1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/mmu_notifier.c
4 *
5 * Copyright (C) 2008 Qumranet, Inc.
6 * Copyright (C) 2008 SGI
7 * Christoph Lameter <cl@linux.com>
8 */
9
10 #include <linux/rculist.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/export.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/interval_tree.h>
16 #include <linux/srcu.h>
17 #include <linux/rcupdate.h>
18 #include <linux/sched.h>
19 #include <linux/sched/mm.h>
20 #include <linux/slab.h>
21
22 /* global SRCU for all MMs */
23 DEFINE_STATIC_SRCU(srcu);
24
25 #ifdef CONFIG_LOCKDEP
26 struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
27 .name = "mmu_notifier_invalidate_range_start"
28 };
29 #endif
30
31 /*
32 * The mmu_notifier_subscriptions structure is allocated and installed in
33 * mm->notifier_subscriptions inside the mm_take_all_locks() protected
34 * critical section and it's released only when mm_count reaches zero
35 * in mmdrop().
36 */
37 struct mmu_notifier_subscriptions {
38 /*
39 * WARNING: hdr should be the first member of this structure
40 * so that it can be typecasted into mmu_notifier_subscriptions_hdr.
41 * This is required to avoid KMI CRC breakage.
42 */
43 struct mmu_notifier_subscriptions_hdr hdr;
44 /* all mmu notifiers registered in this mm are queued in this list */
45 struct hlist_head list;
46 bool has_itree;
47 /* to serialize the list modifications and hlist_unhashed */
48 spinlock_t lock;
49 unsigned long invalidate_seq;
50 unsigned long active_invalidate_ranges;
51 struct rb_root_cached itree;
52 wait_queue_head_t wq;
53 struct hlist_head deferred_list;
54 };
55
56 /*
57 * This is a collision-retry read-side/write-side 'lock', a lot like a
58 * seqcount, however this allows multiple write-sides to hold it at
59 * once. Conceptually the write side is protecting the values of the PTEs in
60 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
61 * writer exists.
62 *
63 * Note that the core mm creates nested invalidate_range_start()/end() regions
64 * within the same thread, and runs invalidate_range_start()/end() in parallel
65 * on multiple CPUs. This is designed to not reduce concurrency or block
66 * progress on the mm side.
67 *
68 * As a secondary function, holding the full write side also serves to prevent
69 * writers for the itree, this is an optimization to avoid extra locking
70 * during invalidate_range_start/end notifiers.
71 *
72 * The write side has two states, fully excluded:
73 * - mm->active_invalidate_ranges != 0
74 * - subscriptions->invalidate_seq & 1 == True (odd)
75 * - some range on the mm_struct is being invalidated
76 * - the itree is not allowed to change
77 *
78 * And partially excluded:
79 * - mm->active_invalidate_ranges != 0
80 * - subscriptions->invalidate_seq & 1 == False (even)
81 * - some range on the mm_struct is being invalidated
82 * - the itree is allowed to change
83 *
84 * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
85 * seq |= 1 # Begin writing
86 * seq++ # Release the writing state
87 * seq & 1 # True if a writer exists
88 *
89 * The later state avoids some expensive work on inv_end in the common case of
90 * no mmu_interval_notifier monitoring the VA.
91 */
92 static bool
mn_itree_is_invalidating(struct mmu_notifier_subscriptions * subscriptions)93 mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
94 {
95 lockdep_assert_held(&subscriptions->lock);
96 return subscriptions->invalidate_seq & 1;
97 }
98
99 static struct mmu_interval_notifier *
mn_itree_inv_start_range(struct mmu_notifier_subscriptions * subscriptions,const struct mmu_notifier_range * range,unsigned long * seq)100 mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
101 const struct mmu_notifier_range *range,
102 unsigned long *seq)
103 {
104 struct interval_tree_node *node;
105 struct mmu_interval_notifier *res = NULL;
106
107 spin_lock(&subscriptions->lock);
108 subscriptions->active_invalidate_ranges++;
109 node = interval_tree_iter_first(&subscriptions->itree, range->start,
110 range->end - 1);
111 if (node) {
112 subscriptions->invalidate_seq |= 1;
113 res = container_of(node, struct mmu_interval_notifier,
114 interval_tree);
115 }
116
117 *seq = subscriptions->invalidate_seq;
118 spin_unlock(&subscriptions->lock);
119 return res;
120 }
121
122 static struct mmu_interval_notifier *
mn_itree_inv_next(struct mmu_interval_notifier * interval_sub,const struct mmu_notifier_range * range)123 mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
124 const struct mmu_notifier_range *range)
125 {
126 struct interval_tree_node *node;
127
128 node = interval_tree_iter_next(&interval_sub->interval_tree,
129 range->start, range->end - 1);
130 if (!node)
131 return NULL;
132 return container_of(node, struct mmu_interval_notifier, interval_tree);
133 }
134
mn_itree_inv_end(struct mmu_notifier_subscriptions * subscriptions)135 static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
136 {
137 struct mmu_interval_notifier *interval_sub;
138 struct hlist_node *next;
139
140 spin_lock(&subscriptions->lock);
141 if (--subscriptions->active_invalidate_ranges ||
142 !mn_itree_is_invalidating(subscriptions)) {
143 spin_unlock(&subscriptions->lock);
144 return;
145 }
146
147 /* Make invalidate_seq even */
148 subscriptions->invalidate_seq++;
149
150 /*
151 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
152 * Adds and removes are queued until the final inv_end happens then
153 * they are progressed. This arrangement for tree updates is used to
154 * avoid using a blocking lock during invalidate_range_start.
