
1196 return NULL;
1197 }
1198
add_symlink(struct kobject * from,struct kobject * to)1199 static int add_symlink(struct kobject *from, struct kobject *to)
1200 {
1201 return sysfs_create_link(from, to, kobject_name(to));
1202 }
1203
del_symlink(struct kobject * from,struct kobject * to)1204 static void del_symlink(struct kobject *from, struct kobject *to)
1205 {
1206 sysfs_remove_link(from, kobject_name(to));
1207 }
1208
1209 /**
1210 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1211 * @bdev: the claimed slave bdev
1212 * @disk: the holding disk
1213 *
1214 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1215 *
1216 * This functions creates the following sysfs symlinks.
1217 *
1218 * - from "slaves" directory of the holder @disk to the claimed @bdev
1219 * - from "holders" directory of the @bdev to the holder @disk
1220 *
1221 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1222 * passed to bd_link_disk_holder(), then:
1223 *
1224 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1225 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1226 *
1227 * The caller must have claimed @bdev before calling this function and
1228 * ensure that both @bdev and @disk are valid during the creation and
1229 * lifetime of these symlinks.
1230 *
1231 * CONTEXT:
1232 * Might sleep.
1233 *
1234 * RETURNS:
1235 * 0 on success, -errno on failure.
1236 */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1237 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1238 {
1239 struct bd_holder_disk *holder;
1240 int ret = 0;
1241
1242 mutex_lock(&bdev->bd_mutex);
1243
1244 WARN_ON_ONCE(!bdev->bd_holder);
1245
1246 /* FIXME: remove the following once add_disk() handles errors */
1247 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1248 goto out_unlock;
1249
1250 holder = bd_find_holder_disk(bdev, disk);
1251 if (holder) {
1252 holder->refcnt++;
1253 goto out_unlock;
1254 }
1255
1256 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1257 if (!holder) {
1258 ret = -ENOMEM;
1259 goto out_unlock;
1260 }
1261
1262 INIT_LIST_HEAD(&holder->list);
1263 holder->disk = disk;
1264 holder->refcnt = 1;
1265
1266 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1267 if (ret)
1268 goto out_free;
1269
1270 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1271 if (ret)
1272 goto out_del;
1273 /*
1274 * bdev could be deleted beneath us which would implicitly destroy
1275 * the holder directory. Hold on to it.
1276 */
1277 kobject_get(bdev->bd_part->holder_dir);
1278
1279 list_add(&holder->list, &bdev->bd_holder_disks);
1280 goto out_unlock;
1281
1282 out_del:
1283 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1284 out_free:
1285 kfree(holder);
1286 out_unlock:
1287 mutex_unlock(&bdev->bd_mutex);
1288 return ret;
1289 }
1290 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1291
1292 /**
1293 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1294 * @bdev: the calimed slave bdev
1295 * @disk: the holding disk
1296 *
1297 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1298 *
1299 * CONTEXT:
1300 * Might sleep.
1301 */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1302 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1303 {
1304 struct bd_holder_disk *holder;
1305
1306 mutex_lock(&bdev->bd_mutex);
1307
1308 holder = bd_find_holder_disk(bdev, disk);
1309
1310 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1311 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1312 del_symlink(bdev->bd_part->holder_dir,
1313 &disk_to_dev(disk)->kobj);
1314 kobject_put(bdev->bd_part->holder_dir);
1315 list_del_init(&holder->list);
1316 kfree(holder);
1317 }
1318
1319 mutex_unlock(&bdev->bd_mutex);
1320 }
1321 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1322 #endif
1323
1324 /**
1325 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1326 * @disk: struct gendisk to check
1327 * @bdev: struct bdev to adjust.
1328 * @verbose: if %true log a message about a size change if there is any
1329 *
1330 * This routine checks to see if the bdev size does not match the disk size
1331 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1332 * are freed.
