1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/madvise.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/uio.h>
22 #include <linux/ksm.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/pagewalk.h>
28 #include <linux/swap.h>
29 #include <linux/swapops.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/mmu_notifier.h>
32 #include <trace/hooks/mm.h>
33
34 #include <asm/tlb.h>
35
36 #include "internal.h"
37
38 struct madvise_walk_private {
39 struct mmu_gather *tlb;
40 bool pageout;
41 bool can_pageout_file;
42 };
43
44 /*
45 * Any behaviour which results in changes to the vma->vm_flags needs to
46 * take mmap_lock for writing. Others, which simply traverse vmas, need
47 * to only take it for reading.
48 */
madvise_need_mmap_write(int behavior)49 static int madvise_need_mmap_write(int behavior)
50 {
51 switch (behavior) {
52 case MADV_REMOVE:
53 case MADV_WILLNEED:
54 case MADV_DONTNEED:
55 case MADV_COLD:
56 case MADV_PAGEOUT:
57 case MADV_FREE:
58 return 0;
59 default:
60 /* be safe, default to 1. list exceptions explicitly */
61 return 1;
62 }
63 }
64
65 /*
66 * We can potentially split a vm area into separate
67 * areas, each area with its own behavior.
68 */
madvise_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)69 static long madvise_behavior(struct vm_area_struct *vma,
70 struct vm_area_struct **prev,
71 unsigned long start, unsigned long end, int behavior)
72 {
73 struct mm_struct *mm = vma->vm_mm;
74 int error = 0;
75 pgoff_t pgoff;
76 unsigned long new_flags = vma->vm_flags;
77
78 switch (behavior) {
79 case MADV_NORMAL:
80 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
81 break;
82 case MADV_SEQUENTIAL:
83 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
84 break;
85 case MADV_RANDOM:
86 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
87 break;
88 case MADV_DONTFORK:
89 new_flags |= VM_DONTCOPY;
90 break;
91 case MADV_DOFORK:
92 if (vma->vm_flags & VM_IO) {
93 error = -EINVAL;
94 goto out;
95 }
96 new_flags &= ~VM_DONTCOPY;
97 break;
98 case MADV_WIPEONFORK:
99 /* MADV_WIPEONFORK is only supported on anonymous memory. */
100 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
101 error = -EINVAL;
102 goto out;
103 }
104 new_flags |= VM_WIPEONFORK;
105 break;
106 case MADV_KEEPONFORK:
107 new_flags &= ~VM_WIPEONFORK;
108 break;
109 case MADV_DONTDUMP:
110 new_flags |= VM_DONTDUMP;
111 break;
112 case MADV_DODUMP:
113 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
114 error = -EINVAL;
115 goto out;
116 }
117 new_flags &= ~VM_DONTDUMP;
118 break;
119 case MADV_MERGEABLE:
120 case MADV_UNMERGEABLE:
121 error = ksm_madvise(vma, start, end, behavior, &new_flags);
122 if (error)
123 goto out_convert_errno;
124 break;
125 case MADV_HUGEPAGE:
126 case MADV_NOHUGEPAGE:
127 error = hugepage_madvise(vma, &new_flags, behavior);
128 if (error)
129 goto out_convert_errno;
130 break;
131 }
132
133 if (new_flags == vma->vm_flags) {
134 *prev = vma;
135 goto out;
136 }
137
138 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
139 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
140 vma->vm_file, pgoff, vma_policy(vma),
141 vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
142 if (*prev) {
143 vma = *prev;
144 goto success;
145 }
146
147 *prev = vma;
148
149 if (start != vma->vm_start) {
150 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
151 error = -ENOMEM;
152 goto out;
153 }
154 error = __split_vma(mm, vma, start, 1);
155 if (error)
156 goto out_convert_errno;
157 }
158
159 if (end != vma->vm_end) {
160 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
161 error = -ENOMEM;
162 goto out;
163 }
164 error = __split_vma(mm, vma, end, 0);
165 if (error)
166 goto out_convert_errno;
167 }
168
169 success:
170 /*
171 * vm_flags is protected by the mmap_lock held in write mode.
172 */
173 vm_write_begin(vma);
174 WRITE_ONCE(vma->vm_flags, new_flags);
175 vm_write_end(vma);
176
177 out_convert_errno:
178 /*
179 * madvise() returns EAGAIN if kernel resources, such as
180 * slab, are temporarily unavailable.
