• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/uio.h>
22 #include <linux/ksm.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/pagewalk.h>
28 #include <linux/swap.h>
29 #include <linux/swapops.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/mmu_notifier.h>
32 #include <trace/hooks/mm.h>
33 
34 #include <asm/tlb.h>
35 
36 #include "internal.h"
37 
38 struct madvise_walk_private {
39 	struct mmu_gather *tlb;
40 	bool pageout;
41 	bool can_pageout_file;
42 };
43 
44 /*
45  * Any behaviour which results in changes to the vma->vm_flags needs to
46  * take mmap_lock for writing. Others, which simply traverse vmas, need
47  * to only take it for reading.
48  */
madvise_need_mmap_write(int behavior)49 static int madvise_need_mmap_write(int behavior)
50 {
51 	switch (behavior) {
52 	case MADV_REMOVE:
53 	case MADV_WILLNEED:
54 	case MADV_DONTNEED:
55 	case MADV_COLD:
56 	case MADV_PAGEOUT:
57 	case MADV_FREE:
58 		return 0;
59 	default:
60 		/* be safe, default to 1. list exceptions explicitly */
61 		return 1;
62 	}
63 }
64 
65 /*
66  * We can potentially split a vm area into separate
67  * areas, each area with its own behavior.
68  */
madvise_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)69 static long madvise_behavior(struct vm_area_struct *vma,
70 		     struct vm_area_struct **prev,
71 		     unsigned long start, unsigned long end, int behavior)
72 {
73 	struct mm_struct *mm = vma->vm_mm;
74 	int error = 0;
75 	pgoff_t pgoff;
76 	unsigned long new_flags = vma->vm_flags;
77 
78 	switch (behavior) {
79 	case MADV_NORMAL:
80 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
81 		break;
82 	case MADV_SEQUENTIAL:
83 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
84 		break;
85 	case MADV_RANDOM:
86 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
87 		break;
88 	case MADV_DONTFORK:
89 		new_flags |= VM_DONTCOPY;
90 		break;
91 	case MADV_DOFORK:
92 		if (vma->vm_flags & VM_IO) {
93 			error = -EINVAL;
94 			goto out;
95 		}
96 		new_flags &= ~VM_DONTCOPY;
97 		break;
98 	case MADV_WIPEONFORK:
99 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
100 		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
101 			error = -EINVAL;
102 			goto out;
103 		}
104 		new_flags |= VM_WIPEONFORK;
105 		break;
106 	case MADV_KEEPONFORK:
107 		new_flags &= ~VM_WIPEONFORK;
108 		break;
109 	case MADV_DONTDUMP:
110 		new_flags |= VM_DONTDUMP;
111 		break;
112 	case MADV_DODUMP:
113 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
114 			error = -EINVAL;
115 			goto out;
116 		}
117 		new_flags &= ~VM_DONTDUMP;
118 		break;
119 	case MADV_MERGEABLE:
120 	case MADV_UNMERGEABLE:
121 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
122 		if (error)
123 			goto out_convert_errno;
124 		break;
125 	case MADV_HUGEPAGE:
126 	case MADV_NOHUGEPAGE:
127 		error = hugepage_madvise(vma, &new_flags, behavior);
128 		if (error)
129 			goto out_convert_errno;
130 		break;
131 	}
132 
133 	if (new_flags == vma->vm_flags) {
134 		*prev = vma;
135 		goto out;
136 	}
137 
138 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
139 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
140 			  vma->vm_file, pgoff, vma_policy(vma),
141 			  vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
142 	if (*prev) {
143 		vma = *prev;
144 		goto success;
145 	}
146 
147 	*prev = vma;
148 
149 	if (start != vma->vm_start) {
150 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
151 			error = -ENOMEM;
152 			goto out;
153 		}
154 		error = __split_vma(mm, vma, start, 1);
155 		if (error)
156 			goto out_convert_errno;
157 	}
158 
159 	if (end != vma->vm_end) {
160 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
161 			error = -ENOMEM;
162 			goto out;
163 		}
164 		error = __split_vma(mm, vma, end, 0);
165 		if (error)
166 			goto out_convert_errno;
167 	}
168 
169 success:
170 	/*
171 	 * vm_flags is protected by the mmap_lock held in write mode.
172 	 */
173 	vm_write_begin(vma);
174 	WRITE_ONCE(vma->vm_flags, new_flags);
175 	vm_write_end(vma);
176 
177 out_convert_errno:
178 	/*
179 	 * madvise() returns EAGAIN if kernel resources, such as
180 	 * slab, are temporarily unavailable.
