• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include "sched.h"
12 
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15 #include <trace/hooks/sched.h>
16 
17 #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
18 
19 struct sugov_tunables {
20 	struct gov_attr_set	attr_set;
21 	unsigned int		rate_limit_us;
22 };
23 
24 struct sugov_policy {
25 	struct cpufreq_policy	*policy;
26 
27 	struct sugov_tunables	*tunables;
28 	struct list_head	tunables_hook;
29 
30 	raw_spinlock_t		update_lock;	/* For shared policies */
31 	u64			last_freq_update_time;
32 	s64			freq_update_delay_ns;
33 	unsigned int		next_freq;
34 	unsigned int		cached_raw_freq;
35 
36 	/* The next fields are only needed if fast switch cannot be used: */
37 	struct			irq_work irq_work;
38 	struct			kthread_work work;
39 	struct			mutex work_lock;
40 	struct			kthread_worker worker;
41 	struct task_struct	*thread;
42 	bool			work_in_progress;
43 
44 	bool			limits_changed;
45 	bool			need_freq_update;
46 };
47 
48 struct sugov_cpu {
49 	struct update_util_data	update_util;
50 	struct sugov_policy	*sg_policy;
51 	unsigned int		cpu;
52 
53 	bool			iowait_boost_pending;
54 	unsigned int		iowait_boost;
55 	u64			last_update;
56 
57 	unsigned long		bw_dl;
58 	unsigned long		max;
59 
60 	/* The field below is for single-CPU policies only: */
61 #ifdef CONFIG_NO_HZ_COMMON
62 	unsigned long		saved_idle_calls;
63 #endif
64 };
65 
66 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
67 
68 /************************ Governor internals ***********************/
69 
sugov_should_update_freq(struct sugov_policy * sg_policy,u64 time)70 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
71 {
72 	s64 delta_ns;
73 
74 	/*
75 	 * Since cpufreq_update_util() is called with rq->lock held for
76 	 * the @target_cpu, our per-CPU data is fully serialized.
77 	 *
78 	 * However, drivers cannot in general deal with cross-CPU
79 	 * requests, so while get_next_freq() will work, our
80 	 * sugov_update_commit() call may not for the fast switching platforms.
81 	 *
82 	 * Hence stop here for remote requests if they aren't supported
83 	 * by the hardware, as calculating the frequency is pointless if
84 	 * we cannot in fact act on it.
85 	 *
86 	 * This is needed on the slow switching platforms too to prevent CPUs
87 	 * going offline from leaving stale IRQ work items behind.
88 	 */
89 	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
90 		return false;
91 
92 	if (unlikely(sg_policy->limits_changed)) {
93 		sg_policy->limits_changed = false;
94 		sg_policy->need_freq_update = true;
95 		return true;
96 	}
97 
98 	delta_ns = time - sg_policy->last_freq_update_time;
99 
100 	return delta_ns >= sg_policy->freq_update_delay_ns;
101 }
102 
sugov_update_next_freq(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)103 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
104 				   unsigned int next_freq)
105 {
106 	if (!sg_policy->need_freq_update) {
107 		if (sg_policy->next_freq == next_freq)
108 			return false;
109 	} else {
110 		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
111 	}
112 
113 	sg_policy->next_freq = next_freq;
114 	sg_policy->last_freq_update_time = time;
115 
116 	return true;
117 }
118 
sugov_fast_switch(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)119 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
120 			      unsigned int next_freq)
121 {
122 	if (sugov_update_next_freq(sg_policy, time, next_freq))
123 		cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
124 }
125 
sugov_deferred_update(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)126 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
127 				  unsigned int next_freq)
128 {
129 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
130 		return;
131 
132 	if (!sg_policy->work_in_progress) {
133 		sg_policy->work_in_progress = true;
134 		irq_work_queue(&sg_policy->irq_work);
135 	}
136 }
137 
138 /**
139  * get_next_freq - Compute a new frequency for a given cpufreq policy.
140  * @sg_policy: schedutil policy object to compute the new frequency for.
141  * @util: Current CPU utilization.
142  * @max: CPU capacity.
