• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Key setup facility for FS encryption support.
4  *
5  * Copyright (C) 2015, Google, Inc.
6  *
7  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8  * Heavily modified since then.
9  */
10 
11 #include <crypto/skcipher.h>
12 #include <linux/random.h>
13 
14 #include "fscrypt_private.h"
15 
16 struct fscrypt_mode fscrypt_modes[] = {
17 	[FSCRYPT_MODE_AES_256_XTS] = {
18 		.friendly_name = "AES-256-XTS",
19 		.cipher_str = "xts(aes)",
20 		.keysize = 64,
21 		.security_strength = 32,
22 		.ivsize = 16,
23 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
24 	},
25 	[FSCRYPT_MODE_AES_256_CTS] = {
26 		.friendly_name = "AES-256-CTS-CBC",
27 		.cipher_str = "cts(cbc(aes))",
28 		.keysize = 32,
29 		.security_strength = 32,
30 		.ivsize = 16,
31 	},
32 	[FSCRYPT_MODE_AES_128_CBC] = {
33 		.friendly_name = "AES-128-CBC-ESSIV",
34 		.cipher_str = "essiv(cbc(aes),sha256)",
35 		.keysize = 16,
36 		.security_strength = 16,
37 		.ivsize = 16,
38 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
39 	},
40 	[FSCRYPT_MODE_AES_128_CTS] = {
41 		.friendly_name = "AES-128-CTS-CBC",
42 		.cipher_str = "cts(cbc(aes))",
43 		.keysize = 16,
44 		.security_strength = 16,
45 		.ivsize = 16,
46 	},
47 	[FSCRYPT_MODE_ADIANTUM] = {
48 		.friendly_name = "Adiantum",
49 		.cipher_str = "adiantum(xchacha12,aes)",
50 		.keysize = 32,
51 		.security_strength = 32,
52 		.ivsize = 32,
53 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
54 	},
55 };
56 
57 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
58 
59 static struct fscrypt_mode *
select_encryption_mode(const union fscrypt_policy * policy,const struct inode * inode)60 select_encryption_mode(const union fscrypt_policy *policy,
61 		       const struct inode *inode)
62 {
63 	BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);
64 
65 	if (S_ISREG(inode->i_mode))
66 		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
67 
68 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
69 		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
70 
71 	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
72 		  inode->i_ino, (inode->i_mode & S_IFMT));
73 	return ERR_PTR(-EINVAL);
74 }
75 
76 /* Create a symmetric cipher object for the given encryption mode and key */
77 static struct crypto_skcipher *
fscrypt_allocate_skcipher(struct fscrypt_mode * mode,const u8 * raw_key,const struct inode * inode)78 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
79 			  const struct inode *inode)
80 {
81 	struct crypto_skcipher *tfm;
82 	int err;
83 
84 	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
85 	if (IS_ERR(tfm)) {
86 		if (PTR_ERR(tfm) == -ENOENT) {
87 			fscrypt_warn(inode,
88 				     "Missing crypto API support for %s (API name: \"%s\")",
89 				     mode->friendly_name, mode->cipher_str);
90 			return ERR_PTR(-ENOPKG);
91 		}
92 		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
93 			    mode->cipher_str, PTR_ERR(tfm));
94 		return tfm;
95 	}
96 	if (!xchg(&mode->logged_impl_name, 1)) {
97 		/*
98 		 * fscrypt performance can vary greatly depending on which
99 		 * crypto algorithm implementation is used.  Help people debug
100 		 * performance problems by logging the ->cra_driver_name the
101 		 * first time a mode is used.
102 		 */
103 		pr_info("fscrypt: %s using implementation \"%s\"\n",
104 			mode->friendly_name, crypto_skcipher_driver_name(tfm));
105 	}
106 	if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
107 		err = -EINVAL;
108 		goto err_free_tfm;
109 	}
110 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
111 	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
112 	if (err)
113 		goto err_free_tfm;
114 
115 	return tfm;
116 
117 err_free_tfm:
118 	crypto_free_skcipher(tfm);
119 	return ERR_PTR(err);
120 }
121 
122 /*
123  * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
124  * raw key, encryption mode, and flag indicating which encryption implementation
125  * (fs-layer or blk-crypto) will be used.
