• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
count_compact_events(enum vm_event_item item,long delta)34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #undef CREATE_TRACE_POINTS
49 #ifndef __GENKSYMS__
50 #include <trace/hooks/mm.h>
51 #endif
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
57 
58 /*
59  * Fragmentation score check interval for proactive compaction purposes.
60  */
61 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
62 
63 /*
64  * Page order with-respect-to which proactive compaction
65  * calculates external fragmentation, which is used as
66  * the "fragmentation score" of a node/zone.
67  */
68 #if defined CONFIG_TRANSPARENT_HUGEPAGE
69 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
70 #elif defined CONFIG_HUGETLBFS
71 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
72 #else
73 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
74 #endif
75 
release_freepages(struct list_head * freelist)76 static unsigned long release_freepages(struct list_head *freelist)
77 {
78 	struct page *page, *next;
79 	unsigned long high_pfn = 0;
80 
81 	list_for_each_entry_safe(page, next, freelist, lru) {
82 		unsigned long pfn = page_to_pfn(page);
83 		list_del(&page->lru);
84 		__free_page(page);
85 		if (pfn > high_pfn)
86 			high_pfn = pfn;
87 	}
88 
89 	return high_pfn;
90 }
91 
split_map_pages(struct list_head * list)92 static void split_map_pages(struct list_head *list)
93 {
94 	unsigned int i, order, nr_pages;
95 	struct page *page, *next;
96 	LIST_HEAD(tmp_list);
97 
98 	list_for_each_entry_safe(page, next, list, lru) {
99 		list_del(&page->lru);
100 
101 		order = page_private(page);
102 		nr_pages = 1 << order;
103 
104 		post_alloc_hook(page, order, __GFP_MOVABLE);
105 		if (order)
106 			split_page(page, order);
107 
108 		for (i = 0; i < nr_pages; i++) {
109 			list_add(&page->lru, &tmp_list);
110 			page++;
111 		}
112 	}
113 
114 	list_splice(&tmp_list, list);
115 }
116 
117 #ifdef CONFIG_COMPACTION
118 
PageMovable(struct page * page)119 int PageMovable(struct page *page)
120 {
121 	struct address_space *mapping;
122 
123 	VM_BUG_ON_PAGE(!PageLocked(page), page);
124 	if (!__PageMovable(page))
125 		return 0;
126 
127 	mapping = page_mapping(page);
128 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
129 		return 1;
130 
131 	return 0;
132 }
133 EXPORT_SYMBOL(PageMovable);
134 
__SetPageMovable(struct page * page,struct address_space * mapping)135 void __SetPageMovable(struct page *page, struct address_space *mapping)
136 {
137 	VM_BUG_ON_PAGE(!PageLocked(page), page);
138 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
139 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
140 }
141 EXPORT_SYMBOL(__SetPageMovable);
142 
__ClearPageMovable(struct page * page)143 void __ClearPageMovable(struct page *page)
144 {
145 	VM_BUG_ON_PAGE(!PageLocked(page), page);
146 	VM_BUG_ON_PAGE(!PageMovable(page), page);
147 	/*
148 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
149 	 * flag so that VM can catch up released page by driver after isolation.
150 	 * With it, VM migration doesn't try to put it back.
151 	 */
152 	page->mapping = (void *)((unsigned long)page->mapping &
153 				PAGE_MAPPING_MOVABLE);
154 }
155 EXPORT_SYMBOL(__ClearPageMovable);
156 
157 /* Do not skip compaction more than 64 times */
158 #define COMPACT_MAX_DEFER_SHIFT 6
159 
160 /*
161  * Compaction is deferred when compaction fails to result in a page
162  * allocation success. 1 << compact_defer_shift, compactions are skipped up
163  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
164  */
defer_compaction(struct zone * zone,int order)165 void defer_compaction(struct zone *zone, int order)
166 {
167 	zone->compact_considered = 0;
168 	zone->compact_defer_shift++;
169 
170 	if (order < zone->compact_order_failed)
171 		zone->compact_order_failed = order;
172 
173 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
174 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
175 
176 	trace_mm_compaction_defer_compaction(zone, order);
177 }
178 
179 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)180 bool compaction_deferred(struct zone *zone, int order)
181 {
182 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
183 
184 	if (order < zone->compact_order_failed)
185 		return false;
186 
187 	/* Avoid possible overflow */
188 	if (++zone->compact_considered >= defer_limit) {
189 		zone->compact_considered = defer_limit;
190 		return false;
191 	}
192 
193 	trace_mm_compaction_deferred(zone, order);
194 
195 	return true;
196 }
197 
198 /*
199  * Update defer tracking counters after successful compaction of given order,
200  * which means an allocation either succeeded (alloc_success == true) or is
201  * expected to succeed.
202  */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)203 void compaction_defer_reset(struct zone *zone, int order,
204 		bool alloc_success)
205 {
206 	if (alloc_success) {
207 		zone->compact_considered = 0;
208 		zone->compact_defer_shift = 0;
209 	}
210 	if (order >= zone->compact_order_failed)
211 		zone->compact_order_failed = order + 1;
212 
213 	trace_mm_compaction_defer_reset(zone, order);
214 }
215 
216 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)217 bool compaction_restarting(struct zone *zone, int order)
218 {
219 	if (order < zone->compact_order_failed)
220 		return false;
221 
222 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
223 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
224 }
225 
226 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)227 static inline bool isolation_suitable(struct compact_control *cc,
228 					struct page *page)
229 {
230 	if (cc->ignore_skip_hint)
231 		return true;
232 
233 	return !get_pageblock_skip(page);
234 }
235 
reset_cached_positions(struct zone * zone)236 static void reset_cached_positions(struct zone *zone)
237 {
238 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
239 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
240 	zone->compact_cached_free_pfn =
241 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
242 }
243 
244 /*
245  * Compound pages of >= pageblock_order should consistenly be skipped until
246  * released. It is always pointless to compact pages of such order (if they are
247  * migratable), and the pageblocks they occupy cannot contain any free pages.
248  */
pageblock_skip_persistent(struct page * page)249 static bool pageblock_skip_persistent(struct page *page)
250 {
251 	if (!PageCompound(page))
252 		return false;
253 
254 	page = compound_head(page);
255 
256 	if (compound_order(page) >= pageblock_order)
257 		return true;
258 
259 	return false;
260 }
261 
262 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)263 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
264 							bool check_target)
265 {
266 	struct page *page = pfn_to_online_page(pfn);
267 	struct page *block_page;
268 	struct page *end_page;
269 	unsigned long block_pfn;
270 
271 	if (!page)
272 		return false;
273 	if (zone != page_zone(page))
274 		return false;
275 	if (pageblock_skip_persistent(page))
276 		return false;
277 
278 	/*
279 	 * If skip is already cleared do no further checking once the
280 	 * restart points have been set.
281 	 */
282 	if (check_source && check_target && !get_pageblock_skip(page))
283 		return true;
284 
285 	/*
286 	 * If clearing skip for the target scanner, do not select a
287 	 * non-movable pageblock as the starting point.
288 	 */
289 	if (!check_source && check_target &&
290 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
291 		return false;
292 
293 	/* Ensure the start of the pageblock or zone is online and valid */
294 	block_pfn = pageblock_start_pfn(pfn);
295 	block_pfn = max(block_pfn, zone->zone_start_pfn);
296 	block_page = pfn_to_online_page(block_pfn);
297 	if (block_page) {
298 		page = block_page;
299 		pfn = block_pfn;
300 	}
301 
302 	/* Ensure the end of the pageblock or zone is online and valid */
303 	block_pfn = pageblock_end_pfn(pfn) - 1;
304 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
305 	end_page = pfn_to_online_page(block_pfn);
306 	if (!end_page)
307 		return false;
308 
309 	/*
310 	 * Only clear the hint if a sample indicates there is either a
311 	 * free page or an LRU page in the block. One or other condition
312 	 * is necessary for the block to be a migration source/target.
313 	 */
314 	do {
315 		if (pfn_valid_within(pfn)) {
316 			if (check_source && PageLRU(page)) {
317 				clear_pageblock_skip(page);
318 				return true;
319 			}
320 
321 			if (check_target && PageBuddy(page)) {
322 				clear_pageblock_skip(page);
323 				return true;
324 			}
325 		}
326 
327 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
328 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
329 	} while (page <= end_page);
330 
331 	return false;
332 }
333 
334 /*
335  * This function is called to clear all cached information on pageblocks that
336  * should be skipped for page isolation when the migrate and free page scanner
337  * meet.
338  */
__reset_isolation_suitable(struct zone * zone)339 static void __reset_isolation_suitable(struct zone *zone)
340 {
341 	unsigned long migrate_pfn = zone->zone_start_pfn;
342 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
343 	unsigned long reset_migrate = free_pfn;
344 	unsigned long reset_free = migrate_pfn;
345 	bool source_set = false;
346 	bool free_set = false;
347 
348 	if (!zone->compact_blockskip_flush)
349 		return;
350 
351 	zone->compact_blockskip_flush = false;
352 
353 	/*
354 	 * Walk the zone and update pageblock skip information. Source looks
355 	 * for PageLRU while target looks for PageBuddy. When the scanner
356 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
357 	 * is suitable as both source and target.
358 	 */
359 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
360 					free_pfn -= pageblock_nr_pages) {
361 		cond_resched();
362 
363 		/* Update the migrate PFN */
364 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
365 		    migrate_pfn < reset_migrate) {
366 			source_set = true;
367 			reset_migrate = migrate_pfn;
368 			zone->compact_init_migrate_pfn = reset_migrate;
369 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
370 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
371 		}
372 
373 		/* Update the free PFN */
374 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
375 		    free_pfn > reset_free) {
376 			free_set = true;
377 			reset_free = free_pfn;
378 			zone->compact_init_free_pfn = reset_free;
379 			zone->compact_cached_free_pfn = reset_free;
380 		}
381 	}
382 
383 	/* Leave no distance if no suitable block was reset */
384 	if (reset_migrate >= reset_free) {
385 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
386 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
387 		zone->compact_cached_free_pfn = free_pfn;
388 	}
389 }
390 
reset_isolation_suitable(pg_data_t * pgdat)391 void reset_isolation_suitable(pg_data_t *pgdat)
392 {
393 	int zoneid;
394 
395 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
396 		struct zone *zone = &pgdat->node_zones[zoneid];
397 		if (!populated_zone(zone))
398 			continue;
399 
400 		/* Only flush if a full compaction finished recently */
401 		if (zone->compact_blockskip_flush)
402 			__reset_isolation_suitable(zone);
403 	}
404 }
405 
406 /*
407  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
408  * locks are not required for read/writers. Returns true if it was already set.
409  */
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)410 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
411 							unsigned long pfn)
412 {
413 	bool skip;
414 
415 	/* Do no update if skip hint is being ignored */
416 	if (cc->ignore_skip_hint)
417 		return false;
418 
419 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
420 		return false;
421 
422 	skip = get_pageblock_skip(page);
423 	if (!skip && !cc->no_set_skip_hint)
424 		set_pageblock_skip(page);
425 
426 	return skip;
427 }
428 
update_cached_migrate(struct compact_control * cc,unsigned long pfn)429 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
430 {
431 	struct zone *zone = cc->zone;
432 
433 	pfn = pageblock_end_pfn(pfn);
434 
435 	/* Set for isolation rather than compaction */
436 	if (cc->no_set_skip_hint)
437 		return;
438 
439 	if (pfn > zone->compact_cached_migrate_pfn[0])
440 		zone->compact_cached_migrate_pfn[0] = pfn;
441 	if (cc->mode != MIGRATE_ASYNC &&
442 	    pfn > zone->compact_cached_migrate_pfn[1])
443 		zone->compact_cached_migrate_pfn[1] = pfn;
444 }
445 
446 /*
447  * If no pages were isolated then mark this pageblock to be skipped in the
448  * future. The information is later cleared by __reset_isolation_suitable().
