• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 
19 /*
20  * Return target flags in extended format or 0 if restripe for this chunk_type
21  * is not in progress
22  *
23  * Should be called with balance_lock held
24  */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
26 {
27 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
28 	u64 target = 0;
29 
30 	if (!bctl)
31 		return 0;
32 
33 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
34 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
35 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
36 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
37 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
38 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
39 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
40 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
41 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
42 	}
43 
44 	return target;
45 }
46 
47 /*
48  * @flags: available profiles in extended format (see ctree.h)
49  *
50  * Return reduced profile in chunk format.  If profile changing is in progress
51  * (either running or paused) picks the target profile (if it's already
52  * available), otherwise falls back to plain reducing.
53  */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
55 {
56 	u64 num_devices = fs_info->fs_devices->rw_devices;
57 	u64 target;
58 	u64 raid_type;
59 	u64 allowed = 0;
60 
61 	/*
62 	 * See if restripe for this chunk_type is in progress, if so try to
63 	 * reduce to the target profile
64 	 */
65 	spin_lock(&fs_info->balance_lock);
66 	target = get_restripe_target(fs_info, flags);
67 	if (target) {
68 		spin_unlock(&fs_info->balance_lock);
69 		return extended_to_chunk(target);
70 	}
71 	spin_unlock(&fs_info->balance_lock);
72 
73 	/* First, mask out the RAID levels which aren't possible */
74 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
75 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
76 			allowed |= btrfs_raid_array[raid_type].bg_flag;
77 	}
78 	allowed &= flags;
79 
80 	/* Select the highest-redundancy RAID level. */
81 	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
82 		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
83 	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
84 		allowed = BTRFS_BLOCK_GROUP_RAID6;
85 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
86 		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
87 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
88 		allowed = BTRFS_BLOCK_GROUP_RAID5;
89 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
90 		allowed = BTRFS_BLOCK_GROUP_RAID10;
91 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
92 		allowed = BTRFS_BLOCK_GROUP_RAID1;
93 	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
94 		allowed = BTRFS_BLOCK_GROUP_DUP;
95 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
96 		allowed = BTRFS_BLOCK_GROUP_RAID0;
97 
98 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
99 
100 	return extended_to_chunk(flags | allowed);
101 }
102 
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)103 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
104 {
105 	unsigned seq;
106 	u64 flags;
107 
108 	do {
109 		flags = orig_flags;
110 		seq = read_seqbegin(&fs_info->profiles_lock);
111 
112 		if (flags & BTRFS_BLOCK_GROUP_DATA)
113 			flags |= fs_info->avail_data_alloc_bits;
114 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
115 			flags |= fs_info->avail_system_alloc_bits;
116 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
117 			flags |= fs_info->avail_metadata_alloc_bits;
118 	} while (read_seqretry(&fs_info->profiles_lock, seq));
119 
120 	return btrfs_reduce_alloc_profile(fs_info, flags);
121 }
122 
btrfs_get_block_group(struct btrfs_block_group * cache)123 void btrfs_get_block_group(struct btrfs_block_group *cache)
124 {
125 	refcount_inc(&cache->refs);
126 }
127 
btrfs_put_block_group(struct btrfs_block_group * cache)128 void btrfs_put_block_group(struct btrfs_block_group *cache)
129 {
130 	if (refcount_dec_and_test(&cache->refs)) {
131 		WARN_ON(cache->pinned > 0);
132 		WARN_ON(cache->reserved > 0);
133 
134 		/*
135 		 * A block_group shouldn't be on the discard_list anymore.
136 		 * Remove the block_group from the discard_list to prevent us
137 		 * from causing a panic due to NULL pointer dereference.
138 		 */
139 		if (WARN_ON(!list_empty(&cache->discard_list)))
140 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
141 						  cache);
142 
143 		/*
144 		 * If not empty, someone is still holding mutex of
145 		 * full_stripe_lock, which can only be released by caller.
146 		 * And it will definitely cause use-after-free when caller
147 		 * tries to release full stripe lock.
148 		 *
149 		 * No better way to resolve, but only to warn.
150 		 */
151 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
152 		kfree(cache->free_space_ctl);
153 		kfree(cache);
154 	}
155 }
156 
157 /*
158  * This adds the block group to the fs_info rb tree for the block group cache
159  */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)160 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
161 				       struct btrfs_block_group *block_group)
162 {
163 	struct rb_node **p;
164 	struct rb_node *parent = NULL;
165 	struct btrfs_block_group *cache;
166 
167 	ASSERT(block_group->length != 0);
168 
169 	spin_lock(&info->block_group_cache_lock);
170 	p = &info->block_group_cache_tree.rb_node;
171 
172 	while (*p) {
173 		parent = *p;
174 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
175 		if (block_group->start < cache->start) {
176 			p = &(*p)->rb_left;
177 		} else if (block_group->start > cache->start) {
178 			p = &(*p)->rb_right;
179 		} else {
180 			spin_unlock(&info->block_group_cache_lock);
181 			return -EEXIST;
182 		}
183 	}
184 
185 	rb_link_node(&block_group->cache_node, parent, p);
186 	rb_insert_color(&block_group->cache_node,
187 			&info->block_group_cache_tree);
188 
189 	if (info->first_logical_byte > block_group->start)
190 		info->first_logical_byte = block_group->start;
191 
192 	spin_unlock(&info->block_group_cache_lock);
193 
194 	return 0;
195 }
196 
197 /*
198  * This will return the block group at or after bytenr if contains is 0, else
199  * it will return the block group that contains the bytenr
200  */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)201 static struct btrfs_block_group *block_group_cache_tree_search(
202 		struct btrfs_fs_info *info, u64 bytenr, int contains)
203 {
204 	struct btrfs_block_group *cache, *ret = NULL;
205 	struct rb_node *n;
206 	u64 end, start;
207 
208 	spin_lock(&info->block_group_cache_lock);
209 	n = info->block_group_cache_tree.rb_node;
210 
211 	while (n) {
212 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
213 		end = cache->start + cache->length - 1;
214 		start = cache->start;
215 
216 		if (bytenr < start) {
217 			if (!contains && (!ret || start < ret->start))
218 				ret = cache;
219 			n = n->rb_left;
220 		} else if (bytenr > start) {
221 			if (contains && bytenr <= end) {
222 				ret = cache;
223 				break;
224 			}
225 			n = n->rb_right;
226 		} else {
227 			ret = cache;
228 			break;
229 		}
230 	}
231 	if (ret) {
232 		btrfs_get_block_group(ret);
233 		if (bytenr == 0 && info->first_logical_byte > ret->start)
234 			info->first_logical_byte = ret->start;
235 	}
236 	spin_unlock(&info->block_group_cache_lock);
237 
238 	return ret;
239 }
240 
241 /*
242  * Return the block group that starts at or after bytenr
243  */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)244 struct btrfs_block_group *btrfs_lookup_first_block_group(
245 		struct btrfs_fs_info *info, u64 bytenr)
246 {
247 	return block_group_cache_tree_search(info, bytenr, 0);
248 }
249 
250 /*
251  * Return the block group that contains the given bytenr
252  */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)253 struct btrfs_block_group *btrfs_lookup_block_group(
254 		struct btrfs_fs_info *info, u64 bytenr)
255 {
256 	return block_group_cache_tree_search(info, bytenr, 1);
257 }
258 
btrfs_next_block_group(struct btrfs_block_group * cache)259 struct btrfs_block_group *btrfs_next_block_group(
260 		struct btrfs_block_group *cache)
261 {
262 	struct btrfs_fs_info *fs_info = cache->fs_info;
263 	struct rb_node *node;
264 
265 	spin_lock(&fs_info->block_group_cache_lock);
266 
267 	/* If our block group was removed, we need a full search. */
268 	if (RB_EMPTY_NODE(&cache->cache_node)) {
269 		const u64 next_bytenr = cache->start + cache->length;
270 
271 		spin_unlock(&fs_info->block_group_cache_lock);
272 		btrfs_put_block_group(cache);
273 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
274 	}
275 	node = rb_next(&cache->cache_node);
276 	btrfs_put_block_group(cache);
277 	if (node) {
278 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
279 		btrfs_get_block_group(cache);
280 	} else
281 		cache = NULL;
282 	spin_unlock(&fs_info->block_group_cache_lock);
283 	return cache;
284 }
285 
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)286 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
287 {
288 	struct btrfs_block_group *bg;
289 	bool ret = true;
290 
291 	bg = btrfs_lookup_block_group(fs_info, bytenr);
292 	if (!bg)
293 		return false;
294 
295 	spin_lock(&bg->lock);
296 	if (bg->ro)
297 		ret = false;
298 	else
299 		atomic_inc(&bg->nocow_writers);
300 	spin_unlock(&bg->lock);
301 
302 	/* No put on block group, done by btrfs_dec_nocow_writers */
303 	if (!ret)
304 		btrfs_put_block_group(bg);
305 
306 	return ret;
307 }
308 
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)309 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
310 {
311 	struct btrfs_block_group *bg;
312 
313 	bg = btrfs_lookup_block_group(fs_info, bytenr);
314 	ASSERT(bg);
315 	if (atomic_dec_and_test(&bg->nocow_writers))
316 		wake_up_var(&bg->nocow_writers);
317 	/*
318 	 * Once for our lookup and once for the lookup done by a previous call
319 	 * to btrfs_inc_nocow_writers()
320 	 */
321 	btrfs_put_block_group(bg);
322 	btrfs_put_block_group(bg);
323 }
324 
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)325 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
326 {
327 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
328 }
329 
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)330 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
331 					const u64 start)
332 {
333 	struct btrfs_block_group *bg;
334 
335 	bg = btrfs_lookup_block_group(fs_info, start);
336 	ASSERT(bg);
337 	if (atomic_dec_and_test(&bg->reservations))
338 		wake_up_var(&bg->reservations);
339 	btrfs_put_block_group(bg);
340 }
341 
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)342 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
343 {
344 	struct btrfs_space_info *space_info = bg->space_info;
345 
346 	ASSERT(bg->ro);
347 
348 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
349 		return;
350 
351 	/*
352 	 * Our block group is read only but before we set it to read only,
353 	 * some task might have had allocated an extent from it already, but it
354 	 * has not yet created a respective ordered extent (and added it to a
355 	 * root's list of ordered extents).
356 	 * Therefore wait for any task currently allocating extents, since the
357 	 * block group's reservations counter is incremented while a read lock
358 	 * on the groups' semaphore is held and decremented after releasing
359 	 * the read access on that semaphore and creating the ordered extent.
360 	 */
361 	down_write(&space_info->groups_sem);
362 	up_write(&space_info->groups_sem);
363 
364 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
365 }
366 
btrfs_get_caching_control(struct btrfs_block_group * cache)367 struct btrfs_caching_control *btrfs_get_caching_control(
368 		struct btrfs_block_group *cache)
369 {
370 	struct btrfs_caching_control *ctl;
371 
372 	spin_lock(&cache->lock);
373 	if (!cache->caching_ctl) {
374 		spin_unlock(&cache->lock);
375 		return NULL;
376 	}
377 
378 	ctl = cache->caching_ctl;
379 	refcount_inc(&ctl->count);
380 	spin_unlock(&cache->lock);
381 	return ctl;
382 }
383 
btrfs_put_caching_control(struct btrfs_caching_control * ctl)384 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
385 {
386 	if (refcount_dec_and_test(&ctl->count))
387 		kfree(ctl);
388 }
389 
390 /*
391  * When we wait for progress in the block group caching, its because our
392  * allocation attempt failed at least once.  So, we must sleep and let some
393  * progress happen before we try again.
394  *
395  * This function will sleep at least once waiting for new free space to show
396  * up, and then it will check the block group free space numbers for our min
397  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
398  * a free extent of a given size, but this is a good start.
399  *
400  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
401  * any of the information in this block group.
402  */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)403 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
404 					   u64 num_bytes)
405 {
406 	struct btrfs_caching_control *caching_ctl;
407 
408 	caching_ctl = btrfs_get_caching_control(cache);
409 	if (!caching_ctl)
410 		return;
411 
412 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
413 		   (cache->free_space_ctl->free_space >= num_bytes));
414 
415 	btrfs_put_caching_control(caching_ctl);
416 }
417 
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)418 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
419 {
420 	struct btrfs_caching_control *caching_ctl;
421 	int ret = 0;
422 
423 	caching_ctl = btrfs_get_caching_control(cache);
424 	if (!caching_ctl)
425 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
426 
427 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
428 	if (cache->cached == BTRFS_CACHE_ERROR)
429 		ret = -EIO;
430 	btrfs_put_caching_control(caching_ctl);
431 	return ret;
432 }
433 
434 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)435 static void fragment_free_space(struct btrfs_block_group *block_group)
436 {
437 	struct btrfs_fs_info *fs_info = block_group->fs_info;
438 	u64 start = block_group->start;
439 	u64 len = block_group->length;
440 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
441 		fs_info->nodesize : fs_info->sectorsize;
442 	u64 step = chunk << 1;
443 
444 	while (len > chunk) {
445 		btrfs_remove_free_space(block_group, start, chunk);
446 		start += step;
447 		if (len < step)
448 			len = 0;
449 		else
450 			len -= step;
451 	}
452 }
453 #endif
454 
455 /*
456  * This is only called by btrfs_cache_block_group, since we could have freed
457  * extents we need to check the pinned_extents for any extents that can't be
458  * used yet since their free space will be released as soon as the transaction
459  * commits.
460  */
add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end)461 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
462 {
463 	struct btrfs_fs_info *info = block_group->fs_info;
464 	u64 extent_start, extent_end, size, total_added = 0;
465 	int ret;
466 
467 	while (start < end) {
468 		ret = find_first_extent_bit(&info->excluded_extents, start,
469 					    &extent_start, &extent_end,
470 					    EXTENT_DIRTY | EXTENT_UPTODATE,
471 					    NULL);
472 		if (ret)
473 			break;
474 
475 		if (extent_start <= start) {
476 			start = extent_end + 1;
477 		} else if (extent_start > start && extent_start < end) {
478 			size = extent_start - start;
479 			total_added += size;
480 			ret = btrfs_add_free_space_async_trimmed(block_group,
481 								 start, size);
482 			BUG_ON(ret); /* -ENOMEM or logic error */
483 			start = extent_end + 1;
484 		} else {
485 			break;
486 		}
487 	}
488 
489 	if (start < end) {
490 		size = end - start;
491 		total_added += size;
492 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
493 							 size);
494 		BUG_ON(ret); /* -ENOMEM or logic error */
495 	}
496 
497 	return total_added;
498 }
499 
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)500 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
501 {
502 	struct btrfs_block_group *block_group = caching_ctl->block_group;
503 	struct btrfs_fs_info *fs_info = block_group->fs_info;
504 	struct btrfs_root *extent_root = fs_info->extent_root;
505 	struct btrfs_path *path;
506 	struct extent_buffer *leaf;
507 	struct btrfs_key key;
508 	u64 total_found = 0;
509 	u64 last = 0;
510 	u32 nritems;
511 	int ret;
512 	bool wakeup = true;
513 
514 	path = btrfs_alloc_path();
515 	if (!path)
516 		return -ENOMEM;
517 
518 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
519 
520 #ifdef CONFIG_BTRFS_DEBUG
521 	/*
522 	 * If we're fragmenting we don't want to make anybody think we can
523 	 * allocate from this block group until we've had a chance to fragment
524 	 * the free space.