126  */
fscrypt_prepare_key(struct fscrypt_prepared_key * prep_key,const u8 * raw_key,unsigned int raw_key_size,bool is_hw_wrapped,const struct fscrypt_info * ci)127 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
128 			const u8 *raw_key, unsigned int raw_key_size,
129 			bool is_hw_wrapped, const struct fscrypt_info *ci)
130 {
131 	struct crypto_skcipher *tfm;
132 
133 	if (fscrypt_using_inline_encryption(ci))
134 		return fscrypt_prepare_inline_crypt_key(prep_key,
135 				raw_key, raw_key_size, is_hw_wrapped, ci);
136 
137 	if (WARN_ON(is_hw_wrapped || raw_key_size != ci->ci_mode->keysize))
138 		return -EINVAL;
139 
140 	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
141 	if (IS_ERR(tfm))
142 		return PTR_ERR(tfm);
143 	/*
144 	 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
145 	 * I.e., here we publish ->tfm with a RELEASE barrier so that
146 	 * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
147 	 * possible for per-mode keys, not for per-file keys.
148 	 */
149 	smp_store_release(&prep_key->tfm, tfm);
150 	return 0;
151 }
152 
153 /* Destroy a crypto transform object and/or blk-crypto key. */
fscrypt_destroy_prepared_key(struct fscrypt_prepared_key * prep_key)154 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
155 {
156 	crypto_free_skcipher(prep_key->tfm);
157 	fscrypt_destroy_inline_crypt_key(prep_key);
158 	memzero_explicit(prep_key, sizeof(*prep_key));
159 }
160 
161 /* Given a per-file encryption key, set up the file's crypto transform object */
fscrypt_set_per_file_enc_key(struct fscrypt_info * ci,const u8 * raw_key)162 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
163 {
164 	ci->ci_owns_key = true;
165 	return fscrypt_prepare_key(&ci->ci_enc_key, raw_key,
166 				   ci->ci_mode->keysize,
167 				   false /*is_hw_wrapped*/, ci);
168 }
169 
setup_per_mode_enc_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk,struct fscrypt_prepared_key * keys,u8 hkdf_context,bool include_fs_uuid)170 static int setup_per_mode_enc_key(struct fscrypt_info *ci,
171 				  struct fscrypt_master_key *mk,
172 				  struct fscrypt_prepared_key *keys,
173 				  u8 hkdf_context, bool include_fs_uuid)
174 {
175 	const struct inode *inode = ci->ci_inode;
176 	const struct super_block *sb = inode->i_sb;
177 	struct fscrypt_mode *mode = ci->ci_mode;
178 	const u8 mode_num = mode - fscrypt_modes;
179 	struct fscrypt_prepared_key *prep_key;
180 	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
181 	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
182 	unsigned int hkdf_infolen = 0;
183 	int err;
184 
185 	if (WARN_ON(mode_num > FSCRYPT_MODE_MAX))
186 		return -EINVAL;
187 
188 	prep_key = &keys[mode_num];
189 	if (fscrypt_is_key_prepared(prep_key, ci)) {
190 		ci->ci_enc_key = *prep_key;
191 		return 0;
192 	}
193 
194 	mutex_lock(&fscrypt_mode_key_setup_mutex);
195 
196 	if (fscrypt_is_key_prepared(prep_key, ci))
197 		goto done_unlock;
198 
199 	if (mk->mk_secret.is_hw_wrapped && S_ISREG(inode->i_mode)) {
200 		int i;
201 
202 		if (!fscrypt_using_inline_encryption(ci)) {
203 			fscrypt_warn(ci->ci_inode,
204 				     "Hardware-wrapped keys require inline encryption (-o inlinecrypt)");
205 			err = -EINVAL;
206 			goto out_unlock;
207 		}
208 		for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
209 			if (fscrypt_is_key_prepared(&keys[i], ci)) {
210 				fscrypt_warn(ci->ci_inode,
211 					     "Each hardware-wrapped key can only be used with one encryption mode");
212 				err = -EINVAL;
213 				goto out_unlock;
214 			}
215 		}
216 		err = fscrypt_prepare_key(prep_key, mk->mk_secret.raw,
217 					  mk->mk_secret.size, true, ci);
218 		if (err)
219 			goto out_unlock;
220 	} else {
221 		BUILD_BUG_ON(sizeof(mode_num) != 1);
222 		BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
223 		BUILD_BUG_ON(sizeof(hkdf_info) != 17);
224 		hkdf_info[hkdf_infolen++] = mode_num;
225 		if (include_fs_uuid) {
226 			memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
227 				   sizeof(sb->s_uuid));
228 			hkdf_infolen += sizeof(sb->s_uuid);
229 		}
230 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
231 					  hkdf_context, hkdf_info, hkdf_infolen,
232 					  mode_key, mode->keysize);
233 		if (err)
234 			goto out_unlock;
235 		err = fscrypt_prepare_key(prep_key, mode_key, mode->keysize,
236 					  false /*is_hw_wrapped*/, ci);
237 		memzero_explicit(mode_key, mode->keysize);
238 		if (err)
239 			goto out_unlock;
240 	}
241 done_unlock:
242 	ci->ci_enc_key = *prep_key;
243 	err = 0;
244 out_unlock:
245 	mutex_unlock(&fscrypt_mode_key_setup_mutex);
246 	return err;
247 }
248 
249 /*
250  * Derive a SipHash key from the given fscrypt master key and the given
251  * application-specific information string.