449  */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)450 static void update_pageblock_skip(struct compact_control *cc,
451 			struct page *page, unsigned long pfn)
452 {
453 	struct zone *zone = cc->zone;
454 
455 	if (cc->no_set_skip_hint)
456 		return;
457 
458 	if (!page)
459 		return;
460 
461 	set_pageblock_skip(page);
462 
463 	/* Update where async and sync compaction should restart */
464 	if (pfn < zone->compact_cached_free_pfn)
465 		zone->compact_cached_free_pfn = pfn;
466 }
467 #else
isolation_suitable(struct compact_control * cc,struct page * page)468 static inline bool isolation_suitable(struct compact_control *cc,
469 					struct page *page)
470 {
471 	return true;
472 }
473 
pageblock_skip_persistent(struct page * page)474 static inline bool pageblock_skip_persistent(struct page *page)
475 {
476 	return false;
477 }
478 
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)479 static inline void update_pageblock_skip(struct compact_control *cc,
480 			struct page *page, unsigned long pfn)
481 {
482 }
483 
update_cached_migrate(struct compact_control * cc,unsigned long pfn)484 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
485 {
486 }
487 
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)488 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
489 							unsigned long pfn)
490 {
491 	return false;
492 }
493 #endif /* CONFIG_COMPACTION */
494 
495 /*
496  * Compaction requires the taking of some coarse locks that are potentially
497  * very heavily contended. For async compaction, trylock and record if the
498  * lock is contended. The lock will still be acquired but compaction will
499  * abort when the current block is finished regardless of success rate.
500  * Sync compaction acquires the lock.
501  *
502  * Always returns true which makes it easier to track lock state in callers.
503  */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)504 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
505 						struct compact_control *cc)
506 	__acquires(lock)
507 {
508 	/* Track if the lock is contended in async mode */
509 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
510 		if (spin_trylock_irqsave(lock, *flags))
511 			return true;
512 
513 		cc->contended = true;
514 	}
515 
516 	spin_lock_irqsave(lock, *flags);
517 	return true;
518 }
519 
520 /*
521  * Compaction requires the taking of some coarse locks that are potentially
522  * very heavily contended. The lock should be periodically unlocked to avoid
523  * having disabled IRQs for a long time, even when there is nobody waiting on
524  * the lock. It might also be that allowing the IRQs will result in
525  * need_resched() becoming true. If scheduling is needed, async compaction
526  * aborts. Sync compaction schedules.
527  * Either compaction type will also abort if a fatal signal is pending.
528  * In either case if the lock was locked, it is dropped and not regained.
529  *
530  * Returns true if compaction should abort due to fatal signal pending, or
531  *		async compaction due to need_resched()
532  * Returns false when compaction can continue (sync compaction might have
533  *		scheduled)
534  */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)535 static bool compact_unlock_should_abort(spinlock_t *lock,
536 		unsigned long flags, bool *locked, struct compact_control *cc)
537 {
538 	if (*locked) {
539 		spin_unlock_irqrestore(lock, flags);
540 		*locked = false;
541 	}
542 
543 	if (fatal_signal_pending(current)) {
544 		cc->contended = true;
545 		return true;
546 	}
547 
548 	cond_resched();
549 
550 	return false;
551 }
552 
553 /*
554  * Isolate free pages onto a private freelist. If @strict is true, will abort
555  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
556  * (even though it may still end up isolating some pages).
557  */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)558 static unsigned long isolate_freepages_block(struct compact_control *cc,
559 				unsigned long *start_pfn,
560 				unsigned long end_pfn,
561 				struct list_head *freelist,
562 				unsigned int stride,
563 				bool strict)
564 {
565 	int nr_scanned = 0, total_isolated = 0;
566 	struct page *cursor;
567 	unsigned long flags = 0;
568 	bool locked = false;
569 	unsigned long blockpfn = *start_pfn;
570 	unsigned int order;
571 
572 	/* Strict mode is for isolation, speed is secondary */
573 	if (strict)
574 		stride = 1;
575 
576 	cursor = pfn_to_page(blockpfn);
577 
578 	/* Isolate free pages. */
579 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
580 		int isolated;
581 		struct page *page = cursor;
582 
583 		/*
584 		 * Periodically drop the lock (if held) regardless of its
585 		 * contention, to give chance to IRQs. Abort if fatal signal
586 		 * pending or async compaction detects need_resched()
587 		 */
588 		if (!(blockpfn % SWAP_CLUSTER_MAX)
589 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
590 								&locked, cc))
591 			break;
592 
593 		nr_scanned++;
594 		if (!pfn_valid_within(blockpfn))
595 			goto isolate_fail;
596 
597 		/*
598 		 * For compound pages such as THP and hugetlbfs, we can save
599 		 * potentially a lot of iterations if we skip them at once.
600 		 * The check is racy, but we can consider only valid values
601 		 * and the only danger is skipping too much.
602 		 */
603 		if (PageCompound(page)) {
604 			const unsigned int order = compound_order(page);
605 
606 			if (likely(order < MAX_ORDER)) {
607 				blockpfn += (1UL << order) - 1;
608 				cursor += (1UL << order) - 1;
609 			}
610 			goto isolate_fail;
611 		}
612 
613 		if (!PageBuddy(page))
614 			goto isolate_fail;
615 
616 		/*
617 		 * If we already hold the lock, we can skip some rechecking.
618 		 * Note that if we hold the lock now, checked_pageblock was
619 		 * already set in some previous iteration (or strict is true),
620 		 * so it is correct to skip the suitable migration target
621 		 * recheck as well.
622 		 */
623 		if (!locked) {
624 			locked = compact_lock_irqsave(&cc->zone->lock,
625 								&flags, cc);
626 
627 			/* Recheck this is a buddy page under lock */
628 			if (!PageBuddy(page))
629 				goto isolate_fail;
630 		}
631 
632 		/* Found a free page, will break it into order-0 pages */
633 		order = buddy_order(page);
634 		isolated = __isolate_free_page(page, order);
635 		if (!isolated)
636 			break;
637 		set_page_private(page, order);
638 
639 		total_isolated += isolated;
640 		cc->nr_freepages += isolated;
641 		list_add_tail(&page->lru, freelist);
642 
643 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
644 			blockpfn += isolated;
645 			break;
646 		}
647 		/* Advance to the end of split page */
648 		blockpfn += isolated - 1;
649 		cursor += isolated - 1;
650 		continue;
651 
652 isolate_fail:
653 		if (strict)
654 			break;
655 		else
656 			continue;
657 
658 	}
659 
660 	if (locked)
661 		spin_unlock_irqrestore(&cc->zone->lock, flags);
662 
663 	/*
664 	 * There is a tiny chance that we have read bogus compound_order(),
665 	 * so be careful to not go outside of the pageblock.
666 	 */
667 	if (unlikely(blockpfn > end_pfn))
668 		blockpfn = end_pfn;
669 
670 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
671 					nr_scanned, total_isolated);
672 
673 	/* Record how far we have got within the block */
674 	*start_pfn = blockpfn;
675 
676 	/*
677 	 * If strict isolation is requested by CMA then check that all the
678 	 * pages requested were isolated. If there were any failures, 0 is
679 	 * returned and CMA will fail.
680 	 */
681 	if (strict && blockpfn < end_pfn)
682 		total_isolated = 0;
683 
684 	cc->total_free_scanned += nr_scanned;
685 	if (total_isolated)
686 		count_compact_events(COMPACTISOLATED, total_isolated);
687 	return total_isolated;
688 }
689 
690 /**
691  * isolate_freepages_range() - isolate free pages.
692  * @cc:        Compaction control structure.
693  * @start_pfn: The first PFN to start isolating.
694  * @end_pfn:   The one-past-last PFN.
695  *
696  * Non-free pages, invalid PFNs, or zone boundaries within the
697  * [start_pfn, end_pfn) range are considered errors, cause function to
698  * undo its actions and return zero.
699  *
700  * Otherwise, function returns one-past-the-last PFN of isolated page
701  * (which may be greater then end_pfn if end fell in a middle of
702  * a free page).
703  */
704 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)705 isolate_freepages_range(struct compact_control *cc,
706 			unsigned long start_pfn, unsigned long end_pfn)
707 {
708 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
709 	LIST_HEAD(freelist);
710 
711 	pfn = start_pfn;
712 	block_start_pfn = pageblock_start_pfn(pfn);
713 	if (block_start_pfn < cc->zone->zone_start_pfn)
714 		block_start_pfn = cc->zone->zone_start_pfn;
715 	block_end_pfn = pageblock_end_pfn(pfn);
716 
717 	for (; pfn < end_pfn; pfn += isolated,
718 				block_start_pfn = block_end_pfn,
719 				block_end_pfn += pageblock_nr_pages) {
720 		/* Protect pfn from changing by isolate_freepages_block */
721 		unsigned long isolate_start_pfn = pfn;
722 
723 		block_end_pfn = min(block_end_pfn, end_pfn);
724 
725 		/*
726 		 * pfn could pass the block_end_pfn if isolated freepage
727 		 * is more than pageblock order. In this case, we adjust
728 		 * scanning range to right one.
729 		 */
730 		if (pfn >= block_end_pfn) {
731 			block_start_pfn = pageblock_start_pfn(pfn);
732 			block_end_pfn = pageblock_end_pfn(pfn);
733 			block_end_pfn = min(block_end_pfn, end_pfn);
734 		}
735 
736 		if (!pageblock_pfn_to_page(block_start_pfn,
737 					block_end_pfn, cc->zone))
738 			break;
739 
740 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
741 					block_end_pfn, &freelist, 0, true);
742 
743 		/*
744 		 * In strict mode, isolate_freepages_block() returns 0 if
745 		 * there are any holes in the block (ie. invalid PFNs or
746 		 * non-free pages).
747 		 */
748 		if (!isolated)
749 			break;
750 
751 		/*
752 		 * If we managed to isolate pages, it is always (1 << n) *
753 		 * pageblock_nr_pages for some non-negative n.  (Max order
754 		 * page may span two pageblocks).
755 		 */
756 	}
757 
758 	/* __isolate_free_page() does not map the pages */
759 	split_map_pages(&freelist);
760 
761 	if (pfn < end_pfn) {
762 		/* Loop terminated early, cleanup. */
763 		release_freepages(&freelist);
764 		return 0;
765 	}
766 
767 	/* We don't use freelists for anything. */
768 	return pfn;
769 }
770 
771 #ifdef CONFIG_COMPACTION
isolate_and_split_free_page(struct page * page,struct list_head * list)772 unsigned long isolate_and_split_free_page(struct page *page,
773 						struct list_head *list)
774 {
775 	unsigned long isolated;
776 	unsigned int order;
777 
778 	if (!PageBuddy(page))
779 		return 0;
780 
781 	order = buddy_order(page);
782 	isolated = __isolate_free_page(page, order);
783 	if (!isolated)
784 		return 0;
785 
786 	set_page_private(page, order);
787 	list_add(&page->lru, list);
788 
789 	split_map_pages(list);
790 
791 	return isolated;
792 }
793 EXPORT_SYMBOL_GPL(isolate_and_split_free_page);
794 #endif
795 
796 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(pg_data_t * pgdat)797 static bool too_many_isolated(pg_data_t *pgdat)
798 {
799 	unsigned long active, inactive, isolated;
800 
801 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
802 			node_page_state(pgdat, NR_INACTIVE_ANON);
803 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
804 			node_page_state(pgdat, NR_ACTIVE_ANON);
805 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
806 			node_page_state(pgdat, NR_ISOLATED_ANON);
807 
808 	return isolated > (inactive + active) / 2;
809 }
810 
811 /**
812  * isolate_migratepages_block() - isolate all migrate-able pages within
813  *				  a single pageblock
814  * @cc:		Compaction control structure.
815  * @low_pfn:	The first PFN to isolate
816  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
817  * @isolate_mode: Isolation mode to be used.
818  *
819  * Isolate all pages that can be migrated from the range specified by
820  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
821  * Returns zero if there is a fatal signal pending, otherwise PFN of the
822  * first page that was not scanned (which may be both less, equal to or more
823  * than end_pfn).
824  *
825  * The pages are isolated on cc->migratepages list (not required to be empty),
826  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
827  * is neither read nor updated.
