1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 #undef CREATE_TRACE_POINTS
59 #include <trace/hooks/mm.h>
60 #include "internal.h"
61
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags) (0)
64 #endif
65
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79
80 static void unmap_region(struct mm_struct *mm,
81 struct vm_area_struct *vma, struct vm_area_struct *prev,
82 unsigned long start, unsigned long end);
83
84 /* description of effects of mapping type and prot in current implementation.
85 * this is due to the limited x86 page protection hardware. The expected
86 * behavior is in parens:
87 *
88 * map_type prot
89 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
90 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (yes) yes w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 *
94 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
95 * w: (no) no w: (no) no w: (copy) copy w: (no) no
96 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
97 */
98 pgprot_t protection_map[16] __ro_after_init = {
99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102
103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
105 {
106 return prot;
107 }
108 #endif
109
vm_get_page_prot(unsigned long vm_flags)110 pgprot_t vm_get_page_prot(unsigned long vm_flags)
111 {
112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
114 pgprot_val(arch_vm_get_page_prot(vm_flags)));
115
116 return arch_filter_pgprot(ret);
117 }
118 EXPORT_SYMBOL(vm_get_page_prot);
119
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
121 {
122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
123 }
124
125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)126 void vma_set_page_prot(struct vm_area_struct *vma)
127 {
128 unsigned long vm_flags = vma->vm_flags;
129 pgprot_t vm_page_prot;
130
131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
132 if (vma_wants_writenotify(vma, vm_page_prot)) {
133 vm_flags &= ~VM_SHARED;
134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
135 }
136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
138 }
139
140 /*
141 * Requires inode->i_mapping->i_mmap_rwsem
142 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 struct file *file, struct address_space *mapping)
145 {
146 if (vma->vm_flags & VM_DENYWRITE)
147 allow_write_access(file);
148 if (vma->vm_flags & VM_SHARED)
149 mapping_unmap_writable(mapping);
150
151 flush_dcache_mmap_lock(mapping);
152 vma_interval_tree_remove(vma, &mapping->i_mmap);
153 flush_dcache_mmap_unlock(mapping);
154 }
155
156 /*
157 * Unlink a file-based vm structure from its interval tree, to hide
158 * vma from rmap and vmtruncate before freeing its page tables.
159 */
unlink_file_vma(struct vm_area_struct * vma)160 void unlink_file_vma(struct vm_area_struct *vma)
161 {
162 struct file *file = vma->vm_file;
163
164 if (file) {
165 struct address_space *mapping = file->f_mapping;
166 i_mmap_lock_write(mapping);
167 __remove_shared_vm_struct(vma, file, mapping);
168 i_mmap_unlock_write(mapping);
169 }
170 }
171
__free_vma(struct vm_area_struct * vma)172 static void __free_vma(struct vm_area_struct *vma)
173 {
174 if (vma->vm_file)
175 fput(vma->vm_file);
176 mpol_put(vma_policy(vma));
177 vm_area_free(vma);
178 }
179
180 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
put_vma(struct vm_area_struct * vma)181 void put_vma(struct vm_area_struct *vma)
182 {
183 if (atomic_dec_and_test(&vma->vm_ref_count))
184 __free_vma(vma);
185 }
186 #else
put_vma(struct vm_area_struct * vma)187 static inline void put_vma(struct vm_area_struct *vma)
188 {
189 __free_vma(vma);
190 }
191 #endif
192
193 /*
194 * Close a vm structure and free it, returning the next.
195 */
remove_vma(struct vm_area_struct * vma)196 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
197 {
198 struct vm_area_struct *next = vma->vm_next;
199
200 might_sleep();
201 if (vma->vm_ops && vma->vm_ops->close)
202 vma->vm_ops->close(vma);
203 put_vma(vma);
204 return next;
205 }
206
207 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
208 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)209 SYSCALL_DEFINE1(brk, unsigned long, brk)
210 {
211 unsigned long retval;
212 unsigned long newbrk, oldbrk, origbrk;
213 struct mm_struct *mm = current->mm;
214 struct vm_area_struct *next;
215 unsigned long min_brk;
216 bool populate;
217 bool downgraded = false;
218 LIST_HEAD(uf);
219
220 if (mmap_write_lock_killable(mm))
221 return -EINTR;
222
223 origbrk = mm->brk;
224
225 #ifdef CONFIG_COMPAT_BRK
226 /*
227 * CONFIG_COMPAT_BRK can still be overridden by setting
228 * randomize_va_space to 2, which will still cause mm->start_brk
229 * to be arbitrarily shifted
230 */
231 if (current->brk_randomized)
232 min_brk = mm->start_brk;
233 else
234 min_brk = mm->end_data;
235 #else
236 min_brk = mm->start_brk;
237 #endif
238 if (brk < min_brk)
239 goto out;
240
241 /*
242 * Check against rlimit here. If this check is done later after the test
243 * of oldbrk with newbrk then it can escape the test and let the data
244 * segment grow beyond its set limit the in case where the limit is
245 * not page aligned -Ram Gupta
246 */
247 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
248 mm->end_data, mm->start_data))
249 goto out;
250
251 newbrk = PAGE_ALIGN(brk);
252 oldbrk = PAGE_ALIGN(mm->brk);
253 if (oldbrk == newbrk) {
254 mm->brk = brk;
255 goto success;
256 }
257
258 /*
259 * Always allow shrinking brk.
260 * __do_munmap() may downgrade mmap_lock to read.
261 */
262 if (brk <= mm->brk) {
263 int ret;
264
265 /*
266 * mm->brk must to be protected by write mmap_lock so update it
267 * before downgrading mmap_lock. When __do_munmap() fails,
268 * mm->brk will be restored from origbrk.
269 */
270 mm->brk = brk;
271 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
272 if (ret < 0) {
273 mm->brk = origbrk;
274 goto out;
275 } else if (ret == 1) {
276 downgraded = true;
277 }
278 goto success;
279 }
280
281 /* Check against existing mmap mappings. */
282 next = find_vma(mm, oldbrk);
283 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
284 goto out;
285
286 /* Ok, looks good - let it rip. */
287 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
288 goto out;
289 mm->brk = brk;
290
291 success:
292 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
293 if (downgraded)
294 mmap_read_unlock(mm);
295 else
296 mmap_write_unlock(mm);
297 userfaultfd_unmap_complete(mm, &uf);
298 if (populate)
299 mm_populate(oldbrk, newbrk - oldbrk);
300 return brk;
301
302 out:
303 retval = origbrk;
304 mmap_write_unlock(mm);
305 return retval;
306 }
307
vma_compute_gap(struct vm_area_struct * vma)308 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
309 {
310 unsigned long gap, prev_end;
311
312 /*
313 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
314 * allow two stack_guard_gaps between them here, and when choosing
315 * an unmapped area; whereas when expanding we only require one.
316 * That's a little inconsistent, but keeps the code here simpler.
317 */
318 gap = vm_start_gap(vma);
319 if (vma->vm_prev) {
320 prev_end = vm_end_gap(vma->vm_prev);
321 if (gap > prev_end)
322 gap -= prev_end;
323 else
324 gap = 0;
325 }
326 return gap;
327 }
328
329 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)330 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
331 {
332 unsigned long max = vma_compute_gap(vma), subtree_gap;
333 if (vma->vm_rb.rb_left) {
334 subtree_gap = rb_entry(vma->vm_rb.rb_left,
335 struct vm_area_struct, vm_rb)->rb_subtree_gap;
336 if (subtree_gap > max)
337 max = subtree_gap;
338 }
339 if (vma->vm_rb.rb_right) {
340 subtree_gap = rb_entry(vma->vm_rb.rb_right,
341 struct vm_area_struct, vm_rb)->rb_subtree_gap;
342 if (subtree_gap > max)
343 max = subtree_gap;
344 }
345 return max;
346 }
347
browse_rb(struct mm_struct * mm)348 static int browse_rb(struct mm_struct *mm)
349 {
350 struct rb_root *root = &mm->mm_rb;
351 int i = 0, j, bug = 0;
352 struct rb_node *nd, *pn = NULL;
353 unsigned long prev = 0, pend = 0;
354
355 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
356 struct vm_area_struct *vma;
357 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
358 if (vma->vm_start < prev) {
359 pr_emerg("vm_start %lx < prev %lx\n",
360 vma->vm_start, prev);
361 bug = 1;
362 }
363 if (vma->vm_start < pend) {
364 pr_emerg("vm_start %lx < pend %lx\n",
365 vma->vm_start, pend);
366 bug = 1;
367 }
368 if (vma->vm_start > vma->vm_end) {
369 pr_emerg("vm_start %lx > vm_end %lx\n",
370 vma->vm_start, vma->vm_end);
371 bug = 1;
372 }
373 spin_lock(&mm->page_table_lock);
374 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
375 pr_emerg("free gap %lx, correct %lx\n",
376 vma->rb_subtree_gap,
377 vma_compute_subtree_gap(vma));
378 bug = 1;
379 }
380 spin_unlock(&mm->page_table_lock);
381 i++;
382 pn = nd;
383 prev = vma->vm_start;
384 pend = vma->vm_end;
385 }
386 j = 0;
387 for (nd = pn; nd; nd = rb_prev(nd))
388 j++;
389 if (i != j) {
390 pr_emerg("backwards %d, forwards %d\n", j, i);
391 bug = 1;
392 }
393 return bug ? -1 : i;
394 }
395
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)396 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
397 {
398 struct rb_node *nd;
399
400 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
401 struct vm_area_struct *vma;
402 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
403 VM_BUG_ON_VMA(vma != ignore &&
404 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
405 vma);
406 }
407 }
408
validate_mm(struct mm_struct * mm)409 static void validate_mm(struct mm_struct *mm)
410 {
411 int bug = 0;
412 int i = 0;
413 unsigned long highest_address = 0;
414 struct vm_area_struct *vma = mm->mmap;
415
416 while (vma) {
417 struct anon_vma *anon_vma = vma->anon_vma;
418 struct anon_vma_chain *avc;
419
420 if (anon_vma) {
421 anon_vma_lock_read(anon_vma);
422 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
423 anon_vma_interval_tree_verify(avc);
424 anon_vma_unlock_read(anon_vma);
425 }
426
427 highest_address = vm_end_gap(vma);
428 vma = vma->vm_next;
429 i++;
430 }
431 if (i != mm->map_count) {
432 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
433 bug = 1;
434 }
435 if (highest_address != mm->highest_vm_end) {
436 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
437 mm->highest_vm_end, highest_address);
438 bug = 1;
439 }
440 i = browse_rb(mm);
441 if (i != mm->map_count) {
442 if (i != -1)
443 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
444 bug = 1;
445 }
446 VM_BUG_ON_MM(bug, mm);
447 }
448 #else
449 #define validate_mm_rb(root, ignore) do { } while (0)
450 #define validate_mm(mm) do { } while (0)
451 #endif
452
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)453 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
454 struct vm_area_struct, vm_rb,
455 unsigned long, rb_subtree_gap, vma_compute_gap)
456 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
457 #define mm_rb_write_lock(mm) write_lock(&(mm)->mm_rb_lock)
458 #define mm_rb_write_unlock(mm) write_unlock(&(mm)->mm_rb_lock)
459 #else
460 #define mm_rb_write_lock(mm) do { } while (0)
461 #define mm_rb_write_unlock(mm) do { } while (0)
462 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
463
464 /*
465 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
466 * vma->vm_prev->vm_end values changed, without modifying the vma's position
467 * in the rbtree.
468 */
469 static void vma_gap_update(struct vm_area_struct *vma)
470 {
471 /*
472 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
473 * a callback function that does exactly what we want.
474 */
475 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
476 }
477
vma_rb_insert(struct vm_area_struct * vma,struct mm_struct * mm)478 static inline void vma_rb_insert(struct vm_area_struct *vma,
479 struct mm_struct *mm)
480 {
481 struct rb_root *root = &mm->mm_rb;
482
483 /* All rb_subtree_gap values must be consistent prior to insertion */
484 validate_mm_rb(root, NULL);
485
486 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
487 }
488
__vma_rb_erase(struct vm_area_struct * vma,struct mm_struct * mm)489 static void __vma_rb_erase(struct vm_area_struct *vma, struct mm_struct *mm)
490 {
491 struct rb_root *root = &mm->mm_rb;
492 /*
493 * Note rb_erase_augmented is a fairly large inline function,
494 * so make sure we instantiate it only once with our desired
495 * augmented rbtree callbacks.
496 */
497 mm_rb_write_lock(mm);
498 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
499 mm_rb_write_unlock(mm); /* wmb */
500
501 /*
502 * Ensure the removal is complete before clearing the node.
503 * Matched by vma_has_changed()/handle_speculative_fault().
504 */
505 RB_CLEAR_NODE(&vma->vm_rb);
506 }
507
vma_rb_erase_ignore(struct vm_area_struct * vma,struct mm_struct * mm,struct vm_area_struct * ignore)508 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
509 struct mm_struct *mm,
510 struct vm_area_struct *ignore)
511 {
512 /*
513 * All rb_subtree_gap values must be consistent prior to erase,
514 * with the possible exception of
515 *
516 * a. the "next" vma being erased if next->vm_start was reduced in
517 * __vma_adjust() -> __vma_unlink()
518 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
519 * vma_rb_erase()
520 */
521 validate_mm_rb(&mm->mm_rb, ignore);
522
523 __vma_rb_erase(vma, mm);
524 }
525
vma_rb_erase(struct vm_area_struct * vma,struct mm_struct * mm)526 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
527 struct mm_struct *mm)
528 {
529 vma_rb_erase_ignore(vma, mm, vma);
530 }
531
532 /*
533 * vma has some anon_vma assigned, and is already inserted on that
534 * anon_vma's interval trees.
535 *
536 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
537 * vma must be removed from the anon_vma's interval trees using
538 * anon_vma_interval_tree_pre_update_vma().
539 *
540 * After the update, the vma will be reinserted using
541 * anon_vma_interval_tree_post_update_vma().
542 *
543 * The entire update must be protected by exclusive mmap_lock and by
544 * the root anon_vma's mutex.
545 */
546 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)547 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
548 {
549 struct anon_vma_chain *avc;
550
551 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
552 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
553 }
554
555 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)556 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
557 {
558 struct anon_vma_chain *avc;
559
560 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
561 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
562 }
563
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)564 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
565 unsigned long end, struct vm_area_struct **pprev,
566 struct rb_node ***rb_link, struct rb_node **rb_parent)
567 {
568 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
569
570 __rb_link = &mm->mm_rb.rb_node;
571 rb_prev = __rb_parent = NULL;
572
573 while (*__rb_link) {
574 struct vm_area_struct *vma_tmp;
575
576 __rb_parent = *__rb_link;
577 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
578
579 if (vma_tmp->vm_end > addr) {
580 /* Fail if an existing vma overlaps the area */
581 if (vma_tmp->vm_start < end)
582 return -ENOMEM;
583 __rb_link = &__rb_parent->rb_left;
584 } else {
585 rb_prev = __rb_parent;
586 __rb_link = &__rb_parent->rb_right;
587 }
588 }
589
590 *pprev = NULL;
591 if (rb_prev)
592 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
593 *rb_link = __rb_link;
594 *rb_parent = __rb_parent;
595 return 0;
596 }
597
598 /*
599 * vma_next() - Get the next VMA.
600 * @mm: The mm_struct.