181 */
182 if (error == -ENOMEM)
183 error = -EAGAIN;
184 out:
185 return error;
186 }
187
188 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)189 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
190 unsigned long end, struct mm_walk *walk)
191 {
192 pte_t *orig_pte;
193 struct vm_area_struct *vma = walk->private;
194 unsigned long index;
195
196 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
197 return 0;
198
199 for (index = start; index != end; index += PAGE_SIZE) {
200 pte_t pte;
201 swp_entry_t entry;
202 struct page *page;
203 spinlock_t *ptl;
204
205 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
206 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
207 pte_unmap_unlock(orig_pte, ptl);
208
209 if (pte_present(pte) || pte_none(pte))
210 continue;
211 entry = pte_to_swp_entry(pte);
212 if (unlikely(non_swap_entry(entry)))
213 continue;
214
215 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
216 vma, index, false);
217 if (page)
218 put_page(page);
219 }
220
221 return 0;
222 }
223
224 static const struct mm_walk_ops swapin_walk_ops = {
225 .pmd_entry = swapin_walk_pmd_entry,
226 };
227
force_shm_swapin_readahead(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)228 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
229 unsigned long start, unsigned long end,
230 struct address_space *mapping)
231 {
232 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
233 pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
234 struct page *page;
235
236 rcu_read_lock();
237 xas_for_each(&xas, page, end_index) {
238 swp_entry_t swap;
239
240 if (!xa_is_value(page))
241 continue;
242 xas_pause(&xas);
243 rcu_read_unlock();
244
245 swap = radix_to_swp_entry(page);
246 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
247 NULL, 0, false);
248 if (page)
249 put_page(page);
250
251 rcu_read_lock();
252 }
253 rcu_read_unlock();
254
255 lru_add_drain(); /* Push any new pages onto the LRU now */
256 }
257 #endif /* CONFIG_SWAP */
258
259 /*
260 * Schedule all required I/O operations. Do not wait for completion.
261 */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)262 static long madvise_willneed(struct vm_area_struct *vma,
263 struct vm_area_struct **prev,
264 unsigned long start, unsigned long end)
265 {
266 struct mm_struct *mm = vma->vm_mm;
267 struct file *file = vma->vm_file;
268 loff_t offset;
269
270 *prev = vma;
271 #ifdef CONFIG_SWAP
272 if (!file) {
273 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
274 lru_add_drain(); /* Push any new pages onto the LRU now */
275 return 0;
276 }
277
278 if (shmem_mapping(file->f_mapping)) {
279 force_shm_swapin_readahead(vma, start, end,
280 file->f_mapping);
281 return 0;
282 }
283 #else
284 if (!file)
285 return -EBADF;
286 #endif
287
288 if (IS_DAX(file_inode(file))) {
289 /* no bad return value, but ignore advice */
290 return 0;
291 }
292
293 /*
294 * Filesystem's fadvise may need to take various locks. We need to
295 * explicitly grab a reference because the vma (and hence the
296 * vma's reference to the file) can go away as soon as we drop
297 * mmap_lock.
298 */
299 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
300 get_file(file);
301 offset = (loff_t)(start - vma->vm_start)
302 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
303 mmap_read_unlock(mm);
304 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
305 fput(file);
306 mmap_read_lock(mm);
307 return 0;
308 }
309
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)310 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
311 unsigned long addr, unsigned long end,
312 struct mm_walk *walk)
313 {
314 struct madvise_walk_private *private = walk->private;
315 struct mmu_gather *tlb = private->tlb;
316 bool pageout = private->pageout;
317 bool pageout_anon_only = pageout && !private->can_pageout_file;
318 struct mm_struct *mm = tlb->mm;
319 struct vm_area_struct *vma = walk->vma;
320 pte_t *orig_pte, *pte, ptent;
321 spinlock_t *ptl;
322 struct page *page = NULL;