828  */
829 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)830 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
831 			unsigned long end_pfn, isolate_mode_t isolate_mode)
832 {
833 	pg_data_t *pgdat = cc->zone->zone_pgdat;
834 	unsigned long nr_scanned = 0, nr_isolated = 0;
835 	struct lruvec *lruvec;
836 	unsigned long flags = 0;
837 	bool locked = false;
838 	struct page *page = NULL, *valid_page = NULL;
839 	unsigned long start_pfn = low_pfn;
840 	bool skip_on_failure = false;
841 	unsigned long next_skip_pfn = 0;
842 	bool skip_updated = false;
843 
844 	/*
845 	 * Ensure that there are not too many pages isolated from the LRU
846 	 * list by either parallel reclaimers or compaction. If there are,
847 	 * delay for some time until fewer pages are isolated
848 	 */
849 	while (unlikely(too_many_isolated(pgdat))) {
850 		/* stop isolation if there are still pages not migrated */
851 		if (cc->nr_migratepages)
852 			return 0;
853 
854 		/* async migration should just abort */
855 		if (cc->mode == MIGRATE_ASYNC)
856 			return 0;
857 
858 		congestion_wait(BLK_RW_ASYNC, HZ/10);
859 
860 		if (fatal_signal_pending(current))
861 			return 0;
862 	}
863 
864 	cond_resched();
865 
866 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
867 		skip_on_failure = true;
868 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
869 	}
870 
871 	/* Time to isolate some pages for migration */
872 	for (; low_pfn < end_pfn; low_pfn++) {
873 
874 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
875 			/*
876 			 * We have isolated all migration candidates in the
877 			 * previous order-aligned block, and did not skip it due
878 			 * to failure. We should migrate the pages now and
879 			 * hopefully succeed compaction.
880 			 */
881 			if (nr_isolated)
882 				break;
883 
884 			/*
885 			 * We failed to isolate in the previous order-aligned
886 			 * block. Set the new boundary to the end of the
887 			 * current block. Note we can't simply increase
888 			 * next_skip_pfn by 1 << order, as low_pfn might have
889 			 * been incremented by a higher number due to skipping
890 			 * a compound or a high-order buddy page in the
891 			 * previous loop iteration.
892 			 */
893 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
894 		}
895 
896 		/*
897 		 * Periodically drop the lock (if held) regardless of its
898 		 * contention, to give chance to IRQs. Abort completely if
899 		 * a fatal signal is pending.
900 		 */
901 		if (!(low_pfn % SWAP_CLUSTER_MAX)
902 		    && compact_unlock_should_abort(&pgdat->lru_lock,
903 					    flags, &locked, cc)) {
904 			low_pfn = 0;
905 			goto fatal_pending;
906 		}
907 
908 		if (!pfn_valid_within(low_pfn))
909 			goto isolate_fail;
910 		nr_scanned++;
911 
912 		page = pfn_to_page(low_pfn);
913 
914 		/*
915 		 * Check if the pageblock has already been marked skipped.
916 		 * Only the aligned PFN is checked as the caller isolates
917 		 * COMPACT_CLUSTER_MAX at a time so the second call must
918 		 * not falsely conclude that the block should be skipped.
919 		 */
920 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
921 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
922 				low_pfn = end_pfn;
923 				goto isolate_abort;
924 			}
925 			valid_page = page;
926 		}
927 
928 		/*
929 		 * Skip if free. We read page order here without zone lock
930 		 * which is generally unsafe, but the race window is small and
931 		 * the worst thing that can happen is that we skip some
932 		 * potential isolation targets.
933 		 */
934 		if (PageBuddy(page)) {
935 			unsigned long freepage_order = buddy_order_unsafe(page);
936 
937 			/*
938 			 * Without lock, we cannot be sure that what we got is
939 			 * a valid page order. Consider only values in the
940 			 * valid order range to prevent low_pfn overflow.
941 			 */
942 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
943 				low_pfn += (1UL << freepage_order) - 1;
944 			continue;
945 		}
946 
947 		/*
948 		 * Regardless of being on LRU, compound pages such as THP and
949 		 * hugetlbfs are not to be compacted unless we are attempting
950 		 * an allocation much larger than the huge page size (eg CMA).
951 		 * We can potentially save a lot of iterations if we skip them
952 		 * at once. The check is racy, but we can consider only valid
953 		 * values and the only danger is skipping too much.
954 		 */
955 		if (PageCompound(page) && !cc->alloc_contig) {
956 			const unsigned int order = compound_order(page);
957 
958 			if (likely(order < MAX_ORDER))
959 				low_pfn += (1UL << order) - 1;
960 			goto isolate_fail;
961 		}
962 
963 		/*
964 		 * Check may be lockless but that's ok as we recheck later.
965 		 * It's possible to migrate LRU and non-lru movable pages.
966 		 * Skip any other type of page
967 		 */
968 		if (!PageLRU(page)) {
969 			/*
970 			 * __PageMovable can return false positive so we need
971 			 * to verify it under page_lock.
972 			 */
973 			if (unlikely(__PageMovable(page)) &&
974 					!PageIsolated(page)) {
975 				if (locked) {
976 					spin_unlock_irqrestore(&pgdat->lru_lock,
977 									flags);
978 					locked = false;
979 				}
980 
981 				if (!isolate_movable_page(page, isolate_mode))
982 					goto isolate_success;
983 			}
984 
985 			goto isolate_fail;
986 		}
987 
988 		/*
989 		 * Migration will fail if an anonymous page is pinned in memory,
990 		 * so avoid taking lru_lock and isolating it unnecessarily in an
991 		 * admittedly racy check.
992 		 */
993 		if (!page_mapping(page) &&
994 		    page_count(page) > page_mapcount(page))
995 			goto isolate_fail;
996 
997 		/*
998 		 * Only allow to migrate anonymous pages in GFP_NOFS context
999 		 * because those do not depend on fs locks.
1000 		 */
1001 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1002 			goto isolate_fail;
1003 
1004 		/* If we already hold the lock, we can skip some rechecking */
1005 		if (!locked) {
1006 			locked = compact_lock_irqsave(&pgdat->lru_lock,
1007 								&flags, cc);
1008 
1009 			/* Try get exclusive access under lock */
1010 			if (!skip_updated) {
1011 				skip_updated = true;
1012 				if (test_and_set_skip(cc, page, low_pfn))
1013 					goto isolate_abort;
1014 			}
1015 
1016 			/* Recheck PageLRU and PageCompound under lock */
1017 			if (!PageLRU(page))
1018 				goto isolate_fail;
1019 
1020 			/*
1021 			 * Page become compound since the non-locked check,
1022 			 * and it's on LRU. It can only be a THP so the order
1023 			 * is safe to read and it's 0 for tail pages.
1024 			 */
1025 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1026 				low_pfn += compound_nr(page) - 1;
1027 				goto isolate_fail;
1028 			}
1029 		}
1030 
1031 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1032 
1033 		/* Try isolate the page */
1034 		if (__isolate_lru_page(page, isolate_mode) != 0)
1035 			goto isolate_fail;
1036 
1037 		/* The whole page is taken off the LRU; skip the tail pages. */
1038 		if (PageCompound(page))
1039 			low_pfn += compound_nr(page) - 1;
1040 
1041 		/* Successfully isolated */
1042 		del_page_from_lru_list(page, lruvec, page_lru(page));
1043 		mod_node_page_state(page_pgdat(page),
1044 				NR_ISOLATED_ANON + page_is_file_lru(page),
1045 				thp_nr_pages(page));
1046 
1047 isolate_success:
1048 		list_add(&page->lru, &cc->migratepages);
1049 		cc->nr_migratepages += compound_nr(page);
1050 		nr_isolated += compound_nr(page);
1051 
1052 		/*
1053 		 * Avoid isolating too much unless this block is being
1054 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1055 		 * or a lock is contended. For contention, isolate quickly to
1056 		 * potentially remove one source of contention.
1057 		 */
1058 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1059 		    !cc->rescan && !cc->contended) {
1060 			++low_pfn;
1061 			break;
1062 		}
1063 
1064 		continue;
1065 isolate_fail:
1066 		if (!skip_on_failure)
1067 			continue;
1068 
1069 		/*
1070 		 * We have isolated some pages, but then failed. Release them
1071 		 * instead of migrating, as we cannot form the cc->order buddy
1072 		 * page anyway.
1073 		 */
1074 		if (nr_isolated) {
1075 			if (locked) {
1076 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1077 				locked = false;
1078 			}
1079 			putback_movable_pages(&cc->migratepages);
1080 			cc->nr_migratepages = 0;
1081 			nr_isolated = 0;
1082 		}
1083 
1084 		if (low_pfn < next_skip_pfn) {
1085 			low_pfn = next_skip_pfn - 1;
1086 			/*
1087 			 * The check near the loop beginning would have updated
1088 			 * next_skip_pfn too, but this is a bit simpler.
1089 			 */
1090 			next_skip_pfn += 1UL << cc->order;
1091 		}
1092 	}
1093 
1094 	/*
1095 	 * The PageBuddy() check could have potentially brought us outside
1096 	 * the range to be scanned.
1097 	 */
1098 	if (unlikely(low_pfn > end_pfn))
1099 		low_pfn = end_pfn;
1100 
1101 isolate_abort:
1102 	if (locked)
1103 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1104 
1105 	/*
1106 	 * Updated the cached scanner pfn once the pageblock has been scanned
1107 	 * Pages will either be migrated in which case there is no point
1108 	 * scanning in the near future or migration failed in which case the
1109 	 * failure reason may persist. The block is marked for skipping if
1110 	 * there were no pages isolated in the block or if the block is
1111 	 * rescanned twice in a row.
1112 	 */
1113 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1114 		if (valid_page && !skip_updated)
1115 			set_pageblock_skip(valid_page);
1116 		update_cached_migrate(cc, low_pfn);
1117 	}
1118 
1119 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1120 						nr_scanned, nr_isolated);
1121 
1122 fatal_pending:
1123 	cc->total_migrate_scanned += nr_scanned;
1124 	if (nr_isolated)
1125 		count_compact_events(COMPACTISOLATED, nr_isolated);
1126 
1127 	return low_pfn;
1128 }
1129 
1130 /**
1131  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1132  * @cc:        Compaction control structure.
1133  * @start_pfn: The first PFN to start isolating.
1134  * @end_pfn:   The one-past-last PFN.
1135  *
1136  * Returns zero if isolation fails fatally due to e.g. pending signal.
1137  * Otherwise, function returns one-past-the-last PFN of isolated page
1138  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1139  */
1140 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1141 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1142 							unsigned long end_pfn)
1143 {
1144 	unsigned long pfn, block_start_pfn, block_end_pfn;
1145 
1146 	/* Scan block by block. First and last block may be incomplete */
1147 	pfn = start_pfn;
1148 	block_start_pfn = pageblock_start_pfn(pfn);
1149 	if (block_start_pfn < cc->zone->zone_start_pfn)
1150 		block_start_pfn = cc->zone->zone_start_pfn;
1151 	block_end_pfn = pageblock_end_pfn(pfn);
1152 
1153 	for (; pfn < end_pfn; pfn = block_end_pfn,
1154 				block_start_pfn = block_end_pfn,
1155 				block_end_pfn += pageblock_nr_pages) {
1156 
1157 		block_end_pfn = min(block_end_pfn, end_pfn);
1158 
1159 		if (!pageblock_pfn_to_page(block_start_pfn,
1160 					block_end_pfn, cc->zone))
1161 			continue;
1162 
1163 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1164 							ISOLATE_UNEVICTABLE);
1165 
1166 		if (!pfn)
1167 			break;
1168 
1169 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1170 			break;
1171 	}
1172 
1173 	return pfn;
1174 }
1175 
1176 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1177 #ifdef CONFIG_COMPACTION
1178 
suitable_migration_source(struct compact_control * cc,struct page * page)1179 static bool suitable_migration_source(struct compact_control *cc,
1180 							struct page *page)
1181 {
1182 	int block_mt;
1183 
1184 	if (pageblock_skip_persistent(page))
1185 		return false;
1186 
1187 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1188 		return true;
1189 
1190 	block_mt = get_pageblock_migratetype(page);
1191 
1192 	if (cc->migratetype == MIGRATE_MOVABLE)
1193 		return is_migrate_movable(block_mt);
1194 	else
1195 		return block_mt == cc->migratetype;
1196 }
1197 
1198 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)1199 static bool suitable_migration_target(struct compact_control *cc,
1200 							struct page *page)
1201 {
1202 	/* If the page is a large free page, then disallow migration */
1203 	if (PageBuddy(page)) {
1204 		/*
1205 		 * We are checking page_order without zone->lock taken. But
1206 		 * the only small danger is that we skip a potentially suitable
1207 		 * pageblock, so it's not worth to check order for valid range.