1333 */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev,bool verbose)1334 static void check_disk_size_change(struct gendisk *disk,
1335 struct block_device *bdev, bool verbose)
1336 {
1337 loff_t disk_size, bdev_size;
1338
1339 spin_lock(&bdev->bd_size_lock);
1340 disk_size = (loff_t)get_capacity(disk) << 9;
1341 bdev_size = i_size_read(bdev->bd_inode);
1342 if (disk_size != bdev_size) {
1343 if (verbose) {
1344 printk(KERN_INFO
1345 "%s: detected capacity change from %lld to %lld\n",
1346 disk->disk_name, bdev_size, disk_size);
1347 }
1348 i_size_write(bdev->bd_inode, disk_size);
1349 }
1350 spin_unlock(&bdev->bd_size_lock);
1351
1352 if (bdev_size > disk_size) {
1353 if (__invalidate_device(bdev, false))
1354 pr_warn("VFS: busy inodes on resized disk %s\n",
1355 disk->disk_name);
1356 }
1357 }
1358
1359 /**
1360 * revalidate_disk_size - checks for disk size change and adjusts bdev size.
1361 * @disk: struct gendisk to check
1362 * @verbose: if %true log a message about a size change if there is any
1363 *
1364 * This routine checks to see if the bdev size does not match the disk size
1365 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1366 * are freed.
1367 */
revalidate_disk_size(struct gendisk * disk,bool verbose)1368 void revalidate_disk_size(struct gendisk *disk, bool verbose)
1369 {
1370 struct block_device *bdev;
1371
1372 /*
1373 * Hidden disks don't have associated bdev so there's no point in
1374 * revalidating them.
1375 */
1376 if (disk->flags & GENHD_FL_HIDDEN)
1377 return;
1378
1379 bdev = bdget_disk(disk, 0);
1380 if (bdev) {
1381 check_disk_size_change(disk, bdev, verbose);
1382 bdput(bdev);
1383 }
1384 }
1385 EXPORT_SYMBOL(revalidate_disk_size);
1386
bd_set_nr_sectors(struct block_device * bdev,sector_t sectors)1387 void bd_set_nr_sectors(struct block_device *bdev, sector_t sectors)
1388 {
1389 spin_lock(&bdev->bd_size_lock);
1390 i_size_write(bdev->bd_inode, (loff_t)sectors << SECTOR_SHIFT);
1391 spin_unlock(&bdev->bd_size_lock);
1392 }
1393 EXPORT_SYMBOL(bd_set_nr_sectors);
1394
1395 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1396
bdev_disk_changed(struct block_device * bdev,bool invalidate)1397 int bdev_disk_changed(struct block_device *bdev, bool invalidate)
1398 {
1399 struct gendisk *disk = bdev->bd_disk;
1400 int ret;
1401
1402 lockdep_assert_held(&bdev->bd_mutex);
1403
1404 if (!(disk->flags & GENHD_FL_UP))
1405 return -ENXIO;
1406
1407 rescan:
1408 ret = blk_drop_partitions(bdev);
1409 if (ret)
1410 return ret;
1411
1412 clear_bit(GD_NEED_PART_SCAN, &disk->state);
1413
1414 /*
1415 * Historically we only set the capacity to zero for devices that
1416 * support partitions (independ of actually having partitions created).
1417 * Doing that is rather inconsistent, but changing it broke legacy
1418 * udisks polling for legacy ide-cdrom devices. Use the crude check
1419 * below to get the sane behavior for most device while not breaking
1420 * userspace for this particular setup.
1421 */
1422 if (invalidate) {
1423 if (disk_part_scan_enabled(disk) ||
1424 !(disk->flags & GENHD_FL_REMOVABLE))
1425 set_capacity(disk, 0);
1426 } else {
1427 if (disk->fops->revalidate_disk)
1428 disk->fops->revalidate_disk(disk);
1429 }
1430
1431 check_disk_size_change(disk, bdev, !invalidate);
1432
1433 if (get_capacity(disk)) {
1434 ret = blk_add_partitions(disk, bdev);
1435 if (ret == -EAGAIN)
1436 goto rescan;
1437 } else if (invalidate) {
1438 /*
1439 * Tell userspace that the media / partition table may have
1440 * changed.
