// SPDX-License-Identifier: GPL-2.0 /* * pkey device driver * * Copyright IBM Corp. 2017,2019 * Author(s): Harald Freudenberger */ #define KMSG_COMPONENT "pkey" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zcrypt_api.h" #include "zcrypt_ccamisc.h" #include "zcrypt_ep11misc.h" MODULE_LICENSE("GPL"); MODULE_AUTHOR("IBM Corporation"); MODULE_DESCRIPTION("s390 protected key interface"); #define KEYBLOBBUFSIZE 8192 /* key buffer size used for internal processing */ #define PROTKEYBLOBBUFSIZE 256 /* protected key buffer size used internal */ #define MAXAPQNSINLIST 64 /* max 64 apqns within a apqn list */ /* * debug feature data and functions */ static debug_info_t *debug_info; #define DEBUG_DBG(...) debug_sprintf_event(debug_info, 6, ##__VA_ARGS__) #define DEBUG_INFO(...) debug_sprintf_event(debug_info, 5, ##__VA_ARGS__) #define DEBUG_WARN(...) debug_sprintf_event(debug_info, 4, ##__VA_ARGS__) #define DEBUG_ERR(...) debug_sprintf_event(debug_info, 3, ##__VA_ARGS__) static void __init pkey_debug_init(void) { /* 5 arguments per dbf entry (including the format string ptr) */ debug_info = debug_register("pkey", 1, 1, 5 * sizeof(long)); debug_register_view(debug_info, &debug_sprintf_view); debug_set_level(debug_info, 3); } static void __exit pkey_debug_exit(void) { debug_unregister(debug_info); } /* inside view of a protected key token (only type 0x00 version 0x01) */ struct protaeskeytoken { u8 type; /* 0x00 for PAES specific key tokens */ u8 res0[3]; u8 version; /* should be 0x01 for protected AES key token */ u8 res1[3]; u32 keytype; /* key type, one of the PKEY_KEYTYPE values */ u32 len; /* bytes actually stored in protkey[] */ u8 protkey[MAXPROTKEYSIZE]; /* the protected key blob */ } __packed; /* inside view of a clear key token (type 0x00 version 0x02) */ struct clearaeskeytoken { u8 type; /* 0x00 for PAES specific key tokens */ u8 res0[3]; u8 version; /* 0x02 for clear AES key token */ u8 res1[3]; u32 keytype; /* key type, one of the PKEY_KEYTYPE values */ u32 len; /* bytes actually stored in clearkey[] */ u8 clearkey[]; /* clear key value */ } __packed; /* * Create a protected key from a clear key value. */ static int pkey_clr2protkey(u32 keytype, const struct pkey_clrkey *clrkey, struct pkey_protkey *protkey) { /* mask of available pckmo subfunctions */ static cpacf_mask_t pckmo_functions; long fc; int keysize; u8 paramblock[64]; switch (keytype) { case PKEY_KEYTYPE_AES_128: keysize = 16; fc = CPACF_PCKMO_ENC_AES_128_KEY; break; case PKEY_KEYTYPE_AES_192: keysize = 24; fc = CPACF_PCKMO_ENC_AES_192_KEY; break; case PKEY_KEYTYPE_AES_256: keysize = 32; fc = CPACF_PCKMO_ENC_AES_256_KEY; break; default: DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__, keytype); return -EINVAL; } /* Did we already check for PCKMO ? */ if (!pckmo_functions.bytes[0]) { /* no, so check now */ if (!cpacf_query(CPACF_PCKMO, &pckmo_functions)) return -ENODEV; } /* check for the pckmo subfunction we need now */ if (!cpacf_test_func(&pckmo_functions, fc)) { DEBUG_ERR("%s pckmo functions not available\n", __func__); return -ENODEV; } /* prepare param block */ memset(paramblock, 0, sizeof(paramblock)); memcpy(paramblock, clrkey->clrkey, keysize); /* call the pckmo instruction */ cpacf_pckmo(fc, paramblock); /* copy created protected key */ protkey->type = keytype; protkey->len = keysize + 32; memcpy(protkey->protkey, paramblock, keysize + 32); return 0; } /* * Find card and transform secure key into protected key. */ static int pkey_skey2pkey(const u8 *key, struct pkey_protkey *pkey) { int rc, verify; u16 cardnr, domain; struct keytoken_header *hdr = (struct keytoken_header *)key; /* * The cca_xxx2protkey call may fail when a card has been * addressed where the master key was changed after last fetch * of the mkvp into the cache. Try 3 times: First witout verify * then with verify and last round with verify and old master * key verification pattern match not ignored. */ for (verify = 0; verify < 3; verify++) { rc = cca_findcard(key, &cardnr, &domain, verify); if (rc < 0) continue; if (rc > 0 && verify < 2) continue; switch (hdr->version) { case TOKVER_CCA_AES: rc = cca_sec2protkey(cardnr, domain, key, pkey->protkey, &pkey->len, &pkey->type); break; case TOKVER_CCA_VLSC: rc = cca_cipher2protkey(cardnr, domain, key, pkey->protkey, &pkey->len, &pkey->type); break; default: return -EINVAL; } if (rc == 0) break; } if (rc) DEBUG_DBG("%s failed rc=%d\n", __func__, rc); return rc; } /* * Construct EP11 key with given clear key value. */ static int pkey_clr2ep11key(const u8 *clrkey, size_t clrkeylen, u8 *keybuf, size_t *keybuflen) { int i, rc; u16 card, dom; u32 nr_apqns, *apqns = NULL; /* build a list of apqns suitable for ep11 keys with cpacf support */ rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF, ZCRYPT_CEX7, EP11_API_V, NULL); if (rc) goto out; /* go through the list of apqns and try to bild an ep11 key */ for (rc = -ENODEV, i = 0; i < nr_apqns; i++) { card = apqns[i] >> 16; dom = apqns[i] & 0xFFFF; rc = ep11_clr2keyblob(card, dom, clrkeylen * 8, 0, clrkey, keybuf, keybuflen); if (rc == 0) break; } out: kfree(apqns); if (rc) DEBUG_DBG("%s failed rc=%d\n", __func__, rc); return rc; } /* * Find card and transform EP11 secure key into protected key. */ static int pkey_ep11key2pkey(const u8 *key, struct pkey_protkey *pkey) { int i, rc; u16 card, dom; u32 nr_apqns, *apqns = NULL; struct ep11keyblob *kb = (struct ep11keyblob *) key; /* build a list of apqns suitable for this key */ rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF, ZCRYPT_CEX7, EP11_API_V, kb->wkvp); if (rc) goto out; /* go through the list of apqns and try to derive an pkey */ for (rc = -ENODEV, i = 0; i < nr_apqns; i++) { card = apqns[i] >> 16; dom = apqns[i] & 0xFFFF; pkey->len = sizeof(pkey->protkey); rc = ep11_kblob2protkey(card, dom, key, kb->head.len, pkey->protkey, &pkey->len, &pkey->type); if (rc == 0) break; } out: kfree(apqns); if (rc) DEBUG_DBG("%s failed rc=%d\n", __func__, rc); return rc; } /* * Verify key and give back some info about the