1208 		 */
1209 		if (buddy_order_unsafe(page) >= pageblock_order)
1210 			return false;
1211 	}
1212 
1213 	if (cc->ignore_block_suitable)
1214 		return true;
1215 
1216 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1217 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1218 		return true;
1219 
1220 	/* Otherwise skip the block */
1221 	return false;
1222 }
1223 
1224 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1225 freelist_scan_limit(struct compact_control *cc)
1226 {
1227 	unsigned short shift = BITS_PER_LONG - 1;
1228 
1229 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1230 }
1231 
1232 /*
1233  * Test whether the free scanner has reached the same or lower pageblock than
1234  * the migration scanner, and compaction should thus terminate.
1235  */
compact_scanners_met(struct compact_control * cc)1236 static inline bool compact_scanners_met(struct compact_control *cc)
1237 {
1238 	return (cc->free_pfn >> pageblock_order)
1239 		<= (cc->migrate_pfn >> pageblock_order);
1240 }
1241 
1242 /*
1243  * Used when scanning for a suitable migration target which scans freelists
1244  * in reverse. Reorders the list such as the unscanned pages are scanned
1245  * first on the next iteration of the free scanner
1246  */
1247 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1248 move_freelist_head(struct list_head *freelist, struct page *freepage)
1249 {
1250 	LIST_HEAD(sublist);
1251 
1252 	if (!list_is_last(freelist, &freepage->lru)) {
1253 		list_cut_before(&sublist, freelist, &freepage->lru);
1254 		if (!list_empty(&sublist))
1255 			list_splice_tail(&sublist, freelist);
1256 	}
1257 }
1258 
1259 /*
1260  * Similar to move_freelist_head except used by the migration scanner
1261  * when scanning forward. It's possible for these list operations to
1262  * move against each other if they search the free list exactly in
1263  * lockstep.
1264  */
1265 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1266 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1267 {
1268 	LIST_HEAD(sublist);
1269 
1270 	if (!list_is_first(freelist, &freepage->lru)) {
1271 		list_cut_position(&sublist, freelist, &freepage->lru);
1272 		if (!list_empty(&sublist))
1273 			list_splice_tail(&sublist, freelist);
1274 	}
1275 }
1276 
1277 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn)1278 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1279 {
1280 	unsigned long start_pfn, end_pfn;
1281 	struct page *page;
1282 
1283 	/* Do not search around if there are enough pages already */
1284 	if (cc->nr_freepages >= cc->nr_migratepages)
1285 		return;
1286 
1287 	/* Minimise scanning during async compaction */
1288 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1289 		return;
1290 
1291 	/* Pageblock boundaries */
1292 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1293 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1294 
1295 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1296 	if (!page)
1297 		return;
1298 
1299 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1300 
1301 	/* Skip this pageblock in the future as it's full or nearly full */
1302 	if (cc->nr_freepages < cc->nr_migratepages)
1303 		set_pageblock_skip(page);
1304 
1305 	return;
1306 }
1307 
1308 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1309 static int next_search_order(struct compact_control *cc, int order)
1310 {
1311 	order--;
1312 	if (order < 0)
1313 		order = cc->order - 1;
1314 
1315 	/* Search wrapped around? */
1316 	if (order == cc->search_order) {
1317 		cc->search_order--;
1318 		if (cc->search_order < 0)
1319 			cc->search_order = cc->order - 1;
1320 		return -1;
1321 	}
1322 
1323 	return order;
1324 }
1325 
1326 static unsigned long
fast_isolate_freepages(struct compact_control * cc)1327 fast_isolate_freepages(struct compact_control *cc)
1328 {
1329 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1330 	unsigned int nr_scanned = 0;
1331 	unsigned long low_pfn, min_pfn, highest = 0;
1332 	unsigned long nr_isolated = 0;
1333 	unsigned long distance;
1334 	struct page *page = NULL;
1335 	bool scan_start = false;
1336 	int order;
1337 
1338 	/* Full compaction passes in a negative order */
1339 	if (cc->order <= 0)
1340 		return cc->free_pfn;
1341 
1342 	/*
1343 	 * If starting the scan, use a deeper search and use the highest
1344 	 * PFN found if a suitable one is not found.
1345 	 */
1346 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1347 		limit = pageblock_nr_pages >> 1;
1348 		scan_start = true;
1349 	}
1350 
1351 	/*
1352 	 * Preferred point is in the top quarter of the scan space but take
1353 	 * a pfn from the top half if the search is problematic.
1354 	 */
1355 	distance = (cc->free_pfn - cc->migrate_pfn);
1356 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1357 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1358 
1359 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1360 		low_pfn = min_pfn;
1361 
1362 	/*
1363 	 * Search starts from the last successful isolation order or the next
1364 	 * order to search after a previous failure
1365 	 */
1366 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1367 
1368 	for (order = cc->search_order;
1369 	     !page && order >= 0;
1370 	     order = next_search_order(cc, order)) {
1371 		struct free_area *area = &cc->zone->free_area[order];
1372 		struct list_head *freelist;
1373 		struct page *freepage;
1374 		unsigned long flags;
1375 		unsigned int order_scanned = 0;
1376 		unsigned long high_pfn = 0;
1377 
1378 		if (!area->nr_free)
1379 			continue;
1380 
1381 		spin_lock_irqsave(&cc->zone->lock, flags);
1382 		freelist = &area->free_list[MIGRATE_MOVABLE];
1383 		list_for_each_entry_reverse(freepage, freelist, lru) {
1384 			unsigned long pfn;
1385 
1386 			order_scanned++;
1387 			nr_scanned++;
1388 			pfn = page_to_pfn(freepage);
1389 
1390 			if (pfn >= highest)
1391 				highest = max(pageblock_start_pfn(pfn),
1392 					      cc->zone->zone_start_pfn);
1393 
1394 			if (pfn >= low_pfn) {
1395 				cc->fast_search_fail = 0;
1396 				cc->search_order = order;
1397 				page = freepage;
1398 				break;
1399 			}
1400 
1401 			if (pfn >= min_pfn && pfn > high_pfn) {
1402 				high_pfn = pfn;
1403 
1404 				/* Shorten the scan if a candidate is found */
1405 				limit >>= 1;
1406 			}
1407 
1408 			if (order_scanned >= limit)
1409 				break;
1410 		}
1411 
1412 		/* Use a minimum pfn if a preferred one was not found */
1413 		if (!page && high_pfn) {
1414 			page = pfn_to_page(high_pfn);
1415 
1416 			/* Update freepage for the list reorder below */
1417 			freepage = page;
1418 		}
1419 
1420 		/* Reorder to so a future search skips recent pages */
1421 		move_freelist_head(freelist, freepage);
1422 
1423 		/* Isolate the page if available */
1424 		if (page) {
1425 			if (__isolate_free_page(page, order)) {
1426 				set_page_private(page, order);
1427 				nr_isolated = 1 << order;
1428 				cc->nr_freepages += nr_isolated;
1429 				list_add_tail(&page->lru, &cc->freepages);
1430 				count_compact_events(COMPACTISOLATED, nr_isolated);
1431 			} else {
1432 				/* If isolation fails, abort the search */
1433 				order = cc->search_order + 1;
1434 				page = NULL;
1435 			}
1436 		}
1437 
1438 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1439 
1440 		/*
1441 		 * Smaller scan on next order so the total scan ig related
1442 		 * to freelist_scan_limit.
1443 		 */
1444 		if (order_scanned >= limit)
1445 			limit = min(1U, limit >> 1);
1446 	}
1447 
1448 	if (!page) {
1449 		cc->fast_search_fail++;
1450 		if (scan_start) {
1451 			/*
1452 			 * Use the highest PFN found above min. If one was
1453 			 * not found, be pessimistic for direct compaction
1454 			 * and use the min mark.
1455 			 */
1456 			if (highest) {
1457 				page = pfn_to_page(highest);
1458 				cc->free_pfn = highest;
1459 			} else {
1460 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1461 					page = pageblock_pfn_to_page(min_pfn,
1462 						min(pageblock_end_pfn(min_pfn),
1463 						    zone_end_pfn(cc->zone)),
1464 						cc->zone);
1465 					cc->free_pfn = min_pfn;
1466 				}
1467 			}
1468 		}
1469 	}
1470 
1471 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1472 		highest -= pageblock_nr_pages;
1473 		cc->zone->compact_cached_free_pfn = highest;
1474 	}
1475 
1476 	cc->total_free_scanned += nr_scanned;
1477 	if (!page)
1478 		return cc->free_pfn;
1479 
1480 	low_pfn = page_to_pfn(page);
1481 	fast_isolate_around(cc, low_pfn);
1482 	return low_pfn;
1483 }
1484 
1485 /*
1486  * Based on information in the current compact_control, find blocks
1487  * suitable for isolating free pages from and then isolate them.
1488  */
isolate_freepages(struct compact_control * cc)1489 static void isolate_freepages(struct compact_control *cc)
1490 {
1491 	struct zone *zone = cc->zone;
1492 	struct page *page;
1493 	unsigned long block_start_pfn;	/* start of current pageblock */
1494 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1495 	unsigned long block_end_pfn;	/* end of current pageblock */
1496 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1497 	struct list_head *freelist = &cc->freepages;
1498 	unsigned int stride;
1499 
1500 	/* Try a small search of the free lists for a candidate */
1501 	isolate_start_pfn = fast_isolate_freepages(cc);
1502 	if (cc->nr_freepages)
1503 		goto splitmap;
1504 
1505 	/*
1506 	 * Initialise the free scanner. The starting point is where we last
1507 	 * successfully isolated from, zone-cached value, or the end of the
1508 	 * zone when isolating for the first time. For looping we also need
1509 	 * this pfn aligned down to the pageblock boundary, because we do
1510 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1511 	 * For ending point, take care when isolating in last pageblock of a
1512 	 * zone which ends in the middle of a pageblock.
1513 	 * The low boundary is the end of the pageblock the migration scanner
1514 	 * is using.
1515 	 */
1516 	isolate_start_pfn = cc->free_pfn;
1517 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1518 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1519 						zone_end_pfn(zone));
1520 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1521 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1522 
1523 	/*
1524 	 * Isolate free pages until enough are available to migrate the
1525 	 * pages on cc->migratepages. We stop searching if the migrate
1526 	 * and free page scanners meet or enough free pages are isolated.
1527 	 */
1528 	for (; block_start_pfn >= low_pfn;
1529 				block_end_pfn = block_start_pfn,
1530 				block_start_pfn -= pageblock_nr_pages,
1531 				isolate_start_pfn = block_start_pfn) {
1532 		unsigned long nr_isolated;
1533 
1534 		/*
1535 		 * This can iterate a massively long zone without finding any
1536 		 * suitable migration targets, so periodically check resched.
1537 		 */
1538 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1539 			cond_resched();
1540 
1541 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1542 									zone);
1543 		if (!page)
1544 			continue;
1545 
1546 		/* Check the block is suitable for migration */
1547 		if (!suitable_migration_target(cc, page))
1548 			continue;
1549 
1550 		/* If isolation recently failed, do not retry */
1551 		if (!isolation_suitable(cc, page))
1552 			continue;
1553 
1554 		/* Found a block suitable for isolating free pages from. */
1555 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1556 					block_end_pfn, freelist, stride, false);
1557 
1558 		/* Update the skip hint if the full pageblock was scanned */
1559 		if (isolate_start_pfn == block_end_pfn)
1560 			update_pageblock_skip(cc, page, block_start_pfn);
1561 
1562 		/* Are enough freepages isolated? */
1563 		if (cc->nr_freepages >= cc->nr_migratepages) {
1564 			if (isolate_start_pfn >= block_end_pfn) {
1565 				/*
1566 				 * Restart at previous pageblock if more
1567 				 * freepages can be isolated next time.