1441 */
1442 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
1443 }
1444
1445 return ret;
1446 }
1447 /*
1448 * Only exported for for loop and dasd for historic reasons. Don't use in new
1449 * code!
1450 */
1451 EXPORT_SYMBOL_GPL(bdev_disk_changed);
1452
1453 /*
1454 * bd_mutex locking:
1455 *
1456 * mutex_lock(part->bd_mutex)
1457 * mutex_lock_nested(whole->bd_mutex, 1)
1458 */
1459
__blkdev_get(struct block_device * bdev,fmode_t mode,void * holder,int for_part)1460 static int __blkdev_get(struct block_device *bdev, fmode_t mode, void *holder,
1461 int for_part)
1462 {
1463 struct block_device *whole = NULL, *claiming = NULL;
1464 struct gendisk *disk;
1465 int ret;
1466 int partno;
1467 bool first_open = false, unblock_events = true, need_restart;
1468
1469 restart:
1470 need_restart = false;
1471 ret = -ENXIO;
1472 disk = bdev_get_gendisk(bdev, &partno);
1473 if (!disk)
1474 goto out;
1475
1476 if (partno) {
1477 whole = bdget_disk(disk, 0);
1478 if (!whole) {
1479 ret = -ENOMEM;
1480 goto out_put_disk;
1481 }
1482 }
1483
1484 if (!for_part && (mode & FMODE_EXCL)) {
1485 WARN_ON_ONCE(!holder);
1486 if (whole)
1487 claiming = whole;
1488 else
1489 claiming = bdev;
1490 ret = bd_prepare_to_claim(bdev, claiming, holder);
1491 if (ret)
1492 goto out_put_whole;
1493 }
1494
1495 disk_block_events(disk);
1496 mutex_lock_nested(&bdev->bd_mutex, for_part);
1497 if (!bdev->bd_openers) {
1498 first_open = true;
1499 bdev->bd_disk = disk;
1500 bdev->bd_contains = bdev;
1501 bdev->bd_partno = partno;
1502
1503 if (!partno) {
1504 ret = -ENXIO;
1505 bdev->bd_part = disk_get_part(disk, partno);
1506 if (!bdev->bd_part)
1507 goto out_clear;
1508
1509 ret = 0;
1510 if (disk->fops->open) {
1511 ret = disk->fops->open(bdev, mode);
1512 /*
1513 * If we lost a race with 'disk' being deleted,
1514 * try again. See md.c
1515 */
1516 if (ret == -ERESTARTSYS)
1517 need_restart = true;
1518 }
1519
1520 if (!ret) {
1521 bd_set_nr_sectors(bdev, get_capacity(disk));
1522 set_init_blocksize(bdev);
1523 }
1524
1525 /*
1526 * If the device is invalidated, rescan partition
1527 * if open succeeded or failed with -ENOMEDIUM.
1528 * The latter is necessary to prevent ghost
1529 * partitions on a removed medium.
1530 */
1531 if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1532 (!ret || ret == -ENOMEDIUM))
1533 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1534
1535 if (ret)
1536 goto out_clear;
1537 } else {
1538 BUG_ON(for_part);
1539 ret = __blkdev_get(whole, mode, NULL, 1);
1540 if (ret)
1541 goto out_clear;
1542 bdev->bd_contains = bdgrab(whole);
1543 bdev->bd_part = disk_get_part(disk, partno);
1544 if (!(disk->flags & GENHD_FL_UP) ||
1545 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1546 ret = -ENXIO;
1547 goto out_clear;
1548 }
1549 bd_set_nr_sectors(bdev, bdev->bd_part->nr_sects);
1550 set_init_blocksize(bdev);
1551 }
1552
1553 if (bdev->bd_bdi == &noop_backing_dev_info)
1554 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1555 } else {
1556 if (bdev->bd_contains == bdev) {
1557 ret = 0;
1558 if (bdev->bd_disk->fops->open)
1559 ret = bdev->bd_disk->fops->open(bdev, mode);
1560 /* the same as first opener case, read comment there */
1561 if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1562 (!ret || ret == -ENOMEDIUM))
1563 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1564 if (ret)
1565 goto out_unlock_bdev;
1566 }
1567 }
1568 bdev->bd_openers++;
1569 if (for_part)
1570 bdev->bd_part_count++;
1571 if (claiming)
1572 bd_finish_claiming(bdev, claiming, holder);
1573
1574 /*
1575 * Block event polling for write claims if requested. Any write holder
1576 * makes the write_holder state stick until all are released. This is
1577 * good enough and tracking individual writeable reference is too
1578 * fragile given the way @mode is used in blkdev_get/put().