323 LIST_HEAD(page_list);
324 bool allow_shared = false;
325 bool abort_madvise = false;
326 bool skip = false;
327
328 trace_android_vh_madvise_cold_or_pageout_abort(vma, &abort_madvise);
329 if (fatal_signal_pending(current) || abort_madvise)
330 return -EINTR;
331
332 trace_android_vh_madvise_cold_or_pageout(vma, &allow_shared);
333 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
334 if (pmd_trans_huge(*pmd)) {
335 pmd_t orig_pmd;
336 unsigned long next = pmd_addr_end(addr, end);
337
338 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
339 ptl = pmd_trans_huge_lock(pmd, vma);
340 if (!ptl)
341 return 0;
342
343 orig_pmd = *pmd;
344 if (is_huge_zero_pmd(orig_pmd))
345 goto huge_unlock;
346
347 if (unlikely(!pmd_present(orig_pmd))) {
348 VM_BUG_ON(thp_migration_supported() &&
349 !is_pmd_migration_entry(orig_pmd));
350 goto huge_unlock;
351 }
352
353 page = pmd_page(orig_pmd);
354
355 /* Do not interfere with other mappings of this page */
356 if (page_mapcount(page) != 1)
357 goto huge_unlock;
358
359 if (pageout_anon_only && !PageAnon(page))
360 goto huge_unlock;
361
362 if (next - addr != HPAGE_PMD_SIZE) {
363 int err;
364
365 get_page(page);
366 spin_unlock(ptl);
367 lock_page(page);
368 err = split_huge_page(page);
369 unlock_page(page);
370 put_page(page);
371 if (!err)
372 goto regular_page;
373 return 0;
374 }
375
376 if (pmd_young(orig_pmd)) {
377 pmdp_invalidate(vma, addr, pmd);
378 orig_pmd = pmd_mkold(orig_pmd);
379
380 set_pmd_at(mm, addr, pmd, orig_pmd);
381 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
382 }
383
384 ClearPageReferenced(page);
385 test_and_clear_page_young(page);
386 if (pageout) {
387 if (!isolate_lru_page(page)) {
388 if (PageUnevictable(page))
389 putback_lru_page(page);
390 else
391 list_add(&page->lru, &page_list);
392 }
393 } else
394 deactivate_page(page);
395 huge_unlock:
396 spin_unlock(ptl);
397 if (pageout)
398 reclaim_pages(&page_list);
399 return 0;
400 }
401
402 regular_page:
403 if (pmd_trans_unstable(pmd))
404 return 0;
405 #endif
406 tlb_change_page_size(tlb, PAGE_SIZE);
407 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
408 flush_tlb_batched_pending(mm);
409 arch_enter_lazy_mmu_mode();
410 for (; addr < end; pte++, addr += PAGE_SIZE) {
411 ptent = *pte;
412
413 if (pte_none(ptent))
414 continue;
415
416 if (!pte_present(ptent))
417 continue;
418
419 page = vm_normal_page(vma, addr, ptent);
420 if (!page)
421 continue;
422
423 trace_android_vh_should_end_madvise(mm, &skip, &pageout);
424 if (skip)
425 break;
426
427 /*
428 * Creating a THP page is expensive so split it only if we
429 * are sure it's worth. Split it if we are only owner.
430 */
431 if (PageTransCompound(page)) {
432 if (page_mapcount(page) != 1)
433 break;
434 if (pageout_anon_only && !PageAnon(page))
435 break;
436 get_page(page);
437 if (!trylock_page(page)) {
438 put_page(page);
439 break;
440 }
441 pte_unmap_unlock(orig_pte, ptl);
442 if (split_huge_page(page)) {
443 unlock_page(page);
444 put_page(page);
445 pte_offset_map_lock(mm, pmd, addr, &ptl);
446 break;
447 }
448 unlock_page(page);
449 put_page(page);
450 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
451 pte--;
452 addr -= PAGE_SIZE;
453 continue;
454 }
455
456 /*
457 * Do not interfere with other mappings of this page and
458 * non-LRU page.
459 */
460 if (!allow_shared && (!PageLRU(page) || page_mapcount(page) != 1))
461 continue;
462
463 if (pageout_anon_only && !PageAnon(page))
464 continue;
465
466 VM_BUG_ON_PAGE(PageTransCompound(page), page);
467
468 if (pte_young(ptent)) {
469 ptent = ptep_get_and_clear_full(mm, addr, pte,
470 tlb->fullmm);
471 ptent = pte_mkold(ptent);
472 set_pte_at(mm, addr, pte, ptent);
473 tlb_remove_tlb_entry(tlb, pte, addr);
474 }
475
476 /*
477 * We are deactivating a page for accelerating reclaiming.
478 * VM couldn't reclaim the page unless we clear PG_young.
479 * As a side effect, it makes confuse idle-page tracking
480 * because they will miss recent referenced history.
