1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 /**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110
111 struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
121
122 .bottom_up = false,
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124 };
125
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132 };
133 #endif
134
135 /*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
143 #define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
148 #define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154 static int memblock_debug __initdata_memblock;
155 static bool memblock_nomap_remove __initdata_memblock;
156 static bool system_has_some_mirror __initdata_memblock = false;
157 static int memblock_can_resize __initdata_memblock;
158 static int memblock_memory_in_slab __initdata_memblock = 0;
159 static int memblock_reserved_in_slab __initdata_memblock = 0;
160
choose_memblock_flags(void)161 static enum memblock_flags __init_memblock choose_memblock_flags(void)
162 {
163 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
164 }
165
166 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)167 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
168 {
169 return *size = min(*size, PHYS_ADDR_MAX - base);
170 }
171
172 /*
173 * Address comparison utilities
174 */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)175 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
176 phys_addr_t base2, phys_addr_t size2)
177 {
178 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
179 }
180
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)181 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
182 phys_addr_t base, phys_addr_t size)
183 {
184 unsigned long i;
185
186 memblock_cap_size(base, &size);
187
188 for (i = 0; i < type->cnt; i++)
189 if (memblock_addrs_overlap(base, size, type->regions[i].base,
190 type->regions[i].size))
191 break;
192 return i < type->cnt;
193 }
194
195 /**
196 * __memblock_find_range_bottom_up - find free area utility in bottom-up
197 * @start: start of candidate range
198 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
199 * %MEMBLOCK_ALLOC_ACCESSIBLE
200 * @size: size of free area to find
201 * @align: alignment of free area to find
202 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
203 * @flags: pick from blocks based on memory attributes
204 *
205 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
206 *
207 * Return:
208 * Found address on success, 0 on failure.
209 */
210 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)211 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
212 phys_addr_t size, phys_addr_t align, int nid,
213 enum memblock_flags flags)
214 {
215 phys_addr_t this_start, this_end, cand;
216 u64 i;
217
218 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
219 this_start = clamp(this_start, start, end);
220 this_end = clamp(this_end, start, end);
221
222 cand = round_up(this_start, align);
223 if (cand < this_end && this_end - cand >= size)
224 return cand;
225 }
226
227 return 0;
228 }
229
230 /**
231 * __memblock_find_range_top_down - find free area utility, in top-down
232 * @start: start of candidate range
233 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
234 * %MEMBLOCK_ALLOC_ACCESSIBLE
235 * @size: size of free area to find
236 * @align: alignment of free area to find
237 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
238 * @flags: pick from blocks based on memory attributes
239 *
240 * Utility called from memblock_find_in_range_node(), find free area top-down.
241 *
242 * Return:
243 * Found address on success, 0 on failure.
244 */
245 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)246 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
247 phys_addr_t size, phys_addr_t align, int nid,
248 enum memblock_flags flags)
249 {
250 phys_addr_t this_start, this_end, cand;
251 u64 i;
252
253 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
254 NULL) {
255 this_start = clamp(this_start, start, end);
256 this_end = clamp(this_end, start, end);
257
258 if (this_end < size)
259 continue;
260
261 cand = round_down(this_end - size, align);
262 if (cand >= this_start)
263 return cand;
264 }
265
266 return 0;
267 }
268
269 /**
270 * memblock_find_in_range_node - find free area in given range and node
271 * @size: size of free area to find
272 * @align: alignment of free area to find
273 * @start: start of candidate range
274 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
275 * %MEMBLOCK_ALLOC_ACCESSIBLE
276 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
277 * @flags: pick from blocks based on memory attributes
278 *
279 * Find @size free area aligned to @align in the specified range and node.
280 *
281 * Return:
282 * Found address on success, 0 on failure.
283 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)284 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
285 phys_addr_t align, phys_addr_t start,
286 phys_addr_t end, int nid,
287 enum memblock_flags flags)
288 {
289 /* pump up @end */
290 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
291 end == MEMBLOCK_ALLOC_KASAN)
292 end = memblock.current_limit;
293
294 /* avoid allocating the first page */
295 start = max_t(phys_addr_t, start, PAGE_SIZE);
296 end = max(start, end);
297
298 if (memblock_bottom_up())
299 return __memblock_find_range_bottom_up(start, end, size, align,
300 nid, flags);
301 else
302 return __memblock_find_range_top_down(start, end, size, align,
303 nid, flags);
304 }
305
306 /**
307 * memblock_find_in_range - find free area in given range
308 * @start: start of candidate range
309 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
310 * %MEMBLOCK_ALLOC_ACCESSIBLE
311 * @size: size of free area to find
312 * @align: alignment of free area to find
313 *
314 * Find @size free area aligned to @align in the specified range.
315 *
316 * Return:
317 * Found address on success, 0 on failure.
318 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)319 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
320 phys_addr_t end, phys_addr_t size,
321 phys_addr_t align)
322 {
323 phys_addr_t ret;
324 enum memblock_flags flags = choose_memblock_flags();
325
326 again:
327 ret = memblock_find_in_range_node(size, align, start, end,
328 NUMA_NO_NODE, flags);
329
330 if (!ret && (flags & MEMBLOCK_MIRROR)) {
331 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
332 &size);
333 flags &= ~MEMBLOCK_MIRROR;
334 goto again;
335 }
336
337 return ret;
338 }
339
memblock_remove_region(struct memblock_type * type,unsigned long r)340 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
341 {
342 type->total_size -= type->regions[r].size;
343 memmove(&type->regions[r], &type->regions[r + 1],
344 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
345 type->cnt--;
346
347 /* Special case for empty arrays */
348 if (type->cnt == 0) {
349 WARN_ON(type->total_size != 0);
350 type->cnt = 1;
351 type->regions[0].base = 0;
352 type->regions[0].size = 0;
353 type->regions[0].flags = 0;
354 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
355 }
356 }
357
358 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
359 /**
360 * memblock_discard - discard memory and reserved arrays if they were allocated
361 */
memblock_discard(void)362 void __init memblock_discard(void)
363 {
364 phys_addr_t addr, size;
365
366 if (memblock.reserved.regions != memblock_reserved_init_regions) {
367 addr = __pa(memblock.reserved.regions);
368 size = PAGE_ALIGN(sizeof(struct memblock_region) *
369 memblock.reserved.max);
370 if (memblock_reserved_in_slab)
371 kfree(memblock.reserved.regions);
372 else
373 __memblock_free_late(addr, size);
374 }
375
376 if (memblock.memory.regions != memblock_memory_init_regions) {
377 addr = __pa(memblock.memory.regions);
378 size = PAGE_ALIGN(sizeof(struct memblock_region) *
379 memblock.memory.max);
380 if (memblock_memory_in_slab)
381 kfree(memblock.memory.regions);
382 else
383 __memblock_free_late(addr, size);
384 }
385
386 memblock_memory = NULL;
387 }
388 #endif
389
390 /**
391 * memblock_double_array - double the size of the memblock regions array
392 * @type: memblock type of the regions array being doubled
393 * @new_area_start: starting address of memory range to avoid overlap with
394 * @new_area_size: size of memory range to avoid overlap with
395 *
396 * Double the size of the @type regions array. If memblock is being used to
397 * allocate memory for a new reserved regions array and there is a previously
398 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
399 * waiting to be reserved, ensure the memory used by the new array does
400 * not overlap.