1568 				 */
1569 				isolate_start_pfn =
1570 					block_start_pfn - pageblock_nr_pages;
1571 			}
1572 			break;
1573 		} else if (isolate_start_pfn < block_end_pfn) {
1574 			/*
1575 			 * If isolation failed early, do not continue
1576 			 * needlessly.
1577 			 */
1578 			break;
1579 		}
1580 
1581 		/* Adjust stride depending on isolation */
1582 		if (nr_isolated) {
1583 			stride = 1;
1584 			continue;
1585 		}
1586 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1587 	}
1588 
1589 	/*
1590 	 * Record where the free scanner will restart next time. Either we
1591 	 * broke from the loop and set isolate_start_pfn based on the last
1592 	 * call to isolate_freepages_block(), or we met the migration scanner
1593 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1594 	 */
1595 	cc->free_pfn = isolate_start_pfn;
1596 
1597 splitmap:
1598 	/* __isolate_free_page() does not map the pages */
1599 	split_map_pages(freelist);
1600 }
1601 
1602 /*
1603  * This is a migrate-callback that "allocates" freepages by taking pages
1604  * from the isolated freelists in the block we are migrating to.
1605  */
compaction_alloc(struct page * migratepage,unsigned long data)1606 static struct page *compaction_alloc(struct page *migratepage,
1607 					unsigned long data)
1608 {
1609 	struct compact_control *cc = (struct compact_control *)data;
1610 	struct page *freepage;
1611 
1612 	if (list_empty(&cc->freepages)) {
1613 		isolate_freepages(cc);
1614 
1615 		if (list_empty(&cc->freepages))
1616 			return NULL;
1617 	}
1618 
1619 	freepage = list_entry(cc->freepages.next, struct page, lru);
1620 	list_del(&freepage->lru);
1621 	cc->nr_freepages--;
1622 
1623 	return freepage;
1624 }
1625 
1626 /*
1627  * This is a migrate-callback that "frees" freepages back to the isolated
1628  * freelist.  All pages on the freelist are from the same zone, so there is no
1629  * special handling needed for NUMA.
1630  */
compaction_free(struct page * page,unsigned long data)1631 static void compaction_free(struct page *page, unsigned long data)
1632 {
1633 	struct compact_control *cc = (struct compact_control *)data;
1634 
1635 	list_add(&page->lru, &cc->freepages);
1636 	cc->nr_freepages++;
1637 }
1638 
1639 /* possible outcome of isolate_migratepages */
1640 typedef enum {
1641 	ISOLATE_ABORT,		/* Abort compaction now */
1642 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1643 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1644 } isolate_migrate_t;
1645 
1646 /*
1647  * Allow userspace to control policy on scanning the unevictable LRU for
1648  * compactable pages.
1649  */
1650 #ifdef CONFIG_PREEMPT_RT
1651 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1652 #else
1653 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1654 #endif
1655 
1656 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1657 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1658 {
1659 	if (cc->fast_start_pfn == ULONG_MAX)
1660 		return;
1661 
1662 	if (!cc->fast_start_pfn)
1663 		cc->fast_start_pfn = pfn;
1664 
1665 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1666 }
1667 
1668 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1669 reinit_migrate_pfn(struct compact_control *cc)
1670 {
1671 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1672 		return cc->migrate_pfn;
1673 
1674 	cc->migrate_pfn = cc->fast_start_pfn;
1675 	cc->fast_start_pfn = ULONG_MAX;
1676 
1677 	return cc->migrate_pfn;
1678 }
1679 
1680 /*
1681  * Briefly search the free lists for a migration source that already has
1682  * some free pages to reduce the number of pages that need migration
1683  * before a pageblock is free.
1684  */
fast_find_migrateblock(struct compact_control * cc)1685 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1686 {
1687 	unsigned int limit = freelist_scan_limit(cc);
1688 	unsigned int nr_scanned = 0;
1689 	unsigned long distance;
1690 	unsigned long pfn = cc->migrate_pfn;
1691 	unsigned long high_pfn;
1692 	int order;
1693 	bool found_block = false;
1694 
1695 	/* Skip hints are relied on to avoid repeats on the fast search */
1696 	if (cc->ignore_skip_hint)
1697 		return pfn;
1698 
1699 	/*
1700 	 * If the migrate_pfn is not at the start of a zone or the start
1701 	 * of a pageblock then assume this is a continuation of a previous
1702 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1703 	 */
1704 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1705 		return pfn;
1706 
1707 	/*
1708 	 * For smaller orders, just linearly scan as the number of pages
1709 	 * to migrate should be relatively small and does not necessarily
1710 	 * justify freeing up a large block for a small allocation.
1711 	 */
1712 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1713 		return pfn;
1714 
1715 	/*
1716 	 * Only allow kcompactd and direct requests for movable pages to
1717 	 * quickly clear out a MOVABLE pageblock for allocation. This
1718 	 * reduces the risk that a large movable pageblock is freed for
1719 	 * an unmovable/reclaimable small allocation.
1720 	 */
1721 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1722 		return pfn;
1723 
1724 	/*
1725 	 * When starting the migration scanner, pick any pageblock within the
1726 	 * first half of the search space. Otherwise try and pick a pageblock
1727 	 * within the first eighth to reduce the chances that a migration
1728 	 * target later becomes a source.
1729 	 */
1730 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1731 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1732 		distance >>= 2;
1733 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1734 
1735 	for (order = cc->order - 1;
1736 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1737 	     order--) {
1738 		struct free_area *area = &cc->zone->free_area[order];
1739 		struct list_head *freelist;
1740 		unsigned long flags;
1741 		struct page *freepage;
1742 
1743 		if (!area->nr_free)
1744 			continue;
1745 
1746 		spin_lock_irqsave(&cc->zone->lock, flags);
1747 		freelist = &area->free_list[MIGRATE_MOVABLE];
1748 		list_for_each_entry(freepage, freelist, lru) {
1749 			unsigned long free_pfn;
1750 
1751 			if (nr_scanned++ >= limit) {
1752 				move_freelist_tail(freelist, freepage);
1753 				break;
1754 			}
1755 
1756 			free_pfn = page_to_pfn(freepage);
1757 			if (free_pfn < high_pfn) {
1758 				/*
1759 				 * Avoid if skipped recently. Ideally it would
1760 				 * move to the tail but even safe iteration of
1761 				 * the list assumes an entry is deleted, not
1762 				 * reordered.
1763 				 */
1764 				if (get_pageblock_skip(freepage))
1765 					continue;
1766 
1767 				/* Reorder to so a future search skips recent pages */
1768 				move_freelist_tail(freelist, freepage);
1769 
1770 				update_fast_start_pfn(cc, free_pfn);
1771 				pfn = pageblock_start_pfn(free_pfn);
1772 				if (pfn < cc->zone->zone_start_pfn)
1773 					pfn = cc->zone->zone_start_pfn;
1774 				cc->fast_search_fail = 0;
1775 				found_block = true;
1776 				set_pageblock_skip(freepage);
1777 				break;
1778 			}
1779 		}
1780 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1781 	}
1782 
1783 	cc->total_migrate_scanned += nr_scanned;
1784 
1785 	/*
1786 	 * If fast scanning failed then use a cached entry for a page block
1787 	 * that had free pages as the basis for starting a linear scan.
1788 	 */
1789 	if (!found_block) {
1790 		cc->fast_search_fail++;
1791 		pfn = reinit_migrate_pfn(cc);
1792 	}
1793 	return pfn;
1794 }
1795 
1796 /*
1797  * Isolate all pages that can be migrated from the first suitable block,
1798  * starting at the block pointed to by the migrate scanner pfn within
1799  * compact_control.
1800  */
isolate_migratepages(struct compact_control * cc)1801 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1802 {
1803 	unsigned long block_start_pfn;
1804 	unsigned long block_end_pfn;
1805 	unsigned long low_pfn;
1806 	struct page *page;
1807 	const isolate_mode_t isolate_mode =
1808 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1809 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1810 	bool fast_find_block;
1811 
1812 	/*
1813 	 * Start at where we last stopped, or beginning of the zone as
1814 	 * initialized by compact_zone(). The first failure will use
1815 	 * the lowest PFN as the starting point for linear scanning.
1816 	 */
1817 	low_pfn = fast_find_migrateblock(cc);
1818 	block_start_pfn = pageblock_start_pfn(low_pfn);
1819 	if (block_start_pfn < cc->zone->zone_start_pfn)
1820 		block_start_pfn = cc->zone->zone_start_pfn;
1821 
1822 	/*
1823 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1824 	 * the isolation_suitable check below, check whether the fast
1825 	 * search was successful.
1826 	 */
1827 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1828 
1829 	/* Only scan within a pageblock boundary */
1830 	block_end_pfn = pageblock_end_pfn(low_pfn);
1831 
1832 	/*
1833 	 * Iterate over whole pageblocks until we find the first suitable.
1834 	 * Do not cross the free scanner.
1835 	 */
1836 	for (; block_end_pfn <= cc->free_pfn;
1837 			fast_find_block = false,
1838 			low_pfn = block_end_pfn,
1839 			block_start_pfn = block_end_pfn,
1840 			block_end_pfn += pageblock_nr_pages) {
1841 
1842 		/*
1843 		 * This can potentially iterate a massively long zone with
1844 		 * many pageblocks unsuitable, so periodically check if we
1845 		 * need to schedule.
1846 		 */
1847 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1848 			cond_resched();
1849 
1850 		page = pageblock_pfn_to_page(block_start_pfn,
1851 						block_end_pfn, cc->zone);
1852 		if (!page)
1853 			continue;
1854 
1855 		/*
1856 		 * If isolation recently failed, do not retry. Only check the
1857 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1858 		 * to be visited multiple times. Assume skip was checked
1859 		 * before making it "skip" so other compaction instances do
1860 		 * not scan the same block.
1861 		 */
1862 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1863 		    !fast_find_block && !isolation_suitable(cc, page))
1864 			continue;
1865 
1866 		/*
1867 		 * For async compaction, also only scan in MOVABLE blocks
1868 		 * without huge pages. Async compaction is optimistic to see
1869 		 * if the minimum amount of work satisfies the allocation.
1870 		 * The cached PFN is updated as it's possible that all
1871 		 * remaining blocks between source and target are unsuitable
1872 		 * and the compaction scanners fail to meet.
1873 		 */
1874 		if (!suitable_migration_source(cc, page)) {
1875 			update_cached_migrate(cc, block_end_pfn);
1876 			continue;
1877 		}
1878 
1879 		/* Perform the isolation */
1880 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1881 						block_end_pfn, isolate_mode);
1882 
1883 		if (!low_pfn)
1884 			return ISOLATE_ABORT;
1885 
1886 		/*
1887 		 * Either we isolated something and proceed with migration. Or
1888 		 * we failed and compact_zone should decide if we should
1889 		 * continue or not.
1890 		 */
1891 		break;
1892 	}
1893 
1894 	/* Record where migration scanner will be restarted. */
1895 	cc->migrate_pfn = low_pfn;
1896 
1897 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1898 }
1899 
1900 /*
1901  * order == -1 is expected when compacting via
1902  * /proc/sys/vm/compact_memory
1903  */
is_via_compact_memory(int order)1904 static inline bool is_via_compact_memory(int order)
1905 {
1906 	return order == -1;
1907 }
1908 
kswapd_is_running(pg_data_t * pgdat)1909 static bool kswapd_is_running(pg_data_t *pgdat)
1910 {
1911 	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1912 }
1913 
1914 /*
1915  * A zone's fragmentation score is the external fragmentation wrt to the
1916  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1917  */
fragmentation_score_zone(struct zone * zone)1918 static unsigned int fragmentation_score_zone(struct zone *zone)
1919 {
1920 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1921 }
1922 
1923 /*
1924  * A weighted zone's fragmentation score is the external fragmentation
1925  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1926  * returns a value in the range [0, 100].