1579 */
1580 if (claiming && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1581 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1582 bdev->bd_write_holder = true;
1583 unblock_events = false;
1584 }
1585 mutex_unlock(&bdev->bd_mutex);
1586
1587 if (unblock_events)
1588 disk_unblock_events(disk);
1589
1590 /* only one opener holds refs to the module and disk */
1591 if (!first_open)
1592 put_disk_and_module(disk);
1593 if (whole)
1594 bdput(whole);
1595 return 0;
1596
1597 out_clear:
1598 disk_put_part(bdev->bd_part);
1599 bdev->bd_disk = NULL;
1600 bdev->bd_part = NULL;
1601 if (bdev != bdev->bd_contains)
1602 __blkdev_put(bdev->bd_contains, mode, 1);
1603 bdev->bd_contains = NULL;
1604 out_unlock_bdev:
1605 if (claiming)
1606 bd_abort_claiming(bdev, claiming, holder);
1607 mutex_unlock(&bdev->bd_mutex);
1608 disk_unblock_events(disk);
1609 out_put_whole:
1610 if (whole)
1611 bdput(whole);
1612 out_put_disk:
1613 put_disk_and_module(disk);
1614 if (need_restart)
1615 goto restart;
1616 out:
1617 return ret;
1618 }
1619
1620 /**
1621 * blkdev_get - open a block device
1622 * @bdev: block_device to open
1623 * @mode: FMODE_* mask
1624 * @holder: exclusive holder identifier
1625 *
1626 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1627 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1628 * @holder is invalid. Exclusive opens may nest for the same @holder.
1629 *
1630 * On success, the reference count of @bdev is unchanged. On failure,
1631 * @bdev is put.
1632 *
1633 * CONTEXT:
1634 * Might sleep.
1635 *
1636 * RETURNS:
1637 * 0 on success, -errno on failure.
1638 */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1639 static int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1640 {
1641 int ret, perm = 0;
1642
1643 if (mode & FMODE_READ)
1644 perm |= MAY_READ;
1645 if (mode & FMODE_WRITE)
1646 perm |= MAY_WRITE;
1647 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1648 if (ret)
1649 goto bdput;
1650
1651 ret =__blkdev_get(bdev, mode, holder, 0);
1652 if (ret)
1653 goto bdput;
1654 return 0;
1655
1656 bdput:
1657 bdput(bdev);
1658 return ret;
1659 }
1660
1661 /**
1662 * blkdev_get_by_path - open a block device by name
1663 * @path: path to the block device to open
1664 * @mode: FMODE_* mask
1665 * @holder: exclusive holder identifier
1666 *
1667 * Open the blockdevice described by the device file at @path. @mode
1668 * and @holder are identical to blkdev_get().
1669 *
1670 * On success, the returned block_device has reference count of one.
1671 *
1672 * CONTEXT:
1673 * Might sleep.
1674 *
1675 * RETURNS:
1676 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1677 */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1678 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1679 void *holder)
1680 {
1681 struct block_device *bdev;
1682 int err;
1683
1684 bdev = lookup_bdev(path);
1685 if (IS_ERR(bdev))
1686 return bdev;
1687
1688 err = blkdev_get(bdev, mode, holder);
1689 if (err)
1690 return ERR_PTR(err);
1691
1692 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1693 blkdev_put(bdev, mode);
1694 return ERR_PTR(-EACCES);
1695 }
1696
1697 return bdev;
1698 }
1699 EXPORT_SYMBOL(blkdev_get_by_path);
1700
1701 /**
1702 * blkdev_get_by_dev - open a block device by device number
1703 * @dev: device number of block device to open
1704 * @mode: FMODE_* mask
1705 * @holder: exclusive holder identifier
1706 *
1707 * Open the blockdevice described by device number @dev. @mode and
1708 * @holder are identical to blkdev_get().