252  *
253  * Note that the KDF produces a byte array, but the SipHash APIs expect the key
254  * as a pair of 64-bit words.  Therefore, on big endian CPUs we have to do an
255  * endianness swap in order to get the same results as on little endian CPUs.
256  */
fscrypt_derive_siphash_key(const struct fscrypt_master_key * mk,u8 context,const u8 * info,unsigned int infolen,siphash_key_t * key)257 static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
258 				      u8 context, const u8 *info,
259 				      unsigned int infolen, siphash_key_t *key)
260 {
261 	int err;
262 
263 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
264 				  (u8 *)key, sizeof(*key));
265 	if (err)
266 		return err;
267 
268 	BUILD_BUG_ON(sizeof(*key) != 16);
269 	BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
270 	le64_to_cpus(&key->key[0]);
271 	le64_to_cpus(&key->key[1]);
272 	return 0;
273 }
274 
fscrypt_derive_dirhash_key(struct fscrypt_info * ci,const struct fscrypt_master_key * mk)275 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
276 			       const struct fscrypt_master_key *mk)
277 {
278 	int err;
279 
280 	err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
281 					 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
282 					 &ci->ci_dirhash_key);
283 	if (err)
284 		return err;
285 	ci->ci_dirhash_key_initialized = true;
286 	return 0;
287 }
288 
fscrypt_hash_inode_number(struct fscrypt_info * ci,const struct fscrypt_master_key * mk)289 void fscrypt_hash_inode_number(struct fscrypt_info *ci,
290 			       const struct fscrypt_master_key *mk)
291 {
292 	WARN_ON(ci->ci_inode->i_ino == 0);
293 	WARN_ON(!mk->mk_ino_hash_key_initialized);
294 
295 	ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
296 					      &mk->mk_ino_hash_key);
297 }
298 
fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk)299 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
300 					    struct fscrypt_master_key *mk)
301 {
302 	int err;
303 
304 	err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
305 				     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
306 	if (err)
307 		return err;
308 
309 	/* pairs with smp_store_release() below */
310 	if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
311 
312 		mutex_lock(&fscrypt_mode_key_setup_mutex);
313 
314 		if (mk->mk_ino_hash_key_initialized)
315 			goto unlock;
316 
317 		err = fscrypt_derive_siphash_key(mk,
318 						 HKDF_CONTEXT_INODE_HASH_KEY,
319 						 NULL, 0, &mk->mk_ino_hash_key);
320 		if (err)
321 			goto unlock;
322 		/* pairs with smp_load_acquire() above */
323 		smp_store_release(&mk->mk_ino_hash_key_initialized, true);
324 unlock:
325 		mutex_unlock(&fscrypt_mode_key_setup_mutex);
326 		if (err)
327 			return err;
328 	}
329 
330 	/*
331 	 * New inodes may not have an inode number assigned yet.
332 	 * Hashing their inode number is delayed until later.