143  *
144  * If the utilization is frequency-invariant, choose the new frequency to be
145  * proportional to it, that is
146  *
147  * next_freq = C * max_freq * util / max
148  *
149  * Otherwise, approximate the would-be frequency-invariant utilization by
150  * util_raw * (curr_freq / max_freq) which leads to
151  *
152  * next_freq = C * curr_freq * util_raw / max
153  *
154  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
155  *
156  * The lowest driver-supported frequency which is equal or greater than the raw
157  * next_freq (as calculated above) is returned, subject to policy min/max and
158  * cpufreq driver limitations.
159  */
get_next_freq(struct sugov_policy * sg_policy,unsigned long util,unsigned long max)160 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
161 				  unsigned long util, unsigned long max)
162 {
163 	struct cpufreq_policy *policy = sg_policy->policy;
164 	unsigned int freq = arch_scale_freq_invariant() ?
165 				policy->cpuinfo.max_freq : policy->cur;
166 	unsigned long next_freq = 0;
167 
168 	trace_android_vh_map_util_freq(util, freq, max, &next_freq, policy,
169 			&sg_policy->need_freq_update);
170 	if (next_freq)
171 		freq = next_freq;
172 	else
173 		freq = map_util_freq(util, freq, max);
174 
175 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
176 		return sg_policy->next_freq;
177 
178 	sg_policy->cached_raw_freq = freq;
179 	return cpufreq_driver_resolve_freq(policy, freq);
180 }
181 
182 /*
183  * This function computes an effective utilization for the given CPU, to be
184  * used for frequency selection given the linear relation: f = u * f_max.
185  *
186  * The scheduler tracks the following metrics:
187  *
188  *   cpu_util_{cfs,rt,dl,irq}()
189  *   cpu_bw_dl()
190  *
191  * Where the cfs,rt and dl util numbers are tracked with the same metric and
192  * synchronized windows and are thus directly comparable.
193  *
194  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
195  * which excludes things like IRQ and steal-time. These latter are then accrued
196  * in the irq utilization.
197  *
198  * The DL bandwidth number otoh is not a measured metric but a value computed
199  * based on the task model parameters and gives the minimal utilization
200  * required to meet deadlines.
201  */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)202 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
203 				 unsigned long max, enum schedutil_type type,
204 				 struct task_struct *p)
205 {
206 	unsigned long dl_util, util, irq;
207 	struct rq *rq = cpu_rq(cpu);
208 
209 	if (!uclamp_is_used() &&
210 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
211 		return max;
212 	}
213 
214 	/*
215 	 * Early check to see if IRQ/steal time saturates the CPU, can be
216 	 * because of inaccuracies in how we track these -- see
217 	 * update_irq_load_avg().
218 	 */
219 	irq = cpu_util_irq(rq);
220 	if (unlikely(irq >= max))
221 		return max;
222 
223 	/*
224 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
225 	 * CFS tasks and we use the same metric to track the effective
226 	 * utilization (PELT windows are synchronized) we can directly add them
227 	 * to obtain the CPU's actual utilization.
228 	 *
229 	 * CFS and RT utilization can be boosted or capped, depending on
230 	 * utilization clamp constraints requested by currently RUNNABLE
231 	 * tasks.
232 	 * When there are no CFS RUNNABLE tasks, clamps are released and
233 	 * frequency will be gracefully reduced with the utilization decay.
234 	 */
235 	util = util_cfs + cpu_util_rt(rq);
236 	if (type == FREQUENCY_UTIL)
237 		util = uclamp_rq_util_with(rq, util, p);
238 
239 	dl_util = cpu_util_dl(rq);
240 
241 	/*
242 	 * For frequency selection we do not make cpu_util_dl() a permanent part
243 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
244 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
245 	 * that we select f_max when there is no idle time.
246 	 *
247 	 * NOTE: numerical errors or stop class might cause us to not quite hit
248 	 * saturation when we should -- something for later.
249 	 */
250 	if (util + dl_util >= max)
251 		return max;
252 
253 	/*
254 	 * OTOH, for energy computation we need the estimated running time, so
255 	 * include util_dl and ignore dl_bw.