601 * @vma: The current vma.
602 *
603 * If @vma is NULL, return the first vma in the mm.
604 *
605 * Returns: The next VMA after @vma.
606 */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)607 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
608 struct vm_area_struct *vma)
609 {
610 if (!vma)
611 return mm->mmap;
612
613 return vma->vm_next;
614 }
615
616 /*
617 * munmap_vma_range() - munmap VMAs that overlap a range.
618 * @mm: The mm struct
619 * @start: The start of the range.
620 * @len: The length of the range.
621 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
622 * @rb_link: the rb_node
623 * @rb_parent: the parent rb_node
624 *
625 * Find all the vm_area_struct that overlap from @start to
626 * @end and munmap them. Set @pprev to the previous vm_area_struct.
627 *
628 * Returns: -ENOMEM on munmap failure or 0 on success.
629 */
630 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)631 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
632 struct vm_area_struct **pprev, struct rb_node ***link,
633 struct rb_node **parent, struct list_head *uf)
634 {
635
636 while (find_vma_links(mm, start, start + len, pprev, link, parent))
637 if (do_munmap(mm, start, len, uf))
638 return -ENOMEM;
639
640 return 0;
641 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)642 static unsigned long count_vma_pages_range(struct mm_struct *mm,
643 unsigned long addr, unsigned long end)
644 {
645 unsigned long nr_pages = 0;
646 struct vm_area_struct *vma;
647
648 /* Find first overlaping mapping */
649 vma = find_vma_intersection(mm, addr, end);
650 if (!vma)
651 return 0;
652
653 nr_pages = (min(end, vma->vm_end) -
654 max(addr, vma->vm_start)) >> PAGE_SHIFT;
655
656 /* Iterate over the rest of the overlaps */
657 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
658 unsigned long overlap_len;
659
660 if (vma->vm_start > end)
661 break;
662
663 overlap_len = min(end, vma->vm_end) - vma->vm_start;
664 nr_pages += overlap_len >> PAGE_SHIFT;
665 }
666
667 return nr_pages;
668 }
669
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)670 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
671 struct rb_node **rb_link, struct rb_node *rb_parent)
672 {
673 /* Update tracking information for the gap following the new vma. */
674 if (vma->vm_next)
675 vma_gap_update(vma->vm_next);
676 else
677 mm->highest_vm_end = vm_end_gap(vma);
678
679 /*
680 * vma->vm_prev wasn't known when we followed the rbtree to find the
681 * correct insertion point for that vma. As a result, we could not
682 * update the vma vm_rb parents rb_subtree_gap values on the way down.
683 * So, we first insert the vma with a zero rb_subtree_gap value
684 * (to be consistent with what we did on the way down), and then
685 * immediately update the gap to the correct value. Finally we
686 * rebalance the rbtree after all augmented values have been set.
687 */
688 mm_rb_write_lock(mm);
689 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
690 vma->rb_subtree_gap = 0;
691 vma_gap_update(vma);
692 vma_rb_insert(vma, mm);
693 mm_rb_write_unlock(mm);
694 }
695
__vma_link_file(struct vm_area_struct * vma)696 static void __vma_link_file(struct vm_area_struct *vma)
697 {
698 struct file *file;
699
700 file = vma->vm_file;
701 if (file) {
702 struct address_space *mapping = file->f_mapping;
703
704 if (vma->vm_flags & VM_DENYWRITE)
705 put_write_access(file_inode(file));
706 if (vma->vm_flags & VM_SHARED)
707 mapping_allow_writable(mapping);
708
709 flush_dcache_mmap_lock(mapping);
710 vma_interval_tree_insert(vma, &mapping->i_mmap);
711 flush_dcache_mmap_unlock(mapping);
712 }
713 }
714
715 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)716 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
717 struct vm_area_struct *prev, struct rb_node **rb_link,
718 struct rb_node *rb_parent)
719 {
720 __vma_link_list(mm, vma, prev);
721 __vma_link_rb(mm, vma, rb_link, rb_parent);
722 }
723
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)724 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
725 struct vm_area_struct *prev, struct rb_node **rb_link,
726 struct rb_node *rb_parent)
727 {
728 struct address_space *mapping = NULL;
729
730 if (vma->vm_file) {
731 mapping = vma->vm_file->f_mapping;
732 i_mmap_lock_write(mapping);
733 }
734
735 __vma_link(mm, vma, prev, rb_link, rb_parent);
736 __vma_link_file(vma);
737
738 if (mapping)
739 i_mmap_unlock_write(mapping);
740
741 mm->map_count++;
742 validate_mm(mm);
743 }
744
745 /*
746 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
747 * mm's list and rbtree. It has already been inserted into the interval tree.
748 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)749 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
750 {
751 struct vm_area_struct *prev;
752 struct rb_node **rb_link, *rb_parent;
753
754 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
755 &prev, &rb_link, &rb_parent))
756 BUG();
757 __vma_link(mm, vma, prev, rb_link, rb_parent);
758 mm->map_count++;
759 }
760
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)761 static __always_inline void __vma_unlink(struct mm_struct *mm,
762 struct vm_area_struct *vma,
763 struct vm_area_struct *ignore)
764 {
765 vma_rb_erase_ignore(vma, mm, ignore);
766 __vma_unlink_list(mm, vma);
767 /* Kill the cache */
768 vmacache_invalidate(mm);
769 }
770
771 /*
772 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
773 * is already present in an i_mmap tree without adjusting the tree.
774 * The following helper function should be used when such adjustments
775 * are necessary. The "insert" vma (if any) is to be inserted
776 * before we drop the necessary locks.
777 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand,bool keep_locked)778 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
779 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
780 struct vm_area_struct *expand, bool keep_locked)
781 {
782 struct mm_struct *mm = vma->vm_mm;
783 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
784 struct address_space *mapping = NULL;
785 struct rb_root_cached *root = NULL;
786 struct anon_vma *anon_vma = NULL;
787 struct file *file = vma->vm_file;
788 bool start_changed = false, end_changed = false;
789 long adjust_next = 0;
790 int remove_next = 0;
791
792 vm_write_begin(vma);
793 if (next)
794 vm_write_begin(next);
795
796 if (next && !insert) {
797 struct vm_area_struct *exporter = NULL, *importer = NULL;
798
799 if (end >= next->vm_end) {
800 /*
801 * vma expands, overlapping all the next, and
802 * perhaps the one after too (mprotect case 6).
803 * The only other cases that gets here are
804 * case 1, case 7 and case 8.
805 */
806 if (next == expand) {
807 /*
808 * The only case where we don't expand "vma"
809 * and we expand "next" instead is case 8.
810 */
811 VM_WARN_ON(end != next->vm_end);
812 /*
813 * remove_next == 3 means we're
814 * removing "vma" and that to do so we
815 * swapped "vma" and "next".
816 */
817 remove_next = 3;
818 VM_WARN_ON(file != next->vm_file);
819 swap(vma, next);
820 } else {
821 VM_WARN_ON(expand != vma);
822 /*
823 * case 1, 6, 7, remove_next == 2 is case 6,
824 * remove_next == 1 is case 1 or 7.
825 */
826 remove_next = 1 + (end > next->vm_end);
827 VM_WARN_ON(remove_next == 2 &&
828 end != next->vm_next->vm_end);
829 /* trim end to next, for case 6 first pass */
830 end = next->vm_end;
831 }
832
833 exporter = next;
834 importer = vma;
835
836 /*
837 * If next doesn't have anon_vma, import from vma after
838 * next, if the vma overlaps with it.
839 */
840 if (remove_next == 2 && !next->anon_vma)
841 exporter = next->vm_next;
842
843 } else if (end > next->vm_start) {
844 /*
845 * vma expands, overlapping part of the next:
846 * mprotect case 5 shifting the boundary up.
847 */
848 adjust_next = (end - next->vm_start);
849 exporter = next;
850 importer = vma;
851 VM_WARN_ON(expand != importer);
852 } else if (end < vma->vm_end) {
853 /*
854 * vma shrinks, and !insert tells it's not
855 * split_vma inserting another: so it must be
856 * mprotect case 4 shifting the boundary down.
857 */
858 adjust_next = -(vma->vm_end - end);
859 exporter = vma;
860 importer = next;
861 VM_WARN_ON(expand != importer);
862 }
863
864 /*
865 * Easily overlooked: when mprotect shifts the boundary,
866 * make sure the expanding vma has anon_vma set if the
867 * shrinking vma had, to cover any anon pages imported.
868 */
869 if (exporter && exporter->anon_vma && !importer->anon_vma) {
870 int error;
871
872 importer->anon_vma = exporter->anon_vma;
873 error = anon_vma_clone(importer, exporter);
874 if (error) {
875 if (next && next != vma)
876 vm_write_end(next);
877 vm_write_end(vma);
878 return error;
879 }
880 }
881 }
882 again:
883 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
884
885 if (file) {
886 mapping = file->f_mapping;
887 root = &mapping->i_mmap;
888 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
889
890 if (adjust_next)
891 uprobe_munmap(next, next->vm_start, next->vm_end);
892
893 i_mmap_lock_write(mapping);
894 if (insert) {
895 /*
896 * Put into interval tree now, so instantiated pages
897 * are visible to arm/parisc __flush_dcache_page
898 * throughout; but we cannot insert into address
899 * space until vma start or end is updated.
900 */
901 __vma_link_file(insert);
902 }
903 }
904
905 anon_vma = vma->anon_vma;
906 if (!anon_vma && adjust_next)
907 anon_vma = next->anon_vma;
908 if (anon_vma) {
909 VM_WARN_ON(adjust_next && next->anon_vma &&
910 anon_vma != next->anon_vma);
911 anon_vma_lock_write(anon_vma);
912 anon_vma_interval_tree_pre_update_vma(vma);
913 if (adjust_next)
914 anon_vma_interval_tree_pre_update_vma(next);
915 }
916
917 if (file) {
918 flush_dcache_mmap_lock(mapping);
919 vma_interval_tree_remove(vma, root);
920 if (adjust_next)
921 vma_interval_tree_remove(next, root);
922 }
923
924 if (start != vma->vm_start) {
925 WRITE_ONCE(vma->vm_start, start);
926 start_changed = true;
927 }
928 if (end != vma->vm_end) {
929 WRITE_ONCE(vma->vm_end, end);
930 end_changed = true;
931 }
932 WRITE_ONCE(vma->vm_pgoff, pgoff);
933 if (adjust_next) {
934 WRITE_ONCE(next->vm_start,
935 next->vm_start + adjust_next);
936 WRITE_ONCE(next->vm_pgoff,
937 next->vm_pgoff + (adjust_next >> PAGE_SHIFT));
938 }
939
940 if (file) {
941 if (adjust_next)
942 vma_interval_tree_insert(next, root);
943 vma_interval_tree_insert(vma, root);
944 flush_dcache_mmap_unlock(mapping);
945 }
946
947 if (remove_next) {
948 /*
949 * vma_merge has merged next into vma, and needs
950 * us to remove next before dropping the locks.
951 */
952 if (remove_next != 3)
953 __vma_unlink(mm, next, next);
954 else
955 /*
956 * vma is not before next if they've been
957 * swapped.
958 *
959 * pre-swap() next->vm_start was reduced so
960 * tell validate_mm_rb to ignore pre-swap()
961 * "next" (which is stored in post-swap()
962 * "vma").
963 */
964 __vma_unlink(mm, next, vma);
965 if (file)
966 __remove_shared_vm_struct(next, file, mapping);
967 } else if (insert) {
968 /*
969 * split_vma has split insert from vma, and needs
970 * us to insert it before dropping the locks
971 * (it may either follow vma or precede it).
972 */
973 __insert_vm_struct(mm, insert);
974 } else {
975 if (start_changed)
976 vma_gap_update(vma);
977 if (end_changed) {
978 if (!next)
979 mm->highest_vm_end = vm_end_gap(vma);
980 else if (!adjust_next)
981 vma_gap_update(next);
982 }
983 }
984
985 if (anon_vma) {
986 anon_vma_interval_tree_post_update_vma(vma);
987 if (adjust_next)
988 anon_vma_interval_tree_post_update_vma(next);
989 anon_vma_unlock_write(anon_vma);
990 }
991
992 if (file) {
993 i_mmap_unlock_write(mapping);
994 uprobe_mmap(vma);
995
996 if (adjust_next)
997 uprobe_mmap(next);
998 }
999
1000 if (remove_next) {
1001 if (file)
1002 uprobe_munmap(next, next->vm_start, next->vm_end);
1003 if (next->anon_vma)
1004 anon_vma_merge(vma, next);
1005 mm->map_count--;
1006 vm_write_end(next);
1007 put_vma(next);
1008 /*
1009 * In mprotect's case 6 (see comments on vma_merge),
1010 * we must remove another next too. It would clutter
1011 * up the code too much to do both in one go.
1012 */
1013 if (remove_next != 3) {
1014 /*
1015 * If "next" was removed and vma->vm_end was
1016 * expanded (up) over it, in turn
1017 * "next->vm_prev->vm_end" changed and the
1018 * "vma->vm_next" gap must be updated.
1019 */
1020 next = vma->vm_next;
1021 if (next)
1022 vm_write_begin(next);
1023 } else {
1024 /*
1025 * For the scope of the comment "next" and
1026 * "vma" considered pre-swap(): if "vma" was
1027 * removed, next->vm_start was expanded (down)
1028 * over it and the "next" gap must be updated.
1029 * Because of the swap() the post-swap() "vma"
1030 * actually points to pre-swap() "next"
1031 * (post-swap() "next" as opposed is now a
1032 * dangling pointer).
1033 */
1034 next = vma;
1035 }
1036 if (remove_next == 2) {
1037 remove_next = 1;
1038 end = next->vm_end;
1039 goto again;
1040 }
1041 else if (next)
1042 vma_gap_update(next);
1043 else {
1044 /*
1045 * If remove_next == 2 we obviously can't
1046 * reach this path.
1047 *
1048 * If remove_next == 3 we can't reach this
1049 * path because pre-swap() next is always not
1050 * NULL. pre-swap() "next" is not being
1051 * removed and its next->vm_end is not altered
1052 * (and furthermore "end" already matches
1053 * next->vm_end in remove_next == 3).
1054 *
1055 * We reach this only in the remove_next == 1
1056 * case if the "next" vma that was removed was
1057 * the highest vma of the mm. However in such
1058 * case next->vm_end == "end" and the extended
1059 * "vma" has vma->vm_end == next->vm_end so
1060 * mm->highest_vm_end doesn't need any update
1061 * in remove_next == 1 case.
1062 */
1063 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1064 }
1065 }
1066 if (insert && file)
1067 uprobe_mmap(insert);
1068
1069 if (next && next != vma)
1070 vm_write_end(next);
1071 if (!keep_locked)
1072 vm_write_end(vma);
1073
1074 validate_mm(mm);
1075
1076 return 0;
1077 }
1078
1079 /*
1080 * If the vma has a ->close operation then the driver probably needs to release
1081 * per-vma resources, so we don't attempt to merge those.
1082 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1083 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1084 struct file *file, unsigned long vm_flags,
1085 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1086 const char __user *anon_name)
1087 {
1088 /*
1089 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1090 * match the flags but dirty bit -- the caller should mark
1091 * merged VMA as dirty. If dirty bit won't be excluded from
1092 * comparison, we increase pressure on the memory system forcing
1093 * the kernel to generate new VMAs when old one could be
1094 * extended instead.