525 	 */
526 	if (btrfs_should_fragment_free_space(block_group))
527 		wakeup = false;
528 #endif
529 	/*
530 	 * We don't want to deadlock with somebody trying to allocate a new
531 	 * extent for the extent root while also trying to search the extent
532 	 * root to add free space.  So we skip locking and search the commit
533 	 * root, since its read-only
534 	 */
535 	path->skip_locking = 1;
536 	path->search_commit_root = 1;
537 	path->reada = READA_FORWARD;
538 
539 	key.objectid = last;
540 	key.offset = 0;
541 	key.type = BTRFS_EXTENT_ITEM_KEY;
542 
543 next:
544 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
545 	if (ret < 0)
546 		goto out;
547 
548 	leaf = path->nodes[0];
549 	nritems = btrfs_header_nritems(leaf);
550 
551 	while (1) {
552 		if (btrfs_fs_closing(fs_info) > 1) {
553 			last = (u64)-1;
554 			break;
555 		}
556 
557 		if (path->slots[0] < nritems) {
558 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
559 		} else {
560 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
561 			if (ret)
562 				break;
563 
564 			if (need_resched() ||
565 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
566 				if (wakeup)
567 					caching_ctl->progress = last;
568 				btrfs_release_path(path);
569 				up_read(&fs_info->commit_root_sem);
570 				mutex_unlock(&caching_ctl->mutex);
571 				cond_resched();
572 				mutex_lock(&caching_ctl->mutex);
573 				down_read(&fs_info->commit_root_sem);
574 				goto next;
575 			}
576 
577 			ret = btrfs_next_leaf(extent_root, path);
578 			if (ret < 0)
579 				goto out;
580 			if (ret)
581 				break;
582 			leaf = path->nodes[0];
583 			nritems = btrfs_header_nritems(leaf);
584 			continue;
585 		}
586 
587 		if (key.objectid < last) {
588 			key.objectid = last;
589 			key.offset = 0;
590 			key.type = BTRFS_EXTENT_ITEM_KEY;
591 
592 			if (wakeup)
593 				caching_ctl->progress = last;
594 			btrfs_release_path(path);
595 			goto next;
596 		}
597 
598 		if (key.objectid < block_group->start) {
599 			path->slots[0]++;
600 			continue;
601 		}
602 
603 		if (key.objectid >= block_group->start + block_group->length)
604 			break;
605 
606 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
607 		    key.type == BTRFS_METADATA_ITEM_KEY) {
608 			total_found += add_new_free_space(block_group, last,
609 							  key.objectid);
610 			if (key.type == BTRFS_METADATA_ITEM_KEY)
611 				last = key.objectid +
612 					fs_info->nodesize;
613 			else
614 				last = key.objectid + key.offset;
615 
616 			if (total_found > CACHING_CTL_WAKE_UP) {
617 				total_found = 0;
618 				if (wakeup)
619 					wake_up(&caching_ctl->wait);
620 			}
621 		}
622 		path->slots[0]++;
623 	}
624 	ret = 0;
625 
626 	total_found += add_new_free_space(block_group, last,
627 				block_group->start + block_group->length);
628 	caching_ctl->progress = (u64)-1;
629 
630 out:
631 	btrfs_free_path(path);
632 	return ret;
633 }
634 
caching_thread(struct btrfs_work * work)635 static noinline void caching_thread(struct btrfs_work *work)
636 {
637 	struct btrfs_block_group *block_group;
638 	struct btrfs_fs_info *fs_info;
639 	struct btrfs_caching_control *caching_ctl;
640 	int ret;
641 
642 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
643 	block_group = caching_ctl->block_group;
644 	fs_info = block_group->fs_info;
645 
646 	mutex_lock(&caching_ctl->mutex);
647 	down_read(&fs_info->commit_root_sem);
648 
649 	/*
650 	 * If we are in the transaction that populated the free space tree we
651 	 * can't actually cache from the free space tree as our commit root and
652 	 * real root are the same, so we could change the contents of the blocks
653 	 * while caching.  Instead do the slow caching in this case, and after
654 	 * the transaction has committed we will be safe.
655 	 */
656 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
657 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
658 		ret = load_free_space_tree(caching_ctl);
659 	else
660 		ret = load_extent_tree_free(caching_ctl);
661 
662 	spin_lock(&block_group->lock);
663 	block_group->caching_ctl = NULL;
664 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
665 	spin_unlock(&block_group->lock);
666 
667 #ifdef CONFIG_BTRFS_DEBUG
668 	if (btrfs_should_fragment_free_space(block_group)) {
669 		u64 bytes_used;
670 
671 		spin_lock(&block_group->space_info->lock);
672 		spin_lock(&block_group->lock);
673 		bytes_used = block_group->length - block_group->used;
674 		block_group->space_info->bytes_used += bytes_used >> 1;
675 		spin_unlock(&block_group->lock);
676 		spin_unlock(&block_group->space_info->lock);
677 		fragment_free_space(block_group);
678 	}
679 #endif
680 
681 	caching_ctl->progress = (u64)-1;
682 
683 	up_read(&fs_info->commit_root_sem);
684 	btrfs_free_excluded_extents(block_group);
685 	mutex_unlock(&caching_ctl->mutex);
686 
687 	wake_up(&caching_ctl->wait);
688 
689 	btrfs_put_caching_control(caching_ctl);
690 	btrfs_put_block_group(block_group);
691 }
692 
btrfs_cache_block_group(struct btrfs_block_group * cache,int load_cache_only)693 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
694 {
695 	DEFINE_WAIT(wait);
696 	struct btrfs_fs_info *fs_info = cache->fs_info;
697 	struct btrfs_caching_control *caching_ctl;
698 	int ret = 0;
699 
700 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
701 	if (!caching_ctl)
702 		return -ENOMEM;
703 
704 	INIT_LIST_HEAD(&caching_ctl->list);
705 	mutex_init(&caching_ctl->mutex);
706 	init_waitqueue_head(&caching_ctl->wait);
707 	caching_ctl->block_group = cache;
708 	caching_ctl->progress = cache->start;
709 	refcount_set(&caching_ctl->count, 1);
710 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
711 
712 	spin_lock(&cache->lock);
713 	/*
714 	 * This should be a rare occasion, but this could happen I think in the
715 	 * case where one thread starts to load the space cache info, and then
716 	 * some other thread starts a transaction commit which tries to do an
717 	 * allocation while the other thread is still loading the space cache
718 	 * info.  The previous loop should have kept us from choosing this block
719 	 * group, but if we've moved to the state where we will wait on caching
720 	 * block groups we need to first check if we're doing a fast load here,
721 	 * so we can wait for it to finish, otherwise we could end up allocating
722 	 * from a block group who's cache gets evicted for one reason or
723 	 * another.
724 	 */
725 	while (cache->cached == BTRFS_CACHE_FAST) {
726 		struct btrfs_caching_control *ctl;
727 
728 		ctl = cache->caching_ctl;
729 		refcount_inc(&ctl->count);
730 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
731 		spin_unlock(&cache->lock);
732 
733 		schedule();
734 
735 		finish_wait(&ctl->wait, &wait);
736 		btrfs_put_caching_control(ctl);
737 		spin_lock(&cache->lock);
738 	}
739 
740 	if (cache->cached != BTRFS_CACHE_NO) {
741 		spin_unlock(&cache->lock);
742 		kfree(caching_ctl);
743 		return 0;
744 	}
745 	WARN_ON(cache->caching_ctl);
746 	cache->caching_ctl = caching_ctl;
747 	cache->cached = BTRFS_CACHE_FAST;
748 	spin_unlock(&cache->lock);
749 
750 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
751 		mutex_lock(&caching_ctl->mutex);
752 		ret = load_free_space_cache(cache);
753 
754 		spin_lock(&cache->lock);
755 		if (ret == 1) {
756 			cache->caching_ctl = NULL;
757 			cache->cached = BTRFS_CACHE_FINISHED;
758 			cache->last_byte_to_unpin = (u64)-1;
759 			caching_ctl->progress = (u64)-1;
760 		} else {
761 			if (load_cache_only) {
762 				cache->caching_ctl = NULL;
763 				cache->cached = BTRFS_CACHE_NO;
764 			} else {
765 				cache->cached = BTRFS_CACHE_STARTED;
766 				cache->has_caching_ctl = 1;
767 			}
768 		}
769 		spin_unlock(&cache->lock);
770 #ifdef CONFIG_BTRFS_DEBUG
771 		if (ret == 1 &&
772 		    btrfs_should_fragment_free_space(cache)) {
773 			u64 bytes_used;
774 
775 			spin_lock(&cache->space_info->lock);
776 			spin_lock(&cache->lock);
777 			bytes_used = cache->length - cache->used;
778 			cache->space_info->bytes_used += bytes_used >> 1;
779 			spin_unlock(&cache->lock);
780 			spin_unlock(&cache->space_info->lock);
781 			fragment_free_space(cache);
782 		}
783 #endif
784 		mutex_unlock(&caching_ctl->mutex);
785 
786 		wake_up(&caching_ctl->wait);
787 		if (ret == 1) {
788 			btrfs_put_caching_control(caching_ctl);
789 			btrfs_free_excluded_extents(cache);
790 			return 0;
791 		}
792 	} else {
793 		/*
794 		 * We're either using the free space tree or no caching at all.
795 		 * Set cached to the appropriate value and wakeup any waiters.
796 		 */
797 		spin_lock(&cache->lock);
798 		if (load_cache_only) {
799 			cache->caching_ctl = NULL;
800 			cache->cached = BTRFS_CACHE_NO;
801 		} else {
802 			cache->cached = BTRFS_CACHE_STARTED;
803 			cache->has_caching_ctl = 1;
804 		}
805 		spin_unlock(&cache->lock);
806 		wake_up(&caching_ctl->wait);
807 	}
808 
809 	if (load_cache_only) {
810 		btrfs_put_caching_control(caching_ctl);
811 		return 0;
812 	}
813 
814 	down_write(&fs_info->commit_root_sem);
815 	refcount_inc(&caching_ctl->count);
816 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
817 	up_write(&fs_info->commit_root_sem);
818 
819 	btrfs_get_block_group(cache);
820 
821 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
822 
823 	return ret;
824 }
825 
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)826 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
827 {
828 	u64 extra_flags = chunk_to_extended(flags) &
829 				BTRFS_EXTENDED_PROFILE_MASK;
830 
831 	write_seqlock(&fs_info->profiles_lock);
832 	if (flags & BTRFS_BLOCK_GROUP_DATA)
833 		fs_info->avail_data_alloc_bits &= ~extra_flags;
834 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
835 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
836 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
837 		fs_info->avail_system_alloc_bits &= ~extra_flags;
838 	write_sequnlock(&fs_info->profiles_lock);
839 }
840 
841 /*
842  * Clear incompat bits for the following feature(s):
843  *
844  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
845  *            in the whole filesystem
846  *
847  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
848  */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)849 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
850 {
851 	bool found_raid56 = false;
852 	bool found_raid1c34 = false;
853 
854 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
855 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
856 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
857 		struct list_head *head = &fs_info->space_info;
858 		struct btrfs_space_info *sinfo;
859 
860 		list_for_each_entry_rcu(sinfo, head, list) {
861 			down_read(&sinfo->groups_sem);
862 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
863 				found_raid56 = true;
864 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
865 				found_raid56 = true;
866 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
867 				found_raid1c34 = true;
868 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
869 				found_raid1c34 = true;
870 			up_read(&sinfo->groups_sem);
871 		}
872 		if (!found_raid56)
873 			btrfs_clear_fs_incompat(fs_info, RAID56);
874 		if (!found_raid1c34)
875 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
876 	}
877 }
878 
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)879 static int remove_block_group_item(struct btrfs_trans_handle *trans,
880 				   struct btrfs_path *path,
881 				   struct btrfs_block_group *block_group)
882 {
883 	struct btrfs_fs_info *fs_info = trans->fs_info;
884 	struct btrfs_root *root;
885 	struct btrfs_key key;
886 	int ret;
887 
888 	root = fs_info->extent_root;
889 	key.objectid = block_group->start;
890 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
891 	key.offset = block_group->length;
892 
893 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
894 	if (ret > 0)
895 		ret = -ENOENT;
896 	if (ret < 0)
897 		return ret;
898 
899 	ret = btrfs_del_item(trans, root, path);
900 	return ret;
901 }
902 
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)903 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
904 			     u64 group_start, struct extent_map *em)
905 {
906 	struct btrfs_fs_info *fs_info = trans->fs_info;
907 	struct btrfs_path *path;
908 	struct btrfs_block_group *block_group;
909 	struct btrfs_free_cluster *cluster;
910 	struct btrfs_root *tree_root = fs_info->tree_root;
911 	struct btrfs_key key;
912 	struct inode *inode;
913 	struct kobject *kobj = NULL;
914 	int ret;
915 	int index;
916 	int factor;
917 	struct btrfs_caching_control *caching_ctl = NULL;
918 	bool remove_em;
919 	bool remove_rsv = false;
920 
921 	block_group = btrfs_lookup_block_group(fs_info, group_start);
922 	BUG_ON(!block_group);
923 	BUG_ON(!block_group->ro);
924 
925 	trace_btrfs_remove_block_group(block_group);
926 	/*
927 	 * Free the reserved super bytes from this block group before
928 	 * remove it.