481 */
482 ClearPageReferenced(page);
483 test_and_clear_page_young(page);
484 if (pageout) {
485 if (!isolate_lru_page(page)) {
486 if (PageUnevictable(page))
487 putback_lru_page(page);
488 else {
489 list_add(&page->lru, &page_list);
490 trace_android_vh_page_isolated_for_reclaim(mm, page);
491 }
492 }
493 } else
494 deactivate_page(page);
495 }
496
497 arch_leave_lazy_mmu_mode();
498 pte_unmap_unlock(orig_pte, ptl);
499 if (pageout)
500 reclaim_pages(&page_list);
501 cond_resched();
502
503 return 0;
504 }
505
506 static const struct mm_walk_ops cold_walk_ops = {
507 .pmd_entry = madvise_cold_or_pageout_pte_range,
508 };
509
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)510 static void madvise_cold_page_range(struct mmu_gather *tlb,
511 struct vm_area_struct *vma,
512 unsigned long addr, unsigned long end)
513 {
514 struct madvise_walk_private walk_private = {
515 .pageout = false,
516 .tlb = tlb,
517 };
518
519 tlb_start_vma(tlb, vma);
520 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
521 tlb_end_vma(tlb, vma);
522 }
523
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)524 static long madvise_cold(struct vm_area_struct *vma,
525 struct vm_area_struct **prev,
526 unsigned long start_addr, unsigned long end_addr)
527 {
528 struct mm_struct *mm = vma->vm_mm;
529 struct mmu_gather tlb;
530
531 *prev = vma;
532 if (!can_madv_lru_vma(vma))
533 return -EINVAL;
534
535 lru_add_drain();
536 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
537 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
538 tlb_finish_mmu(&tlb, start_addr, end_addr);
539
540 return 0;
541 }
542
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,bool can_pageout_file)543 static void madvise_pageout_page_range(struct mmu_gather *tlb,
544 struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 bool can_pageout_file)
547 {
548 struct madvise_walk_private walk_private = {
549 .pageout = true,
550 .tlb = tlb,
551 .can_pageout_file = can_pageout_file,
552 };
553
554 tlb_start_vma(tlb, vma);
555 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
556 tlb_end_vma(tlb, vma);
557 }
558
can_do_file_pageout(struct vm_area_struct * vma)559 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
560 {
561 if (!vma->vm_file)
562 return false;
563 /*
564 * paging out pagecache only for non-anonymous mappings that correspond
565 * to the files the calling process could (if tried) open for writing;
566 * otherwise we'd be including shared non-exclusive mappings, which
567 * opens a side channel.
568 */
569 return inode_owner_or_capable(file_inode(vma->vm_file)) ||
570 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
571 }
572
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)573 static long madvise_pageout(struct vm_area_struct *vma,
574 struct vm_area_struct **prev,
575 unsigned long start_addr, unsigned long end_addr)
576 {
577 struct mm_struct *mm = vma->vm_mm;
578 struct mmu_gather tlb;
579 bool can_pageout_file;
580
581 *prev = vma;
582 if (!can_madv_lru_vma(vma))
583 return -EINVAL;
584
585 /*
586 * If the VMA belongs to a private file mapping, there can be private
587 * dirty pages which can be paged out if even this process is neither
588 * owner nor write capable of the file. Cache the file access check
589 * here and use it later during page walk.
590 */
591 can_pageout_file = can_do_file_pageout(vma);
592
593 lru_add_drain();
594 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
595 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr, can_pageout_file);
596 tlb_finish_mmu(&tlb, start_addr, end_addr);
597
598 return 0;
599 }
600
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)601 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
602 unsigned long end, struct mm_walk *walk)
603
604 {
605 struct mmu_gather *tlb = walk->private;
606 struct mm_struct *mm = tlb->mm;
607 struct vm_area_struct *vma = walk->vma;
608 spinlock_t *ptl;
609 pte_t *orig_pte, *pte, ptent;
610 struct page *page;
611 int nr_swap = 0;
612 unsigned long next;
613
614 next = pmd_addr_end(addr, end);
615 if (pmd_trans_huge(*pmd))
616 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
617 goto next;
618
619 if (pmd_trans_unstable(pmd))
620 return 0;
621
622 tlb_change_page_size(tlb, PAGE_SIZE);
623 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
624 flush_tlb_batched_pending(mm);
625 arch_enter_lazy_mmu_mode();
626 for (; addr != end; pte++, addr += PAGE_SIZE) {
627 ptent = *pte;
628
629 if (pte_none(ptent))
630 continue;
631 /*
632 * If the pte has swp_entry, just clear page table to
633 * prevent swap-in which is more expensive rather than
634 * (page allocation + zeroing).
635 */
636 if (!pte_present(ptent)) {
637 swp_entry_t entry;
638
639 entry = pte_to_swp_entry(ptent);
640 if (non_swap_entry(entry))
641 continue;
642 nr_swap--;
643 free_swap_and_cache(entry);
644 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
645 continue;
646 }
647
648 page = vm_normal_page(vma, addr, ptent);
649 if (!page)
650 continue;
651
652 /*
653 * If pmd isn't transhuge but the page is THP and
654 * is owned by only this process, split it and
655 * deactivate all pages.
656 */
657 if (PageTransCompound(page)) {
658 if (page_mapcount(page) != 1)
659 goto out;
660 get_page(page);
661 if (!trylock_page(page)) {
662 put_page(page);
663 goto out;
664 }
665 pte_unmap_unlock(orig_pte, ptl);
666 if (split_huge_page(page)) {
667 unlock_page(page);
668 put_page(page);
669 pte_offset_map_lock(mm, pmd, addr, &ptl);
670 goto out;
671 }
672 unlock_page(page);
673 put_page(page);
674 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
675 pte--;
676 addr -= PAGE_SIZE;
677 continue;
678 }
679
680 VM_BUG_ON_PAGE(PageTransCompound(page), page);
681
682 if (PageSwapCache(page) || PageDirty(page)) {
683 if (!trylock_page(page))
684 continue;
685 /*
686 * If page is shared with others, we couldn't clear
687 * PG_dirty of the page.