1927  *
1928  * The scaling factor ensures that proactive compaction focuses on larger
1929  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1930  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1931  * and thus never exceeds the high threshold for proactive compaction.
1932  */
fragmentation_score_zone_weighted(struct zone * zone)1933 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1934 {
1935 	unsigned long score;
1936 
1937 	score = zone->present_pages * fragmentation_score_zone(zone);
1938 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1939 }
1940 
1941 /*
1942  * The per-node proactive (background) compaction process is started by its
1943  * corresponding kcompactd thread when the node's fragmentation score
1944  * exceeds the high threshold. The compaction process remains active till
1945  * the node's score falls below the low threshold, or one of the back-off
1946  * conditions is met.
1947  */
fragmentation_score_node(pg_data_t * pgdat)1948 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1949 {
1950 	unsigned int score = 0;
1951 	int zoneid;
1952 
1953 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1954 		struct zone *zone;
1955 
1956 		zone = &pgdat->node_zones[zoneid];
1957 		score += fragmentation_score_zone_weighted(zone);
1958 	}
1959 
1960 	return score;
1961 }
1962 
fragmentation_score_wmark(pg_data_t * pgdat,bool low)1963 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1964 {
1965 	unsigned int wmark_low;
1966 
1967 	/*
1968 	 * Cap the low watermak to avoid excessive compaction
1969 	 * activity in case a user sets the proactivess tunable
1970 	 * close to 100 (maximum).
1971 	 */
1972 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1973 	return low ? wmark_low : min(wmark_low + 10, 100U);
1974 }
1975 
should_proactive_compact_node(pg_data_t * pgdat)1976 static bool should_proactive_compact_node(pg_data_t *pgdat)
1977 {
1978 	int wmark_high;
1979 
1980 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1981 		return false;
1982 
1983 	wmark_high = fragmentation_score_wmark(pgdat, false);
1984 	return fragmentation_score_node(pgdat) > wmark_high;
1985 }
1986 
__compact_finished(struct compact_control * cc)1987 static enum compact_result __compact_finished(struct compact_control *cc)
1988 {
1989 	unsigned int order;
1990 	const int migratetype = cc->migratetype;
1991 	int ret;
1992 	bool abort_compact = false;
1993 
1994 	/* Compaction run completes if the migrate and free scanner meet */
1995 	if (compact_scanners_met(cc)) {
1996 		/* Let the next compaction start anew. */
1997 		reset_cached_positions(cc->zone);
1998 
1999 		/*
2000 		 * Mark that the PG_migrate_skip information should be cleared
2001 		 * by kswapd when it goes to sleep. kcompactd does not set the
2002 		 * flag itself as the decision to be clear should be directly
2003 		 * based on an allocation request.
2004 		 */
2005 		if (cc->direct_compaction)
2006 			cc->zone->compact_blockskip_flush = true;
2007 
2008 		if (cc->whole_zone)
2009 			return COMPACT_COMPLETE;
2010 		else
2011 			return COMPACT_PARTIAL_SKIPPED;
2012 	}
2013 
2014 	if (cc->proactive_compaction) {
2015 		int score, wmark_low;
2016 		pg_data_t *pgdat;
2017 
2018 		pgdat = cc->zone->zone_pgdat;
2019 		if (kswapd_is_running(pgdat))
2020 			return COMPACT_PARTIAL_SKIPPED;
2021 
2022 		score = fragmentation_score_zone(cc->zone);
2023 		wmark_low = fragmentation_score_wmark(pgdat, true);
2024 
2025 		if (score > wmark_low)
2026 			ret = COMPACT_CONTINUE;
2027 		else
2028 			ret = COMPACT_SUCCESS;
2029 
2030 		goto out;
2031 	}
2032 
2033 	if (is_via_compact_memory(cc->order))
2034 		return COMPACT_CONTINUE;
2035 
2036 	/*
2037 	 * Always finish scanning a pageblock to reduce the possibility of
2038 	 * fallbacks in the future. This is particularly important when
2039 	 * migration source is unmovable/reclaimable but it's not worth
2040 	 * special casing.
2041 	 */
2042 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2043 		return COMPACT_CONTINUE;
2044 
2045 	/* Direct compactor: Is a suitable page free? */
2046 	ret = COMPACT_NO_SUITABLE_PAGE;
2047 	for (order = cc->order; order < MAX_ORDER; order++) {
2048 		struct free_area *area = &cc->zone->free_area[order];
2049 		bool can_steal;
2050 
2051 		/* Job done if page is free of the right migratetype */
2052 		if (!free_area_empty(area, migratetype))
2053 			return COMPACT_SUCCESS;
2054 
2055 #ifdef CONFIG_CMA
2056 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2057 		if (migratetype == MIGRATE_MOVABLE &&
2058 			!free_area_empty(area, MIGRATE_CMA))
2059 			return COMPACT_SUCCESS;
2060 #endif
2061 		/*
2062 		 * Job done if allocation would steal freepages from
2063 		 * other migratetype buddy lists.
2064 		 */
2065 		if (find_suitable_fallback(area, order, migratetype,
2066 						true, &can_steal) != -1) {
2067 
2068 			/* movable pages are OK in any pageblock */
2069 			if (migratetype == MIGRATE_MOVABLE)
2070 				return COMPACT_SUCCESS;
2071 
2072 			/*
2073 			 * We are stealing for a non-movable allocation. Make
2074 			 * sure we finish compacting the current pageblock
2075 			 * first so it is as free as possible and we won't
2076 			 * have to steal another one soon. This only applies
2077 			 * to sync compaction, as async compaction operates
2078 			 * on pageblocks of the same migratetype.
2079 			 */
2080 			if (cc->mode == MIGRATE_ASYNC ||
2081 					IS_ALIGNED(cc->migrate_pfn,
2082 							pageblock_nr_pages)) {
2083 				return COMPACT_SUCCESS;
2084 			}
2085 
2086 			ret = COMPACT_CONTINUE;
2087 			break;
2088 		}
2089 	}
2090 
2091 out:
2092 	trace_android_vh_compact_finished(&abort_compact);
2093 	if (cc->contended || fatal_signal_pending(current) || abort_compact)
2094 		ret = COMPACT_CONTENDED;
2095 
2096 	return ret;
2097 }
2098 
compact_finished(struct compact_control * cc)2099 static enum compact_result compact_finished(struct compact_control *cc)
2100 {
2101 	int ret;
2102 
2103 	ret = __compact_finished(cc);
2104 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2105 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2106 		ret = COMPACT_CONTINUE;
2107 
2108 	return ret;
2109 }
2110 
2111 /*
2112  * compaction_suitable: Is this suitable to run compaction on this zone now?
2113  * Returns
2114  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2115  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2116  *   COMPACT_CONTINUE - If compaction should run now
2117  */
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx,unsigned long wmark_target)2118 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2119 					unsigned int alloc_flags,
2120 					int highest_zoneidx,
2121 					unsigned long wmark_target)
2122 {
2123 	unsigned long watermark;
2124 
2125 	if (is_via_compact_memory(order))
2126 		return COMPACT_CONTINUE;
2127 
2128 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2129 	/*
2130 	 * If watermarks for high-order allocation are already met, there
2131 	 * should be no need for compaction at all.
2132 	 */
2133 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2134 								alloc_flags))
2135 		return COMPACT_SUCCESS;
2136 
2137 	/*
2138 	 * Watermarks for order-0 must be met for compaction to be able to
2139 	 * isolate free pages for migration targets. This means that the
2140 	 * watermark and alloc_flags have to match, or be more pessimistic than
2141 	 * the check in __isolate_free_page(). We don't use the direct
2142 	 * compactor's alloc_flags, as they are not relevant for freepage
2143 	 * isolation. We however do use the direct compactor's highest_zoneidx
2144 	 * to skip over zones where lowmem reserves would prevent allocation
2145 	 * even if compaction succeeds.
2146 	 * For costly orders, we require low watermark instead of min for
2147 	 * compaction to proceed to increase its chances.
2148 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2149 	 * suitable migration targets
2150 	 */
2151 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2152 				low_wmark_pages(zone) : min_wmark_pages(zone);
2153 	watermark += compact_gap(order);
2154 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2155 						ALLOC_CMA, wmark_target))
2156 		return COMPACT_SKIPPED;
2157 
2158 	return COMPACT_CONTINUE;
2159 }
2160 
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx)2161 enum compact_result compaction_suitable(struct zone *zone, int order,
2162 					unsigned int alloc_flags,
2163 					int highest_zoneidx)
2164 {
2165 	enum compact_result ret;
2166 	int fragindex;
2167 
2168 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2169 				    zone_page_state(zone, NR_FREE_PAGES));
2170 	/*
2171 	 * fragmentation index determines if allocation failures are due to
2172 	 * low memory or external fragmentation
2173 	 *
2174 	 * index of -1000 would imply allocations might succeed depending on
2175 	 * watermarks, but we already failed the high-order watermark check
2176 	 * index towards 0 implies failure is due to lack of memory
2177 	 * index towards 1000 implies failure is due to fragmentation
2178 	 *
2179 	 * Only compact if a failure would be due to fragmentation. Also
2180 	 * ignore fragindex for non-costly orders where the alternative to
2181 	 * a successful reclaim/compaction is OOM. Fragindex and the
2182 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2183 	 * excessive compaction for costly orders, but it should not be at the
2184 	 * expense of system stability.
2185 	 */
2186 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2187 		fragindex = fragmentation_index(zone, order);
2188 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2189 			ret = COMPACT_NOT_SUITABLE_ZONE;
2190 	}
2191 
2192 	trace_mm_compaction_suitable(zone, order, ret);
2193 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2194 		ret = COMPACT_SKIPPED;
2195 
2196 	return ret;
2197 }
2198 
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2199 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2200 		int alloc_flags)
2201 {
2202 	struct zone *zone;
2203 	struct zoneref *z;
2204 
2205 	/*
2206 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2207 	 * retrying the reclaim.
2208 	 */
2209 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2210 				ac->highest_zoneidx, ac->nodemask) {
2211 		unsigned long available;
2212 		enum compact_result compact_result;
2213 
2214 		/*
2215 		 * Do not consider all the reclaimable memory because we do not
2216 		 * want to trash just for a single high order allocation which
2217 		 * is even not guaranteed to appear even if __compaction_suitable
2218 		 * is happy about the watermark check.
2219 		 */
2220 		available = zone_reclaimable_pages(zone) / order;
2221 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2222 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2223 				ac->highest_zoneidx, available);
2224 		if (compact_result != COMPACT_SKIPPED)
2225 			return true;
2226 	}
2227 
2228 	return false;
2229 }
2230 
2231 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2232 compact_zone(struct compact_control *cc, struct capture_control *capc)
2233 {
2234 	enum compact_result ret;
2235 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2236 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2237 	unsigned long last_migrated_pfn;
2238 	const bool sync = cc->mode != MIGRATE_ASYNC;
2239 	bool update_cached;
2240 
2241 	/*
2242 	 * These counters track activities during zone compaction.  Initialize
2243 	 * them before compacting a new zone.
2244 	 */
2245 	cc->total_migrate_scanned = 0;
2246 	cc->total_free_scanned = 0;
2247 	cc->nr_migratepages = 0;
2248 	cc->nr_freepages = 0;
2249 	INIT_LIST_HEAD(&cc->freepages);
2250 	INIT_LIST_HEAD(&cc->migratepages);
2251 
2252 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2253 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2254 							cc->highest_zoneidx);
2255 	/* Compaction is likely to fail */
2256 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2257 		return ret;
2258 
2259 	/* huh, compaction_suitable is returning something unexpected */
2260 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2261 
2262 	/*
2263 	 * Clear pageblock skip if there were failures recently and compaction
2264 	 * is about to be retried after being deferred.
