• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 #undef CREATE_TRACE_POINTS
58 #include <trace/hooks/mm.h>
59 #include <trace/hooks/vmscan.h>
60 
61 #include "internal.h"
62 
isolate_movable_page(struct page * page,isolate_mode_t mode)63 int isolate_movable_page(struct page *page, isolate_mode_t mode)
64 {
65 	struct address_space *mapping;
66 
67 	/*
68 	 * Avoid burning cycles with pages that are yet under __free_pages(),
69 	 * or just got freed under us.
70 	 *
71 	 * In case we 'win' a race for a movable page being freed under us and
72 	 * raise its refcount preventing __free_pages() from doing its job
73 	 * the put_page() at the end of this block will take care of
74 	 * release this page, thus avoiding a nasty leakage.
75 	 */
76 	if (unlikely(!get_page_unless_zero(page)))
77 		goto out;
78 
79 	/*
80 	 * Check PageMovable before holding a PG_lock because page's owner
81 	 * assumes anybody doesn't touch PG_lock of newly allocated page
82 	 * so unconditionally grabbing the lock ruins page's owner side.
83 	 */
84 	if (unlikely(!__PageMovable(page)))
85 		goto out_putpage;
86 	/*
87 	 * As movable pages are not isolated from LRU lists, concurrent
88 	 * compaction threads can race against page migration functions
89 	 * as well as race against the releasing a page.
90 	 *
91 	 * In order to avoid having an already isolated movable page
92 	 * being (wrongly) re-isolated while it is under migration,
93 	 * or to avoid attempting to isolate pages being released,
94 	 * lets be sure we have the page lock
95 	 * before proceeding with the movable page isolation steps.
96 	 */
97 	if (unlikely(!trylock_page(page)))
98 		goto out_putpage;
99 
100 	if (!PageMovable(page) || PageIsolated(page))
101 		goto out_no_isolated;
102 
103 	mapping = page_mapping(page);
104 	VM_BUG_ON_PAGE(!mapping, page);
105 
106 	if (!mapping->a_ops->isolate_page(page, mode))
107 		goto out_no_isolated;
108 
109 	/* Driver shouldn't use PG_isolated bit of page->flags */
110 	WARN_ON_ONCE(PageIsolated(page));
111 	SetPageIsolated(page);
112 	unlock_page(page);
113 
114 	return 0;
115 
116 out_no_isolated:
117 	unlock_page(page);
118 out_putpage:
119 	put_page(page);
120 out:
121 	return -EBUSY;
122 }
123 
124 /* It should be called on page which is PG_movable */
putback_movable_page(struct page * page)125 void putback_movable_page(struct page *page)
126 {
127 	struct address_space *mapping;
128 
129 	VM_BUG_ON_PAGE(!PageLocked(page), page);
130 	VM_BUG_ON_PAGE(!PageMovable(page), page);
131 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
132 
133 	mapping = page_mapping(page);
134 	mapping->a_ops->putback_page(page);
135 	ClearPageIsolated(page);
136 }
137 
138 /*
139  * Put previously isolated pages back onto the appropriate lists
140  * from where they were once taken off for compaction/migration.
141  *
142  * This function shall be used whenever the isolated pageset has been
143  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
144  * and isolate_hugetlb().
145  */
putback_movable_pages(struct list_head * l)146 void putback_movable_pages(struct list_head *l)
147 {
148 	struct page *page;
149 	struct page *page2;
150 
151 	list_for_each_entry_safe(page, page2, l, lru) {
152 		if (unlikely(PageHuge(page))) {
153 			putback_active_hugepage(page);
154 			continue;
155 		}
156 		list_del(&page->lru);
157 		/*
158 		 * We isolated non-lru movable page so here we can use
159 		 * __PageMovable because LRU page's mapping cannot have
160 		 * PAGE_MAPPING_MOVABLE.
161 		 */
162 		if (unlikely(__PageMovable(page))) {
163 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
164 			lock_page(page);
165 			if (PageMovable(page))
166 				putback_movable_page(page);
167 			else
168 				ClearPageIsolated(page);
169 			unlock_page(page);
170 			put_page(page);
171 		} else {
172 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
173 					page_is_file_lru(page), -thp_nr_pages(page));
174 			putback_lru_page(page);
175 		}
176 	}
177 }
178 EXPORT_SYMBOL_GPL(putback_movable_pages);
179 
180 /*
181  * Restore a potential migration pte to a working pte entry
182  */
remove_migration_pte(struct page * page,struct vm_area_struct * vma,unsigned long addr,void * old)183 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
184 				 unsigned long addr, void *old)
185 {
186 	struct page_vma_mapped_walk pvmw = {
187 		.page = old,
188 		.vma = vma,
189 		.address = addr,
190 		.flags = PVMW_SYNC | PVMW_MIGRATION,
191 	};
192 	struct page *new;
193 	pte_t pte;
194 	swp_entry_t entry;
195 
196 	VM_BUG_ON_PAGE(PageTail(page), page);
197 	while (page_vma_mapped_walk(&pvmw)) {
198 		if (PageKsm(page))
199 			new = page;
200 		else
201 			new = page - pvmw.page->index +
202 				linear_page_index(vma, pvmw.address);
203 
204 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
205 		/* PMD-mapped THP migration entry */
206 		if (!pvmw.pte) {
207 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
208 			remove_migration_pmd(&pvmw, new);
209 			continue;
210 		}
211 #endif
212 
213 		get_page(new);
214 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
215 		if (pte_swp_soft_dirty(*pvmw.pte))
216 			pte = pte_mksoft_dirty(pte);
217 
218 		/*
219 		 * Recheck VMA as permissions can change since migration started
220 		 */
221 		entry = pte_to_swp_entry(*pvmw.pte);
222 		if (is_write_migration_entry(entry))
223 			pte = maybe_mkwrite(pte, vma->vm_flags);
224 		else if (pte_swp_uffd_wp(*pvmw.pte))
225 			pte = pte_mkuffd_wp(pte);
226 
227 		if (unlikely(is_device_private_page(new))) {
228 			entry = make_device_private_entry(new, pte_write(pte));
229 			pte = swp_entry_to_pte(entry);
230 			if (pte_swp_soft_dirty(*pvmw.pte))
231 				pte = pte_swp_mksoft_dirty(pte);
232 			if (pte_swp_uffd_wp(*pvmw.pte))
233 				pte = pte_swp_mkuffd_wp(pte);
234 		}
235 
236 #ifdef CONFIG_HUGETLB_PAGE
237 		if (PageHuge(new)) {
238 			pte = pte_mkhuge(pte);
239 			pte = arch_make_huge_pte(pte, vma, new, 0);
240 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
241 			if (PageAnon(new))
242 				hugepage_add_anon_rmap(new, vma, pvmw.address);
243 			else
244 				page_dup_rmap(new, true);
245 		} else
246 #endif
247 		{
248 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
249 
250 			if (PageAnon(new))
251 				page_add_anon_rmap(new, vma, pvmw.address, false);
252 			else
253 				page_add_file_rmap(new, false);
254 		}
255 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
256 			mlock_vma_page(new);
257 
258 		if (PageTransHuge(page) && PageMlocked(page))
259 			clear_page_mlock(page);
260 
261 		/* No need to invalidate - it was non-present before */
262 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
263 	}
264 
265 	return true;
266 }
267 
268 /*
269  * Get rid of all migration entries and replace them by
270  * references to the indicated page.
271  */
remove_migration_ptes(struct page * old,struct page * new,bool locked)272 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
273 {
274 	struct rmap_walk_control rwc = {
275 		.rmap_one = remove_migration_pte,
276 		.arg = old,
277 	};
278 
279 	if (locked)
280 		rmap_walk_locked(new, &rwc);
281 	else
282 		rmap_walk(new, &rwc);
283 }
284 
285 /*
286  * Something used the pte of a page under migration. We need to
287  * get to the page and wait until migration is finished.
288  * When we return from this function the fault will be retried.
289  */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)290 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
291 				spinlock_t *ptl)
292 {
293 	pte_t pte;
294 	swp_entry_t entry;
295 	struct page *page;
296 
297 	spin_lock(ptl);
298 	pte = *ptep;
299 	if (!is_swap_pte(pte))
300 		goto out;
301 
302 	entry = pte_to_swp_entry(pte);
303 	if (!is_migration_entry(entry))
304 		goto out;
305 
306 	page = migration_entry_to_page(entry);
307 	page = compound_head(page);
308 
309 	/*
310 	 * Once page cache replacement of page migration started, page_count
311 	 * is zero; but we must not call put_and_wait_on_page_locked() without
312 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
313 	 */
314 	if (!get_page_unless_zero(page))
315 		goto out;
316 	pte_unmap_unlock(ptep, ptl);
317 	trace_android_vh_waiting_for_page_migration(page);
318 	put_and_wait_on_page_locked(page);
319 	return;
320 out:
321 	pte_unmap_unlock(ptep, ptl);
322 }
323 
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)324 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
325 				unsigned long address)
326 {
327 	spinlock_t *ptl = pte_lockptr(mm, pmd);
328 	pte_t *ptep = pte_offset_map(pmd, address);
329 	__migration_entry_wait(mm, ptep, ptl);
330 }
331 
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)332 void migration_entry_wait_huge(struct vm_area_struct *vma,
333 		struct mm_struct *mm, pte_t *pte)
334 {
335 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
336 	__migration_entry_wait(mm, pte, ptl);
337 }
338 
339 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)340 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
341 {
342 	spinlock_t *ptl;
343 	struct page *page;
344 
345 	ptl = pmd_lock(mm, pmd);
346 	if (!is_pmd_migration_entry(*pmd))
347 		goto unlock;
348 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
349 	if (!get_page_unless_zero(page))
350 		goto unlock;
351 	spin_unlock(ptl);
352 	put_and_wait_on_page_locked(page);
353 	return;
354 unlock:
355 	spin_unlock(ptl);
356 }
357 #endif
358 
expected_page_refs(struct address_space * mapping,struct page * page)359 static int expected_page_refs(struct address_space *mapping, struct page *page)
360 {
361 	int expected_count = 1;
362 
363 	/*
364 	 * Device private pages have an extra refcount as they are
365 	 * ZONE_DEVICE pages.
366 	 */
367 	expected_count += is_device_private_page(page);
368 	if (mapping)
369 		expected_count += thp_nr_pages(page) + page_has_private(page);
370 
371 	return expected_count;
372 }
373 
374 /*
375  * Replace the page in the mapping.
376  *
377  * The number of remaining references must be:
378  * 1 for anonymous pages without a mapping
379  * 2 for pages with a mapping
380  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
381  */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,int extra_count)382 int migrate_page_move_mapping(struct address_space *mapping,
383 		struct page *newpage, struct page *page, int extra_count)
384 {
385 	XA_STATE(xas, &mapping->i_pages, page_index(page));
386 	struct zone *oldzone, *newzone;
387 	int dirty;
388 	int expected_count = expected_page_refs(mapping, page) + extra_count;
389 	int nr = thp_nr_pages(page);
390 
391 	if (!mapping) {
392 		/* Anonymous page without mapping */
393 		if (page_count(page) != expected_count)
394 			return -EAGAIN;
395 
396 		/* No turning back from here */
397 		newpage->index = page->index;
398 		newpage->mapping = page->mapping;
399 		if (PageSwapBacked(page))
400 			__SetPageSwapBacked(newpage);
401 
402 		return MIGRATEPAGE_SUCCESS;
403 	}
404 
405 	oldzone = page_zone(page);
406 	newzone = page_zone(newpage);
407 
408 	xas_lock_irq(&xas);
409 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
410 		xas_unlock_irq(&xas);
411 		return -EAGAIN;
412 	}
413 
414 	if (!page_ref_freeze(page, expected_count)) {
415 		xas_unlock_irq(&xas);
416 		return -EAGAIN;
417 	}
418 
419 	/*
420 	 * Now we know that no one else is looking at the page:
421 	 * no turning back from here.
422 	 */
423 	newpage->index = page->index;
424 	newpage->mapping = page->mapping;
425 	page_ref_add(newpage, nr); /* add cache reference */
426 	if (PageSwapBacked(page)) {
427 		__SetPageSwapBacked(newpage);
428 		if (PageSwapCache(page)) {
429 			SetPageSwapCache(newpage);
430 			set_page_private(newpage, page_private(page));
431 		}
432 	} else {
433 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
434 	}
435 
436 	/* Move dirty while page refs frozen and newpage not yet exposed */
437 	dirty = PageDirty(page);
438 	if (dirty) {
439 		ClearPageDirty(page);
440 		SetPageDirty(newpage);
441 	}
442 
443 	xas_store(&xas, newpage);
444 	if (PageTransHuge(page)) {
445 		int i;
446 
447 		for (i = 1; i < nr; i++) {
448 			xas_next(&xas);
449 			xas_store(&xas, newpage);
450 		}
451 	}
452 
453 	/*
454 	 * Drop cache reference from old page by unfreezing
455 	 * to one less reference.