688 */
689 if (page_mapcount(page) != 1) {
690 unlock_page(page);
691 continue;
692 }
693
694 if (PageSwapCache(page) && !try_to_free_swap(page)) {
695 unlock_page(page);
696 continue;
697 }
698
699 ClearPageDirty(page);
700 unlock_page(page);
701 }
702
703 if (pte_young(ptent) || pte_dirty(ptent)) {
704 /*
705 * Some of architecture(ex, PPC) don't update TLB
706 * with set_pte_at and tlb_remove_tlb_entry so for
707 * the portability, remap the pte with old|clean
708 * after pte clearing.
709 */
710 ptent = ptep_get_and_clear_full(mm, addr, pte,
711 tlb->fullmm);
712
713 ptent = pte_mkold(ptent);
714 ptent = pte_mkclean(ptent);
715 set_pte_at(mm, addr, pte, ptent);
716 tlb_remove_tlb_entry(tlb, pte, addr);
717 }
718 mark_page_lazyfree(page);
719 }
720 out:
721 if (nr_swap) {
722 if (current->mm == mm)
723 sync_mm_rss(mm);
724
725 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
726 }
727 arch_leave_lazy_mmu_mode();
728 pte_unmap_unlock(orig_pte, ptl);
729 cond_resched();
730 next:
731 return 0;
732 }
733
734 static const struct mm_walk_ops madvise_free_walk_ops = {
735 .pmd_entry = madvise_free_pte_range,
736 };
737
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)738 static int madvise_free_single_vma(struct vm_area_struct *vma,
739 unsigned long start_addr, unsigned long end_addr)
740 {
741 struct mm_struct *mm = vma->vm_mm;
742 struct mmu_notifier_range range;
743 struct mmu_gather tlb;
744
745 /* MADV_FREE works for only anon vma at the moment */
746 if (!vma_is_anonymous(vma))
747 return -EINVAL;
748
749 range.start = max(vma->vm_start, start_addr);
750 if (range.start >= vma->vm_end)
751 return -EINVAL;
752 range.end = min(vma->vm_end, end_addr);
753 if (range.end <= vma->vm_start)
754 return -EINVAL;
755 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
756 range.start, range.end);
757
758 lru_add_drain();
759 tlb_gather_mmu(&tlb, mm, range.start, range.end);
760 update_hiwater_rss(mm);
761
762 mmu_notifier_invalidate_range_start(&range);
763 tlb_start_vma(&tlb, vma);
764 walk_page_range(vma->vm_mm, range.start, range.end,
765 &madvise_free_walk_ops, &tlb);
766 tlb_end_vma(&tlb, vma);
767 mmu_notifier_invalidate_range_end(&range);
768 tlb_finish_mmu(&tlb, range.start, range.end);
769
770 return 0;
771 }
772
773 /*
774 * Application no longer needs these pages. If the pages are dirty,
775 * it's OK to just throw them away. The app will be more careful about
776 * data it wants to keep. Be sure to free swap resources too. The
777 * zap_page_range call sets things up for shrink_active_list to actually free
778 * these pages later if no one else has touched them in the meantime,
779 * although we could add these pages to a global reuse list for
780 * shrink_active_list to pick up before reclaiming other pages.
781 *
782 * NB: This interface discards data rather than pushes it out to swap,
783 * as some implementations do. This has performance implications for
784 * applications like large transactional databases which want to discard
785 * pages in anonymous maps after committing to backing store the data
786 * that was kept in them. There is no reason to write this data out to
787 * the swap area if the application is discarding it.
788 *
789 * An interface that causes the system to free clean pages and flush
790 * dirty pages is already available as msync(MS_INVALIDATE).
791 */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)792 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
793 unsigned long start, unsigned long end)
794 {
795 zap_page_range(vma, start, end - start);
796 return 0;
797 }
798
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)799 static long madvise_dontneed_free(struct vm_area_struct *vma,
800 struct vm_area_struct **prev,
801 unsigned long start, unsigned long end,
802 int behavior)
803 {
804 struct mm_struct *mm = vma->vm_mm;
805
806 *prev = vma;
807 if (!can_madv_lru_vma(vma))
808 return -EINVAL;
809
810 if (!userfaultfd_remove(vma, start, end)) {
811 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
812
813 mmap_read_lock(mm);
814 vma = find_vma(mm, start);
815 if (!vma)
816 return -ENOMEM;
817 if (start < vma->vm_start) {
818 /*
819 * This "vma" under revalidation is the one
820 * with the lowest vma->vm_start where start
821 * is also < vma->vm_end. If start <
822 * vma->vm_start it means an hole materialized
823 * in the user address space within the
824 * virtual range passed to MADV_DONTNEED
825 * or MADV_FREE.