155 */
156 hlist_for_each_entry_safe(interval_sub, next,
157 &subscriptions->deferred_list,
158 deferred_item) {
159 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
160 interval_tree_insert(&interval_sub->interval_tree,
161 &subscriptions->itree);
162 else
163 interval_tree_remove(&interval_sub->interval_tree,
164 &subscriptions->itree);
165 hlist_del(&interval_sub->deferred_item);
166 }
167 spin_unlock(&subscriptions->lock);
168
169 wake_up_all(&subscriptions->wq);
170 }
171
172 /**
173 * mmu_interval_read_begin - Begin a read side critical section against a VA
174 * range
175 * @interval_sub: The interval subscription
176 *
177 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
178 * collision-retry scheme similar to seqcount for the VA range under
179 * subscription. If the mm invokes invalidation during the critical section
180 * then mmu_interval_read_retry() will return true.
181 *
182 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
183 * require a blocking context. The critical region formed by this can sleep,
184 * and the required 'user_lock' can also be a sleeping lock.
185 *
186 * The caller is required to provide a 'user_lock' to serialize both teardown
187 * and setup.
188 *
189 * The return value should be passed to mmu_interval_read_retry().
190 */
191 unsigned long
mmu_interval_read_begin(struct mmu_interval_notifier * interval_sub)192 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
193 {
194 struct mmu_notifier_subscriptions *subscriptions =
195 interval_sub->mm->notifier_subscriptions;
196 unsigned long seq;
197 bool is_invalidating;
198
199 /*
200 * If the subscription has a different seq value under the user_lock
201 * than we started with then it has collided.
202 *
203 * If the subscription currently has the same seq value as the
204 * subscriptions seq, then it is currently between
205 * invalidate_start/end and is colliding.
206 *
207 * The locking looks broadly like this:
208 * mn_tree_invalidate_start(): mmu_interval_read_begin():
209 * spin_lock
210 * seq = READ_ONCE(interval_sub->invalidate_seq);
211 * seq == subs->invalidate_seq
212 * spin_unlock
213 * spin_lock
214 * seq = ++subscriptions->invalidate_seq
215 * spin_unlock
216 * op->invalidate_range():
217 * user_lock
218 * mmu_interval_set_seq()
219 * interval_sub->invalidate_seq = seq
220 * user_unlock
221 *
222 * [Required: mmu_interval_read_retry() == true]
223 *
224 * mn_itree_inv_end():
225 * spin_lock
226 * seq = ++subscriptions->invalidate_seq
227 * spin_unlock
228 *
229 * user_lock
230 * mmu_interval_read_retry():
231 * interval_sub->invalidate_seq != seq
232 * user_unlock
233 *
234 * Barriers are not needed here as any races here are closed by an
235 * eventual mmu_interval_read_retry(), which provides a barrier via the
236 * user_lock.
237 */
238 spin_lock(&subscriptions->lock);
239 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
240 seq = READ_ONCE(interval_sub->invalidate_seq);
241 is_invalidating = seq == subscriptions->invalidate_seq;
242 spin_unlock(&subscriptions->lock);
243
244 /*
245 * interval_sub->invalidate_seq must always be set to an odd value via
246 * mmu_interval_set_seq() using the provided cur_seq from
247 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
248 * will always clear the below sleep in some reasonable time as
249 * subscriptions->invalidate_seq is even in the idle state.
250 */
251 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
252 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
253 if (is_invalidating)
254 wait_event(subscriptions->wq,
255 READ_ONCE(subscriptions->invalidate_seq) != seq);
256
257 /*
258 * Notice that mmu_interval_read_retry() can already be true at this
259 * point, avoiding loops here allows the caller to provide a global
260 * time bound.
261 */
262
263 return seq;
264 }
265 EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
266
mn_itree_release(struct mmu_notifier_subscriptions * subscriptions,struct mm_struct * mm)267 static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
268 struct mm_struct *mm)
269 {
270 struct mmu_notifier_range range = {
271 .flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
272 .event = MMU_NOTIFY_RELEASE,
273 .mm = mm,
274 .start = 0,
275 .end = ULONG_MAX,
276 };
277 struct mmu_interval_notifier *interval_sub;
278 unsigned long cur_seq;
279 bool ret;
280
281 for (interval_sub =
282 mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
283 interval_sub;
284 interval_sub = mn_itree_inv_next(interval_sub, &range)) {
285 ret = interval_sub->ops->invalidate(interval_sub, &range,
286 cur_seq);
287 WARN_ON(!ret);
288 }
289
290 mn_itree_inv_end(subscriptions);
291 }
292
293 /*
294 * This function can't run concurrently against mmu_notifier_register
295 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
296 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
297 * in parallel despite there being no task using this mm any more,
298 * through the vmas outside of the exit_mmap context, such as with
299 * vmtruncate. This serializes against mmu_notifier_unregister with
300 * the notifier_subscriptions->lock in addition to SRCU and it serializes
301 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
302 * can't go away from under us as exit_mmap holds an mm_count pin
303 * itself.
304 */
mn_hlist_release(struct mmu_notifier_subscriptions * subscriptions,struct mm_struct * mm)305 static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
306 struct mm_struct *mm)
307 {
308 struct mmu_notifier *subscription;
309 int id;
310
311 /*
312 * SRCU here will block mmu_notifier_unregister until
313 * ->release returns.
314 */
315 id = srcu_read_lock(&srcu);
316 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
317 srcu_read_lock_held(&srcu))
318 /*
319 * If ->release runs before mmu_notifier_unregister it must be
320 * handled, as it's the only way for the driver to flush all
321 * existing sptes and stop the driver from establishing any more
322 * sptes before all the pages in the mm are freed.