1095 */
1096 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1097 return 0;
1098 if (vma->vm_file != file)
1099 return 0;
1100 if (vma->vm_ops && vma->vm_ops->close)
1101 return 0;
1102 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1103 return 0;
1104 if (vma_get_anon_name(vma) != anon_name)
1105 return 0;
1106 return 1;
1107 }
1108
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1109 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1110 struct anon_vma *anon_vma2,
1111 struct vm_area_struct *vma)
1112 {
1113 /*
1114 * The list_is_singular() test is to avoid merging VMA cloned from
1115 * parents. This can improve scalability caused by anon_vma lock.
1116 */
1117 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1118 list_is_singular(&vma->anon_vma_chain)))
1119 return 1;
1120 return anon_vma1 == anon_vma2;
1121 }
1122
1123 /*
1124 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1125 * in front of (at a lower virtual address and file offset than) the vma.
1126 *
1127 * We cannot merge two vmas if they have differently assigned (non-NULL)
1128 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1129 *
1130 * We don't check here for the merged mmap wrapping around the end of pagecache
1131 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1132 * wrap, nor mmaps which cover the final page at index -1UL.
1133 */
1134 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1135 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1136 struct anon_vma *anon_vma, struct file *file,
1137 pgoff_t vm_pgoff,
1138 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1139 const char __user *anon_name)
1140 {
1141 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1142 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1143 if (vma->vm_pgoff == vm_pgoff)
1144 return 1;
1145 }
1146 return 0;
1147 }
1148
1149 /*
1150 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1151 * beyond (at a higher virtual address and file offset than) the vma.
1152 *
1153 * We cannot merge two vmas if they have differently assigned (non-NULL)
1154 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1155 */
1156 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1157 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1158 struct anon_vma *anon_vma, struct file *file,
1159 pgoff_t vm_pgoff,
1160 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1161 const char __user *anon_name)
1162 {
1163 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1164 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1165 pgoff_t vm_pglen;
1166 vm_pglen = vma_pages(vma);
1167 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1168 return 1;
1169 }
1170 return 0;
1171 }
1172
1173 /*
1174 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1175 * figure out whether that can be merged with its predecessor or its
1176 * successor. Or both (it neatly fills a hole).
1177 *
1178 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1179 * certain not to be mapped by the time vma_merge is called; but when
1180 * called for mprotect, it is certain to be already mapped (either at
1181 * an offset within prev, or at the start of next), and the flags of
1182 * this area are about to be changed to vm_flags - and the no-change
1183 * case has already been eliminated.
1184 *
1185 * The following mprotect cases have to be considered, where AAAA is
1186 * the area passed down from mprotect_fixup, never extending beyond one
1187 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1188 *
1189 * AAAA AAAA AAAA
1190 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1191 * cannot merge might become might become
1192 * PPNNNNNNNNNN PPPPPPPPPPNN
1193 * mmap, brk or case 4 below case 5 below
1194 * mremap move:
1195 * AAAA AAAA
1196 * PPPP NNNN PPPPNNNNXXXX
1197 * might become might become
1198 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1199 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1200 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1201 *
1202 * It is important for case 8 that the vma NNNN overlapping the
1203 * region AAAA is never going to extended over XXXX. Instead XXXX must
1204 * be extended in region AAAA and NNNN must be removed. This way in
1205 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1206 * rmap_locks, the properties of the merged vma will be already
1207 * correct for the whole merged range. Some of those properties like
1208 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1209 * be correct for the whole merged range immediately after the
1210 * rmap_locks are released. Otherwise if XXXX would be removed and
1211 * NNNN would be extended over the XXXX range, remove_migration_ptes
1212 * or other rmap walkers (if working on addresses beyond the "end"
1213 * parameter) may establish ptes with the wrong permissions of NNNN
1214 * instead of the right permissions of XXXX.
1215 */
__vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name,bool keep_locked)1216 struct vm_area_struct *__vma_merge(struct mm_struct *mm,
1217 struct vm_area_struct *prev, unsigned long addr,
1218 unsigned long end, unsigned long vm_flags,
1219 struct anon_vma *anon_vma, struct file *file,
1220 pgoff_t pgoff, struct mempolicy *policy,
1221 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1222 const char __user *anon_name, bool keep_locked)
1223 {
1224 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1225 struct vm_area_struct *area, *next;
1226 int err;
1227
1228 /*
1229 * We later require that vma->vm_flags == vm_flags,
1230 * so this tests vma->vm_flags & VM_SPECIAL, too.
1231 */
1232 if (vm_flags & VM_SPECIAL)
1233 return NULL;
1234
1235 next = vma_next(mm, prev);
1236 area = next;
1237 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1238 next = next->vm_next;
1239
1240 /* verify some invariant that must be enforced by the caller */
1241 VM_WARN_ON(prev && addr <= prev->vm_start);
1242 VM_WARN_ON(area && end > area->vm_end);
1243 VM_WARN_ON(addr >= end);
1244
1245 /*
1246 * Can it merge with the predecessor?
1247 */
1248 if (prev && prev->vm_end == addr &&
1249 mpol_equal(vma_policy(prev), policy) &&
1250 can_vma_merge_after(prev, vm_flags,
1251 anon_vma, file, pgoff,
1252 vm_userfaultfd_ctx,
1253 anon_name)) {
1254 /*
1255 * OK, it can. Can we now merge in the successor as well?
1256 */
1257 if (next && end == next->vm_start &&
1258 mpol_equal(policy, vma_policy(next)) &&
1259 can_vma_merge_before(next, vm_flags,
1260 anon_vma, file,
1261 pgoff+pglen,
1262 vm_userfaultfd_ctx,
1263 anon_name) &&
1264 is_mergeable_anon_vma(prev->anon_vma,
1265 next->anon_vma, NULL)) {
1266 /* cases 1, 6 */
1267 err = __vma_adjust(prev, prev->vm_start,
1268 next->vm_end, prev->vm_pgoff, NULL,
1269 prev, keep_locked);
1270 } else /* cases 2, 5, 7 */
1271 err = __vma_adjust(prev, prev->vm_start,
1272 end, prev->vm_pgoff, NULL, prev,
1273 keep_locked);
1274 if (err)
1275 return NULL;
1276 khugepaged_enter_vma_merge(prev, vm_flags);
1277 return prev;
1278 }
1279
1280 /*
1281 * Can this new request be merged in front of next?
1282 */
1283 if (next && end == next->vm_start &&
1284 mpol_equal(policy, vma_policy(next)) &&
1285 can_vma_merge_before(next, vm_flags,
1286 anon_vma, file, pgoff+pglen,
1287 vm_userfaultfd_ctx,
1288 anon_name)) {
1289 if (prev && addr < prev->vm_end) /* case 4 */
1290 err = __vma_adjust(prev, prev->vm_start,
1291 addr, prev->vm_pgoff, NULL, next,
1292 keep_locked);
1293 else { /* cases 3, 8 */
1294 err = __vma_adjust(area, addr, next->vm_end,
1295 next->vm_pgoff - pglen, NULL, next,
1296 keep_locked);
1297 /*
1298 * In case 3 area is already equal to next and
1299 * this is a noop, but in case 8 "area" has
1300 * been removed and next was expanded over it.
1301 */
1302 area = next;
1303 }
1304 if (err)
1305 return NULL;
1306 khugepaged_enter_vma_merge(area, vm_flags);
1307 return area;
1308 }
1309
1310 return NULL;
1311 }
1312
1313 /*
1314 * Rough compatibility check to quickly see if it's even worth looking
1315 * at sharing an anon_vma.
1316 *
1317 * They need to have the same vm_file, and the flags can only differ
1318 * in things that mprotect may change.
1319 *
1320 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1321 * we can merge the two vma's. For example, we refuse to merge a vma if
1322 * there is a vm_ops->close() function, because that indicates that the
1323 * driver is doing some kind of reference counting. But that doesn't
1324 * really matter for the anon_vma sharing case.
1325 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1326 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1327 {
1328 return a->vm_end == b->vm_start &&
1329 mpol_equal(vma_policy(a), vma_policy(b)) &&
1330 a->vm_file == b->vm_file &&
1331 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1332 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1333 }
1334
1335 /*
1336 * Do some basic sanity checking to see if we can re-use the anon_vma
1337 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1338 * the same as 'old', the other will be the new one that is trying
1339 * to share the anon_vma.
1340 *
1341 * NOTE! This runs with mm_sem held for reading, so it is possible that
1342 * the anon_vma of 'old' is concurrently in the process of being set up
1343 * by another page fault trying to merge _that_. But that's ok: if it
1344 * is being set up, that automatically means that it will be a singleton
1345 * acceptable for merging, so we can do all of this optimistically. But
1346 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1347 *
1348 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1349 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1350 * is to return an anon_vma that is "complex" due to having gone through
1351 * a fork).
1352 *
1353 * We also make sure that the two vma's are compatible (adjacent,
1354 * and with the same memory policies). That's all stable, even with just
1355 * a read lock on the mm_sem.
1356 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1357 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1358 {
1359 if (anon_vma_compatible(a, b)) {
1360 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1361
1362 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1363 return anon_vma;
1364 }
1365 return NULL;
1366 }
1367
1368 /*
1369 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1370 * neighbouring vmas for a suitable anon_vma, before it goes off
1371 * to allocate a new anon_vma. It checks because a repetitive
1372 * sequence of mprotects and faults may otherwise lead to distinct
1373 * anon_vmas being allocated, preventing vma merge in subsequent
1374 * mprotect.
1375 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1376 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1377 {
1378 struct anon_vma *anon_vma = NULL;
1379
1380 /* Try next first. */
1381 if (vma->vm_next) {
1382 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1383 if (anon_vma)
1384 return anon_vma;
1385 }
1386
1387 /* Try prev next. */
1388 if (vma->vm_prev)
1389 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1390
1391 /*
1392 * We might reach here with anon_vma == NULL if we can't find
1393 * any reusable anon_vma.
1394 * There's no absolute need to look only at touching neighbours:
1395 * we could search further afield for "compatible" anon_vmas.
1396 * But it would probably just be a waste of time searching,
1397 * or lead to too many vmas hanging off the same anon_vma.
1398 * We're trying to allow mprotect remerging later on,
1399 * not trying to minimize memory used for anon_vmas.
1400 */
1401 return anon_vma;
1402 }
1403
1404 /*
1405 * If a hint addr is less than mmap_min_addr change hint to be as
1406 * low as possible but still greater than mmap_min_addr
1407 */
round_hint_to_min(unsigned long hint)1408 static inline unsigned long round_hint_to_min(unsigned long hint)
1409 {
1410 hint &= PAGE_MASK;
1411 if (((void *)hint != NULL) &&
1412 (hint < mmap_min_addr))
1413 return PAGE_ALIGN(mmap_min_addr);
1414 return hint;
1415 }
1416
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1417 static inline int mlock_future_check(struct mm_struct *mm,
1418 unsigned long flags,
1419 unsigned long len)
1420 {
1421 unsigned long locked, lock_limit;
1422
1423 /* mlock MCL_FUTURE? */
1424 if (flags & VM_LOCKED) {
1425 locked = len >> PAGE_SHIFT;
1426 locked += mm->locked_vm;
1427 lock_limit = rlimit(RLIMIT_MEMLOCK);
1428 lock_limit >>= PAGE_SHIFT;
1429 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1430 return -EAGAIN;
1431 }
1432 return 0;
1433 }
1434
file_mmap_size_max(struct file * file,struct inode * inode)1435 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1436 {
1437 if (S_ISREG(inode->i_mode))
1438 return MAX_LFS_FILESIZE;
1439
1440 if (S_ISBLK(inode->i_mode))
1441 return MAX_LFS_FILESIZE;
1442
1443 if (S_ISSOCK(inode->i_mode))
1444 return MAX_LFS_FILESIZE;
1445
1446 /* Special "we do even unsigned file positions" case */
1447 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1448 return 0;
1449
1450 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1451 return ULONG_MAX;
1452 }
1453
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1454 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1455 unsigned long pgoff, unsigned long len)
1456 {
1457 u64 maxsize = file_mmap_size_max(file, inode);
1458
1459 if (maxsize && len > maxsize)
1460 return false;
1461 maxsize -= len;
1462 if (pgoff > maxsize >> PAGE_SHIFT)
1463 return false;
1464 return true;
1465 }
1466
1467 /*
1468 * The caller must write-lock current->mm->mmap_lock.
1469 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1470 unsigned long do_mmap(struct file *file, unsigned long addr,
1471 unsigned long len, unsigned long prot,
1472 unsigned long flags, unsigned long pgoff,
1473 unsigned long *populate, struct list_head *uf)
1474 {
1475 struct mm_struct *mm = current->mm;
1476 vm_flags_t vm_flags;
1477 int pkey = 0;
1478
1479 *populate = 0;
1480
1481 if (!len)
1482 return -EINVAL;
1483
1484 /*
1485 * Does the application expect PROT_READ to imply PROT_EXEC?
1486 *
1487 * (the exception is when the underlying filesystem is noexec
1488 * mounted, in which case we dont add PROT_EXEC.)
1489 */
1490 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1491 if (!(file && path_noexec(&file->f_path)))
1492 prot |= PROT_EXEC;
1493
1494 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1495 if (flags & MAP_FIXED_NOREPLACE)
1496 flags |= MAP_FIXED;
1497
1498 if (!(flags & MAP_FIXED))
1499 addr = round_hint_to_min(addr);
1500
1501 /* Careful about overflows.. */
1502 len = PAGE_ALIGN(len);
1503 if (!len)
1504 return -ENOMEM;
1505
1506 /* offset overflow? */
1507 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1508 return -EOVERFLOW;
1509
1510 /* Too many mappings? */
1511 if (mm->map_count > sysctl_max_map_count)
1512 return -ENOMEM;
1513
1514 /* Obtain the address to map to. we verify (or select) it and ensure
1515 * that it represents a valid section of the address space.
1516 */
1517 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1518 if (IS_ERR_VALUE(addr))
1519 return addr;
1520
1521 if (flags & MAP_FIXED_NOREPLACE) {
1522 struct vm_area_struct *vma = find_vma(mm, addr);
1523
1524 if (vma && vma->vm_start < addr + len)
1525 return -EEXIST;
1526 }
1527
1528 if (prot == PROT_EXEC) {
1529 pkey = execute_only_pkey(mm);
1530 if (pkey < 0)
1531 pkey = 0;
1532 }
1533
1534 /* Do simple checking here so the lower-level routines won't have
1535 * to. we assume access permissions have been handled by the open
1536 * of the memory object, so we don't do any here.
1537 */
1538 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1539 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1540
1541 if (flags & MAP_LOCKED)
1542 if (!can_do_mlock())
1543 return -EPERM;
1544
1545 if (mlock_future_check(mm, vm_flags, len))
1546 return -EAGAIN;
1547
1548 if (file) {
1549 struct inode *inode = file_inode(file);
1550 unsigned long flags_mask;
1551
1552 if (!file_mmap_ok(file, inode, pgoff, len))
1553 return -EOVERFLOW;
1554
1555 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1556
1557 switch (flags & MAP_TYPE) {
1558 case MAP_SHARED:
1559 /*
1560 * Force use of MAP_SHARED_VALIDATE with non-legacy
1561 * flags. E.g. MAP_SYNC is dangerous to use with
1562 * MAP_SHARED as you don't know which consistency model
1563 * you will get. We silently ignore unsupported flags
1564 * with MAP_SHARED to preserve backward compatibility.
