• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * async.c: Asynchronous function calls for boot performance
4  *
5  * (C) Copyright 2009 Intel Corporation
6  * Author: Arjan van de Ven <arjan@linux.intel.com>
7  */
8 
9 
10 /*
11 
12 Goals and Theory of Operation
13 
14 The primary goal of this feature is to reduce the kernel boot time,
15 by doing various independent hardware delays and discovery operations
16 decoupled and not strictly serialized.
17 
18 More specifically, the asynchronous function call concept allows
19 certain operations (primarily during system boot) to happen
20 asynchronously, out of order, while these operations still
21 have their externally visible parts happen sequentially and in-order.
22 (not unlike how out-of-order CPUs retire their instructions in order)
23 
24 Key to the asynchronous function call implementation is the concept of
25 a "sequence cookie" (which, although it has an abstracted type, can be
26 thought of as a monotonically incrementing number).
27 
28 The async core will assign each scheduled event such a sequence cookie and
29 pass this to the called functions.
30 
31 The asynchronously called function should before doing a globally visible
32 operation, such as registering device numbers, call the
33 async_synchronize_cookie() function and pass in its own cookie. The
34 async_synchronize_cookie() function will make sure that all asynchronous
35 operations that were scheduled prior to the operation corresponding with the
36 cookie have completed.
37 
38 Subsystem/driver initialization code that scheduled asynchronous probe
39 functions, but which shares global resources with other drivers/subsystems
40 that do not use the asynchronous call feature, need to do a full
41 synchronization with the async_synchronize_full() function, before returning
42 from their init function. This is to maintain strict ordering between the
43 asynchronous and synchronous parts of the kernel.
44 
45 */
46 
47 #include <linux/async.h>
48 #include <linux/atomic.h>
49 #include <linux/ktime.h>
50 #include <linux/export.h>
51 #include <linux/wait.h>
52 #include <linux/sched.h>
53 #include <linux/slab.h>
54 #include <linux/workqueue.h>
55 
56 #include "workqueue_internal.h"
57 
58 static async_cookie_t next_cookie = 1;
59 
60 #define MAX_WORK		32768
61 #define ASYNC_COOKIE_MAX	ULLONG_MAX	/* infinity cookie */
62 
63 static LIST_HEAD(async_global_pending);	/* pending from all registered doms */
64 static ASYNC_DOMAIN(async_dfl_domain);
65 static DEFINE_SPINLOCK(async_lock);
66 
67 struct async_entry {
68 	struct list_head	domain_list;
69 	struct list_head	global_list;
70 	struct work_struct	work;
71 	async_cookie_t		cookie;
72 	async_func_t		func;
73 	void			*data;
74 	struct async_domain	*domain;
75 };
76 
77 static DECLARE_WAIT_QUEUE_HEAD(async_done);
78 
79 static atomic_t entry_count;
80 
lowest_in_progress(struct async_domain * domain)81 static async_cookie_t lowest_in_progress(struct async_domain *domain)
82 {
83 	struct async_entry *first = NULL;
84 	async_cookie_t ret = ASYNC_COOKIE_MAX;
85 	unsigned long flags;
86 
87 	spin_lock_irqsave(&async_lock, flags);
88 
89 	if (domain) {
90 		if (!list_empty(&domain->pending))
91 			first = list_first_entry(&domain->pending,
92 					struct async_entry, domain_list);
93 	} else {
94 		if (!list_empty(&async_global_pending))
95 			first = list_first_entry(&async_global_pending,
96 					struct async_entry, global_list);
97 	}
98 
99 	if (first)
100 		ret = first->cookie;
101 
102 	spin_unlock_irqrestore(&async_lock, flags);
103 	return ret;
104 }
105 
106 /*
107  * pick the first pending entry and run it
108  */
async_run_entry_fn(struct work_struct * work)109 static void async_run_entry_fn(struct work_struct *work)
110 {
111 	struct async_entry *entry =
112 		container_of(work, struct async_entry, work);
113 	unsigned long flags;
114 	ktime_t calltime, delta, rettime;
115 
116 	/* 1) run (and print duration) */
117 	if (initcall_debug && system_state < SYSTEM_RUNNING) {
118 		pr_debug("calling  %lli_%pS @ %i\n",
119 			(long long)entry->cookie,
120 			entry->func, task_pid_nr(current));
121 		calltime = ktime_get();
122 	}
123 	entry->func(entry->data, entry->cookie);
124 	if (initcall_debug && system_state < SYSTEM_RUNNING) {
125 		rettime = ktime_get();
126 		delta = ktime_sub(rettime, calltime);
127 		pr_debug("initcall %lli_%pS returned 0 after %lld usecs\n",
128 			(long long)entry->cookie,
129 			entry->func,
130 			(long long)ktime_to_ns(delta) >> 10);