323 */
324 if (subscription->ops->release)
325 subscription->ops->release(subscription, mm);
326
327 spin_lock(&subscriptions->lock);
328 while (unlikely(!hlist_empty(&subscriptions->list))) {
329 subscription = hlist_entry(subscriptions->list.first,
330 struct mmu_notifier, hlist);
331 /*
332 * We arrived before mmu_notifier_unregister so
333 * mmu_notifier_unregister will do nothing other than to wait
334 * for ->release to finish and for mmu_notifier_unregister to
335 * return.
336 */
337 hlist_del_init_rcu(&subscription->hlist);
338 }
339 spin_unlock(&subscriptions->lock);
340 srcu_read_unlock(&srcu, id);
341
342 /*
343 * synchronize_srcu here prevents mmu_notifier_release from returning to
344 * exit_mmap (which would proceed with freeing all pages in the mm)
345 * until the ->release method returns, if it was invoked by
346 * mmu_notifier_unregister.
347 *
348 * The notifier_subscriptions can't go away from under us because
349 * one mm_count is held by exit_mmap.
350 */
351 synchronize_srcu(&srcu);
352 }
353
__mmu_notifier_release(struct mm_struct * mm)354 void __mmu_notifier_release(struct mm_struct *mm)
355 {
356 struct mmu_notifier_subscriptions *subscriptions =
357 mm->notifier_subscriptions;
358
359 if (subscriptions->has_itree)
360 mn_itree_release(subscriptions, mm);
361
362 if (!hlist_empty(&subscriptions->list))
363 mn_hlist_release(subscriptions, mm);
364 }
365
366 /*
367 * If no young bitflag is supported by the hardware, ->clear_flush_young can
368 * unmap the address and return 1 or 0 depending if the mapping previously
369 * existed or not.
370 */
__mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)371 int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
372 unsigned long start,
373 unsigned long end)
374 {
375 struct mmu_notifier *subscription;
376 int young = 0, id;
377
378 id = srcu_read_lock(&srcu);
379 hlist_for_each_entry_rcu(subscription,
380 &mm->notifier_subscriptions->list, hlist,
381 srcu_read_lock_held(&srcu)) {
382 if (subscription->ops->clear_flush_young)
383 young |= subscription->ops->clear_flush_young(
384 subscription, mm, start, end);
385 }
386 srcu_read_unlock(&srcu, id);
387
388 return young;
389 }
390
__mmu_notifier_clear_young(struct mm_struct * mm,unsigned long start,unsigned long end)391 int __mmu_notifier_clear_young(struct mm_struct *mm,
392 unsigned long start,
393 unsigned long end)
394 {
395 struct mmu_notifier *subscription;
396 int young = 0, id;
397
398 id = srcu_read_lock(&srcu);
399 hlist_for_each_entry_rcu(subscription,
400 &mm->notifier_subscriptions->list, hlist,
401 srcu_read_lock_held(&srcu)) {
402 if (subscription->ops->clear_young)
403 young |= subscription->ops->clear_young(subscription,
404 mm, start, end);
405 }
406 srcu_read_unlock(&srcu, id);
407
408 return young;
409 }
410
__mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)411 int __mmu_notifier_test_young(struct mm_struct *mm,
412 unsigned long address)
413 {
414 struct mmu_notifier *subscription;
415 int young = 0, id;
416
417 id = srcu_read_lock(&srcu);
418 hlist_for_each_entry_rcu(subscription,
419 &mm->notifier_subscriptions->list, hlist,
420 srcu_read_lock_held(&srcu)) {
421 if (subscription->ops->test_young) {
422 young = subscription->ops->test_young(subscription, mm,
423 address);
424 if (young)
425 break;
426 }
427 }
428 srcu_read_unlock(&srcu, id);
429
430 return young;
431 }
432
__mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)433 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
434 pte_t pte)
435 {
436 struct mmu_notifier *subscription;
437 int id;
438
439 id = srcu_read_lock(&srcu);
440 hlist_for_each_entry_rcu(subscription,
441 &mm->notifier_subscriptions->list, hlist,
442 srcu_read_lock_held(&srcu)) {
443 if (subscription->ops->change_pte)
444 subscription->ops->change_pte(subscription, mm, address,
445 pte);
446 }
447 srcu_read_unlock(&srcu, id);
448 }
449
mn_itree_invalidate(struct mmu_notifier_subscriptions * subscriptions,const struct mmu_notifier_range * range)450 static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
451 const struct mmu_notifier_range *range)
452 {
453 struct mmu_interval_notifier *interval_sub;
454 unsigned long cur_seq;
455
456 for (interval_sub =
457 mn_itree_inv_start_range(subscriptions, range, &cur_seq);
458 interval_sub;
459 interval_sub = mn_itree_inv_next(interval_sub, range)) {
460 bool ret;
461
462 ret = interval_sub->ops->invalidate(interval_sub, range,
463 cur_seq);
464 if (!ret) {
465 if (WARN_ON(mmu_notifier_range_blockable(range)))
466 continue;
467 goto out_would_block;
468 }
469 }
470 return 0;
471
472 out_would_block:
473 /*
474 * On -EAGAIN the non-blocking caller is not allowed to call
475 * invalidate_range_end()
476 */
477 mn_itree_inv_end(subscriptions);
478 return -EAGAIN;
479 }
480
mn_hlist_invalidate_range_start(struct mmu_notifier_subscriptions * subscriptions,struct mmu_notifier_range * range)481 static int mn_hlist_invalidate_range_start(
482 struct mmu_notifier_subscriptions *subscriptions,
483 struct mmu_notifier_range *range)
484 {
485 struct mmu_notifier *subscription;
486 int ret = 0;
487 int id;
488
489 id = srcu_read_lock(&srcu);
490 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
491 srcu_read_lock_held(&srcu)) {
492 const struct mmu_notifier_ops *ops = subscription->ops;
493
494 if (ops->invalidate_range_start) {
495 int _ret;
496
497 if (!mmu_notifier_range_blockable(range))
498 non_block_start();
499 _ret = ops->invalidate_range_start(subscription, range);
500 if (!mmu_notifier_range_blockable(range))
501 non_block_end();
502 if (_ret) {
503 pr_info("%pS callback failed with %d in %sblockable context.\n",
504 ops->invalidate_range_start, _ret,
505 !mmu_notifier_range_blockable(range) ?