401 *
402 * Return:
403 * 0 on success, -1 on failure.
404 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)405 static int __init_memblock memblock_double_array(struct memblock_type *type,
406 phys_addr_t new_area_start,
407 phys_addr_t new_area_size)
408 {
409 struct memblock_region *new_array, *old_array;
410 phys_addr_t old_alloc_size, new_alloc_size;
411 phys_addr_t old_size, new_size, addr, new_end;
412 int use_slab = slab_is_available();
413 int *in_slab;
414
415 /* We don't allow resizing until we know about the reserved regions
416 * of memory that aren't suitable for allocation
417 */
418 if (!memblock_can_resize)
419 return -1;
420
421 /* Calculate new doubled size */
422 old_size = type->max * sizeof(struct memblock_region);
423 new_size = old_size << 1;
424 /*
425 * We need to allocated new one align to PAGE_SIZE,
426 * so we can free them completely later.
427 */
428 old_alloc_size = PAGE_ALIGN(old_size);
429 new_alloc_size = PAGE_ALIGN(new_size);
430
431 /* Retrieve the slab flag */
432 if (type == &memblock.memory)
433 in_slab = &memblock_memory_in_slab;
434 else
435 in_slab = &memblock_reserved_in_slab;
436
437 /* Try to find some space for it */
438 if (use_slab) {
439 new_array = kmalloc(new_size, GFP_KERNEL);
440 addr = new_array ? __pa(new_array) : 0;
441 } else {
442 /* only exclude range when trying to double reserved.regions */
443 if (type != &memblock.reserved)
444 new_area_start = new_area_size = 0;
445
446 addr = memblock_find_in_range(new_area_start + new_area_size,
447 memblock.current_limit,
448 new_alloc_size, PAGE_SIZE);
449 if (!addr && new_area_size)
450 addr = memblock_find_in_range(0,
451 min(new_area_start, memblock.current_limit),
452 new_alloc_size, PAGE_SIZE);
453
454 new_array = addr ? __va(addr) : NULL;
455 }
456 if (!addr) {
457 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
458 type->name, type->max, type->max * 2);
459 return -1;
460 }
461
462 new_end = addr + new_size - 1;
463 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
464 type->name, type->max * 2, &addr, &new_end);
465
466 /*
467 * Found space, we now need to move the array over before we add the
468 * reserved region since it may be our reserved array itself that is
469 * full.
470 */
471 memcpy(new_array, type->regions, old_size);
472 memset(new_array + type->max, 0, old_size);
473 old_array = type->regions;
474 type->regions = new_array;
475 type->max <<= 1;
476
477 /* Free old array. We needn't free it if the array is the static one */
478 if (*in_slab)
479 kfree(old_array);
480 else if (old_array != memblock_memory_init_regions &&
481 old_array != memblock_reserved_init_regions)
482 memblock_free(__pa(old_array), old_alloc_size);
483
484 /*
485 * Reserve the new array if that comes from the memblock. Otherwise, we
486 * needn't do it
487 */
488 if (!use_slab)
489 BUG_ON(memblock_reserve(addr, new_alloc_size));
490
491 /* Update slab flag */
492 *in_slab = use_slab;
493
494 return 0;
495 }
496
497 /**
498 * memblock_merge_regions - merge neighboring compatible regions
499 * @type: memblock type to scan
500 *
501 * Scan @type and merge neighboring compatible regions.
502 */
memblock_merge_regions(struct memblock_type * type)503 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
504 {
505 int i = 0;
506
507 /* cnt never goes below 1 */
508 while (i < type->cnt - 1) {
509 struct memblock_region *this = &type->regions[i];
510 struct memblock_region *next = &type->regions[i + 1];
511
512 if (this->base + this->size != next->base ||
513 memblock_get_region_node(this) !=
514 memblock_get_region_node(next) ||
515 this->flags != next->flags) {
516 BUG_ON(this->base + this->size > next->base);
517 i++;
518 continue;
519 }
520
521 this->size += next->size;
522 /* move forward from next + 1, index of which is i + 2 */
523 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
524 type->cnt--;
525 }
526 }
527
528 /**
529 * memblock_insert_region - insert new memblock region
530 * @type: memblock type to insert into
531 * @idx: index for the insertion point
532 * @base: base address of the new region
533 * @size: size of the new region
534 * @nid: node id of the new region
535 * @flags: flags of the new region
536 *
537 * Insert new memblock region [@base, @base + @size) into @type at @idx.
538 * @type must already have extra room to accommodate the new region.
539 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)540 static void __init_memblock memblock_insert_region(struct memblock_type *type,
541 int idx, phys_addr_t base,
542 phys_addr_t size,
543 int nid,
544 enum memblock_flags flags)
545 {
546 struct memblock_region *rgn = &type->regions[idx];
547
548 BUG_ON(type->cnt >= type->max);
549 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
550 rgn->base = base;
551 rgn->size = size;
552 rgn->flags = flags;
553 memblock_set_region_node(rgn, nid);
554 type->cnt++;
555 type->total_size += size;
556 }
557
558 /**
559 * memblock_add_range - add new memblock region
560 * @type: memblock type to add new region into
561 * @base: base address of the new region
562 * @size: size of the new region
563 * @nid: nid of the new region
564 * @flags: flags of the new region
565 *
566 * Add new memblock region [@base, @base + @size) into @type. The new region
567 * is allowed to overlap with existing ones - overlaps don't affect already
568 * existing regions. @type is guaranteed to be minimal (all neighbouring
569 * compatible regions are merged) after the addition.
570 *
571 * Return:
572 * 0 on success, -errno on failure.
573 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)574 static int __init_memblock memblock_add_range(struct memblock_type *type,
575 phys_addr_t base, phys_addr_t size,
576 int nid, enum memblock_flags flags)
577 {
578 bool insert = false;
579 phys_addr_t obase = base;
580 phys_addr_t end = base + memblock_cap_size(base, &size);
581 int idx, nr_new;
582 struct memblock_region *rgn;
583
584 if (!size)
585 return 0;
586
587 /* special case for empty array */
588 if (type->regions[0].size == 0) {
589 WARN_ON(type->cnt != 1 || type->total_size);
590 type->regions[0].base = base;
591 type->regions[0].size = size;
592 type->regions[0].flags = flags;
593 memblock_set_region_node(&type->regions[0], nid);
594 type->total_size = size;
595 return 0;
596 }
597 repeat:
598 /*
599 * The following is executed twice. Once with %false @insert and
600 * then with %true. The first counts the number of regions needed
601 * to accommodate the new area. The second actually inserts them.
602 */
603 base = obase;
604 nr_new = 0;
605
606 for_each_memblock_type(idx, type, rgn) {
607 phys_addr_t rbase = rgn->base;
608 phys_addr_t rend = rbase + rgn->size;
609
610 if (rbase >= end)
611 break;
612 if (rend <= base)
613 continue;
614 /*
615 * @rgn overlaps. If it separates the lower part of new
616 * area, insert that portion.