181 	 */
182 	if (error == -ENOMEM)
183 		error = -EAGAIN;
184 out:
185 	return error;
186 }
187 
188 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)189 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
190 	unsigned long end, struct mm_walk *walk)
191 {
192 	pte_t *orig_pte;
193 	struct vm_area_struct *vma = walk->private;
194 	unsigned long index;
195 
196 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
197 		return 0;
198 
199 	for (index = start; index != end; index += PAGE_SIZE) {
200 		pte_t pte;
201 		swp_entry_t entry;
202 		struct page *page;
203 		spinlock_t *ptl;
204 
205 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
206 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
207 		pte_unmap_unlock(orig_pte, ptl);
208 
209 		if (pte_present(pte) || pte_none(pte))
210 			continue;
211 		entry = pte_to_swp_entry(pte);
212 		if (unlikely(non_swap_entry(entry)))
213 			continue;
214 
215 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
216 							vma, index, false);
217 		if (page)
218 			put_page(page);
219 	}
220 
221 	return 0;
222 }
223 
224 static const struct mm_walk_ops swapin_walk_ops = {
225 	.pmd_entry		= swapin_walk_pmd_entry,
226 };
227 
force_shm_swapin_readahead(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)228 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
229 		unsigned long start, unsigned long end,
230 		struct address_space *mapping)
231 {
232 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
233 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
234 	struct page *page;
235 
236 	rcu_read_lock();
237 	xas_for_each(&xas, page, end_index) {
238 		swp_entry_t swap;
239 
240 		if (!xa_is_value(page))
241 			continue;
242 		xas_pause(&xas);
243 		rcu_read_unlock();
244 
245 		swap = radix_to_swp_entry(page);
246 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
247 							NULL, 0, false);
248 		if (page)
249 			put_page(page);
250 
251 		rcu_read_lock();
252 	}
253 	rcu_read_unlock();
254 
255 	lru_add_drain();	/* Push any new pages onto the LRU now */
256 }
257 #endif		/* CONFIG_SWAP */
258 
259 /*
260  * Schedule all required I/O operations.  Do not wait for completion.
261  */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)262 static long madvise_willneed(struct vm_area_struct *vma,
263 			     struct vm_area_struct **prev,
264 			     unsigned long start, unsigned long end)
265 {
266 	struct mm_struct *mm = vma->vm_mm;
267 	struct file *file = vma->vm_file;
268 	loff_t offset;
269 
270 	*prev = vma;
271 #ifdef CONFIG_SWAP
272 	if (!file) {
273 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
274 		lru_add_drain(); /* Push any new pages onto the LRU now */
275 		return 0;
276 	}
277 
278 	if (shmem_mapping(file->f_mapping)) {
279 		force_shm_swapin_readahead(vma, start, end,
280 					file->f_mapping);
281 		return 0;
282 	}
283 #else
284 	if (!file)
285 		return -EBADF;
286 #endif
287 
288 	if (IS_DAX(file_inode(file))) {
289 		/* no bad return value, but ignore advice */
290 		return 0;
291 	}
292 
293 	/*
294 	 * Filesystem's fadvise may need to take various locks.  We need to
295 	 * explicitly grab a reference because the vma (and hence the
296 	 * vma's reference to the file) can go away as soon as we drop
297 	 * mmap_lock.
298 	 */
299 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
300 	get_file(file);
301 	offset = (loff_t)(start - vma->vm_start)
302 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
303 	mmap_read_unlock(mm);
304 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
305 	fput(file);
306 	mmap_read_lock(mm);
307 	return 0;
308 }
309 
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)310 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
311 				unsigned long addr, unsigned long end,
312 				struct mm_walk *walk)
313 {
314 	struct madvise_walk_private *private = walk->private;
315 	struct mmu_gather *tlb = private->tlb;
316 	bool pageout = private->pageout;
317 	bool pageout_anon_only = pageout && !private->can_pageout_file;
318 	struct mm_struct *mm = tlb->mm;
319 	struct vm_area_struct *vma = walk->vma;
320 	pte_t *orig_pte, *pte, ptent;
321 	spinlock_t *ptl;
322 	struct page *page = NULL;
323 	LIST_HEAD(page_list);
324 	bool allow_shared = false;