506 "non-" :
507 "");
508 WARN_ON(mmu_notifier_range_blockable(range) ||
509 _ret != -EAGAIN);
510 /*
511 * We call all the notifiers on any EAGAIN,
512 * there is no way for a notifier to know if
513 * its start method failed, thus a start that
514 * does EAGAIN can't also do end.
515 */
516 WARN_ON(ops->invalidate_range_end);
517 ret = _ret;
518 }
519 }
520 }
521
522 if (ret) {
523 /*
524 * Must be non-blocking to get here. If there are multiple
525 * notifiers and one or more failed start, any that succeeded
526 * start are expecting their end to be called. Do so now.
527 */
528 hlist_for_each_entry_rcu(subscription, &subscriptions->list,
529 hlist, srcu_read_lock_held(&srcu)) {
530 if (!subscription->ops->invalidate_range_end)
531 continue;
532
533 subscription->ops->invalidate_range_end(subscription,
534 range);
535 }
536 }
537 srcu_read_unlock(&srcu, id);
538
539 return ret;
540 }
541
__mmu_notifier_invalidate_range_start(struct mmu_notifier_range * range)542 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
543 {
544 struct mmu_notifier_subscriptions *subscriptions =
545 range->mm->notifier_subscriptions;
546 int ret;
547
548 if (subscriptions->has_itree) {
549 ret = mn_itree_invalidate(subscriptions, range);
550 if (ret)
551 return ret;
552 }
553 if (!hlist_empty(&subscriptions->list))
554 return mn_hlist_invalidate_range_start(subscriptions, range);
555 return 0;
556 }
557
558 static void
mn_hlist_invalidate_end(struct mmu_notifier_subscriptions * subscriptions,struct mmu_notifier_range * range,bool only_end)559 mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
560 struct mmu_notifier_range *range, bool only_end)
561 {
562 struct mmu_notifier *subscription;
563 int id;
564
565 id = srcu_read_lock(&srcu);
566 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
567 srcu_read_lock_held(&srcu)) {
568 /*
569 * Call invalidate_range here too to avoid the need for the
570 * subsystem of having to register an invalidate_range_end
571 * call-back when there is invalidate_range already. Usually a
572 * subsystem registers either invalidate_range_start()/end() or
573 * invalidate_range(), so this will be no additional overhead
574 * (besides the pointer check).
575 *
576 * We skip call to invalidate_range() if we know it is safe ie
577 * call site use mmu_notifier_invalidate_range_only_end() which
578 * is safe to do when we know that a call to invalidate_range()
579 * already happen under page table lock.
580 */
581 if (!only_end && subscription->ops->invalidate_range)
582 subscription->ops->invalidate_range(subscription,
583 range->mm,
584 range->start,
585 range->end);
586 if (subscription->ops->invalidate_range_end) {
587 if (!mmu_notifier_range_blockable(range))
588 non_block_start();
589 subscription->ops->invalidate_range_end(subscription,
590 range);
591 if (!mmu_notifier_range_blockable(range))
592 non_block_end();
593 }
594 }
595 srcu_read_unlock(&srcu, id);
596 }
597
__mmu_notifier_invalidate_range_end(struct mmu_notifier_range * range,bool only_end)598 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
599 bool only_end)
600 {
601 struct mmu_notifier_subscriptions *subscriptions =
602 range->mm->notifier_subscriptions;
603
604 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
605 if (subscriptions->has_itree)
606 mn_itree_inv_end(subscriptions);
607
608 if (!hlist_empty(&subscriptions->list))
609 mn_hlist_invalidate_end(subscriptions, range, only_end);
610 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
611 }
612
__mmu_notifier_invalidate_range(struct mm_struct * mm,unsigned long start,unsigned long end)613 void __mmu_notifier_invalidate_range(struct mm_struct *mm,
614 unsigned long start, unsigned long end)
615 {
616 struct mmu_notifier *subscription;
617 int id;
618
619 id = srcu_read_lock(&srcu);
620 hlist_for_each_entry_rcu(subscription,
621 &mm->notifier_subscriptions->list, hlist,
622 srcu_read_lock_held(&srcu)) {
623 if (subscription->ops->invalidate_range)
624 subscription->ops->invalidate_range(subscription, mm,
625 start, end);
626 }
627 srcu_read_unlock(&srcu, id);
628 }
629
630 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
631
mmu_notifier_write_lock(struct mm_struct * mm)632 static inline void mmu_notifier_write_lock(struct mm_struct *mm)
633 {
634 percpu_down_write(
635 &mm->notifier_subscriptions->hdr.mmu_notifier_lock->rw_sem);
636 }
637
mmu_notifier_write_unlock(struct mm_struct * mm)638 static inline void mmu_notifier_write_unlock(struct mm_struct *mm)
639 {
640 percpu_up_write(
641 &mm->notifier_subscriptions->hdr.mmu_notifier_lock->rw_sem);
642 }
643
644 #else /* CONFIG_SPECULATIVE_PAGE_FAULT */
645
mmu_notifier_write_lock(struct mm_struct * mm)646 static inline void mmu_notifier_write_lock(struct mm_struct *mm) {}
mmu_notifier_write_unlock(struct mm_struct * mm)647 static inline void mmu_notifier_write_unlock(struct mm_struct *mm) {}
648
649 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
650
init_subscriptions(struct mmu_notifier_subscriptions * subscriptions)651 static void init_subscriptions(struct mmu_notifier_subscriptions *subscriptions)
652 {
653 INIT_HLIST_HEAD(&subscriptions->list);
654 spin_lock_init(&subscriptions->lock);
655 subscriptions->invalidate_seq = 2;
656 subscriptions->itree = RB_ROOT_CACHED;
657 init_waitqueue_head(&subscriptions->wq);
658 INIT_HLIST_HEAD(&subscriptions->deferred_list);
659 }
660
661 /*
662 * Same as mmu_notifier_register but here the caller must hold the mmap_lock in
663 * write mode. A NULL mn signals the notifier is being registered for itree
664 * mode.