1565 */
1566 flags &= LEGACY_MAP_MASK;
1567 fallthrough;
1568 case MAP_SHARED_VALIDATE:
1569 if (flags & ~flags_mask)
1570 return -EOPNOTSUPP;
1571 if (prot & PROT_WRITE) {
1572 if (!(file->f_mode & FMODE_WRITE))
1573 return -EACCES;
1574 if (IS_SWAPFILE(file->f_mapping->host))
1575 return -ETXTBSY;
1576 }
1577
1578 /*
1579 * Make sure we don't allow writing to an append-only
1580 * file..
1581 */
1582 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1583 return -EACCES;
1584
1585 /*
1586 * Make sure there are no mandatory locks on the file.
1587 */
1588 if (locks_verify_locked(file))
1589 return -EAGAIN;
1590
1591 vm_flags |= VM_SHARED | VM_MAYSHARE;
1592 if (!(file->f_mode & FMODE_WRITE))
1593 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1594 fallthrough;
1595 case MAP_PRIVATE:
1596 if (!(file->f_mode & FMODE_READ))
1597 return -EACCES;
1598 if (path_noexec(&file->f_path)) {
1599 if (vm_flags & VM_EXEC)
1600 return -EPERM;
1601 vm_flags &= ~VM_MAYEXEC;
1602 }
1603
1604 if (!file->f_op->mmap)
1605 return -ENODEV;
1606 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1607 return -EINVAL;
1608 break;
1609
1610 default:
1611 return -EINVAL;
1612 }
1613 } else {
1614 switch (flags & MAP_TYPE) {
1615 case MAP_SHARED:
1616 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1617 return -EINVAL;
1618 /*
1619 * Ignore pgoff.
1620 */
1621 pgoff = 0;
1622 vm_flags |= VM_SHARED | VM_MAYSHARE;
1623 break;
1624 case MAP_PRIVATE:
1625 /*
1626 * Set pgoff according to addr for anon_vma.
1627 */
1628 pgoff = addr >> PAGE_SHIFT;
1629 break;
1630 default:
1631 return -EINVAL;
1632 }
1633 }
1634
1635 /*
1636 * Set 'VM_NORESERVE' if we should not account for the
1637 * memory use of this mapping.
1638 */
1639 if (flags & MAP_NORESERVE) {
1640 /* We honor MAP_NORESERVE if allowed to overcommit */
1641 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1642 vm_flags |= VM_NORESERVE;
1643
1644 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1645 if (file && is_file_hugepages(file))
1646 vm_flags |= VM_NORESERVE;
1647 }
1648
1649 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1650 if (!IS_ERR_VALUE(addr) &&
1651 ((vm_flags & VM_LOCKED) ||
1652 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1653 *populate = len;
1654 return addr;
1655 }
1656
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1657 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1658 unsigned long prot, unsigned long flags,
1659 unsigned long fd, unsigned long pgoff)
1660 {
1661 struct file *file = NULL;
1662 unsigned long retval;
1663
1664 if (!(flags & MAP_ANONYMOUS)) {
1665 audit_mmap_fd(fd, flags);
1666 file = fget(fd);
1667 if (!file)
1668 return -EBADF;
1669 if (is_file_hugepages(file)) {
1670 len = ALIGN(len, huge_page_size(hstate_file(file)));
1671 } else if (unlikely(flags & MAP_HUGETLB)) {
1672 retval = -EINVAL;
1673 goto out_fput;
1674 }
1675 } else if (flags & MAP_HUGETLB) {
1676 struct user_struct *user = NULL;
1677 struct hstate *hs;
1678
1679 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1680 if (!hs)
1681 return -EINVAL;
1682
1683 len = ALIGN(len, huge_page_size(hs));
1684 /*
1685 * VM_NORESERVE is used because the reservations will be
1686 * taken when vm_ops->mmap() is called
1687 * A dummy user value is used because we are not locking
1688 * memory so no accounting is necessary
1689 */
1690 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1691 VM_NORESERVE,
1692 &user, HUGETLB_ANONHUGE_INODE,
1693 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1694 if (IS_ERR(file))
1695 return PTR_ERR(file);
1696 }
1697
1698 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1699
1700 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1701 out_fput:
1702 if (file)
1703 fput(file);
1704 return retval;
1705 }
1706
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1707 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1708 unsigned long, prot, unsigned long, flags,
1709 unsigned long, fd, unsigned long, pgoff)
1710 {
1711 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1712 }
1713
1714 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1715 struct mmap_arg_struct {
1716 unsigned long addr;
1717 unsigned long len;
1718 unsigned long prot;
1719 unsigned long flags;
1720 unsigned long fd;
1721 unsigned long offset;
1722 };
1723
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1724 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1725 {
1726 struct mmap_arg_struct a;
1727
1728 if (copy_from_user(&a, arg, sizeof(a)))
1729 return -EFAULT;
1730 if (offset_in_page(a.offset))
1731 return -EINVAL;
1732
1733 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1734 a.offset >> PAGE_SHIFT);
1735 }
1736 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1737
1738 /*
1739 * Some shared mappings will want the pages marked read-only
1740 * to track write events. If so, we'll downgrade vm_page_prot
1741 * to the private version (using protection_map[] without the
1742 * VM_SHARED bit).
1743 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1744 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1745 {
1746 vm_flags_t vm_flags = vma->vm_flags;
1747 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1748
1749 /* If it was private or non-writable, the write bit is already clear */
1750 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1751 return 0;
1752
1753 /* The backer wishes to know when pages are first written to? */
1754 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1755 return 1;
1756
1757 /* The open routine did something to the protections that pgprot_modify
1758 * won't preserve? */
1759 if (pgprot_val(vm_page_prot) !=
1760 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1761 return 0;
1762
1763 /*
1764 * Do we need to track softdirty? hugetlb does not support softdirty
1765 * tracking yet.
1766 */
1767 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1768 !is_vm_hugetlb_page(vma))
1769 return 1;
1770
1771 /* Specialty mapping? */
1772 if (vm_flags & VM_PFNMAP)
1773 return 0;
1774
1775 /* Can the mapping track the dirty pages? */
1776 return vma->vm_file && vma->vm_file->f_mapping &&
1777 mapping_can_writeback(vma->vm_file->f_mapping);
1778 }
1779
1780 /*
1781 * We account for memory if it's a private writeable mapping,
1782 * not hugepages and VM_NORESERVE wasn't set.
1783 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1784 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1785 {
1786 /*
1787 * hugetlb has its own accounting separate from the core VM
1788 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1789 */
1790 if (file && is_file_hugepages(file))
1791 return 0;
1792
1793 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1794 }
1795
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1796 unsigned long mmap_region(struct file *file, unsigned long addr,
1797 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1798 struct list_head *uf)
1799 {
1800 struct mm_struct *mm = current->mm;
1801 struct vm_area_struct *vma, *prev, *merge;
1802 int error;
1803 struct rb_node **rb_link, *rb_parent;
1804 unsigned long charged = 0;
1805
1806 /* Check against address space limit. */
1807 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1808 unsigned long nr_pages;
1809
1810 /*
1811 * MAP_FIXED may remove pages of mappings that intersects with
1812 * requested mapping. Account for the pages it would unmap.
1813 */
1814 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1815
1816 if (!may_expand_vm(mm, vm_flags,
1817 (len >> PAGE_SHIFT) - nr_pages))
1818 return -ENOMEM;
1819 }
1820
1821 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1822 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1823 return -ENOMEM;
1824 /*
1825 * Private writable mapping: check memory availability
1826 */
1827 if (accountable_mapping(file, vm_flags)) {
1828 charged = len >> PAGE_SHIFT;
1829 if (security_vm_enough_memory_mm(mm, charged))
1830 return -ENOMEM;
1831 vm_flags |= VM_ACCOUNT;
1832 }
1833
1834 /*
1835 * Can we just expand an old mapping?
1836 */
1837 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1838 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1839 if (vma)
1840 goto out;
1841
1842 /*
1843 * Determine the object being mapped and call the appropriate
1844 * specific mapper. the address has already been validated, but
1845 * not unmapped, but the maps are removed from the list.
1846 */
1847 vma = vm_area_alloc(mm);
1848 if (!vma) {
1849 error = -ENOMEM;
1850 goto unacct_error;
1851 }
1852
1853 vma->vm_start = addr;
1854 vma->vm_end = addr + len;
1855 vma->vm_flags = vm_flags;
1856 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1857 vma->vm_pgoff = pgoff;
1858
1859 if (file) {
1860 if (vm_flags & VM_DENYWRITE) {
1861 error = deny_write_access(file);
1862 if (error)
1863 goto free_vma;
1864 }
1865 if (vm_flags & VM_SHARED) {
1866 error = mapping_map_writable(file->f_mapping);
1867 if (error)
1868 goto allow_write_and_free_vma;
1869 }
1870
1871 /* ->mmap() can change vma->vm_file, but must guarantee that
1872 * vma_link() below can deny write-access if VM_DENYWRITE is set
1873 * and map writably if VM_SHARED is set. This usually means the
1874 * new file must not have been exposed to user-space, yet.
1875 */
1876 vma->vm_file = get_file(file);
1877 error = call_mmap(file, vma);
1878 if (error)
1879 goto unmap_and_free_vma;
1880
1881 /* Can addr have changed??
1882 *
1883 * Answer: Yes, several device drivers can do it in their
1884 * f_op->mmap method. -DaveM
1885 * Bug: If addr is changed, prev, rb_link, rb_parent should
1886 * be updated for vma_link()
1887 */
1888 WARN_ON_ONCE(addr != vma->vm_start);
1889
1890 addr = vma->vm_start;
1891
1892 /* If vm_flags changed after call_mmap(), we should try merge vma again
1893 * as we may succeed this time.
1894 */
1895 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1896 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1897 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX,
1898 vma_get_anon_name(vma));
1899 if (merge) {
1900 /* ->mmap() can change vma->vm_file and fput the original file. So
1901 * fput the vma->vm_file here or we would add an extra fput for file
1902 * and cause general protection fault ultimately.
1903 */
1904 fput(vma->vm_file);
1905 vm_area_free(vma);
1906 vma = merge;
1907 /* Update vm_flags to pick up the change. */
1908 vm_flags = vma->vm_flags;
1909 goto unmap_writable;
1910 }
1911 }
1912
1913 vm_flags = vma->vm_flags;
1914 } else if (vm_flags & VM_SHARED) {
1915 error = shmem_zero_setup(vma);
1916 if (error)
1917 goto free_vma;
1918 } else {
1919 vma_set_anonymous(vma);
1920 }
1921
1922 /* Allow architectures to sanity-check the vm_flags */
1923 if (!arch_validate_flags(vma->vm_flags)) {
1924 error = -EINVAL;
1925 if (file)
1926 goto close_and_free_vma;
1927 else
1928 goto free_vma;
1929 }
1930
1931 vma_link(mm, vma, prev, rb_link, rb_parent);
1932 /* Once vma denies write, undo our temporary denial count */
1933 if (file) {
1934 unmap_writable:
1935 if (vm_flags & VM_SHARED)
1936 mapping_unmap_writable(file->f_mapping);
1937 if (vm_flags & VM_DENYWRITE)
1938 allow_write_access(file);
1939 }
1940 file = vma->vm_file;
1941 out:
1942 perf_event_mmap(vma);
1943
1944 vm_write_begin(vma);
1945 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1946 if (vm_flags & VM_LOCKED) {
1947 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1948 is_vm_hugetlb_page(vma) ||
1949 vma == get_gate_vma(current->mm))
1950 WRITE_ONCE(vma->vm_flags,
1951 vma->vm_flags & VM_LOCKED_CLEAR_MASK);
1952 else
1953 mm->locked_vm += (len >> PAGE_SHIFT);
1954 }
1955
1956 if (file)
1957 uprobe_mmap(vma);
1958
1959 /*
1960 * New (or expanded) vma always get soft dirty status.
1961 * Otherwise user-space soft-dirty page tracker won't
1962 * be able to distinguish situation when vma area unmapped,
1963 * then new mapped in-place (which must be aimed as
1964 * a completely new data area).
1965 */
1966 WRITE_ONCE(vma->vm_flags, vma->vm_flags | VM_SOFTDIRTY);
1967
1968 vma_set_page_prot(vma);
1969 vm_write_end(vma);
1970
1971 trace_android_vh_mmap_region(vma, addr);
1972
1973 return addr;
1974
1975 close_and_free_vma:
1976 if (vma->vm_ops && vma->vm_ops->close)
1977 vma->vm_ops->close(vma);
1978 unmap_and_free_vma:
1979 vma->vm_file = NULL;
1980 fput(file);
1981
1982 /* Undo any partial mapping done by a device driver. */
1983 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1984 if (vm_flags & VM_SHARED)
1985 mapping_unmap_writable(file->f_mapping);
1986 allow_write_and_free_vma:
1987 if (vm_flags & VM_DENYWRITE)
1988 allow_write_access(file);
1989 free_vma:
1990 vm_area_free(vma);
1991 unacct_error:
1992 if (charged)
1993 vm_unacct_memory(charged);
1994 return error;
1995 }
1996
unmapped_area(struct vm_unmapped_area_info * info)1997 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1998 {
1999 /*
2000 * We implement the search by looking for an rbtree node that
2001 * immediately follows a suitable gap. That is,
2002 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
2003 * - gap_end = vma->vm_start >= info->low_limit + length;
2004 * - gap_end - gap_start >= length
2005 */
2006
2007 struct mm_struct *mm = current->mm;
2008 struct vm_area_struct *vma;
2009 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2010
2011 /* Adjust search length to account for worst case alignment overhead */
2012 length = info->length + info->align_mask;
2013 if (length < info->length)
2014 return -ENOMEM;
2015
2016 /* Adjust search limits by the desired length */
2017 if (info->high_limit < length)
2018 return -ENOMEM;
2019 high_limit = info->high_limit - length;
2020
2021 if (info->low_limit > high_limit)
2022 return -ENOMEM;
2023 low_limit = info->low_limit + length;
2024
2025 /* Check if rbtree root looks promising */
2026 if (RB_EMPTY_ROOT(&mm->mm_rb))
2027 goto check_highest;
2028 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2029 if (vma->rb_subtree_gap < length)
2030 goto check_highest;
2031
2032 while (true) {
2033 /* Visit left subtree if it looks promising */
2034 gap_end = vm_start_gap(vma);
2035 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
2036 struct vm_area_struct *left =
2037 rb_entry(vma->vm_rb.rb_left,
2038 struct vm_area_struct, vm_rb);
2039 if (left->rb_subtree_gap >= length) {
2040 vma = left;
2041 continue;
2042 }
2043 }
2044
2045 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2046 check_current:
2047 /* Check if current node has a suitable gap */
2048 if (gap_start > high_limit)
2049 return -ENOMEM;
2050 if (gap_end >= low_limit &&
2051 gap_end > gap_start && gap_end - gap_start >= length)
2052 goto found;
2053
2054 /* Visit right subtree if it looks promising */
2055 if (vma->vm_rb.rb_right) {
2056 struct vm_area_struct *right =
2057 rb_entry(vma->vm_rb.rb_right,
2058 struct vm_area_struct, vm_rb);
2059 if (right->rb_subtree_gap >= length) {
2060 vma = right;
2061 continue;
2062 }
2063 }
2064
2065 /* Go back up the rbtree to find next candidate node */
2066 while (true) {
2067 struct rb_node *prev = &vma->vm_rb;
2068 if (!rb_parent(prev))
2069 goto check_highest;
2070 vma = rb_entry(rb_parent(prev),
2071 struct vm_area_struct, vm_rb);
2072 if (prev == vma->vm_rb.rb_left) {
2073 gap_start = vm_end_gap(vma->vm_prev);
2074 gap_end = vm_start_gap(vma);
2075 goto check_current;
2076 }
2077 }
2078 }
2079
2080 check_highest:
2081 /* Check highest gap, which does not precede any rbtree node */
2082 gap_start = mm->highest_vm_end;
2083 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
2084 if (gap_start > high_limit)
2085 return -ENOMEM;
2086
2087 found:
2088 /* We found a suitable gap. Clip it with the original low_limit. */
2089 if (gap_start < info->low_limit)
2090 gap_start = info->low_limit;
2091
2092 /* Adjust gap address to the desired alignment */
2093 gap_start += (info->align_offset - gap_start) & info->align_mask;
2094
2095 VM_BUG_ON(gap_start + info->length > info->high_limit);
2096 VM_BUG_ON(gap_start + info->length > gap_end);
2097 return gap_start;
2098 }
2099
unmapped_area_topdown(struct vm_unmapped_area_info * info)2100 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2101 {
2102 struct mm_struct *mm = current->mm;
2103 struct vm_area_struct *vma;
2104 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2105 unsigned long addr = 0;
2106
2107 /* Adjust search length to account for worst case alignment overhead */
2108 length = info->length + info->align_mask;
2109 if (length < info->length)
2110 return -ENOMEM;
2111
2112 trace_android_vh_get_from_fragment_pool(mm, info, &addr);
2113 if (addr)
2114 return addr;
2115
2116 /*
2117 * Adjust search limits by the desired length.