256 	 */
257 	if (type == ENERGY_UTIL)
258 		util += dl_util;
259 
260 	/*
261 	 * There is still idle time; further improve the number by using the
262 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
263 	 * need to scale the task numbers:
264 	 *
265 	 *              max - irq
266 	 *   U' = irq + --------- * U
267 	 *                 max
268 	 */
269 	util = scale_irq_capacity(util, irq, max);
270 	util += irq;
271 
272 	/*
273 	 * Bandwidth required by DEADLINE must always be granted while, for
274 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
275 	 * to gracefully reduce the frequency when no tasks show up for longer
276 	 * periods of time.
277 	 *
278 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
279 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
280 	 * an interface. So, we only do the latter for now.
281 	 */
282 	if (type == FREQUENCY_UTIL)
283 		util += cpu_bw_dl(rq);
284 
285 	return min(max, util);
286 }
287 EXPORT_SYMBOL_GPL(schedutil_cpu_util);
288 
sugov_get_util(struct sugov_cpu * sg_cpu)289 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
290 {
291 	struct rq *rq = cpu_rq(sg_cpu->cpu);
292 	unsigned long util = cpu_util_cfs(rq);
293 	unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
294 
295 	sg_cpu->max = max;
296 	sg_cpu->bw_dl = cpu_bw_dl(rq);
297 
298 	return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
299 }
300 
301 /**
302  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
303  * @sg_cpu: the sugov data for the CPU to boost
304  * @time: the update time from the caller
305  * @set_iowait_boost: true if an IO boost has been requested
306  *
307  * The IO wait boost of a task is disabled after a tick since the last update
308  * of a CPU. If a new IO wait boost is requested after more then a tick, then
309  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
310  * efficiency by ignoring sporadic wakeups from IO.
311  */
sugov_iowait_reset(struct sugov_cpu * sg_cpu,u64 time,bool set_iowait_boost)312 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
313 			       bool set_iowait_boost)
314 {
315 	s64 delta_ns = time - sg_cpu->last_update;
316 
317 	/* Reset boost only if a tick has elapsed since last request */
318 	if (delta_ns <= TICK_NSEC)
319 		return false;
320 
321 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
322 	sg_cpu->iowait_boost_pending = set_iowait_boost;
323 
324 	return true;
325 }
326 
327 /**
328  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
329  * @sg_cpu: the sugov data for the CPU to boost
330  * @time: the update time from the caller
331  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
332  *
333  * Each time a task wakes up after an IO operation, the CPU utilization can be
334  * boosted to a certain utilization which doubles at each "frequent and
335  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
336  * of the maximum OPP.
337  *
338  * To keep doubling, an IO boost has to be requested at least once per tick,
339  * otherwise we restart from the utilization of the minimum OPP.
340  */
sugov_iowait_boost(struct sugov_cpu * sg_cpu,u64 time,unsigned int flags)341 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
342 			       unsigned int flags)
343 {
344 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
345 
346 	/* Reset boost if the CPU appears to have been idle enough */
347 	if (sg_cpu->iowait_boost &&
348 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
349 		return;
350 
351 	/* Boost only tasks waking up after IO */
352 	if (!set_iowait_boost)
353 		return;
354 
355 	/* Ensure boost doubles only one time at each request */
356 	if (sg_cpu->iowait_boost_pending)
357 		return;
358 	sg_cpu->iowait_boost_pending = true;
359 
360 	/* Double the boost at each request */
361 	if (sg_cpu->iowait_boost) {
362 		sg_cpu->iowait_boost =
363 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
364 		return;
365 	}
366 
367 	/* First wakeup after IO: start with minimum boost */
368 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
369 }
370 
371 /**
372  * sugov_iowait_apply() - Apply the IO boost to a CPU.
373  * @sg_cpu: the sugov data for the cpu to boost
374  * @time: the update time from the caller
375  * @util: the utilization to (eventually) boost
376  * @max: the maximum value the utilization can be boosted to
377  *
378  * A CPU running a task which woken up after an IO operation can have its
379  * utilization boosted to speed up the completion of those IO operations.
380  * The IO boost value is increased each time a task wakes up from IO, in
381  * sugov_iowait_apply(), and it's instead decreased by this function,
382  * each time an increase has not been requested (!iowait_boost_pending).
383  *
384  * A CPU which also appears to have been idle for at least one tick has also
385  * its IO boost utilization reset.
386  *
387  * This mechanism is designed to boost high frequently IO waiting tasks, while
388  * being more conservative on tasks which does sporadic IO operations.
