1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * The full GNU General Public License is included in this distribution 20 * in the file called COPYING. 21 * 22 * Contact Information: 23 * Intel Linux Wireless <linuxwifi@intel.com> 24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 * 26 * BSD LICENSE 27 * 28 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. 29 * All rights reserved. 30 * 31 * Redistribution and use in source and binary forms, with or without 32 * modification, are permitted provided that the following conditions 33 * are met: 34 * 35 * * Redistributions of source code must retain the above copyright 36 * notice, this list of conditions and the following disclaimer. 37 * * Redistributions in binary form must reproduce the above copyright 38 * notice, this list of conditions and the following disclaimer in 39 * the documentation and/or other materials provided with the 40 * distribution. 41 * * Neither the name Intel Corporation nor the names of its 42 * contributors may be used to endorse or promote products derived 43 * from this software without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 46 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 47 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 48 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 49 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 50 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 51 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 52 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 53 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 54 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 55 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 56 * 57 *****************************************************************************/ 58 /* 59 * Please use this file (commands.h) only for uCode API definitions. 60 * Please use iwl-xxxx-hw.h for hardware-related definitions. 61 * Please use dev.h for driver implementation definitions. 62 */ 63 64 #ifndef __iwl_commands_h__ 65 #define __iwl_commands_h__ 66 67 #include <linux/ieee80211.h> 68 #include <linux/types.h> 69 70 71 enum { 72 REPLY_ALIVE = 0x1, 73 REPLY_ERROR = 0x2, 74 REPLY_ECHO = 0x3, /* test command */ 75 76 /* RXON and QOS commands */ 77 REPLY_RXON = 0x10, 78 REPLY_RXON_ASSOC = 0x11, 79 REPLY_QOS_PARAM = 0x13, 80 REPLY_RXON_TIMING = 0x14, 81 82 /* Multi-Station support */ 83 REPLY_ADD_STA = 0x18, 84 REPLY_REMOVE_STA = 0x19, 85 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */ 86 REPLY_TXFIFO_FLUSH = 0x1e, 87 88 /* Security */ 89 REPLY_WEPKEY = 0x20, 90 91 /* RX, TX, LEDs */ 92 REPLY_TX = 0x1c, 93 REPLY_LEDS_CMD = 0x48, 94 REPLY_TX_LINK_QUALITY_CMD = 0x4e, 95 96 /* WiMAX coexistence */ 97 COEX_PRIORITY_TABLE_CMD = 0x5a, 98 COEX_MEDIUM_NOTIFICATION = 0x5b, 99 COEX_EVENT_CMD = 0x5c, 100 101 /* Calibration */ 102 TEMPERATURE_NOTIFICATION = 0x62, 103 CALIBRATION_CFG_CMD = 0x65, 104 CALIBRATION_RES_NOTIFICATION = 0x66, 105 CALIBRATION_COMPLETE_NOTIFICATION = 0x67, 106 107 /* 802.11h related */ 108 REPLY_QUIET_CMD = 0x71, /* not used */ 109 REPLY_CHANNEL_SWITCH = 0x72, 110 CHANNEL_SWITCH_NOTIFICATION = 0x73, 111 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74, 112 SPECTRUM_MEASURE_NOTIFICATION = 0x75, 113 114 /* Power Management */ 115 POWER_TABLE_CMD = 0x77, 116 PM_SLEEP_NOTIFICATION = 0x7A, 117 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B, 118 119 /* Scan commands and notifications */ 120 REPLY_SCAN_CMD = 0x80, 121 REPLY_SCAN_ABORT_CMD = 0x81, 122 SCAN_START_NOTIFICATION = 0x82, 123 SCAN_RESULTS_NOTIFICATION = 0x83, 124 SCAN_COMPLETE_NOTIFICATION = 0x84, 125 126 /* IBSS/AP commands */ 127 BEACON_NOTIFICATION = 0x90, 128 REPLY_TX_BEACON = 0x91, 129 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */ 130 131 /* Miscellaneous commands */ 