• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 #ifndef _LINUX_KCSAN_CHECKS_H
4 #define _LINUX_KCSAN_CHECKS_H
5 
6 /* Note: Only include what is already included by compiler.h. */
7 #include <linux/compiler_attributes.h>
8 #include <linux/types.h>
9 
10 /* Access types -- if KCSAN_ACCESS_WRITE is not set, the access is a read. */
11 #define KCSAN_ACCESS_WRITE	(1 << 0) /* Access is a write. */
12 #define KCSAN_ACCESS_COMPOUND	(1 << 1) /* Compounded read-write instrumentation. */
13 #define KCSAN_ACCESS_ATOMIC	(1 << 2) /* Access is atomic. */
14 /* The following are special, and never due to compiler instrumentation. */
15 #define KCSAN_ACCESS_ASSERT	(1 << 3) /* Access is an assertion. */
16 #define KCSAN_ACCESS_SCOPED	(1 << 4) /* Access is a scoped access. */
17 
18 /*
19  * __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
20  * even in compilation units that selectively disable KCSAN, but must use KCSAN
21  * to validate access to an address. Never use these in header files!
22  */
23 #ifdef CONFIG_KCSAN
24 /**
25  * __kcsan_check_access - check generic access for races
26  *
27  * @ptr: address of access
28  * @size: size of access
29  * @type: access type modifier
30  */
31 void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
32 
33 /**
34  * kcsan_disable_current - disable KCSAN for the current context
35  *
36  * Supports nesting.
37  */
38 void kcsan_disable_current(void);
39 
40 /**
41  * kcsan_enable_current - re-enable KCSAN for the current context
42  *
43  * Supports nesting.
44  */
45 void kcsan_enable_current(void);
46 void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
47 
48 /**
49  * kcsan_nestable_atomic_begin - begin nestable atomic region
50  *
51  * Accesses within the atomic region may appear to race with other accesses but
52  * should be considered atomic.
53  */
54 void kcsan_nestable_atomic_begin(void);
55 
56 /**
57  * kcsan_nestable_atomic_end - end nestable atomic region
58  */
59 void kcsan_nestable_atomic_end(void);
60 
61 /**
62  * kcsan_flat_atomic_begin - begin flat atomic region
63  *
64  * Accesses within the atomic region may appear to race with other accesses but
65  * should be considered atomic.
66  */
67 void kcsan_flat_atomic_begin(void);
68 
69 /**
70  * kcsan_flat_atomic_end - end flat atomic region
71  */
72 void kcsan_flat_atomic_end(void);
73 
74 /**
75  * kcsan_atomic_next - consider following accesses as atomic
76  *
77  * Force treating the next n memory accesses for the current context as atomic
78  * operations.
79  *
80  * @n: number of following memory accesses to treat as atomic.
81  */
82 void kcsan_atomic_next(int n);
83 
84 /**
85  * kcsan_set_access_mask - set access mask
86  *
87  * Set the access mask for all accesses for the current context if non-zero.
88  * Only value changes to bits set in the mask will be reported.
89  *
90  * @mask: bitmask
91  */
92 void kcsan_set_access_mask(unsigned long mask);
93 
94 /* Scoped access information. */
95 struct kcsan_scoped_access {
96 	struct list_head list;
97 	const volatile void *ptr;
98 	size_t size;
99 	int type;
100 };
101 /*
102  * Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
103  * out of scope; relies on attribute "cleanup", which is supported by all
104  * compilers that support KCSAN.
105  */
106 #define __kcsan_cleanup_scoped                                                 \
107 	__maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
108 
109 /**
110  * kcsan_begin_scoped_access - begin scoped access
111  *
112  * Begin scoped access and initialize @sa, which will cause KCSAN to
113  * continuously check the memory range in the current thread until
114  * kcsan_end_scoped_access() is called for @sa.
115  *
116  * Scoped accesses are implemented by appending @sa to an internal list for the
117  * current execution context, and then checked on every call into the KCSAN
118  * runtime.