456 	 * We know this isn't the last reference.
457 	 */
458 	page_ref_unfreeze(page, expected_count - nr);
459 
460 	xas_unlock(&xas);
461 	/* Leave irq disabled to prevent preemption while updating stats */
462 
463 	/*
464 	 * If moved to a different zone then also account
465 	 * the page for that zone. Other VM counters will be
466 	 * taken care of when we establish references to the
467 	 * new page and drop references to the old page.
468 	 *
469 	 * Note that anonymous pages are accounted for
470 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
471 	 * are mapped to swap space.
472 	 */
473 	if (newzone != oldzone) {
474 		struct lruvec *old_lruvec, *new_lruvec;
475 		struct mem_cgroup *memcg;
476 
477 		memcg = page_memcg(page);
478 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
479 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
480 
481 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
482 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
483 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
484 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
485 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
486 		}
487 		if (dirty && mapping_can_writeback(mapping)) {
488 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
489 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
490 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
491 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
492 		}
493 	}
494 	local_irq_enable();
495 
496 	return MIGRATEPAGE_SUCCESS;
497 }
498 EXPORT_SYMBOL(migrate_page_move_mapping);
499 
500 /*
501  * The expected number of remaining references is the same as that
502  * of migrate_page_move_mapping().
503  */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)504 int migrate_huge_page_move_mapping(struct address_space *mapping,
505 				   struct page *newpage, struct page *page)
506 {
507 	XA_STATE(xas, &mapping->i_pages, page_index(page));
508 	int expected_count;
509 
510 	xas_lock_irq(&xas);
511 	expected_count = 2 + page_has_private(page);
512 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
513 		xas_unlock_irq(&xas);
514 		return -EAGAIN;
515 	}
516 
517 	if (!page_ref_freeze(page, expected_count)) {
518 		xas_unlock_irq(&xas);
519 		return -EAGAIN;
520 	}
521 
522 	newpage->index = page->index;
523 	newpage->mapping = page->mapping;
524 
525 	get_page(newpage);
526 
527 	xas_store(&xas, newpage);
528 
529 	page_ref_unfreeze(page, expected_count - 1);
530 
531 	xas_unlock_irq(&xas);
532 
533 	return MIGRATEPAGE_SUCCESS;
534 }
535 
536 /*
537  * Gigantic pages are so large that we do not guarantee that page++ pointer
538  * arithmetic will work across the entire page.  We need something more
539  * specialized.
540  */
__copy_gigantic_page(struct page * dst,struct page * src,int nr_pages)541 static void __copy_gigantic_page(struct page *dst, struct page *src,
542 				int nr_pages)
543 {
544 	int i;
545 	struct page *dst_base = dst;
546 	struct page *src_base = src;
547 
548 	for (i = 0; i < nr_pages; ) {
549 		cond_resched();
550 		copy_highpage(dst, src);
551 
552 		i++;
553 		dst = mem_map_next(dst, dst_base, i);
554 		src = mem_map_next(src, src_base, i);
555 	}
556 }
557 
copy_huge_page(struct page * dst,struct page * src)558 static void copy_huge_page(struct page *dst, struct page *src)
559 {
560 	int i;
561 	int nr_pages;
562 
563 	if (PageHuge(src)) {
564 		/* hugetlbfs page */
565 		struct hstate *h = page_hstate(src);
566 		nr_pages = pages_per_huge_page(h);
567 
568 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
569 			__copy_gigantic_page(dst, src, nr_pages);
570 			return;
571 		}
572 	} else {
573 		/* thp page */
574 		BUG_ON(!PageTransHuge(src));
575 		nr_pages = thp_nr_pages(src);
576 	}
577 
578 	for (i = 0; i < nr_pages; i++) {
579 		cond_resched();
580 		copy_highpage(dst + i, src + i);
581 	}
582 }
583 
584 /*
585  * Copy the page to its new location
586  */
migrate_page_states(struct page * newpage,struct page * page)587 void migrate_page_states(struct page *newpage, struct page *page)
588 {
589 	int cpupid;
590 
591 	trace_android_vh_migrate_page_states(page, newpage);
592 
593 	if (PageError(page))
594 		SetPageError(newpage);
595 	if (PageReferenced(page))
596 		SetPageReferenced(newpage);
597 	if (PageUptodate(page))
598 		SetPageUptodate(newpage);
599 	if (TestClearPageActive(page)) {
600 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
601 		SetPageActive(newpage);
602 	} else if (TestClearPageUnevictable(page))
603 		SetPageUnevictable(newpage);
604 	if (PageWorkingset(page))
605 		SetPageWorkingset(newpage);
606 	if (PageChecked(page))
607 		SetPageChecked(newpage);
608 	if (PageMappedToDisk(page))
609 		SetPageMappedToDisk(newpage);
610 	trace_android_vh_look_around_migrate_page(page, newpage);
611 
612 	/* Move dirty on pages not done by migrate_page_move_mapping() */
613 	if (PageDirty(page))
614 		SetPageDirty(newpage);
615 
616 	if (page_is_young(page))
617 		set_page_young(newpage);
618 	if (page_is_idle(page))
619 		set_page_idle(newpage);
620 
621 	/*
622 	 * Copy NUMA information to the new page, to prevent over-eager
623 	 * future migrations of this same page.
624 	 */
625 	cpupid = page_cpupid_xchg_last(page, -1);
626 	page_cpupid_xchg_last(newpage, cpupid);
627 
628 	ksm_migrate_page(newpage, page);
629 	/*
630 	 * Please do not reorder this without considering how mm/ksm.c's
631 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
632 	 */
633 	if (PageSwapCache(page))
634 		ClearPageSwapCache(page);
635 	ClearPagePrivate(page);
636 	set_page_private(page, 0);
637 
638 	/*
639 	 * If any waiters have accumulated on the new page then
640 	 * wake them up.
641 	 */
642 	if (PageWriteback(newpage))
643 		end_page_writeback(newpage);
644 
645 	/*
646 	 * PG_readahead shares the same bit with PG_reclaim.  The above
647 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
648 	 * bit after that.
649 	 */
650 	if (PageReadahead(page))
651 		SetPageReadahead(newpage);
652 
653 	copy_page_owner(page, newpage);
654 
655 	if (!PageHuge(page))
656 		mem_cgroup_migrate(page, newpage);
657 }
658 EXPORT_SYMBOL(migrate_page_states);
659 
migrate_page_copy(struct page * newpage,struct page * page)660 void migrate_page_copy(struct page *newpage, struct page *page)
661 {
662 	if (PageHuge(page) || PageTransHuge(page))
663 		copy_huge_page(newpage, page);
664 	else
665 		copy_highpage(newpage, page);
666 
667 	migrate_page_states(newpage, page);
668 }
669 EXPORT_SYMBOL(migrate_page_copy);
670 
671 /************************************************************
672  *                    Migration functions
673  ***********************************************************/
674 
675 /*
676  * Common logic to directly migrate a single LRU page suitable for
677  * pages that do not use PagePrivate/PagePrivate2.
678  *
679  * Pages are locked upon entry and exit.
680  */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)681 int migrate_page(struct address_space *mapping,
682 		struct page *newpage, struct page *page,
683 		enum migrate_mode mode)
684 {
685 	int rc;
686 
687 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
688 
689 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
690 
691 	if (rc != MIGRATEPAGE_SUCCESS)
692 		return rc;
693 
694 	if (mode != MIGRATE_SYNC_NO_COPY)
695 		migrate_page_copy(newpage, page);
696 	else
697 		migrate_page_states(newpage, page);
698 	return MIGRATEPAGE_SUCCESS;
699 }
700 EXPORT_SYMBOL(migrate_page);
701 
702 #ifdef CONFIG_BLOCK
703 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)704 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
705 							enum migrate_mode mode)
706 {
707 	struct buffer_head *bh = head;
708 
709 	/* Simple case, sync compaction */
710 	if (mode != MIGRATE_ASYNC) {
711 		do {
712 			lock_buffer(bh);
713 			bh = bh->b_this_page;
714 
715 		} while (bh != head);
716 
717 		return true;
718 	}
719 
720 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
721 	do {
722 		if (!trylock_buffer(bh)) {
723 			/*
724 			 * We failed to lock the buffer and cannot stall in
725 			 * async migration. Release the taken locks
726 			 */
727 			struct buffer_head *failed_bh = bh;
728 			bh = head;
729 			while (bh != failed_bh) {
730 				unlock_buffer(bh);
731 				bh = bh->b_this_page;
732 			}
733 			return false;
734 		}
735 
736 		bh = bh->b_this_page;
737 	} while (bh != head);
738 	return true;
739 }
740 
__buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,bool check_refs)741 static int __buffer_migrate_page(struct address_space *mapping,
742 		struct page *newpage, struct page *page, enum migrate_mode mode,
743 		bool check_refs)
744 {
745 	struct buffer_head *bh, *head;
746 	int rc;
747 	int expected_count;
748 
749 	if (!page_has_buffers(page))
750 		return migrate_page(mapping, newpage, page, mode);
751 
752 	/* Check whether page does not have extra refs before we do more work */
753 	expected_count = expected_page_refs(mapping, page);
754 	if (page_count(page) != expected_count)
755 		return -EAGAIN;
756 
757 	head = page_buffers(page);
758 	if (!buffer_migrate_lock_buffers(head, mode))
759 		return -EAGAIN;
760 
761 	if (check_refs) {
762 		bool busy;
763 		bool invalidated = false;
764 
765 recheck_buffers:
766 		busy = false;
767 		spin_lock(&mapping->private_lock);
768 		bh = head;
769 		do {
770 			if (atomic_read(&bh->b_count)) {
771 				busy = true;
772 				break;
773 			}
774 			bh = bh->b_this_page;
775 		} while (bh != head);
776 		if (busy) {
777 			if (invalidated) {
778 				rc = -EAGAIN;
779 				goto unlock_buffers;
780 			}
781 			spin_unlock(&mapping->private_lock);
782 			invalidate_bh_lrus();
783 			invalidated = true;
784 			goto recheck_buffers;
785 		}
786 	}
787 
788 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
789 	if (rc != MIGRATEPAGE_SUCCESS)
790 		goto unlock_buffers;
791 
792 	attach_page_private(newpage, detach_page_private(page));
793 
794 	bh = head;
795 	do {
796 		set_bh_page(bh, newpage, bh_offset(bh));
797 		bh = bh->b_this_page;
798 
799 	} while (bh != head);
800 
801 	if (mode != MIGRATE_SYNC_NO_COPY)
802 		migrate_page_copy(newpage, page);
803 	else
804 		migrate_page_states(newpage, page);
805 
806 	rc = MIGRATEPAGE_SUCCESS;
807 unlock_buffers:
808 	if (check_refs)
809 		spin_unlock(&mapping->private_lock);
810 	bh = head;
811 	do {
812 		unlock_buffer(bh);
813 		bh = bh->b_this_page;
814 
815 	} while (bh != head);
816 
817 	return rc;
818 }
819 
820 /*
821  * Migration function for pages with buffers. This function can only be used
822  * if the underlying filesystem guarantees that no other references to "page"
823  * exist. For example attached buffer heads are accessed only under page lock.
824  */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)825 int buffer_migrate_page(struct address_space *mapping,
826 		struct page *newpage, struct page *page, enum migrate_mode mode)
827 {
828 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
829 }
830 EXPORT_SYMBOL(buffer_migrate_page);
831 
832 /*
833  * Same as above except that this variant is more careful and checks that there
834  * are also no buffer head references. This function is the right one for
835  * mappings where buffer heads are directly looked up and referenced (such as
836  * block device mappings).