389  */
sugov_iowait_apply(struct sugov_cpu * sg_cpu,u64 time,unsigned long util,unsigned long max)390 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
391 					unsigned long util, unsigned long max)
392 {
393 	unsigned long boost;
394 
395 	/* No boost currently required */
396 	if (!sg_cpu->iowait_boost)
397 		return util;
398 
399 	/* Reset boost if the CPU appears to have been idle enough */
400 	if (sugov_iowait_reset(sg_cpu, time, false))
401 		return util;
402 
403 	if (!sg_cpu->iowait_boost_pending) {
404 		/*
405 		 * No boost pending; reduce the boost value.
406 		 */
407 		sg_cpu->iowait_boost >>= 1;
408 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
409 			sg_cpu->iowait_boost = 0;
410 			return util;
411 		}
412 	}
413 
414 	sg_cpu->iowait_boost_pending = false;
415 
416 	/*
417 	 * @util is already in capacity scale; convert iowait_boost
418 	 * into the same scale so we can compare.
419 	 */
420 	boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
421 	return max(boost, util);
422 }
423 
424 #ifdef CONFIG_NO_HZ_COMMON
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)425 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
426 {
427 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
428 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
429 
430 	sg_cpu->saved_idle_calls = idle_calls;
431 	return ret;
432 }
433 #else
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)434 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
435 #endif /* CONFIG_NO_HZ_COMMON */
436 
437 /*
438  * Make sugov_should_update_freq() ignore the rate limit when DL
439  * has increased the utilization.
440  */
ignore_dl_rate_limit(struct sugov_cpu * sg_cpu,struct sugov_policy * sg_policy)441 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
442 {
443 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
444 		sg_policy->limits_changed = true;
445 }
446 
sugov_update_single(struct update_util_data * hook,u64 time,unsigned int flags)447 static void sugov_update_single(struct update_util_data *hook, u64 time,
448 				unsigned int flags)
449 {
450 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
451 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
452 	unsigned long util, max;
453 	unsigned int next_f;
454 	unsigned int cached_freq = sg_policy->cached_raw_freq;
455 
456 	sugov_iowait_boost(sg_cpu, time, flags);
457 	sg_cpu->last_update = time;
458 
459 	ignore_dl_rate_limit(sg_cpu, sg_policy);
460 
461 	if (!sugov_should_update_freq(sg_policy, time))
462 		return;
463 
464 	util = sugov_get_util(sg_cpu);
465 	max = sg_cpu->max;
466 	util = sugov_iowait_apply(sg_cpu, time, util, max);
467 	next_f = get_next_freq(sg_policy, util, max);
468 	/*
469 	 * Do not reduce the frequency if the CPU has not been idle
470 	 * recently, as the reduction is likely to be premature then.
471 	 */
472 	if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
473 		next_f = sg_policy->next_freq;
474 
475 		/* Restore cached freq as next_freq has changed */
476 		sg_policy->cached_raw_freq = cached_freq;
477 	}
478 
479 	/*
480 	 * This code runs under rq->lock for the target CPU, so it won't run
481 	 * concurrently on two different CPUs for the same target and it is not
482 	 * necessary to acquire the lock in the fast switch case.