key. */ static int pkey_verifykey(const struct pkey_seckey *seckey, u16 *pcardnr, u16 *pdomain, u16 *pkeysize, u32 *pattributes) { struct secaeskeytoken *t = (struct secaeskeytoken *) seckey; u16 cardnr, domain; int rc; /* check the secure key for valid AES secure key */ rc = cca_check_secaeskeytoken(debug_info, 3, (u8 *) seckey, 0); if (rc) goto out; if (pattributes) *pattributes = PKEY_VERIFY_ATTR_AES; if (pkeysize) *pkeysize = t->bitsize; /* try to find a card which can handle this key */ rc = cca_findcard(seckey->seckey, &cardnr, &domain, 1); if (rc < 0) goto out; if (rc > 0) { /* key mkvp matches to old master key mkvp */ DEBUG_DBG("%s secure key has old mkvp\n", __func__); if (pattributes) *pattributes |= PKEY_VERIFY_ATTR_OLD_MKVP; rc = 0; } if (pcardnr) *pcardnr = cardnr; if (pdomain) *pdomain = domain; out: DEBUG_DBG("%s rc=%d\n", __func__, rc); return rc; } /* * Generate a random protected key */ static int pkey_genprotkey(u32 keytype, struct pkey_protkey *protkey) { struct pkey_clrkey clrkey; int keysize; int rc; switch (keytype) { case PKEY_KEYTYPE_AES_128: keysize = 16; break; case PKEY_KEYTYPE_AES_192: keysize = 24; break; case PKEY_KEYTYPE_AES_256: keysize = 32; break; default: DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__, keytype); return -EINVAL; } /* generate a dummy random clear key */ get_random_bytes(clrkey.clrkey, keysize); /* convert it to a dummy protected key */ rc = pkey_clr2protkey(keytype, &clrkey, protkey); if (rc) return rc; /* replace the key part of the protected key with random bytes */ get_random_bytes(protkey->protkey, keysize); return 0; } /* * Verify if a protected key is still valid */ static int pkey_verifyprotkey(const struct pkey_protkey *protkey) { unsigned long fc; struct { u8 iv[AES_BLOCK_SIZE]; u8 key[MAXPROTKEYSIZE]; } param; u8 null_msg[AES_BLOCK_SIZE]; u8 dest_buf[AES_BLOCK_SIZE]; unsigned int k; switch (protkey->type) { case PKEY_KEYTYPE_AES_128: fc = CPACF_KMC_PAES_128; break; case PKEY_KEYTYPE_AES_192: fc = CPACF_KMC_PAES_192; break; case PKEY_KEYTYPE_AES_256: fc = CPACF_KMC_PAES_256; break; default: DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__, protkey->type); return -EINVAL; } memset(null_msg, 0, sizeof(null_msg)); memset(param.iv, 0, sizeof(param.iv)); memcpy(param.key, protkey->protkey, sizeof(param.key)); k = cpacf_kmc(fc | CPACF_ENCRYPT, ¶m, null_msg, dest_buf, sizeof(null_msg)); if (k != sizeof(null_msg)) { DEBUG_ERR("%s protected key is not valid\n", __func__); return -EKEYREJECTED; } return 0; } /* * Transform a non-CCA key token into a protected key */ static int pkey_nonccatok2pkey(const u8 *key, u32 keylen, struct pkey_protkey *protkey) { int rc = -EINVAL; u8 *tmpbuf = NULL; struct keytoken_header *hdr = (struct keytoken_header *)key; switch (hdr->version) { case TOKVER_PROTECTED_KEY: { struct protaeskeytoken *t; if (keylen != sizeof(struct protaeskeytoken)) goto out; t = (struct protaeskeytoken *)key; protkey->len = t->len; protkey->type = t->keytype; memcpy(protkey->protkey, t->protkey, sizeof(protkey->protkey)); rc = pkey_verifyprotkey(protkey); break; } case TOKVER_CLEAR_KEY: { struct clearaeskeytoken *t; struct pkey_clrkey ckey; union u_tmpbuf { u8 skey[SECKEYBLOBSIZE]; u8 ep11key[MAXEP11AESKEYBLOBSIZE]; }; size_t tmpbuflen = sizeof(union u_tmpbuf); if (keylen < sizeof(struct clearaeskeytoken)) goto out; t = (struct clearaeskeytoken *)key; if (keylen != sizeof(*t) + t->len) goto out; if ((t->keytype == PKEY_KEYTYPE_AES_128 && t->len == 16) || (t->keytype == PKEY_KEYTYPE_AES_192 && t->len == 24) || (t->keytype == PKEY_KEYTYPE_AES_256 && t->len == 32)) memcpy(ckey.clrkey, t->clearkey, t->len); else goto out; /* alloc temp key buffer space */ tmpbuf = kmalloc(tmpbuflen, GFP_ATOMIC); if (!tmpbuf) { rc = -ENOMEM; goto out; } /* try direct way with the PCKMO instruction */ rc = pkey_clr2protkey(t->keytype, &ckey, protkey); if (rc == 0) break; /* PCKMO failed, so try the CCA secure key way */ rc = cca_clr2seckey(0xFFFF, 0xFFFF, t->keytype, ckey.clrkey, tmpbuf); if (rc == 0) rc = pkey_skey2pkey(tmpbuf, protkey); if (rc == 0) break; /* if the CCA way also failed, let's try via EP11 */ rc = pkey_clr2ep11key(ckey.clrkey, t->len, tmpbuf, &tmpbuflen); if (rc == 0) rc = pkey_ep11key2pkey(tmpbuf, protkey); /* now we should really have an protected key */ DEBUG_ERR("%s unable to build protected key from clear", __func__); break; } case TOKVER_EP11_AES: { /* check ep11 key for exportable as protected key */ rc = ep11_check_aes_key(debug_info, 3, key, keylen, 1); if (rc) goto out; rc = pkey_ep11key2pkey(key, protkey); break; } case TOKVER_EP11_AES_WITH_HEADER: /* check ep11 key with header for exportable as protected key */ rc = ep11_check_aes_key_with_hdr(debug_info, 3, key, keylen, 1); if (rc) goto out; rc = pkey_ep11key2pkey(key + sizeof(struct ep11kblob_header), protkey); break; default: DEBUG_ERR("%s unknown/unsupported non-CCA token version %d\n", __func__, hdr->version); rc = -EINVAL; } out: kfree(tmpbuf); return rc; } /* * Transform a CCA internal key token into a protected key */ static int pkey_ccainttok2pkey(const u8 *key, u32 keylen, struct pkey_protkey *protkey) { struct keytoken_header *hdr = (struct keytoken_header *)key; switch (hdr->version) { case TOKVER_CCA_AES: if (keylen != sizeof(struct secaeskeytoken)) return -EINVAL; break; case TOKVER_CCA_VLSC: if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE) return -EINVAL; break; default: DEBUG_ERR("%s unknown/unsupported CCA internal token version %d\n", __func__, hdr->version); return -EINVAL; } return pkey_skey2pkey(key, protkey); } /* * Transform a key blob (of any type) into a protected key */ int pkey_keyblob2pkey(const u8 *key, u32 keylen, struct pkey_protkey *protkey) { int rc; struct keytoken_header *hdr = (struct keytoken_header *)key; if (keylen < sizeof(struct keytoken_header)) { DEBUG_ERR("%s invalid keylen %d\n", __func__, keylen); return -EINVAL; } switch (hdr->type) { case TOKTYPE_NON_CCA: rc = pkey_nonccatok2pkey(key, keylen, protkey); break; case TOKTYPE_CCA_INTERNAL: rc = pkey_ccainttok2pkey(key, keylen, protkey); break; default: DEBUG_ERR("%s unknown/unsupported blob type %d\n", __func__, hdr->type); return -EINVAL; } DEBUG_DBG("%s rc=%d\n", __func__, rc); return rc; } EXPORT_SYMBOL(pkey_keyblob2pkey); static int pkey_genseckey2(const struct pkey_apqn *apqns, size_t nr_apqns, enum pkey_key_type ktype, enum pkey_key_size ksize, u32 kflags, u8 *keybuf, size_t *keybufsize) { int i, card, dom, rc; /* check for at least one apqn given */ if (!apqns || !nr_apqns) return -EINVAL; /* check key type and size */ switch (ktype) { case PKEY_TYPE_CCA_DATA: case PKEY_TYPE_CCA_CIPHER: if (*keybufsize < SECKEYBLOBSIZE) return -EINVAL; break; case PKEY_TYPE_EP11: if (*keybufsize < MINEP11AESKEYBLOBSIZE) return -EINVAL; break; default: return -EINVAL; } switch (ksize) { case PKEY_SIZE_AES_128: case PKEY_SIZE_AES_192: case PKEY_SIZE_AES_256: break; default: return -EINVAL; } /* simple try all apqns from the list */ for (i = 0, rc = -ENODEV; i < nr_apqns; i++) { card = apqns[i].card; dom = apqns[i].domain; if (ktype == PKEY_TYPE_EP11) { rc = ep11_genaeskey(card, dom, ksize, kflags, keybuf, keybufsize); } else if (ktype == PKEY_TYPE_CCA_DATA) { rc = cca_genseckey(card, dom, ksize, keybuf); *keybufsize = (rc ? 0 : SECKEYBLOBSIZE); } else /* TOKVER_CCA_VLSC */ rc = cca_gencipherkey(card, dom, ksize, kflags, keybuf, keybufsize); if (rc == 0) break; } return rc; } static int pkey_clr2seckey2(const struct pkey_apqn *apqns, size_t nr_apqns, enum pkey_key_type ktype, enum pkey_key_size ksize, u32 kflags, const u8 *clrkey, u8 *keybuf, size_t *keybufsize) { int i, card, dom, rc; /* check for at least one apqn given */ if (!apqns || !nr_apqns) return -EINVAL; /* check key type and size */ switch (ktype) { case PKEY_TYPE_CCA_DATA: case PKEY_TYPE_CCA_CIPHER: if (*keybufsize < SECKEYBLOBSIZE) return -EINVAL; break; case PKEY_TYPE_EP11: if (*keybufsize < MINEP11AESKEYBLOBSIZE) return -EINVAL; break; default: return -EINVAL; } switch (ksize) { case PKEY_SIZE_AES_128: case PKEY_SIZE_AES_192: case PKEY_SIZE_AES_256: break; default: return -EINVAL; } /* simple try all apqns from the list */ for (i = 0, rc = -ENODEV; i < nr_apqns; i++) { card = apqns[i].card; dom = apqns[i].domain; if (ktype == PKEY_TYPE_EP11) { rc = ep11_clr2keyblob(card, dom, ksize, kflags, clrkey, keybuf, keybufsize); } else if (ktype == PKEY_TYPE_CCA_DATA) { rc = cca_clr2seckey(card, dom, ksize, clrkey, keybuf); *keybufsize = (rc ? 0 : SECKEYBLOBSIZE); } else /* TOKVER_CCA_VLSC */ rc = cca_clr2cipherkey(card, dom, ksize, kflags, clrkey, keybuf, keybufsize); if (rc == 0) break; } return rc; } static int pkey_verifykey2(const u8 *key, size_t keylen, u16 *cardnr, u16 *domain, enum pkey_key_type *ktype, enum pkey_key_size *ksize, u32 *flags) { int rc; u32 _nr_apqns, *_apqns = NULL; struct keytoken_header *hdr = (struct keytoken_header *)key; if (keylen < sizeof(struct keytoken_header)) return -EINVAL; if (hdr->type == TOKTYPE_CCA_INTERNAL && hdr->version == TOKVER_CCA_AES) { struct secaeskeytoken *t = (struct secaeskeytoken *)key; rc = cca_check_secaeskeytoken(debug_info, 3, key, 0); if (rc) goto out; if (ktype) *ktype = PKEY_TYPE_CCA_DATA; if (ksize) *ksize = (enum pkey_key_size) t->bitsize; rc = cca_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain, ZCRYPT_CEX3C, AES_MK_SET, t->mkvp, 0, 1); if (rc == 0 && flags) *flags = PKEY_FLAGS_MATCH_CUR_MKVP; if (rc == -ENODEV) { rc = cca_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain, ZCRYPT_CEX3C, AES_MK_SET, 0, t->mkvp, 1); if (rc == 0 && flags) *flags = PKEY_FLAGS_MATCH_ALT_MKVP; } if (rc) goto out; *cardnr = ((struct pkey_apqn *)_apqns)->card; *domain = ((struct pkey_apqn *)_apqns)->domain; } else if (hdr->type == TOKTYPE_CCA_INTERNAL && hdr->version == TOKVER_CCA_VLSC) { struct cipherkeytoken *t = (struct cipherkeytoken *)key; rc = cca_check_secaescipherkey(debug_info, 3, key, 0, 1); if (rc) goto out; if (ktype) *ktype = PKEY_TYPE_CCA_CIPHER; if (ksize) { *ksize = PKEY_SIZE_UNKNOWN; if (!t->plfver && t->wpllen == 512) *ksize = PKEY_SIZE_AES_128; else if (!t->plfver && t->wpllen == 576) *ksize = PKEY_SIZE_AES_192; else if (!t->plfver && t->wpllen == 640) *ksize = PKEY_SIZE_AES_256; } rc = cca_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain, ZCRYPT_CEX6, AES_MK_SET, t->mkvp0, 0, 1); if (rc == 0 && flags) *flags = PKEY_FLAGS_MATCH_CUR_MKVP; if (rc == -ENODEV) { rc = cca_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain, ZCRYPT_CEX6, AES_MK_SET, 0, t->mkvp0, 1); if (rc == 0 && flags) *flags = PKEY_FLAGS_MATCH_ALT_MKVP; } if (rc) goto out; *cardnr = ((struct pkey_apqn *)_apqns)->card; *domain = ((struct pkey_apqn *)_apqns)->domain; } else if (hdr->type == TOKTYPE_NON_CCA && hdr->version == TOKVER_EP11_AES) { struct ep11keyblob *kb = (struct ep11keyblob *)key; rc = ep11_check_aes_key(debug_info, 3, key, keylen, 1); if (rc) goto out; if (ktype) *ktype = PKEY_TYPE_EP11; if (ksize) *ksize = kb->head.bitlen; rc = ep11_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain, ZCRYPT_CEX7, EP11_API_V, kb->wkvp); if (rc) goto out; if (flags) *flags = PKEY_FLAGS_MATCH_CUR_MKVP; *cardnr = ((struct pkey_apqn *)_apqns)->card; *domain = ((struct pkey_apqn *)_apqns)->domain; } else rc = -EINVAL; out: kfree(_apqns); return rc; } static int pkey_keyblob2pkey2(const struct pkey_apqn *apqns, size_t nr_apqns, const u8 *key, size_t keylen, struct pkey_protkey *pkey) { int i, card, dom, rc; struct keytoken_header *hdr = (struct keytoken_header *)key; /* check for at least one apqn given */ if (!apqns || !nr_apqns) return -EINVAL; if (keylen < sizeof(struct keytoken_header)) return -EINVAL; if (hdr->type == TOKTYPE_CCA_INTERNAL) { if (hdr->version == TOKVER_CCA_AES) { if (keylen != sizeof(struct secaeskeytoken)) return -EINVAL; if (cca_check_secaeskeytoken(debug_info, 3, key, 0)) return -EINVAL; } else if (hdr->version == TOKVER_CCA_VLSC) { if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE) return -EINVAL; if (cca_check_secaescipherkey(debug_info, 3, key, 0, 1)) return -EINVAL; } else { DEBUG_ERR("%s unknown CCA internal token version %d\n", __func__, hdr->version); return -EINVAL; } } else if (hdr->type == TOKTYPE_NON_CCA) { if (hdr->version == TOKVER_EP11_AES) { if (keylen < sizeof(struct ep11keyblob)) return -EINVAL; if (ep11_check_aes_key(debug_info, 3, key, keylen, 1)) return -EINVAL; } else { return pkey_nonccatok2pkey(key, keylen, pkey); } } else { DEBUG_ERR("%s unknown/unsupported blob type %d\n", __func__, hdr->type); return -EINVAL; } /* simple try all apqns from the list */ for (i = 0, rc = -ENODEV; i < nr_apqns; i++) { card = apqns[i].card; dom = apqns[i].domain; if (hdr->type == TOKTYPE_CCA_INTERNAL && hdr->version == TOKVER_CCA_AES) rc = cca_sec2protkey(card, dom, key, pkey->protkey, &pkey->len, &pkey->type); else if (hdr->type == TOKTYPE_CCA_INTERNAL && hdr->version == TOKVER_CCA_VLSC) rc = cca_cipher2protkey(card, dom, key, pkey->protkey, &pkey->len, &pkey->type); else { /* EP11 AES secure key blob */ struct ep11keyblob *kb = (struct ep11keyblob *) key; pkey->len = sizeof(pkey->protkey); rc = ep11_kblob2protkey(card, dom, key, kb->head.len, pkey->protkey, &pkey->len, &pkey->type); } if (rc == 0) break; } return rc; } static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags, struct pkey_apqn *apqns, size_t *nr_apqns) { int rc; u32 _nr_apqns, *_apqns = NULL; struct keytoken_header *hdr = (struct keytoken_header *)key; if (keylen < sizeof(struct keytoken_header) || flags == 0) return -EINVAL; if (hdr->type == TOKTYPE_NON_CCA && (hdr->version == TOKVER_EP11_AES_WITH_HEADER || hdr->version == TOKVER_EP11_ECC_WITH_HEADER) && is_ep11_keyblob(key + sizeof(struct ep11kblob_header))) { int minhwtype = 0, api = 0; struct ep11keyblob *kb = (struct ep11keyblob *) (key + sizeof(struct ep11kblob_header)); if (flags != PKEY_FLAGS_MATCH_CUR_MKVP) return -EINVAL; if (kb->attr & EP11_BLOB_PKEY_EXTRACTABLE) { minhwtype = ZCRYPT_CEX7; api = EP11_API_V; } rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF, minhwtype, api, kb->wkvp); if (rc) goto out; } else if (hdr->type == TOKTYPE_NON_CCA && hdr->version == TOKVER_EP11_AES && is_ep11_keyblob(key)) { int minhwtype = 0, api = 0; struct ep11keyblob *kb = (struct ep11keyblob *) key; if (flags != PKEY_FLAGS_MATCH_CUR_MKVP) return -EINVAL; if (kb->attr & EP11_BLOB_PKEY_EXTRACTABLE) { minhwtype = ZCRYPT_CEX7; api = EP11_API_V; } rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF, minhwtype, api, kb->wkvp); if (rc) goto out; } else if (hdr->type == TOKTYPE_CCA_INTERNAL) { int minhwtype = ZCRYPT_CEX3C; u64 cur_mkvp = 0, old_mkvp = 0; if (hdr->version == TOKVER_CCA_AES) { struct secaeskeytoken *t = (struct secaeskeytoken *)key; if (flags & PKEY_FLAGS_MATCH_CUR_MKVP) cur_mkvp = t->mkvp; if (flags & PKEY_FLAGS_MATCH_ALT_MKVP) old_mkvp = t->mkvp; } else if (hdr->version == TOKVER_CCA_VLSC) { struct cipherkeytoken *t = (struct cipherkeytoken *)key; minhwtype = ZCRYPT_CEX6; if (flags & PKEY_FLAGS_MATCH_CUR_MKVP) cur_mkvp = t->mkvp0; if (flags & PKEY_FLAGS_MATCH_ALT_MKVP) old_mkvp = t->mkvp0; } else { /* unknown cca internal token type */ return -EINVAL; } rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF, minhwtype, AES_MK_SET, cur_mkvp, old_mkvp, 1); if (rc) goto out; } else if (hdr->type == TOKTYPE_CCA_INTERNAL_PKA) { u64 cur_mkvp = 0, old_mkvp = 0; struct eccprivkeytoken *t = (struct eccprivkeytoken *)key; if (t->secid == 0x20) { if (flags & PKEY_FLAGS_MATCH_CUR_MKVP) cur_mkvp = t->mkvp; if (flags & PKEY_FLAGS_MATCH_ALT_MKVP) old_mkvp = t->mkvp; } else { /* unknown cca internal 2 token type */ return -EINVAL; } rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF, ZCRYPT_CEX7, APKA_MK_SET, cur_mkvp, old_mkvp, 1); if (rc) goto out; } else return -EINVAL; if (apqns) { if (*nr_apqns < _nr_apqns) rc = -ENOSPC; else memcpy(apqns, _apqns, _nr_apqns * sizeof(u32)); } *nr_apqns = _nr_apqns; out: kfree(_apqns); return rc; } static int pkey_apqns4keytype(enum pkey_key_type ktype, u8 cur_mkvp[32], u8 alt_mkvp[32], u32 flags, struct pkey_apqn *apqns, size_t *nr_apqns) { int rc; u32 _nr_apqns, *_apqns = NULL; if (ktype == PKEY_TYPE_CCA_DATA || ktype == PKEY_TYPE_CCA_CIPHER) { u64 cur_mkvp = 0, old_mkvp = 0; int minhwtype = ZCRYPT_CEX3C; if (flags & PKEY_FLAGS_MATCH_CUR_MKVP) cur_mkvp = *((u64 *) cur_mkvp); if (flags & PKEY_FLAGS_MATCH_ALT_MKVP) old_mkvp = *((u64 *) alt_mkvp); if (ktype == PKEY_TYPE_CCA_CIPHER) minhwtype = ZCRYPT_CEX6; rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF, minhwtype, AES_MK_SET, cur_mkvp, old_mkvp, 1); if (rc) goto out; } else if (ktype == PKEY_TYPE_CCA_ECC) { u64 cur_mkvp = 0, old_mkvp = 0; if (flags & PKEY_FLAGS_MATCH_CUR_MKVP) cur_mkvp = *((u64 *) cur_mkvp); if (flags & PKEY_FLAGS_MATCH_ALT_MKVP) old_mkvp = *((u64 *) alt_mkvp); rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF, ZCRYPT_CEX7, APKA_MK_SET, cur_mkvp, old_mkvp, 1); if (rc) goto out; } else if (ktype == PKEY_TYPE_EP11 || ktype == PKEY_TYPE_EP11_AES || ktype == PKEY_TYPE_EP11_ECC) { u8 *wkvp = NULL; if (flags & PKEY_FLAGS_MATCH_CUR_MKVP) wkvp = cur_mkvp; rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF, ZCRYPT_CEX7, EP11_API_V, wkvp); if (rc) goto out; } else return -EINVAL; if (apqns) { if (*nr_apqns < _nr_apqns) rc = -ENOSPC; else memcpy(apqns, _apqns, _nr_apqns * sizeof(u32)); } *nr_apqns = _nr_apqns; out: kfree(_apqns); return rc; } static int pkey_keyblob2pkey3(const struct pkey_apqn *apqns, size_t nr_apqns, const u8 *key, size_t keylen, u32 *protkeytype, u8 *protkey, u32 *protkeylen) { int i, card, dom, rc; struct keytoken_header *hdr = (struct keytoken_header *)key; /* check for at least one apqn given */ if (!apqns || !nr_apqns) return -EINVAL; if (keylen < sizeof(struct keytoken_header)) return -EINVAL; if (hdr->type == TOKTYPE_NON_CCA && hdr->version == TOKVER_EP11_AES_WITH_HEADER && is_ep11_keyblob(key + sizeof(struct ep11kblob_header))) { /* EP11 AES key blob with header */ if (ep11_check_aes_key_with_hdr(debug_info, 3, key, keylen, 1)) return -EINVAL; } else if (hdr->type == TOKTYPE_NON_CCA && hdr->version == TOKVER_EP11_ECC_WITH_HEADER && is_ep11_keyblob(key + sizeof(struct ep11kblob_header))) { /* EP11 ECC key blob with header */ if (ep11_check_ecc_key_with_hdr(debug_info, 3, key, keylen, 1)) return -EINVAL; } else if (hdr->type == TOKTYPE_NON_CCA && hdr->version == TOKVER_EP11_AES && is_ep11_keyblob(key)) { /* EP11 AES key blob with header in session field */ if (ep11_check_aes_key(debug_info, 3, key, keylen, 1)) return -EINVAL; } else if (hdr->type == TOKTYPE_CCA_INTERNAL) { if (hdr->version == TOKVER_CCA_AES) { /* CCA AES data key */ if (keylen != sizeof(struct secaeskeytoken)) return -EINVAL; if (cca_check_secaeskeytoken(debug_info, 3, key, 0)) return -EINVAL; } else if (hdr->version == TOKVER_CCA_VLSC) { /* CCA AES cipher key */ if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE) return -EINVAL; if (cca_check_secaescipherkey(debug_info, 3, key, 0, 1)) return -EINVAL; } else { DEBUG_ERR("%s unknown CCA internal token version %d\n", __func__, hdr->version); return -EINVAL; } } else if (hdr->type == TOKTYPE_CCA_INTERNAL_PKA) { /* CCA ECC (private) key */ if (keylen < sizeof(struct eccprivkeytoken)) return -EINVAL; if (cca_check_sececckeytoken(debug_info, 3, key, keylen, 1)) return -EINVAL; } else if (hdr->type == TOKTYPE_NON_CCA) { struct pkey_protkey pkey; rc = pkey_nonccatok2pkey(key, keylen, &pkey); if (rc) return rc; memcpy(protkey, pkey.protkey, pkey.len); *protkeylen = pkey.len; *protkeytype = pkey.type; return 0; } else { DEBUG_ERR("%s unknown/unsupported blob type %d\n", __func__, hdr->type); return -EINVAL; } /* simple try all apqns from the list */ for (rc = -ENODEV, i = 0; rc && i < nr_apqns; i++) { card = apqns[i].card; dom = apqns[i].domain; if (hdr->type == TOKTYPE_NON_CCA && (hdr->version == TOKVER_EP11_AES_WITH_HEADER || hdr->version == TOKVER_EP11_ECC_WITH_HEADER) && is_ep11_keyblob(key + sizeof(struct ep11kblob_header))) rc = ep11_kblob2protkey(card, dom, key, hdr->len, protkey, protkeylen, protkeytype); else if (hdr->type == TOKTYPE_NON_CCA && hdr->version == TOKVER_EP11_AES && is_ep11_keyblob(key)) rc = ep11_kblob2protkey(card, dom, key, hdr->len, protkey, protkeylen, protkeytype); else if (hdr->type == TOKTYPE_CCA_INTERNAL && hdr->version == TOKVER_CCA_AES) rc = cca_sec2protkey(card, dom, key, protkey, protkeylen, protkeytype); else if (hdr->type == TOKTYPE_CCA_INTERNAL && hdr->version == TOKVER_CCA_VLSC) rc = cca_cipher2protkey(card, dom, key, protkey, protkeylen, protkeytype); else if (hdr->type == TOKTYPE_CCA_INTERNAL_PKA) rc = cca_ecc2protkey(card, dom, key, protkey, protkeylen, protkeytype); else return -EINVAL; } return rc; } /* * File io functions */ static void *_copy_key_from_user(void __user *ukey, size_t keylen) { if (!ukey || keylen < MINKEYBLOBSIZE || keylen > KEYBLOBBUFSIZE) return ERR_PTR(-EINVAL); return memdup_user(ukey, keylen); } static void *_copy_apqns_from_user(void __user *uapqns, size_t nr_apqns) { if (!uapqns || nr_apqns == 0) return NULL; return memdup_user(uapqns, nr_apqns * sizeof(struct pkey_apqn)); } static long pkey_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int rc; switch (cmd) { case PKEY_GENSECK: { struct pkey_genseck __user *ugs = (void __user *) arg; struct pkey_genseck kgs; if (copy_from_user(&kgs, ugs, sizeof(kgs))) return -EFAULT; rc = cca_genseckey(kgs.cardnr, kgs.domain, kgs.keytype, kgs.seckey.seckey); DEBUG_DBG("%s cca_genseckey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(ugs, &kgs, sizeof(kgs))) return -EFAULT; break; } case PKEY_CLR2SECK: { struct pkey_clr2seck __user *ucs = (void __user *) arg; struct pkey_clr2seck kcs; if (copy_from_user(&kcs, ucs, sizeof(kcs))) return -EFAULT; rc = cca_clr2seckey(kcs.cardnr, kcs.domain, kcs.keytype, kcs.clrkey.clrkey, kcs.seckey.seckey); DEBUG_DBG("%s cca_clr2seckey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(ucs, &kcs, sizeof(kcs))) return -EFAULT; memzero_explicit(&kcs, sizeof(kcs)); break; } case PKEY_SEC2PROTK: { struct pkey_sec2protk __user *usp = (void __user *) arg; struct pkey_sec2protk ksp; if (copy_from_user(&ksp, usp, sizeof(ksp))) return -EFAULT; rc = cca_sec2protkey(ksp.cardnr, ksp.domain, ksp.seckey.seckey, ksp.protkey.protkey, &ksp.protkey.len, &ksp.protkey.type); DEBUG_DBG("%s cca_sec2protkey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(usp, &ksp, sizeof(ksp))) return -EFAULT; break; } case PKEY_CLR2PROTK: { struct pkey_clr2protk __user *ucp = (void __user *) arg; struct pkey_clr2protk kcp; if (copy_from_user(&kcp, ucp, sizeof(kcp))) return -EFAULT; rc = pkey_clr2protkey(kcp.keytype, &kcp.clrkey, &kcp.protkey); DEBUG_DBG("%s pkey_clr2protkey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(ucp, &kcp, sizeof(kcp))) return -EFAULT; memzero_explicit(&kcp, sizeof(kcp)); break; } case PKEY_FINDCARD: { struct pkey_findcard __user *ufc = (void __user *) arg; struct pkey_findcard kfc; if (copy_from_user(&kfc, ufc, sizeof(kfc))) return -EFAULT; rc = cca_findcard(kfc.seckey.seckey, &kfc.cardnr, &kfc.domain, 1); DEBUG_DBG("%s cca_findcard()=%d\n", __func__, rc); if (rc < 0) break; if (copy_to_user(ufc, &kfc, sizeof(kfc))) return -EFAULT; break; } case PKEY_SKEY2PKEY: { struct pkey_skey2pkey __user *usp = (void __user *) arg; struct pkey_skey2pkey ksp; if (copy_from_user(&ksp, usp, sizeof(ksp))) return -EFAULT; rc = pkey_skey2pkey(ksp.seckey.seckey, &ksp.protkey); DEBUG_DBG("%s pkey_skey2pkey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(usp, &ksp, sizeof(ksp))) return -EFAULT; break; } case PKEY_VERIFYKEY: { struct pkey_verifykey __user *uvk = (void __user *) arg; struct pkey_verifykey kvk; if (copy_from_user(&kvk, uvk, sizeof(kvk))) return -EFAULT; rc = pkey_verifykey(&kvk.seckey, &kvk.cardnr, &kvk.domain, &kvk.keysize, &kvk.attributes); DEBUG_DBG("%s pkey_verifykey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(uvk, &kvk, sizeof(kvk))) return -EFAULT; break; } case PKEY_GENPROTK: { struct pkey_genprotk __user *ugp = (void __user *) arg; struct pkey_genprotk kgp; if (copy_from_user(&kgp, ugp, sizeof(kgp))) return -EFAULT; rc = pkey_genprotkey(kgp.keytype, &kgp.protkey); DEBUG_DBG("%s