2118 * See implementation comment at top of unmapped_area().
2119 */
2120 gap_end = info->high_limit;
2121 if (gap_end < length)
2122 return -ENOMEM;
2123 high_limit = gap_end - length;
2124
2125 if (info->low_limit > high_limit)
2126 return -ENOMEM;
2127 low_limit = info->low_limit + length;
2128
2129 /* Check highest gap, which does not precede any rbtree node */
2130 gap_start = mm->highest_vm_end;
2131 if (gap_start <= high_limit)
2132 goto found_highest;
2133
2134 /* Check if rbtree root looks promising */
2135 if (RB_EMPTY_ROOT(&mm->mm_rb))
2136 return -ENOMEM;
2137 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2138 if (vma->rb_subtree_gap < length)
2139 return -ENOMEM;
2140
2141 while (true) {
2142 /* Visit right subtree if it looks promising */
2143 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2144 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2145 struct vm_area_struct *right =
2146 rb_entry(vma->vm_rb.rb_right,
2147 struct vm_area_struct, vm_rb);
2148 if (right->rb_subtree_gap >= length) {
2149 vma = right;
2150 continue;
2151 }
2152 }
2153
2154 check_current:
2155 /* Check if current node has a suitable gap */
2156 gap_end = vm_start_gap(vma);
2157 if (gap_end < low_limit)
2158 return -ENOMEM;
2159 if (gap_start <= high_limit &&
2160 gap_end > gap_start && gap_end - gap_start >= length)
2161 goto found;
2162
2163 /* Visit left subtree if it looks promising */
2164 if (vma->vm_rb.rb_left) {
2165 struct vm_area_struct *left =
2166 rb_entry(vma->vm_rb.rb_left,
2167 struct vm_area_struct, vm_rb);
2168 if (left->rb_subtree_gap >= length) {
2169 vma = left;
2170 continue;
2171 }
2172 }
2173
2174 /* Go back up the rbtree to find next candidate node */
2175 while (true) {
2176 struct rb_node *prev = &vma->vm_rb;
2177 if (!rb_parent(prev))
2178 return -ENOMEM;
2179 vma = rb_entry(rb_parent(prev),
2180 struct vm_area_struct, vm_rb);
2181 if (prev == vma->vm_rb.rb_right) {
2182 gap_start = vma->vm_prev ?
2183 vm_end_gap(vma->vm_prev) : 0;
2184 goto check_current;
2185 }
2186 }
2187 }
2188
2189 found:
2190 /* We found a suitable gap. Clip it with the original high_limit. */
2191 if (gap_end > info->high_limit)
2192 gap_end = info->high_limit;
2193
2194 found_highest:
2195 /* Compute highest gap address at the desired alignment */
2196 gap_end -= info->length;
2197 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2198
2199 VM_BUG_ON(gap_end < info->low_limit);
2200 VM_BUG_ON(gap_end < gap_start);
2201 return gap_end;
2202 }
2203
2204 /*
2205 * Search for an unmapped address range.
2206 *
2207 * We are looking for a range that:
2208 * - does not intersect with any VMA;
2209 * - is contained within the [low_limit, high_limit) interval;
2210 * - is at least the desired size.
2211 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2212 */
vm_unmapped_area(struct vm_unmapped_area_info * info)2213 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2214 {
2215 unsigned long addr;
2216
2217 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2218 addr = unmapped_area_topdown(info);
2219 else
2220 addr = unmapped_area(info);
2221
2222 trace_vm_unmapped_area(addr, info);
2223 return addr;
2224 }
2225 EXPORT_SYMBOL_GPL(vm_unmapped_area);
2226
2227 /* Get an address range which is currently unmapped.
2228 * For shmat() with addr=0.
2229 *
2230 * Ugly calling convention alert:
2231 * Return value with the low bits set means error value,
2232 * ie
2233 * if (ret & ~PAGE_MASK)
2234 * error = ret;
2235 *
2236 * This function "knows" that -ENOMEM has the bits set.
2237 */
2238 #ifndef HAVE_ARCH_UNMAPPED_AREA
2239 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2240 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2241 unsigned long len, unsigned long pgoff, unsigned long flags)
2242 {
2243 struct mm_struct *mm = current->mm;
2244 struct vm_area_struct *vma, *prev;
2245 struct vm_unmapped_area_info info;
2246 const unsigned long mmap_end = arch_get_mmap_end(addr);
2247
2248 if (len > mmap_end - mmap_min_addr)
2249 return -ENOMEM;
2250
2251 if (flags & MAP_FIXED)
2252 return addr;
2253
2254 if (addr) {
2255 addr = PAGE_ALIGN(addr);
2256 vma = find_vma_prev(mm, addr, &prev);
2257 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2258 (!vma || addr + len <= vm_start_gap(vma)) &&
2259 (!prev || addr >= vm_end_gap(prev)))
2260 return addr;
2261 }
2262
2263 info.flags = 0;
2264 info.length = len;
2265 info.low_limit = mm->mmap_base;
2266 info.high_limit = mmap_end;
2267 info.align_mask = 0;
2268 info.align_offset = 0;
2269 return vm_unmapped_area(&info);
2270 }
2271 #endif
2272
2273 /*
2274 * This mmap-allocator allocates new areas top-down from below the
2275 * stack's low limit (the base):
2276 */
2277 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2278 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2279 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2280 unsigned long len, unsigned long pgoff,
2281 unsigned long flags)
2282 {
2283 struct vm_area_struct *vma, *prev;
2284 struct mm_struct *mm = current->mm;
2285 struct vm_unmapped_area_info info;
2286 const unsigned long mmap_end = arch_get_mmap_end(addr);
2287
2288 /* requested length too big for entire address space */
2289 if (len > mmap_end - mmap_min_addr)
2290 return -ENOMEM;
2291
2292 if (flags & MAP_FIXED)
2293 return addr;
2294
2295 /* requesting a specific address */
2296 if (addr) {
2297 addr = PAGE_ALIGN(addr);
2298 vma = find_vma_prev(mm, addr, &prev);
2299 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2300 (!vma || addr + len <= vm_start_gap(vma)) &&
2301 (!prev || addr >= vm_end_gap(prev)))
2302 return addr;
2303 }
2304
2305 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2306 info.length = len;
2307 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2308 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2309 info.align_mask = 0;
2310 info.align_offset = 0;
2311 trace_android_vh_exclude_reserved_zone(mm, &info);
2312 addr = vm_unmapped_area(&info);
2313
2314 /*
2315 * A failed mmap() very likely causes application failure,
2316 * so fall back to the bottom-up function here. This scenario
2317 * can happen with large stack limits and large mmap()
2318 * allocations.
2319 */
2320 if (offset_in_page(addr)) {
2321 VM_BUG_ON(addr != -ENOMEM);
2322 info.flags = 0;
2323 info.low_limit = TASK_UNMAPPED_BASE;
2324 info.high_limit = mmap_end;
2325 addr = vm_unmapped_area(&info);
2326 }
2327
2328 trace_android_vh_include_reserved_zone(mm, &info, &addr);
2329
2330 return addr;
2331 }
2332 #endif
2333
2334 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2335 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2336 unsigned long pgoff, unsigned long flags)
2337 {
2338 unsigned long (*get_area)(struct file *, unsigned long,
2339 unsigned long, unsigned long, unsigned long);
2340
2341 unsigned long error = arch_mmap_check(addr, len, flags);
2342 if (error)
2343 return error;
2344
2345 /* Careful about overflows.. */
2346 if (len > TASK_SIZE)
2347 return -ENOMEM;
2348
2349 get_area = current->mm->get_unmapped_area;
2350 if (file) {
2351 if (file->f_op->get_unmapped_area)
2352 get_area = file->f_op->get_unmapped_area;
2353 } else if (flags & MAP_SHARED) {
2354 /*
2355 * mmap_region() will call shmem_zero_setup() to create a file,
2356 * so use shmem's get_unmapped_area in case it can be huge.
2357 * do_mmap() will clear pgoff, so match alignment.
2358 */
2359 pgoff = 0;
2360 get_area = shmem_get_unmapped_area;
2361 }
2362
2363 addr = get_area(file, addr, len, pgoff, flags);
2364 if (IS_ERR_VALUE(addr))
2365 return addr;
2366
2367 if (addr > TASK_SIZE - len)
2368 return -ENOMEM;
2369 if (offset_in_page(addr))
2370 return -EINVAL;
2371
2372 error = security_mmap_addr(addr);
2373 return error ? error : addr;
2374 }
2375
2376 EXPORT_SYMBOL(get_unmapped_area);
2377
2378 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
__find_vma(struct mm_struct * mm,unsigned long addr)2379 static struct vm_area_struct *__find_vma(struct mm_struct *mm,
2380 unsigned long addr)
2381 {
2382 struct rb_node *rb_node;
2383 struct vm_area_struct *vma = NULL;
2384
2385 rb_node = mm->mm_rb.rb_node;
2386
2387 while (rb_node) {
2388 struct vm_area_struct *tmp;
2389
2390 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2391
2392 if (tmp->vm_end > addr) {
2393 vma = tmp;
2394 if (tmp->vm_start <= addr)
2395 break;
2396 rb_node = rb_node->rb_left;
2397 } else
2398 rb_node = rb_node->rb_right;
2399 }
2400
2401 return vma;
2402 }
2403
find_vma(struct mm_struct * mm,unsigned long addr)2404 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2405 {
2406 struct vm_area_struct *vma;
2407
2408 /* Check the cache first. */
2409 vma = vmacache_find(mm, addr);
2410 if (likely(vma))
2411 return vma;
2412
2413 vma = __find_vma(mm, addr);
2414 if (vma)
2415 vmacache_update(addr, vma);
2416 return vma;
2417 }
2418 EXPORT_SYMBOL(find_vma);
2419
2420 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
get_vma(struct mm_struct * mm,unsigned long addr)2421 struct vm_area_struct *get_vma(struct mm_struct *mm, unsigned long addr)
2422 {
2423 struct vm_area_struct *vma = NULL;
2424
2425 read_lock(&mm->mm_rb_lock);
2426 vma = __find_vma(mm, addr);
2427
2428 /*
2429 * If there is a concurrent fast mremap, bail out since the entire
2430 * PMD/PUD subtree may have been remapped.
2431 *
2432 * This is usually safe for conventional mremap since it takes the
2433 * PTE locks as does SPF. However fast mremap only takes the lock
2434 * at the PMD/PUD level which is ok as it is done with the mmap
2435 * write lock held. But since SPF, as the term implies forgoes,
2436 * taking the mmap read lock and also cannot take PTL lock at the
2437 * larger PMD/PUD granualrity, since it would introduce huge
2438 * contention in the page fault path; fall back to regular fault
2439 * handling.
2440 */
2441 if (vma && !atomic_inc_unless_negative(&vma->vm_ref_count))
2442 vma = NULL;
2443 read_unlock(&mm->mm_rb_lock);
2444
2445 return vma;
2446 }
2447 #endif
2448
2449 /*
2450 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2451 */
2452 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2453 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2454 struct vm_area_struct **pprev)
2455 {
2456 struct vm_area_struct *vma;
2457
2458 vma = find_vma(mm, addr);
2459 if (vma) {
2460 *pprev = vma->vm_prev;
2461 } else {
2462 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2463
2464 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2465 }
2466 return vma;
2467 }
2468
2469 /*
2470 * Verify that the stack growth is acceptable and
2471 * update accounting. This is shared with both the
2472 * grow-up and grow-down cases.
2473 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2474 static int acct_stack_growth(struct vm_area_struct *vma,
2475 unsigned long size, unsigned long grow)
2476 {
2477 struct mm_struct *mm = vma->vm_mm;
2478 unsigned long new_start;
2479
2480 /* address space limit tests */
2481 if (!may_expand_vm(mm, vma->vm_flags, grow))
2482 return -ENOMEM;
2483
2484 /* Stack limit test */
2485 if (size > rlimit(RLIMIT_STACK))
2486 return -ENOMEM;
2487
2488 /* mlock limit tests */
2489 if (vma->vm_flags & VM_LOCKED) {
2490 unsigned long locked;
2491 unsigned long limit;
2492 locked = mm->locked_vm + grow;
2493 limit = rlimit(RLIMIT_MEMLOCK);
2494 limit >>= PAGE_SHIFT;
2495 if (locked > limit && !capable(CAP_IPC_LOCK))
2496 return -ENOMEM;
2497 }
2498
2499 /* Check to ensure the stack will not grow into a hugetlb-only region */
2500 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2501 vma->vm_end - size;
2502 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2503 return -EFAULT;
2504
2505 /*
2506 * Overcommit.. This must be the final test, as it will
2507 * update security statistics.
2508 */
2509 if (security_vm_enough_memory_mm(mm, grow))
2510 return -ENOMEM;
2511
2512 return 0;
2513 }
2514
2515 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2516 /*
2517 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2518 * vma is the last one with address > vma->vm_end. Have to extend vma.