132 REPLY_TX_POWER_DBM_CMD = 0x95, 133 QUIET_NOTIFICATION = 0x96, /* not used */ 134 REPLY_TX_PWR_TABLE_CMD = 0x97, 135 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */ 136 TX_ANT_CONFIGURATION_CMD = 0x98, 137 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */ 138 139 /* Bluetooth device coexistence config command */ 140 REPLY_BT_CONFIG = 0x9b, 141 142 /* Statistics */ 143 REPLY_STATISTICS_CMD = 0x9c, 144 STATISTICS_NOTIFICATION = 0x9d, 145 146 /* RF-KILL commands and notifications */ 147 REPLY_CARD_STATE_CMD = 0xa0, 148 CARD_STATE_NOTIFICATION = 0xa1, 149 150 /* Missed beacons notification */ 151 MISSED_BEACONS_NOTIFICATION = 0xa2, 152 153 REPLY_CT_KILL_CONFIG_CMD = 0xa4, 154 SENSITIVITY_CMD = 0xa8, 155 REPLY_PHY_CALIBRATION_CMD = 0xb0, 156 REPLY_RX_PHY_CMD = 0xc0, 157 REPLY_RX_MPDU_CMD = 0xc1, 158 REPLY_RX = 0xc3, 159 REPLY_COMPRESSED_BA = 0xc5, 160 161 /* BT Coex */ 162 REPLY_BT_COEX_PRIO_TABLE = 0xcc, 163 REPLY_BT_COEX_PROT_ENV = 0xcd, 164 REPLY_BT_COEX_PROFILE_NOTIF = 0xce, 165 166 /* PAN commands */ 167 REPLY_WIPAN_PARAMS = 0xb2, 168 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */ 169 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */ 170 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */ 171 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */ 172 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */ 173 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9, 174 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc, 175 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd, 176 177 REPLY_WOWLAN_PATTERNS = 0xe0, 178 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1, 179 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2, 180 REPLY_WOWLAN_TKIP_PARAMS = 0xe3, 181 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4, 182 REPLY_WOWLAN_GET_STATUS = 0xe5, 183 REPLY_D3_CONFIG = 0xd3, 184 185 REPLY_MAX = 0xff 186 }; 187 188 /* 189 * Minimum number of queues. MAX_NUM is defined in hw specific files. 190 * Set the minimum to accommodate 191 * - 4 standard TX queues 192 * - the command queue 193 * - 4 PAN TX queues 194 * - the PAN multicast queue, and 195 * - the AUX (TX during scan dwell) queue. 196 */ 197 #define IWL_MIN_NUM_QUEUES 11 198 199 /* 200 * Command queue depends on iPAN support. 201 */ 202 #define IWL_DEFAULT_CMD_QUEUE_NUM 4 203 #define IWL_IPAN_CMD_QUEUE_NUM 9 204 205 #define IWL_TX_FIFO_BK 0 /* shared */ 206 #define IWL_TX_FIFO_BE 1 207 #define IWL_TX_FIFO_VI 2 /* shared */ 208 #define IWL_TX_FIFO_VO 3 209 #define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK 210 #define IWL_TX_FIFO_BE_IPAN 4 211 #define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI 212 #define IWL_TX_FIFO_VO_IPAN 5 213 /* re-uses the VO FIFO, uCode will properly flush/schedule */ 214 #define IWL_TX_FIFO_AUX 5 215 #define IWL_TX_FIFO_UNUSED 255 216 217 #define IWLAGN_CMD_FIFO_NUM 7 218 219 /* 220 * This queue number is required for proper operation 221 * because the ucode will stop/start the scheduler as 222 * required. 223 */ 224 #define IWL_IPAN_MCAST_QUEUE 8 225 226 /****************************************************************************** 227 * (0) 228 * Commonly used structures and definitions: 229 * Command header, rate_n_flags, txpower 230 * 231 *****************************************************************************/ 232 233 /** 234 * iwlagn rate_n_flags bit fields 235 * 236 * rate_n_flags format is used in following iwlagn commands: 237 * REPLY_RX (response only) 238 * REPLY_RX_MPDU (response only) 239 * REPLY_TX (both command and response) 240 * REPLY_TX_LINK_QUALITY_CMD 241 * 242 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"): 243 * 2-0: 0) 6 Mbps 244 * 1) 12 Mbps 245 * 2) 18 Mbps 246 * 3) 24 Mbps 247 * 4) 36 Mbps 248 * 5) 48 Mbps 249 * 6) 54 Mbps 250 * 7) 60 Mbps 251 * 252 * 4-3: 