325 	bool abort_madvise = false;
326 	bool skip = false;
327 
328 	trace_android_vh_madvise_cold_or_pageout_abort(vma, &abort_madvise);
329 	if (fatal_signal_pending(current) || abort_madvise)
330 		return -EINTR;
331 
332 	trace_android_vh_madvise_cold_or_pageout(vma, &allow_shared);
333 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
334 	if (pmd_trans_huge(*pmd)) {
335 		pmd_t orig_pmd;
336 		unsigned long next = pmd_addr_end(addr, end);
337 
338 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
339 		ptl = pmd_trans_huge_lock(pmd, vma);
340 		if (!ptl)
341 			return 0;
342 
343 		orig_pmd = *pmd;
344 		if (is_huge_zero_pmd(orig_pmd))
345 			goto huge_unlock;
346 
347 		if (unlikely(!pmd_present(orig_pmd))) {
348 			VM_BUG_ON(thp_migration_supported() &&
349 					!is_pmd_migration_entry(orig_pmd));
350 			goto huge_unlock;
351 		}
352 
353 		page = pmd_page(orig_pmd);
354 
355 		/* Do not interfere with other mappings of this page */
356 		if (page_mapcount(page) != 1)
357 			goto huge_unlock;
358 
359 		if (pageout_anon_only && !PageAnon(page))
360 			goto huge_unlock;
361 
362 		if (next - addr != HPAGE_PMD_SIZE) {
363 			int err;
364 
365 			get_page(page);
366 			spin_unlock(ptl);
367 			lock_page(page);
368 			err = split_huge_page(page);
369 			unlock_page(page);
370 			put_page(page);
371 			if (!err)
372 				goto regular_page;
373 			return 0;
374 		}
375 
376 		if (pmd_young(orig_pmd)) {
377 			pmdp_invalidate(vma, addr, pmd);
378 			orig_pmd = pmd_mkold(orig_pmd);
379 
380 			set_pmd_at(mm, addr, pmd, orig_pmd);
381 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
382 		}
383 
384 		ClearPageReferenced(page);
385 		test_and_clear_page_young(page);
386 		if (pageout) {
387 			if (!isolate_lru_page(page)) {
388 				if (PageUnevictable(page))
389 					putback_lru_page(page);
390 				else
391 					list_add(&page->lru, &page_list);
392 			}
393 		} else
394 			deactivate_page(page);
395 huge_unlock:
396 		spin_unlock(ptl);
397 		if (pageout)
398 			reclaim_pages(&page_list);
399 		return 0;
400 	}
401 
402 regular_page:
403 	if (pmd_trans_unstable(pmd))
404 		return 0;
405 #endif
406 	tlb_change_page_size(tlb, PAGE_SIZE);
407 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
408 	flush_tlb_batched_pending(mm);
409 	arch_enter_lazy_mmu_mode();
410 	for (; addr < end; pte++, addr += PAGE_SIZE) {
411 		ptent = *pte;
412 
413 		if (pte_none(ptent))
414 			continue;
415 
416 		if (!pte_present(ptent))
417 			continue;
418 
419 		page = vm_normal_page(vma, addr, ptent);
420 		if (!page)
421 			continue;
422 
423 		trace_android_vh_should_end_madvise(mm, &skip, &pageout);
424 		if (skip)
425 			break;
426 
427 		/*
428 		 * Creating a THP page is expensive so split it only if we
429 		 * are sure it's worth. Split it if we are only owner.
430 		 */
431 		if (PageTransCompound(page)) {
432 			if (page_mapcount(page) != 1)
433 				break;
434 			if (pageout_anon_only && !PageAnon(page))
435 				break;
436 			get_page(page);
437 			if (!trylock_page(page)) {
438 				put_page(page);
439 				break;
440 			}
441 			pte_unmap_unlock(orig_pte, ptl);
442 			if (split_huge_page(page)) {
443 				unlock_page(page);
444 				put_page(page);
445 				pte_offset_map_lock(mm, pmd, addr, &ptl);
446 				break;
447 			}
448 			unlock_page(page);
449 			put_page(page);
450 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
451 			pte--;
452 			addr -= PAGE_SIZE;
453 			continue;
454 		}
455 
456 		/*
457 		 * Do not interfere with other mappings of this page and
458 		 * non-LRU page.
459 		 */
460 		if (!allow_shared && (!PageLRU(page) || page_mapcount(page) != 1))
461 			continue;
462 
463 		if (pageout_anon_only && !PageAnon(page))
464 			continue;
465 
466 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
467 
468 		if (pte_young(ptent)) {
469 			ptent = ptep_get_and_clear_full(mm, addr, pte,
470 							tlb->fullmm);
471 			ptent = pte_mkold(ptent);
472 			set_pte_at(mm, addr, pte, ptent);
473 			tlb_remove_tlb_entry(tlb, pte, addr);
474 		}
475 
476 		/*
477 		 * We are deactivating a page for accelerating reclaiming.
478 		 * VM couldn't reclaim the page unless we clear PG_young.
479 		 * As a side effect, it makes confuse idle-page tracking
480 		 * because they will miss recent referenced history.