pkey_genprotkey()=%d\n", __func__, rc); if (rc) break; if (copy_to_user(ugp, &kgp, sizeof(kgp))) return -EFAULT; break; } case PKEY_VERIFYPROTK: { struct pkey_verifyprotk __user *uvp = (void __user *) arg; struct pkey_verifyprotk kvp; if (copy_from_user(&kvp, uvp, sizeof(kvp))) return -EFAULT; rc = pkey_verifyprotkey(&kvp.protkey); DEBUG_DBG("%s pkey_verifyprotkey()=%d\n", __func__, rc); break; } case PKEY_KBLOB2PROTK: { struct pkey_kblob2pkey __user *utp = (void __user *) arg; struct pkey_kblob2pkey ktp; u8 *kkey; if (copy_from_user(&ktp, utp, sizeof(ktp))) return -EFAULT; kkey = _copy_key_from_user(ktp.key, ktp.keylen); if (IS_ERR(kkey)) return PTR_ERR(kkey); rc = pkey_keyblob2pkey(kkey, ktp.keylen, &ktp.protkey); DEBUG_DBG("%s pkey_keyblob2pkey()=%d\n", __func__, rc); memzero_explicit(kkey, ktp.keylen); kfree(kkey); if (rc) break; if (copy_to_user(utp, &ktp, sizeof(ktp))) return -EFAULT; break; } case PKEY_GENSECK2: { struct pkey_genseck2 __user *ugs = (void __user *) arg; struct pkey_genseck2 kgs; struct pkey_apqn *apqns; size_t klen = KEYBLOBBUFSIZE; u8 *kkey; if (copy_from_user(&kgs, ugs, sizeof(kgs))) return -EFAULT; apqns = _copy_apqns_from_user(kgs.apqns, kgs.apqn_entries); if (IS_ERR(apqns)) return PTR_ERR(apqns); kkey = kmalloc(klen, GFP_KERNEL); if (!kkey) { kfree(apqns); return -ENOMEM; } rc = pkey_genseckey2(apqns, kgs.apqn_entries, kgs.type, kgs.size, kgs.keygenflags, kkey, &klen); DEBUG_DBG("%s pkey_genseckey2()=%d\n", __func__, rc); kfree(apqns); if (rc) { kfree(kkey); break; } if (kgs.key) { if (kgs.keylen < klen) { kfree(kkey); return -EINVAL; } if (copy_to_user(kgs.key, kkey, klen)) { kfree(kkey); return -EFAULT; } } kgs.keylen = klen; if (copy_to_user(ugs, &kgs, sizeof(kgs))) rc = -EFAULT; kfree(kkey); break; } case PKEY_CLR2SECK2: { struct pkey_clr2seck2 __user *ucs = (void __user *) arg; struct pkey_clr2seck2 kcs; struct pkey_apqn *apqns; size_t klen = KEYBLOBBUFSIZE; u8 *kkey; if (copy_from_user(&kcs, ucs, sizeof(kcs))) return -EFAULT; apqns = _copy_apqns_from_user(kcs.apqns, kcs.apqn_entries); if (IS_ERR(apqns)) return PTR_ERR(apqns); kkey = kmalloc(klen, GFP_KERNEL); if (!kkey) { kfree(apqns); return -ENOMEM; } rc = pkey_clr2seckey2(apqns, kcs.apqn_entries, kcs.type, kcs.size, kcs.keygenflags, kcs.clrkey.clrkey, kkey, &klen); DEBUG_DBG("%s pkey_clr2seckey2()=%d\n", __func__, rc); kfree(apqns); if (rc) { kfree(kkey); break; } if (kcs.key) { if (kcs.keylen < klen) { kfree(kkey); return -EINVAL; } if (copy_to_user(kcs.key, kkey, klen)) { kfree(kkey); return -EFAULT; } } kcs.keylen = klen; if (copy_to_user(ucs, &kcs, sizeof(kcs))) rc = -EFAULT; memzero_explicit(&kcs, sizeof(kcs)); kfree(kkey); break; } case PKEY_VERIFYKEY2: { struct pkey_verifykey2 __user *uvk = (void __user *) arg; struct pkey_verifykey2 kvk; u8 *kkey; if (copy_from_user(&kvk, uvk, sizeof(kvk))) return -EFAULT; kkey = _copy_key_from_user(kvk.key, kvk.keylen); if (IS_ERR(kkey)) return PTR_ERR(kkey); rc = pkey_verifykey2(kkey, kvk.keylen, &kvk.cardnr, &kvk.domain, &kvk.type, &kvk.size, &kvk.flags); DEBUG_DBG("%s pkey_verifykey2()=%d\n", __func__, rc); kfree(kkey); if (rc) break; if (copy_to_user(uvk, &kvk, sizeof(kvk))) return -EFAULT; break; } case PKEY_KBLOB2PROTK2: { struct pkey_kblob2pkey2 __user *utp = (void __user *) arg; struct pkey_kblob2pkey2 ktp; struct pkey_apqn *apqns = NULL; u8 *kkey; if (copy_from_user(&ktp, utp, sizeof(ktp))) return -EFAULT; apqns = _copy_apqns_from_user(ktp.apqns, ktp.apqn_entries); if (IS_ERR(apqns)) return PTR_ERR(apqns); kkey = _copy_key_from_user(ktp.key, ktp.keylen); if (IS_ERR(kkey)) { kfree(apqns); return PTR_ERR(kkey); } rc = pkey_keyblob2pkey2(apqns, ktp.apqn_entries, kkey, ktp.keylen, &ktp.protkey); DEBUG_DBG("%s pkey_keyblob2pkey2()=%d\n", __func__, rc); kfree(apqns); memzero_explicit(kkey, ktp.keylen); kfree(kkey); if (rc) break; if (copy_to_user(utp, &ktp, sizeof(ktp))) return -EFAULT; break; } case PKEY_APQNS4K: { struct pkey_apqns4key __user *uak = (void __user *) arg; struct pkey_apqns4key kak; struct pkey_apqn *apqns = NULL; size_t nr_apqns, len; u8 *kkey; if (copy_from_user(&kak, uak, sizeof(kak))) return -EFAULT; nr_apqns = kak.apqn_entries; if (nr_apqns) { apqns = kmalloc_array(nr_apqns, sizeof(struct pkey_apqn), GFP_KERNEL); if (!apqns) return -ENOMEM; } kkey = _copy_key_from_user(kak.key, kak.keylen); if (IS_ERR(kkey)) { kfree(apqns); return PTR_ERR(kkey); } rc = pkey_apqns4key(kkey, kak.keylen, kak.flags, apqns, &nr_apqns); DEBUG_DBG("%s pkey_apqns4key()=%d\n", __func__, rc); kfree(kkey); if (rc && rc != -ENOSPC) { kfree(apqns); break; } if (!rc && kak.apqns) { if (nr_apqns > kak.apqn_entries) { kfree(apqns); return -EINVAL; } len = nr_apqns * sizeof(struct pkey_apqn); if (len) { if (copy_to_user(kak.apqns, apqns, len)) { kfree(apqns); return -EFAULT; } } } kak.apqn_entries = nr_apqns; if (copy_to_user(uak, &kak, sizeof(kak))) rc = -EFAULT; kfree(apqns); break; } case PKEY_APQNS4KT: { struct pkey_apqns4keytype __user *uat = (void __user *) arg; struct pkey_apqns4keytype kat; struct pkey_apqn *apqns = NULL; size_t nr_apqns, len; if (copy_from_user(&kat, uat, sizeof(kat))) return -EFAULT; nr_apqns = kat.apqn_entries; if (nr_apqns) { apqns = kmalloc_array(nr_apqns, sizeof(struct pkey_apqn), GFP_KERNEL); if (!apqns) return -ENOMEM; } rc = pkey_apqns4keytype(kat.type, kat.cur_mkvp, kat.alt_mkvp, kat.flags, apqns, &nr_apqns); DEBUG_DBG("%s pkey_apqns4keytype()=%d\n", __func__, rc); if (rc && rc != -ENOSPC) { kfree(apqns); break; } if (!rc && kat.apqns) { if (nr_apqns > kat.apqn_entries) { kfree(apqns); return -EINVAL; } len = nr_apqns * sizeof(struct pkey_apqn); if (len) { if (copy_to_user(kat.apqns, apqns, len)) { kfree(apqns); return -EFAULT; } } } kat.apqn_entries = nr_apqns; if (copy_to_user(uat, &kat, sizeof(kat))) rc = -EFAULT; kfree(apqns); break; } case PKEY_KBLOB2PROTK3: { struct pkey_kblob2pkey3 __user *utp = (void __user *) arg; struct pkey_kblob2pkey3 ktp; struct pkey_apqn *apqns = NULL; u32 protkeylen = PROTKEYBLOBBUFSIZE; u8 *kkey, *protkey; if (copy_from_user(&ktp, utp, sizeof(ktp))) return -EFAULT; apqns = _copy_apqns_from_user(ktp.apqns, ktp.apqn_entries); if (IS_ERR(apqns)) return PTR_ERR(apqns); kkey = _copy_key_from_user(ktp.key, ktp.keylen); if (IS_ERR(kkey)) { kfree(apqns); return PTR_ERR(kkey); } protkey = kmalloc(protkeylen, GFP_KERNEL); if (!protkey) { kfree(apqns); kfree(kkey); return -ENOMEM; } rc = pkey_keyblob2pkey3(apqns, ktp.apqn_entries, kkey, ktp.keylen, &ktp.pkeytype, protkey, &protkeylen); DEBUG_DBG("%s pkey_keyblob2pkey3()=%d\n", __func__, rc); kfree(apqns); memzero_explicit(kkey, ktp.keylen); kfree(kkey); if (rc) { kfree(protkey); break; } if (ktp.pkey && ktp.pkeylen) { if (protkeylen > ktp.pkeylen) { kfree(protkey); return -EINVAL; } if (copy_to_user(ktp.pkey, protkey, protkeylen)) { kfree(protkey); return -EFAULT; } } kfree(protkey); ktp.pkeylen = protkeylen; if (copy_to_user(utp, &ktp, sizeof(ktp))) return -EFAULT; break; } default: /* unknown/unsupported ioctl cmd */ return -ENOTTY; } return rc; } /* * Sysfs and file io operations */ /* * Sysfs attribute read function for all protected key binary attributes. * The implementation can not deal with partial reads, because a new random * protected key blob is generated with each read. In case of partial reads * (i.e. off != 0 or count < key blob size) -EINVAL is returned. */ static ssize_t pkey_protkey_aes_attr_read(u32 keytype, bool is_xts, char *buf, loff_t off, size_t count) { struct protaeskeytoken protkeytoken; struct pkey_protkey protkey; int rc; if (off != 0 || count < sizeof(protkeytoken)) return -EINVAL; if (is_xts) if (count < 2 * sizeof(protkeytoken)) return -EINVAL; memset(&protkeytoken, 0, sizeof(protkeytoken)); protkeytoken.type = TOKTYPE_NON_CCA; protkeytoken.version = TOKVER_PROTECTED_KEY; protkeytoken.keytype = keytype; rc = pkey_genprotkey(protkeytoken.keytype, &protkey); if (rc) return rc; protkeytoken.len = protkey.len; memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len); memcpy(buf, &protkeytoken, sizeof(protkeytoken)); if (is_xts) { rc = pkey_genprotkey(protkeytoken.keytype, &protkey); if (rc) return rc; protkeytoken.len = protkey.len; memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len); memcpy(buf + sizeof(protkeytoken), &protkeytoken, sizeof(protkeytoken)); return 2 * sizeof(protkeytoken); } return sizeof(protkeytoken); } static ssize_t protkey_aes_128_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf, off, count); } static ssize_t protkey_aes_192_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf, off, count); } static ssize_t protkey_aes_256_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf, off, count); } static ssize_t protkey_aes_128_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf, off, count); } static ssize_t protkey_aes_256_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf, off, count); } static BIN_ATTR_RO(protkey_aes_128, sizeof(struct protaeskeytoken)); static BIN_ATTR_RO(protkey_aes_192, sizeof(struct protaeskeytoken)); static BIN_ATTR_RO(protkey_aes_256, sizeof(struct protaeskeytoken)); static BIN_ATTR_RO(protkey_aes_128_xts, 2 * sizeof(struct protaeskeytoken)); static BIN_ATTR_RO(protkey_aes_256_xts, 2 * sizeof(struct protaeskeytoken)); static struct bin_attribute *protkey_attrs[] = { &bin_attr_protkey_aes_128, &bin_attr_protkey_aes_192, &bin_attr_protkey_aes_256, &bin_attr_protkey_aes_128_xts, &bin_attr_protkey_aes_256_xts, NULL }; static struct attribute_group protkey_attr_group = { .name = "protkey", .bin_attrs = protkey_attrs, }; /* * Sysfs attribute read function for all secure key ccadata binary attributes. * The implementation can not deal with partial reads, because a new random * protected key blob is generated with each read. In case of partial reads * (i.e. off != 0 or count < key blob size) -EINVAL is returned. */ static ssize_t pkey_ccadata_aes_attr_read(u32 keytype, bool is_xts, char *buf, loff_t off, size_t count) { int rc; struct pkey_seckey *seckey = (struct pkey_seckey *) buf; if (off != 0 || count < sizeof(struct secaeskeytoken)) return -EINVAL; if (is_xts) if (count < 2 * sizeof(struct secaeskeytoken)) return -EINVAL; rc = cca_genseckey(-1, -1, keytype, seckey->seckey); if (rc) return rc; if (is_xts) { seckey++; rc = cca_genseckey(-1, -1, keytype, seckey->seckey); if (rc) return rc; return 2 * sizeof(struct secaeskeytoken); } return sizeof(struct secaeskeytoken); } static ssize_t ccadata_aes_128_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf, off, count); } static ssize_t ccadata_aes_192_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf, off, count); } static ssize_t ccadata_aes_256_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf, off, count); } static ssize_t ccadata_aes_128_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf, off, count); } static ssize_t ccadata_aes_256_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf, off, count); } static BIN_ATTR_RO(ccadata_aes_128, sizeof(struct secaeskeytoken)); static BIN_ATTR_RO(ccadata_aes_192, sizeof(struct secaeskeytoken)); static BIN_ATTR_RO(ccadata_aes_256, sizeof(struct secaeskeytoken)); static BIN_ATTR_RO(ccadata_aes_128_xts, 2 * sizeof(struct secaeskeytoken)); static BIN_ATTR_RO(ccadata_aes_256_xts, 2 * sizeof(struct secaeskeytoken)); static struct bin_attribute *ccadata_attrs[] = { &bin_attr_ccadata_aes_128, &bin_attr_ccadata_aes_192, &bin_attr_ccadata_aes_256, &bin_attr_ccadata_aes_128_xts, &bin_attr_ccadata_aes_256_xts, NULL }; static struct attribute_group ccadata_attr_group = { .name = "ccadata", .bin_attrs = ccadata_attrs, }; #define CCACIPHERTOKENSIZE (sizeof(struct cipherkeytoken) + 80) /* * Sysfs attribute read function for all secure key ccacipher binary attributes. * The implementation can not deal with partial reads, because a new random * secure key blob is generated with each read. In case of partial reads * (i.e. off != 0 or count < key blob size) -EINVAL is returned. */ static ssize_t pkey_ccacipher_aes_attr_read(enum pkey_key_size keybits, bool is_xts, char *buf, loff_t off, size_t count) { int i, rc, card, dom; u32 nr_apqns, *apqns = NULL; size_t keysize = CCACIPHERTOKENSIZE; if (off != 0 || count < CCACIPHERTOKENSIZE) return -EINVAL; if (is_xts) if (count < 2 * CCACIPHERTOKENSIZE) return -EINVAL; /* build a list of apqns able to generate an cipher key */ rc = cca_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF, ZCRYPT_CEX6, 0, 0, 0, 0); if (rc) return rc; memset(buf, 0, is_xts ? 