929 	 */
930 	btrfs_free_excluded_extents(block_group);
931 	btrfs_free_ref_tree_range(fs_info, block_group->start,
932 				  block_group->length);
933 
934 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
935 	factor = btrfs_bg_type_to_factor(block_group->flags);
936 
937 	/* make sure this block group isn't part of an allocation cluster */
938 	cluster = &fs_info->data_alloc_cluster;
939 	spin_lock(&cluster->refill_lock);
940 	btrfs_return_cluster_to_free_space(block_group, cluster);
941 	spin_unlock(&cluster->refill_lock);
942 
943 	/*
944 	 * make sure this block group isn't part of a metadata
945 	 * allocation cluster
946 	 */
947 	cluster = &fs_info->meta_alloc_cluster;
948 	spin_lock(&cluster->refill_lock);
949 	btrfs_return_cluster_to_free_space(block_group, cluster);
950 	spin_unlock(&cluster->refill_lock);
951 
952 	path = btrfs_alloc_path();
953 	if (!path) {
954 		ret = -ENOMEM;
955 		goto out;
956 	}
957 
958 	/*
959 	 * get the inode first so any iput calls done for the io_list
960 	 * aren't the final iput (no unlinks allowed now)
961 	 */
962 	inode = lookup_free_space_inode(block_group, path);
963 
964 	mutex_lock(&trans->transaction->cache_write_mutex);
965 	/*
966 	 * Make sure our free space cache IO is done before removing the
967 	 * free space inode
968 	 */
969 	spin_lock(&trans->transaction->dirty_bgs_lock);
970 	if (!list_empty(&block_group->io_list)) {
971 		list_del_init(&block_group->io_list);
972 
973 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
974 
975 		spin_unlock(&trans->transaction->dirty_bgs_lock);
976 		btrfs_wait_cache_io(trans, block_group, path);
977 		btrfs_put_block_group(block_group);
978 		spin_lock(&trans->transaction->dirty_bgs_lock);
979 	}
980 
981 	if (!list_empty(&block_group->dirty_list)) {
982 		list_del_init(&block_group->dirty_list);
983 		remove_rsv = true;
984 		btrfs_put_block_group(block_group);
985 	}
986 	spin_unlock(&trans->transaction->dirty_bgs_lock);
987 	mutex_unlock(&trans->transaction->cache_write_mutex);
988 
989 	if (!IS_ERR(inode)) {
990 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
991 		if (ret) {
992 			btrfs_add_delayed_iput(inode);
993 			goto out;
994 		}
995 		clear_nlink(inode);
996 		/* One for the block groups ref */
997 		spin_lock(&block_group->lock);
998 		if (block_group->iref) {
999 			block_group->iref = 0;
1000 			block_group->inode = NULL;
1001 			spin_unlock(&block_group->lock);
1002 			iput(inode);
1003 		} else {
1004 			spin_unlock(&block_group->lock);
1005 		}
1006 		/* One for our lookup ref */
1007 		btrfs_add_delayed_iput(inode);
1008 	}
1009 
1010 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1011 	key.type = 0;
1012 	key.offset = block_group->start;
1013 
1014 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
1015 	if (ret < 0)
1016 		goto out;
1017 	if (ret > 0)
1018 		btrfs_release_path(path);
1019 	if (ret == 0) {
1020 		ret = btrfs_del_item(trans, tree_root, path);
1021 		if (ret)
1022 			goto out;
1023 		btrfs_release_path(path);
1024 	}
1025 
1026 	spin_lock(&fs_info->block_group_cache_lock);
1027 	rb_erase(&block_group->cache_node,
1028 		 &fs_info->block_group_cache_tree);
1029 	RB_CLEAR_NODE(&block_group->cache_node);
1030 
1031 	/* Once for the block groups rbtree */
1032 	btrfs_put_block_group(block_group);
1033 
1034 	if (fs_info->first_logical_byte == block_group->start)
1035 		fs_info->first_logical_byte = (u64)-1;
1036 	spin_unlock(&fs_info->block_group_cache_lock);
1037 
1038 	down_write(&block_group->space_info->groups_sem);
1039 	/*
1040 	 * we must use list_del_init so people can check to see if they
1041 	 * are still on the list after taking the semaphore
1042 	 */
1043 	list_del_init(&block_group->list);
1044 	if (list_empty(&block_group->space_info->block_groups[index])) {
1045 		kobj = block_group->space_info->block_group_kobjs[index];
1046 		block_group->space_info->block_group_kobjs[index] = NULL;
1047 		clear_avail_alloc_bits(fs_info, block_group->flags);
1048 	}
1049 	up_write(&block_group->space_info->groups_sem);
1050 	clear_incompat_bg_bits(fs_info, block_group->flags);
1051 	if (kobj) {
1052 		kobject_del(kobj);
1053 		kobject_put(kobj);
1054 	}
1055 
1056 	if (block_group->has_caching_ctl)
1057 		caching_ctl = btrfs_get_caching_control(block_group);
1058 	if (block_group->cached == BTRFS_CACHE_STARTED)
1059 		btrfs_wait_block_group_cache_done(block_group);
1060 	if (block_group->has_caching_ctl) {
1061 		down_write(&fs_info->commit_root_sem);
1062 		if (!caching_ctl) {
1063 			struct btrfs_caching_control *ctl;
1064 
1065 			list_for_each_entry(ctl,
1066 				    &fs_info->caching_block_groups, list)
1067 				if (ctl->block_group == block_group) {
1068 					caching_ctl = ctl;
1069 					refcount_inc(&caching_ctl->count);
1070 					break;
1071 				}
1072 		}
1073 		if (caching_ctl)
1074 			list_del_init(&caching_ctl->list);
1075 		up_write(&fs_info->commit_root_sem);
1076 		if (caching_ctl) {
1077 			/* Once for the caching bgs list and once for us. */
1078 			btrfs_put_caching_control(caching_ctl);
1079 			btrfs_put_caching_control(caching_ctl);
1080 		}
1081 	}
1082 
1083 	spin_lock(&trans->transaction->dirty_bgs_lock);
1084 	WARN_ON(!list_empty(&block_group->dirty_list));
1085 	WARN_ON(!list_empty(&block_group->io_list));
1086 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1087 
1088 	btrfs_remove_free_space_cache(block_group);
1089 
1090 	spin_lock(&block_group->space_info->lock);
1091 	list_del_init(&block_group->ro_list);
1092 
1093 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1094 		WARN_ON(block_group->space_info->total_bytes
1095 			< block_group->length);
1096 		WARN_ON(block_group->space_info->bytes_readonly
1097 			< block_group->length);
1098 		WARN_ON(block_group->space_info->disk_total
1099 			< block_group->length * factor);
1100 	}
1101 	block_group->space_info->total_bytes -= block_group->length;
1102 	block_group->space_info->bytes_readonly -= block_group->length;
1103 	block_group->space_info->disk_total -= block_group->length * factor;
1104 
1105 	spin_unlock(&block_group->space_info->lock);
1106 
1107 	/*
1108 	 * Remove the free space for the block group from the free space tree
1109 	 * and the block group's item from the extent tree before marking the
1110 	 * block group as removed. This is to prevent races with tasks that
1111 	 * freeze and unfreeze a block group, this task and another task
1112 	 * allocating a new block group - the unfreeze task ends up removing
1113 	 * the block group's extent map before the task calling this function
1114 	 * deletes the block group item from the extent tree, allowing for
1115 	 * another task to attempt to create another block group with the same
1116 	 * item key (and failing with -EEXIST and a transaction abort).
1117 	 */
1118 	ret = remove_block_group_free_space(trans, block_group);
1119 	if (ret)
1120 		goto out;
1121 
1122 	ret = remove_block_group_item(trans, path, block_group);
1123 	if (ret < 0)
1124 		goto out;
1125 
1126 	spin_lock(&block_group->lock);
1127 	block_group->removed = 1;
1128 	/*
1129 	 * At this point trimming or scrub can't start on this block group,
1130 	 * because we removed the block group from the rbtree
1131 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1132 	 * even if someone already got this block group before we removed it
1133 	 * from the rbtree, they have already incremented block_group->frozen -
1134 	 * if they didn't, for the trimming case they won't find any free space
1135 	 * entries because we already removed them all when we called
1136 	 * btrfs_remove_free_space_cache().
1137 	 *
1138 	 * And we must not remove the extent map from the fs_info->mapping_tree
1139 	 * to prevent the same logical address range and physical device space
1140 	 * ranges from being reused for a new block group. This is needed to
1141 	 * avoid races with trimming and scrub.
1142 	 *
1143 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1144 	 * completely transactionless, so while it is trimming a range the
1145 	 * currently running transaction might finish and a new one start,
1146 	 * allowing for new block groups to be created that can reuse the same
1147 	 * physical device locations unless we take this special care.
1148 	 *
1149 	 * There may also be an implicit trim operation if the file system
1150 	 * is mounted with -odiscard. The same protections must remain
1151 	 * in place until the extents have been discarded completely when
1152 	 * the transaction commit has completed.
1153 	 */
1154 	remove_em = (atomic_read(&block_group->frozen) == 0);
1155 	spin_unlock(&block_group->lock);
1156 
1157 	if (remove_em) {
1158 		struct extent_map_tree *em_tree;
1159 
1160 		em_tree = &fs_info->mapping_tree;
1161 		write_lock(&em_tree->lock);
1162 		remove_extent_mapping(em_tree, em);
1163 		write_unlock(&em_tree->lock);
1164 		/* once for the tree */
1165 		free_extent_map(em);
1166 	}
1167 
1168 out:
1169 	/* Once for the lookup reference */
1170 	btrfs_put_block_group(block_group);
1171 	if (remove_rsv)
1172 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1173 	btrfs_free_path(path);
1174 	return ret;
1175 }
1176 
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1177 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1178 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1179 {
1180 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1181 	struct extent_map *em;
1182 	struct map_lookup *map;
1183 	unsigned int num_items;
1184 
1185 	read_lock(&em_tree->lock);
1186 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1187 	read_unlock(&em_tree->lock);
1188 	ASSERT(em && em->start == chunk_offset);
1189 
1190 	/*
1191 	 * We need to reserve 3 + N units from the metadata space info in order
1192 	 * to remove a block group (done at btrfs_remove_chunk() and at
1193 	 * btrfs_remove_block_group()), which are used for:
1194 	 *
1195 	 * 1 unit for adding the free space inode's orphan (located in the tree
1196 	 * of tree roots).
1197 	 * 1 unit for deleting the block group item (located in the extent
1198 	 * tree).
1199 	 * 1 unit for deleting the free space item (located in tree of tree
1200 	 * roots).
1201 	 * N units for deleting N device extent items corresponding to each
1202 	 * stripe (located in the device tree).
1203 	 *
1204 	 * In order to remove a block group we also need to reserve units in the
1205 	 * system space info in order to update the chunk tree (update one or
1206 	 * more device items and remove one chunk item), but this is done at
1207 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1208 	 */
1209 	map = em->map_lookup;
1210 	num_items = 3 + map->num_stripes;
1211 	free_extent_map(em);
1212 
1213 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1214 							   num_items);
1215 }
1216 
1217 /*
1218  * Mark block group @cache read-only, so later write won't happen to block
1219  * group @cache.
1220  *
1221  * If @force is not set, this function will only mark the block group readonly
1222  * if we have enough free space (1M) in other metadata/system block groups.
1223  * If @force is not set, this function will mark the block group readonly
1224  * without checking free space.
1225  *
1226  * NOTE: This function doesn't care if other block groups can contain all the
1227  * data in this block group. That check should be done by relocation routine,
1228  * not this function.
1229  */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1230 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1231 {
1232 	struct btrfs_space_info *sinfo = cache->space_info;
1233 	u64 num_bytes;
1234 	int ret = -ENOSPC;
1235 
1236 	spin_lock(&sinfo->lock);
1237 	spin_lock(&cache->lock);
1238 
1239 	if (cache->swap_extents) {
1240 		ret = -ETXTBSY;
1241 		goto out;
1242 	}
1243 
1244 	if (cache->ro) {
1245 		cache->ro++;
1246 		ret = 0;
1247 		goto out;
1248 	}
1249 
1250 	num_bytes = cache->length - cache->reserved - cache->pinned -
1251 		    cache->bytes_super - cache->used;
1252 
1253 	/*
1254 	 * Data never overcommits, even in mixed mode, so do just the straight
1255 	 * check of left over space in how much we have allocated.
1256 	 */
1257 	if (force) {
1258 		ret = 0;
1259 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1260 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1261 
1262 		/*
1263 		 * Here we make sure if we mark this bg RO, we still have enough
1264 		 * free space as buffer.
1265 		 */
1266 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1267 			ret = 0;
1268 	} else {
1269 		/*
1270 		 * We overcommit metadata, so we need to do the
1271 		 * btrfs_can_overcommit check here, and we need to pass in
1272 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1273 		 * leeway to allow us to mark this block group as read only.
1274 		 */
1275 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1276 					 BTRFS_RESERVE_NO_FLUSH))
1277 			ret = 0;
1278 	}
1279 
1280 	if (!ret) {
1281 		sinfo->bytes_readonly += num_bytes;
1282 		cache->ro++;
1283 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1284 	}
1285 out:
1286 	spin_unlock(&cache->lock);
1287 	spin_unlock(&sinfo->lock);
1288 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1289 		btrfs_info(cache->fs_info,
1290 			"unable to make block group %llu ro", cache->start);
1291 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1292 	}
1293 	return ret;
1294 }
1295 
clean_pinned_extents(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)1296 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1297 				 struct btrfs_block_group *bg)
1298 {
1299 	struct btrfs_fs_info *fs_info = bg->fs_info;
1300 	struct btrfs_transaction *prev_trans = NULL;
1301 	const u64 start = bg->start;
1302 	const u64 end = start + bg->length - 1;
1303 	int ret;
1304 
1305 	spin_lock(&fs_info->trans_lock);
1306 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1307 		prev_trans = list_last_entry(&trans->transaction->list,
1308 					     struct btrfs_transaction, list);
1309 		refcount_inc(&prev_trans->use_count);
1310 	}
1311 	spin_unlock(&fs_info->trans_lock);
1312 
1313 	/*
1314 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1315 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1316 	 * task might be running finish_extent_commit() for the previous
1317 	 * transaction N - 1, and have seen a range belonging to the block
1318 	 * group in pinned_extents before we were able to clear the whole block
1319 	 * group range from pinned_extents. This means that task can lookup for
1320 	 * the block group after we unpinned it from pinned_extents and removed
1321 	 * it, leading to a BUG_ON() at unpin_extent_range().
1322 	 */
1323 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1324 	if (prev_trans) {
1325 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1326 					EXTENT_DIRTY);
1327 		if (ret)
1328 			goto out;
1329 	}
1330 
1331 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1332 				EXTENT_DIRTY);
1333 out:
1334 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1335 	if (prev_trans)
1336 		btrfs_put_transaction(prev_trans);
1337 
1338 	return ret == 0;
1339 }
1340 
1341 /*
1342  * Process the unused_bgs list and remove any that don't have any allocated
1343  * space inside of them.