481 		 */
482 		ClearPageReferenced(page);
483 		test_and_clear_page_young(page);
484 		if (pageout) {
485 			if (!isolate_lru_page(page)) {
486 				if (PageUnevictable(page))
487 					putback_lru_page(page);
488 				else {
489 					list_add(&page->lru, &page_list);
490 					trace_android_vh_page_isolated_for_reclaim(mm, page);
491 				}
492 			}
493 		} else
494 			deactivate_page(page);
495 	}
496 
497 	arch_leave_lazy_mmu_mode();
498 	pte_unmap_unlock(orig_pte, ptl);
499 	if (pageout)
500 		reclaim_pages(&page_list);
501 	cond_resched();
502 
503 	return 0;
504 }
505 
506 static const struct mm_walk_ops cold_walk_ops = {
507 	.pmd_entry = madvise_cold_or_pageout_pte_range,
508 };
509 
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)510 static void madvise_cold_page_range(struct mmu_gather *tlb,
511 			     struct vm_area_struct *vma,
512 			     unsigned long addr, unsigned long end)
513 {
514 	struct madvise_walk_private walk_private = {
515 		.pageout = false,
516 		.tlb = tlb,
517 	};
518 
519 	tlb_start_vma(tlb, vma);
520 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
521 	tlb_end_vma(tlb, vma);
522 }
523 
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)524 static long madvise_cold(struct vm_area_struct *vma,
525 			struct vm_area_struct **prev,
526 			unsigned long start_addr, unsigned long end_addr)
527 {
528 	struct mm_struct *mm = vma->vm_mm;
529 	struct mmu_gather tlb;
530 
531 	*prev = vma;
532 	if (!can_madv_lru_vma(vma))
533 		return -EINVAL;
534 
535 	lru_add_drain();
536 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
537 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
538 	tlb_finish_mmu(&tlb, start_addr, end_addr);
539 
540 	return 0;
541 }
542 
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,bool can_pageout_file)543 static void madvise_pageout_page_range(struct mmu_gather *tlb,
544 			     struct vm_area_struct *vma,
545 			     unsigned long addr, unsigned long end,
546 			     bool can_pageout_file)
547 {
548 	struct madvise_walk_private walk_private = {
549 		.pageout = true,
550 		.tlb = tlb,
551 		.can_pageout_file = can_pageout_file,
552 	};
553 
554 	tlb_start_vma(tlb, vma);
555 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
556 	tlb_end_vma(tlb, vma);
557 }
558 
can_do_file_pageout(struct vm_area_struct * vma)559 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
560 {
561 	if (!vma->vm_file)
562 		return false;
563 	/*
564 	 * paging out pagecache only for non-anonymous mappings that correspond
565 	 * to the files the calling process could (if tried) open for writing;
566 	 * otherwise we'd be including shared non-exclusive mappings, which
567 	 * opens a side channel.
568 	 */
569 	return inode_owner_or_capable(file_inode(vma->vm_file)) ||
570 		inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
571 }
572 
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)573 static long madvise_pageout(struct vm_area_struct *vma,
574 			struct vm_area_struct **prev,
575 			unsigned long start_addr, unsigned long end_addr)
576 {
577 	struct mm_struct *mm = vma->vm_mm;
578 	struct mmu_gather tlb;
579 	bool can_pageout_file;
580 
581 	*prev = vma;
582 	if (!can_madv_lru_vma(vma))
583 		return -EINVAL;
584 
585 	/*
586 	 * If the VMA belongs to a private file mapping, there can be private
587 	 * dirty pages which can be paged out if even this process is neither
588 	 * owner nor write capable of the file. Cache the file access check
589 	 * here and use it later during page walk.
590 	 */
591 	can_pageout_file = can_do_file_pageout(vma);
592 
593 	lru_add_drain();
594 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
595 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr, can_pageout_file);
596 	tlb_finish_mmu(&tlb, start_addr, end_addr);
597 
598 	return 0;
599 }
600 
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)601 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
602 				unsigned long end, struct mm_walk *walk)
603 
604 {
605 	struct mmu_gather *tlb = walk->private;
606 	struct mm_struct *mm = tlb->mm;
607 	struct vm_area_struct *vma = walk->vma;
608 	spinlock_t *ptl;
609 	pte_t *orig_pte, *pte, ptent;
610 	struct page *page;
611 	int nr_swap = 0;
612 	unsigned long next;
613 
614 	next = pmd_addr_end(addr, end);
615 	if (pmd_trans_huge(*pmd))
616 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
617 			goto next;
618 
619 	if (pmd_trans_unstable(pmd))
620 		return 0;
621 
622 	tlb_change_page_size(tlb, PAGE_SIZE);
623 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
624 	flush_tlb_batched_pending(mm);
625 	arch_enter_lazy_mmu_mode();
626 	for (; addr != end; pte++, addr += PAGE_SIZE) {
627 		ptent = *pte;
628 
629 		if (pte_none(ptent))
630 			continue;
631 		/*
632 		 * If the pte has swp_entry, just clear page table to
633 		 * prevent swap-in which is more expensive rather than
634 		 * (page allocation + zeroing).
635 		 */
636 		if (!pte_present(ptent)) {
637 			swp_entry_t entry;
638 
639 			entry = pte_to_swp_entry(ptent);
640 			if (non_swap_entry(entry))
641 				continue;
642 			nr_swap--;
643 			free_swap_and_cache(entry);
644 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
645 			continue;
646 		}
647 
648 		page = vm_normal_page(vma, addr, ptent);
649 		if (!page)
650 			continue;
651 
652 		/*
653 		 * If pmd isn't transhuge but the page is THP and
654 		 * is owned by only this process, split it and
655 		 * deactivate all pages.
656 		 */
657 		if (PageTransCompound(page)) {
658 			if (page_mapcount(page) != 1)
659 				goto out;
660 			get_page(page);
661 			if (!trylock_page(page)) {
662 				put_page(page);
663 				goto out;
664 			}
665 			pte_unmap_unlock(orig_pte, ptl);
666 			if (split_huge_page(page)) {
667 				unlock_page(page);
668 				put_page(page);
669 				pte_offset_map_lock(mm, pmd, addr, &ptl);
670 				goto out;
671 			}
672 			unlock_page(page);
673 			put_page(page);
674 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
675 			pte--;
676 			addr -= PAGE_SIZE;
677 			continue;
678 		}
679 
680 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
681 
682 		if (PageSwapCache(page) || PageDirty(page)) {
683 			if (!trylock_page(page))
684 				continue;
685 			/*
686 			 * If page is shared with others, we couldn't clear
687 			 * PG_dirty of the page.