2265 	 */
2266 	if (compaction_restarting(cc->zone, cc->order))
2267 		__reset_isolation_suitable(cc->zone);
2268 
2269 	/*
2270 	 * Setup to move all movable pages to the end of the zone. Used cached
2271 	 * information on where the scanners should start (unless we explicitly
2272 	 * want to compact the whole zone), but check that it is initialised
2273 	 * by ensuring the values are within zone boundaries.
2274 	 */
2275 	cc->fast_start_pfn = 0;
2276 	if (cc->whole_zone) {
2277 		cc->migrate_pfn = start_pfn;
2278 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2279 	} else {
2280 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2281 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2282 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2283 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2284 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2285 		}
2286 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2287 			cc->migrate_pfn = start_pfn;
2288 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2289 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2290 		}
2291 
2292 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2293 			cc->whole_zone = true;
2294 	}
2295 
2296 	last_migrated_pfn = 0;
2297 
2298 	/*
2299 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2300 	 * the basis that some migrations will fail in ASYNC mode. However,
2301 	 * if the cached PFNs match and pageblocks are skipped due to having
2302 	 * no isolation candidates, then the sync state does not matter.
2303 	 * Until a pageblock with isolation candidates is found, keep the
2304 	 * cached PFNs in sync to avoid revisiting the same blocks.
2305 	 */
2306 	update_cached = !sync &&
2307 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2308 
2309 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2310 				cc->free_pfn, end_pfn, sync);
2311 
2312 	/* lru_add_drain_all could be expensive with involving other CPUs */
2313 	lru_add_drain();
2314 
2315 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2316 		int err;
2317 		unsigned long start_pfn = cc->migrate_pfn;
2318 
2319 		/*
2320 		 * Avoid multiple rescans which can happen if a page cannot be
2321 		 * isolated (dirty/writeback in async mode) or if the migrated
2322 		 * pages are being allocated before the pageblock is cleared.
2323 		 * The first rescan will capture the entire pageblock for
2324 		 * migration. If it fails, it'll be marked skip and scanning
2325 		 * will proceed as normal.
2326 		 */
2327 		cc->rescan = false;
2328 		if (pageblock_start_pfn(last_migrated_pfn) ==
2329 		    pageblock_start_pfn(start_pfn)) {
2330 			cc->rescan = true;
2331 		}
2332 
2333 		switch (isolate_migratepages(cc)) {
2334 		case ISOLATE_ABORT:
2335 			ret = COMPACT_CONTENDED;
2336 			putback_movable_pages(&cc->migratepages);
2337 			cc->nr_migratepages = 0;
2338 			goto out;
2339 		case ISOLATE_NONE:
2340 			if (update_cached) {
2341 				cc->zone->compact_cached_migrate_pfn[1] =
2342 					cc->zone->compact_cached_migrate_pfn[0];
2343 			}
2344 
2345 			/*
2346 			 * We haven't isolated and migrated anything, but
2347 			 * there might still be unflushed migrations from
2348 			 * previous cc->order aligned block.
2349 			 */
2350 			goto check_drain;
2351 		case ISOLATE_SUCCESS:
2352 			update_cached = false;
2353 			last_migrated_pfn = start_pfn;
2354 			;
2355 		}
2356 
2357 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2358 				compaction_free, (unsigned long)cc, cc->mode,
2359 				MR_COMPACTION);
2360 
2361 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2362 							&cc->migratepages);
2363 
2364 		/* All pages were either migrated or will be released */
2365 		cc->nr_migratepages = 0;
2366 		if (err) {
2367 			putback_movable_pages(&cc->migratepages);
2368 			/*
2369 			 * migrate_pages() may return -ENOMEM when scanners meet
2370 			 * and we want compact_finished() to detect it
2371 			 */
2372 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2373 				ret = COMPACT_CONTENDED;
2374 				goto out;
2375 			}
2376 			/*
2377 			 * We failed to migrate at least one page in the current
2378 			 * order-aligned block, so skip the rest of it.
2379 			 */
2380 			if (cc->direct_compaction &&
2381 						(cc->mode == MIGRATE_ASYNC)) {
2382 				cc->migrate_pfn = block_end_pfn(
2383 						cc->migrate_pfn - 1, cc->order);
2384 				/* Draining pcplists is useless in this case */
2385 				last_migrated_pfn = 0;
2386 			}
2387 		}
2388 
2389 check_drain:
2390 		/*
2391 		 * Has the migration scanner moved away from the previous
2392 		 * cc->order aligned block where we migrated from? If yes,
2393 		 * flush the pages that were freed, so that they can merge and
2394 		 * compact_finished() can detect immediately if allocation
2395 		 * would succeed.
2396 		 */
2397 		if (cc->order > 0 && last_migrated_pfn) {
2398 			unsigned long current_block_start =
2399 				block_start_pfn(cc->migrate_pfn, cc->order);
2400 
2401 			if (last_migrated_pfn < current_block_start) {
2402 				lru_add_drain_cpu_zone(cc->zone);
2403 				/* No more flushing until we migrate again */
2404 				last_migrated_pfn = 0;
2405 			}
2406 		}
2407 
2408 		/* Stop if a page has been captured */
2409 		if (capc && capc->page) {
2410 			ret = COMPACT_SUCCESS;
2411 			break;
2412 		}
2413 	}
2414 
2415 out:
2416 	/*
2417 	 * Release free pages and update where the free scanner should restart,
2418 	 * so we don't leave any returned pages behind in the next attempt.
2419 	 */
2420 	if (cc->nr_freepages > 0) {
2421 		unsigned long free_pfn = release_freepages(&cc->freepages);
2422 
2423 		cc->nr_freepages = 0;
2424 		VM_BUG_ON(free_pfn == 0);
2425 		/* The cached pfn is always the first in a pageblock */
2426 		free_pfn = pageblock_start_pfn(free_pfn);
2427 		/*
2428 		 * Only go back, not forward. The cached pfn might have been
2429 		 * already reset to zone end in compact_finished()
2430 		 */
2431 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2432 			cc->zone->compact_cached_free_pfn = free_pfn;
2433 	}
2434 
2435 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2436 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2437 
2438 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2439 				cc->free_pfn, end_pfn, sync, ret);
2440 
2441 	return ret;
2442 }
2443 
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int highest_zoneidx,struct page ** capture)2444 static enum compact_result compact_zone_order(struct zone *zone, int order,
2445 		gfp_t gfp_mask, enum compact_priority prio,
2446 		unsigned int alloc_flags, int highest_zoneidx,
2447 		struct page **capture)
2448 {
2449 	enum compact_result ret;
2450 	struct compact_control cc = {
2451 		.order = order,
2452 		.search_order = order,
2453 		.gfp_mask = gfp_mask,
2454 		.zone = zone,
2455 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2456 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2457 		.alloc_flags = alloc_flags,
2458 		.highest_zoneidx = highest_zoneidx,
2459 		.direct_compaction = true,
2460 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2461 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2462 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2463 	};
2464 	struct capture_control capc = {
2465 		.cc = &cc,
2466 		.page = NULL,
2467 	};
2468 
2469 	/*
2470 	 * Make sure the structs are really initialized before we expose the
2471 	 * capture control, in case we are interrupted and the interrupt handler
2472 	 * frees a page.
2473 	 */
2474 	barrier();
2475 	WRITE_ONCE(current->capture_control, &capc);
2476 
2477 	ret = compact_zone(&cc, &capc);
2478 
2479 	VM_BUG_ON(!list_empty(&cc.freepages));
2480 	VM_BUG_ON(!list_empty(&cc.migratepages));
2481 
2482 	/*
2483 	 * Make sure we hide capture control first before we read the captured
2484 	 * page pointer, otherwise an interrupt could free and capture a page
2485 	 * and we would leak it.
2486 	 */
2487 	WRITE_ONCE(current->capture_control, NULL);
2488 	*capture = READ_ONCE(capc.page);
2489 
2490 	return ret;
2491 }
2492 
2493 int sysctl_extfrag_threshold = 500;
2494 
2495 /**
2496  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2497  * @gfp_mask: The GFP mask of the current allocation
2498  * @order: The order of the current allocation
2499  * @alloc_flags: The allocation flags of the current allocation
2500  * @ac: The context of current allocation
2501  * @prio: Determines how hard direct compaction should try to succeed
2502  * @capture: Pointer to free page created by compaction will be stored here
2503  *
2504  * This is the main entry point for direct page compaction.
2505  */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2506 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2507 		unsigned int alloc_flags, const struct alloc_context *ac,
2508 		enum compact_priority prio, struct page **capture)
2509 {
2510 	int may_perform_io = gfp_mask & __GFP_IO;
2511 	struct zoneref *z;
2512 	struct zone *zone;
2513 	enum compact_result rc = COMPACT_SKIPPED;
2514 
2515 	/*
2516 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2517 	 * tricky context because the migration might require IO
2518 	 */
2519 	if (!may_perform_io)
2520 		return COMPACT_SKIPPED;
2521 
2522 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2523 
2524 	/* Compact each zone in the list */
2525 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2526 					ac->highest_zoneidx, ac->nodemask) {
2527 		enum compact_result status;
2528 
2529 		if (prio > MIN_COMPACT_PRIORITY
2530 					&& compaction_deferred(zone, order)) {
2531 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2532 			continue;
2533 		}
2534 
2535 		status = compact_zone_order(zone, order, gfp_mask, prio,
2536 				alloc_flags, ac->highest_zoneidx, capture);
2537 		rc = max(status, rc);
2538 
2539 		/* The allocation should succeed, stop compacting */
2540 		if (status == COMPACT_SUCCESS) {
2541 			/*
2542 			 * We think the allocation will succeed in this zone,
2543 			 * but it is not certain, hence the false. The caller
2544 			 * will repeat this with true if allocation indeed
2545 			 * succeeds in this zone.
2546 			 */
2547 			compaction_defer_reset(zone, order, false);
2548 
2549 			break;
2550 		}
2551 
2552 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2553 					status == COMPACT_PARTIAL_SKIPPED))
2554 			/*
2555 			 * We think that allocation won't succeed in this zone
2556 			 * so we defer compaction there. If it ends up
2557 			 * succeeding after all, it will be reset.
2558 			 */
2559 			defer_compaction(zone, order);
2560 
2561 		/*
2562 		 * We might have stopped compacting due to need_resched() in
2563 		 * async compaction, or due to a fatal signal detected. In that
2564 		 * case do not try further zones
2565 		 */
2566 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2567 					|| fatal_signal_pending(current))
2568 			break;
2569 	}
2570 
2571 	return rc;
2572 }
2573 
2574 /*
2575  * Compact all zones within a node till each zone's fragmentation score
2576  * reaches within proactive compaction thresholds (as determined by the
2577  * proactiveness tunable).
2578  *
2579  * It is possible that the function returns before reaching score targets
2580  * due to various back-off conditions, such as, contention on per-node or
2581  * per-zone locks.
2582  */
proactive_compact_node(pg_data_t * pgdat)2583 static void proactive_compact_node(pg_data_t *pgdat)
2584 {
2585 	int zoneid;
2586 	struct zone *zone;
2587 	struct compact_control cc = {
2588 		.order = -1,
2589 		.mode = MIGRATE_SYNC_LIGHT,
2590 		.ignore_skip_hint = true,
2591 		.whole_zone = true,
2592 		.gfp_mask = GFP_KERNEL,
2593 		.proactive_compaction = true,
2594 	};
2595 
2596 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2597 		zone = &pgdat->node_zones[zoneid];
2598 		if (!populated_zone(zone))
2599 			continue;
2600 
2601 		cc.zone = zone;
2602 
2603 		compact_zone(&cc, NULL);
2604 
2605 		VM_BUG_ON(!list_empty(&cc.freepages));
2606 		VM_BUG_ON(!list_empty(&cc.migratepages));
2607 	}
2608 }
2609 
2610 /* Compact all zones within a node */
compact_node(int nid)2611 static void compact_node(int nid)
2612 {
2613 	pg_data_t *pgdat = NODE_DATA(nid);
2614 	int zoneid;
2615 	struct zone *zone;
2616 	struct compact_control cc = {
2617 		.order = -1,
2618 		.mode = MIGRATE_SYNC,
2619 		.ignore_skip_hint = true,
2620 		.whole_zone = true,
2621 		.gfp_mask = GFP_KERNEL,
2622 	};
2623 
2624 
2625 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2626 
2627 		zone = &pgdat->node_zones[zoneid];
2628 		if (!populated_zone(zone))
2629 			continue;
2630 
2631 		cc.zone = zone;
2632 
2633 		compact_zone(&cc, NULL);
2634 
2635 		VM_BUG_ON(!list_empty(&cc.freepages));
2636 		VM_BUG_ON(!list_empty(&cc.migratepages));
2637 	}
2638 }
2639 
2640 /* Compact all nodes in the system */
compact_nodes(void)2641 static void compact_nodes(void)
2642 {
2643 	int nid;
2644 
2645 	/* Flush pending updates to the LRU lists */
2646 	lru_add_drain_all();
2647 
2648 	for_each_online_node(nid)
2649 		compact_node(nid);
2650 }
2651 
2652 /* The written value is actually unused, all memory is compacted */
2653 int sysctl_compact_memory;
2654 
2655 /*
2656  * Tunable for proactive compaction. It determines how
2657  * aggressively the kernel should compact memory in the
2658  * background. It takes values in the range [0, 100].