131 	}
132 
133 	/* 2) remove self from the pending queues */
134 	spin_lock_irqsave(&async_lock, flags);
135 	list_del_init(&entry->domain_list);
136 	list_del_init(&entry->global_list);
137 
138 	/* 3) free the entry */
139 	kfree(entry);
140 	atomic_dec(&entry_count);
141 
142 	spin_unlock_irqrestore(&async_lock, flags);
143 
144 	/* 4) wake up any waiters */
145 	wake_up(&async_done);
146 }
147 
__async_schedule_node_domain(async_func_t func,void * data,int node,struct async_domain * domain,struct async_entry * entry)148 static async_cookie_t __async_schedule_node_domain(async_func_t func,
149 						   void *data, int node,
150 						   struct async_domain *domain,
151 						   struct async_entry *entry)
152 {
153 	async_cookie_t newcookie;
154 	unsigned long flags;
155 
156 	INIT_LIST_HEAD(&entry->domain_list);
157 	INIT_LIST_HEAD(&entry->global_list);
158 	INIT_WORK(&entry->work, async_run_entry_fn);
159 	entry->func = func;
160 	entry->data = data;
161 	entry->domain = domain;
162 
163 	spin_lock_irqsave(&async_lock, flags);
164 
165 	/* allocate cookie and queue */
166 	newcookie = entry->cookie = next_cookie++;
167 
168 	list_add_tail(&entry->domain_list, &domain->pending);
169 	if (domain->registered)
170 		list_add_tail(&entry->global_list, &async_global_pending);
171 
172 	atomic_inc(&entry_count);
173 	spin_unlock_irqrestore(&async_lock, flags);
174 
175 	/* schedule for execution */
176 	queue_work_node(node, system_unbound_wq, &entry->work);
177 
178 	return newcookie;
179 }
180 
181 /**
182  * async_schedule_node_domain - NUMA specific version of async_schedule_domain
183  * @func: function to execute asynchronously
184  * @data: data pointer to pass to the function
185  * @node: NUMA node that we want to schedule this on or close to
186  * @domain: the domain
187  *
188  * Returns an async_cookie_t that may be used for checkpointing later.
189  * @domain may be used in the async_synchronize_*_domain() functions to
190  * wait within a certain synchronization domain rather than globally.
191  *
192  * Note: This function may be called from atomic or non-atomic contexts.
193  *
194  * The node requested will be honored on a best effort basis. If the node
195  * has no CPUs associated with it then the work is distributed among all
196  * available CPUs.
197  */
async_schedule_node_domain(async_func_t func,void * data,int node,struct async_domain * domain)198 async_cookie_t async_schedule_node_domain(async_func_t func, void *data,
199 					  int node, struct async_domain *domain)
200 {
201 	struct async_entry *entry;
202 	unsigned long flags;
203 	async_cookie_t newcookie;
204 
205 	/* allow irq-off callers */
206 	entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
207 
208 	/*
209 	 * If we're out of memory or if there's too much work
210 	 * pending already, we execute synchronously.
211 	 */
212 	if (!entry || atomic_read(&entry_count) > MAX_WORK) {
213 		kfree(entry);
214 		spin_lock_irqsave(&async_lock, flags);
215 		newcookie = next_cookie++;
216 		spin_unlock_irqrestore(&async_lock, flags);
217 
218 		/* low on memory.. run synchronously */
219 		func(data, newcookie);
220 		return newcookie;
221 	}
222 
223 	return __async_schedule_node_domain(func, data, node, domain, entry);
224 }
225 EXPORT_SYMBOL_GPL(async_schedule_node_domain);
226 
227 /**
228  * async_schedule_node - NUMA specific version of async_schedule
229  * @func: function to execute asynchronously
230  * @data: data pointer to pass to the function
231  * @node: NUMA node that we want to schedule this on or close to
232  *
233  * Returns an async_cookie_t that may be used for checkpointing later.
234  * Note: This function may be called from atomic or non-atomic contexts.
235  *
236  * The node requested will be honored on a best effort basis. If the node
237  * has no CPUs associated with it then the work is distributed among all
238  * available CPUs.
239  */
async_schedule_node(async_func_t func,void * data,int node)240 async_cookie_t async_schedule_node(async_func_t func, void *data, int node)
241 {
242 	return async_schedule_node_domain(func, data, node, &async_dfl_domain);
243 }
244 EXPORT_SYMBOL_GPL(async_schedule_node);
245 
246 /**
247  * async_schedule_dev_nocall - A simplified variant of async_schedule_dev()
248  * @func: function to execute asynchronously
249  * @dev: device argument to be passed to function
250  *
251  * @dev is used as both the argument for the function and to provide NUMA
252  * context for where to run the function.