688 			 */
689 			if (page_mapcount(page) != 1) {
690 				unlock_page(page);
691 				continue;
692 			}
693 
694 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
695 				unlock_page(page);
696 				continue;
697 			}
698 
699 			ClearPageDirty(page);
700 			unlock_page(page);
701 		}
702 
703 		if (pte_young(ptent) || pte_dirty(ptent)) {
704 			/*
705 			 * Some of architecture(ex, PPC) don't update TLB
706 			 * with set_pte_at and tlb_remove_tlb_entry so for
707 			 * the portability, remap the pte with old|clean
708 			 * after pte clearing.
709 			 */
710 			ptent = ptep_get_and_clear_full(mm, addr, pte,
711 							tlb->fullmm);
712 
713 			ptent = pte_mkold(ptent);
714 			ptent = pte_mkclean(ptent);
715 			set_pte_at(mm, addr, pte, ptent);
716 			tlb_remove_tlb_entry(tlb, pte, addr);
717 		}
718 		mark_page_lazyfree(page);
719 	}
720 out:
721 	if (nr_swap) {
722 		if (current->mm == mm)
723 			sync_mm_rss(mm);
724 
725 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
726 	}
727 	arch_leave_lazy_mmu_mode();
728 	pte_unmap_unlock(orig_pte, ptl);
729 	cond_resched();
730 next:
731 	return 0;
732 }
733 
734 static const struct mm_walk_ops madvise_free_walk_ops = {
735 	.pmd_entry		= madvise_free_pte_range,
736 };
737 
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)738 static int madvise_free_single_vma(struct vm_area_struct *vma,
739 			unsigned long start_addr, unsigned long end_addr)
740 {
741 	struct mm_struct *mm = vma->vm_mm;
742 	struct mmu_notifier_range range;
743 	struct mmu_gather tlb;
744 
745 	/* MADV_FREE works for only anon vma at the moment */
746 	if (!vma_is_anonymous(vma))
747 		return -EINVAL;
748 
749 	range.start = max(vma->vm_start, start_addr);
750 	if (range.start >= vma->vm_end)
751 		return -EINVAL;
752 	range.end = min(vma->vm_end, end_addr);
753 	if (range.end <= vma->vm_start)
754 		return -EINVAL;
755 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
756 				range.start, range.end);
757 
758 	lru_add_drain();
759 	tlb_gather_mmu(&tlb, mm, range.start, range.end);
760 	update_hiwater_rss(mm);
761 
762 	mmu_notifier_invalidate_range_start(&range);
763 	tlb_start_vma(&tlb, vma);
764 	walk_page_range(vma->vm_mm, range.start, range.end,
765 			&madvise_free_walk_ops, &tlb);
766 	tlb_end_vma(&tlb, vma);
767 	mmu_notifier_invalidate_range_end(&range);
768 	tlb_finish_mmu(&tlb, range.start, range.end);
769 
770 	return 0;
771 }
772 
773 /*
774  * Application no longer needs these pages.  If the pages are dirty,
775  * it's OK to just throw them away.  The app will be more careful about
776  * data it wants to keep.  Be sure to free swap resources too.  The
777  * zap_page_range call sets things up for shrink_active_list to actually free
778  * these pages later if no one else has touched them in the meantime,
779  * although we could add these pages to a global reuse list for
780  * shrink_active_list to pick up before reclaiming other pages.
781  *
782  * NB: This interface discards data rather than pushes it out to swap,
783  * as some implementations do.  This has performance implications for
784  * applications like large transactional databases which want to discard
785  * pages in anonymous maps after committing to backing store the data
786  * that was kept in them.  There is no reason to write this data out to
787  * the swap area if the application is discarding it.
788  *
789  * An interface that causes the system to free clean pages and flush
790  * dirty pages is already available as msync(MS_INVALIDATE).
791  */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)792 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
793 					unsigned long start, unsigned long end)
794 {
795 	zap_page_range(vma, start, end - start);
796 	return 0;
797 }
798 
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)799 static long madvise_dontneed_free(struct vm_area_struct *vma,
800 				  struct vm_area_struct **prev,
801 				  unsigned long start, unsigned long end,
802 				  int behavior)
803 {
804 	struct mm_struct *mm = vma->vm_mm;
805 
806 	*prev = vma;
807 	if (!can_madv_lru_vma(vma))
808 		return -EINVAL;
809 
810 	if (!userfaultfd_remove(vma, start, end)) {
811 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
812 
813 		mmap_read_lock(mm);
814 		vma = find_vma(mm, start);
815 		if (!vma)
816 			return -ENOMEM;
817 		if (start < vma->vm_start) {
818 			/*
819 			 * This "vma" under revalidation is the one
820 			 * with the lowest vma->vm_start where start
821 			 * is also < vma->vm_end. If start <
822 			 * vma->vm_start it means an hole materialized
823 			 * in the user address space within the
824 			 * virtual range passed to MADV_DONTNEED
825 			 * or MADV_FREE.