2659  */
2660 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2661 
compaction_proactiveness_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2662 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2663 		void *buffer, size_t *length, loff_t *ppos)
2664 {
2665 	int rc, nid;
2666 
2667 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2668 	if (rc)
2669 		return rc;
2670 
2671 	if (write && sysctl_compaction_proactiveness) {
2672 		for_each_online_node(nid) {
2673 			pg_data_t *pgdat = NODE_DATA(nid);
2674 
2675 			if (pgdat->proactive_compact_trigger)
2676 				continue;
2677 
2678 			pgdat->proactive_compact_trigger = true;
2679 			wake_up_interruptible(&pgdat->kcompactd_wait);
2680 		}
2681 	}
2682 
2683 	return 0;
2684 }
2685 
2686 /*
2687  * This is the entry point for compacting all nodes via
2688  * /proc/sys/vm/compact_memory
2689  */
sysctl_compaction_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2690 int sysctl_compaction_handler(struct ctl_table *table, int write,
2691 			void *buffer, size_t *length, loff_t *ppos)
2692 {
2693 	if (write)
2694 		compact_nodes();
2695 
2696 	return 0;
2697 }
2698 
2699 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2700 static ssize_t sysfs_compact_node(struct device *dev,
2701 			struct device_attribute *attr,
2702 			const char *buf, size_t count)
2703 {
2704 	int nid = dev->id;
2705 
2706 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2707 		/* Flush pending updates to the LRU lists */
2708 		lru_add_drain_all();
2709 
2710 		compact_node(nid);
2711 	}
2712 
2713 	return count;
2714 }
2715 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2716 
compaction_register_node(struct node * node)2717 int compaction_register_node(struct node *node)
2718 {
2719 	return device_create_file(&node->dev, &dev_attr_compact);
2720 }
2721 
compaction_unregister_node(struct node * node)2722 void compaction_unregister_node(struct node *node)
2723 {
2724 	return device_remove_file(&node->dev, &dev_attr_compact);
2725 }
2726 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2727 
kcompactd_work_requested(pg_data_t * pgdat)2728 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2729 {
2730 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2731 		pgdat->proactive_compact_trigger;
2732 }
2733 
kcompactd_node_suitable(pg_data_t * pgdat)2734 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2735 {
2736 	int zoneid;
2737 	struct zone *zone;
2738 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2739 
2740 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2741 		zone = &pgdat->node_zones[zoneid];
2742 
2743 		if (!populated_zone(zone))
2744 			continue;
2745 
2746 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2747 					highest_zoneidx) == COMPACT_CONTINUE)
2748 			return true;
2749 	}
2750 
2751 	return false;
2752 }
2753 
kcompactd_do_work(pg_data_t * pgdat)2754 static void kcompactd_do_work(pg_data_t *pgdat)
2755 {
2756 	/*
2757 	 * With no special task, compact all zones so that a page of requested
2758 	 * order is allocatable.
2759 	 */
2760 	int zoneid;
2761 	struct zone *zone;
2762 	struct compact_control cc = {
2763 		.order = pgdat->kcompactd_max_order,
2764 		.search_order = pgdat->kcompactd_max_order,
2765 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2766 		.mode = MIGRATE_SYNC_LIGHT,
2767 		.ignore_skip_hint = false,
2768 		.gfp_mask = GFP_KERNEL,
2769 	};
2770 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2771 							cc.highest_zoneidx);
2772 	count_compact_event(KCOMPACTD_WAKE);
2773 
2774 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2775 		int status;
2776 
2777 		zone = &pgdat->node_zones[zoneid];
2778 		if (!populated_zone(zone))
2779 			continue;
2780 
2781 		if (compaction_deferred(zone, cc.order))
2782 			continue;
2783 
2784 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2785 							COMPACT_CONTINUE)
2786 			continue;
2787 
2788 		if (kthread_should_stop())
2789 			return;
2790 
2791 		cc.zone = zone;
2792 		status = compact_zone(&cc, NULL);
2793 
2794 		if (status == COMPACT_SUCCESS) {
2795 			compaction_defer_reset(zone, cc.order, false);
2796 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2797 			/*
2798 			 * Buddy pages may become stranded on pcps that could
2799 			 * otherwise coalesce on the zone's free area for
2800 			 * order >= cc.order.  This is ratelimited by the
2801 			 * upcoming deferral.
2802 			 */
2803 			drain_all_pages(zone);
2804 
2805 			/*
2806 			 * We use sync migration mode here, so we defer like
2807 			 * sync direct compaction does.
2808 			 */
2809 			defer_compaction(zone, cc.order);
2810 		}
2811 
2812 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2813 				     cc.total_migrate_scanned);
2814 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2815 				     cc.total_free_scanned);
2816 
2817 		VM_BUG_ON(!list_empty(&cc.freepages));
2818 		VM_BUG_ON(!list_empty(&cc.migratepages));
2819 	}
2820 
2821 	/*
2822 	 * Regardless of success, we are done until woken up next. But remember
2823 	 * the requested order/highest_zoneidx in case it was higher/tighter
2824 	 * than our current ones
2825 	 */
2826 	if (pgdat->kcompactd_max_order <= cc.order)
2827 		pgdat->kcompactd_max_order = 0;
2828 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2829 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2830 }
2831 
wakeup_kcompactd(pg_data_t * pgdat,int order,int highest_zoneidx)2832 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2833 {
2834 	if (!order)
2835 		return;
2836 
2837 	if (pgdat->kcompactd_max_order < order)
2838 		pgdat->kcompactd_max_order = order;
2839 
2840 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2841 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2842 
2843 	/*
2844 	 * Pairs with implicit barrier in wait_event_freezable()
2845 	 * such that wakeups are not missed.
2846 	 */
2847 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2848 		return;
2849 
2850 	if (!kcompactd_node_suitable(pgdat))
2851 		return;
2852 
2853 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2854 							highest_zoneidx);
2855 	wake_up_interruptible(&pgdat->kcompactd_wait);
2856 }
2857 
2858 /*
2859  * The background compaction daemon, started as a kernel thread
2860  * from the init process.
2861  */
kcompactd(void * p)2862 static int kcompactd(void *p)
2863 {
2864 	pg_data_t *pgdat = (pg_data_t*)p;
2865 	struct task_struct *tsk = current;
2866 	unsigned int proactive_defer = 0;
2867 
2868 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2869 
2870 	if (!cpumask_empty(cpumask))
2871 		set_cpus_allowed_ptr(tsk, cpumask);
2872 
2873 	set_freezable();
2874 
2875 	pgdat->kcompactd_max_order = 0;
2876 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2877 
2878 	while (!kthread_should_stop()) {
2879 		unsigned long pflags;
2880 		long timeout;
2881 
2882 		timeout = sysctl_compaction_proactiveness ?
2883 			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC) :
2884 			MAX_SCHEDULE_TIMEOUT;
2885 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2886 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2887 			kcompactd_work_requested(pgdat), timeout) &&
2888 			!pgdat->proactive_compact_trigger) {
2889 
2890 			psi_memstall_enter(&pflags);
2891 			kcompactd_do_work(pgdat);
2892 			psi_memstall_leave(&pflags);
2893 			continue;
2894 		}
2895 
2896 		/* kcompactd wait timeout */
2897 		if (should_proactive_compact_node(pgdat)) {
2898 			unsigned int prev_score, score;
2899 
2900 			/*
2901 			 * On wakeup of proactive compaction by sysctl
2902 			 * write, ignore the accumulated defer score.
2903 			 * Anyway, if the proactive compaction didn't
2904 			 * make any progress for the new value, it will
2905 			 * be further deferred by 2^COMPACT_MAX_DEFER_SHIFT
2906 			 * times.
2907 			 */
2908 			if (proactive_defer &&
2909 				!pgdat->proactive_compact_trigger) {
2910 				proactive_defer--;
2911 				continue;
2912 			}
2913 
2914 			prev_score = fragmentation_score_node(pgdat);
2915 			proactive_compact_node(pgdat);
2916 			score = fragmentation_score_node(pgdat);
2917 			/*
2918 			 * Defer proactive compaction if the fragmentation
2919 			 * score did not go down i.e. no progress made.
2920 			 */
2921 			proactive_defer = score < prev_score ?
2922 					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2923 		}
2924 		if (pgdat->proactive_compact_trigger)
2925 			pgdat->proactive_compact_trigger = false;
2926 	}
2927 
2928 	return 0;
2929 }
2930 
2931 /*
2932  * This kcompactd start function will be called by init and node-hot-add.
2933  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2934  */
kcompactd_run(int nid)2935 int kcompactd_run(int nid)
2936 {
2937 	pg_data_t *pgdat = NODE_DATA(nid);
2938 	int ret = 0;
2939 
2940 	if (pgdat->kcompactd)
2941 		return 0;
2942 
2943 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2944 	if (IS_ERR(pgdat->kcompactd)) {
2945 		pr_err("Failed to start kcompactd on node %d\n", nid);
2946 		ret = PTR_ERR(pgdat->kcompactd);
2947 		pgdat->kcompactd = NULL;
2948 	}
2949 	return ret;
2950 }
2951 
2952 /*
2953  * Called by memory hotplug when all memory in a node is offlined. Caller must
2954  * hold mem_hotplug_begin/end().
2955  */
kcompactd_stop(int nid)2956 void kcompactd_stop(int nid)
2957 {
2958 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2959 
2960 	if (kcompactd) {
2961 		kthread_stop(kcompactd);
2962 		NODE_DATA(nid)->kcompactd = NULL;
2963 	}
2964 }
2965 
2966 /*
2967  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2968  * not required for correctness. So if the last cpu in a node goes
2969  * away, we get changed to run anywhere: as the first one comes back,
2970  * restore their cpu bindings.
2971  */
kcompactd_cpu_online(unsigned int cpu)2972 static int kcompactd_cpu_online(unsigned int cpu)
2973 {
2974 	int nid;
2975 
2976 	for_each_node_state(nid, N_MEMORY) {
2977 		pg_data_t *pgdat = NODE_DATA(nid);
2978 		const struct cpumask *mask;
2979 
2980 		mask = cpumask_of_node(pgdat->node_id);
2981 
2982 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2983 			/* One of our CPUs online: restore mask */
2984 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2985 	}
2986 	return 0;
2987 }
2988 
kcompactd_init(void)2989 static int __init kcompactd_init(void)
2990 {
2991 	int nid;
2992 	int ret;
2993 
2994 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2995 					"mm/compaction:online",
2996 					kcompactd_cpu_online, NULL);
2997 	if (ret < 0) {
2998 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2999 		return ret;
3000 	}
3001 
3002 	for_each_node_state(nid, N_MEMORY)
3003 		kcompactd_run(nid);
3004 	return 0;
3005 }
3006 subsys_initcall(kcompactd_init)
3007 
3008 #endif /* CONFIG_COMPACTION */
3009