665 */
__mmu_notifier_register(struct mmu_notifier * subscription,struct mm_struct * mm)666 int __mmu_notifier_register(struct mmu_notifier *subscription,
667 struct mm_struct *mm)
668 {
669 struct mmu_notifier_subscriptions *subscriptions = NULL;
670 int ret;
671
672 mmap_assert_write_locked(mm);
673 BUG_ON(atomic_read(&mm->mm_users) <= 0);
674
675 if (IS_ENABLED(CONFIG_LOCKDEP)) {
676 fs_reclaim_acquire(GFP_KERNEL);
677 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
678 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
679 fs_reclaim_release(GFP_KERNEL);
680 }
681
682 if (!mm->notifier_subscriptions) {
683 /*
684 * kmalloc cannot be called under mm_take_all_locks(), but we
685 * know that mm->notifier_subscriptions can't change while we
686 * hold the write side of the mmap_lock.
687 */
688 subscriptions = kzalloc(
689 sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
690 if (!subscriptions)
691 return -ENOMEM;
692
693 init_subscriptions(subscriptions);
694 }
695
696 mmu_notifier_write_lock(mm);
697
698 ret = mm_take_all_locks(mm);
699 if (unlikely(ret)) {
700 mmu_notifier_write_unlock(mm);
701 goto out_clean;
702 }
703
704 /*
705 * Serialize the update against mmu_notifier_unregister. A
706 * side note: mmu_notifier_release can't run concurrently with
707 * us because we hold the mm_users pin (either implicitly as
708 * current->mm or explicitly with get_task_mm() or similar).
709 * We can't race against any other mmu notifier method either
710 * thanks to mm_take_all_locks().
711 *
712 * release semantics on the initialization of the
713 * mmu_notifier_subscriptions's contents are provided for unlocked
714 * readers. acquire can only be used while holding the mmgrab or
715 * mmget, and is safe because once created the
716 * mmu_notifier_subscriptions is not freed until the mm is destroyed.
717 * As above, users holding the mmap_lock or one of the
718 * mm_take_all_locks() do not need to use acquire semantics.
719 */
720 if (subscriptions)
721 smp_store_release(&mm->notifier_subscriptions, subscriptions);
722 mm->notifier_subscriptions->hdr.valid = true;
723
724 if (subscription) {
725 /* Pairs with the mmdrop in mmu_notifier_unregister_* */
726 mmgrab(mm);
727 subscription->mm = mm;
728 subscription->users = 1;
729
730 spin_lock(&mm->notifier_subscriptions->lock);
731 hlist_add_head_rcu(&subscription->hlist,
732 &mm->notifier_subscriptions->list);
733 spin_unlock(&mm->notifier_subscriptions->lock);
734 } else
735 mm->notifier_subscriptions->has_itree = true;
736
737 mm_drop_all_locks(mm);
738 mmu_notifier_write_unlock(mm);
739 BUG_ON(atomic_read(&mm->mm_users) <= 0);
740 return 0;
741
742 out_clean:
743 kfree(subscriptions);
744 return ret;
745 }
746 EXPORT_SYMBOL_GPL(__mmu_notifier_register);
747
748 /**
749 * mmu_notifier_register - Register a notifier on a mm
750 * @subscription: The notifier to attach
751 * @mm: The mm to attach the notifier to
752 *
753 * Must not hold mmap_lock nor any other VM related lock when calling
754 * this registration function. Must also ensure mm_users can't go down
755 * to zero while this runs to avoid races with mmu_notifier_release,
756 * so mm has to be current->mm or the mm should be pinned safely such
757 * as with get_task_mm(). If the mm is not current->mm, the mm_users
758 * pin should be released by calling mmput after mmu_notifier_register
759 * returns.
760 *
761 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
762 * unregister the notifier.
763 *
764 * While the caller has a mmu_notifier get the subscription->mm pointer will remain
765 * valid, and can be converted to an active mm pointer via mmget_not_zero().