826 			 */
827 			return -ENOMEM;
828 		}
829 		if (!can_madv_lru_vma(vma))
830 			return -EINVAL;
831 		if (end > vma->vm_end) {
832 			/*
833 			 * Don't fail if end > vma->vm_end. If the old
834 			 * vma was splitted while the mmap_lock was
835 			 * released the effect of the concurrent
836 			 * operation may not cause madvise() to
837 			 * have an undefined result. There may be an
838 			 * adjacent next vma that we'll walk
839 			 * next. userfaultfd_remove() will generate an
840 			 * UFFD_EVENT_REMOVE repetition on the
841 			 * end-vma->vm_end range, but the manager can
842 			 * handle a repetition fine.
843 			 */
844 			end = vma->vm_end;
845 		}
846 		VM_WARN_ON(start >= end);
847 	}
848 
849 	if (behavior == MADV_DONTNEED)
850 		return madvise_dontneed_single_vma(vma, start, end);
851 	else if (behavior == MADV_FREE)
852 		return madvise_free_single_vma(vma, start, end);
853 	else
854 		return -EINVAL;
855 }
856 
857 /*
858  * Application wants to free up the pages and associated backing store.
859  * This is effectively punching a hole into the middle of a file.
860  */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)861 static long madvise_remove(struct vm_area_struct *vma,
862 				struct vm_area_struct **prev,
863 				unsigned long start, unsigned long end)
864 {
865 	loff_t offset;
866 	int error;
867 	struct file *f;
868 	struct mm_struct *mm = vma->vm_mm;
869 
870 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
871 
872 	if (vma->vm_flags & VM_LOCKED)
873 		return -EINVAL;
874 
875 	f = vma->vm_file;
876 
877 	if (!f || !f->f_mapping || !f->f_mapping->host) {
878 			return -EINVAL;
879 	}
880 
881 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
882 		return -EACCES;
883 
884 	offset = (loff_t)(start - vma->vm_start)
885 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
886 
887 	/*
888 	 * Filesystem's fallocate may need to take i_mutex.  We need to
889 	 * explicitly grab a reference because the vma (and hence the
890 	 * vma's reference to the file) can go away as soon as we drop
891 	 * mmap_lock.
892 	 */
893 	get_file(f);
894 	if (userfaultfd_remove(vma, start, end)) {
895 		/* mmap_lock was not released by userfaultfd_remove() */
896 		mmap_read_unlock(mm);
897 	}
898 	error = vfs_fallocate(f,
899 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
900 				offset, end - start);
901 	fput(f);
902 	mmap_read_lock(mm);
903 	return error;
904 }
905 
906 #ifdef CONFIG_MEMORY_FAILURE
907 /*
908  * Error injection support for memory error handling.
909  */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)910 static int madvise_inject_error(int behavior,
911 		unsigned long start, unsigned long end)
912 {
913 	struct zone *zone;
914 	unsigned long size;
915 
916 	if (!capable(CAP_SYS_ADMIN))
917 		return -EPERM;
918 
919 
920 	for (; start < end; start += size) {
921 		unsigned long pfn;
922 		struct page *page;
923 		int ret;
924 
925 		ret = get_user_pages_fast(start, 1, 0, &page);
926 		if (ret != 1)
927 			return ret;
928 		pfn = page_to_pfn(page);
929 
930 		/*
931 		 * When soft offlining hugepages, after migrating the page
932 		 * we dissolve it, therefore in the second loop "page" will
933 		 * no longer be a compound page.