119  *
120  * @ptr: address of access
121  * @size: size of access
122  * @type: access type modifier
123  * @sa: struct kcsan_scoped_access to use for the scope of the access
124  */
125 struct kcsan_scoped_access *
126 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
127 			  struct kcsan_scoped_access *sa);
128 
129 /**
130  * kcsan_end_scoped_access - end scoped access
131  *
132  * End a scoped access, which will stop KCSAN checking the memory range.
133  * Requires that kcsan_begin_scoped_access() was previously called once for @sa.
134  *
135  * @sa: a previously initialized struct kcsan_scoped_access
136  */
137 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
138 
139 
140 #else /* CONFIG_KCSAN */
141 
__kcsan_check_access(const volatile void * ptr,size_t size,int type)142 static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
143 					int type) { }
144 
kcsan_disable_current(void)145 static inline void kcsan_disable_current(void)		{ }
kcsan_enable_current(void)146 static inline void kcsan_enable_current(void)		{ }
kcsan_enable_current_nowarn(void)147 static inline void kcsan_enable_current_nowarn(void)	{ }
kcsan_nestable_atomic_begin(void)148 static inline void kcsan_nestable_atomic_begin(void)	{ }
kcsan_nestable_atomic_end(void)149 static inline void kcsan_nestable_atomic_end(void)	{ }
kcsan_flat_atomic_begin(void)150 static inline void kcsan_flat_atomic_begin(void)	{ }
kcsan_flat_atomic_end(void)151 static inline void kcsan_flat_atomic_end(void)		{ }
kcsan_atomic_next(int n)152 static inline void kcsan_atomic_next(int n)		{ }
kcsan_set_access_mask(unsigned long mask)153 static inline void kcsan_set_access_mask(unsigned long mask) { }
154 
155 struct kcsan_scoped_access { };
156 #define __kcsan_cleanup_scoped __maybe_unused
157 static inline struct kcsan_scoped_access *
kcsan_begin_scoped_access(const volatile void * ptr,size_t size,int type,struct kcsan_scoped_access * sa)158 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
159 			  struct kcsan_scoped_access *sa) { return sa; }
kcsan_end_scoped_access(struct kcsan_scoped_access * sa)160 static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
161 
162 #endif /* CONFIG_KCSAN */
163 
164 #ifdef __SANITIZE_THREAD__
165 /*
166  * Only calls into the runtime when the particular compilation unit has KCSAN
167  * instrumentation enabled. May be used in header files.
168  */
169 #define kcsan_check_access __kcsan_check_access
170 
171 /*
172  * Only use these to disable KCSAN for accesses in the current compilation unit;
173  * calls into libraries may still perform KCSAN checks.
174  */
175 #define __kcsan_disable_current kcsan_disable_current
176 #define __kcsan_enable_current kcsan_enable_current_nowarn
177 #else
kcsan_check_access(const volatile void * ptr,size_t size,int type)178 static inline void kcsan_check_access(const volatile void *ptr, size_t size,
179 				      int type) { }
__kcsan_enable_current(void)180 static inline void __kcsan_enable_current(void)  { }
__kcsan_disable_current(void)181 static inline void __kcsan_disable_current(void) { }
182 #endif
183 
184 /**
185  * __kcsan_check_read - check regular read access for races
186  *
187  * @ptr: address of access
188  * @size: size of access
189  */
190 #define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
191 
192 /**
193  * __kcsan_check_write - check regular write access for races
194  *
195  * @ptr: address of access
196  * @size: size of access
197  */
198 #define __kcsan_check_write(ptr, size)                                         \
199 	__kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
200 
201 /**
202  * __kcsan_check_read_write - check regular read-write access for races
203  *
204  * @ptr: address of access
205  * @size: size of access
206  */
207 #define __kcsan_check_read_write(ptr, size)                                    \
208 	__kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
209 
210 /**
211  * kcsan_check_read - check regular read access for races
212  *
213  * @ptr: address of access
214  * @size: size of access
215  */
216 #define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
217 
218 /**
219  * kcsan_check_write - check regular write access for races
220  *
221  * @ptr: address of access
222  * @size: size of access
223  */
224 #define kcsan_check_write(ptr, size)                                           \
225 	kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
226 
227 /**
228  * kcsan_check_read_write - check regular read-write access for races
229  *
230  * @ptr: address of access
231  * @size: size of access
232  */
233 #define kcsan_check_read_write(ptr, size)                                      \
234 	kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
235 
236 /*
237  * Check for atomic accesses: if atomic accesses are not ignored, this simply
238  * aliases to kcsan_check_access(), otherwise becomes a no-op.