333 	 */
334 	if (ci->ci_inode->i_ino)
335 		fscrypt_hash_inode_number(ci, mk);
336 	return 0;
337 }
338 
fscrypt_setup_v2_file_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk,bool need_dirhash_key)339 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
340 				     struct fscrypt_master_key *mk,
341 				     bool need_dirhash_key)
342 {
343 	int err;
344 
345 	if (mk->mk_secret.is_hw_wrapped &&
346 	    !(ci->ci_policy.v2.flags & (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 |
347 					FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))) {
348 		fscrypt_warn(ci->ci_inode,
349 			     "Hardware-wrapped keys are only supported with IV_INO_LBLK policies");
350 		return -EINVAL;
351 	}
352 
353 	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
354 		/*
355 		 * DIRECT_KEY: instead of deriving per-file encryption keys, the
356 		 * per-file nonce will be included in all the IVs.  But unlike
357 		 * v1 policies, for v2 policies in this case we don't encrypt
358 		 * with the master key directly but rather derive a per-mode
359 		 * encryption key.  This ensures that the master key is
360 		 * consistently used only for HKDF, avoiding key reuse issues.
361 		 */
362 		err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
363 					     HKDF_CONTEXT_DIRECT_KEY, false);
364 	} else if (ci->ci_policy.v2.flags &
365 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
366 		/*
367 		 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
368 		 * mode_num, filesystem_uuid), and inode number is included in
369 		 * the IVs.  This format is optimized for use with inline
370 		 * encryption hardware compliant with the UFS standard.
371 		 */
372 		err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
373 					     HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
374 					     true);
375 	} else if (ci->ci_policy.v2.flags &
376 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
377 		err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
378 	} else {
379 		u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
380 
381 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
382 					  HKDF_CONTEXT_PER_FILE_ENC_KEY,
383 					  ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
384 					  derived_key, ci->ci_mode->keysize);
385 		if (err)
386 			return err;
387 
388 		err = fscrypt_set_per_file_enc_key(ci, derived_key);
389 		memzero_explicit(derived_key, ci->ci_mode->keysize);
390 	}
391 	if (err)
392 		return err;
393 
394 	/* Derive a secret dirhash key for directories that need it. */
395 	if (need_dirhash_key) {
396 		err = fscrypt_derive_dirhash_key(ci, mk);
397 		if (err)
398 			return err;
399 	}
400 
401 	return 0;
402 }
403 
404 /*
405  * Check whether the size of the given master key (@mk) is appropriate for the
406  * encryption settings which a particular file will use (@ci).
407  *
408  * If the file uses a v1 encryption policy, then the master key must be at least
409  * as long as the derived key, as this is a requirement of the v1 KDF.
410  *
411  * Otherwise, the KDF can accept any size key, so we enforce a slightly looser
412  * requirement: we require that the size of the master key be at least the
413  * maximum security strength of any algorithm whose key will be derived from it
414  * (but in practice we only need to consider @ci->ci_mode, since any other
415  * possible subkeys such as DIRHASH and INODE_HASH will never increase the
416  * required key size over @ci->ci_mode).  This allows AES-256-XTS keys to be
417  * derived from a 256-bit master key, which is cryptographically sufficient,
418  * rather than requiring a 512-bit master key which is unnecessarily long.  (We
419  * still allow 512-bit master keys if the user chooses to use them, though.)
420  */
fscrypt_valid_master_key_size(const struct fscrypt_master_key * mk,const struct fscrypt_info * ci)421 static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
422 					  const struct fscrypt_info *ci)
423 {
424 	unsigned int min_keysize;
425 
426 	if (ci->ci_policy.version == FSCRYPT_POLICY_V1)
427 		min_keysize = ci->ci_mode->keysize;
428 	else
429 		min_keysize = ci->ci_mode->security_strength;
430 
431 	if (mk->mk_secret.size < min_keysize) {
432 		fscrypt_warn(NULL,
433 			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
434 			     master_key_spec_type(&mk->mk_spec),
435 			     master_key_spec_len(&mk->mk_spec),
436 			     (u8 *)&mk->mk_spec.u,
437 			     mk->mk_secret.size, min_keysize);
438 		return false;
439 	}
440 	return true;
441 }
442 
443 /*
444  * Find the master key, then set up the inode's actual encryption key.
445  *
446  * If the master key is found in the filesystem-level keyring, then it is
447  * returned in *mk_ret with its semaphore read-locked.  This is needed to ensure
448  * that only one task links the fscrypt_info into ->mk_decrypted_inodes (as
449  * multiple tasks may race to create an fscrypt_info for the same inode), and to
450  * synchronize the master key being removed with a new inode starting to use it.