837  */
buffer_migrate_page_norefs(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)838 int buffer_migrate_page_norefs(struct address_space *mapping,
839 		struct page *newpage, struct page *page, enum migrate_mode mode)
840 {
841 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
842 }
843 #endif
844 
845 /*
846  * Writeback a page to clean the dirty state
847  */
writeout(struct address_space * mapping,struct page * page)848 static int writeout(struct address_space *mapping, struct page *page)
849 {
850 	struct writeback_control wbc = {
851 		.sync_mode = WB_SYNC_NONE,
852 		.nr_to_write = 1,
853 		.range_start = 0,
854 		.range_end = LLONG_MAX,
855 		.for_reclaim = 1
856 	};
857 	int rc;
858 
859 	if (!mapping->a_ops->writepage)
860 		/* No write method for the address space */
861 		return -EINVAL;
862 
863 	if (!clear_page_dirty_for_io(page))
864 		/* Someone else already triggered a write */
865 		return -EAGAIN;
866 
867 	/*
868 	 * A dirty page may imply that the underlying filesystem has
869 	 * the page on some queue. So the page must be clean for
870 	 * migration. Writeout may mean we loose the lock and the
871 	 * page state is no longer what we checked for earlier.
872 	 * At this point we know that the migration attempt cannot
873 	 * be successful.
874 	 */
875 	remove_migration_ptes(page, page, false);
876 
877 	rc = mapping->a_ops->writepage(page, &wbc);
878 
879 	if (rc != AOP_WRITEPAGE_ACTIVATE)
880 		/* unlocked. Relock */
881 		lock_page(page);
882 
883 	return (rc < 0) ? -EIO : -EAGAIN;
884 }
885 
886 /*
887  * Default handling if a filesystem does not provide a migration function.
888  */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)889 static int fallback_migrate_page(struct address_space *mapping,
890 	struct page *newpage, struct page *page, enum migrate_mode mode)
891 {
892 	if (PageDirty(page)) {
893 		/* Only writeback pages in full synchronous migration */
894 		switch (mode) {
895 		case MIGRATE_SYNC:
896 		case MIGRATE_SYNC_NO_COPY:
897 			break;
898 		default:
899 			return -EBUSY;
900 		}
901 		return writeout(mapping, page);
902 	}
903 
904 	/*
905 	 * Buffers may be managed in a filesystem specific way.
906 	 * We must have no buffers or drop them.
907 	 */
908 	if (page_has_private(page) &&
909 	    !try_to_release_page(page, GFP_KERNEL))
910 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
911 
912 	return migrate_page(mapping, newpage, page, mode);
913 }
914 
915 /*
916  * Move a page to a newly allocated page
917  * The page is locked and all ptes have been successfully removed.
918  *
919  * The new page will have replaced the old page if this function
920  * is successful.
921  *
922  * Return value:
923  *   < 0 - error code
924  *  MIGRATEPAGE_SUCCESS - success
925  */
move_to_new_page(struct page * newpage,struct page * page,enum migrate_mode mode)926 static int move_to_new_page(struct page *newpage, struct page *page,
927 				enum migrate_mode mode)
928 {
929 	struct address_space *mapping;
930 	int rc = -EAGAIN;
931 	bool is_lru = !__PageMovable(page);
932 
933 	VM_BUG_ON_PAGE(!PageLocked(page), page);
934 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
935 
936 	mapping = page_mapping(page);
937 
938 	if (likely(is_lru)) {
939 		if (!mapping)
940 			rc = migrate_page(mapping, newpage, page, mode);
941 		else if (mapping->a_ops->migratepage)
942 			/*
943 			 * Most pages have a mapping and most filesystems
944 			 * provide a migratepage callback. Anonymous pages
945 			 * are part of swap space which also has its own
946 			 * migratepage callback. This is the most common path
947 			 * for page migration.
948 			 */
949 			rc = mapping->a_ops->migratepage(mapping, newpage,
950 							page, mode);
951 		else
952 			rc = fallback_migrate_page(mapping, newpage,
953 							page, mode);
954 	} else {
955 		/*
956 		 * In case of non-lru page, it could be released after
957 		 * isolation step. In that case, we shouldn't try migration.
958 		 */
959 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
960 		if (!PageMovable(page)) {
961 			rc = MIGRATEPAGE_SUCCESS;
962 			ClearPageIsolated(page);
963 			goto out;
964 		}
965 
966 		rc = mapping->a_ops->migratepage(mapping, newpage,
967 						page, mode);
968 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
969 			!PageIsolated(page));
970 	}
971 
972 	/*
973 	 * When successful, old pagecache page->mapping must be cleared before
974 	 * page is freed; but stats require that PageAnon be left as PageAnon.
975 	 */
976 	if (rc == MIGRATEPAGE_SUCCESS) {
977 		if (__PageMovable(page)) {
978 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
979 
980 			/*
981 			 * We clear PG_movable under page_lock so any compactor
982 			 * cannot try to migrate this page.
983 			 */
984 			ClearPageIsolated(page);
985 		}
986 
987 		/*
988 		 * Anonymous and movable page->mapping will be cleared by
989 		 * free_pages_prepare so don't reset it here for keeping
990 		 * the type to work PageAnon, for example.
991 		 */
992 		if (!PageMappingFlags(page))
993 			page->mapping = NULL;
994 
995 		if (likely(!is_zone_device_page(newpage))) {
996 			int i, nr = compound_nr(newpage);
997 
998 			for (i = 0; i < nr; i++)
999 				flush_dcache_page(newpage + i);
1000 		}
1001 	}
1002 out:
1003 	return rc;
1004 }
1005 
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)1006 static int __unmap_and_move(struct page *page, struct page *newpage,
1007 				int force, enum migrate_mode mode)
1008 {
1009 	int rc = -EAGAIN;
1010 	int page_was_mapped = 0;
1011 	struct anon_vma *anon_vma = NULL;
1012 	bool is_lru = !__PageMovable(page);
1013 
1014 	if (!trylock_page(page)) {
1015 		if (!force || mode == MIGRATE_ASYNC)
1016 			goto out;
1017 
1018 		/*
1019 		 * It's not safe for direct compaction to call lock_page.
1020 		 * For example, during page readahead pages are added locked
1021 		 * to the LRU. Later, when the IO completes the pages are
1022 		 * marked uptodate and unlocked. However, the queueing
1023 		 * could be merging multiple pages for one bio (e.g.
1024 		 * mpage_readahead). If an allocation happens for the
1025 		 * second or third page, the process can end up locking
1026 		 * the same page twice and deadlocking. Rather than
1027 		 * trying to be clever about what pages can be locked,
1028 		 * avoid the use of lock_page for direct compaction
1029 		 * altogether.
1030 		 */
1031 		if (current->flags & PF_MEMALLOC)
1032 			goto out;
1033 
1034 		lock_page(page);
1035 	}
1036 
1037 	if (PageWriteback(page)) {
1038 		/*
1039 		 * Only in the case of a full synchronous migration is it
1040 		 * necessary to wait for PageWriteback. In the async case,
1041 		 * the retry loop is too short and in the sync-light case,
1042 		 * the overhead of stalling is too much
1043 		 */
1044 		switch (mode) {
1045 		case MIGRATE_SYNC:
1046 		case MIGRATE_SYNC_NO_COPY:
1047 			break;
1048 		default:
1049 			rc = -EBUSY;
1050 			goto out_unlock;
1051 		}
1052 		if (!force)
1053 			goto out_unlock;
1054 		wait_on_page_writeback(page);
1055 	}
1056 
1057 	/*
1058 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1059 	 * we cannot notice that anon_vma is freed while we migrates a page.
1060 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1061 	 * of migration. File cache pages are no problem because of page_lock()
1062 	 * File Caches may use write_page() or lock_page() in migration, then,
1063 	 * just care Anon page here.
1064 	 *
1065 	 * Only page_get_anon_vma() understands the subtleties of
1066 	 * getting a hold on an anon_vma from outside one of its mms.
1067 	 * But if we cannot get anon_vma, then we won't need it anyway,
1068 	 * because that implies that the anon page is no longer mapped
1069 	 * (and cannot be remapped so long as we hold the page lock).
1070 	 */
1071 	if (PageAnon(page) && !PageKsm(page))
1072 		anon_vma = page_get_anon_vma(page);
1073 
1074 	/*
1075 	 * Block others from accessing the new page when we get around to
1076 	 * establishing additional references. We are usually the only one
1077 	 * holding a reference to newpage at this point. We used to have a BUG
1078 	 * here if trylock_page(newpage) fails, but would like to allow for
1079 	 * cases where there might be a race with the previous use of newpage.
1080 	 * This is much like races on refcount of oldpage: just don't BUG().
1081 	 */
1082 	if (unlikely(!trylock_page(newpage)))
1083 		goto out_unlock;
1084 
1085 	if (unlikely(!is_lru)) {
1086 		rc = move_to_new_page(newpage, page, mode);
1087 		goto out_unlock_both;
1088 	}
1089 
1090 	/*
1091 	 * Corner case handling:
1092 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1093 	 * and treated as swapcache but it has no rmap yet.
1094 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1095 	 * trigger a BUG.  So handle it here.
1096 	 * 2. An orphaned page (see truncate_complete_page) might have
1097 	 * fs-private metadata. The page can be picked up due to memory
1098 	 * offlining.  Everywhere else except page reclaim, the page is
1099 	 * invisible to the vm, so the page can not be migrated.  So try to
1100 	 * free the metadata, so the page can be freed.
1101 	 */
1102 	if (!page->mapping) {
1103 		VM_BUG_ON_PAGE(PageAnon(page), page);
1104 		if (page_has_private(page)) {
1105 			try_to_free_buffers(page);
1106 			goto out_unlock_both;
1107 		}
1108 	} else if (page_mapped(page)) {
1109 		/* Establish migration ptes */
1110 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1111 				page);
1112 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1113 		page_was_mapped = 1;
1114 	}
1115 
1116 	if (!page_mapped(page))
1117 		rc = move_to_new_page(newpage, page, mode);
1118 
1119 	if (page_was_mapped)
1120 		remove_migration_ptes(page,
1121 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1122 
1123 out_unlock_both:
1124 	unlock_page(newpage);
1125 out_unlock:
1126 	/* Drop an anon_vma reference if we took one */
1127 	if (anon_vma)
1128 		put_anon_vma(anon_vma);
1129 	unlock_page(page);
1130 out:
1131 	/*
1132 	 * If migration is successful, decrease refcount of the newpage
1133 	 * which will not free the page because new page owner increased
1134 	 * refcounter. As well, if it is LRU page, add the page to LRU
1135 	 * list in here. Use the old state of the isolated source page to
1136 	 * determine if we migrated a LRU page. newpage was already unlocked
1137 	 * and possibly modified by its owner - don't rely on the page
1138 	 * state.
1139 	 */
1140 	if (rc == MIGRATEPAGE_SUCCESS) {
1141 		if (unlikely(!is_lru))
1142 			put_page(newpage);
1143 		else
1144 			putback_lru_page(newpage);
1145 	}
1146 
1147 	return rc;
1148 }
1149 
1150 /*
1151  * Obtain the lock on page, remove all ptes and migrate the page
1152  * to the newly allocated page in newpage.
1153  */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode,enum migrate_reason reason)1154 static int unmap_and_move(new_page_t get_new_page,
1155 				   free_page_t put_new_page,
1156 				   unsigned long private, struct page *page,
1157 				   int force, enum migrate_mode mode,
1158 				   enum migrate_reason reason)
1159 {
1160 	int rc = MIGRATEPAGE_SUCCESS;
1161 	struct page *newpage = NULL;
1162 
1163 	if (!thp_migration_supported() && PageTransHuge(page))
1164 		return -ENOMEM;
1165 
1166 	if (page_count(page) == 1) {
1167 		/* page was freed from under us. So we are done. */
1168 		ClearPageActive(page);
1169 		ClearPageUnevictable(page);
1170 		if (unlikely(__PageMovable(page))) {
1171 			lock_page(page);
1172 			if (!PageMovable(page))
1173 				ClearPageIsolated(page);
1174 			unlock_page(page);
1175 		}
1176 		goto out;
1177 	}
1178 
1179 	newpage = get_new_page(page, private);
1180 	if (!newpage)
1181 		return -ENOMEM;
1182 
1183 	rc = __unmap_and_move(page, newpage, force, mode);
1184 	if (rc == MIGRATEPAGE_SUCCESS)
1185 		set_page_owner_migrate_reason(newpage, reason);
1186 
1187 out:
1188 	if (rc != -EAGAIN) {
1189 		/*
1190 		 * A page that has been migrated has all references
1191 		 * removed and will be freed. A page that has not been
1192 		 * migrated will have kept its references and be restored.