1344  */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1345 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1346 {
1347 	struct btrfs_block_group *block_group;
1348 	struct btrfs_space_info *space_info;
1349 	struct btrfs_trans_handle *trans;
1350 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1351 	int ret = 0;
1352 
1353 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1354 		return;
1355 
1356 	spin_lock(&fs_info->unused_bgs_lock);
1357 	while (!list_empty(&fs_info->unused_bgs)) {
1358 		int trimming;
1359 
1360 		block_group = list_first_entry(&fs_info->unused_bgs,
1361 					       struct btrfs_block_group,
1362 					       bg_list);
1363 		list_del_init(&block_group->bg_list);
1364 
1365 		space_info = block_group->space_info;
1366 
1367 		if (ret || btrfs_mixed_space_info(space_info)) {
1368 			btrfs_put_block_group(block_group);
1369 			continue;
1370 		}
1371 		spin_unlock(&fs_info->unused_bgs_lock);
1372 
1373 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1374 
1375 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1376 
1377 		/* Don't want to race with allocators so take the groups_sem */
1378 		down_write(&space_info->groups_sem);
1379 
1380 		/*
1381 		 * Async discard moves the final block group discard to be prior
1382 		 * to the unused_bgs code path.  Therefore, if it's not fully
1383 		 * trimmed, punt it back to the async discard lists.
1384 		 */
1385 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1386 		    !btrfs_is_free_space_trimmed(block_group)) {
1387 			trace_btrfs_skip_unused_block_group(block_group);
1388 			up_write(&space_info->groups_sem);
1389 			/* Requeue if we failed because of async discard */
1390 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1391 						 block_group);
1392 			goto next;
1393 		}
1394 
1395 		spin_lock(&block_group->lock);
1396 		if (block_group->reserved || block_group->pinned ||
1397 		    block_group->used || block_group->ro ||
1398 		    list_is_singular(&block_group->list)) {
1399 			/*
1400 			 * We want to bail if we made new allocations or have
1401 			 * outstanding allocations in this block group.  We do
1402 			 * the ro check in case balance is currently acting on
1403 			 * this block group.
1404 			 */
1405 			trace_btrfs_skip_unused_block_group(block_group);
1406 			spin_unlock(&block_group->lock);
1407 			up_write(&space_info->groups_sem);
1408 			goto next;
1409 		}
1410 		spin_unlock(&block_group->lock);
1411 
1412 		/* We don't want to force the issue, only flip if it's ok. */
1413 		ret = inc_block_group_ro(block_group, 0);
1414 		up_write(&space_info->groups_sem);
1415 		if (ret < 0) {
1416 			ret = 0;
1417 			goto next;
1418 		}
1419 
1420 		/*
1421 		 * Want to do this before we do anything else so we can recover
1422 		 * properly if we fail to join the transaction.
1423 		 */
1424 		trans = btrfs_start_trans_remove_block_group(fs_info,
1425 						     block_group->start);
1426 		if (IS_ERR(trans)) {
1427 			btrfs_dec_block_group_ro(block_group);
1428 			ret = PTR_ERR(trans);
1429 			goto next;
1430 		}
1431 
1432 		/*
1433 		 * We could have pending pinned extents for this block group,
1434 		 * just delete them, we don't care about them anymore.
1435 		 */
1436 		if (!clean_pinned_extents(trans, block_group)) {
1437 			btrfs_dec_block_group_ro(block_group);
1438 			goto end_trans;
1439 		}
1440 
1441 		/*
1442 		 * At this point, the block_group is read only and should fail
1443 		 * new allocations.  However, btrfs_finish_extent_commit() can
1444 		 * cause this block_group to be placed back on the discard
1445 		 * lists because now the block_group isn't fully discarded.
1446 		 * Bail here and try again later after discarding everything.
1447 		 */
1448 		spin_lock(&fs_info->discard_ctl.lock);
1449 		if (!list_empty(&block_group->discard_list)) {
1450 			spin_unlock(&fs_info->discard_ctl.lock);
1451 			btrfs_dec_block_group_ro(block_group);
1452 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1453 						 block_group);
1454 			goto end_trans;
1455 		}
1456 		spin_unlock(&fs_info->discard_ctl.lock);
1457 
1458 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1459 		spin_lock(&space_info->lock);
1460 		spin_lock(&block_group->lock);
1461 
1462 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1463 						     -block_group->pinned);
1464 		space_info->bytes_readonly += block_group->pinned;
1465 		__btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned);
1466 		block_group->pinned = 0;
1467 
1468 		spin_unlock(&block_group->lock);
1469 		spin_unlock(&space_info->lock);
1470 
1471 		/*
1472 		 * The normal path here is an unused block group is passed here,
1473 		 * then trimming is handled in the transaction commit path.
1474 		 * Async discard interposes before this to do the trimming
1475 		 * before coming down the unused block group path as trimming
1476 		 * will no longer be done later in the transaction commit path.
1477 		 */
1478 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1479 			goto flip_async;
1480 
1481 		/* DISCARD can flip during remount */
1482 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1483 
1484 		/* Implicit trim during transaction commit. */
1485 		if (trimming)
1486 			btrfs_freeze_block_group(block_group);
1487 
1488 		/*
1489 		 * Btrfs_remove_chunk will abort the transaction if things go
1490 		 * horribly wrong.
1491 		 */
1492 		ret = btrfs_remove_chunk(trans, block_group->start);
1493 
1494 		if (ret) {
1495 			if (trimming)
1496 				btrfs_unfreeze_block_group(block_group);
1497 			goto end_trans;
1498 		}
1499 
1500 		/*
1501 		 * If we're not mounted with -odiscard, we can just forget
1502 		 * about this block group. Otherwise we'll need to wait
1503 		 * until transaction commit to do the actual discard.
1504 		 */
1505 		if (trimming) {
1506 			spin_lock(&fs_info->unused_bgs_lock);
1507 			/*
1508 			 * A concurrent scrub might have added us to the list
1509 			 * fs_info->unused_bgs, so use a list_move operation
1510 			 * to add the block group to the deleted_bgs list.
1511 			 */
1512 			list_move(&block_group->bg_list,
1513 				  &trans->transaction->deleted_bgs);
1514 			spin_unlock(&fs_info->unused_bgs_lock);
1515 			btrfs_get_block_group(block_group);
1516 		}
1517 end_trans:
1518 		btrfs_end_transaction(trans);
1519 next:
1520 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1521 		btrfs_put_block_group(block_group);
1522 		spin_lock(&fs_info->unused_bgs_lock);
1523 	}
1524 	spin_unlock(&fs_info->unused_bgs_lock);
1525 	return;
1526 
1527 flip_async:
1528 	btrfs_end_transaction(trans);
1529 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1530 	btrfs_put_block_group(block_group);
1531 	btrfs_discard_punt_unused_bgs_list(fs_info);
1532 }
1533 
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1534 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1535 {
1536 	struct btrfs_fs_info *fs_info = bg->fs_info;
1537 
1538 	spin_lock(&fs_info->unused_bgs_lock);
1539 	if (list_empty(&bg->bg_list)) {
1540 		btrfs_get_block_group(bg);
1541 		trace_btrfs_add_unused_block_group(bg);
1542 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1543 	}
1544 	spin_unlock(&fs_info->unused_bgs_lock);
1545 }
1546 
read_bg_from_eb(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_path * path)1547 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1548 			   struct btrfs_path *path)
1549 {
1550 	struct extent_map_tree *em_tree;
1551 	struct extent_map *em;
1552 	struct btrfs_block_group_item bg;
1553 	struct extent_buffer *leaf;
1554 	int slot;
1555 	u64 flags;
1556 	int ret = 0;
1557 
1558 	slot = path->slots[0];
1559 	leaf = path->nodes[0];
1560 
1561 	em_tree = &fs_info->mapping_tree;
1562 	read_lock(&em_tree->lock);
1563 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1564 	read_unlock(&em_tree->lock);
1565 	if (!em) {
1566 		btrfs_err(fs_info,
1567 			  "logical %llu len %llu found bg but no related chunk",
1568 			  key->objectid, key->offset);
1569 		return -ENOENT;
1570 	}
1571 
1572 	if (em->start != key->objectid || em->len != key->offset) {
1573 		btrfs_err(fs_info,
1574 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1575 			key->objectid, key->offset, em->start, em->len);
1576 		ret = -EUCLEAN;
1577 		goto out_free_em;
1578 	}
1579 
1580 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1581 			   sizeof(bg));
1582 	flags = btrfs_stack_block_group_flags(&bg) &
1583 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1584 
1585 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1586 		btrfs_err(fs_info,
1587 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1588 			  key->objectid, key->offset, flags,
1589 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1590 		ret = -EUCLEAN;
1591 	}
1592 
1593 out_free_em:
1594 	free_extent_map(em);
1595 	return ret;
1596 }
1597 
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)1598 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1599 				  struct btrfs_path *path,
1600 				  struct btrfs_key *key)
1601 {
1602 	struct btrfs_root *root = fs_info->extent_root;
1603 	int ret;
1604 	struct btrfs_key found_key;
1605 	struct extent_buffer *leaf;
1606 	int slot;
1607 
1608 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1609 	if (ret < 0)
1610 		return ret;
1611 
1612 	while (1) {
1613 		slot = path->slots[0];
1614 		leaf = path->nodes[0];
1615 		if (slot >= btrfs_header_nritems(leaf)) {
1616 			ret = btrfs_next_leaf(root, path);
1617 			if (ret == 0)
1618 				continue;
1619 			if (ret < 0)
1620 				goto out;
1621 			break;
1622 		}
1623 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1624 
1625 		if (found_key.objectid >= key->objectid &&
1626 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1627 			ret = read_bg_from_eb(fs_info, &found_key, path);
1628 			break;
1629 		}
1630 
1631 		path->slots[0]++;
1632 	}
1633 out:
1634 	return ret;
1635 }
1636 
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)1637 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1638 {
1639 	u64 extra_flags = chunk_to_extended(flags) &
1640 				BTRFS_EXTENDED_PROFILE_MASK;
1641 
1642 	write_seqlock(&fs_info->profiles_lock);
1643 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1644 		fs_info->avail_data_alloc_bits |= extra_flags;
1645 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1646 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1647 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1648 		fs_info->avail_system_alloc_bits |= extra_flags;
1649 	write_sequnlock(&fs_info->profiles_lock);
1650 }
1651 
1652 /**
1653  * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1654  * @chunk_start:   logical address of block group
1655  * @physical:	   physical address to map to logical addresses
1656  * @logical:	   return array of logical addresses which map to @physical
1657  * @naddrs:	   length of @logical
1658  * @stripe_len:    size of IO stripe for the given block group
1659  *
1660  * Maps a particular @physical disk address to a list of @logical addresses.
1661  * Used primarily to exclude those portions of a block group that contain super
1662  * block copies.
1663  */
1664 EXPORT_FOR_TESTS
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)1665 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1666 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1667 {
1668 	struct extent_map *em;
1669 	struct map_lookup *map;
1670 	u64 *buf;
1671 	u64 bytenr;
1672 	u64 data_stripe_length;
1673 	u64 io_stripe_size;
1674 	int i, nr = 0;
1675 	int ret = 0;
1676 
1677 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1678 	if (IS_ERR(em))
1679 		return -EIO;
1680 
1681 	map = em->map_lookup;
1682 	data_stripe_length = em->orig_block_len;
1683 	io_stripe_size = map->stripe_len;
1684 
1685 	/* For RAID5/6 adjust to a full IO stripe length */
1686 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1687 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1688 
1689 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1690 	if (!buf) {
1691 		ret = -ENOMEM;
1692 		goto out;
1693 	}
1694 
1695 	for (i = 0; i < map->num_stripes; i++) {
1696 		bool already_inserted = false;
1697 		u64 stripe_nr;
1698 		int j;
1699 
1700 		if (!in_range(physical, map->stripes[i].physical,
1701 			      data_stripe_length))
1702 			continue;
1703 
1704 		stripe_nr = physical - map->stripes[i].physical;
1705 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1706 
1707 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1708 			stripe_nr = stripe_nr * map->num_stripes + i;
1709 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1710 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1711 			stripe_nr = stripe_nr * map->num_stripes + i;
1712 		}
1713 		/*
1714 		 * The remaining case would be for RAID56, multiply by
1715 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1716 		 * instead of map->stripe_len
1717 		 */
1718 
1719 		bytenr = chunk_start + stripe_nr * io_stripe_size;
1720 
1721 		/* Ensure we don't add duplicate addresses */
1722 		for (j = 0; j < nr; j++) {
1723 			if (buf[j] == bytenr) {
1724 				already_inserted = true;
1725 				break;
1726 			}
1727 		}
1728 
1729 		if (!already_inserted)
1730 			buf[nr++] = bytenr;
1731 	}
1732 
1733 	*logical = buf;
1734 	*naddrs = nr;
1735 	*stripe_len = io_stripe_size;
1736 out:
1737 	free_extent_map(em);
1738 	return ret;
1739 }
1740 
exclude_super_stripes(struct btrfs_block_group * cache)1741 static int exclude_super_stripes(struct btrfs_block_group *cache)
1742 {
1743 	struct btrfs_fs_info *fs_info = cache->fs_info;
1744 	u64 bytenr;
1745 	u64 *logical;
1746 	int stripe_len;
1747 	int i, nr, ret;
1748 
1749 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1750 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1751 		cache->bytes_super += stripe_len;
1752 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1753 						stripe_len);
1754 		if (ret)
1755 			return ret;
1756 	}
1757 
1758 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1759 		bytenr = btrfs_sb_offset(i);
1760 		ret = btrfs_rmap_block(fs_info, cache->start,
1761 				       bytenr, &logical, &nr, &stripe_len);
1762 		if (ret)
1763 			return ret;
1764 
1765 		while (nr--) {
1766 			u64 len = min_t(u64, stripe_len,
1767 				cache->start + cache->length - logical[nr]);
1768 
1769 			cache->bytes_super += len;
1770 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1771 							len);
1772 			if (ret) {
1773 				kfree(logical);
1774 				return ret;
1775 			}
1776 		}
1777 
1778 		kfree(logical);
1779 	}
1780 	return 0;
1781 }
1782 
link_block_group(struct btrfs_block_group * cache)1783 static void link_block_group(struct btrfs_block_group *cache)
1784 {
1785 	struct btrfs_space_info *space_info = cache->space_info;
1786 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1787 
1788 	down_write(&space_info->groups_sem);
1789 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1790 	up_write(&space_info->groups_sem);
1791 }
1792 
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)1793 static struct btrfs_block_group *btrfs_create_block_group_cache(
1794 		struct btrfs_fs_info *fs_info, u64 start)
1795 {
1796 	struct btrfs_block_group *cache;
1797 
1798 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1799 	if (!cache)
1800 		return NULL;
1801 
1802 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1803 					GFP_NOFS);
1804 	if (!cache->free_space_ctl) {
1805 		kfree(cache);
1806 		return NULL;
1807 	}
1808 
1809 	cache->start = start;
1810 
1811 	cache->fs_info = fs_info;
1812 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1813 
1814 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1815 
1816 	refcount_set(&cache->refs, 1);
1817 	spin_lock_init(&cache->lock);
1818 	init_rwsem(&cache->data_rwsem);
1819 	INIT_LIST_HEAD(&cache->list);
1820 	INIT_LIST_HEAD(&cache->cluster_list);
1821 	INIT_LIST_HEAD(&cache->bg_list);
1822 	INIT_LIST_HEAD(&cache->ro_list);
1823 	INIT_LIST_HEAD(&cache->discard_list);
1824 	INIT_LIST_HEAD(&cache->dirty_list);
1825 	INIT_LIST_HEAD(&cache->io_list);
1826 	btrfs_init_free_space_ctl(cache);
1827 	atomic_set(&cache->frozen, 0);
1828 	mutex_init(&cache->free_space_lock);
1829 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1830 
1831 	return cache;
1832 }
1833 
1834 /*
1835  * Iterate all chunks and verify that each of them has the corresponding block
1836  * group
1837  */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)1838 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1839 {
1840 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1841 	struct extent_map *em;
1842 	struct btrfs_block_group *bg;
1843 	u64 start = 0;
1844 	int ret = 0;
1845 
1846 	while (1) {
1847 		read_lock(&map_tree->lock);
1848 		/*
1849 		 * lookup_extent_mapping will return the first extent map
1850 		 * intersecting the range, so setting @len to 1 is enough to
1851 		 * get the first chunk.