1709 *
1710 * Use it ONLY if you really do not have anything better - i.e. when
1711 * you are behind a truly sucky interface and all you are given is a
1712 * device number. _Never_ to be used for internal purposes. If you
1713 * ever need it - reconsider your API.
1714 *
1715 * On success, the returned block_device has reference count of one.
1716 *
1717 * CONTEXT:
1718 * Might sleep.
1719 *
1720 * RETURNS:
1721 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1722 */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1723 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1724 {
1725 struct block_device *bdev;
1726 int err;
1727
1728 bdev = bdget(dev);
1729 if (!bdev)
1730 return ERR_PTR(-ENOMEM);
1731
1732 err = blkdev_get(bdev, mode, holder);
1733 if (err)
1734 return ERR_PTR(err);
1735
1736 return bdev;
1737 }
1738 EXPORT_SYMBOL(blkdev_get_by_dev);
1739
blkdev_open(struct inode * inode,struct file * filp)1740 static int blkdev_open(struct inode * inode, struct file * filp)
1741 {
1742 struct block_device *bdev;
1743
1744 /*
1745 * Preserve backwards compatibility and allow large file access
1746 * even if userspace doesn't ask for it explicitly. Some mkfs
1747 * binary needs it. We might want to drop this workaround
1748 * during an unstable branch.
1749 */
1750 filp->f_flags |= O_LARGEFILE;
1751
1752 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1753
1754 if (filp->f_flags & O_NDELAY)
1755 filp->f_mode |= FMODE_NDELAY;
1756 if (filp->f_flags & O_EXCL)
1757 filp->f_mode |= FMODE_EXCL;
1758 if ((filp->f_flags & O_ACCMODE) == 3)
1759 filp->f_mode |= FMODE_WRITE_IOCTL;
1760
1761 bdev = bd_acquire(inode);
1762 if (bdev == NULL)
1763 return -ENOMEM;
1764
1765 filp->f_mapping = bdev->bd_inode->i_mapping;
1766 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1767
1768 return blkdev_get(bdev, filp->f_mode, filp);
1769 }
1770
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1771 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1772 {
1773 struct gendisk *disk = bdev->bd_disk;
1774 struct block_device *victim = NULL;
1775
1776 /*
1777 * Sync early if it looks like we're the last one. If someone else
1778 * opens the block device between now and the decrement of bd_openers
1779 * then we did a sync that we didn't need to, but that's not the end
1780 * of the world and we want to avoid long (could be several minute)
1781 * syncs while holding the mutex.
1782 */
1783 if (bdev->bd_openers == 1)
1784 sync_blockdev(bdev);
1785
1786 mutex_lock_nested(&bdev->bd_mutex, for_part);
1787 if (for_part)
1788 bdev->bd_part_count--;
1789
1790 if (!--bdev->bd_openers) {
1791 WARN_ON_ONCE(bdev->bd_holders);
1792 sync_blockdev(bdev);
1793 kill_bdev(bdev);
1794
1795 bdev_write_inode(bdev);
1796 }
1797 if (bdev->bd_contains == bdev) {
1798 if (disk->fops->release)
1799 disk->fops->release(disk, mode);
1800 }
1801 if (!bdev->bd_openers) {
1802 disk_put_part(bdev->bd_part);
1803 bdev->bd_part = NULL;
1804 bdev->bd_disk = NULL;
1805 if (bdev != bdev->bd_contains)
1806 victim = bdev->bd_contains;
1807 bdev->bd_contains = NULL;
1808
1809 put_disk_and_module(disk);
1810 }
1811 mutex_unlock(&bdev->bd_mutex);
1812 bdput(bdev);
1813 if (victim)
1814 __blkdev_put(victim, mode, 1);
1815 }
1816
blkdev_put(struct block_device * bdev,fmode_t mode)1817 void blkdev_put(struct block_device *bdev, fmode_t mode)
1818 {
1819 mutex_lock(&bdev->bd_mutex);
1820
1821 if (mode & FMODE_EXCL) {
1822 bool bdev_free;
1823
1824 /*
1825 * Release a claim on the device. The holder fields
1826 * are protected with bdev_lock. bd_mutex is to
1827 * synchronize disk_holder unlinking.