451  */
setup_file_encryption_key(struct fscrypt_info * ci,bool need_dirhash_key,struct fscrypt_master_key ** mk_ret)452 static int setup_file_encryption_key(struct fscrypt_info *ci,
453 				     bool need_dirhash_key,
454 				     struct fscrypt_master_key **mk_ret)
455 {
456 	struct fscrypt_key_specifier mk_spec;
457 	struct fscrypt_master_key *mk;
458 	int err;
459 
460 	switch (ci->ci_policy.version) {
461 	case FSCRYPT_POLICY_V1:
462 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
463 		memcpy(mk_spec.u.descriptor,
464 		       ci->ci_policy.v1.master_key_descriptor,
465 		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
466 		break;
467 	case FSCRYPT_POLICY_V2:
468 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
469 		memcpy(mk_spec.u.identifier,
470 		       ci->ci_policy.v2.master_key_identifier,
471 		       FSCRYPT_KEY_IDENTIFIER_SIZE);
472 		break;
473 	default:
474 		WARN_ON(1);
475 		return -EINVAL;
476 	}
477 
478 	mk = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
479 	if (!mk) {
480 		if (ci->ci_policy.version != FSCRYPT_POLICY_V1)
481 			return -ENOKEY;
482 
483 		err = fscrypt_select_encryption_impl(ci, false);
484 		if (err)
485 			return err;
486 
487 		/*
488 		 * As a legacy fallback for v1 policies, search for the key in
489 		 * the current task's subscribed keyrings too.  Don't move this
490 		 * to before the search of ->s_master_keys, since users
491 		 * shouldn't be able to override filesystem-level keys.
492 		 */
493 		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
494 	}
495 	down_read(&mk->mk_sem);
496 
497 	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
498 	if (!is_master_key_secret_present(&mk->mk_secret)) {
499 		err = -ENOKEY;
500 		goto out_release_key;
501 	}
502 
503 	if (!fscrypt_valid_master_key_size(mk, ci)) {
504 		err = -ENOKEY;
505 		goto out_release_key;
506 	}
507 
508 	err = fscrypt_select_encryption_impl(ci, mk->mk_secret.is_hw_wrapped);
509 	if (err)
510 		goto out_release_key;
511 
512 	switch (ci->ci_policy.version) {
513 	case FSCRYPT_POLICY_V1:
514 		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
515 		break;
516 	case FSCRYPT_POLICY_V2:
517 		err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
518 		break;
519 	default:
520 		WARN_ON(1);
521 		err = -EINVAL;
522 		break;
523 	}
524 	if (err)
525 		goto out_release_key;
526 
527 	*mk_ret = mk;
528 	return 0;
529 
530 out_release_key:
531 	up_read(&mk->mk_sem);
532 	fscrypt_put_master_key(mk);
533 	return err;
534 }
535 
put_crypt_info(struct fscrypt_info * ci)536 static void put_crypt_info(struct fscrypt_info *ci)
537 {
538 	struct fscrypt_master_key *mk;
539 
540 	if (!ci)
541 		return;
542 
543 	if (ci->ci_direct_key)
544 		fscrypt_put_direct_key(ci->ci_direct_key);
545 	else if (ci->ci_owns_key)
546 		fscrypt_destroy_prepared_key(&ci->ci_enc_key);
547 
548 	mk = ci->ci_master_key;
549 	if (mk) {
550 		/*
551 		 * Remove this inode from the list of inodes that were unlocked
552 		 * with the master key.  In addition, if we're removing the last
553 		 * inode from a master key struct that already had its secret
554 		 * removed, then complete the full removal of the struct.
555 		 */
556 		spin_lock(&mk->mk_decrypted_inodes_lock);
557 		list_del(&ci->ci_master_key_link);
558 		spin_unlock(&mk->mk_decrypted_inodes_lock);
559 		fscrypt_put_master_key_activeref(mk);
560 	}
561 	memzero_explicit(ci, sizeof(*ci));
562 	kmem_cache_free(fscrypt_info_cachep, ci);
563 }
564 
565 static int
fscrypt_setup_encryption_info(struct inode * inode,const union fscrypt_policy * policy,const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],bool need_dirhash_key)566 fscrypt_setup_encryption_info(struct inode *inode,
567 			      const union fscrypt_policy *policy,
568 			      const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
569 			      bool need_dirhash_key)
570 {
571 	struct fscrypt_info *crypt_info;
572 	struct fscrypt_mode *mode;
573 	struct fscrypt_master_key *mk = NULL;
574 	int res;
575 
576 	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
577 	if (res)
578 		return res;
579 
580 	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
581 	if (!crypt_info)
582 		return -ENOMEM;
583 
584 	crypt_info->ci_inode = inode;
585 	crypt_info->ci_policy = *policy;
586 	memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
587 
588 	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
589 	if (IS_ERR(mode)) {
590 		res = PTR_ERR(mode);
591 		goto out;
592 	}
593 	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
594 	crypt_info->ci_mode = mode;
595 
596 	res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk);
597 	if (res)
598 		goto out;
599 
600 	/*
601 	 * For existing inodes, multiple tasks may race to set ->i_crypt_info.