617 */
618 if (rbase > base) {
619 #ifdef CONFIG_NEED_MULTIPLE_NODES
620 WARN_ON(nid != memblock_get_region_node(rgn));
621 #endif
622 WARN_ON(flags != rgn->flags);
623 nr_new++;
624 if (insert)
625 memblock_insert_region(type, idx++, base,
626 rbase - base, nid,
627 flags);
628 }
629 /* area below @rend is dealt with, forget about it */
630 base = min(rend, end);
631 }
632
633 /* insert the remaining portion */
634 if (base < end) {
635 nr_new++;
636 if (insert)
637 memblock_insert_region(type, idx, base, end - base,
638 nid, flags);
639 }
640
641 if (!nr_new)
642 return 0;
643
644 /*
645 * If this was the first round, resize array and repeat for actual
646 * insertions; otherwise, merge and return.
647 */
648 if (!insert) {
649 while (type->cnt + nr_new > type->max)
650 if (memblock_double_array(type, obase, size) < 0)
651 return -ENOMEM;
652 insert = true;
653 goto repeat;
654 } else {
655 memblock_merge_regions(type);
656 return 0;
657 }
658 }
659
660 /**
661 * memblock_add_node - add new memblock region within a NUMA node
662 * @base: base address of the new region
663 * @size: size of the new region
664 * @nid: nid of the new region
665 *
666 * Add new memblock region [@base, @base + @size) to the "memory"
667 * type. See memblock_add_range() description for mode details
668 *
669 * Return:
670 * 0 on success, -errno on failure.
671 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)672 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
673 int nid)
674 {
675 return memblock_add_range(&memblock.memory, base, size, nid, 0);
676 }
677
678 /**
679 * memblock_add - add new memblock region
680 * @base: base address of the new region
681 * @size: size of the new region
682 *
683 * Add new memblock region [@base, @base + @size) to the "memory"
684 * type. See memblock_add_range() description for mode details
685 *
686 * Return:
687 * 0 on success, -errno on failure.
688 */
memblock_add(phys_addr_t base,phys_addr_t size)689 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
690 {
691 phys_addr_t end = base + size - 1;
692
693 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
694 &base, &end, (void *)_RET_IP_);
695
696 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
697 }
698
699 /**
700 * memblock_isolate_range - isolate given range into disjoint memblocks
701 * @type: memblock type to isolate range for
702 * @base: base of range to isolate
703 * @size: size of range to isolate
704 * @start_rgn: out parameter for the start of isolated region
705 * @end_rgn: out parameter for the end of isolated region
706 *
707 * Walk @type and ensure that regions don't cross the boundaries defined by
708 * [@base, @base + @size). Crossing regions are split at the boundaries,
709 * which may create at most two more regions. The index of the first
710 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
711 *
712 * Return:
713 * 0 on success, -errno on failure.
714 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)715 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
716 phys_addr_t base, phys_addr_t size,
717 int *start_rgn, int *end_rgn)
718 {
719 phys_addr_t end = base + memblock_cap_size(base, &size);
720 int idx;
721 struct memblock_region *rgn;
722
723 *start_rgn = *end_rgn = 0;
724
725 if (!size)
726 return 0;
727
728 /* we'll create at most two more regions */
729 while (type->cnt + 2 > type->max)
730 if (memblock_double_array(type, base, size) < 0)
731 return -ENOMEM;
732
733 for_each_memblock_type(idx, type, rgn) {
734 phys_addr_t rbase = rgn->base;
735 phys_addr_t rend = rbase + rgn->size;
736
737 if (rbase >= end)
738 break;
739 if (rend <= base)
740 continue;
741
742 if (rbase < base) {
743 /*
744 * @rgn intersects from below. Split and continue
745 * to process the next region - the new top half.
746 */
747 rgn->base = base;
748 rgn->size -= base - rbase;
749 type->total_size -= base - rbase;
750 memblock_insert_region(type, idx, rbase, base - rbase,
751 memblock_get_region_node(rgn),
752 rgn->flags);
753 } else if (rend > end) {
754 /*
755 * @rgn intersects from above. Split and redo the
756 * current region - the new bottom half.
757 */
758 rgn->base = end;
759 rgn->size -= end - rbase;
760 type->total_size -= end - rbase;
761 memblock_insert_region(type, idx--, rbase, end - rbase,
762 memblock_get_region_node(rgn),
763 rgn->flags);
764 } else {
765 /* @rgn is fully contained, record it */
766 if (!*end_rgn)
767 *start_rgn = idx;
768 *end_rgn = idx + 1;
769 }
770 }
771
772 return 0;
773 }
774
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)775 static int __init_memblock memblock_remove_range(struct memblock_type *type,
776 phys_addr_t base, phys_addr_t size)
777 {
778 int start_rgn, end_rgn;
779 int i, ret;
780
781 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
782 if (ret)
783 return ret;
784
785 for (i = end_rgn - 1; i >= start_rgn; i--)
786 memblock_remove_region(type, i);
787 return 0;
788 }
789
memblock_remove(phys_addr_t base,phys_addr_t size)790 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
791 {
792 phys_addr_t end = base + size - 1;
793
794 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
795 &base, &end, (void *)_RET_IP_);
796
797 return memblock_remove_range(&memblock.memory, base, size);
798 }
799
800 /**
801 * memblock_free - free boot memory block
802 * @base: phys starting address of the boot memory block
803 * @size: size of the boot memory block in bytes
804 *
805 * Free boot memory block previously allocated by memblock_alloc_xx() API.
806 * The freeing memory will not be released to the buddy allocator.
807 */
memblock_free(phys_addr_t base,phys_addr_t size)808 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
809 {
810 phys_addr_t end = base + size - 1;
811
812 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
813 &base, &end, (void *)_RET_IP_);
814
815 kmemleak_free_part_phys(base, size);
816 return memblock_remove_range(&memblock.reserved, base, size);
817 }
818 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
819 EXPORT_SYMBOL_GPL(memblock_free);
820 #endif
821
memblock_reserve(phys_addr_t base,phys_addr_t size)822 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
823 {
824 phys_addr_t end = base + size - 1;
825
826 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
827 &base, &end, (void *)_RET_IP_);
828
829 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
830 }
831
832 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)833 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
834 {
835 phys_addr_t end = base + size - 1;
836
837 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
838 &base, &end, (void *)_RET_IP_);
839
840 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
841 }
842 #endif
843
844 /**
845 * memblock_setclr_flag - set or clear flag for a memory region
846 * @base: base address of the region
847 * @size: size of the region
848 * @set: set or clear the flag
849 * @flag: the flag to udpate
850 *
851 * This function isolates region [@base, @base + @size), and sets/clears flag
852 *
853 * Return: 0 on success, -errno on failure.
854 */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)855 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
856 phys_addr_t size, int set, int flag)
857 {
858 struct memblock_type *type = &memblock.memory;
859 int i, ret, start_rgn, end_rgn;
860
861 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
862 if (ret)
863 return ret;
864
865 for (i = start_rgn; i < end_rgn; i++) {
866 struct memblock_region *r = &type->regions[i];
867
868 if (set)
869 r->flags |= flag;
870 else
871 r->flags &= ~flag;
872 }
873
874 memblock_merge_regions(type);
875 return 0;
876 }
877
878 /**
879 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
880 * @base: the base phys addr of the region
881 * @size: the size of the region
882 *
883 * Return: 0 on success, -errno on failure.