0) Single stream (SISO) 253 * 1) Dual stream (MIMO) 254 * 2) Triple stream (MIMO) 255 * 256 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data 257 * 258 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"): 259 * 3-0: 0xD) 6 Mbps 260 * 0xF) 9 Mbps 261 * 0x5) 12 Mbps 262 * 0x7) 18 Mbps 263 * 0x9) 24 Mbps 264 * 0xB) 36 Mbps 265 * 0x1) 48 Mbps 266 * 0x3) 54 Mbps 267 * 268 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"): 269 * 6-0: 10) 1 Mbps 270 * 20) 2 Mbps 271 * 55) 5.5 Mbps 272 * 110) 11 Mbps 273 */ 274 #define RATE_MCS_CODE_MSK 0x7 275 #define RATE_MCS_SPATIAL_POS 3 276 #define RATE_MCS_SPATIAL_MSK 0x18 277 #define RATE_MCS_HT_DUP_POS 5 278 #define RATE_MCS_HT_DUP_MSK 0x20 279 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */ 280 #define RATE_MCS_RATE_MSK 0xff 281 282 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */ 283 #define RATE_MCS_FLAGS_POS 8 284 #define RATE_MCS_HT_POS 8 285 #define RATE_MCS_HT_MSK 0x100 286 287 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */ 288 #define RATE_MCS_CCK_POS 9 289 #define RATE_MCS_CCK_MSK 0x200 290 291 /* Bit 10: (1) Use Green Field preamble */ 292 #define RATE_MCS_GF_POS 10 293 #define RATE_MCS_GF_MSK 0x400 294 295 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */ 296 #define RATE_MCS_HT40_POS 11 297 #define RATE_MCS_HT40_MSK 0x800 298 299 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */ 300 #define RATE_MCS_DUP_POS 12 301 #define RATE_MCS_DUP_MSK 0x1000 302 303 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */ 304 #define RATE_MCS_SGI_POS 13 305 #define RATE_MCS_SGI_MSK 0x2000 306 307 /** 308 * rate_n_flags Tx antenna masks 309 * bit14:16 310 */ 311 #define RATE_MCS_ANT_POS 14 312 #define RATE_MCS_ANT_A_MSK 0x04000 313 #define RATE_MCS_ANT_B_MSK 0x08000 314 #define RATE_MCS_ANT_C_MSK 0x10000 315 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK) 316 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK) 317 #define RATE_ANT_NUM 3 318 319 #define POWER_TABLE_NUM_ENTRIES 33 320 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32 321 #define POWER_TABLE_CCK_ENTRY 32 322 323 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24 324 #define IWL_PWR_CCK_ENTRIES 2 325 326 /** 327 * struct tx_power_dual_stream 328 * 329 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH 330 * 331 * Same format as iwl_tx_power_dual_stream, but __le32 332 */ 333 struct tx_power_dual_stream { 334 __le32 dw; 335 } __packed; 336 337 /** 338 * Command REPLY_TX_POWER_DBM_CMD = 0x98 339 * struct iwlagn_tx_power_dbm_cmd 340 */ 341 #define IWLAGN_TX_POWER_AUTO 0x7f 342 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6) 343 344 struct iwlagn_tx_power_dbm_cmd { 345 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */ 346 u8 flags; 347 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */ 348 u8 reserved; 349 } __packed; 350 351 /** 352 * Command TX_ANT_CONFIGURATION_CMD = 0x98 353 * This command is used to configure valid Tx antenna. 354 * By default uCode concludes the valid antenna according to the radio flavor. 355 * This command enables the driver to override/modify this conclusion. 356 */ 357 struct iwl_tx_ant_config_cmd { 358 __le32 valid; 359 } __packed; 360 361 /****************************************************************************** 362 * (0a) 363 * Alive and Error Commands & Responses: 364 * 365 *****************************************************************************/ 366 367 #define UCODE_VALID_OK cpu_to_le32(0x1) 368 369 /** 370 * REPLY_ALIVE = 0x1 (response only, not a command) 371 * 372 * uCode issues this "alive" notification once the runtime image is ready 373 * to receive commands from the driver. This is the *second* "alive" 374 * notification that the driver will receive after rebooting uCode; 375 * this "alive" is indicated by subtype field != 9. 