483 	 */
484 	if (sg_policy->policy->fast_switch_enabled) {
485 		sugov_fast_switch(sg_policy, time, next_f);
486 	} else {
487 		raw_spin_lock(&sg_policy->update_lock);
488 		sugov_deferred_update(sg_policy, time, next_f);
489 		raw_spin_unlock(&sg_policy->update_lock);
490 	}
491 }
492 
sugov_next_freq_shared(struct sugov_cpu * sg_cpu,u64 time)493 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
494 {
495 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
496 	struct cpufreq_policy *policy = sg_policy->policy;
497 	unsigned long util = 0, max = 1;
498 	unsigned int j;
499 
500 	for_each_cpu(j, policy->cpus) {
501 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
502 		unsigned long j_util, j_max;
503 
504 		j_util = sugov_get_util(j_sg_cpu);
505 		j_max = j_sg_cpu->max;
506 		j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
507 
508 		if (j_util * max > j_max * util) {
509 			util = j_util;
510 			max = j_max;
511 		}
512 	}
513 
514 	return get_next_freq(sg_policy, util, max);
515 }
516 
517 static void
sugov_update_shared(struct update_util_data * hook,u64 time,unsigned int flags)518 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
519 {
520 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
521 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
522 	unsigned int next_f;
523 
524 	raw_spin_lock(&sg_policy->update_lock);
525 
526 	sugov_iowait_boost(sg_cpu, time, flags);
527 	sg_cpu->last_update = time;
528 
529 	ignore_dl_rate_limit(sg_cpu, sg_policy);
530 
531 	if (sugov_should_update_freq(sg_policy, time)) {
532 		next_f = sugov_next_freq_shared(sg_cpu, time);
533 
534 		if (sg_policy->policy->fast_switch_enabled)
535 			sugov_fast_switch(sg_policy, time, next_f);
536 		else
537 			sugov_deferred_update(sg_policy, time, next_f);
538 	}
539 
540 	raw_spin_unlock(&sg_policy->update_lock);
541 }
542 
sugov_work(struct kthread_work * work)543 static void sugov_work(struct kthread_work *work)
544 {
545 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
546 	unsigned int freq;
547 	unsigned long flags;
548 
549 	/*
550 	 * Hold sg_policy->update_lock shortly to handle the case where:
551 	 * incase sg_policy->next_freq is read here, and then updated by
552 	 * sugov_deferred_update() just before work_in_progress is set to false
553 	 * here, we may miss queueing the new update.
554 	 *
555 	 * Note: If a work was queued after the update_lock is released,
556 	 * sugov_work() will just be called again by kthread_work code; and the
557 	 * request will be proceed before the sugov thread sleeps.
558 	 */
559 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
560 	freq = sg_policy->next_freq;
561 	sg_policy->work_in_progress = false;
562 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
563 
564 	mutex_lock(&sg_policy->work_lock);
565 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
566 	mutex_unlock(&sg_policy->work_lock);
567 }
568 
sugov_irq_work(struct irq_work * irq_work)569 static void sugov_irq_work(struct irq_work *irq_work)
570 {
571 	struct sugov_policy *sg_policy;
572 
573 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
574 
575 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
576 }
577 
578 /************************** sysfs interface ************************/
579 
580 static struct sugov_tunables *global_tunables;
581 static DEFINE_MUTEX(global_tunables_lock);
582 
to_sugov_tunables(struct gov_attr_set * attr_set)583 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
584 {
585 	return container_of(attr_set, struct sugov_tunables, attr_set);
586 }
587 
rate_limit_us_show(struct gov_attr_set * attr_set,char * buf)588 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
589 {
590 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
591 
592 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
593 }
594 
595 static ssize_t
rate_limit_us_store(struct gov_attr_set * attr_set,const char * buf,size_t count)596 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
597 {
598 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
599 	struct sugov_policy *sg_policy;
600 	unsigned int rate_limit_us;
601 
602 	if (kstrtouint(buf, 10, &rate_limit_us))
603 		return -EINVAL;
604 
605 	tunables->rate_limit_us = rate_limit_us;
606 
607 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
608 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
609 
610 	return count;
611 }
612 
613 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
614 
615 static struct attribute *sugov_attrs[] = {
616 	&rate_limit_us.attr,
617 	NULL
618 };
619 ATTRIBUTE_GROUPS(sugov);
620 
sugov_tunables_free(struct kobject * kobj)621 static void sugov_tunables_free(struct kobject *kobj)
622 {
623 	struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
624 
625 	kfree(to_sugov_tunables(attr_set));
626 }
627 
628 static struct kobj_type sugov_tunables_ktype = {
629 	.default_groups = sugov_groups,
630 	.sysfs_ops = &governor_sysfs_ops,
631 	.release = &sugov_tunables_free,
632 };
633 
634 /********************** cpufreq governor interface *********************/
635 
636 struct cpufreq_governor schedutil_gov;
637 
sugov_policy_alloc(struct cpufreq_policy * policy)638 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
639 {
640 	struct sugov_policy *sg_policy;
641 
642 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
643 	if (!sg_policy)
644 		return NULL;
645 
646 	sg_policy->policy = policy;
647 	raw_spin_lock_init(&sg_policy->update_lock);
648 	return sg_policy;
649 }
650 
sugov_policy_free(struct sugov_policy * sg_policy)651 static void sugov_policy_free(struct sugov_policy *sg_policy)
652 {
653 	kfree(sg_policy);
654 }
655 
sugov_kthread_create(struct sugov_policy * sg_policy)656 static int sugov_kthread_create(struct sugov_policy *sg_policy)
657 {
658 	struct task_struct *thread;
659 	struct sched_attr attr = {
660 		.size		= sizeof(struct sched_attr),
661 		.sched_policy	= SCHED_DEADLINE,
662 		.sched_flags	= SCHED_FLAG_SUGOV,
663 		.sched_nice	= 0,
664 		.sched_priority	= 0,
665 		/*
666 		 * Fake (unused) bandwidth; workaround to "fix"
667 		 * priority inheritance.