884 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)885 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
886 {
887 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
888 }
889
890 /**
891 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
892 * @base: the base phys addr of the region
893 * @size: the size of the region
894 *
895 * Return: 0 on success, -errno on failure.
896 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)897 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
898 {
899 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
900 }
901
902 /**
903 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
904 * @base: the base phys addr of the region
905 * @size: the size of the region
906 *
907 * Return: 0 on success, -errno on failure.
908 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)909 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
910 {
911 system_has_some_mirror = true;
912
913 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
914 }
915
916 /**
917 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
918 * @base: the base phys addr of the region
919 * @size: the size of the region
920 *
921 * Return: 0 on success, -errno on failure.
922 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)923 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
924 {
925 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
926 }
927
928 /**
929 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
930 * @base: the base phys addr of the region
931 * @size: the size of the region
932 *
933 * Return: 0 on success, -errno on failure.
934 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)935 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
936 {
937 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
938 }
939
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)940 static bool should_skip_region(struct memblock_type *type,
941 struct memblock_region *m,
942 int nid, int flags)
943 {
944 int m_nid = memblock_get_region_node(m);
945
946 /* we never skip regions when iterating memblock.reserved or physmem */
947 if (type != memblock_memory)
948 return false;
949
950 /* only memory regions are associated with nodes, check it */
951 if (nid != NUMA_NO_NODE && nid != m_nid)
952 return true;
953
954 /* skip hotpluggable memory regions if needed */
955 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
956 !(flags & MEMBLOCK_HOTPLUG))
957 return true;
958
959 /* if we want mirror memory skip non-mirror memory regions */
960 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
961 return true;
962
963 /* skip nomap memory unless we were asked for it explicitly */
964 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
965 return true;
966
967 return false;
968 }
969
970 /**
971 * __next_mem_range - next function for for_each_free_mem_range() etc.
972 * @idx: pointer to u64 loop variable
973 * @nid: node selector, %NUMA_NO_NODE for all nodes
974 * @flags: pick from blocks based on memory attributes
975 * @type_a: pointer to memblock_type from where the range is taken
976 * @type_b: pointer to memblock_type which excludes memory from being taken
977 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
978 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
979 * @out_nid: ptr to int for nid of the range, can be %NULL
980 *
981 * Find the first area from *@idx which matches @nid, fill the out
982 * parameters, and update *@idx for the next iteration. The lower 32bit of
983 * *@idx contains index into type_a and the upper 32bit indexes the
984 * areas before each region in type_b. For example, if type_b regions
985 * look like the following,
986 *
987 * 0:[0-16), 1:[32-48), 2:[128-130)
988 *
989 * The upper 32bit indexes the following regions.
990 *
991 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
992 *
993 * As both region arrays are sorted, the function advances the two indices
994 * in lockstep and returns each intersection.
995 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)996 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
997 struct memblock_type *type_a,
998 struct memblock_type *type_b, phys_addr_t *out_start,
999 phys_addr_t *out_end, int *out_nid)
1000 {
1001 int idx_a = *idx & 0xffffffff;
1002 int idx_b = *idx >> 32;
1003
1004 if (WARN_ONCE(nid == MAX_NUMNODES,
1005 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1006 nid = NUMA_NO_NODE;
1007
1008 for (; idx_a < type_a->cnt; idx_a++) {
1009 struct memblock_region *m = &type_a->regions[idx_a];
1010
1011 phys_addr_t m_start = m->base;
1012 phys_addr_t m_end = m->base + m->size;
1013 int m_nid = memblock_get_region_node(m);
1014
1015 if (should_skip_region(type_a, m, nid, flags))
1016 continue;
1017
1018 if (!type_b) {
1019 if (out_start)
1020 *out_start = m_start;
1021 if (out_end)
1022 *out_end = m_end;
1023 if (out_nid)
1024 *out_nid = m_nid;
1025 idx_a++;
1026 *idx = (u32)idx_a | (u64)idx_b << 32;
1027 return;
1028 }
1029
1030 /* scan areas before each reservation */
1031 for (; idx_b < type_b->cnt + 1; idx_b++) {
1032 struct memblock_region *r;
1033 phys_addr_t r_start;
1034 phys_addr_t r_end;
1035
1036 r = &type_b->regions[idx_b];
1037 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1038 r_end = idx_b < type_b->cnt ?
1039 r->base : PHYS_ADDR_MAX;
1040
1041 /*
1042 * if idx_b advanced past idx_a,
1043 * break out to advance idx_a
1044 */
1045 if (r_start >= m_end)
1046 break;
1047 /* if the two regions intersect, we're done */
1048 if (m_start < r_end) {
1049 if (out_start)
1050 *out_start =
1051 max(m_start, r_start);
1052 if (out_end)
1053 *out_end = min(m_end, r_end);
1054 if (out_nid)
1055 *out_nid = m_nid;
1056 /*
1057 * The region which ends first is
1058 * advanced for the next iteration.
1059 */
1060 if (m_end <= r_end)
1061 idx_a++;
1062 else
1063 idx_b++;
1064 *idx = (u32)idx_a | (u64)idx_b << 32;
1065 return;
1066 }
1067 }
1068 }
1069
1070 /* signal end of iteration */
1071 *idx = ULLONG_MAX;
1072 }
1073
1074 /**
1075 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1076 *
1077 * @idx: pointer to u64 loop variable
1078 * @nid: node selector, %NUMA_NO_NODE for all nodes
1079 * @flags: pick from blocks based on memory attributes
1080 * @type_a: pointer to memblock_type from where the range is taken
1081 * @type_b: pointer to memblock_type which excludes memory from being taken
1082 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1083 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1084 * @out_nid: ptr to int for nid of the range, can be %NULL
1085 *
1086 * Finds the next range from type_a which is not marked as unsuitable
1087 * in type_b.
1088 *
1089 * Reverse of __next_mem_range().
1090 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1091 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1092 enum memblock_flags flags,
1093 struct memblock_type *type_a,
1094 struct memblock_type *type_b,
1095 phys_addr_t *out_start,
1096 phys_addr_t *out_end, int *out_nid)
1097 {
1098 int idx_a = *idx & 0xffffffff;
1099 int idx_b = *idx >> 32;
1100
1101 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1102 nid = NUMA_NO_NODE;
1103
1104 if (*idx == (u64)ULLONG_MAX) {
1105 idx_a = type_a->cnt - 1;
1106 if (type_b != NULL)
1107 idx_b = type_b->cnt;
1108 else
1109 idx_b = 0;
1110 }
1111
1112 for (; idx_a >= 0; idx_a--) {
1113 struct memblock_region *m = &type_a->regions[idx_a];
1114
1115 phys_addr_t m_start = m->base;
1116 phys_addr_t m_end = m->base + m->size;
1117 int m_nid = memblock_get_region_node(m);
1118
1119 if (should_skip_region(type_a, m, nid, flags))
1120 continue;
1121
1122 if (!type_b) {
1123 if (out_start)
1124 *out_start = m_start;
1125 if (out_end)
1126 *out_end = m_end;
1127 if (out_nid)
1128 *out_nid = m_nid;
1129 idx_a--;
1130 *idx = (u32)idx_a | (u64)idx_b << 32;
1131 return;
1132 }
1133
1134 /* scan areas before each reservation */
1135 for (; idx_b >= 0; idx_b--) {
1136 struct memblock_region *r;
1137 phys_addr_t r_start;
1138 phys_addr_t r_end;
1139
1140 r = &type_b->regions[idx_b];
1141 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1142 r_end = idx_b < type_b->cnt ?