376 * 377 * See comments documenting "BSM" (bootstrap state machine). 378 * 379 * This response includes two pointers to structures within the device's 380 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging: 381 * 382 * 1) log_event_table_ptr indicates base of the event log. This traces 383 * a 256-entry history of uCode execution within a circular buffer. 384 * Its header format is: 385 * 386 * __le32 log_size; log capacity (in number of entries) 387 * __le32 type; (1) timestamp with each entry, (0) no timestamp 388 * __le32 wraps; # times uCode has wrapped to top of circular buffer 389 * __le32 write_index; next circular buffer entry that uCode would fill 390 * 391 * The header is followed by the circular buffer of log entries. Entries 392 * with timestamps have the following format: 393 * 394 * __le32 event_id; range 0 - 1500 395 * __le32 timestamp; low 32 bits of TSF (of network, if associated) 396 * __le32 data; event_id-specific data value 397 * 398 * Entries without timestamps contain only event_id and data. 399 * 400 * 401 * 2) error_event_table_ptr indicates base of the error log. This contains 402 * information about any uCode error that occurs. For agn, the format 403 * of the error log is defined by struct iwl_error_event_table. 404 * 405 * The Linux driver can print both logs to the system log when a uCode error 406 * occurs. 407 */ 408 409 /* 410 * Note: This structure is read from the device with IO accesses, 411 * and the reading already does the endian conversion. As it is 412 * read with u32-sized accesses, any members with a different size 413 * need to be ordered correctly though! 414 */ 415 struct iwl_error_event_table { 416 u32 valid; /* (nonzero) valid, (0) log is empty */ 417 u32 error_id; /* type of error */ 418 u32 pc; /* program counter */ 419 u32 blink1; /* branch link */ 420 u32 blink2; /* branch link */ 421 u32 ilink1; /* interrupt link */ 422 u32 ilink2; /* interrupt link */ 423 u32 data1; /* error-specific data */ 424 u32 data2; /* error-specific data */ 425 u32 line; /* source code line of error */ 426 u32 bcon_time; /* beacon timer */ 427 u32 tsf_low; /* network timestamp function timer */ 428 u32 tsf_hi; /* network timestamp function timer */ 429 u32 gp1; /* GP1 timer register */ 430 u32 gp2; /* GP2 timer register */ 431 u32 gp3; /* GP3 timer register */ 432 u32 ucode_ver; /* uCode version */ 433 u32 hw_ver; /* HW Silicon version */ 434 u32 brd_ver; /* HW board version */ 435 u32 log_pc; /* log program counter */ 436 u32 frame_ptr; /* frame pointer */ 437 u32 stack_ptr; /* stack pointer */ 438 u32 hcmd; /* last host command header */ 439 u32 isr0; /* isr status register LMPM_NIC_ISR0: 440 * rxtx_flag */ 441 u32 isr1; /* isr status register LMPM_NIC_ISR1: 442 * host_flag */ 443 u32 isr2; /* isr status register LMPM_NIC_ISR2: 444 * enc_flag */ 445 u32 isr3; /* isr status register LMPM_NIC_ISR3: 446 * time_flag */ 447 u32 isr4; /* isr status register LMPM_NIC_ISR4: 448 * wico interrupt */ 449 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */ 450 u32 wait_event; /* wait event() caller address */ 451 u32 l2p_control; /* L2pControlField */ 452 u32 l2p_duration; /* L2pDurationField */ 453 u32 l2p_mhvalid; /* L2pMhValidBits */ 454 u32 l2p_addr_match; /* L2pAddrMatchStat */ 455 u32 lmpm_pmg_sel; /* indicate which clocks are turned on 456 * (LMPM_PMG_SEL) */ 457 u32 u_timestamp; /* indicate when the date and time of the 458 * compilation */ 459 u32 flow_handler; /* FH read/write pointers, RX credit */ 460 } __packed; 461 462 struct iwl_alive_resp { 463 u8 ucode_minor; 464 u8 ucode_major; 465 __le16 reserved1; 466 u8 sw_rev[8]; 467 u8 ver_type; 468 u8 ver_subtype; /* not "9" for runtime alive */ 469 __le16 reserved2; 470 __le32 log_event_table_ptr; /* SRAM address for event log */ 471 __le32 error_event_table_ptr; /* SRAM