1828 */
1829 spin_lock(&bdev_lock);
1830
1831 WARN_ON_ONCE(--bdev->bd_holders < 0);
1832 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1833
1834 /* bd_contains might point to self, check in a separate step */
1835 if ((bdev_free = !bdev->bd_holders))
1836 bdev->bd_holder = NULL;
1837 if (!bdev->bd_contains->bd_holders)
1838 bdev->bd_contains->bd_holder = NULL;
1839
1840 spin_unlock(&bdev_lock);
1841
1842 /*
1843 * If this was the last claim, remove holder link and
1844 * unblock evpoll if it was a write holder.
1845 */
1846 if (bdev_free && bdev->bd_write_holder) {
1847 disk_unblock_events(bdev->bd_disk);
1848 bdev->bd_write_holder = false;
1849 }
1850 }
1851
1852 /*
1853 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1854 * event. This is to ensure detection of media removal commanded
1855 * from userland - e.g. eject(1).
1856 */
1857 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1858
1859 mutex_unlock(&bdev->bd_mutex);
1860
1861 __blkdev_put(bdev, mode, 0);
1862 }
1863 EXPORT_SYMBOL(blkdev_put);
1864
blkdev_close(struct inode * inode,struct file * filp)1865 static int blkdev_close(struct inode * inode, struct file * filp)
1866 {
1867 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1868 blkdev_put(bdev, filp->f_mode);
1869 return 0;
1870 }
1871
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1872 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1873 {
1874 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1875 fmode_t mode = file->f_mode;
1876
1877 /*
1878 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1879 * to updated it before every ioctl.
1880 */
1881 if (file->f_flags & O_NDELAY)
1882 mode |= FMODE_NDELAY;
1883 else
1884 mode &= ~FMODE_NDELAY;
1885
1886 return blkdev_ioctl(bdev, mode, cmd, arg);
1887 }
1888
1889 /*
1890 * Write data to the block device. Only intended for the block device itself
1891 * and the raw driver which basically is a fake block device.
1892 *
1893 * Does not take i_mutex for the write and thus is not for general purpose
1894 * use.
1895 */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1896 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1897 {
1898 struct file *file = iocb->ki_filp;
1899 struct inode *bd_inode = bdev_file_inode(file);
1900 loff_t size = i_size_read(bd_inode);
1901 struct blk_plug plug;
1902 size_t shorted = 0;
1903 ssize_t ret;
1904
1905 if (bdev_read_only(I_BDEV(bd_inode)))
1906 return -EPERM;
1907
1908 if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode->i_rdev))
1909 return -ETXTBSY;
1910
1911 if (!iov_iter_count(from))
1912 return 0;
1913
1914 if (iocb->ki_pos >= size)
1915 return -ENOSPC;
1916
1917 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1918 return -EOPNOTSUPP;
1919
1920 size -= iocb->ki_pos;
1921 if (iov_iter_count(from) > size) {
1922 shorted = iov_iter_count(from) - size;
1923 iov_iter_truncate(from, size);
1924 }
1925
1926 blk_start_plug(&plug);
1927 ret = __generic_file_write_iter(iocb, from);
1928 if (ret > 0)
1929 ret = generic_write_sync(iocb, ret);
1930 iov_iter_reexpand(from, iov_iter_count(from) + shorted);
1931 blk_finish_plug(&plug);
1932 return ret;
1933 }
1934 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1935
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1936 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1937 {
1938 struct file *file = iocb->ki_filp;
1939 struct inode *bd_inode = bdev_file_inode(file);
1940 loff_t size = i_size_read(bd_inode);
1941 loff_t pos = iocb->ki_pos;
1942 size_t shorted = 0;
1943 ssize_t ret;
1944
1945 if (pos >= size)
1946 return 0;
1947
1948 size -= pos;
1949 if (iov_iter_count(to) > size) {
1950 shorted = iov_iter_count(to) - size;
1951 iov_iter_truncate(to, size);
1952 }
1953
1954 ret = generic_file_read_iter(iocb, to);
1955 iov_iter_reexpand(to, iov_iter_count(to) + shorted);
1956 return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1959
1960 /*
1961 * Try to release a page associated with block device when the system
1962 * is under memory pressure.