1852 		 */
1853 		em = lookup_extent_mapping(map_tree, start, 1);
1854 		read_unlock(&map_tree->lock);
1855 		if (!em)
1856 			break;
1857 
1858 		bg = btrfs_lookup_block_group(fs_info, em->start);
1859 		if (!bg) {
1860 			btrfs_err(fs_info,
1861 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1862 				     em->start, em->len);
1863 			ret = -EUCLEAN;
1864 			free_extent_map(em);
1865 			break;
1866 		}
1867 		if (bg->start != em->start || bg->length != em->len ||
1868 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1869 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1870 			btrfs_err(fs_info,
1871 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1872 				em->start, em->len,
1873 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1874 				bg->start, bg->length,
1875 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1876 			ret = -EUCLEAN;
1877 			free_extent_map(em);
1878 			btrfs_put_block_group(bg);
1879 			break;
1880 		}
1881 		start = em->start + em->len;
1882 		free_extent_map(em);
1883 		btrfs_put_block_group(bg);
1884 	}
1885 	return ret;
1886 }
1887 
read_block_group_item(struct btrfs_block_group * cache,struct btrfs_path * path,const struct btrfs_key * key)1888 static void read_block_group_item(struct btrfs_block_group *cache,
1889 				 struct btrfs_path *path,
1890 				 const struct btrfs_key *key)
1891 {
1892 	struct extent_buffer *leaf = path->nodes[0];
1893 	struct btrfs_block_group_item bgi;
1894 	int slot = path->slots[0];
1895 
1896 	cache->length = key->offset;
1897 
1898 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1899 			   sizeof(bgi));
1900 	cache->used = btrfs_stack_block_group_used(&bgi);
1901 	cache->flags = btrfs_stack_block_group_flags(&bgi);
1902 }
1903 
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_path * path,const struct btrfs_key * key,int need_clear)1904 static int read_one_block_group(struct btrfs_fs_info *info,
1905 				struct btrfs_path *path,
1906 				const struct btrfs_key *key,
1907 				int need_clear)
1908 {
1909 	struct btrfs_block_group *cache;
1910 	struct btrfs_space_info *space_info;
1911 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1912 	int ret;
1913 
1914 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1915 
1916 	cache = btrfs_create_block_group_cache(info, key->objectid);
1917 	if (!cache)
1918 		return -ENOMEM;
1919 
1920 	read_block_group_item(cache, path, key);
1921 
1922 	set_free_space_tree_thresholds(cache);
1923 
1924 	if (need_clear) {
1925 		/*
1926 		 * When we mount with old space cache, we need to
1927 		 * set BTRFS_DC_CLEAR and set dirty flag.
1928 		 *
1929 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1930 		 *    truncate the old free space cache inode and
1931 		 *    setup a new one.
1932 		 * b) Setting 'dirty flag' makes sure that we flush
1933 		 *    the new space cache info onto disk.
1934 		 */
1935 		if (btrfs_test_opt(info, SPACE_CACHE))
1936 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1937 	}
1938 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1939 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1940 			btrfs_err(info,
1941 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1942 				  cache->start);
1943 			ret = -EINVAL;
1944 			goto error;
1945 	}
1946 
1947 	/*
1948 	 * We need to exclude the super stripes now so that the space info has
1949 	 * super bytes accounted for, otherwise we'll think we have more space
1950 	 * than we actually do.
1951 	 */
1952 	ret = exclude_super_stripes(cache);
1953 	if (ret) {
1954 		/* We may have excluded something, so call this just in case. */
1955 		btrfs_free_excluded_extents(cache);
1956 		goto error;
1957 	}
1958 
1959 	/*
1960 	 * Check for two cases, either we are full, and therefore don't need
1961 	 * to bother with the caching work since we won't find any space, or we
1962 	 * are empty, and we can just add all the space in and be done with it.
1963 	 * This saves us _a_lot_ of time, particularly in the full case.
1964 	 */
1965 	if (cache->length == cache->used) {
1966 		cache->last_byte_to_unpin = (u64)-1;
1967 		cache->cached = BTRFS_CACHE_FINISHED;
1968 		btrfs_free_excluded_extents(cache);
1969 	} else if (cache->used == 0) {
1970 		cache->last_byte_to_unpin = (u64)-1;
1971 		cache->cached = BTRFS_CACHE_FINISHED;
1972 		add_new_free_space(cache, cache->start,
1973 				   cache->start + cache->length);
1974 		btrfs_free_excluded_extents(cache);
1975 	}
1976 
1977 	ret = btrfs_add_block_group_cache(info, cache);
1978 	if (ret) {
1979 		btrfs_remove_free_space_cache(cache);
1980 		goto error;
1981 	}
1982 	trace_btrfs_add_block_group(info, cache, 0);
1983 	btrfs_update_space_info(info, cache->flags, cache->length,
1984 				cache->used, cache->bytes_super, &space_info);
1985 
1986 	cache->space_info = space_info;
1987 
1988 	link_block_group(cache);
1989 
1990 	set_avail_alloc_bits(info, cache->flags);
1991 	if (btrfs_chunk_readonly(info, cache->start)) {
1992 		inc_block_group_ro(cache, 1);
1993 	} else if (cache->used == 0) {
1994 		ASSERT(list_empty(&cache->bg_list));
1995 		if (btrfs_test_opt(info, DISCARD_ASYNC))
1996 			btrfs_discard_queue_work(&info->discard_ctl, cache);
1997 		else
1998 			btrfs_mark_bg_unused(cache);
1999 	}
2000 	return 0;
2001 error:
2002 	btrfs_put_block_group(cache);
2003 	return ret;
2004 }
2005 
btrfs_read_block_groups(struct btrfs_fs_info * info)2006 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2007 {
2008 	struct btrfs_path *path;
2009 	int ret;
2010 	struct btrfs_block_group *cache;
2011 	struct btrfs_space_info *space_info;
2012 	struct btrfs_key key;
2013 	int need_clear = 0;
2014 	u64 cache_gen;
2015 
2016 	key.objectid = 0;
2017 	key.offset = 0;
2018 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2019 	path = btrfs_alloc_path();
2020 	if (!path)
2021 		return -ENOMEM;
2022 
2023 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2024 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2025 	    btrfs_super_generation(info->super_copy) != cache_gen)
2026 		need_clear = 1;
2027 	if (btrfs_test_opt(info, CLEAR_CACHE))
2028 		need_clear = 1;
2029 
2030 	while (1) {
2031 		ret = find_first_block_group(info, path, &key);
2032 		if (ret > 0)
2033 			break;
2034 		if (ret != 0)
2035 			goto error;
2036 
2037 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2038 		ret = read_one_block_group(info, path, &key, need_clear);
2039 		if (ret < 0)
2040 			goto error;
2041 		key.objectid += key.offset;
2042 		key.offset = 0;
2043 		btrfs_release_path(path);
2044 	}
2045 	btrfs_release_path(path);
2046 
2047 	list_for_each_entry(space_info, &info->space_info, list) {
2048 		int i;
2049 
2050 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2051 			if (list_empty(&space_info->block_groups[i]))
2052 				continue;
2053 			cache = list_first_entry(&space_info->block_groups[i],
2054 						 struct btrfs_block_group,
2055 						 list);
2056 			btrfs_sysfs_add_block_group_type(cache);
2057 		}
2058 
2059 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2060 		      (BTRFS_BLOCK_GROUP_RAID10 |
2061 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2062 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2063 		       BTRFS_BLOCK_GROUP_DUP)))
2064 			continue;
2065 		/*
2066 		 * Avoid allocating from un-mirrored block group if there are
2067 		 * mirrored block groups.
2068 		 */
2069 		list_for_each_entry(cache,
2070 				&space_info->block_groups[BTRFS_RAID_RAID0],
2071 				list)
2072 			inc_block_group_ro(cache, 1);
2073 		list_for_each_entry(cache,
2074 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2075 				list)
2076 			inc_block_group_ro(cache, 1);
2077 	}
2078 
2079 	btrfs_init_global_block_rsv(info);
2080 	ret = check_chunk_block_group_mappings(info);
2081 error:
2082 	btrfs_free_path(path);
2083 	return ret;
2084 }
2085 
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2086 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2087 				   struct btrfs_block_group *block_group)
2088 {
2089 	struct btrfs_fs_info *fs_info = trans->fs_info;
2090 	struct btrfs_block_group_item bgi;
2091 	struct btrfs_root *root;
2092 	struct btrfs_key key;
2093 
2094 	spin_lock(&block_group->lock);
2095 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2096 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2097 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2098 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2099 	key.objectid = block_group->start;
2100 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2101 	key.offset = block_group->length;
2102 	spin_unlock(&block_group->lock);
2103 
2104 	root = fs_info->extent_root;
2105 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2106 }
2107 
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2108 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2109 {
2110 	struct btrfs_fs_info *fs_info = trans->fs_info;
2111 	struct btrfs_block_group *block_group;
2112 	int ret = 0;
2113 
2114 	if (!trans->can_flush_pending_bgs)
2115 		return;
2116 
2117 	while (!list_empty(&trans->new_bgs)) {
2118 		int index;
2119 
2120 		block_group = list_first_entry(&trans->new_bgs,
2121 					       struct btrfs_block_group,
2122 					       bg_list);
2123 		if (ret)
2124 			goto next;
2125 
2126 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2127 
2128 		ret = insert_block_group_item(trans, block_group);
2129 		if (ret)
2130 			btrfs_abort_transaction(trans, ret);
2131 		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2132 					block_group->length);
2133 		if (ret)
2134 			btrfs_abort_transaction(trans, ret);
2135 		add_block_group_free_space(trans, block_group);
2136 
2137 		/*
2138 		 * If we restriped during balance, we may have added a new raid
2139 		 * type, so now add the sysfs entries when it is safe to do so.
2140 		 * We don't have to worry about locking here as it's handled in
2141 		 * btrfs_sysfs_add_block_group_type.
2142 		 */
2143 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2144 			btrfs_sysfs_add_block_group_type(block_group);
2145 
2146 		/* Already aborted the transaction if it failed. */
2147 next:
2148 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2149 		list_del_init(&block_group->bg_list);
2150 	}
2151 	btrfs_trans_release_chunk_metadata(trans);
2152 }
2153 
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)2154 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2155 			   u64 type, u64 chunk_offset, u64 size)
2156 {
2157 	struct btrfs_fs_info *fs_info = trans->fs_info;
2158 	struct btrfs_block_group *cache;
2159 	int ret;
2160 
2161 	btrfs_set_log_full_commit(trans);
2162 
2163 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2164 	if (!cache)
2165 		return -ENOMEM;
2166 
2167 	cache->length = size;
2168 	set_free_space_tree_thresholds(cache);
2169 	cache->used = bytes_used;
2170 	cache->flags = type;
2171 	cache->last_byte_to_unpin = (u64)-1;
2172 	cache->cached = BTRFS_CACHE_FINISHED;
2173 	cache->needs_free_space = 1;
2174 	ret = exclude_super_stripes(cache);
2175 	if (ret) {
2176 		/* We may have excluded something, so call this just in case */
2177 		btrfs_free_excluded_extents(cache);
2178 		btrfs_put_block_group(cache);
2179 		return ret;
2180 	}
2181 
2182 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2183 
2184 	btrfs_free_excluded_extents(cache);
2185 
2186 #ifdef CONFIG_BTRFS_DEBUG
2187 	if (btrfs_should_fragment_free_space(cache)) {
2188 		u64 new_bytes_used = size - bytes_used;
2189 
2190 		bytes_used += new_bytes_used >> 1;
2191 		fragment_free_space(cache);
2192 	}
2193 #endif
2194 	/*
2195 	 * Ensure the corresponding space_info object is created and
2196 	 * assigned to our block group. We want our bg to be added to the rbtree
2197 	 * with its ->space_info set.
2198 	 */
2199 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2200 	ASSERT(cache->space_info);
2201 
2202 	ret = btrfs_add_block_group_cache(fs_info, cache);
2203 	if (ret) {
2204 		btrfs_remove_free_space_cache(cache);
2205 		btrfs_put_block_group(cache);
2206 		return ret;
2207 	}
2208 
2209 	/*
2210 	 * Now that our block group has its ->space_info set and is inserted in
2211 	 * the rbtree, update the space info's counters.
2212 	 */
2213 	trace_btrfs_add_block_group(fs_info, cache, 1);
2214 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2215 				cache->bytes_super, &cache->space_info);
2216 	btrfs_update_global_block_rsv(fs_info);
2217 
2218 	link_block_group(cache);
2219 
2220 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2221 	trans->delayed_ref_updates++;
2222 	btrfs_update_delayed_refs_rsv(trans);
2223 
2224 	set_avail_alloc_bits(fs_info, type);
2225 	return 0;
2226 }
2227 
2228 /*
2229  * Mark one block group RO, can be called several times for the same block
2230  * group.