826 */
827 return -ENOMEM;
828 }
829 if (!can_madv_lru_vma(vma))
830 return -EINVAL;
831 if (end > vma->vm_end) {
832 /*
833 * Don't fail if end > vma->vm_end. If the old
834 * vma was splitted while the mmap_lock was
835 * released the effect of the concurrent
836 * operation may not cause madvise() to
837 * have an undefined result. There may be an
838 * adjacent next vma that we'll walk
839 * next. userfaultfd_remove() will generate an
840 * UFFD_EVENT_REMOVE repetition on the
841 * end-vma->vm_end range, but the manager can
842 * handle a repetition fine.
843 */
844 end = vma->vm_end;
845 }
846 VM_WARN_ON(start >= end);
847 }
848
849 if (behavior == MADV_DONTNEED)
850 return madvise_dontneed_single_vma(vma, start, end);
851 else if (behavior == MADV_FREE)
852 return madvise_free_single_vma(vma, start, end);
853 else
854 return -EINVAL;
855 }
856
857 /*
858 * Application wants to free up the pages and associated backing store.
859 * This is effectively punching a hole into the middle of a file.
860 */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)861 static long madvise_remove(struct vm_area_struct *vma,
862 struct vm_area_struct **prev,
863 unsigned long start, unsigned long end)
864 {
865 loff_t offset;
866 int error;
867 struct file *f;
868 struct mm_struct *mm = vma->vm_mm;
869
870 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
871
872 if (vma->vm_flags & VM_LOCKED)
873 return -EINVAL;
874
875 f = vma->vm_file;
876
877 if (!f || !f->f_mapping || !f->f_mapping->host) {
878 return -EINVAL;
879 }
880
881 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
882 return -EACCES;
883
884 offset = (loff_t)(start - vma->vm_start)
885 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
886
887 /*
888 * Filesystem's fallocate may need to take i_mutex. We need to
889 * explicitly grab a reference because the vma (and hence the
890 * vma's reference to the file) can go away as soon as we drop
891 * mmap_lock.
892 */
893 get_file(f);
894 if (userfaultfd_remove(vma, start, end)) {
895 /* mmap_lock was not released by userfaultfd_remove() */
896 mmap_read_unlock(mm);
897 }
898 error = vfs_fallocate(f,
899 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
900 offset, end - start);
901 fput(f);
902 mmap_read_lock(mm);
903 return error;
904 }
905
906 #ifdef CONFIG_MEMORY_FAILURE
907 /*
908 * Error injection support for memory error handling.
909 */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)910 static int madvise_inject_error(int behavior,
911 unsigned long start, unsigned long end)
912 {
913 struct zone *zone;
914 unsigned long size;
915
916 if (!capable(CAP_SYS_ADMIN))
917 return -EPERM;
918
919
920 for (; start < end; start += size) {
921 unsigned long pfn;
922 struct page *page;
923 int ret;
924
925 ret = get_user_pages_fast(start, 1, 0, &page);
926 if (ret != 1)
927 return ret;
928 pfn = page_to_pfn(page);
929
930 /*
931 * When soft offlining hugepages, after migrating the page
932 * we dissolve it, therefore in the second loop "page" will
933 * no longer be a compound page.