1143 r->base : PHYS_ADDR_MAX;
1144 /*
1145 * if idx_b advanced past idx_a,
1146 * break out to advance idx_a
1147 */
1148
1149 if (r_end <= m_start)
1150 break;
1151 /* if the two regions intersect, we're done */
1152 if (m_end > r_start) {
1153 if (out_start)
1154 *out_start = max(m_start, r_start);
1155 if (out_end)
1156 *out_end = min(m_end, r_end);
1157 if (out_nid)
1158 *out_nid = m_nid;
1159 if (m_start >= r_start)
1160 idx_a--;
1161 else
1162 idx_b--;
1163 *idx = (u32)idx_a | (u64)idx_b << 32;
1164 return;
1165 }
1166 }
1167 }
1168 /* signal end of iteration */
1169 *idx = ULLONG_MAX;
1170 }
1171
1172 /*
1173 * Common iterator interface used to define for_each_mem_pfn_range().
1174 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1175 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1176 unsigned long *out_start_pfn,
1177 unsigned long *out_end_pfn, int *out_nid)
1178 {
1179 struct memblock_type *type = &memblock.memory;
1180 struct memblock_region *r;
1181 int r_nid;
1182
1183 while (++*idx < type->cnt) {
1184 r = &type->regions[*idx];
1185 r_nid = memblock_get_region_node(r);
1186
1187 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1188 continue;
1189 if (nid == MAX_NUMNODES || nid == r_nid)
1190 break;
1191 }
1192 if (*idx >= type->cnt) {
1193 *idx = -1;
1194 return;
1195 }
1196
1197 if (out_start_pfn)
1198 *out_start_pfn = PFN_UP(r->base);
1199 if (out_end_pfn)
1200 *out_end_pfn = PFN_DOWN(r->base + r->size);
1201 if (out_nid)
1202 *out_nid = r_nid;
1203 }
1204
1205 /**
1206 * memblock_set_node - set node ID on memblock regions
1207 * @base: base of area to set node ID for
1208 * @size: size of area to set node ID for
1209 * @type: memblock type to set node ID for
1210 * @nid: node ID to set
1211 *
1212 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1213 * Regions which cross the area boundaries are split as necessary.
1214 *
1215 * Return:
1216 * 0 on success, -errno on failure.
1217 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1218 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1219 struct memblock_type *type, int nid)
1220 {
1221 #ifdef CONFIG_NEED_MULTIPLE_NODES
1222 int start_rgn, end_rgn;
1223 int i, ret;
1224
1225 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1226 if (ret)
1227 return ret;
1228
1229 for (i = start_rgn; i < end_rgn; i++)
1230 memblock_set_region_node(&type->regions[i], nid);
1231
1232 memblock_merge_regions(type);
1233 #endif
1234 return 0;
1235 }
1236
1237 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1238 /**
1239 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1240 *
1241 * @idx: pointer to u64 loop variable
1242 * @zone: zone in which all of the memory blocks reside
1243 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1244 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1245 *
1246 * This function is meant to be a zone/pfn specific wrapper for the
1247 * for_each_mem_range type iterators. Specifically they are used in the
1248 * deferred memory init routines and as such we were duplicating much of
1249 * this logic throughout the code. So instead of having it in multiple
1250 * locations it seemed like it would make more sense to centralize this to
1251 * one new iterator that does everything they need.
1252 */
1253 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1254 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1255 unsigned long *out_spfn, unsigned long *out_epfn)
1256 {
1257 int zone_nid = zone_to_nid(zone);
1258 phys_addr_t spa, epa;
1259 int nid;
1260
1261 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1262 &memblock.memory, &memblock.reserved,
1263 &spa, &epa, &nid);
1264
1265 while (*idx != U64_MAX) {
1266 unsigned long epfn = PFN_DOWN(epa);
1267 unsigned long spfn = PFN_UP(spa);
1268
1269 /*
1270 * Verify the end is at least past the start of the zone and
1271 * that we have at least one PFN to initialize.
1272 */
1273 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1274 /* if we went too far just stop searching */
1275 if (zone_end_pfn(zone) <= spfn) {
1276 *idx = U64_MAX;
1277 break;
1278 }
1279
1280 if (out_spfn)
1281 *out_spfn = max(zone->zone_start_pfn, spfn);
1282 if (out_epfn)
1283 *out_epfn = min(zone_end_pfn(zone), epfn);
1284
1285 return;
1286 }
1287
1288 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1289 &memblock.memory, &memblock.reserved,
1290 &spa, &epa, &nid);
1291 }
1292
1293 /* signal end of iteration */
1294 if (out_spfn)
1295 *out_spfn = ULONG_MAX;
1296 if (out_epfn)
1297 *out_epfn = 0;
1298 }
1299
1300 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1301
1302 /**
1303 * memblock_alloc_range_nid - allocate boot memory block
1304 * @size: size of memory block to be allocated in bytes
1305 * @align: alignment of the region and block's size
1306 * @start: the lower bound of the memory region to allocate (phys address)
1307 * @end: the upper bound of the memory region to allocate (phys address)
1308 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1309 * @exact_nid: control the allocation fall back to other nodes
1310 *
1311 * The allocation is performed from memory region limited by
1312 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1313 *
1314 * If the specified node can not hold the requested memory and @exact_nid
1315 * is false, the allocation falls back to any node in the system.
1316 *
1317 * For systems with memory mirroring, the allocation is attempted first
1318 * from the regions with mirroring enabled and then retried from any
1319 * memory region.
1320 *
1321 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1322 * allocated boot memory block, so that it is never reported as leaks.
1323 *
1324 * Return:
1325 * Physical address of allocated memory block on success, %0 on failure.
1326 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1327 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1328 phys_addr_t align, phys_addr_t start,
1329 phys_addr_t end, int nid,
1330 bool exact_nid)
1331 {
1332 enum memblock_flags flags = choose_memblock_flags();
1333 phys_addr_t found;
1334
1335 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1336 nid = NUMA_NO_NODE;
1337
1338 if (!align) {
1339 /* Can't use WARNs this early in boot on powerpc */
1340 dump_stack();
1341 align = SMP_CACHE_BYTES;
1342 }
1343
1344 again:
1345 found = memblock_find_in_range_node(size, align, start, end, nid,
1346 flags);
1347 if (found && !memblock_reserve(found, size))
1348 goto done;
1349
1350 if (nid != NUMA_NO_NODE && !exact_nid) {
1351 found = memblock_find_in_range_node(size, align, start,
1352 end, NUMA_NO_NODE,
1353 flags);
1354 if (found && !memblock_reserve(found, size))
1355 goto done;
1356 }
1357
1358 if (flags & MEMBLOCK_MIRROR) {
1359 flags &= ~MEMBLOCK_MIRROR;
1360 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1361 &size);
1362 goto again;
1363 }
1364
1365 return 0;
1366
1367 done:
1368 /* Skip kmemleak for kasan_init() due to high volume. */
1369 if (end != MEMBLOCK_ALLOC_KASAN)
1370 /*
1371 * The min_count is set to 0 so that memblock allocated
1372 * blocks are never reported as leaks. This is because many
1373 * of these blocks are only referred via the physical
1374 * address which is not looked up by kmemleak.