1193 		 */
1194 		list_del(&page->lru);
1195 
1196 		/*
1197 		 * Compaction can migrate also non-LRU pages which are
1198 		 * not accounted to NR_ISOLATED_*. They can be recognized
1199 		 * as __PageMovable
1200 		 */
1201 		if (likely(!__PageMovable(page)))
1202 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1203 					page_is_file_lru(page), -thp_nr_pages(page));
1204 	}
1205 
1206 	/*
1207 	 * If migration is successful, releases reference grabbed during
1208 	 * isolation. Otherwise, restore the page to right list unless
1209 	 * we want to retry.
1210 	 */
1211 	if (rc == MIGRATEPAGE_SUCCESS) {
1212 		if (reason != MR_MEMORY_FAILURE)
1213 			/*
1214 			 * We release the page in page_handle_poison.
1215 			 */
1216 			put_page(page);
1217 	} else {
1218 		if (rc != -EAGAIN) {
1219 			if (likely(!__PageMovable(page))) {
1220 				putback_lru_page(page);
1221 				goto put_new;
1222 			}
1223 
1224 			lock_page(page);
1225 			if (PageMovable(page))
1226 				putback_movable_page(page);
1227 			else
1228 				ClearPageIsolated(page);
1229 			unlock_page(page);
1230 			put_page(page);
1231 		}
1232 put_new:
1233 		if (put_new_page)
1234 			put_new_page(newpage, private);
1235 		else
1236 			put_page(newpage);
1237 	}
1238 
1239 	return rc;
1240 }
1241 
1242 /*
1243  * Counterpart of unmap_and_move_page() for hugepage migration.
1244  *
1245  * This function doesn't wait the completion of hugepage I/O
1246  * because there is no race between I/O and migration for hugepage.
1247  * Note that currently hugepage I/O occurs only in direct I/O
1248  * where no lock is held and PG_writeback is irrelevant,
1249  * and writeback status of all subpages are counted in the reference
1250  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1251  * under direct I/O, the reference of the head page is 512 and a bit more.)
1252  * This means that when we try to migrate hugepage whose subpages are
1253  * doing direct I/O, some references remain after try_to_unmap() and
1254  * hugepage migration fails without data corruption.
1255  *
1256  * There is also no race when direct I/O is issued on the page under migration,
1257  * because then pte is replaced with migration swap entry and direct I/O code
1258  * will wait in the page fault for migration to complete.
1259  */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode,int reason)1260 static int unmap_and_move_huge_page(new_page_t get_new_page,
1261 				free_page_t put_new_page, unsigned long private,
1262 				struct page *hpage, int force,
1263 				enum migrate_mode mode, int reason)
1264 {
1265 	int rc = -EAGAIN;
1266 	int page_was_mapped = 0;
1267 	struct page *new_hpage;
1268 	struct anon_vma *anon_vma = NULL;
1269 	struct address_space *mapping = NULL;
1270 
1271 	/*
1272 	 * Migratability of hugepages depends on architectures and their size.
1273 	 * This check is necessary because some callers of hugepage migration
1274 	 * like soft offline and memory hotremove don't walk through page
1275 	 * tables or check whether the hugepage is pmd-based or not before
1276 	 * kicking migration.
1277 	 */
1278 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1279 		putback_active_hugepage(hpage);
1280 		return -ENOSYS;
1281 	}
1282 
1283 	new_hpage = get_new_page(hpage, private);
1284 	if (!new_hpage)
1285 		return -ENOMEM;
1286 
1287 	if (!trylock_page(hpage)) {
1288 		if (!force)
1289 			goto out;
1290 		switch (mode) {
1291 		case MIGRATE_SYNC:
1292 		case MIGRATE_SYNC_NO_COPY:
1293 			break;
1294 		default:
1295 			goto out;
1296 		}
1297 		lock_page(hpage);
1298 	}
1299 
1300 	/*
1301 	 * Check for pages which are in the process of being freed.  Without
1302 	 * page_mapping() set, hugetlbfs specific move page routine will not
1303 	 * be called and we could leak usage counts for subpools.
1304 	 */
1305 	if (page_private(hpage) && !page_mapping(hpage)) {
1306 		rc = -EBUSY;
1307 		goto out_unlock;
1308 	}
1309 
1310 	if (PageAnon(hpage))
1311 		anon_vma = page_get_anon_vma(hpage);
1312 
1313 	if (unlikely(!trylock_page(new_hpage)))
1314 		goto put_anon;
1315 
1316 	if (page_mapped(hpage)) {
1317 		bool mapping_locked = false;
1318 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1319 
1320 		if (!PageAnon(hpage)) {
1321 			/*
1322 			 * In shared mappings, try_to_unmap could potentially
1323 			 * call huge_pmd_unshare.  Because of this, take
1324 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1325 			 * to let lower levels know we have taken the lock.
1326 			 */
1327 			mapping = hugetlb_page_mapping_lock_write(hpage);
1328 			if (unlikely(!mapping))
1329 				goto unlock_put_anon;
1330 
1331 			mapping_locked = true;
1332 			ttu |= TTU_RMAP_LOCKED;
1333 		}
1334 
1335 		try_to_unmap(hpage, ttu);
1336 		page_was_mapped = 1;
1337 
1338 		if (mapping_locked)
1339 			i_mmap_unlock_write(mapping);
1340 	}
1341 
1342 	if (!page_mapped(hpage))
1343 		rc = move_to_new_page(new_hpage, hpage, mode);
1344 
1345 	if (page_was_mapped)
1346 		remove_migration_ptes(hpage,
1347 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1348 
1349 unlock_put_anon:
1350 	unlock_page(new_hpage);
1351 
1352 put_anon:
1353 	if (anon_vma)
1354 		put_anon_vma(anon_vma);
1355 
1356 	if (rc == MIGRATEPAGE_SUCCESS) {
1357 		move_hugetlb_state(hpage, new_hpage, reason);
1358 		put_new_page = NULL;
1359 	}
1360 
1361 out_unlock:
1362 	unlock_page(hpage);
1363 out:
1364 	if (rc != -EAGAIN)
1365 		putback_active_hugepage(hpage);
1366 
1367 	/*
1368 	 * If migration was not successful and there's a freeing callback, use
1369 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1370 	 * isolation.
1371 	 */
1372 	if (put_new_page)
1373 		put_new_page(new_hpage, private);
1374 	else
1375 		putback_active_hugepage(new_hpage);
1376 
1377 	return rc;
1378 }
1379 
1380 /*
1381  * migrate_pages - migrate the pages specified in a list, to the free pages
1382  *		   supplied as the target for the page migration
1383  *
1384  * @from:		The list of pages to be migrated.
1385  * @get_new_page:	The function used to allocate free pages to be used
1386  *			as the target of the page migration.
1387  * @put_new_page:	The function used to free target pages if migration
1388  *			fails, or NULL if no special handling is necessary.
1389  * @private:		Private data to be passed on to get_new_page()
1390  * @mode:		The migration mode that specifies the constraints for
1391  *			page migration, if any.
1392  * @reason:		The reason for page migration.
1393  *
1394  * The function returns after 10 attempts or if no pages are movable any more
1395  * because the list has become empty or no retryable pages exist any more.
1396  * The caller should call putback_movable_pages() to return pages to the LRU
1397  * or free list only if ret != 0.
1398  *
1399  * Returns the number of pages that were not migrated, or an error code.
1400  */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason)1401 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1402 		free_page_t put_new_page, unsigned long private,
1403 		enum migrate_mode mode, int reason)
1404 {
1405 	int retry = 1;
1406 	int thp_retry = 1;
1407 	int nr_failed = 0;
1408 	int nr_succeeded = 0;
1409 	int nr_thp_succeeded = 0;
1410 	int nr_thp_failed = 0;
1411 	int nr_thp_split = 0;
1412 	int pass = 0;
1413 	bool is_thp = false;
1414 	struct page *page;
1415 	struct page *page2;
1416 	int swapwrite = current->flags & PF_SWAPWRITE;
1417 	int rc, nr_subpages;
1418 
1419 	trace_mm_migrate_pages_start(mode, reason);
1420 
1421 	if (!swapwrite)
1422 		current->flags |= PF_SWAPWRITE;
1423 
1424 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1425 		retry = 0;
1426 		thp_retry = 0;
1427 
1428 		list_for_each_entry_safe(page, page2, from, lru) {
1429 retry:
1430 			/*
1431 			 * THP statistics is based on the source huge page.
1432 			 * Capture required information that might get lost
1433 			 * during migration.
1434 			 */
1435 			is_thp = PageTransHuge(page) && !PageHuge(page);
1436 			nr_subpages = thp_nr_pages(page);
1437 			cond_resched();
1438 
1439 			if (PageHuge(page))
1440 				rc = unmap_and_move_huge_page(get_new_page,
1441 						put_new_page, private, page,
1442 						pass > 2, mode, reason);
1443 			else
1444 				rc = unmap_and_move(get_new_page, put_new_page,
1445 						private, page, pass > 2, mode,
1446 						reason);
1447 
1448 			switch(rc) {
1449 			case -ENOMEM:
1450 				/*
1451 				 * THP migration might be unsupported or the
1452 				 * allocation could've failed so we should
1453 				 * retry on the same page with the THP split
1454 				 * to base pages.
1455 				 *
1456 				 * Head page is retried immediately and tail
1457 				 * pages are added to the tail of the list so
1458 				 * we encounter them after the rest of the list
1459 				 * is processed.
1460 				 */
1461 				if (is_thp) {
1462 					lock_page(page);
1463 					rc = split_huge_page_to_list(page, from);
1464 					unlock_page(page);
1465 					if (!rc) {
1466 						list_safe_reset_next(page, page2, lru);
1467 						nr_thp_split++;
1468 						goto retry;
1469 					}
1470 
1471 					nr_thp_failed++;
1472 					nr_failed += nr_subpages;
1473 					goto out;
1474 				}
1475 				nr_failed++;
1476 				goto out;
1477 			case -EAGAIN:
1478 				if (is_thp) {
1479 					thp_retry++;
1480 					break;
1481 				}
1482 				retry++;
1483 				break;
1484 			case MIGRATEPAGE_SUCCESS:
1485 				if (is_thp) {
1486 					nr_thp_succeeded++;
1487 					nr_succeeded += nr_subpages;
1488 					break;
1489 				}
1490 				nr_succeeded++;
1491 				break;
1492 			default:
1493 				/*
1494 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1495 				 * unlike -EAGAIN case, the failed page is
1496 				 * removed from migration page list and not
1497 				 * retried in the next outer loop.
1498 				 */
1499 				if (is_thp) {
1500 					nr_thp_failed++;
1501 					nr_failed += nr_subpages;
1502 					break;
1503 				}
1504 				nr_failed++;
1505 				break;
1506 			}
1507 		}
1508 	}
1509 	nr_failed += retry + thp_retry;
1510 	nr_thp_failed += thp_retry;
1511 	rc = nr_failed;
1512 out:
1513 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1514 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1515 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1516 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1517 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1518 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1519 			       nr_thp_failed, nr_thp_split, mode, reason);
1520 
1521 	if (!swapwrite)
1522 		current->flags &= ~PF_SWAPWRITE;
1523 
1524 	return rc;
1525 }
1526 EXPORT_SYMBOL_GPL(migrate_pages);
1527 
alloc_migration_target(struct page * page,unsigned long private)1528 struct page *alloc_migration_target(struct page *page, unsigned long private)
1529 {
1530 	struct migration_target_control *mtc;
1531 	gfp_t gfp_mask;
1532 	unsigned int order = 0;
1533 	struct page *new_page = NULL;
1534 	int nid;
1535 	int zidx;
1536 
1537 	mtc = (struct migration_target_control *)private;
1538 	gfp_mask = mtc->gfp_mask;
1539 	nid = mtc->nid;
1540 	if (nid == NUMA_NO_NODE)
1541 		nid = page_to_nid(page);
1542 
1543 	if (PageHuge(page)) {
1544 		struct hstate *h = page_hstate(compound_head(page));
1545 
1546 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1547 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1548 	}
1549 
1550 	if (PageTransHuge(page)) {
1551 		/*
1552 		 * clear __GFP_RECLAIM to make the migration callback
1553 		 * consistent with regular THP allocations.