934 */
935 size = page_size(compound_head(page));
936
937 if (behavior == MADV_SOFT_OFFLINE) {
938 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
939 pfn, start);
940 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
941 } else {
942 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
943 pfn, start);
944 ret = memory_failure(pfn, MF_COUNT_INCREASED);
945 }
946
947 if (ret)
948 return ret;
949 }
950
951 /* Ensure that all poisoned pages are removed from per-cpu lists */
952 for_each_populated_zone(zone)
953 drain_all_pages(zone);
954
955 return 0;
956 }
957 #endif
958
959 static long
madvise_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)960 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
961 unsigned long start, unsigned long end, int behavior)
962 {
963 switch (behavior) {
964 case MADV_REMOVE:
965 return madvise_remove(vma, prev, start, end);
966 case MADV_WILLNEED:
967 return madvise_willneed(vma, prev, start, end);
968 case MADV_COLD:
969 return madvise_cold(vma, prev, start, end);
970 case MADV_PAGEOUT:
971 return madvise_pageout(vma, prev, start, end);
972 case MADV_FREE:
973 case MADV_DONTNEED:
974 return madvise_dontneed_free(vma, prev, start, end, behavior);
975 default:
976 return madvise_behavior(vma, prev, start, end, behavior);
977 }
978 }
979
980 static bool
madvise_behavior_valid(int behavior)981 madvise_behavior_valid(int behavior)
982 {
983 switch (behavior) {
984 case MADV_DOFORK:
985 case MADV_DONTFORK:
986 case MADV_NORMAL:
987 case MADV_SEQUENTIAL:
988 case MADV_RANDOM:
989 case MADV_REMOVE:
990 case MADV_WILLNEED:
991 case MADV_DONTNEED:
992 case MADV_FREE:
993 case MADV_COLD:
994 case MADV_PAGEOUT:
995 #ifdef CONFIG_KSM
996 case MADV_MERGEABLE:
997 case MADV_UNMERGEABLE:
998 #endif
999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1000 case MADV_HUGEPAGE:
1001 case MADV_NOHUGEPAGE:
1002 #endif
1003 case MADV_DONTDUMP:
1004 case MADV_DODUMP:
1005 case MADV_WIPEONFORK:
1006 case MADV_KEEPONFORK:
1007 #ifdef CONFIG_MEMORY_FAILURE
1008 case MADV_SOFT_OFFLINE:
1009 case MADV_HWPOISON:
1010 #endif
1011 return true;
1012
1013 default:
1014 return false;
1015 }
1016 }
1017
1018 static bool
process_madvise_behavior_valid(int behavior)1019 process_madvise_behavior_valid(int behavior)
1020 {
1021 switch (behavior) {
1022 case MADV_COLD:
1023 case MADV_PAGEOUT:
1024 case MADV_WILLNEED:
1025 return true;
1026 default:
1027 return false;
1028 }
1029 }
1030
1031 /*
1032 * The madvise(2) system call.
1033 *
1034 * Applications can use madvise() to advise the kernel how it should
1035 * handle paging I/O in this VM area. The idea is to help the kernel
1036 * use appropriate read-ahead and caching techniques. The information
1037 * provided is advisory only, and can be safely disregarded by the
1038 * kernel without affecting the correct operation of the application.
1039 *
1040 * behavior values:
1041 * MADV_NORMAL - the default behavior is to read clusters. This
1042 * results in some read-ahead and read-behind.
1043 * MADV_RANDOM - the system should read the minimum amount of data
1044 * on any access, since it is unlikely that the appli-
1045 * cation will need more than what it asks for.
1046 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1047 * once, so they can be aggressively read ahead, and
1048 * can be freed soon after they are accessed.
1049 * MADV_WILLNEED - the application is notifying the system to read
1050 * some pages ahead.
1051 * MADV_DONTNEED - the application is finished with the given range,
1052 * so the kernel can free resources associated with it.
1053 * MADV_FREE - the application marks pages in the given range as lazy free,
1054 * where actual purges are postponed until memory pressure happens.
1055 * MADV_REMOVE - the application wants to free up the given range of
1056 * pages and associated backing store.
1057 * MADV_DONTFORK - omit this area from child's address space when forking:
1058 * typically, to avoid COWing pages pinned by get_user_pages().
1059 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1060 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1061 * range after a fork.
1062 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1063 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1064 * were corrupted by unrecoverable hardware memory failure.
1065 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1066 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1067 * this area with pages of identical content from other such areas.
1068 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1069 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1070 * huge pages in the future. Existing pages might be coalesced and
1071 * new pages might be allocated as THP.
1072 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1073 * transparent huge pages so the existing pages will not be
1074 * coalesced into THP and new pages will not be allocated as THP.
1075 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1076 * from being included in its core dump.
1077 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1078 * MADV_COLD - the application is not expected to use this memory soon,
1079 * deactivate pages in this range so that they can be reclaimed
1080 * easily if memory pressure hanppens.
1081 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1082 * page out the pages in this range immediately.
1083 *
1084 * return values:
1085 * zero - success
1086 * -EINVAL - start + len < 0, start is not page-aligned,
1087 * "behavior" is not a valid value, or application
1088 * is attempting to release locked or shared pages,
1089 * or the specified address range includes file, Huge TLB,
1090 * MAP_SHARED or VMPFNMAP range.
1091 * -ENOMEM - addresses in the specified range are not currently
1092 * mapped, or are outside the AS of the process.
1093 * -EIO - an I/O error occurred while paging in data.
1094 * -EBADF - map exists, but area maps something that isn't a file.
1095 * -EAGAIN - a kernel resource was temporarily unavailable.