766 */
mmu_notifier_register(struct mmu_notifier * subscription,struct mm_struct * mm)767 int mmu_notifier_register(struct mmu_notifier *subscription,
768 struct mm_struct *mm)
769 {
770 int ret;
771
772 mmap_write_lock(mm);
773 ret = __mmu_notifier_register(subscription, mm);
774 mmap_write_unlock(mm);
775 return ret;
776 }
777 EXPORT_SYMBOL_GPL(mmu_notifier_register);
778
779 static struct mmu_notifier *
find_get_mmu_notifier(struct mm_struct * mm,const struct mmu_notifier_ops * ops)780 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
781 {
782 struct mmu_notifier *subscription;
783
784 spin_lock(&mm->notifier_subscriptions->lock);
785 hlist_for_each_entry_rcu(subscription,
786 &mm->notifier_subscriptions->list, hlist,
787 lockdep_is_held(&mm->notifier_subscriptions->lock)) {
788 if (subscription->ops != ops)
789 continue;
790
791 if (likely(subscription->users != UINT_MAX))
792 subscription->users++;
793 else
794 subscription = ERR_PTR(-EOVERFLOW);
795 spin_unlock(&mm->notifier_subscriptions->lock);
796 return subscription;
797 }
798 spin_unlock(&mm->notifier_subscriptions->lock);
799 return NULL;
800 }
801
802 /**
803 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
804 * the mm & ops
805 * @ops: The operations struct being subscribe with
806 * @mm : The mm to attach notifiers too
807 *
808 * This function either allocates a new mmu_notifier via
809 * ops->alloc_notifier(), or returns an already existing notifier on the
810 * list. The value of the ops pointer is used to determine when two notifiers
811 * are the same.
812 *
813 * Each call to mmu_notifier_get() must be paired with a call to
814 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
815 *
816 * While the caller has a mmu_notifier get the mm pointer will remain valid,
817 * and can be converted to an active mm pointer via mmget_not_zero().
818 */
mmu_notifier_get_locked(const struct mmu_notifier_ops * ops,struct mm_struct * mm)819 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
820 struct mm_struct *mm)
821 {
822 struct mmu_notifier *subscription;
823 int ret;
824
825 mmap_assert_write_locked(mm);
826
827 if (mm->notifier_subscriptions) {
828 subscription = find_get_mmu_notifier(mm, ops);
829 if (subscription)
830 return subscription;
831 }
832
833 subscription = ops->alloc_notifier(mm);
834 if (IS_ERR(subscription))
835 return subscription;
836 subscription->ops = ops;
837 ret = __mmu_notifier_register(subscription, mm);
838 if (ret)
839 goto out_free;
840 return subscription;
841 out_free:
842 subscription->ops->free_notifier(subscription);
843 return ERR_PTR(ret);
844 }
845 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
846
847 /* this is called after the last mmu_notifier_unregister() returned */
__mmu_notifier_subscriptions_destroy(struct mm_struct * mm)848 void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
849 {
850 BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
851 kfree(mm->notifier_subscriptions);
852 mm->notifier_subscriptions = LIST_POISON1; /* debug */
853 }
854
855 /*
856 * This releases the mm_count pin automatically and frees the mm
857 * structure if it was the last user of it. It serializes against
858 * running mmu notifiers with SRCU and against mmu_notifier_unregister
859 * with the unregister lock + SRCU. All sptes must be dropped before
860 * calling mmu_notifier_unregister. ->release or any other notifier
861 * method may be invoked concurrently with mmu_notifier_unregister,
862 * and only after mmu_notifier_unregister returned we're guaranteed
863 * that ->release or any other method can't run anymore.
864 */
mmu_notifier_unregister(struct mmu_notifier * subscription,struct mm_struct * mm)865 void mmu_notifier_unregister(struct mmu_notifier *subscription,
866 struct mm_struct *mm)
867 {
868 BUG_ON(atomic_read(&mm->mm_count) <= 0);
869
870 if (!hlist_unhashed(&subscription->hlist)) {
871 /*
872 * SRCU here will force exit_mmap to wait for ->release to
873 * finish before freeing the pages.
874 */
875 int id;
876
877 id = srcu_read_lock(&srcu);
878 /*
879 * exit_mmap will block in mmu_notifier_release to guarantee
880 * that ->release is called before freeing the pages.
881 */
882 if (subscription->ops->release)
883 subscription->ops->release(subscription, mm);
884 srcu_read_unlock(&srcu, id);
885
886 spin_lock(&mm->notifier_subscriptions->lock);
887 /*
888 * Can not use list_del_rcu() since __mmu_notifier_release
889 * can delete it before we hold the lock.
890 */
891 hlist_del_init_rcu(&subscription->hlist);
892 spin_unlock(&mm->notifier_subscriptions->lock);
893 }
894
895 /*
896 * Wait for any running method to finish, of course including
897 * ->release if it was run by mmu_notifier_release instead of us.
898 */
899 synchronize_srcu(&srcu);
900
901 BUG_ON(atomic_read(&mm->mm_count) <= 0);
902
903 mmdrop(mm);
904 }
905 EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
906
mmu_notifier_free_rcu(struct rcu_head * rcu)907 static void mmu_notifier_free_rcu(struct rcu_head *rcu)
908 {
909 struct mmu_notifier *subscription =
910 container_of(rcu, struct mmu_notifier, rcu);
911 struct mm_struct *mm = subscription->mm;
912
913 subscription->ops->free_notifier(subscription);
914 /* Pairs with the get in __mmu_notifier_register() */
915 mmdrop(mm);
916 }
917
918 /**
919 * mmu_notifier_put - Release the reference on the notifier
920 * @subscription: The notifier to act on
921 *
922 * This function must be paired with each mmu_notifier_get(), it releases the
923 * reference obtained by the get. If this is the last reference then process
924 * to free the notifier will be run asynchronously.