1554 		 */
1555 		gfp_mask &= ~__GFP_RECLAIM;
1556 		gfp_mask |= GFP_TRANSHUGE;
1557 		order = HPAGE_PMD_ORDER;
1558 	}
1559 	zidx = zone_idx(page_zone(page));
1560 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1561 		gfp_mask |= __GFP_HIGHMEM;
1562 
1563 	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1564 
1565 	if (new_page && PageTransHuge(new_page))
1566 		prep_transhuge_page(new_page);
1567 
1568 	return new_page;
1569 }
1570 
1571 #ifdef CONFIG_NUMA
1572 
store_status(int __user * status,int start,int value,int nr)1573 static int store_status(int __user *status, int start, int value, int nr)
1574 {
1575 	while (nr-- > 0) {
1576 		if (put_user(value, status + start))
1577 			return -EFAULT;
1578 		start++;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
do_move_pages_to_node(struct mm_struct * mm,struct list_head * pagelist,int node)1584 static int do_move_pages_to_node(struct mm_struct *mm,
1585 		struct list_head *pagelist, int node)
1586 {
1587 	int err;
1588 	struct migration_target_control mtc = {
1589 		.nid = node,
1590 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1591 	};
1592 
1593 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1594 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1595 	if (err)
1596 		putback_movable_pages(pagelist);
1597 	return err;
1598 }
1599 
1600 /*
1601  * Resolves the given address to a struct page, isolates it from the LRU and
1602  * puts it to the given pagelist.
1603  * Returns:
1604  *     errno - if the page cannot be found/isolated
1605  *     0 - when it doesn't have to be migrated because it is already on the
1606  *         target node
1607  *     1 - when it has been queued
1608  */
add_page_for_migration(struct mm_struct * mm,unsigned long addr,int node,struct list_head * pagelist,bool migrate_all)1609 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1610 		int node, struct list_head *pagelist, bool migrate_all)
1611 {
1612 	struct vm_area_struct *vma;
1613 	struct page *page;
1614 	unsigned int follflags;
1615 	int err;
1616 
1617 	mmap_read_lock(mm);
1618 	err = -EFAULT;
1619 	vma = find_vma(mm, addr);
1620 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1621 		goto out;
1622 
1623 	/* FOLL_DUMP to ignore special (like zero) pages */
1624 	follflags = FOLL_GET | FOLL_DUMP;
1625 	page = follow_page(vma, addr, follflags);
1626 
1627 	err = PTR_ERR(page);
1628 	if (IS_ERR(page))
1629 		goto out;
1630 
1631 	err = -ENOENT;
1632 	if (!page)
1633 		goto out;
1634 
1635 	err = 0;
1636 	if (page_to_nid(page) == node)
1637 		goto out_putpage;
1638 
1639 	err = -EACCES;
1640 	if (page_mapcount(page) > 1 && !migrate_all)
1641 		goto out_putpage;
1642 
1643 	if (PageHuge(page)) {
1644 		if (PageHead(page)) {
1645 			err = isolate_hugetlb(page, pagelist);
1646 			if (!err)
1647 				err = 1;
1648 		}
1649 	} else {
1650 		struct page *head;
1651 
1652 		head = compound_head(page);
1653 		err = isolate_lru_page(head);
1654 		if (err)
1655 			goto out_putpage;
1656 
1657 		err = 1;
1658 		list_add_tail(&head->lru, pagelist);
1659 		mod_node_page_state(page_pgdat(head),
1660 			NR_ISOLATED_ANON + page_is_file_lru(head),
1661 			thp_nr_pages(head));
1662 	}
1663 out_putpage:
1664 	/*
1665 	 * Either remove the duplicate refcount from
1666 	 * isolate_lru_page() or drop the page ref if it was
1667 	 * not isolated.
1668 	 */
1669 	put_user_page(page);
1670 out:
1671 	mmap_read_unlock(mm);
1672 	return err;
1673 }
1674 
move_pages_and_store_status(struct mm_struct * mm,int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)1675 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1676 		struct list_head *pagelist, int __user *status,
1677 		int start, int i, unsigned long nr_pages)
1678 {
1679 	int err;
1680 
1681 	if (list_empty(pagelist))
1682 		return 0;
1683 
1684 	err = do_move_pages_to_node(mm, pagelist, node);
1685 	if (err) {
1686 		/*
1687 		 * Positive err means the number of failed
1688 		 * pages to migrate.  Since we are going to
1689 		 * abort and return the number of non-migrated
1690 		 * pages, so need to incude the rest of the
1691 		 * nr_pages that have not been attempted as
1692 		 * well.
1693 		 */
1694 		if (err > 0)
1695 			err += nr_pages - i - 1;
1696 		return err;
1697 	}
1698 	return store_status(status, start, node, i - start);
1699 }
1700 
1701 /*
1702  * Migrate an array of page address onto an array of nodes and fill
1703  * the corresponding array of status.
1704  */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1705 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1706 			 unsigned long nr_pages,
1707 			 const void __user * __user *pages,
1708 			 const int __user *nodes,
1709 			 int __user *status, int flags)
1710 {
1711 	int current_node = NUMA_NO_NODE;
1712 	LIST_HEAD(pagelist);
1713 	int start, i;
1714 	int err = 0, err1;
1715 
1716 	lru_cache_disable();
1717 
1718 	for (i = start = 0; i < nr_pages; i++) {
1719 		const void __user *p;
1720 		unsigned long addr;
1721 		int node;
1722 
1723 		err = -EFAULT;
1724 		if (get_user(p, pages + i))
1725 			goto out_flush;
1726 		if (get_user(node, nodes + i))
1727 			goto out_flush;
1728 		addr = (unsigned long)untagged_addr(p);
1729 
1730 		err = -ENODEV;
1731 		if (node < 0 || node >= MAX_NUMNODES)
1732 			goto out_flush;
1733 		if (!node_state(node, N_MEMORY))
1734 			goto out_flush;
1735 
1736 		err = -EACCES;
1737 		if (!node_isset(node, task_nodes))
1738 			goto out_flush;
1739 
1740 		if (current_node == NUMA_NO_NODE) {
1741 			current_node = node;
1742 			start = i;
1743 		} else if (node != current_node) {
1744 			err = move_pages_and_store_status(mm, current_node,
1745 					&pagelist, status, start, i, nr_pages);
1746 			if (err)
1747 				goto out;
1748 			start = i;
1749 			current_node = node;
1750 		}
1751 
1752 		/*
1753 		 * Errors in the page lookup or isolation are not fatal and we simply
1754 		 * report them via status
1755 		 */
1756 		err = add_page_for_migration(mm, addr, current_node,
1757 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1758 
1759 		if (err > 0) {
1760 			/* The page is successfully queued for migration */
1761 			continue;
1762 		}
1763 
1764 		/*
1765 		 * If the page is already on the target node (!err), store the
1766 		 * node, otherwise, store the err.
1767 		 */
1768 		err = store_status(status, i, err ? : current_node, 1);
1769 		if (err)
1770 			goto out_flush;
1771 
1772 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1773 				status, start, i, nr_pages);
1774 		if (err)
1775 			goto out;
1776 		current_node = NUMA_NO_NODE;
1777 	}
1778 out_flush:
1779 	/* Make sure we do not overwrite the existing error */
1780 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1781 				status, start, i, nr_pages);
1782 	if (err >= 0)
1783 		err = err1;
1784 out:
1785 	lru_cache_enable();
1786 	return err;
1787 }
1788 
1789 /*
1790  * Determine the nodes of an array of pages and store it in an array of status.
1791  */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1792 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1793 				const void __user **pages, int *status)
1794 {
1795 	unsigned long i;
1796 
1797 	mmap_read_lock(mm);
1798 
1799 	for (i = 0; i < nr_pages; i++) {
1800 		unsigned long addr = (unsigned long)(*pages);
1801 		struct vm_area_struct *vma;
1802 		struct page *page;
1803 		int err = -EFAULT;
1804 
1805 		vma = find_vma(mm, addr);
1806 		if (!vma || addr < vma->vm_start)
1807 			goto set_status;
1808 
1809 		/* FOLL_DUMP to ignore special (like zero) pages */
1810 		page = follow_page(vma, addr, FOLL_DUMP);
1811 
1812 		err = PTR_ERR(page);
1813 		if (IS_ERR(page))
1814 			goto set_status;
1815 
1816 		err = page ? page_to_nid(page) : -ENOENT;
1817 set_status:
1818 		*status = err;
1819 
1820 		pages++;
1821 		status++;
1822 	}
1823 
1824 	mmap_read_unlock(mm);
1825 }
1826 
1827 /*
1828  * Determine the nodes of a user array of pages and store it in
1829  * a user array of status.
1830  */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1831 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1832 			 const void __user * __user *pages,
1833 			 int __user *status)
1834 {
1835 #define DO_PAGES_STAT_CHUNK_NR 16
1836 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1837 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1838 
1839 	while (nr_pages) {
1840 		unsigned long chunk_nr;
1841 
1842 		chunk_nr = nr_pages;
1843 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1844 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1845 
1846 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1847 			break;
1848 
1849 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1850 
1851 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1852 			break;
1853 
1854 		pages += chunk_nr;
1855 		status += chunk_nr;
1856 		nr_pages -= chunk_nr;
1857 	}
1858 	return nr_pages ? -EFAULT : 0;
1859 }
1860 
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)1861 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1862 {
1863 	struct task_struct *task;
1864 	struct mm_struct *mm;
1865 
1866 	/*
1867 	 * There is no need to check if current process has the right to modify
1868 	 * the specified process when they are same.
1869 	 */
1870 	if (!pid) {
1871 		mmget(current->mm);
1872 		*mem_nodes = cpuset_mems_allowed(current);
1873 		return current->mm;
1874 	}
1875 
1876 	/* Find the mm_struct */
1877 	rcu_read_lock();
1878 	task = find_task_by_vpid(pid);
1879 	if (!task) {
1880 		rcu_read_unlock();
1881 		return ERR_PTR(-ESRCH);
1882 	}
1883 	get_task_struct(task);
1884 
1885 	/*
1886 	 * Check if this process has the right to modify the specified
1887 	 * process. Use the regular "ptrace_may_access()" checks.
1888 	 */
1889 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1890 		rcu_read_unlock();
1891 		mm = ERR_PTR(-EPERM);
1892 		goto out;
1893 	}
1894 	rcu_read_unlock();
1895 
1896 	mm = ERR_PTR(security_task_movememory(task));
1897 	if (IS_ERR(mm))
1898 		goto out;
1899 	*mem_nodes = cpuset_mems_allowed(task);
1900 	mm = get_task_mm(task);
1901 out:
1902 	put_task_struct(task);
1903 	if (!mm)
1904 		mm = ERR_PTR(-EINVAL);
1905 	return mm;
1906 }
1907 
1908 /*
1909  * Move a list of pages in the address space of the currently executing
1910  * process.
1911  */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1912 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1913 			     const void __user * __user *pages,
1914 			     const int __user *nodes,
1915 			     int __user *status, int flags)
1916 {
1917 	struct mm_struct *mm;
1918 	int err;
1919 	nodemask_t task_nodes;
1920 
1921 	/* Check flags */
1922 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1923 		return -EINVAL;
1924 
1925 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1926 		return -EPERM;
1927 
1928 	mm = find_mm_struct(pid, &task_nodes);
1929 	if (IS_ERR(mm))
1930 		return PTR_ERR(mm);
1931 
1932 	if (nodes)
1933 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1934 				    nodes, status, flags);
1935 	else
1936 		err = do_pages_stat(mm, nr_pages, pages, status);
1937 
1938 	mmput(mm);
1939 	return err;
1940 }
1941 
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)1942 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1943 		const void __user * __user *, pages,
1944 		const int __user *, nodes,
1945 		int __user *, status, int, flags)
1946 {
1947 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1948 }
1949 
1950 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages,pid_t,pid,compat_ulong_t,nr_pages,compat_uptr_t __user *,pages32,const int __user *,nodes,int __user *,status,int,flags)1951 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1952 		       compat_uptr_t __user *, pages32,
1953 		       const int __user *, nodes,
1954 		       int __user *, status,
1955 		       int, flags)
1956 {
1957 	const void __user * __user *pages;
1958 	int i;
1959 
1960 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1961 	for (i = 0; i < nr_pages; i++) {
1962 		compat_uptr_t p;
1963 
1964 		if (get_user(p, pages32 + i) ||
1965 			put_user(compat_ptr(p), pages + i))
1966 			return -EFAULT;
1967 	}
1968 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1969 }
1970 #endif /* CONFIG_COMPAT */
1971 
1972 #ifdef CONFIG_NUMA_BALANCING
1973 /*
1974  * Returns true if this is a safe migration target node for misplaced NUMA
1975  * pages. Currently it only checks the watermarks which crude
1976  */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)1977 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1978 				   unsigned long nr_migrate_pages)
1979 {
1980 	int z;
1981 
1982 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1983 		struct zone *zone = pgdat->node_zones + z;
1984 
1985 		if (!populated_zone(zone))
1986 			continue;
1987 
1988 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1989 		if (!zone_watermark_ok(zone, 0,
1990 				       high_wmark_pages(zone) +
1991 				       nr_migrate_pages,
1992 				       ZONE_MOVABLE, 0))
1993 			continue;
1994 		return true;
1995 	}
1996 	return false;
1997 }
1998 
alloc_misplaced_dst_page(struct page * page,unsigned long data)1999 static struct page *alloc_misplaced_dst_page(struct page *page,
2000 					   unsigned long data)
2001 {
2002 	int nid = (int) data;
2003 	struct page *newpage;
2004 
2005 	newpage = __alloc_pages_node(nid,
2006 					 (GFP_HIGHUSER_MOVABLE |
2007 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2008 					  __GFP_NORETRY | __GFP_NOWARN) &
2009 					 ~__GFP_RECLAIM, 0);
2010 
2011 	return newpage;
2012 }
2013 
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)2014 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2015 {
2016 	int page_lru;
2017 
2018 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2019 
2020 	/* Avoid migrating to a node that is nearly full */
2021 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2022 		return 0;
2023 
2024 	if (isolate_lru_page(page))
2025 		return 0;
2026 
2027 	/*
2028 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2029 	 * check on page_count(), so we must do it here, now that the page
2030 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2031 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2032 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2033 	 */
2034 	if (PageTransHuge(page) && page_count(page) != 3) {
2035 		putback_lru_page(page);
2036 		return 0;
2037 	}
2038 
2039 	page_lru = page_is_file_lru(page);
2040 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2041 				thp_nr_pages(page));
2042 
2043 	/*
2044 	 * Isolating the page has taken another reference, so the
2045 	 * caller's reference can be safely dropped without the page
2046 	 * disappearing underneath us during migration.