1096 */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1097 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1098 {
1099 unsigned long end, tmp;
1100 struct vm_area_struct *vma, *prev;
1101 int unmapped_error = 0;
1102 int error = -EINVAL;
1103 int write;
1104 size_t len;
1105 struct blk_plug plug;
1106
1107 start = untagged_addr(start);
1108
1109 if (!madvise_behavior_valid(behavior))
1110 return error;
1111
1112 if (!PAGE_ALIGNED(start))
1113 return error;
1114 len = PAGE_ALIGN(len_in);
1115
1116 /* Check to see whether len was rounded up from small -ve to zero */
1117 if (len_in && !len)
1118 return error;
1119
1120 end = start + len;
1121 if (end < start)
1122 return error;
1123
1124 error = 0;
1125 if (end == start)
1126 return error;
1127
1128 #ifdef CONFIG_MEMORY_FAILURE
1129 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1130 return madvise_inject_error(behavior, start, start + len_in);
1131 #endif
1132
1133 write = madvise_need_mmap_write(behavior);
1134 if (write) {
1135 if (mmap_write_lock_killable(mm))
1136 return -EINTR;
1137 } else {
1138 mmap_read_lock(mm);
1139 }
1140
1141 /*
1142 * If the interval [start,end) covers some unmapped address
1143 * ranges, just ignore them, but return -ENOMEM at the end.
1144 * - different from the way of handling in mlock etc.
1145 */
1146 vma = find_vma_prev(mm, start, &prev);
1147 if (vma && start > vma->vm_start)
1148 prev = vma;
1149
1150 blk_start_plug(&plug);
1151 for (;;) {
1152 /* Still start < end. */
1153 error = -ENOMEM;
1154 if (!vma)
1155 goto out;
1156
1157 /* Here start < (end|vma->vm_end). */
1158 if (start < vma->vm_start) {
1159 unmapped_error = -ENOMEM;
1160 start = vma->vm_start;
1161 if (start >= end)
1162 goto out;
1163 }
1164
1165 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1166 tmp = vma->vm_end;
1167 if (end < tmp)
1168 tmp = end;
1169
1170 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1171 error = madvise_vma(vma, &prev, start, tmp, behavior);
1172 if (error)
1173 goto out;
1174 start = tmp;
1175 if (prev && start < prev->vm_end)
1176 start = prev->vm_end;
1177 error = unmapped_error;
1178 if (start >= end)
1179 goto out;
1180 if (prev)
1181 vma = prev->vm_next;
1182 else /* madvise_remove dropped mmap_lock */
1183 vma = find_vma(mm, start);
1184 }
1185 out:
1186 blk_finish_plug(&plug);
1187 if (write)
1188 mmap_write_unlock(mm);
1189 else
1190 mmap_read_unlock(mm);
1191
1192 return error;
1193 }
1194
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1195 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1196 {
1197 return do_madvise(current->mm, start, len_in, behavior);
1198 }
1199
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1200 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1201 size_t, vlen, int, behavior, unsigned int, flags)
1202 {
1203 ssize_t ret;
1204 struct iovec iovstack[UIO_FASTIOV], iovec;
1205 struct iovec *iov = iovstack;
1206 struct iov_iter iter;
1207 struct pid *pid;
1208 struct task_struct *task;
1209 struct mm_struct *mm;
1210 size_t total_len;
1211 unsigned int f_flags;
1212
1213 if (flags != 0) {
1214 ret = -EINVAL;
1215 goto out;
1216 }
1217
1218 ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1219 if (ret < 0)
1220 goto out;
1221
1222 pid = pidfd_get_pid(pidfd, &f_flags);
1223 if (IS_ERR(pid)) {
1224 ret = PTR_ERR(pid);
1225 goto free_iov;
1226 }
1227
1228 task = get_pid_task(pid, PIDTYPE_PID);
1229 if (!task) {
1230 ret = -ESRCH;
1231 goto put_pid;
1232 }
1233
1234 if (!process_madvise_behavior_valid(behavior)) {
1235 ret = -EINVAL;
1236 goto release_task;
1237 }
1238
1239 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1240 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1241 if (IS_ERR_OR_NULL(mm)) {
1242 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1243 goto release_task;
1244 }
1245
1246 /*
1247 * Require CAP_SYS_NICE for influencing process performance. Note that
1248 * only non-destructive hints are currently supported.
1249 */
1250 if (!capable(CAP_SYS_NICE)) {
1251 ret = -EPERM;
1252 goto release_mm;
1253 }
1254
1255 total_len = iov_iter_count(&iter);
1256
1257 while (iov_iter_count(&iter)) {
1258 iovec = iov_iter_iovec(&iter);
1259 ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1260 iovec.iov_len, behavior);
1261 if (ret < 0)
1262 break;
1263 iov_iter_advance(&iter, iovec.iov_len);
1264 }
1265
1266 ret = (total_len - iov_iter_count(&iter)) ? : ret;
1267
1268 release_mm:
1269 mmput(mm);
1270 release_task:
1271 put_task_struct(task);
1272 put_pid:
1273 put_pid(pid);
1274 free_iov:
1275 kfree(iov);
1276 out:
1277 return ret;
1278 }
1279