668 		 */
669 		.sched_runtime	=  1000000,
670 		.sched_deadline = 10000000,
671 		.sched_period	= 10000000,
672 	};
673 	struct cpufreq_policy *policy = sg_policy->policy;
674 	int ret;
675 
676 	/* kthread only required for slow path */
677 	if (policy->fast_switch_enabled)
678 		return 0;
679 
680 	kthread_init_work(&sg_policy->work, sugov_work);
681 	kthread_init_worker(&sg_policy->worker);
682 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
683 				"sugov:%d",
684 				cpumask_first(policy->related_cpus));
685 	if (IS_ERR(thread)) {
686 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
687 		return PTR_ERR(thread);
688 	}
689 
690 	ret = sched_setattr_nocheck(thread, &attr);
691 	if (ret) {
692 		kthread_stop(thread);
693 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
694 		return ret;
695 	}
696 
697 	sg_policy->thread = thread;
698 	kthread_bind_mask(thread, policy->related_cpus);
699 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
700 	mutex_init(&sg_policy->work_lock);
701 
702 	wake_up_process(thread);
703 
704 	return 0;
705 }
706 
sugov_kthread_stop(struct sugov_policy * sg_policy)707 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
708 {
709 	/* kthread only required for slow path */
710 	if (sg_policy->policy->fast_switch_enabled)
711 		return;
712 
713 	kthread_flush_worker(&sg_policy->worker);
714 	kthread_stop(sg_policy->thread);
715 	mutex_destroy(&sg_policy->work_lock);
716 }
717 
sugov_tunables_alloc(struct sugov_policy * sg_policy)718 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
719 {
720 	struct sugov_tunables *tunables;
721 
722 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
723 	if (tunables) {
724 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
725 		if (!have_governor_per_policy())
726 			global_tunables = tunables;
727 	}
728 	return tunables;
729 }
730 
sugov_clear_global_tunables(void)731 static void sugov_clear_global_tunables(void)
732 {
733 	if (!have_governor_per_policy())
734 		global_tunables = NULL;
735 }
736 
sugov_init(struct cpufreq_policy * policy)737 static int sugov_init(struct cpufreq_policy *policy)
738 {
739 	struct sugov_policy *sg_policy;
740 	struct sugov_tunables *tunables;
741 	int ret = 0;
742 
743 	/* State should be equivalent to EXIT */
744 	if (policy->governor_data)
745 		return -EBUSY;
746 
747 	cpufreq_enable_fast_switch(policy);
748 
749 	sg_policy = sugov_policy_alloc(policy);
750 	if (!sg_policy) {
751 		ret = -ENOMEM;
752 		goto disable_fast_switch;
753 	}
754 
755 	ret = sugov_kthread_create(sg_policy);
756 	if (ret)
757 		goto free_sg_policy;
758 
759 	mutex_lock(&global_tunables_lock);
760 
761 	if (global_tunables) {
762 		if (WARN_ON(have_governor_per_policy())) {
763 			ret = -EINVAL;
764 			goto stop_kthread;
765 		}
766 		policy->governor_data = sg_policy;
767 		sg_policy->tunables = global_tunables;
768 
769 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
770 		goto out;
771 	}
772 
773 	tunables = sugov_tunables_alloc(sg_policy);
774 	if (!tunables) {
775 		ret = -ENOMEM;
776 		goto stop_kthread;
777 	}
778 
779 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
780 
781 	policy->governor_data = sg_policy;
782 	sg_policy->tunables = tunables;
783 
784 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
785 				   get_governor_parent_kobj(policy), "%s",
786 				   schedutil_gov.name);
787 	if (ret)
788 		goto fail;
789 
790 out:
791 	mutex_unlock(&global_tunables_lock);
792 	return 0;
793 
794 fail:
795 	kobject_put(&tunables->attr_set.kobj);
796 	policy->governor_data = NULL;
797 	sugov_clear_global_tunables();
798 
799 stop_kthread:
800 	sugov_kthread_stop(sg_policy);
801 	mutex_unlock(&global_tunables_lock);
802 
803 free_sg_policy:
804 	sugov_policy_free(sg_policy);
805 
806 disable_fast_switch:
807 	cpufreq_disable_fast_switch(policy);
808 
809 	pr_err("initialization failed (error %d)\n", ret);
810 	return ret;
811 }
812 
sugov_exit(struct cpufreq_policy * policy)813 static void sugov_exit(struct cpufreq_policy *policy)
814 {
815 	struct sugov_policy *sg_policy = policy->governor_data;
816 	struct sugov_tunables *tunables = sg_policy->tunables;
817 	unsigned int count;
818 
819 	mutex_lock(&global_tunables_lock);
820 
821 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
822 	policy->governor_data = NULL;
823 	if (!count)
824 		sugov_clear_global_tunables();
825 
826 	mutex_unlock(&global_tunables_lock);
827 
828 	sugov_kthread_stop(sg_policy);
829 	sugov_policy_free(sg_policy);
830 	cpufreq_disable_fast_switch(policy);
831 }
832 
sugov_start(struct cpufreq_policy * policy)833 static int sugov_start(struct cpufreq_policy *policy)
834 {
835 	struct sugov_policy *sg_policy = policy->governor_data;
836 	unsigned int cpu;
837 
838 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
839 	sg_policy->last_freq_update_time	= 0;
840 	sg_policy->next_freq			= 0;
841 	sg_policy->work_in_progress		= false;
842 	sg_policy->limits_changed		= false;
843 	sg_policy->cached_raw_freq		= 0;
844 
845 	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
846 
847 	for_each_cpu(cpu, policy->cpus) {
848 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
849 
850 		memset(sg_cpu, 0, sizeof(*sg_cpu));
851 		sg_cpu->cpu			= cpu;
852 		sg_cpu->sg_policy		= sg_policy;
853 	}
854 
855 	for_each_cpu(cpu, policy->cpus) {
856 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
857 
858 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
859 					     policy_is_shared(policy) ?
860 							sugov_update_shared :
861 							sugov_update_single);
862 	}
863 	return 0;
864 }
865 
sugov_stop(struct cpufreq_policy * policy)866 static void sugov_stop(struct cpufreq_policy *policy)
867 {
868 	struct sugov_policy *sg_policy = policy->governor_data;
869 	unsigned int cpu;
870 
871 	for_each_cpu(cpu, policy->cpus)
872 		cpufreq_remove_update_util_hook(cpu);
873 
874 	synchronize_rcu();
875 
876 	if (!policy->fast_switch_enabled) {
877 		irq_work_sync(&sg_policy->irq_work);
878 		kthread_cancel_work_sync(&sg_policy->work);
879 	}
880 }
881 
sugov_limits(struct cpufreq_policy * policy)882 static void sugov_limits(struct cpufreq_policy *policy)
883 {
884 	struct sugov_policy *sg_policy = policy->governor_data;
885 
886 	if (!policy->fast_switch_enabled) {
887 		mutex_lock(&sg_policy->work_lock);
888 		cpufreq_policy_apply_limits(policy);
889 		mutex_unlock(&sg_policy->work_lock);
890 	}
891 
892 	sg_policy->limits_changed = true;
893 }
894 
895 struct cpufreq_governor schedutil_gov = {
896 	.name			= "schedutil",
897 	.owner			= THIS_MODULE,
898 	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
899 	.init			= sugov_init,
900 	.exit			= sugov_exit,
901 	.start			= sugov_start,
902 	.stop			= sugov_stop,
903 	.limits			= sugov_limits,
904 };
905 
906 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
cpufreq_default_governor(void)907 struct cpufreq_governor *cpufreq_default_governor(void)
908 {
909 	return &schedutil_gov;
910 }
911 #endif
912 
913 cpufreq_governor_init(schedutil_gov);
914