2231  *
2232  * @cache:		the destination block group
2233  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2234  * 			ensure we still have some free space after marking this
2235  * 			block group RO.
2236  */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2237 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2238 			     bool do_chunk_alloc)
2239 {
2240 	struct btrfs_fs_info *fs_info = cache->fs_info;
2241 	struct btrfs_trans_handle *trans;
2242 	u64 alloc_flags;
2243 	int ret;
2244 
2245 again:
2246 	trans = btrfs_join_transaction(fs_info->extent_root);
2247 	if (IS_ERR(trans))
2248 		return PTR_ERR(trans);
2249 
2250 	/*
2251 	 * we're not allowed to set block groups readonly after the dirty
2252 	 * block groups cache has started writing.  If it already started,
2253 	 * back off and let this transaction commit
2254 	 */
2255 	mutex_lock(&fs_info->ro_block_group_mutex);
2256 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2257 		u64 transid = trans->transid;
2258 
2259 		mutex_unlock(&fs_info->ro_block_group_mutex);
2260 		btrfs_end_transaction(trans);
2261 
2262 		ret = btrfs_wait_for_commit(fs_info, transid);
2263 		if (ret)
2264 			return ret;
2265 		goto again;
2266 	}
2267 
2268 	if (do_chunk_alloc) {
2269 		/*
2270 		 * If we are changing raid levels, try to allocate a
2271 		 * corresponding block group with the new raid level.
2272 		 */
2273 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2274 		if (alloc_flags != cache->flags) {
2275 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2276 						CHUNK_ALLOC_FORCE);
2277 			/*
2278 			 * ENOSPC is allowed here, we may have enough space
2279 			 * already allocated at the new raid level to carry on
2280 			 */
2281 			if (ret == -ENOSPC)
2282 				ret = 0;
2283 			if (ret < 0)
2284 				goto out;
2285 		}
2286 	}
2287 
2288 	ret = inc_block_group_ro(cache, 0);
2289 	if (!ret)
2290 		goto out;
2291 	if (ret == -ETXTBSY)
2292 		goto unlock_out;
2293 
2294 	/*
2295 	 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2296 	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
2297 	 * we still want to try our best to mark the block group read-only.
2298 	 */
2299 	if (!do_chunk_alloc && ret == -ENOSPC &&
2300 	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2301 		goto unlock_out;
2302 
2303 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2304 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2305 	if (ret < 0)
2306 		goto out;
2307 	ret = inc_block_group_ro(cache, 0);
2308 	if (ret == -ETXTBSY)
2309 		goto unlock_out;
2310 out:
2311 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2312 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2313 		mutex_lock(&fs_info->chunk_mutex);
2314 		check_system_chunk(trans, alloc_flags);
2315 		mutex_unlock(&fs_info->chunk_mutex);
2316 	}
2317 unlock_out:
2318 	mutex_unlock(&fs_info->ro_block_group_mutex);
2319 
2320 	btrfs_end_transaction(trans);
2321 	return ret;
2322 }
2323 
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)2324 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2325 {
2326 	struct btrfs_space_info *sinfo = cache->space_info;
2327 	u64 num_bytes;
2328 
2329 	BUG_ON(!cache->ro);
2330 
2331 	spin_lock(&sinfo->lock);
2332 	spin_lock(&cache->lock);
2333 	if (!--cache->ro) {
2334 		num_bytes = cache->length - cache->reserved -
2335 			    cache->pinned - cache->bytes_super - cache->used;
2336 		sinfo->bytes_readonly -= num_bytes;
2337 		list_del_init(&cache->ro_list);
2338 	}
2339 	spin_unlock(&cache->lock);
2340 	spin_unlock(&sinfo->lock);
2341 }
2342 
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)2343 static int update_block_group_item(struct btrfs_trans_handle *trans,
2344 				   struct btrfs_path *path,
2345 				   struct btrfs_block_group *cache)
2346 {
2347 	struct btrfs_fs_info *fs_info = trans->fs_info;
2348 	int ret;
2349 	struct btrfs_root *root = fs_info->extent_root;
2350 	unsigned long bi;
2351 	struct extent_buffer *leaf;
2352 	struct btrfs_block_group_item bgi;
2353 	struct btrfs_key key;
2354 
2355 	key.objectid = cache->start;
2356 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2357 	key.offset = cache->length;
2358 
2359 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2360 	if (ret) {
2361 		if (ret > 0)
2362 			ret = -ENOENT;
2363 		goto fail;
2364 	}
2365 
2366 	leaf = path->nodes[0];
2367 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2368 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2369 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2370 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2371 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2372 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2373 	btrfs_mark_buffer_dirty(leaf);
2374 fail:
2375 	btrfs_release_path(path);
2376 	return ret;
2377 
2378 }
2379 
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)2380 static int cache_save_setup(struct btrfs_block_group *block_group,
2381 			    struct btrfs_trans_handle *trans,
2382 			    struct btrfs_path *path)
2383 {
2384 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2385 	struct btrfs_root *root = fs_info->tree_root;
2386 	struct inode *inode = NULL;
2387 	struct extent_changeset *data_reserved = NULL;
2388 	u64 alloc_hint = 0;
2389 	int dcs = BTRFS_DC_ERROR;
2390 	u64 num_pages = 0;
2391 	int retries = 0;
2392 	int ret = 0;
2393 
2394 	/*
2395 	 * If this block group is smaller than 100 megs don't bother caching the
2396 	 * block group.
2397 	 */
2398 	if (block_group->length < (100 * SZ_1M)) {
2399 		spin_lock(&block_group->lock);
2400 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2401 		spin_unlock(&block_group->lock);
2402 		return 0;
2403 	}
2404 
2405 	if (TRANS_ABORTED(trans))
2406 		return 0;
2407 again:
2408 	inode = lookup_free_space_inode(block_group, path);
2409 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2410 		ret = PTR_ERR(inode);
2411 		btrfs_release_path(path);
2412 		goto out;
2413 	}
2414 
2415 	if (IS_ERR(inode)) {
2416 		BUG_ON(retries);
2417 		retries++;
2418 
2419 		if (block_group->ro)
2420 			goto out_free;
2421 
2422 		ret = create_free_space_inode(trans, block_group, path);
2423 		if (ret)
2424 			goto out_free;
2425 		goto again;
2426 	}
2427 
2428 	/*
2429 	 * We want to set the generation to 0, that way if anything goes wrong
2430 	 * from here on out we know not to trust this cache when we load up next
2431 	 * time.
2432 	 */
2433 	BTRFS_I(inode)->generation = 0;
2434 	ret = btrfs_update_inode(trans, root, inode);
2435 	if (ret) {
2436 		/*
2437 		 * So theoretically we could recover from this, simply set the
2438 		 * super cache generation to 0 so we know to invalidate the
2439 		 * cache, but then we'd have to keep track of the block groups
2440 		 * that fail this way so we know we _have_ to reset this cache
2441 		 * before the next commit or risk reading stale cache.  So to
2442 		 * limit our exposure to horrible edge cases lets just abort the
2443 		 * transaction, this only happens in really bad situations
2444 		 * anyway.
2445 		 */
2446 		btrfs_abort_transaction(trans, ret);
2447 		goto out_put;
2448 	}
2449 	WARN_ON(ret);
2450 
2451 	/* We've already setup this transaction, go ahead and exit */
2452 	if (block_group->cache_generation == trans->transid &&
2453 	    i_size_read(inode)) {
2454 		dcs = BTRFS_DC_SETUP;
2455 		goto out_put;
2456 	}
2457 
2458 	if (i_size_read(inode) > 0) {
2459 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2460 					&fs_info->global_block_rsv);
2461 		if (ret)
2462 			goto out_put;
2463 
2464 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2465 		if (ret)
2466 			goto out_put;
2467 	}
2468 
2469 	spin_lock(&block_group->lock);
2470 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2471 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2472 		/*
2473 		 * don't bother trying to write stuff out _if_
2474 		 * a) we're not cached,
2475 		 * b) we're with nospace_cache mount option,
2476 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2477 		 */
2478 		dcs = BTRFS_DC_WRITTEN;
2479 		spin_unlock(&block_group->lock);
2480 		goto out_put;
2481 	}
2482 	spin_unlock(&block_group->lock);
2483 
2484 	/*
2485 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2486 	 * skip doing the setup, we've already cleared the cache so we're safe.
2487 	 */
2488 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2489 		ret = -ENOSPC;
2490 		goto out_put;
2491 	}
2492 
2493 	/*
2494 	 * Try to preallocate enough space based on how big the block group is.
2495 	 * Keep in mind this has to include any pinned space which could end up
2496 	 * taking up quite a bit since it's not folded into the other space
2497 	 * cache.
2498 	 */
2499 	num_pages = div_u64(block_group->length, SZ_256M);
2500 	if (!num_pages)
2501 		num_pages = 1;
2502 
2503 	num_pages *= 16;
2504 	num_pages *= PAGE_SIZE;
2505 
2506 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2507 					  num_pages);
2508 	if (ret)
2509 		goto out_put;
2510 
2511 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2512 					      num_pages, num_pages,
2513 					      &alloc_hint);
2514 	/*
2515 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2516 	 * of metadata or split extents when writing the cache out, which means
2517 	 * we can enospc if we are heavily fragmented in addition to just normal
2518 	 * out of space conditions.  So if we hit this just skip setting up any
2519 	 * other block groups for this transaction, maybe we'll unpin enough
2520 	 * space the next time around.
2521 	 */
2522 	if (!ret)
2523 		dcs = BTRFS_DC_SETUP;
2524 	else if (ret == -ENOSPC)
2525 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2526 
2527 out_put:
2528 	iput(inode);
2529 out_free:
2530 	btrfs_release_path(path);
2531 out:
2532 	spin_lock(&block_group->lock);
2533 	if (!ret && dcs == BTRFS_DC_SETUP)
2534 		block_group->cache_generation = trans->transid;
2535 	block_group->disk_cache_state = dcs;
2536 	spin_unlock(&block_group->lock);
2537 
2538 	extent_changeset_free(data_reserved);
2539 	return ret;
2540 }
2541 
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)2542 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2543 {
2544 	struct btrfs_fs_info *fs_info = trans->fs_info;
2545 	struct btrfs_block_group *cache, *tmp;
2546 	struct btrfs_transaction *cur_trans = trans->transaction;
2547 	struct btrfs_path *path;
2548 
2549 	if (list_empty(&cur_trans->dirty_bgs) ||
2550 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2551 		return 0;
2552 
2553 	path = btrfs_alloc_path();
2554 	if (!path)
2555 		return -ENOMEM;
2556 
2557 	/* Could add new block groups, use _safe just in case */
2558 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2559 				 dirty_list) {
2560 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2561 			cache_save_setup(cache, trans, path);
2562 	}
2563 
2564 	btrfs_free_path(path);
2565 	return 0;
2566 }
2567 
2568 /*
2569  * Transaction commit does final block group cache writeback during a critical
2570  * section where nothing is allowed to change the FS.  This is required in
2571  * order for the cache to actually match the block group, but can introduce a
2572  * lot of latency into the commit.
2573  *
2574  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2575  * There's a chance we'll have to redo some of it if the block group changes
2576  * again during the commit, but it greatly reduces the commit latency by
2577  * getting rid of the easy block groups while we're still allowing others to
2578  * join the commit.
2579  */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)2580 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2581 {
2582 	struct btrfs_fs_info *fs_info = trans->fs_info;
2583 	struct btrfs_block_group *cache;
2584 	struct btrfs_transaction *cur_trans = trans->transaction;
2585 	int ret = 0;
2586 	int should_put;
2587 	struct btrfs_path *path = NULL;
2588 	LIST_HEAD(dirty);
2589 	struct list_head *io = &cur_trans->io_bgs;
2590 	int loops = 0;
2591 
2592 	spin_lock(&cur_trans->dirty_bgs_lock);
2593 	if (list_empty(&cur_trans->dirty_bgs)) {
2594 		spin_unlock(&cur_trans->dirty_bgs_lock);
2595 		return 0;
2596 	}
2597 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2598 	spin_unlock(&cur_trans->dirty_bgs_lock);
2599 
2600 again:
2601 	/* Make sure all the block groups on our dirty list actually exist */
2602 	btrfs_create_pending_block_groups(trans);
2603 
2604 	if (!path) {
2605 		path = btrfs_alloc_path();
2606 		if (!path) {
2607 			ret = -ENOMEM;
2608 			goto out;
2609 		}
2610 	}
2611 
2612 	/*
2613 	 * cache_write_mutex is here only to save us from balance or automatic
2614 	 * removal of empty block groups deleting this block group while we are
2615 	 * writing out the cache
2616 	 */
2617 	mutex_lock(&trans->transaction->cache_write_mutex);
2618 	while (!list_empty(&dirty)) {
2619 		bool drop_reserve = true;
2620 
2621 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2622 					 dirty_list);
2623 		/*
2624 		 * This can happen if something re-dirties a block group that
2625 		 * is already under IO.  Just wait for it to finish and then do
2626 		 * it all again
2627 		 */
2628 		if (!list_empty(&cache->io_list)) {
2629 			list_del_init(&cache->io_list);
2630 			btrfs_wait_cache_io(trans, cache, path);
2631 			btrfs_put_block_group(cache);
2632 		}
2633 
2634 
2635 		/*
2636 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2637 		 * it should update the cache_state.  Don't delete until after
2638 		 * we wait.
2639 		 *
2640 		 * Since we're not running in the commit critical section
2641 		 * we need the dirty_bgs_lock to protect from update_block_group
2642 		 */
2643 		spin_lock(&cur_trans->dirty_bgs_lock);
2644 		list_del_init(&cache->dirty_list);
2645 		spin_unlock(&cur_trans->dirty_bgs_lock);
2646 
2647 		should_put = 1;
2648 
2649 		cache_save_setup(cache, trans, path);
2650 
2651 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2652 			cache->io_ctl.inode = NULL;
2653 			ret = btrfs_write_out_cache(trans, cache, path);
2654 			if (ret == 0 && cache->io_ctl.inode) {
2655 				should_put = 0;
2656 
2657 				/*
2658 				 * The cache_write_mutex is protecting the
2659 				 * io_list, also refer to the definition of
2660 				 * btrfs_transaction::io_bgs for more details
2661 				 */
2662 				list_add_tail(&cache->io_list, io);
2663 			} else {
2664 				/*
2665 				 * If we failed to write the cache, the
2666 				 * generation will be bad and life goes on
2667 				 */
2668 				ret = 0;
2669 			}
2670 		}
2671 		if (!ret) {
2672 			ret = update_block_group_item(trans, path, cache);
2673 			/*
2674 			 * Our block group might still be attached to the list
2675 			 * of new block groups in the transaction handle of some
2676 			 * other task (struct btrfs_trans_handle->new_bgs). This
2677 			 * means its block group item isn't yet in the extent
2678 			 * tree. If this happens ignore the error, as we will
2679 			 * try again later in the critical section of the
2680 			 * transaction commit.