2047 	 */
2048 	put_page(page);
2049 	return 1;
2050 }
2051 
pmd_trans_migrating(pmd_t pmd)2052 bool pmd_trans_migrating(pmd_t pmd)
2053 {
2054 	struct page *page = pmd_page(pmd);
2055 	return PageLocked(page);
2056 }
2057 
2058 /*
2059  * Attempt to migrate a misplaced page to the specified destination
2060  * node. Caller is expected to have an elevated reference count on
2061  * the page that will be dropped by this function before returning.
2062  */
migrate_misplaced_page(struct page * page,struct vm_fault * vmf,int node)2063 int migrate_misplaced_page(struct page *page, struct vm_fault *vmf,
2064 			   int node)
2065 {
2066 	pg_data_t *pgdat = NODE_DATA(node);
2067 	int isolated;
2068 	int nr_remaining;
2069 	LIST_HEAD(migratepages);
2070 
2071 	/*
2072 	 * Don't migrate file pages that are mapped in multiple processes
2073 	 * with execute permissions as they are probably shared libraries.
2074 	 */
2075 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2076 	    (vmf->vma_flags & VM_EXEC))
2077 		goto out;
2078 
2079 	/*
2080 	 * Also do not migrate dirty pages as not all filesystems can move
2081 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2082 	 */
2083 	if (page_is_file_lru(page) && PageDirty(page))
2084 		goto out;
2085 
2086 	isolated = numamigrate_isolate_page(pgdat, page);
2087 	if (!isolated)
2088 		goto out;
2089 
2090 	list_add(&page->lru, &migratepages);
2091 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2092 				     NULL, node, MIGRATE_ASYNC,
2093 				     MR_NUMA_MISPLACED);
2094 	if (nr_remaining) {
2095 		if (!list_empty(&migratepages)) {
2096 			list_del(&page->lru);
2097 			dec_node_page_state(page, NR_ISOLATED_ANON +
2098 					page_is_file_lru(page));
2099 			putback_lru_page(page);
2100 		}
2101 		isolated = 0;
2102 	} else
2103 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2104 	BUG_ON(!list_empty(&migratepages));
2105 	return isolated;
2106 
2107 out:
2108 	put_page(page);
2109 	return 0;
2110 }
2111 #endif /* CONFIG_NUMA_BALANCING */
2112 
2113 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2114 /*
2115  * Migrates a THP to a given target node. page must be locked and is unlocked
2116  * before returning.
2117  */
migrate_misplaced_transhuge_page(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,pmd_t entry,unsigned long address,struct page * page,int node)2118 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2119 				struct vm_area_struct *vma,
2120 				pmd_t *pmd, pmd_t entry,
2121 				unsigned long address,
2122 				struct page *page, int node)
2123 {
2124 	spinlock_t *ptl;
2125 	pg_data_t *pgdat = NODE_DATA(node);
2126 	int isolated = 0;
2127 	struct page *new_page = NULL;
2128 	int page_lru = page_is_file_lru(page);
2129 	unsigned long start = address & HPAGE_PMD_MASK;
2130 
2131 	new_page = alloc_pages_node(node,
2132 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2133 		HPAGE_PMD_ORDER);
2134 	if (!new_page)
2135 		goto out_fail;
2136 	prep_transhuge_page(new_page);
2137 
2138 	isolated = numamigrate_isolate_page(pgdat, page);
2139 	if (!isolated) {
2140 		put_page(new_page);
2141 		goto out_fail;
2142 	}
2143 
2144 	/* Prepare a page as a migration target */
2145 	__SetPageLocked(new_page);
2146 	if (PageSwapBacked(page))
2147 		__SetPageSwapBacked(new_page);
2148 
2149 	/* anon mapping, we can simply copy page->mapping to the new page: */
2150 	new_page->mapping = page->mapping;
2151 	new_page->index = page->index;
2152 	/* flush the cache before copying using the kernel virtual address */
2153 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2154 	migrate_page_copy(new_page, page);
2155 	WARN_ON(PageLRU(new_page));
2156 
2157 	/* Recheck the target PMD */
2158 	ptl = pmd_lock(mm, pmd);
2159 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2160 		spin_unlock(ptl);
2161 
2162 		/* Reverse changes made by migrate_page_copy() */
2163 		if (TestClearPageActive(new_page))
2164 			SetPageActive(page);
2165 		if (TestClearPageUnevictable(new_page))
2166 			SetPageUnevictable(page);
2167 
2168 		unlock_page(new_page);
2169 		put_page(new_page);		/* Free it */
2170 
2171 		/* Retake the callers reference and putback on LRU */
2172 		get_page(page);
2173 		putback_lru_page(page);
2174 		mod_node_page_state(page_pgdat(page),
2175 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2176 
2177 		goto out_unlock;
2178 	}
2179 
2180 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2181 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2182 
2183 	/*
2184 	 * Overwrite the old entry under pagetable lock and establish
2185 	 * the new PTE. Any parallel GUP will either observe the old
2186 	 * page blocking on the page lock, block on the page table
2187 	 * lock or observe the new page. The SetPageUptodate on the
2188 	 * new page and page_add_new_anon_rmap guarantee the copy is
2189 	 * visible before the pagetable update.
2190 	 */
2191 	page_add_anon_rmap(new_page, vma, start, true);
2192 	/*
2193 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2194 	 * has already been flushed globally.  So no TLB can be currently
2195 	 * caching this non present pmd mapping.  There's no need to clear the
2196 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2197 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2198 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2199 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2200 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2201 	 * pmd.
2202 	 */
2203 	set_pmd_at(mm, start, pmd, entry);
2204 	update_mmu_cache_pmd(vma, address, &entry);
2205 
2206 	page_ref_unfreeze(page, 2);
2207 	mlock_migrate_page(new_page, page);
2208 	page_remove_rmap(page, true);
2209 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2210 
2211 	spin_unlock(ptl);
2212 
2213 	/* Take an "isolate" reference and put new page on the LRU. */
2214 	get_page(new_page);
2215 	putback_lru_page(new_page);
2216 
2217 	unlock_page(new_page);
2218 	unlock_page(page);
2219 	put_page(page);			/* Drop the rmap reference */
2220 	put_page(page);			/* Drop the LRU isolation reference */
2221 
2222 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2223 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2224 
2225 	mod_node_page_state(page_pgdat(page),
2226 			NR_ISOLATED_ANON + page_lru,
2227 			-HPAGE_PMD_NR);
2228 	return isolated;
2229 
2230 out_fail:
2231 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2232 	ptl = pmd_lock(mm, pmd);
2233 	if (pmd_same(*pmd, entry)) {
2234 		entry = pmd_modify(entry, vma->vm_page_prot);
2235 		set_pmd_at(mm, start, pmd, entry);
2236 		update_mmu_cache_pmd(vma, address, &entry);
2237 	}
2238 	spin_unlock(ptl);
2239 
2240 out_unlock:
2241 	unlock_page(page);
2242 	put_page(page);
2243 	return 0;
2244 }
2245 #endif /* CONFIG_NUMA_BALANCING */
2246 
2247 #endif /* CONFIG_NUMA */
2248 
2249 #ifdef CONFIG_DEVICE_PRIVATE
migrate_vma_collect_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)2250 static int migrate_vma_collect_hole(unsigned long start,
2251 				    unsigned long end,
2252 				    __always_unused int depth,
2253 				    struct mm_walk *walk)
2254 {
2255 	struct migrate_vma *migrate = walk->private;
2256 	unsigned long addr;
2257 
2258 	/* Only allow populating anonymous memory. */
2259 	if (!vma_is_anonymous(walk->vma)) {
2260 		for (addr = start; addr < end; addr += PAGE_SIZE) {
2261 			migrate->src[migrate->npages] = 0;
2262 			migrate->dst[migrate->npages] = 0;
2263 			migrate->npages++;
2264 		}
2265 		return 0;
2266 	}
2267 
2268 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2269 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2270 		migrate->dst[migrate->npages] = 0;
2271 		migrate->npages++;
2272 		migrate->cpages++;
2273 	}
2274 
2275 	return 0;
2276 }
2277 
migrate_vma_collect_skip(unsigned long start,unsigned long end,struct mm_walk * walk)2278 static int migrate_vma_collect_skip(unsigned long start,
2279 				    unsigned long end,
2280 				    struct mm_walk *walk)
2281 {
2282 	struct migrate_vma *migrate = walk->private;
2283 	unsigned long addr;
2284 
2285 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2286 		migrate->dst[migrate->npages] = 0;
2287 		migrate->src[migrate->npages++] = 0;
2288 	}
2289 
2290 	return 0;
2291 }
2292 
migrate_vma_collect_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)2293 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2294 				   unsigned long start,
2295 				   unsigned long end,
2296 				   struct mm_walk *walk)
2297 {
2298 	struct migrate_vma *migrate = walk->private;
2299 	struct vm_area_struct *vma = walk->vma;
2300 	struct mm_struct *mm = vma->vm_mm;
2301 	unsigned long addr = start, unmapped = 0;
2302 	spinlock_t *ptl;
2303 	pte_t *ptep;
2304 
2305 again:
2306 	if (pmd_none(*pmdp))
2307 		return migrate_vma_collect_hole(start, end, -1, walk);
2308 
2309 	if (pmd_trans_huge(*pmdp)) {
2310 		struct page *page;
2311 
2312 		ptl = pmd_lock(mm, pmdp);
2313 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2314 			spin_unlock(ptl);
2315 			goto again;
2316 		}
2317 
2318 		page = pmd_page(*pmdp);
2319 		if (is_huge_zero_page(page)) {
2320 			spin_unlock(ptl);
2321 			split_huge_pmd(vma, pmdp, addr);
2322 			if (pmd_trans_unstable(pmdp))
2323 				return migrate_vma_collect_skip(start, end,
2324 								walk);
2325 		} else {
2326 			int ret;
2327 
2328 			get_page(page);
2329 			spin_unlock(ptl);
2330 			if (unlikely(!trylock_page(page)))
2331 				return migrate_vma_collect_skip(start, end,
2332 								walk);
2333 			ret = split_huge_page(page);
2334 			unlock_page(page);
2335 			put_page(page);
2336 			if (ret)
2337 				return migrate_vma_collect_skip(start, end,
2338 								walk);
2339 			if (pmd_none(*pmdp))
2340 				return migrate_vma_collect_hole(start, end, -1,
2341 								walk);
2342 		}
2343 	}
2344 
2345 	if (unlikely(pmd_bad(*pmdp)))
2346 		return migrate_vma_collect_skip(start, end, walk);
2347 
2348 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2349 	arch_enter_lazy_mmu_mode();
2350 
2351 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2352 		unsigned long mpfn = 0, pfn;
2353 		struct page *page;
2354 		swp_entry_t entry;
2355 		pte_t pte;
2356 
2357 		pte = *ptep;
2358 
2359 		if (pte_none(pte)) {
2360 			if (vma_is_anonymous(vma)) {
2361 				mpfn = MIGRATE_PFN_MIGRATE;
2362 				migrate->cpages++;
2363 			}
2364 			goto next;
2365 		}
2366 
2367 		if (!pte_present(pte)) {
2368 			/*
2369 			 * Only care about unaddressable device page special
2370 			 * page table entry. Other special swap entries are not
2371 			 * migratable, and we ignore regular swapped page.