239  */
240 #ifdef CONFIG_KCSAN_IGNORE_ATOMICS
241 #define kcsan_check_atomic_read(...)		do { } while (0)
242 #define kcsan_check_atomic_write(...)		do { } while (0)
243 #define kcsan_check_atomic_read_write(...)	do { } while (0)
244 #else
245 #define kcsan_check_atomic_read(ptr, size)                                     \
246 	kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC)
247 #define kcsan_check_atomic_write(ptr, size)                                    \
248 	kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE)
249 #define kcsan_check_atomic_read_write(ptr, size)                               \
250 	kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND)
251 #endif
252 
253 /**
254  * ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var
255  *
256  * Assert that there are no concurrent writes to @var; other readers are
257  * allowed. This assertion can be used to specify properties of concurrent code,
258  * where violation cannot be detected as a normal data race.
259  *
260  * For example, if we only have a single writer, but multiple concurrent
261  * readers, to avoid data races, all these accesses must be marked; even
262  * concurrent marked writes racing with the single writer are bugs.
263  * Unfortunately, due to being marked, they are no longer data races. For cases
264  * like these, we can use the macro as follows:
265  *
266  * .. code-block:: c
267  *
268  *	void writer(void) {
269  *		spin_lock(&update_foo_lock);
270  *		ASSERT_EXCLUSIVE_WRITER(shared_foo);
271  *		WRITE_ONCE(shared_foo, ...);
272  *		spin_unlock(&update_foo_lock);
273  *	}
274  *	void reader(void) {
275  *		// update_foo_lock does not need to be held!
276  *		... = READ_ONCE(shared_foo);
277  *	}
278  *
279  * Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
280  * checking if a clear scope where no concurrent writes are expected exists.
281  *
282  * @var: variable to assert on
283  */
284 #define ASSERT_EXCLUSIVE_WRITER(var)                                           \
285 	__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
286 
287 /*
288  * Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
289  * expected to be unique for the scope in which instances of kcsan_scoped_access
290  * are declared.
291  */
292 #define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
293 #define __ASSERT_EXCLUSIVE_SCOPED(var, type, id)                               \
294 	struct kcsan_scoped_access __kcsan_scoped_name(id, _)                  \
295 		__kcsan_cleanup_scoped;                                        \
296 	struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p)          \
297 		__maybe_unused = kcsan_begin_scoped_access(                    \
298 			&(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type),     \
299 			&__kcsan_scoped_name(id, _))
300 
301 /**
302  * ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
303  *
304  * Scoped variant of ASSERT_EXCLUSIVE_WRITER().
305  *
306  * Assert that there are no concurrent writes to @var for the duration of the
307  * scope in which it is introduced. This provides a better way to fully cover
308  * the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
309  * increases the likelihood for KCSAN to detect racing accesses.
310  *
311  * For example, it allows finding race-condition bugs that only occur due to
312  * state changes within the scope itself:
313  *
314  * .. code-block:: c
315  *
316  *	void writer(void) {
317  *		spin_lock(&update_foo_lock);
318  *		{
319  *			ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
320  *			WRITE_ONCE(shared_foo, 42);
321  *			...
322  *			// shared_foo should still be 42 here!
323  *		}
324  *		spin_unlock(&update_foo_lock);
325  *	}
326  *	void buggy(void) {
327  *		if (READ_ONCE(shared_foo) == 42)
328  *			WRITE_ONCE(shared_foo, 1); // bug!