2519 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2520 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2521 {
2522 struct mm_struct *mm = vma->vm_mm;
2523 struct vm_area_struct *next;
2524 unsigned long gap_addr;
2525 int error = 0;
2526
2527 if (!(vma->vm_flags & VM_GROWSUP))
2528 return -EFAULT;
2529
2530 /* Guard against exceeding limits of the address space. */
2531 address &= PAGE_MASK;
2532 if (address >= (TASK_SIZE & PAGE_MASK))
2533 return -ENOMEM;
2534 address += PAGE_SIZE;
2535
2536 /* Enforce stack_guard_gap */
2537 gap_addr = address + stack_guard_gap;
2538
2539 /* Guard against overflow */
2540 if (gap_addr < address || gap_addr > TASK_SIZE)
2541 gap_addr = TASK_SIZE;
2542
2543 next = vma->vm_next;
2544 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2545 if (!(next->vm_flags & VM_GROWSUP))
2546 return -ENOMEM;
2547 /* Check that both stack segments have the same anon_vma? */
2548 }
2549
2550 /* We must make sure the anon_vma is allocated. */
2551 if (unlikely(anon_vma_prepare(vma)))
2552 return -ENOMEM;
2553
2554 /*
2555 * vma->vm_start/vm_end cannot change under us because the caller
2556 * is required to hold the mmap_lock in read mode. We need the
2557 * anon_vma lock to serialize against concurrent expand_stacks.
2558 */
2559 anon_vma_lock_write(vma->anon_vma);
2560
2561 /* Somebody else might have raced and expanded it already */
2562 if (address > vma->vm_end) {
2563 unsigned long size, grow;
2564
2565 size = address - vma->vm_start;
2566 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2567
2568 error = -ENOMEM;
2569 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2570 error = acct_stack_growth(vma, size, grow);
2571 if (!error) {
2572 /*
2573 * vma_gap_update() doesn't support concurrent
2574 * updates, but we only hold a shared mmap_lock
2575 * lock here, so we need to protect against
2576 * concurrent vma expansions.
2577 * anon_vma_lock_write() doesn't help here, as
2578 * we don't guarantee that all growable vmas
2579 * in a mm share the same root anon vma.
2580 * So, we reuse mm->page_table_lock to guard
2581 * against concurrent vma expansions.
2582 */
2583 spin_lock(&mm->page_table_lock);
2584 if (vma->vm_flags & VM_LOCKED)
2585 mm->locked_vm += grow;
2586 vm_stat_account(mm, vma->vm_flags, grow);
2587 anon_vma_interval_tree_pre_update_vma(vma);
2588 vma->vm_end = address;
2589 anon_vma_interval_tree_post_update_vma(vma);
2590 if (vma->vm_next)
2591 vma_gap_update(vma->vm_next);
2592 else
2593 mm->highest_vm_end = vm_end_gap(vma);
2594 spin_unlock(&mm->page_table_lock);
2595
2596 perf_event_mmap(vma);
2597 }
2598 }
2599 }
2600 anon_vma_unlock_write(vma->anon_vma);
2601 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2602 validate_mm(mm);
2603 return error;
2604 }
2605 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2606
2607 /*
2608 * vma is the first one with address < vma->vm_start. Have to extend vma.
2609 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2610 int expand_downwards(struct vm_area_struct *vma,
2611 unsigned long address)
2612 {
2613 struct mm_struct *mm = vma->vm_mm;
2614 struct vm_area_struct *prev;
2615 int error = 0;
2616
2617 address &= PAGE_MASK;
2618 if (address < mmap_min_addr)
2619 return -EPERM;
2620
2621 /* Enforce stack_guard_gap */
2622 prev = vma->vm_prev;
2623 /* Check that both stack segments have the same anon_vma? */
2624 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2625 vma_is_accessible(prev)) {
2626 if (address - prev->vm_end < stack_guard_gap)
2627 return -ENOMEM;
2628 }
2629
2630 /* We must make sure the anon_vma is allocated. */
2631 if (unlikely(anon_vma_prepare(vma)))
2632 return -ENOMEM;
2633
2634 /*
2635 * vma->vm_start/vm_end cannot change under us because the caller
2636 * is required to hold the mmap_lock in read mode. We need the
2637 * anon_vma lock to serialize against concurrent expand_stacks.
2638 */
2639 anon_vma_lock_write(vma->anon_vma);
2640
2641 /* Somebody else might have raced and expanded it already */
2642 if (address < vma->vm_start) {
2643 unsigned long size, grow;
2644
2645 size = vma->vm_end - address;
2646 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2647
2648 error = -ENOMEM;
2649 if (grow <= vma->vm_pgoff) {
2650 error = acct_stack_growth(vma, size, grow);
2651 if (!error) {
2652 /*
2653 * vma_gap_update() doesn't support concurrent
2654 * updates, but we only hold a shared mmap_lock
2655 * lock here, so we need to protect against
2656 * concurrent vma expansions.
2657 * anon_vma_lock_write() doesn't help here, as
2658 * we don't guarantee that all growable vmas
2659 * in a mm share the same root anon vma.
2660 * So, we reuse mm->page_table_lock to guard
2661 * against concurrent vma expansions.
2662 */
2663 spin_lock(&mm->page_table_lock);
2664 if (vma->vm_flags & VM_LOCKED)
2665 mm->locked_vm += grow;
2666 vm_stat_account(mm, vma->vm_flags, grow);
2667 anon_vma_interval_tree_pre_update_vma(vma);
2668 WRITE_ONCE(vma->vm_start, address);
2669 WRITE_ONCE(vma->vm_pgoff, vma->vm_pgoff - grow);
2670 anon_vma_interval_tree_post_update_vma(vma);
2671 vma_gap_update(vma);
2672 spin_unlock(&mm->page_table_lock);
2673
2674 perf_event_mmap(vma);
2675 }
2676 }
2677 }
2678 anon_vma_unlock_write(vma->anon_vma);
2679 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2680 validate_mm(mm);
2681 return error;
2682 }
2683
2684 /* enforced gap between the expanding stack and other mappings. */
2685 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2686
cmdline_parse_stack_guard_gap(char * p)2687 static int __init cmdline_parse_stack_guard_gap(char *p)
2688 {
2689 unsigned long val;
2690 char *endptr;
2691
2692 val = simple_strtoul(p, &endptr, 10);
2693 if (!*endptr)
2694 stack_guard_gap = val << PAGE_SHIFT;
2695
2696 return 1;
2697 }
2698 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2699
2700 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2701 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2702 {
2703 return expand_upwards(vma, address);
2704 }
2705
2706 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2707 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2708 {
2709 struct vm_area_struct *vma, *prev;
2710
2711 addr &= PAGE_MASK;
2712 vma = find_vma_prev(mm, addr, &prev);
2713 if (vma && (vma->vm_start <= addr))
2714 return vma;
2715 /* don't alter vm_end if the coredump is running */
2716 if (!prev || expand_stack(prev, addr))
2717 return NULL;
2718 if (prev->vm_flags & VM_LOCKED)
2719 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2720 return prev;
2721 }
2722 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2723 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2724 {
2725 return expand_downwards(vma, address);
2726 }
2727
2728 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2729 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2730 {
2731 struct vm_area_struct *vma;
2732 unsigned long start;
2733
2734 addr &= PAGE_MASK;
2735 vma = find_vma(mm, addr);
2736 if (!vma)
2737 return NULL;
2738 if (vma->vm_start <= addr)
2739 return vma;
2740 if (!(vma->vm_flags & VM_GROWSDOWN))
2741 return NULL;
2742 start = vma->vm_start;
2743 if (expand_stack(vma, addr))
2744 return NULL;
2745 if (vma->vm_flags & VM_LOCKED)
2746 populate_vma_page_range(vma, addr, start, NULL);
2747 return vma;
2748 }
2749 #endif
2750
2751 EXPORT_SYMBOL_GPL(find_extend_vma);
2752
2753 /*
2754 * Ok - we have the memory areas we should free on the vma list,
2755 * so release them, and do the vma updates.
2756 *
2757 * Called with the mm semaphore held.
2758 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2759 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2760 {
2761 unsigned long nr_accounted = 0;
2762
2763 /* Update high watermark before we lower total_vm */
2764 update_hiwater_vm(mm);
2765 do {
2766 long nrpages = vma_pages(vma);
2767
2768 if (vma->vm_flags & VM_ACCOUNT)
2769 nr_accounted += nrpages;
2770 vm_stat_account(mm, vma->vm_flags, -nrpages);
2771 vma = remove_vma(vma);
2772 } while (vma);
2773 vm_unacct_memory(nr_accounted);
2774 validate_mm(mm);
2775 }
2776
2777 /*
2778 * Get rid of page table information in the indicated region.
2779 *
2780 * Called with the mm semaphore held.
2781 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2782 static void unmap_region(struct mm_struct *mm,
2783 struct vm_area_struct *vma, struct vm_area_struct *prev,
2784 unsigned long start, unsigned long end)
2785 {
2786 struct vm_area_struct *next = vma_next(mm, prev);
2787 struct mmu_gather tlb;
2788 struct vm_area_struct *cur_vma;
2789
2790 lru_add_drain();
2791 tlb_gather_mmu(&tlb, mm, start, end);
2792 update_hiwater_rss(mm);
2793 unmap_vmas(&tlb, vma, start, end);
2794
2795 /*
2796 * Ensure we have no stale TLB entries by the time this mapping is
2797 * removed from the rmap.
2798 * Note that we don't have to worry about nested flushes here because
2799 * we're holding the mm semaphore for removing the mapping - so any
2800 * concurrent flush in this region has to be coming through the rmap,
2801 * and we synchronize against that using the rmap lock.
2802 */
2803 for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2804 if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2805 tlb_flush_mmu(&tlb);
2806 break;
2807 }
2808 }
2809
2810 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2811 next ? next->vm_start : USER_PGTABLES_CEILING);
2812 tlb_finish_mmu(&tlb, start, end);
2813 }
2814
2815 /*
2816 * Create a list of vma's touched by the unmap, removing them from the mm's
2817 * vma list as we go..
2818 */
2819 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2820 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2821 struct vm_area_struct *prev, unsigned long end)
2822 {
2823 struct vm_area_struct **insertion_point;
2824 struct vm_area_struct *tail_vma = NULL;
2825
2826 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2827 vma->vm_prev = NULL;
2828 do {
2829 vma_rb_erase(vma, mm);
2830 mm->map_count--;
2831 tail_vma = vma;
2832 vma = vma->vm_next;
2833 } while (vma && vma->vm_start < end);
2834 *insertion_point = vma;
2835 if (vma) {
2836 vma->vm_prev = prev;
2837 vma_gap_update(vma);
2838 } else
2839 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2840 tail_vma->vm_next = NULL;
2841
2842 /* Kill the cache */
2843 vmacache_invalidate(mm);
2844
2845 /*
2846 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2847 * VM_GROWSUP VMA. Such VMAs can change their size under
2848 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2849 */
2850 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2851 return false;
2852 if (prev && (prev->vm_flags & VM_GROWSUP))
2853 return false;
2854 return true;
2855 }
2856
2857 /*
2858 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2859 * has already been checked or doesn't make sense to fail.
2860 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2861 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2862 unsigned long addr, int new_below)
2863 {
2864 struct vm_area_struct *new;
2865 int err;
2866
2867 if (vma->vm_ops && vma->vm_ops->split) {
2868 err = vma->vm_ops->split(vma, addr);
2869 if (err)
2870 return err;
2871 }
2872
2873 new = vm_area_dup(vma);
2874 if (!new)
2875 return -ENOMEM;
2876
2877 if (new_below)
2878 new->vm_end = addr;
2879 else {
2880 new->vm_start = addr;
2881 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2882 }
2883
2884 err = vma_dup_policy(vma, new);
2885 if (err)
2886 goto out_free_vma;
2887
2888 err = anon_vma_clone(new, vma);
2889 if (err)
2890 goto out_free_mpol;
2891
2892 if (new->vm_file)
2893 get_file(new->vm_file);
2894
2895 if (new->vm_ops && new->vm_ops->open)
2896 new->vm_ops->open(new);
2897
2898 if (new_below)
2899 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2900 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2901 else
2902 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2903
2904 /* Success. */
2905 if (!err)
2906 return 0;
2907
2908 /* Clean everything up if vma_adjust failed. */
2909 if (new->vm_ops && new->vm_ops->close)
2910 new->vm_ops->close(new);
2911 if (new->vm_file)
2912 fput(new->vm_file);
2913 unlink_anon_vmas(new);
2914 out_free_mpol:
2915 mpol_put(vma_policy(new));
2916 out_free_vma:
2917 vm_area_free(new);
2918 return err;
2919 }
2920
2921 /*
2922 * Split a vma into two pieces at address 'addr', a new vma is allocated
2923 * either for the first part or the tail.
2924 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2925 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2926 unsigned long addr, int new_below)
2927 {
2928 if (mm->map_count >= sysctl_max_map_count)
2929 return -ENOMEM;
2930
2931 return __split_vma(mm, vma, addr, new_below);
2932 }
2933
2934 /* Munmap is split into 2 main parts -- this part which finds
2935 * what needs doing, and the areas themselves, which do the
2936 * work. This now handles partial unmappings.
2937 * Jeremy Fitzhardinge <jeremy@goop.org>
2938 */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2939 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2940 struct list_head *uf, bool downgrade)
2941 {
2942 unsigned long end;
2943 struct vm_area_struct *vma, *prev, *last;
2944
2945 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2946 return -EINVAL;
2947
2948 len = PAGE_ALIGN(len);
2949 end = start + len;
2950 if (len == 0)
2951 return -EINVAL;
2952
2953 /*
2954 * arch_unmap() might do unmaps itself. It must be called
2955 * and finish any rbtree manipulation before this code
2956 * runs and also starts to manipulate the rbtree.
2957 */
2958 arch_unmap(mm, start, end);
2959
2960 /* Find the first overlapping VMA */
2961 vma = find_vma(mm, start);
2962 if (!vma)
2963 return 0;
2964 prev = vma->vm_prev;
2965 /* we have start < vma->vm_end */
2966
2967 /* if it doesn't overlap, we have nothing.. */
2968 if (vma->vm_start >= end)
2969 return 0;
2970
2971 /*
2972 * If we need to split any vma, do it now to save pain later.
2973 *
2974 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2975 * unmapped vm_area_struct will remain in use: so lower split_vma
2976 * places tmp vma above, and higher split_vma places tmp vma below.
2977 */
2978 if (start > vma->vm_start) {
2979 int error;
2980
2981 /*
2982 * Make sure that map_count on return from munmap() will
2983 * not exceed its limit; but let map_count go just above
2984 * its limit temporarily, to help free resources as expected.
2985 */
2986 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2987 return -ENOMEM;
2988
2989 error = __split_vma(mm, vma, start, 0);
2990 if (error)
2991 return error;
2992 prev = vma;
2993 }
2994
2995 /* Does it split the last one? */
2996 last = find_vma(mm, end);
2997 if (last && end > last->vm_start) {
2998 int error = __split_vma(mm, last, end, 1);
2999 if (error)
3000 return error;
3001 }
3002 vma = vma_next(mm, prev);
3003
3004 if (unlikely(uf)) {
3005 /*
3006 * If userfaultfd_unmap_prep returns an error the vmas
3007 * will remain splitted, but userland will get a
3008 * highly unexpected error anyway. This is no
3009 * different than the case where the first of the two
3010 * __split_vma fails, but we don't undo the first
3011 * split, despite we could. This is unlikely enough
3012 * failure that it's not worth optimizing it for.