1963 */
blkdev_releasepage(struct page * page,gfp_t wait)1964 static int blkdev_releasepage(struct page *page, gfp_t wait)
1965 {
1966 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1967
1968 if (super && super->s_op->bdev_try_to_free_page)
1969 return super->s_op->bdev_try_to_free_page(super, page, wait);
1970
1971 return try_to_free_buffers(page);
1972 }
1973
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)1974 static int blkdev_writepages(struct address_space *mapping,
1975 struct writeback_control *wbc)
1976 {
1977 return generic_writepages(mapping, wbc);
1978 }
1979
1980 static const struct address_space_operations def_blk_aops = {
1981 .readpage = blkdev_readpage,
1982 .readahead = blkdev_readahead,
1983 .writepage = blkdev_writepage,
1984 .write_begin = blkdev_write_begin,
1985 .write_end = blkdev_write_end,
1986 .writepages = blkdev_writepages,
1987 .releasepage = blkdev_releasepage,
1988 .direct_IO = blkdev_direct_IO,
1989 .migratepage = buffer_migrate_page_norefs,
1990 .is_dirty_writeback = buffer_check_dirty_writeback,
1991 };
1992
1993 #define BLKDEV_FALLOC_FL_SUPPORTED \
1994 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1995 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1996
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)1997 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1998 loff_t len)
1999 {
2000 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2001 loff_t end = start + len - 1;
2002 loff_t isize;
2003 int error;
2004
2005 /* Fail if we don't recognize the flags. */
2006 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2007 return -EOPNOTSUPP;
2008
2009 /* Don't go off the end of the device. */
2010 isize = i_size_read(bdev->bd_inode);
2011 if (start >= isize)
2012 return -EINVAL;
2013 if (end >= isize) {
2014 if (mode & FALLOC_FL_KEEP_SIZE) {
2015 len = isize - start;
2016 end = start + len - 1;
2017 } else
2018 return -EINVAL;
2019 }
2020
2021 /*
2022 * Don't allow IO that isn't aligned to logical block size.
2023 */
2024 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2025 return -EINVAL;
2026
2027 /*
2028 * Invalidate the page cache, including dirty pages, for valid
2029 * de-allocate mode calls to fallocate().
2030 */
2031 switch (mode) {
2032 case FALLOC_FL_ZERO_RANGE:
2033 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2034 error = truncate_bdev_range(bdev, file->f_mode, start, end);
2035 if (error)
2036 break;
2037
2038 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2039 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2040 break;
2041 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2042 error = truncate_bdev_range(bdev, file->f_mode, start, end);
2043 if (error)
2044 break;
2045
2046 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2047 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2048 break;
2049 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2050 error = truncate_bdev_range(bdev, file->f_mode, start, end);
2051 if (error)
2052 break;
2053
2054 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2055 GFP_KERNEL, 0);
2056 break;
2057 default:
2058 return -EOPNOTSUPP;
2059 }
2060 if (error)
2061 return error;
2062
2063 /*
2064 * Invalidate again; if someone wandered in and dirtied a page,
2065 * the caller will be given -EBUSY. The third argument is
2066 * inclusive, so the rounding here is safe.