925 *
926 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
927 * when the mm_struct is destroyed. Instead free_notifier is always called to
928 * release any resources held by the user.
929 *
930 * As ops->release is not guaranteed to be called, the user must ensure that
931 * all sptes are dropped, and no new sptes can be established before
932 * mmu_notifier_put() is called.
933 *
934 * This function can be called from the ops->release callback, however the
935 * caller must still ensure it is called pairwise with mmu_notifier_get().
936 *
937 * Modules calling this function must call mmu_notifier_synchronize() in
938 * their __exit functions to ensure the async work is completed.
939 */
mmu_notifier_put(struct mmu_notifier * subscription)940 void mmu_notifier_put(struct mmu_notifier *subscription)
941 {
942 struct mm_struct *mm = subscription->mm;
943
944 spin_lock(&mm->notifier_subscriptions->lock);
945 if (WARN_ON(!subscription->users) || --subscription->users)
946 goto out_unlock;
947 hlist_del_init_rcu(&subscription->hlist);
948 spin_unlock(&mm->notifier_subscriptions->lock);
949
950 call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
951 return;
952
953 out_unlock:
954 spin_unlock(&mm->notifier_subscriptions->lock);
955 }
956 EXPORT_SYMBOL_GPL(mmu_notifier_put);
957
__mmu_interval_notifier_insert(struct mmu_interval_notifier * interval_sub,struct mm_struct * mm,struct mmu_notifier_subscriptions * subscriptions,unsigned long start,unsigned long length,const struct mmu_interval_notifier_ops * ops)958 static int __mmu_interval_notifier_insert(
959 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
960 struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
961 unsigned long length, const struct mmu_interval_notifier_ops *ops)
962 {
963 interval_sub->mm = mm;
964 interval_sub->ops = ops;
965 RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
966 interval_sub->interval_tree.start = start;
967 /*
968 * Note that the representation of the intervals in the interval tree
969 * considers the ending point as contained in the interval.
970 */
971 if (length == 0 ||
972 check_add_overflow(start, length - 1,
973 &interval_sub->interval_tree.last))
974 return -EOVERFLOW;
975
976 /* Must call with a mmget() held */
977 if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
978 return -EINVAL;
979
980 /* pairs with mmdrop in mmu_interval_notifier_remove() */
981 mmgrab(mm);
982
983 /*
984 * If some invalidate_range_start/end region is going on in parallel
985 * we don't know what VA ranges are affected, so we must assume this
986 * new range is included.
987 *
988 * If the itree is invalidating then we are not allowed to change
989 * it. Retrying until invalidation is done is tricky due to the
990 * possibility for live lock, instead defer the add to
991 * mn_itree_inv_end() so this algorithm is deterministic.
992 *
993 * In all cases the value for the interval_sub->invalidate_seq should be
994 * odd, see mmu_interval_read_begin()
995 */
996 spin_lock(&subscriptions->lock);
997 if (subscriptions->active_invalidate_ranges) {
998 if (mn_itree_is_invalidating(subscriptions))
999 hlist_add_head(&interval_sub->deferred_item,
1000 &subscriptions->deferred_list);
1001 else {
1002 subscriptions->invalidate_seq |= 1;
1003 interval_tree_insert(&interval_sub->interval_tree,
1004 &subscriptions->itree);
1005 }
1006 interval_sub->invalidate_seq = subscriptions->invalidate_seq;
1007 } else {
1008 WARN_ON(mn_itree_is_invalidating(subscriptions));
1009 /*
1010 * The starting seq for a subscription not under invalidation
1011 * should be odd, not equal to the current invalidate_seq and
1012 * invalidate_seq should not 'wrap' to the new seq any time
1013 * soon.
1014 */
1015 interval_sub->invalidate_seq =
1016 subscriptions->invalidate_seq - 1;
1017 interval_tree_insert(&interval_sub->interval_tree,
1018 &subscriptions->itree);
1019 }
1020 spin_unlock(&subscriptions->lock);
1021 return 0;
1022 }
1023
1024 /**
1025 * mmu_interval_notifier_insert - Insert an interval notifier
1026 * @interval_sub: Interval subscription to register
1027 * @start: Starting virtual address to monitor
1028 * @length: Length of the range to monitor
1029 * @mm: mm_struct to attach to
1030 * @ops: Interval notifier operations to be called on matching events
1031 *
1032 * This function subscribes the interval notifier for notifications from the
1033 * mm. Upon return the ops related to mmu_interval_notifier will be called
1034 * whenever an event that intersects with the given range occurs.
1035 *
1036 * Upon return the range_notifier may not be present in the interval tree yet.
1037 * The caller must use the normal interval notifier read flow via
1038 * mmu_interval_read_begin() to establish SPTEs for this range.