1375 */
1376 kmemleak_alloc_phys(found, size, 0, 0);
1377
1378 return found;
1379 }
1380
1381 /**
1382 * memblock_phys_alloc_range - allocate a memory block inside specified range
1383 * @size: size of memory block to be allocated in bytes
1384 * @align: alignment of the region and block's size
1385 * @start: the lower bound of the memory region to allocate (physical address)
1386 * @end: the upper bound of the memory region to allocate (physical address)
1387 *
1388 * Allocate @size bytes in the between @start and @end.
1389 *
1390 * Return: physical address of the allocated memory block on success,
1391 * %0 on failure.
1392 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1393 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1394 phys_addr_t align,
1395 phys_addr_t start,
1396 phys_addr_t end)
1397 {
1398 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1399 __func__, (u64)size, (u64)align, &start, &end,
1400 (void *)_RET_IP_);
1401 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1402 false);
1403 }
1404
1405 /**
1406 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1407 * @size: size of memory block to be allocated in bytes
1408 * @align: alignment of the region and block's size
1409 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1410 *
1411 * Allocates memory block from the specified NUMA node. If the node
1412 * has no available memory, attempts to allocated from any node in the
1413 * system.
1414 *
1415 * Return: physical address of the allocated memory block on success,
1416 * %0 on failure.
1417 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1418 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1419 {
1420 return memblock_alloc_range_nid(size, align, 0,
1421 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1422 }
1423
1424 /**
1425 * memblock_alloc_internal - allocate boot memory block
1426 * @size: size of memory block to be allocated in bytes
1427 * @align: alignment of the region and block's size
1428 * @min_addr: the lower bound of the memory region to allocate (phys address)
1429 * @max_addr: the upper bound of the memory region to allocate (phys address)
1430 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1431 * @exact_nid: control the allocation fall back to other nodes
1432 *
1433 * Allocates memory block using memblock_alloc_range_nid() and
1434 * converts the returned physical address to virtual.
1435 *
1436 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1437 * will fall back to memory below @min_addr. Other constraints, such
1438 * as node and mirrored memory will be handled again in
1439 * memblock_alloc_range_nid().
1440 *
1441 * Return:
1442 * Virtual address of allocated memory block on success, NULL on failure.
1443 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1444 static void * __init memblock_alloc_internal(
1445 phys_addr_t size, phys_addr_t align,
1446 phys_addr_t min_addr, phys_addr_t max_addr,
1447 int nid, bool exact_nid)
1448 {
1449 phys_addr_t alloc;
1450
1451 /*
1452 * Detect any accidental use of these APIs after slab is ready, as at
1453 * this moment memblock may be deinitialized already and its
1454 * internal data may be destroyed (after execution of memblock_free_all)
1455 */
1456 if (WARN_ON_ONCE(slab_is_available()))
1457 return kzalloc_node(size, GFP_NOWAIT, nid);
1458
1459 if (max_addr > memblock.current_limit)
1460 max_addr = memblock.current_limit;
1461
1462 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1463 exact_nid);
1464
1465 /* retry allocation without lower limit */
1466 if (!alloc && min_addr)
1467 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1468 exact_nid);
1469
1470 if (!alloc)
1471 return NULL;
1472
1473 return phys_to_virt(alloc);
1474 }
1475
1476 /**
1477 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1478 * without zeroing memory
1479 * @size: size of memory block to be allocated in bytes
1480 * @align: alignment of the region and block's size
1481 * @min_addr: the lower bound of the memory region from where the allocation
1482 * is preferred (phys address)
1483 * @max_addr: the upper bound of the memory region from where the allocation
1484 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1485 * allocate only from memory limited by memblock.current_limit value
1486 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1487 *
1488 * Public function, provides additional debug information (including caller
1489 * info), if enabled. Does not zero allocated memory.
1490 *
1491 * Return:
1492 * Virtual address of allocated memory block on success, NULL on failure.
1493 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1494 void * __init memblock_alloc_exact_nid_raw(
1495 phys_addr_t size, phys_addr_t align,
1496 phys_addr_t min_addr, phys_addr_t max_addr,
1497 int nid)
1498 {
1499 void *ptr;
1500
1501 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1502 __func__, (u64)size, (u64)align, nid, &min_addr,
1503 &max_addr, (void *)_RET_IP_);
1504
1505 ptr = memblock_alloc_internal(size, align,
1506 min_addr, max_addr, nid, true);
1507 if (ptr && size > 0)
1508 page_init_poison(ptr, size);
1509
1510 return ptr;
1511 }
1512
1513 /**
1514 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1515 * memory and without panicking
1516 * @size: size of memory block to be allocated in bytes
1517 * @align: alignment of the region and block's size
1518 * @min_addr: the lower bound of the memory region from where the allocation
1519 * is preferred (phys address)
1520 * @max_addr: the upper bound of the memory region from where the allocation
1521 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1522 * allocate only from memory limited by memblock.current_limit value
1523 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1524 *
1525 * Public function, provides additional debug information (including caller
1526 * info), if enabled. Does not zero allocated memory, does not panic if request
1527 * cannot be satisfied.
1528 *
1529 * Return:
1530 * Virtual address of allocated memory block on success, NULL on failure.
1531 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1532 void * __init memblock_alloc_try_nid_raw(
1533 phys_addr_t size, phys_addr_t align,
1534 phys_addr_t min_addr, phys_addr_t max_addr,
1535 int nid)
1536 {
1537 void *ptr;
1538
1539 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1540 __func__, (u64)size, (u64)align, nid, &min_addr,
1541 &max_addr, (void *)_RET_IP_);
1542
1543 ptr = memblock_alloc_internal(size, align,
1544 min_addr, max_addr, nid, false);
1545 if (ptr && size > 0)
1546 page_init_poison(ptr, size);
1547
1548 return ptr;
1549 }
1550
1551 /**
1552 * memblock_alloc_try_nid - allocate boot memory block
1553 * @size: size of memory block to be allocated in bytes
1554 * @align: alignment of the region and block's size
1555 * @min_addr: the lower bound of the memory region from where the allocation
1556 * is preferred (phys address)
1557 * @max_addr: the upper bound of the memory region from where the allocation
1558 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1559 * allocate only from memory limited by memblock.current_limit value
1560 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1561 *
1562 * Public function, provides additional debug information (including caller
1563 * info), if enabled. This function zeroes the allocated memory.
1564 *
1565 * Return:
1566 * Virtual address of allocated memory block on success, NULL on failure.