address for error log */ 472 __le32 timestamp; 473 __le32 is_valid; 474 } __packed; 475 476 /* 477 * REPLY_ERROR = 0x2 (response only, not a command) 478 */ 479 struct iwl_error_resp { 480 __le32 error_type; 481 u8 cmd_id; 482 u8 reserved1; 483 __le16 bad_cmd_seq_num; 484 __le32 error_info; 485 __le64 timestamp; 486 } __packed; 487 488 /****************************************************************************** 489 * (1) 490 * RXON Commands & Responses: 491 * 492 *****************************************************************************/ 493 494 /* 495 * Rx config defines & structure 496 */ 497 /* rx_config device types */ 498 enum { 499 RXON_DEV_TYPE_AP = 1, 500 RXON_DEV_TYPE_ESS = 3, 501 RXON_DEV_TYPE_IBSS = 4, 502 RXON_DEV_TYPE_SNIFFER = 6, 503 RXON_DEV_TYPE_CP = 7, 504 RXON_DEV_TYPE_2STA = 8, 505 RXON_DEV_TYPE_P2P = 9, 506 }; 507 508 509 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0) 510 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0) 511 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1) 512 #define RXON_RX_CHAIN_VALID_POS (1) 513 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4) 514 #define RXON_RX_CHAIN_FORCE_SEL_POS (4) 515 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7) 516 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7) 517 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10) 518 #define RXON_RX_CHAIN_CNT_POS (10) 519 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12) 520 #define RXON_RX_CHAIN_MIMO_CNT_POS (12) 521 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14) 522 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14) 523 524 /* rx_config flags */ 525 /* band & modulation selection */ 526 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0) 527 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1) 528 /* auto detection enable */ 529 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2) 530 /* TGg protection when tx */ 531 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3) 532 /* cck short slot & preamble */ 533 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4) 534 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5) 535 /* antenna selection */ 536 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7) 537 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00) 538 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8) 539 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9) 540 /* radar detection enable */ 541 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12) 542 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13) 543 /* rx response to host with 8-byte TSF 544 * (according to ON_AIR deassertion) */ 545 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15) 546 547 548 /* HT flags */ 549 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22) 550 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22) 551 552 #define RXON_FLG_HT_OPERATING_MODE_POS (23) 553 554 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23) 555 #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23) 556 557 #define RXON_FLG_CHANNEL_MODE_POS (25) 558 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25) 559 560 /* channel mode */ 561 enum { 562 CHANNEL_MODE_LEGACY = 0, 563 CHANNEL_MODE_PURE_40 = 1, 564 CHANNEL_MODE_MIXED = 2, 565 CHANNEL_MODE_RESERVED = 3, 566 }; 567 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS) 568 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS) 569 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS) 570 571 /* CTS to self (if spec allows) flag */ 572 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30) 573 574 /* rx_config filter flags */ 575 /* accept all data frames */ 576 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0) 577 /* pass control & management to host */ 578 