2681 			 */
2682 			if (ret == -ENOENT) {
2683 				ret = 0;
2684 				spin_lock(&cur_trans->dirty_bgs_lock);
2685 				if (list_empty(&cache->dirty_list)) {
2686 					list_add_tail(&cache->dirty_list,
2687 						      &cur_trans->dirty_bgs);
2688 					btrfs_get_block_group(cache);
2689 					drop_reserve = false;
2690 				}
2691 				spin_unlock(&cur_trans->dirty_bgs_lock);
2692 			} else if (ret) {
2693 				btrfs_abort_transaction(trans, ret);
2694 			}
2695 		}
2696 
2697 		/* If it's not on the io list, we need to put the block group */
2698 		if (should_put)
2699 			btrfs_put_block_group(cache);
2700 		if (drop_reserve)
2701 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2702 		/*
2703 		 * Avoid blocking other tasks for too long. It might even save
2704 		 * us from writing caches for block groups that are going to be
2705 		 * removed.
2706 		 */
2707 		mutex_unlock(&trans->transaction->cache_write_mutex);
2708 		if (ret)
2709 			goto out;
2710 		mutex_lock(&trans->transaction->cache_write_mutex);
2711 	}
2712 	mutex_unlock(&trans->transaction->cache_write_mutex);
2713 
2714 	/*
2715 	 * Go through delayed refs for all the stuff we've just kicked off
2716 	 * and then loop back (just once)
2717 	 */
2718 	if (!ret)
2719 		ret = btrfs_run_delayed_refs(trans, 0);
2720 	if (!ret && loops == 0) {
2721 		loops++;
2722 		spin_lock(&cur_trans->dirty_bgs_lock);
2723 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2724 		/*
2725 		 * dirty_bgs_lock protects us from concurrent block group
2726 		 * deletes too (not just cache_write_mutex).
2727 		 */
2728 		if (!list_empty(&dirty)) {
2729 			spin_unlock(&cur_trans->dirty_bgs_lock);
2730 			goto again;
2731 		}
2732 		spin_unlock(&cur_trans->dirty_bgs_lock);
2733 	}
2734 out:
2735 	if (ret < 0) {
2736 		spin_lock(&cur_trans->dirty_bgs_lock);
2737 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
2738 		spin_unlock(&cur_trans->dirty_bgs_lock);
2739 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2740 	}
2741 
2742 	btrfs_free_path(path);
2743 	return ret;
2744 }
2745 
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)2746 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2747 {
2748 	struct btrfs_fs_info *fs_info = trans->fs_info;
2749 	struct btrfs_block_group *cache;
2750 	struct btrfs_transaction *cur_trans = trans->transaction;
2751 	int ret = 0;
2752 	int should_put;
2753 	struct btrfs_path *path;
2754 	struct list_head *io = &cur_trans->io_bgs;
2755 
2756 	path = btrfs_alloc_path();
2757 	if (!path)
2758 		return -ENOMEM;
2759 
2760 	/*
2761 	 * Even though we are in the critical section of the transaction commit,
2762 	 * we can still have concurrent tasks adding elements to this
2763 	 * transaction's list of dirty block groups. These tasks correspond to
2764 	 * endio free space workers started when writeback finishes for a
2765 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2766 	 * allocate new block groups as a result of COWing nodes of the root
2767 	 * tree when updating the free space inode. The writeback for the space
2768 	 * caches is triggered by an earlier call to
2769 	 * btrfs_start_dirty_block_groups() and iterations of the following
2770 	 * loop.
2771 	 * Also we want to do the cache_save_setup first and then run the
2772 	 * delayed refs to make sure we have the best chance at doing this all
2773 	 * in one shot.
2774 	 */
2775 	spin_lock(&cur_trans->dirty_bgs_lock);
2776 	while (!list_empty(&cur_trans->dirty_bgs)) {
2777 		cache = list_first_entry(&cur_trans->dirty_bgs,
2778 					 struct btrfs_block_group,
2779 					 dirty_list);
2780 
2781 		/*
2782 		 * This can happen if cache_save_setup re-dirties a block group
2783 		 * that is already under IO.  Just wait for it to finish and
2784 		 * then do it all again
2785 		 */
2786 		if (!list_empty(&cache->io_list)) {
2787 			spin_unlock(&cur_trans->dirty_bgs_lock);
2788 			list_del_init(&cache->io_list);
2789 			btrfs_wait_cache_io(trans, cache, path);
2790 			btrfs_put_block_group(cache);
2791 			spin_lock(&cur_trans->dirty_bgs_lock);
2792 		}
2793 
2794 		/*
2795 		 * Don't remove from the dirty list until after we've waited on
2796 		 * any pending IO
2797 		 */
2798 		list_del_init(&cache->dirty_list);
2799 		spin_unlock(&cur_trans->dirty_bgs_lock);
2800 		should_put = 1;
2801 
2802 		cache_save_setup(cache, trans, path);
2803 
2804 		if (!ret)
2805 			ret = btrfs_run_delayed_refs(trans,
2806 						     (unsigned long) -1);
2807 
2808 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2809 			cache->io_ctl.inode = NULL;
2810 			ret = btrfs_write_out_cache(trans, cache, path);
2811 			if (ret == 0 && cache->io_ctl.inode) {
2812 				should_put = 0;
2813 				list_add_tail(&cache->io_list, io);
2814 			} else {
2815 				/*
2816 				 * If we failed to write the cache, the
2817 				 * generation will be bad and life goes on
2818 				 */
2819 				ret = 0;
2820 			}
2821 		}
2822 		if (!ret) {
2823 			ret = update_block_group_item(trans, path, cache);
2824 			/*
2825 			 * One of the free space endio workers might have
2826 			 * created a new block group while updating a free space
2827 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2828 			 * and hasn't released its transaction handle yet, in
2829 			 * which case the new block group is still attached to
2830 			 * its transaction handle and its creation has not
2831 			 * finished yet (no block group item in the extent tree
2832 			 * yet, etc). If this is the case, wait for all free
2833 			 * space endio workers to finish and retry. This is a
2834 			 * very rare case so no need for a more efficient and
2835 			 * complex approach.
2836 			 */
2837 			if (ret == -ENOENT) {
2838 				wait_event(cur_trans->writer_wait,
2839 				   atomic_read(&cur_trans->num_writers) == 1);
2840 				ret = update_block_group_item(trans, path, cache);
2841 			}
2842 			if (ret)
2843 				btrfs_abort_transaction(trans, ret);
2844 		}
2845 
2846 		/* If its not on the io list, we need to put the block group */
2847 		if (should_put)
2848 			btrfs_put_block_group(cache);
2849 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2850 		spin_lock(&cur_trans->dirty_bgs_lock);
2851 	}
2852 	spin_unlock(&cur_trans->dirty_bgs_lock);
2853 
2854 	/*
2855 	 * Refer to the definition of io_bgs member for details why it's safe
2856 	 * to use it without any locking
2857 	 */
2858 	while (!list_empty(io)) {
2859 		cache = list_first_entry(io, struct btrfs_block_group,
2860 					 io_list);
2861 		list_del_init(&cache->io_list);
2862 		btrfs_wait_cache_io(trans, cache, path);
2863 		btrfs_put_block_group(cache);
2864 	}
2865 
2866 	btrfs_free_path(path);
2867 	return ret;
2868 }
2869 
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int alloc)2870 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2871 			     u64 bytenr, u64 num_bytes, int alloc)
2872 {
2873 	struct btrfs_fs_info *info = trans->fs_info;
2874 	struct btrfs_block_group *cache = NULL;
2875 	u64 total = num_bytes;
2876 	u64 old_val;
2877 	u64 byte_in_group;
2878 	int factor;
2879 	int ret = 0;
2880 
2881 	/* Block accounting for super block */
2882 	spin_lock(&info->delalloc_root_lock);
2883 	old_val = btrfs_super_bytes_used(info->super_copy);
2884 	if (alloc)
2885 		old_val += num_bytes;
2886 	else
2887 		old_val -= num_bytes;
2888 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2889 	spin_unlock(&info->delalloc_root_lock);
2890 
2891 	while (total) {
2892 		cache = btrfs_lookup_block_group(info, bytenr);
2893 		if (!cache) {
2894 			ret = -ENOENT;
2895 			break;
2896 		}
2897 		factor = btrfs_bg_type_to_factor(cache->flags);
2898 
2899 		/*
2900 		 * If this block group has free space cache written out, we
2901 		 * need to make sure to load it if we are removing space.  This
2902 		 * is because we need the unpinning stage to actually add the
2903 		 * space back to the block group, otherwise we will leak space.
2904 		 */
2905 		if (!alloc && !btrfs_block_group_done(cache))
2906 			btrfs_cache_block_group(cache, 1);
2907 
2908 		byte_in_group = bytenr - cache->start;
2909 		WARN_ON(byte_in_group > cache->length);
2910 
2911 		spin_lock(&cache->space_info->lock);
2912 		spin_lock(&cache->lock);
2913 
2914 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2915 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2916 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2917 
2918 		old_val = cache->used;
2919 		num_bytes = min(total, cache->length - byte_in_group);
2920 		if (alloc) {
2921 			old_val += num_bytes;
2922 			cache->used = old_val;
2923 			cache->reserved -= num_bytes;
2924 			cache->space_info->bytes_reserved -= num_bytes;
2925 			cache->space_info->bytes_used += num_bytes;
2926 			cache->space_info->disk_used += num_bytes * factor;
2927 			spin_unlock(&cache->lock);
2928 			spin_unlock(&cache->space_info->lock);
2929 		} else {
2930 			old_val -= num_bytes;
2931 			cache->used = old_val;
2932 			cache->pinned += num_bytes;
2933 			btrfs_space_info_update_bytes_pinned(info,
2934 					cache->space_info, num_bytes);
2935 			cache->space_info->bytes_used -= num_bytes;
2936 			cache->space_info->disk_used -= num_bytes * factor;
2937 			spin_unlock(&cache->lock);
2938 			spin_unlock(&cache->space_info->lock);
2939 
2940 			__btrfs_mod_total_bytes_pinned(cache->space_info,
2941 						       num_bytes);
2942 			set_extent_dirty(&trans->transaction->pinned_extents,
2943 					 bytenr, bytenr + num_bytes - 1,
2944 					 GFP_NOFS | __GFP_NOFAIL);
2945 		}
2946 
2947 		spin_lock(&trans->transaction->dirty_bgs_lock);
2948 		if (list_empty(&cache->dirty_list)) {
2949 			list_add_tail(&cache->dirty_list,
2950 				      &trans->transaction->dirty_bgs);
2951 			trans->delayed_ref_updates++;
2952 			btrfs_get_block_group(cache);
2953 		}
2954 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2955 
2956 		/*
2957 		 * No longer have used bytes in this block group, queue it for
2958 		 * deletion. We do this after adding the block group to the
2959 		 * dirty list to avoid races between cleaner kthread and space
2960 		 * cache writeout.
2961 		 */
2962 		if (!alloc && old_val == 0) {
2963 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2964 				btrfs_mark_bg_unused(cache);
2965 		}
2966 
2967 		btrfs_put_block_group(cache);
2968 		total -= num_bytes;
2969 		bytenr += num_bytes;
2970 	}
2971 
2972 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2973 	btrfs_update_delayed_refs_rsv(trans);
2974 	return ret;
2975 }
2976 
2977 /**
2978  * btrfs_add_reserved_bytes - update the block_group and space info counters
2979  * @cache:	The cache we are manipulating
2980  * @ram_bytes:  The number of bytes of file content, and will be same to
2981  *              @num_bytes except for the compress path.
2982  * @num_bytes:	The number of bytes in question
2983  * @delalloc:   The blocks are allocated for the delalloc write
2984  *
2985  * This is called by the allocator when it reserves space. If this is a
2986  * reservation and the block group has become read only we cannot make the
2987  * reservation and return -EAGAIN, otherwise this function always succeeds.
2988  */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc)2989 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2990 			     u64 ram_bytes, u64 num_bytes, int delalloc)
2991 {
2992 	struct btrfs_space_info *space_info = cache->space_info;
2993 	int ret = 0;
2994 
2995 	spin_lock(&space_info->lock);
2996 	spin_lock(&cache->lock);
2997 	if (cache->ro) {
2998 		ret = -EAGAIN;
2999 	} else {
3000 		cache->reserved += num_bytes;
3001 		space_info->bytes_reserved += num_bytes;
3002 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3003 					      space_info->flags, num_bytes, 1);
3004 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3005 						      space_info, -ram_bytes);
3006 		if (delalloc)
3007 			cache->delalloc_bytes += num_bytes;
3008 
3009 		/*
3010 		 * Compression can use less space than we reserved, so wake
3011 		 * tickets if that happens
3012 		 */
3013 		if (num_bytes < ram_bytes)
3014 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3015 	}
3016 	spin_unlock(&cache->lock);
3017 	spin_unlock(&space_info->lock);
3018 	return ret;
3019 }
3020 
3021 /**
3022  * btrfs_free_reserved_bytes - update the block_group and space info counters
3023  * @cache:      The cache we are manipulating
3024  * @num_bytes:  The number of bytes in question
3025  * @delalloc:   The blocks are allocated for the delalloc write
3026  *
3027  * This is called by somebody who is freeing space that was never actually used
3028  * on disk.  For example if you reserve some space for a new leaf in transaction
3029  * A and before transaction A commits you free that leaf, you call this with
3030  * reserve set to 0 in order to clear the reservation.