329  *	}
330  *
331  * @var: variable to assert on
332  */
333 #define ASSERT_EXCLUSIVE_WRITER_SCOPED(var)                                    \
334 	__ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
335 
336 /**
337  * ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
338  *
339  * Assert that there are no concurrent accesses to @var (no readers nor
340  * writers). This assertion can be used to specify properties of concurrent
341  * code, where violation cannot be detected as a normal data race.
342  *
343  * For example, where exclusive access is expected after determining no other
344  * users of an object are left, but the object is not actually freed. We can
345  * check that this property actually holds as follows:
346  *
347  * .. code-block:: c
348  *
349  *	if (refcount_dec_and_test(&obj->refcnt)) {
350  *		ASSERT_EXCLUSIVE_ACCESS(*obj);
351  *		do_some_cleanup(obj);
352  *		release_for_reuse(obj);
353  *	}
354  *
355  * Note:
356  *
357  * 1. ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
358  *    checking if a clear scope where no concurrent accesses are expected exists.
359  *
360  * 2. For cases where the object is freed, `KASAN <kasan.html>`_ is a better
361  *    fit to detect use-after-free bugs.
362  *
363  * @var: variable to assert on
364  */
365 #define ASSERT_EXCLUSIVE_ACCESS(var)                                           \
366 	__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
367 
368 /**
369  * ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
370  *
371  * Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
372  *
373  * Assert that there are no concurrent accesses to @var (no readers nor writers)
374  * for the entire duration of the scope in which it is introduced. This provides
375  * a better way to fully cover the enclosing scope, compared to multiple
376  * ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
377  * racing accesses.
378  *
379  * @var: variable to assert on
380  */
381 #define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var)                                    \
382 	__ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
383 
384 /**
385  * ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
386  *
387  * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
388  *
389  * Assert that there are no concurrent writes to a subset of bits in @var;
390  * concurrent readers are permitted. This assertion captures more detailed
391  * bit-level properties, compared to the other (word granularity) assertions.
392  * Only the bits set in @mask are checked for concurrent modifications, while
393  * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
394  * are ignored.
395  *
396  * Use this for variables, where some bits must not be modified concurrently,
397  * yet other bits are expected to be modified concurrently.
398  *
399  * For example, variables where, after initialization, some bits are read-only,
400  * but other bits may still be modified concurrently. A reader may wish to
401  * assert that this is true as follows:
402  *
403  * .. code-block:: c
404  *
405  *	ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
406  *	foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
407  *
408  * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
409  * to access the masked bits only, and KCSAN optimistically assumes it is
410  * therefore safe, even in the presence of data races, and marking it with
411  * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
412  * it may still be advisable to do so, since we cannot reason about all compiler
413  * optimizations when it comes to bit manipulations (on the reader and writer
414  * side). If you are sure nothing can go wrong, we can write the above simply
415  * as:
416  *
417  * .. code-block:: c
418  *
419  *	ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
420  *	foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
421  *
422  * Another example, where this may be used, is when certain bits of @var may
423  * only be modified when holding the appropriate lock, but other bits may still
424  * be modified concurrently. Writers, where other bits may change concurrently,
425  * could use the assertion as follows:
426  *
427  * .. code-block:: c
428  *
429  *	spin_lock(&foo_lock);
430  *	ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
431  *	old_flags = flags;
432  *	new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
433  *	if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
434  *	spin_unlock(&foo_lock);
435  *
436  * @var: variable to assert on
437  * @mask: only check for modifications to bits set in @mask
438  */
439 #define ASSERT_EXCLUSIVE_BITS(var, mask)                                       \
440 	do {                                                                   \
441 		kcsan_set_access_mask(mask);                                   \
442 		__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\
443 		kcsan_set_access_mask(0);                                      \
444 		kcsan_atomic_next(1);                                          \
445 	} while (0)
446 
447 #endif /* _LINUX_KCSAN_CHECKS_H */
448