2067 */
2068 return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping,
2069 start >> PAGE_SHIFT,
2070 end >> PAGE_SHIFT);
2071 }
2072
2073 const struct file_operations def_blk_fops = {
2074 .open = blkdev_open,
2075 .release = blkdev_close,
2076 .llseek = block_llseek,
2077 .read_iter = blkdev_read_iter,
2078 .write_iter = blkdev_write_iter,
2079 .iopoll = blkdev_iopoll,
2080 .mmap = generic_file_mmap,
2081 .fsync = blkdev_fsync,
2082 .unlocked_ioctl = block_ioctl,
2083 #ifdef CONFIG_COMPAT
2084 .compat_ioctl = compat_blkdev_ioctl,
2085 #endif
2086 .splice_read = generic_file_splice_read,
2087 .splice_write = iter_file_splice_write,
2088 .fallocate = blkdev_fallocate,
2089 };
2090
2091 /**
2092 * lookup_bdev - lookup a struct block_device by name
2093 * @pathname: special file representing the block device
2094 *
2095 * Get a reference to the blockdevice at @pathname in the current
2096 * namespace if possible and return it. Return ERR_PTR(error)
2097 * otherwise.
2098 */
lookup_bdev(const char * pathname)2099 struct block_device *lookup_bdev(const char *pathname)
2100 {
2101 struct block_device *bdev;
2102 struct inode *inode;
2103 struct path path;
2104 int error;
2105
2106 if (!pathname || !*pathname)
2107 return ERR_PTR(-EINVAL);
2108
2109 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2110 if (error)
2111 return ERR_PTR(error);
2112
2113 inode = d_backing_inode(path.dentry);
2114 error = -ENOTBLK;
2115 if (!S_ISBLK(inode->i_mode))
2116 goto fail;
2117 error = -EACCES;
2118 if (!may_open_dev(&path))
2119 goto fail;
2120 error = -ENOMEM;
2121 bdev = bd_acquire(inode);
2122 if (!bdev)
2123 goto fail;
2124 out:
2125 path_put(&path);
2126 return bdev;
2127 fail:
2128 bdev = ERR_PTR(error);
2129 goto out;
2130 }
2131 EXPORT_SYMBOL(lookup_bdev);
2132
__invalidate_device(struct block_device * bdev,bool kill_dirty)2133 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2134 {
2135 struct super_block *sb = get_super(bdev);
2136 int res = 0;
2137
2138 if (sb) {
2139 /*
2140 * no need to lock the super, get_super holds the
2141 * read mutex so the filesystem cannot go away
2142 * under us (->put_super runs with the write lock
2143 * hold).
2144 */
2145 shrink_dcache_sb(sb);
2146 res = invalidate_inodes(sb, kill_dirty);
2147 drop_super(sb);
2148 }
2149 invalidate_bdev(bdev);
2150 return res;
2151 }
2152 EXPORT_SYMBOL(__invalidate_device);
2153
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)2154 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2155 {
2156 struct inode *inode, *old_inode = NULL;
2157
2158 spin_lock(&blockdev_superblock->s_inode_list_lock);
2159 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2160 struct address_space *mapping = inode->i_mapping;
2161 struct block_device *bdev;
2162
2163 spin_lock(&inode->i_lock);
2164 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2165 mapping->nrpages == 0) {
2166 spin_unlock(&inode->i_lock);
2167 continue;
2168 }
2169 __iget(inode);
2170 spin_unlock(&inode->i_lock);
2171 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2172 /*
2173 * We hold a reference to 'inode' so it couldn't have been
2174 * removed from s_inodes list while we dropped the
2175 * s_inode_list_lock We cannot iput the inode now as we can
2176 * be holding the last reference and we cannot iput it under
2177 * s_inode_list_lock. So we keep the reference and iput it
2178 * later.
2179 */
2180 iput(old_inode);
2181 old_inode = inode;
2182 bdev = I_BDEV(inode);
2183
2184 mutex_lock(&bdev->bd_mutex);
2185 if (bdev->bd_openers)
2186 func(bdev, arg);
2187 mutex_unlock(&bdev->bd_mutex);
2188
2189 spin_lock(&blockdev_superblock->s_inode_list_lock);
2190 }
2191 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2192 iput(old_inode);
2193 }
2194