2372 			 */
2373 			entry = pte_to_swp_entry(pte);
2374 			if (!is_device_private_entry(entry))
2375 				goto next;
2376 
2377 			page = device_private_entry_to_page(entry);
2378 			if (!(migrate->flags &
2379 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2380 			    page->pgmap->owner != migrate->pgmap_owner)
2381 				goto next;
2382 
2383 			mpfn = migrate_pfn(page_to_pfn(page)) |
2384 					MIGRATE_PFN_MIGRATE;
2385 			if (is_write_device_private_entry(entry))
2386 				mpfn |= MIGRATE_PFN_WRITE;
2387 		} else {
2388 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2389 				goto next;
2390 			pfn = pte_pfn(pte);
2391 			if (is_zero_pfn(pfn)) {
2392 				mpfn = MIGRATE_PFN_MIGRATE;
2393 				migrate->cpages++;
2394 				goto next;
2395 			}
2396 			page = vm_normal_page(migrate->vma, addr, pte);
2397 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2398 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2399 		}
2400 
2401 		/* FIXME support THP */
2402 		if (!page || !page->mapping || PageTransCompound(page)) {
2403 			mpfn = 0;
2404 			goto next;
2405 		}
2406 
2407 		/*
2408 		 * By getting a reference on the page we pin it and that blocks
2409 		 * any kind of migration. Side effect is that it "freezes" the
2410 		 * pte.
2411 		 *
2412 		 * We drop this reference after isolating the page from the lru
2413 		 * for non device page (device page are not on the lru and thus
2414 		 * can't be dropped from it).
2415 		 */
2416 		get_page(page);
2417 		migrate->cpages++;
2418 
2419 		/*
2420 		 * Optimize for the common case where page is only mapped once
2421 		 * in one process. If we can lock the page, then we can safely
2422 		 * set up a special migration page table entry now.
2423 		 */
2424 		if (trylock_page(page)) {
2425 			pte_t swp_pte;
2426 
2427 			mpfn |= MIGRATE_PFN_LOCKED;
2428 			ptep_get_and_clear(mm, addr, ptep);
2429 
2430 			/* Setup special migration page table entry */
2431 			entry = make_migration_entry(page, mpfn &
2432 						     MIGRATE_PFN_WRITE);
2433 			swp_pte = swp_entry_to_pte(entry);
2434 			if (pte_present(pte)) {
2435 				if (pte_soft_dirty(pte))
2436 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2437 				if (pte_uffd_wp(pte))
2438 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2439 			} else {
2440 				if (pte_swp_soft_dirty(pte))
2441 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2442 				if (pte_swp_uffd_wp(pte))
2443 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2444 			}
2445 			set_pte_at(mm, addr, ptep, swp_pte);
2446 
2447 			/*
2448 			 * This is like regular unmap: we remove the rmap and
2449 			 * drop page refcount. Page won't be freed, as we took
2450 			 * a reference just above.
2451 			 */
2452 			page_remove_rmap(page, false);
2453 			put_page(page);
2454 
2455 			if (pte_present(pte))
2456 				unmapped++;
2457 		}
2458 
2459 next:
2460 		migrate->dst[migrate->npages] = 0;
2461 		migrate->src[migrate->npages++] = mpfn;
2462 	}
2463 
2464 	/* Only flush the TLB if we actually modified any entries */
2465 	if (unmapped)
2466 		flush_tlb_range(walk->vma, start, end);
2467 
2468 	arch_leave_lazy_mmu_mode();
2469 	pte_unmap_unlock(ptep - 1, ptl);
2470 
2471 	return 0;
2472 }
2473 
2474 static const struct mm_walk_ops migrate_vma_walk_ops = {
2475 	.pmd_entry		= migrate_vma_collect_pmd,
2476 	.pte_hole		= migrate_vma_collect_hole,
2477 };
2478 
2479 /*
2480  * migrate_vma_collect() - collect pages over a range of virtual addresses
2481  * @migrate: migrate struct containing all migration information
2482  *
2483  * This will walk the CPU page table. For each virtual address backed by a
2484  * valid page, it updates the src array and takes a reference on the page, in
2485  * order to pin the page until we lock it and unmap it.
2486  */
migrate_vma_collect(struct migrate_vma * migrate)2487 static void migrate_vma_collect(struct migrate_vma *migrate)
2488 {
2489 	struct mmu_notifier_range range;
2490 
2491 	/*
2492 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2493 	 * that the registered device driver can skip invalidating device
2494 	 * private page mappings that won't be migrated.
2495 	 */
2496 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2497 		migrate->vma->vm_mm, migrate->start, migrate->end,
2498 		migrate->pgmap_owner);
2499 	mmu_notifier_invalidate_range_start(&range);
2500 
2501 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2502 			&migrate_vma_walk_ops, migrate);
2503 
2504 	mmu_notifier_invalidate_range_end(&range);
2505 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2506 }
2507 
2508 /*
2509  * migrate_vma_check_page() - check if page is pinned or not
2510  * @page: struct page to check
2511  *
2512  * Pinned pages cannot be migrated. This is the same test as in
2513  * migrate_page_move_mapping(), except that here we allow migration of a
2514  * ZONE_DEVICE page.
2515  */
migrate_vma_check_page(struct page * page)2516 static bool migrate_vma_check_page(struct page *page)
2517 {
2518 	/*
2519 	 * One extra ref because caller holds an extra reference, either from
2520 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2521 	 * a device page.
2522 	 */
2523 	int extra = 1;
2524 
2525 	/*
2526 	 * FIXME support THP (transparent huge page), it is bit more complex to
2527 	 * check them than regular pages, because they can be mapped with a pmd
2528 	 * or with a pte (split pte mapping).
2529 	 */
2530 	if (PageCompound(page))
2531 		return false;
2532 
2533 	/* Page from ZONE_DEVICE have one extra reference */
2534 	if (is_zone_device_page(page)) {
2535 		/*
2536 		 * Private page can never be pin as they have no valid pte and
2537 		 * GUP will fail for those. Yet if there is a pending migration
2538 		 * a thread might try to wait on the pte migration entry and
2539 		 * will bump the page reference count. Sadly there is no way to
2540 		 * differentiate a regular pin from migration wait. Hence to
2541 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2542 		 * infinite loop (one stoping migration because the other is
2543 		 * waiting on pte migration entry). We always return true here.
2544 		 *
2545 		 * FIXME proper solution is to rework migration_entry_wait() so
2546 		 * it does not need to take a reference on page.
2547 		 */
2548 		return is_device_private_page(page);
2549 	}
2550 
2551 	/* For file back page */
2552 	if (page_mapping(page))
2553 		extra += 1 + page_has_private(page);
2554 
2555 	if ((page_count(page) - extra) > page_mapcount(page))
2556 		return false;
2557 
2558 	return true;
2559 }
2560 
2561 /*
2562  * migrate_vma_prepare() - lock pages and isolate them from the lru
2563  * @migrate: migrate struct containing all migration information
2564  *
2565  * This locks pages that have been collected by migrate_vma_collect(). Once each
2566  * page is locked it is isolated from the lru (for non-device pages). Finally,
2567  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2568  * migrated by concurrent kernel threads.
2569  */
migrate_vma_prepare(struct migrate_vma * migrate)2570 static void migrate_vma_prepare(struct migrate_vma *migrate)
2571 {
2572 	const unsigned long npages = migrate->npages;
2573 	const unsigned long start = migrate->start;
2574 	unsigned long addr, i, restore = 0;
2575 	bool allow_drain = true;
2576 
2577 	lru_add_drain();
2578 
2579 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2580 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2581 		bool remap = true;
2582 
2583 		if (!page)
2584 			continue;
2585 
2586 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2587 			/*
2588 			 * Because we are migrating several pages there can be
2589 			 * a deadlock between 2 concurrent migration where each
2590 			 * are waiting on each other page lock.
2591 			 *
2592 			 * Make migrate_vma() a best effort thing and backoff
2593 			 * for any page we can not lock right away.
2594 			 */
2595 			if (!trylock_page(page)) {
2596 				migrate->src[i] = 0;
2597 				migrate->cpages--;
2598 				put_page(page);
2599 				continue;
2600 			}
2601 			remap = false;
2602 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2603 		}
2604 
2605 		/* ZONE_DEVICE pages are not on LRU */
2606 		if (!is_zone_device_page(page)) {
2607 			if (!PageLRU(page) && allow_drain) {
2608 				/* Drain CPU's pagevec */
2609 				lru_add_drain_all();
2610 				allow_drain = false;
2611 			}
2612 
2613 			if (isolate_lru_page(page)) {
2614 				if (remap) {
2615 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2616 					migrate->cpages--;
2617 					restore++;
2618 				} else {
2619 					migrate->src[i] = 0;
2620 					unlock_page(page);
2621 					migrate->cpages--;
2622 					put_page(page);
2623 				}
2624 				continue;
2625 			}
2626 
2627 			/* Drop the reference we took in collect */
2628 			put_page(page);
2629 		}
2630 
2631 		if (!migrate_vma_check_page(page)) {
2632 			if (remap) {
2633 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2634 				migrate->cpages--;
2635 				restore++;
2636 
2637 				if (!is_zone_device_page(page)) {
2638 					get_page(page);
2639 					putback_lru_page(page);
2640 				}
2641 			} else {
2642 				migrate->src[i] = 0;
2643 				unlock_page(page);
2644 				migrate->cpages--;
2645 
2646 				if (!is_zone_device_page(page))
2647 					putback_lru_page(page);
2648 				else
2649 					put_page(page);
2650 			}
2651 		}
2652 	}
2653 
2654 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2655 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2656 
2657 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2658 			continue;
2659 
2660 		remove_migration_pte(page, migrate->vma, addr, page);
2661 
2662 		migrate->src[i] = 0;
2663 		unlock_page(page);
2664 		put_page(page);
2665 		restore--;
2666 	}
2667 }
2668 
2669 /*
2670  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2671  * @migrate: migrate struct containing all migration information
2672  *
2673  * Replace page mapping (CPU page table pte) with a special migration pte entry
2674  * and check again if it has been pinned. Pinned pages are restored because we
2675  * cannot migrate them.
2676  *
2677  * This is the last step before we call the device driver callback to allocate
2678  * destination memory and copy contents of original page over to new page.
2679  */
migrate_vma_unmap(struct migrate_vma * migrate)2680 static void migrate_vma_unmap(struct migrate_vma *migrate)
2681 {
2682 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2683 	const unsigned long npages = migrate->npages;
2684 	const unsigned long start = migrate->start;
2685 	unsigned long addr, i, restore = 0;
2686 
2687 	for (i = 0; i < npages; i++) {
2688 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2689 
2690 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2691 			continue;
2692 
2693 		if (page_mapped(page)) {
2694 			try_to_unmap(page, flags);
2695 			if (page_mapped(page))
2696 				goto restore;
2697 		}
2698 
2699 		if (migrate_vma_check_page(page))
2700 			continue;
2701 
2702 restore:
2703 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2704 		migrate->cpages--;
2705 		restore++;
2706 	}
2707 
2708 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2709 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2710 
2711 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2712 			continue;
2713 
2714 		remove_migration_ptes(page, page, false);
2715 
2716 		migrate->src[i] = 0;
2717 		unlock_page(page);
2718 		restore--;
2719 
2720 		if (is_zone_device_page(page))
2721 			put_page(page);
2722 		else
2723 			putback_lru_page(page);
2724 	}
2725 }
2726 
2727 /**
2728  * migrate_vma_setup() - prepare to migrate a range of memory
2729  * @args: contains the vma, start, and pfns arrays for the migration
2730  *
2731  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2732  * without an error.