602 	 * So use cmpxchg_release().  This pairs with the smp_load_acquire() in
603 	 * fscrypt_get_info().  I.e., here we publish ->i_crypt_info with a
604 	 * RELEASE barrier so that other tasks can ACQUIRE it.
605 	 */
606 	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
607 		/*
608 		 * We won the race and set ->i_crypt_info to our crypt_info.
609 		 * Now link it into the master key's inode list.
610 		 */
611 		if (mk) {
612 			crypt_info->ci_master_key = mk;
613 			refcount_inc(&mk->mk_active_refs);
614 			spin_lock(&mk->mk_decrypted_inodes_lock);
615 			list_add(&crypt_info->ci_master_key_link,
616 				 &mk->mk_decrypted_inodes);
617 			spin_unlock(&mk->mk_decrypted_inodes_lock);
618 		}
619 		crypt_info = NULL;
620 	}
621 	res = 0;
622 out:
623 	if (mk) {
624 		up_read(&mk->mk_sem);
625 		fscrypt_put_master_key(mk);
626 	}
627 	put_crypt_info(crypt_info);
628 	return res;
629 }
630 
631 /**
632  * fscrypt_get_encryption_info() - set up an inode's encryption key
633  * @inode: the inode to set up the key for.  Must be encrypted.
634  * @allow_unsupported: if %true, treat an unsupported encryption policy (or
635  *		       unrecognized encryption context) the same way as the key
636  *		       being unavailable, instead of returning an error.  Use
637  *		       %false unless the operation being performed is needed in
638  *		       order for files (or directories) to be deleted.
639  *
640  * Set up ->i_crypt_info, if it hasn't already been done.
641  *
642  * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe.  So
643  * generally this shouldn't be called from within a filesystem transaction.
644  *
645  * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
646  *	   encryption key is unavailable.  (Use fscrypt_has_encryption_key() to
647  *	   distinguish these cases.)  Also can return another -errno code.
648  */
fscrypt_get_encryption_info(struct inode * inode,bool allow_unsupported)649 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
650 {
651 	int res;
652 	union fscrypt_context ctx;
653 	union fscrypt_policy policy;
654 
655 	if (fscrypt_has_encryption_key(inode))
656 		return 0;
657 
658 	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
659 	if (res < 0) {
660 		if (res == -ERANGE && allow_unsupported)
661 			return 0;
662 		fscrypt_warn(inode, "Error %d getting encryption context", res);
663 		return res;
664 	}
665 
666 	res = fscrypt_policy_from_context(&policy, &ctx, res);
667 	if (res) {
668 		if (allow_unsupported)
669 			return 0;
670 		fscrypt_warn(inode,
671 			     "Unrecognized or corrupt encryption context");
672 		return res;
673 	}
674 
675 	if (!fscrypt_supported_policy(&policy, inode)) {
676 		if (allow_unsupported)
677 			return 0;
678 		return -EINVAL;
679 	}
680 
681 	res = fscrypt_setup_encryption_info(inode, &policy,
682 					    fscrypt_context_nonce(&ctx),
683 					    IS_CASEFOLDED(inode) &&
684 					    S_ISDIR(inode->i_mode));
685 
686 	if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */
687 		res = 0;
688 	if (res == -ENOKEY)
689 		res = 0;
690 	return res;
691 }
692 
693 /**
694  * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
695  * @dir: a possibly-encrypted directory
696  * @inode: the new inode.  ->i_mode must be set already.
697  *	   ->i_ino doesn't need to be set yet.
698  * @encrypt_ret: (output) set to %true if the new inode will be encrypted
699  *
700  * If the directory is encrypted, set up its ->i_crypt_info in preparation for
701  * encrypting the name of the new file.  Also, if the new inode will be
702  * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
703  *
704  * This isn't %GFP_NOFS-safe, and therefore it should be called before starting
705  * any filesystem transaction to create the inode.  For this reason, ->i_ino
706  * isn't required to be set yet, as the filesystem may not have set it yet.