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1) 579 /* accept multi-cast */ 580 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2) 581 /* don't decrypt uni-cast frames */ 582 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3) 583 /* don't decrypt multi-cast frames */ 584 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4) 585 /* STA is associated */ 586 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5) 587 /* transfer to host non bssid beacons in associated state */ 588 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6) 589 590 /** 591 * REPLY_RXON = 0x10 (command, has simple generic response) 592 * 593 * RXON tunes the radio tuner to a service channel, and sets up a number 594 * of parameters that are used primarily for Rx, but also for Tx operations. 595 * 596 * NOTE: When tuning to a new channel, driver must set the 597 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent 598 * info within the device, including the station tables, tx retry 599 * rate tables, and txpower tables. Driver must build a new station 600 * table and txpower table before transmitting anything on the RXON 601 * channel. 602 * 603 * NOTE: All RXONs wipe clean the internal txpower table. Driver must 604 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10), 605 * regardless of whether RXON_FILTER_ASSOC_MSK is set. 606 */ 607 608 struct iwl_rxon_cmd { 609 u8 node_addr[6]; 610 __le16 reserved1; 611 u8 bssid_addr[6]; 612 __le16 reserved2; 613 u8 wlap_bssid_addr[6]; 614 __le16 reserved3; 615 u8 dev_type; 616 u8 air_propagation; 617 __le16 rx_chain; 618 u8 ofdm_basic_rates; 619 u8 cck_basic_rates; 620 __le16 assoc_id; 621 __le32 flags; 622 __le32 filter_flags; 623 __le16 channel; 624 u8 ofdm_ht_single_stream_basic_rates; 625 u8 ofdm_ht_dual_stream_basic_rates; 626 u8 ofdm_ht_triple_stream_basic_rates; 627 u8 reserved5; 628 __le16 acquisition_data; 629 __le16 reserved6; 630 } __packed; 631 632 /* 633 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response) 634 */ 635 struct iwl_rxon_assoc_cmd { 636 __le32 flags; 637 __le32 filter_flags; 638 u8 ofdm_basic_rates; 639 u8 cck_basic_rates; 640 __le16 reserved1; 641 u8 ofdm_ht_single_stream_basic_rates; 642 u8 ofdm_ht_dual_stream_basic_rates; 643 u8 ofdm_ht_triple_stream_basic_rates; 644 u8 reserved2; 645 __le16 rx_chain_select_flags; 646 __le16 acquisition_data; 647 __le32 reserved3; 648 } __packed; 649 650 #define IWL_CONN_MAX_LISTEN_INTERVAL 10 651 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */ 652 653 /* 654 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response) 655 */ 656 struct iwl_rxon_time_cmd { 657 __le64 timestamp; 658 __le16 beacon_interval; 659 __le16 atim_window; 660 __le32 beacon_init_val; 661 __le16 listen_interval; 662 u8 dtim_period; 663 u8 delta_cp_bss_tbtts; 664 } __packed; 665 666 /* 667 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response) 668 */ 669 /** 670 * struct iwl5000_channel_switch_cmd 671 * @band: 0- 5.2GHz, 1- 2.4GHz 672 * @expect_beacon: 0- resume transmits after channel switch 673 * 1- wait for beacon to resume transmits 674 * @channel: new channel number 675 * @rxon_flags: Rx on flags 676 * @rxon_filter_flags: filtering parameters 677 * @switch_time: switch time in extended beacon format 678 * @reserved: reserved bytes 679 */ 680 struct iwl5000_channel_switch_cmd { 681 u8 band; 682 u8 expect_beacon; 683 __le16 channel; 684 __le32 rxon_flags; 685 __le32 rxon_filter_flags; 686 __le32 switch_time; 687 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES]; 688 } __packed; 689 690 /** 691 * struct iwl6000_channel_switch_cmd 692 * @band: 0- 5.2GHz, 1- 2.4GHz 693 * @expect_beacon: 0- resume transmits after channel switch 694 * 1- wait for beacon to resume transmits 695 * @channel: new channel number 696 * @rxon_flags: Rx on flags 697 * @rxon_filter_flags: filtering