1567 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1568 void * __init memblock_alloc_try_nid(
1569 phys_addr_t size, phys_addr_t align,
1570 phys_addr_t min_addr, phys_addr_t max_addr,
1571 int nid)
1572 {
1573 void *ptr;
1574
1575 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1576 __func__, (u64)size, (u64)align, nid, &min_addr,
1577 &max_addr, (void *)_RET_IP_);
1578 ptr = memblock_alloc_internal(size, align,
1579 min_addr, max_addr, nid, false);
1580 if (ptr)
1581 memset(ptr, 0, size);
1582
1583 return ptr;
1584 }
1585
1586 /**
1587 * __memblock_free_late - free pages directly to buddy allocator
1588 * @base: phys starting address of the boot memory block
1589 * @size: size of the boot memory block in bytes
1590 *
1591 * This is only useful when the memblock allocator has already been torn
1592 * down, but we are still initializing the system. Pages are released directly
1593 * to the buddy allocator.
1594 */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1595 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1596 {
1597 phys_addr_t cursor, end;
1598
1599 end = base + size - 1;
1600 memblock_dbg("%s: [%pa-%pa] %pS\n",
1601 __func__, &base, &end, (void *)_RET_IP_);
1602 kmemleak_free_part_phys(base, size);
1603 cursor = PFN_UP(base);
1604 end = PFN_DOWN(base + size);
1605
1606 for (; cursor < end; cursor++) {
1607 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1608 totalram_pages_inc();
1609 }
1610 }
1611
1612 /*
1613 * Remaining API functions
1614 */
1615
memblock_phys_mem_size(void)1616 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1617 {
1618 return memblock.memory.total_size;
1619 }
1620
memblock_reserved_size(void)1621 phys_addr_t __init_memblock memblock_reserved_size(void)
1622 {
1623 return memblock.reserved.total_size;
1624 }
1625
1626 /* lowest address */
memblock_start_of_DRAM(void)1627 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1628 {
1629 return memblock.memory.regions[0].base;
1630 }
1631
memblock_end_of_DRAM(void)1632 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1633 {
1634 int idx = memblock.memory.cnt - 1;
1635
1636 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1637 }
1638 EXPORT_SYMBOL_GPL(memblock_end_of_DRAM);
1639
__find_max_addr(phys_addr_t limit)1640 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1641 {
1642 phys_addr_t max_addr = PHYS_ADDR_MAX;
1643 struct memblock_region *r;
1644
1645 /*
1646 * translate the memory @limit size into the max address within one of
1647 * the memory memblock regions, if the @limit exceeds the total size
1648 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1649 */
1650 for_each_mem_region(r) {
1651 if (limit <= r->size) {
1652 max_addr = r->base + limit;
1653 break;
1654 }
1655 limit -= r->size;
1656 }
1657
1658 return max_addr;
1659 }
1660
memblock_enforce_memory_limit(phys_addr_t limit)1661 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1662 {
1663 phys_addr_t max_addr;
1664
1665 if (!limit)
1666 return;
1667
1668 max_addr = __find_max_addr(limit);
1669
1670 /* @limit exceeds the total size of the memory, do nothing */
1671 if (max_addr == PHYS_ADDR_MAX)
1672 return;
1673
1674 /* truncate both memory and reserved regions */
1675 memblock_remove_range(&memblock.memory, max_addr,
1676 PHYS_ADDR_MAX);
1677 memblock_remove_range(&memblock.reserved, max_addr,
1678 PHYS_ADDR_MAX);
1679 }
1680
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1681 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1682 {
1683 int start_rgn, end_rgn;
1684 int i, ret;
1685
1686 if (!size)
1687 return;
1688
1689 ret = memblock_isolate_range(&memblock.memory, base, size,
1690 &start_rgn, &end_rgn);
1691 if (ret)
1692 return;
1693
1694 /* remove all the MAP regions */
1695 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1696 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1697 memblock_remove_region(&memblock.memory, i);
1698
1699 for (i = start_rgn - 1; i >= 0; i--)
1700 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1701 memblock_remove_region(&memblock.memory, i);
1702
1703 /* truncate the reserved regions */
1704 memblock_remove_range(&memblock.reserved, 0, base);
1705 memblock_remove_range(&memblock.reserved,
1706 base + size, PHYS_ADDR_MAX);
1707 }
1708
memblock_mem_limit_remove_map(phys_addr_t limit)1709 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1710 {
1711 phys_addr_t max_addr;
1712
1713 if (!limit)
1714 return;
1715
1716 max_addr = __find_max_addr(limit);
1717
1718 /* @limit exceeds the total size of the memory, do nothing */
1719 if (max_addr == PHYS_ADDR_MAX)
1720 return;
1721
1722 memblock_cap_memory_range(0, max_addr);
1723 }
1724
memblock_search(struct memblock_type * type,phys_addr_t addr)1725 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1726 {
1727 unsigned int left = 0, right = type->cnt;
1728
1729 do {
1730 unsigned int mid = (right + left) / 2;
1731
1732 if (addr < type->regions[mid].base)
1733 right = mid;
1734 else if (addr >= (type->regions[mid].base +
1735 type->regions[mid].size))
1736 left = mid + 1;
1737 else
1738 return mid;
1739 } while (left < right);
1740 return -1;
1741 }
1742
memblock_is_reserved(phys_addr_t addr)1743 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1744 {
1745 return memblock_search(&memblock.reserved, addr) != -1;
1746 }
1747
memblock_is_memory(phys_addr_t addr)1748 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1749 {
1750 return memblock_search(&memblock.memory, addr) != -1;
1751 }
1752
memblock_is_map_memory(phys_addr_t addr)1753 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1754 {
1755 int i = memblock_search(&memblock.memory, addr);
1756
1757 if (i == -1)
1758 return false;
1759 return !memblock_is_nomap(&memblock.memory.regions[i]);
1760 }
1761
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1762 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1763 unsigned long *start_pfn, unsigned long *end_pfn)
1764 {
1765 struct memblock_type *type = &memblock.memory;
1766 int mid = memblock_search(type, PFN_PHYS(pfn));
1767
1768 if (mid == -1)
1769 return -1;
1770
1771 *start_pfn = PFN_DOWN(type->regions[mid].base);
1772 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1773
1774 return memblock_get_region_node(&type->regions[mid]);
1775 }
1776
1777 /**
1778 * memblock_is_region_memory - check if a region is a subset of memory
1779 * @base: base of region to check
1780 * @size: size of region to check
1781 *
1782 * Check if the region [@base, @base + @size) is a subset of a memory block.
1783 *
1784 * Return:
1785 * 0 if false, non-zero if true
1786 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1787 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1788 {
1789 int idx = memblock_search(&memblock.memory, base);
1790 phys_addr_t end = base + memblock_cap_size(base, &size);
1791
1792 if (idx == -1)
1793 return false;
1794 return (memblock.memory.regions[idx].base +
1795 memblock.memory.regions[idx].size) >= end;
1796 }
1797
1798 /**
1799 * memblock_is_region_reserved - check if a region intersects reserved memory
1800 * @base: base of region to check
1801 * @size: size of region to check
1802 *
1803 * Check if the region [@base, @base + @size) intersects a reserved
1804 * memory block.
1805 *
1806 * Return:
1807 * True if they intersect, false if not.