707  *
708  * This doesn't persist the new inode's encryption context.  That still needs to
709  * be done later by calling fscrypt_set_context().
710  *
711  * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
712  *	   -errno code
713  */
fscrypt_prepare_new_inode(struct inode * dir,struct inode * inode,bool * encrypt_ret)714 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
715 			      bool *encrypt_ret)
716 {
717 	const union fscrypt_policy *policy;
718 	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
719 
720 	policy = fscrypt_policy_to_inherit(dir);
721 	if (policy == NULL)
722 		return 0;
723 	if (IS_ERR(policy))
724 		return PTR_ERR(policy);
725 
726 	if (WARN_ON_ONCE(inode->i_mode == 0))
727 		return -EINVAL;
728 
729 	/*
730 	 * Only regular files, directories, and symlinks are encrypted.
731 	 * Special files like device nodes and named pipes aren't.
732 	 */
733 	if (!S_ISREG(inode->i_mode) &&
734 	    !S_ISDIR(inode->i_mode) &&
735 	    !S_ISLNK(inode->i_mode))
736 		return 0;
737 
738 	*encrypt_ret = true;
739 
740 	get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
741 	return fscrypt_setup_encryption_info(inode, policy, nonce,
742 					     IS_CASEFOLDED(dir) &&
743 					     S_ISDIR(inode->i_mode));
744 }
745 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
746 
747 /**
748  * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
749  * @inode: an inode being evicted
750  *
751  * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
752  * being evicted.  An RCU grace period need not have elapsed yet.
753  */
fscrypt_put_encryption_info(struct inode * inode)754 void fscrypt_put_encryption_info(struct inode *inode)
755 {
756 	put_crypt_info(inode->i_crypt_info);
757 	inode->i_crypt_info = NULL;
758 }
759 EXPORT_SYMBOL(fscrypt_put_encryption_info);
760 
761 /**
762  * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
763  * @inode: an inode being freed
764  *
765  * Free the inode's cached decrypted symlink target, if any.  Filesystems must
766  * call this after an RCU grace period, just before they free the inode.
767  */
fscrypt_free_inode(struct inode * inode)768 void fscrypt_free_inode(struct inode *inode)
769 {
770 	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
771 		kfree(inode->i_link);
772 		inode->i_link = NULL;
773 	}
774 }
775 EXPORT_SYMBOL(fscrypt_free_inode);
776 
777 /**
778  * fscrypt_drop_inode() - check whether the inode's master key has been removed
779  * @inode: an inode being considered for eviction
780  *
781  * Filesystems supporting fscrypt must call this from their ->drop_inode()
782  * method so that encrypted inodes are evicted as soon as they're no longer in
783  * use and their master key has been removed.
784  *
785  * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
786  */
fscrypt_drop_inode(struct inode * inode)787 int fscrypt_drop_inode(struct inode *inode)
788 {
789 	const struct fscrypt_info *ci = fscrypt_get_info(inode);
790 
791 	/*
792 	 * If ci is NULL, then the inode doesn't have an encryption key set up
793 	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
794 	 * was provided via the legacy mechanism of the process-subscribed
795 	 * keyrings, so we don't know whether it's been removed or not.
796 	 */
797 	if (!ci || !ci->ci_master_key)
798 		return 0;
799 
800 	/*
801 	 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
802 	 * protected by the key were cleaned by sync_filesystem().  But if
803 	 * userspace is still using the files, inodes can be dirtied between
804 	 * then and now.  We mustn't lose any writes, so skip dirty inodes here.
805 	 */
806 	if (inode->i_state & I_DIRTY_ALL)
807 		return 0;
808 
809 	/*
810 	 * Note: since we aren't holding the key semaphore, the result here can
811 	 * immediately become outdated.  But there's no correctness problem with
812 	 * unnecessarily evicting.  Nor is there a correctness problem with not
813 	 * evicting while iput() is racing with the key being removed, since
814 	 * then the thread removing the key will either evict the inode itself
815 	 * or will correctly detect that it wasn't evicted due to the race.
816 	 */
817 	return !is_master_key_secret_present(&ci->ci_master_key->mk_secret);
818 }
819 EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
820