934 		 */
935 		size = page_size(compound_head(page));
936 
937 		if (behavior == MADV_SOFT_OFFLINE) {
938 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
939 				 pfn, start);
940 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
941 		} else {
942 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
943 				 pfn, start);
944 			ret = memory_failure(pfn, MF_COUNT_INCREASED);
945 		}
946 
947 		if (ret)
948 			return ret;
949 	}
950 
951 	/* Ensure that all poisoned pages are removed from per-cpu lists */
952 	for_each_populated_zone(zone)
953 		drain_all_pages(zone);
954 
955 	return 0;
956 }
957 #endif
958 
959 static long
madvise_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)960 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
961 		unsigned long start, unsigned long end, int behavior)
962 {
963 	switch (behavior) {
964 	case MADV_REMOVE:
965 		return madvise_remove(vma, prev, start, end);
966 	case MADV_WILLNEED:
967 		return madvise_willneed(vma, prev, start, end);
968 	case MADV_COLD:
969 		return madvise_cold(vma, prev, start, end);
970 	case MADV_PAGEOUT:
971 		return madvise_pageout(vma, prev, start, end);
972 	case MADV_FREE:
973 	case MADV_DONTNEED:
974 		return madvise_dontneed_free(vma, prev, start, end, behavior);
975 	default:
976 		return madvise_behavior(vma, prev, start, end, behavior);
977 	}
978 }
979 
980 static bool
madvise_behavior_valid(int behavior)981 madvise_behavior_valid(int behavior)
982 {
983 	switch (behavior) {
984 	case MADV_DOFORK:
985 	case MADV_DONTFORK:
986 	case MADV_NORMAL:
987 	case MADV_SEQUENTIAL:
988 	case MADV_RANDOM:
989 	case MADV_REMOVE:
990 	case MADV_WILLNEED:
991 	case MADV_DONTNEED:
992 	case MADV_FREE:
993 	case MADV_COLD:
994 	case MADV_PAGEOUT:
995 #ifdef CONFIG_KSM
996 	case MADV_MERGEABLE:
997 	case MADV_UNMERGEABLE:
998 #endif
999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1000 	case MADV_HUGEPAGE:
1001 	case MADV_NOHUGEPAGE:
1002 #endif
1003 	case MADV_DONTDUMP:
1004 	case MADV_DODUMP:
1005 	case MADV_WIPEONFORK:
1006 	case MADV_KEEPONFORK:
1007 #ifdef CONFIG_MEMORY_FAILURE
1008 	case MADV_SOFT_OFFLINE:
1009 	case MADV_HWPOISON:
1010 #endif
1011 		return true;
1012 
1013 	default:
1014 		return false;
1015 	}
1016 }
1017 
1018 static bool
process_madvise_behavior_valid(int behavior)1019 process_madvise_behavior_valid(int behavior)
1020 {
1021 	switch (behavior) {
1022 	case MADV_COLD:
1023 	case MADV_PAGEOUT:
1024 	case MADV_WILLNEED:
1025 		return true;
1026 	default:
1027 		return false;
1028 	}
1029 }
1030 
1031 /*
1032  * The madvise(2) system call.
1033  *
1034  * Applications can use madvise() to advise the kernel how it should
1035  * handle paging I/O in this VM area.  The idea is to help the kernel
1036  * use appropriate read-ahead and caching techniques.  The information
1037  * provided is advisory only, and can be safely disregarded by the
1038  * kernel without affecting the correct operation of the application.
1039  *
1040  * behavior values:
1041  *  MADV_NORMAL - the default behavior is to read clusters.  This
1042  *		results in some read-ahead and read-behind.
1043  *  MADV_RANDOM - the system should read the minimum amount of data
1044  *		on any access, since it is unlikely that the appli-
1045  *		cation will need more than what it asks for.
1046  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1047  *		once, so they can be aggressively read ahead, and
1048  *		can be freed soon after they are accessed.
1049  *  MADV_WILLNEED - the application is notifying the system to read
1050  *		some pages ahead.
1051  *  MADV_DONTNEED - the application is finished with the given range,
1052  *		so the kernel can free resources associated with it.
1053  *  MADV_FREE - the application marks pages in the given range as lazy free,
1054  *		where actual purges are postponed until memory pressure happens.
1055  *  MADV_REMOVE - the application wants to free up the given range of
1056  *		pages and associated backing store.
1057  *  MADV_DONTFORK - omit this area from child's address space when forking:
1058  *		typically, to avoid COWing pages pinned by get_user_pages().
1059  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1060  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1061  *              range after a fork.
1062  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1063  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1064  *		were corrupted by unrecoverable hardware memory failure.
1065  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1066  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1067  *		this area with pages of identical content from other such areas.
1068  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1069  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1070  *		huge pages in the future. Existing pages might be coalesced and
1071  *		new pages might be allocated as THP.
1072  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1073  *		transparent huge pages so the existing pages will not be
1074  *		coalesced into THP and new pages will not be allocated as THP.
1075  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1076  *		from being included in its core dump.
1077  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1078  *  MADV_COLD - the application is not expected to use this memory soon,
1079  *		deactivate pages in this range so that they can be reclaimed
1080  *		easily if memory pressure hanppens.
1081  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1082  *		page out the pages in this range immediately.
1083  *
1084  * return values:
1085  *  zero    - success
1086  *  -EINVAL - start + len < 0, start is not page-aligned,
1087  *		"behavior" is not a valid value, or application
1088  *		is attempting to release locked or shared pages,
1089  *		or the specified address range includes file, Huge TLB,
1090  *		MAP_SHARED or VMPFNMAP range.
1091  *  -ENOMEM - addresses in the specified range are not currently
1092  *		mapped, or are outside the AS of the process.
1093  *  -EIO    - an I/O error occurred while paging in data.
1094  *  -EBADF  - map exists, but area maps something that isn't a file.
1095  *  -EAGAIN - a kernel resource was temporarily unavailable.