2733  *
2734  * Prepare to migrate a range of memory virtual address range by collecting all
2735  * the pages backing each virtual address in the range, saving them inside the
2736  * src array.  Then lock those pages and unmap them. Once the pages are locked
2737  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2738  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2739  * corresponding src array entry.  Then restores any pages that are pinned, by
2740  * remapping and unlocking those pages.
2741  *
2742  * The caller should then allocate destination memory and copy source memory to
2743  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2744  * flag set).  Once these are allocated and copied, the caller must update each
2745  * corresponding entry in the dst array with the pfn value of the destination
2746  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2747  * (destination pages must have their struct pages locked, via lock_page()).
2748  *
2749  * Note that the caller does not have to migrate all the pages that are marked
2750  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2751  * device memory to system memory.  If the caller cannot migrate a device page
2752  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2753  * consequences for the userspace process, so it must be avoided if at all
2754  * possible.
2755  *
2756  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2757  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2758  * allowing the caller to allocate device memory for those unback virtual
2759  * address.  For this the caller simply has to allocate device memory and
2760  * properly set the destination entry like for regular migration.  Note that
2761  * this can still fails and thus inside the device driver must check if the
2762  * migration was successful for those entries after calling migrate_vma_pages()
2763  * just like for regular migration.
2764  *
2765  * After that, the callers must call migrate_vma_pages() to go over each entry
2766  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2767  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2768  * then migrate_vma_pages() to migrate struct page information from the source
2769  * struct page to the destination struct page.  If it fails to migrate the
2770  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2771  * src array.
2772  *
2773  * At this point all successfully migrated pages have an entry in the src
2774  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2775  * array entry with MIGRATE_PFN_VALID flag set.
2776  *
2777  * Once migrate_vma_pages() returns the caller may inspect which pages were
2778  * successfully migrated, and which were not.  Successfully migrated pages will
2779  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2780  *
2781  * It is safe to update device page table after migrate_vma_pages() because
2782  * both destination and source page are still locked, and the mmap_lock is held
2783  * in read mode (hence no one can unmap the range being migrated).
2784  *
2785  * Once the caller is done cleaning up things and updating its page table (if it
2786  * chose to do so, this is not an obligation) it finally calls
2787  * migrate_vma_finalize() to update the CPU page table to point to new pages
2788  * for successfully migrated pages or otherwise restore the CPU page table to
2789  * point to the original source pages.
2790  */
migrate_vma_setup(struct migrate_vma * args)2791 int migrate_vma_setup(struct migrate_vma *args)
2792 {
2793 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2794 
2795 	args->start &= PAGE_MASK;
2796 	args->end &= PAGE_MASK;
2797 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2798 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2799 		return -EINVAL;
2800 	if (nr_pages <= 0)
2801 		return -EINVAL;
2802 	if (args->start < args->vma->vm_start ||
2803 	    args->start >= args->vma->vm_end)
2804 		return -EINVAL;
2805 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2806 		return -EINVAL;
2807 	if (!args->src || !args->dst)
2808 		return -EINVAL;
2809 
2810 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2811 	args->cpages = 0;
2812 	args->npages = 0;
2813 
2814 	migrate_vma_collect(args);
2815 
2816 	if (args->cpages)
2817 		migrate_vma_prepare(args);
2818 	if (args->cpages)
2819 		migrate_vma_unmap(args);
2820 
2821 	/*
2822 	 * At this point pages are locked and unmapped, and thus they have
2823 	 * stable content and can safely be copied to destination memory that
2824 	 * is allocated by the drivers.
2825 	 */
2826 	return 0;
2827 
2828 }
2829 EXPORT_SYMBOL(migrate_vma_setup);
2830 
2831 /*
2832  * This code closely matches the code in:
2833  *   __handle_mm_fault()
2834  *     handle_pte_fault()
2835  *       do_anonymous_page()
2836  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2837  * private page.
2838  */
migrate_vma_insert_page(struct migrate_vma * migrate,unsigned long addr,struct page * page,unsigned long * src,unsigned long * dst)2839 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2840 				    unsigned long addr,
2841 				    struct page *page,
2842 				    unsigned long *src,
2843 				    unsigned long *dst)
2844 {
2845 	struct vm_area_struct *vma = migrate->vma;
2846 	struct mm_struct *mm = vma->vm_mm;
2847 	bool flush = false;
2848 	spinlock_t *ptl;
2849 	pte_t entry;
2850 	pgd_t *pgdp;
2851 	p4d_t *p4dp;
2852 	pud_t *pudp;
2853 	pmd_t *pmdp;
2854 	pte_t *ptep;
2855 
2856 	/* Only allow populating anonymous memory */
2857 	if (!vma_is_anonymous(vma))
2858 		goto abort;
2859 
2860 	pgdp = pgd_offset(mm, addr);
2861 	p4dp = p4d_alloc(mm, pgdp, addr);
2862 	if (!p4dp)
2863 		goto abort;
2864 	pudp = pud_alloc(mm, p4dp, addr);
2865 	if (!pudp)
2866 		goto abort;
2867 	pmdp = pmd_alloc(mm, pudp, addr);
2868 	if (!pmdp)
2869 		goto abort;
2870 
2871 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2872 		goto abort;
2873 
2874 	/*
2875 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2876 	 * pte_offset_map() on pmds where a huge pmd might be created
2877 	 * from a different thread.
2878 	 *
2879 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2880 	 * parallel threads are excluded by other means.
2881 	 *
2882 	 * Here we only have mmap_read_lock(mm).
2883 	 */
2884 	if (pte_alloc(mm, pmdp))
2885 		goto abort;
2886 
2887 	/* See the comment in pte_alloc_one_map() */
2888 	if (unlikely(pmd_trans_unstable(pmdp)))
2889 		goto abort;
2890 
2891 	if (unlikely(anon_vma_prepare(vma)))
2892 		goto abort;
2893 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2894 		goto abort;
2895 
2896 	/*
2897 	 * The memory barrier inside __SetPageUptodate makes sure that
2898 	 * preceding stores to the page contents become visible before
2899 	 * the set_pte_at() write.
2900 	 */
2901 	__SetPageUptodate(page);
2902 
2903 	if (is_zone_device_page(page)) {
2904 		if (is_device_private_page(page)) {
2905 			swp_entry_t swp_entry;
2906 
2907 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2908 			entry = swp_entry_to_pte(swp_entry);
2909 		} else {
2910 			/*
2911 			 * For now we only support migrating to un-addressable
2912 			 * device memory.
2913 			 */
2914 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2915 			goto abort;
2916 		}
2917 	} else {
2918 		entry = mk_pte(page, vma->vm_page_prot);
2919 		if (vma->vm_flags & VM_WRITE)
2920 			entry = pte_mkwrite(pte_mkdirty(entry));
2921 	}
2922 
2923 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2924 
2925 	if (check_stable_address_space(mm))
2926 		goto unlock_abort;
2927 
2928 	if (pte_present(*ptep)) {
2929 		unsigned long pfn = pte_pfn(*ptep);
2930 
2931 		if (!is_zero_pfn(pfn))
2932 			goto unlock_abort;
2933 		flush = true;
2934 	} else if (!pte_none(*ptep))
2935 		goto unlock_abort;
2936 
2937 	/*
2938 	 * Check for userfaultfd but do not deliver the fault. Instead,
2939 	 * just back off.
2940 	 */
2941 	if (userfaultfd_missing(vma))
2942 		goto unlock_abort;
2943 
2944 	inc_mm_counter(mm, MM_ANONPAGES);
2945 	page_add_new_anon_rmap(page, vma, addr, false);
2946 	if (!is_zone_device_page(page))
2947 		lru_cache_add_inactive_or_unevictable(page, vma);
2948 	get_page(page);
2949 
2950 	if (flush) {
2951 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2952 		ptep_clear_flush_notify(vma, addr, ptep);
2953 		set_pte_at_notify(mm, addr, ptep, entry);
2954 		update_mmu_cache(vma, addr, ptep);
2955 	} else {
2956 		/* No need to invalidate - it was non-present before */
2957 		set_pte_at(mm, addr, ptep, entry);
2958 		update_mmu_cache(vma, addr, ptep);
2959 	}
2960 
2961 	pte_unmap_unlock(ptep, ptl);
2962 	*src = MIGRATE_PFN_MIGRATE;
2963 	return;
2964 
2965 unlock_abort:
2966 	pte_unmap_unlock(ptep, ptl);
2967 abort:
2968 	*src &= ~MIGRATE_PFN_MIGRATE;
2969 }
2970 
2971 /**
2972  * migrate_vma_pages() - migrate meta-data from src page to dst page
2973  * @migrate: migrate struct containing all migration information
2974  *
2975  * This migrates struct page meta-data from source struct page to destination
2976  * struct page. This effectively finishes the migration from source page to the
2977  * destination page.
2978  */
migrate_vma_pages(struct migrate_vma * migrate)2979 void migrate_vma_pages(struct migrate_vma *migrate)
2980 {
2981 	const unsigned long npages = migrate->npages;
2982 	const unsigned long start = migrate->start;
2983 	struct mmu_notifier_range range;
2984 	unsigned long addr, i;
2985 	bool notified = false;
2986 
2987 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2988 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2989 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2990 		struct address_space *mapping;
2991 		int r;
2992 
2993 		if (!newpage) {
2994 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2995 			continue;
2996 		}
2997 
2998 		if (!page) {
2999 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3000 				continue;
3001 			if (!notified) {
3002 				notified = true;
3003 
3004 				mmu_notifier_range_init(&range,
3005 							MMU_NOTIFY_CLEAR, 0,
3006 							NULL,
3007 							migrate->vma->vm_mm,
3008 							addr, migrate->end);
3009 				mmu_notifier_invalidate_range_start(&range);
3010 			}
3011 			migrate_vma_insert_page(migrate, addr, newpage,
3012 						&migrate->src[i],
3013 						&migrate->dst[i]);
3014 			continue;
3015 		}
3016 
3017 		mapping = page_mapping(page);
3018 
3019 		if (is_zone_device_page(newpage)) {
3020 			if (is_device_private_page(newpage)) {
3021 				/*
3022 				 * For now only support private anonymous when
3023 				 * migrating to un-addressable device memory.
3024 				 */
3025 				if (mapping) {
3026 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3027 					continue;
3028 				}
3029 			} else {
3030 				/*
3031 				 * Other types of ZONE_DEVICE page are not
3032 				 * supported.
3033 				 */
3034 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3035 				continue;
3036 			}
3037 		}
3038 
3039 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3040 		if (r != MIGRATEPAGE_SUCCESS)
3041 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3042 	}
3043 
3044 	/*
3045 	 * No need to double call mmu_notifier->invalidate_range() callback as
3046 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3047 	 * did already call it.
3048 	 */
3049 	if (notified)
3050 		mmu_notifier_invalidate_range_only_end(&range);
3051 }
3052 EXPORT_SYMBOL(migrate_vma_pages);
3053 
3054 /**
3055  * migrate_vma_finalize() - restore CPU page table entry
3056  * @migrate: migrate struct containing all migration information
3057  *
3058  * This replaces the special migration pte entry with either a mapping to the
3059  * new page if migration was successful for that page, or to the original page
3060  * otherwise.
3061  *
3062  * This also unlocks the pages and puts them back on the lru, or drops the extra
3063  * refcount, for device pages.
3064  */
migrate_vma_finalize(struct migrate_vma * migrate)3065 void migrate_vma_finalize(struct migrate_vma *migrate)
3066 {
3067 	const unsigned long npages = migrate->npages;
3068 	unsigned long i;
3069 
3070 	for (i = 0; i < npages; i++) {
3071 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3072 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3073 
3074 		if (!page) {
3075 			if (newpage) {
3076 				unlock_page(newpage);
3077 				put_page(newpage);
3078 			}
3079 			continue;
3080 		}
3081 
3082 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3083 			if (newpage) {
3084 				unlock_page(newpage);
3085 				put_page(newpage);
3086 			}
3087 			newpage = page;
3088 		}
3089 
3090 		remove_migration_ptes(page, newpage, false);
3091 		unlock_page(page);
3092 
3093 		if (is_zone_device_page(page))
3094 			put_page(page);
3095 		else
3096 			putback_lru_page(page);
3097 
3098 		if (newpage != page) {
3099 			unlock_page(newpage);
3100 			if (is_zone_device_page(newpage))
3101 				put_page(newpage);
3102 			else
3103 				putback_lru_page(newpage);
3104 		}
3105 	}
3106 }
3107 EXPORT_SYMBOL(migrate_vma_finalize);
3108 #endif /* CONFIG_DEVICE_PRIVATE */
3109