1808 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1809 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1810 {
1811 return memblock_overlaps_region(&memblock.reserved, base, size);
1812 }
1813
memblock_trim_memory(phys_addr_t align)1814 void __init_memblock memblock_trim_memory(phys_addr_t align)
1815 {
1816 phys_addr_t start, end, orig_start, orig_end;
1817 struct memblock_region *r;
1818
1819 for_each_mem_region(r) {
1820 orig_start = r->base;
1821 orig_end = r->base + r->size;
1822 start = round_up(orig_start, align);
1823 end = round_down(orig_end, align);
1824
1825 if (start == orig_start && end == orig_end)
1826 continue;
1827
1828 if (start < end) {
1829 r->base = start;
1830 r->size = end - start;
1831 } else {
1832 memblock_remove_region(&memblock.memory,
1833 r - memblock.memory.regions);
1834 r--;
1835 }
1836 }
1837 }
1838
memblock_set_current_limit(phys_addr_t limit)1839 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1840 {
1841 memblock.current_limit = limit;
1842 }
1843
memblock_get_current_limit(void)1844 phys_addr_t __init_memblock memblock_get_current_limit(void)
1845 {
1846 return memblock.current_limit;
1847 }
1848
memblock_dump(struct memblock_type * type)1849 static void __init_memblock memblock_dump(struct memblock_type *type)
1850 {
1851 phys_addr_t base, end, size;
1852 enum memblock_flags flags;
1853 int idx;
1854 struct memblock_region *rgn;
1855
1856 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1857
1858 for_each_memblock_type(idx, type, rgn) {
1859 char nid_buf[32] = "";
1860
1861 base = rgn->base;
1862 size = rgn->size;
1863 end = base + size - 1;
1864 flags = rgn->flags;
1865 #ifdef CONFIG_NEED_MULTIPLE_NODES
1866 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1867 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1868 memblock_get_region_node(rgn));
1869 #endif
1870 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1871 type->name, idx, &base, &end, &size, nid_buf, flags);
1872 }
1873 }
1874
__memblock_dump_all(void)1875 static void __init_memblock __memblock_dump_all(void)
1876 {
1877 pr_info("MEMBLOCK configuration:\n");
1878 pr_info(" memory size = %pa reserved size = %pa\n",
1879 &memblock.memory.total_size,
1880 &memblock.reserved.total_size);
1881
1882 memblock_dump(&memblock.memory);
1883 memblock_dump(&memblock.reserved);
1884 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1885 memblock_dump(&physmem);
1886 #endif
1887 }
1888
memblock_dump_all(void)1889 void __init_memblock memblock_dump_all(void)
1890 {
1891 if (memblock_debug)
1892 __memblock_dump_all();
1893 }
1894
memblock_allow_resize(void)1895 void __init memblock_allow_resize(void)
1896 {
1897 memblock_can_resize = 1;
1898 }
1899
early_memblock(char * p)1900 static int __init early_memblock(char *p)
1901 {
1902 if (p && strstr(p, "debug"))
1903 memblock_debug = 1;
1904 return 0;
1905 }
1906 early_param("memblock", early_memblock);
1907
early_memblock_nomap(char * str)1908 static int __init early_memblock_nomap(char *str)
1909 {
1910 return kstrtobool(str, &memblock_nomap_remove);
1911 }
1912 early_param("android12_only.will_be_removed_soon.memblock_nomap_remove", early_memblock_nomap);
1913
memblock_is_nomap_remove(void)1914 bool __init memblock_is_nomap_remove(void)
1915 {
1916 return memblock_nomap_remove;
1917 }
1918
__free_pages_memory(unsigned long start,unsigned long end)1919 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1920 {
1921 int order;
1922
1923 while (start < end) {
1924 order = min(MAX_ORDER - 1UL, __ffs(start));
1925
1926 while (start + (1UL << order) > end)
1927 order--;
1928
1929 memblock_free_pages(pfn_to_page(start), start, order);
1930
1931 start += (1UL << order);
1932 }
1933 }
1934
__free_memory_core(phys_addr_t start,phys_addr_t end)1935 static unsigned long __init __free_memory_core(phys_addr_t start,
1936 phys_addr_t end)
1937 {
1938 unsigned long start_pfn = PFN_UP(start);
1939 unsigned long end_pfn = min_t(unsigned long,
1940 PFN_DOWN(end), max_low_pfn);
1941
1942 if (start_pfn >= end_pfn)
1943 return 0;
1944
1945 __free_pages_memory(start_pfn, end_pfn);
1946
1947 return end_pfn - start_pfn;
1948 }
1949
free_low_memory_core_early(void)1950 static unsigned long __init free_low_memory_core_early(void)
1951 {
1952 unsigned long count = 0;
1953 phys_addr_t start, end;
1954 u64 i;
1955
1956 memblock_clear_hotplug(0, -1);
1957
1958 for_each_reserved_mem_range(i, &start, &end)
1959 reserve_bootmem_region(start, end);
1960
1961 /*
1962 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1963 * because in some case like Node0 doesn't have RAM installed
1964 * low ram will be on Node1
1965 */
1966 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1967 NULL)
1968 count += __free_memory_core(start, end);
1969
1970 return count;
1971 }
1972
1973 static int reset_managed_pages_done __initdata;
1974
reset_node_managed_pages(pg_data_t * pgdat)1975 void reset_node_managed_pages(pg_data_t *pgdat)
1976 {
1977 struct zone *z;
1978
1979 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1980 atomic_long_set(&z->managed_pages, 0);
1981 }
1982
reset_all_zones_managed_pages(void)1983 void __init reset_all_zones_managed_pages(void)
1984 {
1985 struct pglist_data *pgdat;
1986
1987 if (reset_managed_pages_done)
1988 return;
1989
1990 for_each_online_pgdat(pgdat)
1991 reset_node_managed_pages(pgdat);
1992
1993 reset_managed_pages_done = 1;
1994 }
1995
1996 /**
1997 * memblock_free_all - release free pages to the buddy allocator
1998 *
1999 * Return: the number of pages actually released.
2000 */
memblock_free_all(void)2001 unsigned long __init memblock_free_all(void)
2002 {
2003 unsigned long pages;
2004
2005 reset_all_zones_managed_pages();
2006
2007 pages = free_low_memory_core_early();
2008 totalram_pages_add(pages);
2009
2010 return pages;
2011 }
2012
2013 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2014
memblock_debug_show(struct seq_file * m,void * private)2015 static int memblock_debug_show(struct seq_file *m, void *private)
2016 {
2017 struct memblock_type *type = m->private;
2018 struct memblock_region *reg;
2019 int i;
2020 phys_addr_t end;
2021
2022 for (i = 0; i < type->cnt; i++) {
2023 reg = &type->regions[i];
2024 end = reg->base + reg->size - 1;
2025
2026 seq_printf(m, "%4d: ", i);
2027 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2028 }
2029 return 0;
2030 }
2031 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2032
memblock_init_debugfs(void)2033 static int __init memblock_init_debugfs(void)
2034 {
2035 struct dentry *root = debugfs_create_dir("memblock", NULL);
2036
2037 debugfs_create_file("memory", 0444, root,
2038 &memblock.memory, &memblock_debug_fops);
2039 debugfs_create_file("reserved", 0444, root,
2040 &memblock.reserved, &memblock_debug_fops);
2041 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2042 debugfs_create_file("physmem", 0444, root, &physmem,
2043 &memblock_debug_fops);
2044 #endif
2045
2046 return 0;
2047 }
2048 __initcall(memblock_init_debugfs);
2049
2050 #endif /* CONFIG_DEBUG_FS */
2051