2 * keysize : keysize); /* simple try all apqns from the list */ for (i = 0, rc = -ENODEV; i < nr_apqns; i++) { card = apqns[i] >> 16; dom = apqns[i] & 0xFFFF; rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize); if (rc == 0) break; } if (rc) return rc; if (is_xts) { keysize = CCACIPHERTOKENSIZE; buf += CCACIPHERTOKENSIZE; rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize); if (rc == 0) return 2 * CCACIPHERTOKENSIZE; } return CCACIPHERTOKENSIZE; } static ssize_t ccacipher_aes_128_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_128, false, buf, off, count); } static ssize_t ccacipher_aes_192_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_192, false, buf, off, count); } static ssize_t ccacipher_aes_256_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_256, false, buf, off, count); } static ssize_t ccacipher_aes_128_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_128, true, buf, off, count); } static ssize_t ccacipher_aes_256_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_256, true, buf, off, count); } static BIN_ATTR_RO(ccacipher_aes_128, CCACIPHERTOKENSIZE); static BIN_ATTR_RO(ccacipher_aes_192, CCACIPHERTOKENSIZE); static BIN_ATTR_RO(ccacipher_aes_256, CCACIPHERTOKENSIZE); static BIN_ATTR_RO(ccacipher_aes_128_xts, 2 * CCACIPHERTOKENSIZE); static BIN_ATTR_RO(ccacipher_aes_256_xts, 2 * CCACIPHERTOKENSIZE); static struct bin_attribute *ccacipher_attrs[] = { &bin_attr_ccacipher_aes_128, &bin_attr_ccacipher_aes_192, &bin_attr_ccacipher_aes_256, &bin_attr_ccacipher_aes_128_xts, &bin_attr_ccacipher_aes_256_xts, NULL }; static struct attribute_group ccacipher_attr_group = { .name = "ccacipher", .bin_attrs = ccacipher_attrs, }; /* * Sysfs attribute read function for all ep11 aes key binary attributes. * The implementation can not deal with partial reads, because a new random * secure key blob is generated with each read. In case of partial reads * (i.e. off != 0 or count < key blob size) -EINVAL is returned. * This function and the sysfs attributes using it provide EP11 key blobs * padded to the upper limit of MAXEP11AESKEYBLOBSIZE which is currently * 320 bytes. */ static ssize_t pkey_ep11_aes_attr_read(enum pkey_key_size keybits, bool is_xts, char *buf, loff_t off, size_t count) { int i, rc, card, dom; u32 nr_apqns, *apqns = NULL; size_t keysize = MAXEP11AESKEYBLOBSIZE; if (off != 0 || count < MAXEP11AESKEYBLOBSIZE) return -EINVAL; if (is_xts) if (count < 2 * MAXEP11AESKEYBLOBSIZE) return -EINVAL; /* build a list of apqns able to generate an cipher key */ rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF, ZCRYPT_CEX7, EP11_API_V, NULL); if (rc) return rc; memset(buf, 0, is_xts ? 2 * keysize : keysize); /* simple try all apqns from the list */ for (i = 0, rc = -ENODEV; i < nr_apqns; i++) { card = apqns[i] >> 16; dom = apqns[i] & 0xFFFF; rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize); if (rc == 0) break; } if (rc) return rc; if (is_xts) { keysize = MAXEP11AESKEYBLOBSIZE; buf += MAXEP11AESKEYBLOBSIZE; rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize); if (rc == 0) return 2 * MAXEP11AESKEYBLOBSIZE; } return MAXEP11AESKEYBLOBSIZE; } static ssize_t ep11_aes_128_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, false, buf, off, count); } static ssize_t ep11_aes_192_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_192, false, buf, off, count); } static ssize_t ep11_aes_256_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, false, buf, off, count); } static ssize_t ep11_aes_128_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, true, buf, off, count); } static ssize_t ep11_aes_256_xts_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, true, buf, off, count); } static BIN_ATTR_RO(ep11_aes_128, MAXEP11AESKEYBLOBSIZE); static BIN_ATTR_RO(ep11_aes_192, MAXEP11AESKEYBLOBSIZE); static BIN_ATTR_RO(ep11_aes_256, MAXEP11AESKEYBLOBSIZE); static BIN_ATTR_RO(ep11_aes_128_xts, 2 * MAXEP11AESKEYBLOBSIZE); static BIN_ATTR_RO(ep11_aes_256_xts, 2 * MAXEP11AESKEYBLOBSIZE); static struct bin_attribute *ep11_attrs[] = { &bin_attr_ep11_aes_128, &bin_attr_ep11_aes_192, &bin_attr_ep11_aes_256, &bin_attr_ep11_aes_128_xts, &bin_attr_ep11_aes_256_xts, NULL }; static struct attribute_group ep11_attr_group = { .name = "ep11", .bin_attrs = ep11_attrs, }; static const struct attribute_group *pkey_attr_groups[] = { &protkey_attr_group, &ccadata_attr_group, &ccacipher_attr_group, &ep11_attr_group, NULL, }; static const struct file_operations pkey_fops = { .owner = THIS_MODULE, .open = nonseekable_open, .llseek = no_llseek, .unlocked_ioctl = pkey_unlocked_ioctl, }; static struct miscdevice pkey_dev = { .name = "pkey", .minor = MISC_DYNAMIC_MINOR, .mode = 0666, .fops = &pkey_fops, .groups = pkey_attr_groups, }; /* * Module init */ static int __init pkey_init(void) { cpacf_mask_t func_mask; /* * The pckmo instruction should be available - even if we don't * actually invoke it. This instruction comes with MSA 3 which * is also the minimum level for the kmc instructions which * are able to work with protected keys. */ if (!cpacf_query(CPACF_PCKMO, &func_mask)) return -ENODEV; /* check for kmc instructions available */ if (!cpacf_query(CPACF_KMC, &func_mask)) return -ENODEV; if (!cpacf_test_func(&func_mask, CPACF_KMC_PAES_128) || !cpacf_test_func(&func_mask, CPACF_KMC_PAES_192) || !cpacf_test_func(&func_mask, CPACF_KMC_PAES_256)) return -ENODEV; pkey_debug_init(); return misc_register(&pkey_dev); } /* * Module exit */ static void __exit pkey_exit(void) { misc_deregister(&pkey_dev); pkey_debug_exit(); } module_cpu_feature_match(MSA, pkey_init); module_exit(pkey_exit);