1039 */
mmu_interval_notifier_insert(struct mmu_interval_notifier * interval_sub,struct mm_struct * mm,unsigned long start,unsigned long length,const struct mmu_interval_notifier_ops * ops)1040 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
1041 struct mm_struct *mm, unsigned long start,
1042 unsigned long length,
1043 const struct mmu_interval_notifier_ops *ops)
1044 {
1045 struct mmu_notifier_subscriptions *subscriptions;
1046 int ret;
1047
1048 might_lock(&mm->mmap_lock);
1049
1050 subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
1051 if (!subscriptions || !subscriptions->has_itree) {
1052 ret = mmu_notifier_register(NULL, mm);
1053 if (ret)
1054 return ret;
1055 subscriptions = mm->notifier_subscriptions;
1056 }
1057 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1058 start, length, ops);
1059 }
1060 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
1061
mmu_interval_notifier_insert_locked(struct mmu_interval_notifier * interval_sub,struct mm_struct * mm,unsigned long start,unsigned long length,const struct mmu_interval_notifier_ops * ops)1062 int mmu_interval_notifier_insert_locked(
1063 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
1064 unsigned long start, unsigned long length,
1065 const struct mmu_interval_notifier_ops *ops)
1066 {
1067 struct mmu_notifier_subscriptions *subscriptions =
1068 mm->notifier_subscriptions;
1069 int ret;
1070
1071 mmap_assert_write_locked(mm);
1072
1073 if (!subscriptions || !subscriptions->has_itree) {
1074 ret = __mmu_notifier_register(NULL, mm);
1075 if (ret)
1076 return ret;
1077 subscriptions = mm->notifier_subscriptions;
1078 }
1079 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1080 start, length, ops);
1081 }
1082 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
1083
1084 static bool
mmu_interval_seq_released(struct mmu_notifier_subscriptions * subscriptions,unsigned long seq)1085 mmu_interval_seq_released(struct mmu_notifier_subscriptions *subscriptions,
1086 unsigned long seq)
1087 {
1088 bool ret;
1089
1090 spin_lock(&subscriptions->lock);
1091 ret = subscriptions->invalidate_seq != seq;
1092 spin_unlock(&subscriptions->lock);
1093 return ret;
1094 }
1095
1096 /**
1097 * mmu_interval_notifier_remove - Remove a interval notifier
1098 * @interval_sub: Interval subscription to unregister
1099 *
1100 * This function must be paired with mmu_interval_notifier_insert(). It cannot
1101 * be called from any ops callback.
1102 *
1103 * Once this returns ops callbacks are no longer running on other CPUs and
1104 * will not be called in future.
1105 */
mmu_interval_notifier_remove(struct mmu_interval_notifier * interval_sub)1106 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
1107 {
1108 struct mm_struct *mm = interval_sub->mm;
1109 struct mmu_notifier_subscriptions *subscriptions =
1110 mm->notifier_subscriptions;
1111 unsigned long seq = 0;
1112
1113 might_sleep();
1114
1115 spin_lock(&subscriptions->lock);
1116 if (mn_itree_is_invalidating(subscriptions)) {
1117 /*
1118 * remove is being called after insert put this on the
1119 * deferred list, but before the deferred list was processed.
1120 */
1121 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
1122 hlist_del(&interval_sub->deferred_item);
1123 } else {
1124 hlist_add_head(&interval_sub->deferred_item,
1125 &subscriptions->deferred_list);
1126 seq = subscriptions->invalidate_seq;
1127 }
1128 } else {
1129 WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
1130 interval_tree_remove(&interval_sub->interval_tree,
1131 &subscriptions->itree);
1132 }
1133 spin_unlock(&subscriptions->lock);
1134
1135 /*
1136 * The possible sleep on progress in the invalidation requires the
1137 * caller not hold any locks held by invalidation callbacks.
1138 */
1139 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1140 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1141 if (seq)
1142 wait_event(subscriptions->wq,
1143 mmu_interval_seq_released(subscriptions, seq));
1144
1145 /* pairs with mmgrab in mmu_interval_notifier_insert() */
1146 mmdrop(mm);
1147 }
1148 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1149
1150 /**
1151 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1152 *
1153 * This function ensures that all outstanding async SRU work from
1154 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1155 * associated with an unused mmu_notifier will no longer be called.
1156 *
1157 * Before using the caller must ensure that all of its mmu_notifiers have been
1158 * fully released via mmu_notifier_put().
1159 *
1160 * Modules using the mmu_notifier_put() API should call this in their __exit
1161 * function to avoid module unloading races.
1162 */
mmu_notifier_synchronize(void)1163 void mmu_notifier_synchronize(void)
1164 {
1165 synchronize_srcu(&srcu);
1166 }
1167 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
1168
1169 bool
mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range * range)1170 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
1171 {
1172 if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
1173 return false;
1174 /* Return true if the vma still have the read flag set. */
1175 return range->vma->vm_flags & VM_READ;
1176 }
1177 EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
1178
1179 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
1180
mmu_notifier_subscriptions_init(struct mm_struct * mm)1181 bool mmu_notifier_subscriptions_init(struct mm_struct *mm)
1182 {
1183 struct mmu_notifier_subscriptions *subscriptions;
1184 struct percpu_rw_semaphore_atomic *sem;
1185
1186 subscriptions = kzalloc(
1187 sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
1188 if (!subscriptions)
1189 return false;
1190
1191 sem = kzalloc(sizeof(struct percpu_rw_semaphore_atomic), GFP_KERNEL);
1192 if (!sem) {
1193 kfree(subscriptions);
1194 return false;
1195 }
1196 percpu_init_rwsem(&sem->rw_sem);
1197
1198 init_subscriptions(subscriptions);
1199 subscriptions->has_itree = true;
1200 subscriptions->hdr.valid = false;
1201 subscriptions->hdr.mmu_notifier_lock = sem;
1202 mm->notifier_subscriptions = subscriptions;
1203
1204 return true;
1205 }
1206
mmu_notifier_subscriptions_destroy(struct mm_struct * mm)1207 void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
1208 {
1209 percpu_rwsem_async_destroy(
1210 mm->notifier_subscriptions->hdr.mmu_notifier_lock);
1211 kfree(mm->notifier_subscriptions);
1212 mm->notifier_subscriptions = NULL;
1213 }
1214
1215 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
1216