parameters 698 * @switch_time: switch time in extended beacon format 699 * @reserved: reserved bytes 700 */ 701 struct iwl6000_channel_switch_cmd { 702 u8 band; 703 u8 expect_beacon; 704 __le16 channel; 705 __le32 rxon_flags; 706 __le32 rxon_filter_flags; 707 __le32 switch_time; 708 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES]; 709 } __packed; 710 711 /* 712 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command) 713 */ 714 struct iwl_csa_notification { 715 __le16 band; 716 __le16 channel; 717 __le32 status; /* 0 - OK, 1 - fail */ 718 } __packed; 719 720 /****************************************************************************** 721 * (2) 722 * Quality-of-Service (QOS) Commands & Responses: 723 * 724 *****************************************************************************/ 725 726 /** 727 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM 728 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd 729 * 730 * @cw_min: Contention window, start value in numbers of slots. 731 * Should be a power-of-2, minus 1. Device's default is 0x0f. 732 * @cw_max: Contention window, max value in numbers of slots. 733 * Should be a power-of-2, minus 1. Device's default is 0x3f. 734 * @aifsn: Number of slots in Arbitration Interframe Space (before 735 * performing random backoff timing prior to Tx). Device default 1. 736 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0. 737 * 738 * Device will automatically increase contention window by (2*CW) + 1 for each 739 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW 740 * value, to cap the CW value. 741 */ 742 struct iwl_ac_qos { 743 __le16 cw_min; 744 __le16 cw_max; 745 u8 aifsn; 746 u8 reserved1; 747 __le16 edca_txop; 748 } __packed; 749 750 /* QoS flags defines */ 751 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01) 752 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02) 753 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10) 754 755 /* Number of Access Categories (AC) (EDCA), queues 0..3 */ 756 #define AC_NUM 4 757 758 /* 759 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response) 760 * 761 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs 762 * 0: Background, 1: Best Effort, 2: Video, 3: Voice. 763 */ 764 struct iwl_qosparam_cmd { 765 __le32 qos_flags; 766 struct iwl_ac_qos ac[AC_NUM]; 767 } __packed; 768 769 /****************************************************************************** 770 * (3) 771 * Add/Modify Stations Commands & Responses: 772 * 773 *****************************************************************************/ 774 /* 775 * Multi station support 776 */ 777 778 /* Special, dedicated locations within device's station table */ 779 #define IWL_AP_ID 0 780 #define IWL_AP_ID_PAN 1 781 #define IWL_STA_ID 2 782 #define IWLAGN_PAN_BCAST_ID 14 783 #define IWLAGN_BROADCAST_ID 15 784 #define IWLAGN_STATION_COUNT 16 785 786 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT 787 788 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2) 789 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8) 790 #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13) 791 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17) 792 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18) 793 #define STA_FLG_MAX_AGG_SIZE_POS (19) 794 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19) 795 #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21) 796 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22) 797 #define STA_FLG_AGG_MPDU_DENSITY_POS (23) 798 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23) 799 800 /* Use in mode field. 