3013 */
3014 int error = userfaultfd_unmap_prep(vma, start, end, uf);
3015 if (error)
3016 return error;
3017 }
3018
3019 /*
3020 * unlock any mlock()ed ranges before detaching vmas
3021 */
3022 if (mm->locked_vm) {
3023 struct vm_area_struct *tmp = vma;
3024 while (tmp && tmp->vm_start < end) {
3025 if (tmp->vm_flags & VM_LOCKED) {
3026 mm->locked_vm -= vma_pages(tmp);
3027 munlock_vma_pages_all(tmp);
3028 }
3029
3030 tmp = tmp->vm_next;
3031 }
3032 }
3033
3034 /* Detach vmas from rbtree */
3035 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
3036 downgrade = false;
3037
3038 if (downgrade)
3039 mmap_write_downgrade(mm);
3040
3041 unmap_region(mm, vma, prev, start, end);
3042
3043 /* Fix up all other VM information */
3044 remove_vma_list(mm, vma);
3045
3046 return downgrade ? 1 : 0;
3047 }
3048
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)3049 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
3050 struct list_head *uf)
3051 {
3052 return __do_munmap(mm, start, len, uf, false);
3053 }
3054
__vm_munmap(unsigned long start,size_t len,bool downgrade)3055 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
3056 {
3057 int ret;
3058 struct mm_struct *mm = current->mm;
3059 LIST_HEAD(uf);
3060
3061 if (mmap_write_lock_killable(mm))
3062 return -EINTR;
3063
3064 ret = __do_munmap(mm, start, len, &uf, downgrade);
3065 /*
3066 * Returning 1 indicates mmap_lock is downgraded.
3067 * But 1 is not legal return value of vm_munmap() and munmap(), reset
3068 * it to 0 before return.
3069 */
3070 if (ret == 1) {
3071 mmap_read_unlock(mm);
3072 ret = 0;
3073 } else
3074 mmap_write_unlock(mm);
3075
3076 userfaultfd_unmap_complete(mm, &uf);
3077 return ret;
3078 }
3079
vm_munmap(unsigned long start,size_t len)3080 int vm_munmap(unsigned long start, size_t len)
3081 {
3082 return __vm_munmap(start, len, false);
3083 }
3084 EXPORT_SYMBOL(vm_munmap);
3085
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)3086 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3087 {
3088 addr = untagged_addr(addr);
3089 profile_munmap(addr);
3090 return __vm_munmap(addr, len, true);
3091 }
3092
3093
3094 /*
3095 * Emulation of deprecated remap_file_pages() syscall.
3096 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)3097 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3098 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3099 {
3100
3101 struct mm_struct *mm = current->mm;
3102 struct vm_area_struct *vma;
3103 unsigned long populate = 0;
3104 unsigned long ret = -EINVAL;
3105 struct file *file;
3106
3107 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
3108 current->comm, current->pid);
3109
3110 if (prot)
3111 return ret;
3112 start = start & PAGE_MASK;
3113 size = size & PAGE_MASK;
3114
3115 if (start + size <= start)
3116 return ret;
3117
3118 /* Does pgoff wrap? */
3119 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3120 return ret;
3121
3122 if (mmap_write_lock_killable(mm))
3123 return -EINTR;
3124
3125 vma = find_vma(mm, start);
3126
3127 if (!vma || !(vma->vm_flags & VM_SHARED))
3128 goto out;
3129
3130 if (start < vma->vm_start)
3131 goto out;
3132
3133 if (start + size > vma->vm_end) {
3134 struct vm_area_struct *next;
3135
3136 for (next = vma->vm_next; next; next = next->vm_next) {
3137 /* hole between vmas ? */
3138 if (next->vm_start != next->vm_prev->vm_end)
3139 goto out;
3140
3141 if (next->vm_file != vma->vm_file)
3142 goto out;
3143
3144 if (next->vm_flags != vma->vm_flags)
3145 goto out;
3146
3147 if (start + size <= next->vm_end)
3148 break;
3149 }
3150
3151 if (!next)
3152 goto out;
3153 }
3154
3155 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3156 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3157 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3158
3159 flags &= MAP_NONBLOCK;
3160 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3161 if (vma->vm_flags & VM_LOCKED) {
3162 struct vm_area_struct *tmp;
3163 flags |= MAP_LOCKED;
3164
3165 /* drop PG_Mlocked flag for over-mapped range */
3166 for (tmp = vma; tmp->vm_start >= start + size;
3167 tmp = tmp->vm_next) {
3168 /*
3169 * Split pmd and munlock page on the border
3170 * of the range.
3171 */
3172 vma_adjust_trans_huge(tmp, start, start + size, 0);
3173
3174 munlock_vma_pages_range(tmp,
3175 max(tmp->vm_start, start),
3176 min(tmp->vm_end, start + size));
3177 }
3178 }
3179
3180 file = get_file(vma->vm_file);
3181 ret = do_mmap(vma->vm_file, start, size,
3182 prot, flags, pgoff, &populate, NULL);
3183 fput(file);
3184 out:
3185 mmap_write_unlock(mm);
3186 if (populate)
3187 mm_populate(ret, populate);
3188 if (!IS_ERR_VALUE(ret))
3189 ret = 0;
3190 return ret;
3191 }
3192
3193 /*
3194 * this is really a simplified "do_mmap". it only handles
3195 * anonymous maps. eventually we may be able to do some
3196 * brk-specific accounting here.
3197 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3198 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3199 {
3200 struct mm_struct *mm = current->mm;
3201 struct vm_area_struct *vma, *prev;
3202 struct rb_node **rb_link, *rb_parent;
3203 pgoff_t pgoff = addr >> PAGE_SHIFT;
3204 int error;
3205 unsigned long mapped_addr;
3206
3207 /* Until we need other flags, refuse anything except VM_EXEC. */
3208 if ((flags & (~VM_EXEC)) != 0)
3209 return -EINVAL;
3210 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3211
3212 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3213 if (IS_ERR_VALUE(mapped_addr))
3214 return mapped_addr;
3215
3216 error = mlock_future_check(mm, mm->def_flags, len);
3217 if (error)
3218 return error;
3219
3220 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3221 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3222 return -ENOMEM;
3223
3224 /* Check against address space limits *after* clearing old maps... */
3225 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3226 return -ENOMEM;
3227
3228 if (mm->map_count > sysctl_max_map_count)
3229 return -ENOMEM;
3230
3231 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3232 return -ENOMEM;
3233
3234 /* Can we just expand an old private anonymous mapping? */
3235 vma = vma_merge(mm, prev, addr, addr + len, flags,
3236 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3237 if (vma)
3238 goto out;
3239
3240 /*
3241 * create a vma struct for an anonymous mapping
3242 */
3243 vma = vm_area_alloc(mm);
3244 if (!vma) {
3245 vm_unacct_memory(len >> PAGE_SHIFT);
3246 return -ENOMEM;
3247 }
3248
3249 vma_set_anonymous(vma);
3250 vma->vm_start = addr;
3251 vma->vm_end = addr + len;
3252 vma->vm_pgoff = pgoff;
3253 vma->vm_flags = flags;
3254 vma->vm_page_prot = vm_get_page_prot(flags);
3255 vma_link(mm, vma, prev, rb_link, rb_parent);
3256 out:
3257 perf_event_mmap(vma);
3258 mm->total_vm += len >> PAGE_SHIFT;
3259 mm->data_vm += len >> PAGE_SHIFT;
3260 if (flags & VM_LOCKED)
3261 mm->locked_vm += (len >> PAGE_SHIFT);
3262 vma->vm_flags |= VM_SOFTDIRTY;
3263 return 0;
3264 }
3265
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3266 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3267 {
3268 struct mm_struct *mm = current->mm;
3269 unsigned long len;
3270 int ret;
3271 bool populate;
3272 LIST_HEAD(uf);
3273
3274 len = PAGE_ALIGN(request);
3275 if (len < request)
3276 return -ENOMEM;
3277 if (!len)
3278 return 0;
3279
3280 if (mmap_write_lock_killable(mm))
3281 return -EINTR;
3282
3283 ret = do_brk_flags(addr, len, flags, &uf);
3284 populate = ((mm->def_flags & VM_LOCKED) != 0);
3285 mmap_write_unlock(mm);
3286 userfaultfd_unmap_complete(mm, &uf);
3287 if (populate && !ret)
3288 mm_populate(addr, len);
3289 return ret;
3290 }
3291 EXPORT_SYMBOL(vm_brk_flags);
3292
vm_brk(unsigned long addr,unsigned long len)3293 int vm_brk(unsigned long addr, unsigned long len)
3294 {
3295 return vm_brk_flags(addr, len, 0);
3296 }
3297 EXPORT_SYMBOL(vm_brk);
3298
3299 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3300 void exit_mmap(struct mm_struct *mm)
3301 {
3302 struct mmu_gather tlb;
3303 struct vm_area_struct *vma;
3304 unsigned long nr_accounted = 0;
3305
3306 /* mm's last user has gone, and its about to be pulled down */
3307 mmu_notifier_release(mm);
3308
3309 if (unlikely(mm_is_oom_victim(mm))) {
3310 /*
3311 * Manually reap the mm to free as much memory as possible.
3312 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3313 * this mm from further consideration. Taking mm->mmap_lock for
3314 * write after setting MMF_OOM_SKIP will guarantee that the oom
3315 * reaper will not run on this mm again after mmap_lock is
3316 * dropped.
3317 *
3318 * Nothing can be holding mm->mmap_lock here and the above call
3319 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3320 * __oom_reap_task_mm() will not block.
3321 *
3322 * This needs to be done before calling munlock_vma_pages_all(),
3323 * which clears VM_LOCKED, otherwise the oom reaper cannot
3324 * reliably test it.
3325 */
3326 (void)__oom_reap_task_mm(mm);
3327
3328 set_bit(MMF_OOM_SKIP, &mm->flags);
3329 }
3330
3331 mmap_write_lock(mm);
3332 if (mm->locked_vm) {
3333 vma = mm->mmap;
3334 while (vma) {
3335 if (vma->vm_flags & VM_LOCKED)
3336 munlock_vma_pages_all(vma);
3337 vma = vma->vm_next;
3338 }
3339 }
3340
3341 arch_exit_mmap(mm);
3342
3343 vma = mm->mmap;
3344 if (!vma) {
3345 /* Can happen if dup_mmap() received an OOM */
3346 mmap_write_unlock(mm);
3347 return;
3348 }
3349
3350 lru_add_drain();
3351 flush_cache_mm(mm);
3352 tlb_gather_mmu(&tlb, mm, 0, -1);
3353 /* update_hiwater_rss(mm) here? but nobody should be looking */
3354 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3355 unmap_vmas(&tlb, vma, 0, -1);
3356 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3357 tlb_finish_mmu(&tlb, 0, -1);
3358
3359 /* Walk the list again, actually closing and freeing it. */
3360 while (vma) {
3361 if (vma->vm_flags & VM_ACCOUNT)
3362 nr_accounted += vma_pages(vma);
3363 vma = remove_vma(vma);
3364 cond_resched();
3365 }
3366 mm->mmap = NULL;
3367 mmap_write_unlock(mm);
3368 vm_unacct_memory(nr_accounted);
3369 }
3370
3371 /* Insert vm structure into process list sorted by address
3372 * and into the inode's i_mmap tree. If vm_file is non-NULL
3373 * then i_mmap_rwsem is taken here.
3374 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3375 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3376 {
3377 struct vm_area_struct *prev;
3378 struct rb_node **rb_link, *rb_parent;
3379
3380 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3381 &prev, &rb_link, &rb_parent))
3382 return -ENOMEM;
3383 if ((vma->vm_flags & VM_ACCOUNT) &&
3384 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3385 return -ENOMEM;
3386
3387 /*
3388 * The vm_pgoff of a purely anonymous vma should be irrelevant
3389 * until its first write fault, when page's anon_vma and index
3390 * are set. But now set the vm_pgoff it will almost certainly
3391 * end up with (unless mremap moves it elsewhere before that
3392 * first wfault), so /proc/pid/maps tells a consistent story.
3393 *
3394 * By setting it to reflect the virtual start address of the
3395 * vma, merges and splits can happen in a seamless way, just
3396 * using the existing file pgoff checks and manipulations.
3397 * Similarly in do_mmap and in do_brk_flags.
3398 */
3399 if (vma_is_anonymous(vma)) {
3400 BUG_ON(vma->anon_vma);
3401 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3402 }
3403
3404 vma_link(mm, vma, prev, rb_link, rb_parent);
3405 return 0;
3406 }
3407
3408 /*
3409 * Copy the vma structure to a new location in the same mm,
3410 * prior to moving page table entries, to effect an mremap move.
3411 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3412 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3413 unsigned long addr, unsigned long len, pgoff_t pgoff,
3414 bool *need_rmap_locks)
3415 {
3416 struct vm_area_struct *vma = *vmap;
3417 unsigned long vma_start = vma->vm_start;
3418 struct mm_struct *mm = vma->vm_mm;
3419 struct vm_area_struct *new_vma, *prev;
3420 struct rb_node **rb_link, *rb_parent;
3421 bool faulted_in_anon_vma = true;
3422
3423 /*
3424 * If anonymous vma has not yet been faulted, update new pgoff
3425 * to match new location, to increase its chance of merging.
3426 */
3427 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3428 pgoff = addr >> PAGE_SHIFT;
3429 faulted_in_anon_vma = false;
3430 }
3431
3432 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3433 return NULL; /* should never get here */
3434
3435 /* There is 3 cases to manage here in
3436 * AAAA AAAA AAAA AAAA
3437 * PPPP.... PPPP......NNNN PPPP....NNNN PP........NN
3438 * PPPPPPPP(A) PPPP..NNNNNNNN(B) PPPPPPPPPPPP(1) NULL
3439 * PPPPPPPPNNNN(2)
3440 * PPPPNNNNNNNN(3)
3441 *
3442 * new_vma == prev in case A,1,2
3443 * new_vma == next in case B,3
3444 */
3445 new_vma = __vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3446 vma->anon_vma, vma->vm_file, pgoff,
3447 vma_policy(vma), vma->vm_userfaultfd_ctx,
3448 vma_get_anon_name(vma), true);
3449 if (new_vma) {
3450 /*
3451 * Source vma may have been merged into new_vma
3452 */
3453 if (unlikely(vma_start >= new_vma->vm_start &&
3454 vma_start < new_vma->vm_end)) {
3455 /*
3456 * The only way we can get a vma_merge with
3457 * self during an mremap is if the vma hasn't
3458 * been faulted in yet and we were allowed to
3459 * reset the dst vma->vm_pgoff to the
3460 * destination address of the mremap to allow
3461 * the merge to happen. mremap must change the
3462 * vm_pgoff linearity between src and dst vmas
3463 * (in turn preventing a vma_merge) to be
3464 * safe. It is only safe to keep the vm_pgoff
3465 * linear if there are no pages mapped yet.
3466 */
3467 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3468 *vmap = vma = new_vma;
3469 }
3470 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3471 } else {
3472 new_vma = vm_area_dup(vma);
3473 if (!new_vma)
3474 goto out;
3475 new_vma->vm_start = addr;
3476 new_vma->vm_end = addr + len;
3477 new_vma->vm_pgoff = pgoff;
3478 if (vma_dup_policy(vma, new_vma))
3479 goto out_free_vma;
3480 if (anon_vma_clone(new_vma, vma))
3481 goto out_free_mempol;
3482 if (new_vma->vm_file)
3483 get_file(new_vma->vm_file);
3484 if (new_vma->vm_ops && new_vma->vm_ops->open)
3485 new_vma->vm_ops->open(new_vma);
3486 /*
3487 * As the VMA is linked right now, it may be hit by the
3488 * speculative page fault handler. But we don't want it to
3489 * to start mapping page in this area until the caller has
3490 * potentially move the pte from the moved VMA. To prevent
3491 * that we protect it right now, and let the caller unprotect
3492 * it once the move is done.