253  *
254  * If the asynchronous execution of @func is scheduled successfully, return
255  * true. Otherwise, do nothing and return false, unlike async_schedule_dev()
256  * that will run the function synchronously then.
257  */
async_schedule_dev_nocall(async_func_t func,struct device * dev)258 bool async_schedule_dev_nocall(async_func_t func, struct device *dev)
259 {
260 	struct async_entry *entry;
261 
262 	entry = kzalloc(sizeof(struct async_entry), GFP_KERNEL);
263 
264 	/* Give up if there is no memory or too much work. */
265 	if (!entry || atomic_read(&entry_count) > MAX_WORK) {
266 		kfree(entry);
267 		return false;
268 	}
269 
270 	__async_schedule_node_domain(func, dev, dev_to_node(dev),
271 				     &async_dfl_domain, entry);
272 	return true;
273 }
274 
275 /**
276  * async_synchronize_full - synchronize all asynchronous function calls
277  *
278  * This function waits until all asynchronous function calls have been done.
279  */
async_synchronize_full(void)280 void async_synchronize_full(void)
281 {
282 	async_synchronize_full_domain(NULL);
283 }
284 EXPORT_SYMBOL_GPL(async_synchronize_full);
285 
286 /**
287  * async_unregister_domain - ensure no more anonymous waiters on this domain
288  * @domain: idle domain to flush out of any async_synchronize_full instances
289  *
290  * async_synchronize_{cookie|full}_domain() are not flushed since callers
291  * of these routines should know the lifetime of @domain
292  *
293  * Prefer ASYNC_DOMAIN_EXCLUSIVE() declarations over flushing
294  */
async_unregister_domain(struct async_domain * domain)295 void async_unregister_domain(struct async_domain *domain)
296 {
297 	spin_lock_irq(&async_lock);
298 	WARN_ON(!domain->registered || !list_empty(&domain->pending));
299 	domain->registered = 0;
300 	spin_unlock_irq(&async_lock);
301 }
302 EXPORT_SYMBOL_GPL(async_unregister_domain);
303 
304 /**
305  * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain
306  * @domain: the domain to synchronize
307  *
308  * This function waits until all asynchronous function calls for the
309  * synchronization domain specified by @domain have been done.
310  */
async_synchronize_full_domain(struct async_domain * domain)311 void async_synchronize_full_domain(struct async_domain *domain)
312 {
313 	async_synchronize_cookie_domain(ASYNC_COOKIE_MAX, domain);
314 }
315 EXPORT_SYMBOL_GPL(async_synchronize_full_domain);
316 
317 /**
318  * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing
319  * @cookie: async_cookie_t to use as checkpoint
320  * @domain: the domain to synchronize (%NULL for all registered domains)
321  *
322  * This function waits until all asynchronous function calls for the
323  * synchronization domain specified by @domain submitted prior to @cookie
324  * have been done.
325  */
async_synchronize_cookie_domain(async_cookie_t cookie,struct async_domain * domain)326 void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain)
327 {
328 	ktime_t starttime, delta, endtime;
329 
330 	if (initcall_debug && system_state < SYSTEM_RUNNING) {
331 		pr_debug("async_waiting @ %i\n", task_pid_nr(current));
332 		starttime = ktime_get();
333 	}
334 
335 	wait_event(async_done, lowest_in_progress(domain) >= cookie);
336 
337 	if (initcall_debug && system_state < SYSTEM_RUNNING) {
338 		endtime = ktime_get();
339 		delta = ktime_sub(endtime, starttime);
340 
341 		pr_debug("async_continuing @ %i after %lli usec\n",
342 			task_pid_nr(current),
343 			(long long)ktime_to_ns(delta) >> 10);
344 	}
345 }
346 EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain);
347 
348 /**
349  * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing
350  * @cookie: async_cookie_t to use as checkpoint
351  *
352  * This function waits until all asynchronous function calls prior to @cookie
353  * have been done.
354  */
async_synchronize_cookie(async_cookie_t cookie)355 void async_synchronize_cookie(async_cookie_t cookie)
356 {
357 	async_synchronize_cookie_domain(cookie, &async_dfl_domain);
358 }
359 EXPORT_SYMBOL_GPL(async_synchronize_cookie);
360 
361 /**
362  * current_is_async - is %current an async worker task?
363  *
364  * Returns %true if %current is an async worker task.
365  */
current_is_async(void)366 bool current_is_async(void)
367 {
368 	struct worker *worker = current_wq_worker();
369 
370 	return worker && worker->current_func == async_run_entry_fn;
371 }
372 EXPORT_SYMBOL_GPL(current_is_async);
373