1096  */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1097 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1098 {
1099 	unsigned long end, tmp;
1100 	struct vm_area_struct *vma, *prev;
1101 	int unmapped_error = 0;
1102 	int error = -EINVAL;
1103 	int write;
1104 	size_t len;
1105 	struct blk_plug plug;
1106 
1107 	start = untagged_addr(start);
1108 
1109 	if (!madvise_behavior_valid(behavior))
1110 		return error;
1111 
1112 	if (!PAGE_ALIGNED(start))
1113 		return error;
1114 	len = PAGE_ALIGN(len_in);
1115 
1116 	/* Check to see whether len was rounded up from small -ve to zero */
1117 	if (len_in && !len)
1118 		return error;
1119 
1120 	end = start + len;
1121 	if (end < start)
1122 		return error;
1123 
1124 	error = 0;
1125 	if (end == start)
1126 		return error;
1127 
1128 #ifdef CONFIG_MEMORY_FAILURE
1129 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1130 		return madvise_inject_error(behavior, start, start + len_in);
1131 #endif
1132 
1133 	write = madvise_need_mmap_write(behavior);
1134 	if (write) {
1135 		if (mmap_write_lock_killable(mm))
1136 			return -EINTR;
1137 	} else {
1138 		mmap_read_lock(mm);
1139 	}
1140 
1141 	/*
1142 	 * If the interval [start,end) covers some unmapped address
1143 	 * ranges, just ignore them, but return -ENOMEM at the end.
1144 	 * - different from the way of handling in mlock etc.
1145 	 */
1146 	vma = find_vma_prev(mm, start, &prev);
1147 	if (vma && start > vma->vm_start)
1148 		prev = vma;
1149 
1150 	blk_start_plug(&plug);
1151 	for (;;) {
1152 		/* Still start < end. */
1153 		error = -ENOMEM;
1154 		if (!vma)
1155 			goto out;
1156 
1157 		/* Here start < (end|vma->vm_end). */
1158 		if (start < vma->vm_start) {
1159 			unmapped_error = -ENOMEM;
1160 			start = vma->vm_start;
1161 			if (start >= end)
1162 				goto out;
1163 		}
1164 
1165 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1166 		tmp = vma->vm_end;
1167 		if (end < tmp)
1168 			tmp = end;
1169 
1170 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1171 		error = madvise_vma(vma, &prev, start, tmp, behavior);
1172 		if (error)
1173 			goto out;
1174 		start = tmp;
1175 		if (prev && start < prev->vm_end)
1176 			start = prev->vm_end;
1177 		error = unmapped_error;
1178 		if (start >= end)
1179 			goto out;
1180 		if (prev)
1181 			vma = prev->vm_next;
1182 		else	/* madvise_remove dropped mmap_lock */
1183 			vma = find_vma(mm, start);
1184 	}
1185 out:
1186 	blk_finish_plug(&plug);
1187 	if (write)
1188 		mmap_write_unlock(mm);
1189 	else
1190 		mmap_read_unlock(mm);
1191 
1192 	return error;
1193 }
1194 
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1195 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1196 {
1197 	return do_madvise(current->mm, start, len_in, behavior);
1198 }
1199 
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1200 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1201 		size_t, vlen, int, behavior, unsigned int, flags)
1202 {
1203 	ssize_t ret;
1204 	struct iovec iovstack[UIO_FASTIOV], iovec;
1205 	struct iovec *iov = iovstack;
1206 	struct iov_iter iter;
1207 	struct pid *pid;
1208 	struct task_struct *task;
1209 	struct mm_struct *mm;
1210 	size_t total_len;
1211 	unsigned int f_flags;
1212 
1213 	if (flags != 0) {
1214 		ret = -EINVAL;
1215 		goto out;
1216 	}
1217 
1218 	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1219 	if (ret < 0)
1220 		goto out;
1221 
1222 	pid = pidfd_get_pid(pidfd, &f_flags);
1223 	if (IS_ERR(pid)) {
1224 		ret = PTR_ERR(pid);
1225 		goto free_iov;
1226 	}
1227 
1228 	task = get_pid_task(pid, PIDTYPE_PID);
1229 	if (!task) {
1230 		ret = -ESRCH;
1231 		goto put_pid;
1232 	}
1233 
1234 	if (!process_madvise_behavior_valid(behavior)) {
1235 		ret = -EINVAL;
1236 		goto release_task;
1237 	}
1238 
1239 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1240 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1241 	if (IS_ERR_OR_NULL(mm)) {
1242 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1243 		goto release_task;
1244 	}
1245 
1246 	/*
1247 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1248 	 * only non-destructive hints are currently supported.
1249 	 */
1250 	if (!capable(CAP_SYS_NICE)) {
1251 		ret = -EPERM;
1252 		goto release_mm;
1253 	}
1254 
1255 	total_len = iov_iter_count(&iter);
1256 
1257 	while (iov_iter_count(&iter)) {
1258 		iovec = iov_iter_iovec(&iter);
1259 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1260 					iovec.iov_len, behavior);
1261 		if (ret < 0)
1262 			break;
1263 		iov_iter_advance(&iter, iovec.iov_len);
1264 	}
1265 
1266 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1267 
1268 release_mm:
1269 	mmput(mm);
1270 release_task:
1271 	put_task_struct(task);
1272 put_pid:
1273 	put_pid(pid);
1274 free_iov:
1275 	kfree(iov);
1276 out:
1277 	return ret;
1278 }
1279