3493 */
3494 vm_write_begin(new_vma);
3495 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3496 *need_rmap_locks = false;
3497 }
3498 return new_vma;
3499
3500 out_free_mempol:
3501 mpol_put(vma_policy(new_vma));
3502 out_free_vma:
3503 vm_area_free(new_vma);
3504 out:
3505 return NULL;
3506 }
3507
3508 /*
3509 * Return true if the calling process may expand its vm space by the passed
3510 * number of pages
3511 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3512 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3513 {
3514 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3515 return false;
3516
3517 if (is_data_mapping(flags) &&
3518 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3519 /* Workaround for Valgrind */
3520 if (rlimit(RLIMIT_DATA) == 0 &&
3521 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3522 return true;
3523
3524 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3525 current->comm, current->pid,
3526 (mm->data_vm + npages) << PAGE_SHIFT,
3527 rlimit(RLIMIT_DATA),
3528 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3529
3530 if (!ignore_rlimit_data)
3531 return false;
3532 }
3533
3534 return true;
3535 }
3536
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3537 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3538 {
3539 mm->total_vm += npages;
3540
3541 if (is_exec_mapping(flags))
3542 mm->exec_vm += npages;
3543 else if (is_stack_mapping(flags))
3544 mm->stack_vm += npages;
3545 else if (is_data_mapping(flags))
3546 mm->data_vm += npages;
3547 }
3548
3549 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3550
3551 /*
3552 * Having a close hook prevents vma merging regardless of flags.
3553 */
special_mapping_close(struct vm_area_struct * vma)3554 static void special_mapping_close(struct vm_area_struct *vma)
3555 {
3556 }
3557
special_mapping_name(struct vm_area_struct * vma)3558 static const char *special_mapping_name(struct vm_area_struct *vma)
3559 {
3560 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3561 }
3562
special_mapping_mremap(struct vm_area_struct * new_vma)3563 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3564 {
3565 struct vm_special_mapping *sm = new_vma->vm_private_data;
3566
3567 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3568 return -EFAULT;
3569
3570 if (sm->mremap)
3571 return sm->mremap(sm, new_vma);
3572
3573 return 0;
3574 }
3575
3576 static const struct vm_operations_struct special_mapping_vmops = {
3577 .close = special_mapping_close,
3578 .fault = special_mapping_fault,
3579 .mremap = special_mapping_mremap,
3580 .name = special_mapping_name,
3581 /* vDSO code relies that VVAR can't be accessed remotely */
3582 .access = NULL,
3583 };
3584
3585 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3586 .close = special_mapping_close,
3587 .fault = special_mapping_fault,
3588 };
3589
special_mapping_fault(struct vm_fault * vmf)3590 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3591 {
3592 struct vm_area_struct *vma = vmf->vma;
3593 pgoff_t pgoff;
3594 struct page **pages;
3595
3596 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3597 pages = vma->vm_private_data;
3598 } else {
3599 struct vm_special_mapping *sm = vma->vm_private_data;
3600
3601 if (sm->fault)
3602 return sm->fault(sm, vmf->vma, vmf);
3603
3604 pages = sm->pages;
3605 }
3606
3607 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3608 pgoff--;
3609
3610 if (*pages) {
3611 struct page *page = *pages;
3612 get_page(page);
3613 vmf->page = page;
3614 return 0;
3615 }
3616
3617 return VM_FAULT_SIGBUS;
3618 }
3619
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3620 static struct vm_area_struct *__install_special_mapping(
3621 struct mm_struct *mm,
3622 unsigned long addr, unsigned long len,
3623 unsigned long vm_flags, void *priv,
3624 const struct vm_operations_struct *ops)
3625 {
3626 int ret;
3627 struct vm_area_struct *vma;
3628
3629 vma = vm_area_alloc(mm);
3630 if (unlikely(vma == NULL))
3631 return ERR_PTR(-ENOMEM);
3632
3633 vma->vm_start = addr;
3634 vma->vm_end = addr + len;
3635
3636 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3637 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3638
3639 vma->vm_ops = ops;
3640 vma->vm_private_data = priv;
3641
3642 ret = insert_vm_struct(mm, vma);
3643 if (ret)
3644 goto out;
3645
3646 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3647
3648 perf_event_mmap(vma);
3649
3650 return vma;
3651
3652 out:
3653 vm_area_free(vma);
3654 return ERR_PTR(ret);
3655 }
3656
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3657 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3658 const struct vm_special_mapping *sm)
3659 {
3660 return vma->vm_private_data == sm &&
3661 (vma->vm_ops == &special_mapping_vmops ||
3662 vma->vm_ops == &legacy_special_mapping_vmops);
3663 }
3664
3665 /*
3666 * Called with mm->mmap_lock held for writing.
3667 * Insert a new vma covering the given region, with the given flags.
3668 * Its pages are supplied by the given array of struct page *.
3669 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3670 * The region past the last page supplied will always produce SIGBUS.
3671 * The array pointer and the pages it points to are assumed to stay alive
3672 * for as long as this mapping might exist.
3673 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3674 struct vm_area_struct *_install_special_mapping(
3675 struct mm_struct *mm,
3676 unsigned long addr, unsigned long len,
3677 unsigned long vm_flags, const struct vm_special_mapping *spec)
3678 {
3679 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3680 &special_mapping_vmops);
3681 }
3682
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3683 int install_special_mapping(struct mm_struct *mm,
3684 unsigned long addr, unsigned long len,
3685 unsigned long vm_flags, struct page **pages)
3686 {
3687 struct vm_area_struct *vma = __install_special_mapping(
3688 mm, addr, len, vm_flags, (void *)pages,
3689 &legacy_special_mapping_vmops);
3690
3691 return PTR_ERR_OR_ZERO(vma);
3692 }
3693
3694 static DEFINE_MUTEX(mm_all_locks_mutex);
3695
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3696 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3697 {
3698 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3699 /*
3700 * The LSB of head.next can't change from under us
3701 * because we hold the mm_all_locks_mutex.
3702 */
3703 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3704 /*
3705 * We can safely modify head.next after taking the
3706 * anon_vma->root->rwsem. If some other vma in this mm shares
3707 * the same anon_vma we won't take it again.
3708 *
3709 * No need of atomic instructions here, head.next
3710 * can't change from under us thanks to the
3711 * anon_vma->root->rwsem.
3712 */
3713 if (__test_and_set_bit(0, (unsigned long *)
3714 &anon_vma->root->rb_root.rb_root.rb_node))
3715 BUG();
3716 }
3717 }
3718
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3719 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3720 {
3721 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3722 /*
3723 * AS_MM_ALL_LOCKS can't change from under us because
3724 * we hold the mm_all_locks_mutex.
3725 *
3726 * Operations on ->flags have to be atomic because
3727 * even if AS_MM_ALL_LOCKS is stable thanks to the
3728 * mm_all_locks_mutex, there may be other cpus
3729 * changing other bitflags in parallel to us.
3730 */
3731 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3732 BUG();
3733 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3734 }
3735 }
3736
3737 /*
3738 * This operation locks against the VM for all pte/vma/mm related
3739 * operations that could ever happen on a certain mm. This includes
3740 * vmtruncate, try_to_unmap, and all page faults.
3741 *
3742 * The caller must take the mmap_lock in write mode before calling
3743 * mm_take_all_locks(). The caller isn't allowed to release the
3744 * mmap_lock until mm_drop_all_locks() returns.
3745 *
3746 * mmap_lock in write mode is required in order to block all operations
3747 * that could modify pagetables and free pages without need of
3748 * altering the vma layout. It's also needed in write mode to avoid new
3749 * anon_vmas to be associated with existing vmas.
3750 *
3751 * A single task can't take more than one mm_take_all_locks() in a row
3752 * or it would deadlock.
3753 *
3754 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3755 * mapping->flags avoid to take the same lock twice, if more than one
3756 * vma in this mm is backed by the same anon_vma or address_space.
3757 *
3758 * We take locks in following order, accordingly to comment at beginning
3759 * of mm/rmap.c:
3760 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3761 * hugetlb mapping);
3762 * - all i_mmap_rwsem locks;
3763 * - all anon_vma->rwseml
3764 *
3765 * We can take all locks within these types randomly because the VM code
3766 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3767 * mm_all_locks_mutex.
3768 *
3769 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3770 * that may have to take thousand of locks.
3771 *
3772 * mm_take_all_locks() can fail if it's interrupted by signals.
3773 */
mm_take_all_locks(struct mm_struct * mm)3774 int mm_take_all_locks(struct mm_struct *mm)
3775 {
3776 struct vm_area_struct *vma;
3777 struct anon_vma_chain *avc;
3778
3779 BUG_ON(mmap_read_trylock(mm));
3780
3781 mutex_lock(&mm_all_locks_mutex);
3782
3783 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3784 if (signal_pending(current))
3785 goto out_unlock;
3786 if (vma->vm_file && vma->vm_file->f_mapping &&
3787 is_vm_hugetlb_page(vma))
3788 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3789 }
3790
3791 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3792 if (signal_pending(current))
3793 goto out_unlock;
3794 if (vma->vm_file && vma->vm_file->f_mapping &&
3795 !is_vm_hugetlb_page(vma))
3796 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3797 }
3798
3799 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3800 if (signal_pending(current))
3801 goto out_unlock;
3802 if (vma->anon_vma)
3803 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3804 vm_lock_anon_vma(mm, avc->anon_vma);
3805 }
3806
3807 return 0;
3808
3809 out_unlock:
3810 mm_drop_all_locks(mm);
3811 return -EINTR;
3812 }
3813
vm_unlock_anon_vma(struct anon_vma * anon_vma)3814 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3815 {
3816 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3817 /*
3818 * The LSB of head.next can't change to 0 from under
3819 * us because we hold the mm_all_locks_mutex.
3820 *
3821 * We must however clear the bitflag before unlocking
3822 * the vma so the users using the anon_vma->rb_root will
3823 * never see our bitflag.
3824 *
3825 * No need of atomic instructions here, head.next
3826 * can't change from under us until we release the
3827 * anon_vma->root->rwsem.
3828 */
3829 if (!__test_and_clear_bit(0, (unsigned long *)
3830 &anon_vma->root->rb_root.rb_root.rb_node))
3831 BUG();
3832 anon_vma_unlock_write(anon_vma);
3833 }
3834 }
3835
vm_unlock_mapping(struct address_space * mapping)3836 static void vm_unlock_mapping(struct address_space *mapping)
3837 {
3838 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3839 /*
3840 * AS_MM_ALL_LOCKS can't change to 0 from under us
3841 * because we hold the mm_all_locks_mutex.
3842 */
3843 i_mmap_unlock_write(mapping);
3844 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3845 &mapping->flags))
3846 BUG();
3847 }
3848 }
3849
3850 /*
3851 * The mmap_lock cannot be released by the caller until
3852 * mm_drop_all_locks() returns.
3853 */
mm_drop_all_locks(struct mm_struct * mm)3854 void mm_drop_all_locks(struct mm_struct *mm)
3855 {
3856 struct vm_area_struct *vma;
3857 struct anon_vma_chain *avc;
3858
3859 BUG_ON(mmap_read_trylock(mm));
3860 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3861
3862 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3863 if (vma->anon_vma)
3864 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3865 vm_unlock_anon_vma(avc->anon_vma);
3866 if (vma->vm_file && vma->vm_file->f_mapping)
3867 vm_unlock_mapping(vma->vm_file->f_mapping);
3868 }
3869
3870 mutex_unlock(&mm_all_locks_mutex);
3871 }
3872
3873 /*
3874 * initialise the percpu counter for VM
3875 */
mmap_init(void)3876 void __init mmap_init(void)
3877 {
3878 int ret;
3879
3880 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3881 VM_BUG_ON(ret);
3882 }
3883
3884 /*
3885 * Initialise sysctl_user_reserve_kbytes.
3886 *
3887 * This is intended to prevent a user from starting a single memory hogging
3888 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3889 * mode.
3890 *
3891 * The default value is min(3% of free memory, 128MB)
3892 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3893 */
init_user_reserve(void)3894 static int init_user_reserve(void)
3895 {
3896 unsigned long free_kbytes;
3897
3898 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3899
3900 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3901 return 0;
3902 }
3903 subsys_initcall(init_user_reserve);
3904
3905 /*
3906 * Initialise sysctl_admin_reserve_kbytes.
3907 *
3908 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3909 * to log in and kill a memory hogging process.
3910 *
3911 * Systems with more than 256MB will reserve 8MB, enough to recover
3912 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3913 * only reserve 3% of free pages by default.
3914 */
init_admin_reserve(void)3915 static int init_admin_reserve(void)
3916 {
3917 unsigned long free_kbytes;
3918
3919 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3920
3921 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3922 return 0;
3923 }
3924 subsys_initcall(init_admin_reserve);
3925
3926 /*
3927 * Reinititalise user and admin reserves if memory is added or removed.
3928 *
3929 * The default user reserve max is 128MB, and the default max for the
3930 * admin reserve is 8MB. These are usually, but not always, enough to
3931 * enable recovery from a memory hogging process using login/sshd, a shell,
3932 * and tools like top. It may make sense to increase or even disable the
3933 * reserve depending on the existence of swap or variations in the recovery
3934 * tools. So, the admin may have changed them.
3935 *
3936 * If memory is added and the reserves have been eliminated or increased above
3937 * the default max, then we'll trust the admin.
3938 *
3939 * If memory is removed and there isn't enough free memory, then we
3940 * need to reset the reserves.
3941 *
3942 * Otherwise keep the reserve set by the admin.
3943 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3944 static int reserve_mem_notifier(struct notifier_block *nb,
3945 unsigned long action, void *data)
3946 {
3947 unsigned long tmp, free_kbytes;
3948
3949 switch (action) {
3950 case MEM_ONLINE:
3951 /* Default max is 128MB. Leave alone if modified by operator. */
3952 tmp = sysctl_user_reserve_kbytes;
3953 if (0 < tmp && tmp < (1UL << 17))
3954 init_user_reserve();
3955
3956 /* Default max is 8MB. Leave alone if modified by operator. */
3957 tmp = sysctl_admin_reserve_kbytes;
3958 if (0 < tmp && tmp < (1UL << 13))
3959 init_admin_reserve();
3960
3961 break;
3962 case MEM_OFFLINE:
3963 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3964
3965 if (sysctl_user_reserve_kbytes > free_kbytes) {
3966 init_user_reserve();
3967 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3968 sysctl_user_reserve_kbytes);
3969 }
3970
3971 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3972 init_admin_reserve();
3973 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3974 sysctl_admin_reserve_kbytes);
3975 }
3976 break;
3977 default:
3978 break;
3979 }
3980 return NOTIFY_OK;
3981 }
3982
3983 static struct notifier_block reserve_mem_nb = {
3984 .notifier_call = reserve_mem_notifier,
3985 };
3986
init_reserve_notifier(void)3987 static int __meminit init_reserve_notifier(void)
3988 {
3989 if (register_hotmemory_notifier(&reserve_mem_nb))
3990 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3991
3992 return 0;
3993 }
3994 subsys_initcall(init_reserve_notifier);
3995