3031  */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3032 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3033 			       u64 num_bytes, int delalloc)
3034 {
3035 	struct btrfs_space_info *space_info = cache->space_info;
3036 
3037 	spin_lock(&space_info->lock);
3038 	spin_lock(&cache->lock);
3039 	if (cache->ro)
3040 		space_info->bytes_readonly += num_bytes;
3041 	cache->reserved -= num_bytes;
3042 	space_info->bytes_reserved -= num_bytes;
3043 	space_info->max_extent_size = 0;
3044 
3045 	if (delalloc)
3046 		cache->delalloc_bytes -= num_bytes;
3047 	spin_unlock(&cache->lock);
3048 
3049 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3050 	spin_unlock(&space_info->lock);
3051 }
3052 
force_metadata_allocation(struct btrfs_fs_info * info)3053 static void force_metadata_allocation(struct btrfs_fs_info *info)
3054 {
3055 	struct list_head *head = &info->space_info;
3056 	struct btrfs_space_info *found;
3057 
3058 	list_for_each_entry(found, head, list) {
3059 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3060 			found->force_alloc = CHUNK_ALLOC_FORCE;
3061 	}
3062 }
3063 
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)3064 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3065 			      struct btrfs_space_info *sinfo, int force)
3066 {
3067 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3068 	u64 thresh;
3069 
3070 	if (force == CHUNK_ALLOC_FORCE)
3071 		return 1;
3072 
3073 	/*
3074 	 * in limited mode, we want to have some free space up to
3075 	 * about 1% of the FS size.
3076 	 */
3077 	if (force == CHUNK_ALLOC_LIMITED) {
3078 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3079 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3080 
3081 		if (sinfo->total_bytes - bytes_used < thresh)
3082 			return 1;
3083 	}
3084 
3085 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3086 		return 0;
3087 	return 1;
3088 }
3089 
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3090 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3091 {
3092 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3093 
3094 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3095 }
3096 
3097 /*
3098  * If force is CHUNK_ALLOC_FORCE:
3099  *    - return 1 if it successfully allocates a chunk,
3100  *    - return errors including -ENOSPC otherwise.
3101  * If force is NOT CHUNK_ALLOC_FORCE:
3102  *    - return 0 if it doesn't need to allocate a new chunk,
3103  *    - return 1 if it successfully allocates a chunk,
3104  *    - return errors including -ENOSPC otherwise.
3105  */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)3106 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3107 		      enum btrfs_chunk_alloc_enum force)
3108 {
3109 	struct btrfs_fs_info *fs_info = trans->fs_info;
3110 	struct btrfs_space_info *space_info;
3111 	bool wait_for_alloc = false;
3112 	bool should_alloc = false;
3113 	int ret = 0;
3114 
3115 	/* Don't re-enter if we're already allocating a chunk */
3116 	if (trans->allocating_chunk)
3117 		return -ENOSPC;
3118 
3119 	space_info = btrfs_find_space_info(fs_info, flags);
3120 	ASSERT(space_info);
3121 
3122 	do {
3123 		spin_lock(&space_info->lock);
3124 		if (force < space_info->force_alloc)
3125 			force = space_info->force_alloc;
3126 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3127 		if (space_info->full) {
3128 			/* No more free physical space */
3129 			if (should_alloc)
3130 				ret = -ENOSPC;
3131 			else
3132 				ret = 0;
3133 			spin_unlock(&space_info->lock);
3134 			return ret;
3135 		} else if (!should_alloc) {
3136 			spin_unlock(&space_info->lock);
3137 			return 0;
3138 		} else if (space_info->chunk_alloc) {
3139 			/*
3140 			 * Someone is already allocating, so we need to block
3141 			 * until this someone is finished and then loop to
3142 			 * recheck if we should continue with our allocation
3143 			 * attempt.
3144 			 */
3145 			wait_for_alloc = true;
3146 			force = CHUNK_ALLOC_NO_FORCE;
3147 			spin_unlock(&space_info->lock);
3148 			mutex_lock(&fs_info->chunk_mutex);
3149 			mutex_unlock(&fs_info->chunk_mutex);
3150 		} else {
3151 			/* Proceed with allocation */
3152 			space_info->chunk_alloc = 1;
3153 			wait_for_alloc = false;
3154 			spin_unlock(&space_info->lock);
3155 		}
3156 
3157 		cond_resched();
3158 	} while (wait_for_alloc);
3159 
3160 	mutex_lock(&fs_info->chunk_mutex);
3161 	trans->allocating_chunk = true;
3162 
3163 	/*
3164 	 * If we have mixed data/metadata chunks we want to make sure we keep
3165 	 * allocating mixed chunks instead of individual chunks.
3166 	 */
3167 	if (btrfs_mixed_space_info(space_info))
3168 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3169 
3170 	/*
3171 	 * if we're doing a data chunk, go ahead and make sure that
3172 	 * we keep a reasonable number of metadata chunks allocated in the
3173 	 * FS as well.
3174 	 */
3175 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3176 		fs_info->data_chunk_allocations++;
3177 		if (!(fs_info->data_chunk_allocations %
3178 		      fs_info->metadata_ratio))
3179 			force_metadata_allocation(fs_info);
3180 	}
3181 
3182 	/*
3183 	 * Check if we have enough space in SYSTEM chunk because we may need
3184 	 * to update devices.
3185 	 */
3186 	check_system_chunk(trans, flags);
3187 
3188 	ret = btrfs_alloc_chunk(trans, flags);
3189 	trans->allocating_chunk = false;
3190 
3191 	spin_lock(&space_info->lock);
3192 	if (ret < 0) {
3193 		if (ret == -ENOSPC)
3194 			space_info->full = 1;
3195 		else
3196 			goto out;
3197 	} else {
3198 		ret = 1;
3199 		space_info->max_extent_size = 0;
3200 	}
3201 
3202 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3203 out:
3204 	space_info->chunk_alloc = 0;
3205 	spin_unlock(&space_info->lock);
3206 	mutex_unlock(&fs_info->chunk_mutex);
3207 	/*
3208 	 * When we allocate a new chunk we reserve space in the chunk block
3209 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3210 	 * add new nodes/leafs to it if we end up needing to do it when
3211 	 * inserting the chunk item and updating device items as part of the
3212 	 * second phase of chunk allocation, performed by
3213 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3214 	 * large number of new block groups to create in our transaction
3215 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3216 	 * in extreme cases - like having a single transaction create many new
3217 	 * block groups when starting to write out the free space caches of all
3218 	 * the block groups that were made dirty during the lifetime of the
3219 	 * transaction.
3220 	 */
3221 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3222 		btrfs_create_pending_block_groups(trans);
3223 
3224 	return ret;
3225 }
3226 
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)3227 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3228 {
3229 	u64 num_dev;
3230 
3231 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3232 	if (!num_dev)
3233 		num_dev = fs_info->fs_devices->rw_devices;
3234 
3235 	return num_dev;
3236 }
3237 
3238 /*
3239  * Reserve space in the system space for allocating or removing a chunk
3240  */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)3241 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3242 {
3243 	struct btrfs_fs_info *fs_info = trans->fs_info;
3244 	struct btrfs_space_info *info;
3245 	u64 left;
3246 	u64 thresh;
3247 	int ret = 0;
3248 	u64 num_devs;
3249 
3250 	/*
3251 	 * Needed because we can end up allocating a system chunk and for an
3252 	 * atomic and race free space reservation in the chunk block reserve.
3253 	 */
3254 	lockdep_assert_held(&fs_info->chunk_mutex);
3255 
3256 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3257 	spin_lock(&info->lock);
3258 	left = info->total_bytes - btrfs_space_info_used(info, true);
3259 	spin_unlock(&info->lock);
3260 
3261 	num_devs = get_profile_num_devs(fs_info, type);
3262 
3263 	/* num_devs device items to update and 1 chunk item to add or remove */
3264 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3265 		btrfs_calc_insert_metadata_size(fs_info, 1);
3266 
3267 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3268 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3269 			   left, thresh, type);
3270 		btrfs_dump_space_info(fs_info, info, 0, 0);
3271 	}
3272 
3273 	if (left < thresh) {
3274 		u64 flags = btrfs_system_alloc_profile(fs_info);
3275 
3276 		/*
3277 		 * Ignore failure to create system chunk. We might end up not
3278 		 * needing it, as we might not need to COW all nodes/leafs from
3279 		 * the paths we visit in the chunk tree (they were already COWed
3280 		 * or created in the current transaction for example).
3281 		 */
3282 		ret = btrfs_alloc_chunk(trans, flags);
3283 	}
3284 
3285 	if (!ret) {
3286 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3287 					  &fs_info->chunk_block_rsv,
3288 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3289 		if (!ret)
3290 			trans->chunk_bytes_reserved += thresh;
3291 	}
3292 }
3293 
btrfs_put_block_group_cache(struct btrfs_fs_info * info)3294 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3295 {
3296 	struct btrfs_block_group *block_group;
3297 	u64 last = 0;
3298 
3299 	while (1) {
3300 		struct inode *inode;
3301 
3302 		block_group = btrfs_lookup_first_block_group(info, last);
3303 		while (block_group) {
3304 			btrfs_wait_block_group_cache_done(block_group);
3305 			spin_lock(&block_group->lock);
3306 			if (block_group->iref)
3307 				break;
3308 			spin_unlock(&block_group->lock);
3309 			block_group = btrfs_next_block_group(block_group);
3310 		}
3311 		if (!block_group) {
3312 			if (last == 0)
3313 				break;
3314 			last = 0;
3315 			continue;
3316 		}
3317 
3318 		inode = block_group->inode;
3319 		block_group->iref = 0;
3320 		block_group->inode = NULL;
3321 		spin_unlock(&block_group->lock);
3322 		ASSERT(block_group->io_ctl.inode == NULL);
3323 		iput(inode);
3324 		last = block_group->start + block_group->length;
3325 		btrfs_put_block_group(block_group);
3326 	}
3327 }
3328 
3329 /*
3330  * Must be called only after stopping all workers, since we could have block
3331  * group caching kthreads running, and therefore they could race with us if we
3332  * freed the block groups before stopping them.
3333  */
btrfs_free_block_groups(struct btrfs_fs_info * info)3334 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3335 {
3336 	struct btrfs_block_group *block_group;
3337 	struct btrfs_space_info *space_info;
3338 	struct btrfs_caching_control *caching_ctl;
3339 	struct rb_node *n;
3340 
3341 	down_write(&info->commit_root_sem);
3342 	while (!list_empty(&info->caching_block_groups)) {
3343 		caching_ctl = list_entry(info->caching_block_groups.next,
3344 					 struct btrfs_caching_control, list);
3345 		list_del(&caching_ctl->list);
3346 		btrfs_put_caching_control(caching_ctl);
3347 	}
3348 	up_write(&info->commit_root_sem);
3349 
3350 	spin_lock(&info->unused_bgs_lock);
3351 	while (!list_empty(&info->unused_bgs)) {
3352 		block_group = list_first_entry(&info->unused_bgs,
3353 					       struct btrfs_block_group,
3354 					       bg_list);
3355 		list_del_init(&block_group->bg_list);
3356 		btrfs_put_block_group(block_group);
3357 	}
3358 	spin_unlock(&info->unused_bgs_lock);
3359 
3360 	spin_lock(&info->block_group_cache_lock);
3361 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3362 		block_group = rb_entry(n, struct btrfs_block_group,
3363 				       cache_node);
3364 		rb_erase(&block_group->cache_node,
3365 			 &info->block_group_cache_tree);
3366 		RB_CLEAR_NODE(&block_group->cache_node);
3367 		spin_unlock(&info->block_group_cache_lock);
3368 
3369 		down_write(&block_group->space_info->groups_sem);
3370 		list_del(&block_group->list);
3371 		up_write(&block_group->space_info->groups_sem);
3372 
3373 		/*
3374 		 * We haven't cached this block group, which means we could
3375 		 * possibly have excluded extents on this block group.
3376 		 */
3377 		if (block_group->cached == BTRFS_CACHE_NO ||
3378 		    block_group->cached == BTRFS_CACHE_ERROR)
3379 			btrfs_free_excluded_extents(block_group);
3380 
3381 		btrfs_remove_free_space_cache(block_group);
3382 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3383 		ASSERT(list_empty(&block_group->dirty_list));
3384 		ASSERT(list_empty(&block_group->io_list));
3385 		ASSERT(list_empty(&block_group->bg_list));
3386 		ASSERT(refcount_read(&block_group->refs) == 1);
3387 		ASSERT(block_group->swap_extents == 0);
3388 		btrfs_put_block_group(block_group);
3389 
3390 		spin_lock(&info->block_group_cache_lock);
3391 	}
3392 	spin_unlock(&info->block_group_cache_lock);
3393 
3394 	btrfs_release_global_block_rsv(info);
3395 
3396 	while (!list_empty(&info->space_info)) {
3397 		space_info = list_entry(info->space_info.next,
3398 					struct btrfs_space_info,
3399 					list);
3400 
3401 		/*
3402 		 * Do not hide this behind enospc_debug, this is actually
3403 		 * important and indicates a real bug if this happens.
3404 		 */
3405 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3406 			    space_info->bytes_reserved > 0 ||
3407 			    space_info->bytes_may_use > 0))
3408 			btrfs_dump_space_info(info, space_info, 0, 0);
3409 		WARN_ON(space_info->reclaim_size > 0);
3410 		list_del(&space_info->list);
3411 		btrfs_sysfs_remove_space_info(space_info);
3412 	}
3413 	return 0;
3414 }
3415 
btrfs_freeze_block_group(struct btrfs_block_group * cache)3416 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3417 {
3418 	atomic_inc(&cache->frozen);
3419 }
3420 
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)3421 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3422 {
3423 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3424 	struct extent_map_tree *em_tree;
3425 	struct extent_map *em;
3426 	bool cleanup;
3427 
3428 	spin_lock(&block_group->lock);
3429 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3430 		   block_group->removed);
3431 	spin_unlock(&block_group->lock);
3432 
3433 	if (cleanup) {
3434 		em_tree = &fs_info->mapping_tree;
3435 		write_lock(&em_tree->lock);
3436 		em = lookup_extent_mapping(em_tree, block_group->start,
3437 					   1);
3438 		BUG_ON(!em); /* logic error, can't happen */
3439 		remove_extent_mapping(em_tree, em);
3440 		write_unlock(&em_tree->lock);
3441 
3442 		/* once for us and once for the tree */
3443 		free_extent_map(em);
3444 		free_extent_map(em);
3445 
3446 		/*
3447 		 * We may have left one free space entry and other possible
3448 		 * tasks trimming this block group have left 1 entry each one.
3449 		 * Free them if any.
3450 		 */
3451 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3452 	}
3453 }
3454 
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)3455 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3456 {
3457 	bool ret = true;
3458 
3459 	spin_lock(&bg->lock);
3460 	if (bg->ro)
3461 		ret = false;
3462 	else
3463 		bg->swap_extents++;
3464 	spin_unlock(&bg->lock);
3465 
3466 	return ret;
3467 }
3468 
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)3469 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3470 {
3471 	spin_lock(&bg->lock);
3472 	ASSERT(!bg->ro);
3473 	ASSERT(bg->swap_extents >= amount);
3474 	bg->swap_extents -= amount;
3475 	spin_unlock(&bg->lock);
3476 }
3477