1: modify existing entry, 0: add new station entry */ 801 #define STA_CONTROL_MODIFY_MSK 0x01 802 803 /* key flags __le16*/ 804 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007) 805 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000) 806 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001) 807 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002) 808 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003) 809 810 #define STA_KEY_FLG_KEYID_POS 8 811 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800) 812 /* wep key is either from global key (0) or from station info array (1) */ 813 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008) 814 815 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */ 816 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000) 817 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000) 818 #define STA_KEY_MAX_NUM 8 819 #define STA_KEY_MAX_NUM_PAN 16 820 /* must not match WEP_INVALID_OFFSET */ 821 #define IWLAGN_HW_KEY_DEFAULT 0xfe 822 823 /* Flags indicate whether to modify vs. don't change various station params */ 824 #define STA_MODIFY_KEY_MASK 0x01 825 #define STA_MODIFY_TID_DISABLE_TX 0x02 826 #define STA_MODIFY_TX_RATE_MSK 0x04 827 #define STA_MODIFY_ADDBA_TID_MSK 0x08 828 #define STA_MODIFY_DELBA_TID_MSK 0x10 829 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20 830 831 /* agn */ 832 struct iwl_keyinfo { 833 __le16 key_flags; 834 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */ 835 u8 reserved1; 836 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */ 837 u8 key_offset; 838 u8 reserved2; 839 u8 key[16]; /* 16-byte unicast decryption key */ 840 __le64 tx_secur_seq_cnt; 841 __le64 hw_tkip_mic_rx_key; 842 __le64 hw_tkip_mic_tx_key; 843 } __packed; 844 845 /** 846 * struct sta_id_modify 847 * @addr[ETH_ALEN]: station's MAC address 848 * @sta_id: index of station in uCode's station table 849 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change 850 * 851 * Driver selects unused table index when adding new station, 852 * or the index to a pre-existing station entry when modifying that station. 853 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP). 854 * 855 * modify_mask flags select which parameters to modify vs. leave alone. 856 */ 857 struct sta_id_modify { 858 u8 addr[ETH_ALEN]; 859 __le16 reserved1; 860 u8 sta_id; 861 u8 modify_mask; 862 __le16 reserved2; 863 } __packed; 864 865 /* 866 * REPLY_ADD_STA = 0x18 (command) 867 * 868 * The device contains an internal table of per-station information, 869 * with info on security keys, aggregation parameters, and Tx rates for 870 * initial Tx attempt and any retries (agn devices uses 871 * REPLY_TX_LINK_QUALITY_CMD, 872 * 873 * REPLY_ADD_STA sets up the table entry for one station, either creating 874 * a new entry, or modifying a pre-existing one. 875 * 876 * NOTE: RXON command (without "associated" bit set) wipes the station table 877 * clean. Moving into RF_KILL state does this also. Driver must set up 878 * new station table before transmitting anything on the RXON channel 879 * (except active scans or active measurements; those commands carry 880 * their own txpower/rate setup data). 881 * 882 * When getting started on a new channel, driver must set up the 883 * IWL_BROADCAST_ID entry (last entry in the table). For a client 884 * station in a BSS, once an AP is selected, driver sets up the AP STA 885 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP 886 * are all that are needed for a BSS client station. If the device is 887 * used as AP, or in an IBSS network, driver must set up station table 888 * entries for all STAs in network, starting with index IWL_STA_ID. 889 */ 890 891 struct iwl_addsta_cmd { 892 u8 mode; /* 1: modify existing, 0: add new station */ 893 u8 reserved[3]; 894 struct sta_id_modify sta; 895 struct iwl_keyinfo key; 896 __le32 station_flags; /* STA_FLG_* */ 897 __le32 station_flags_msk; /* STA_FLG_* */ 898 899 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID) 900 * corresponding to bit (e.g. bit 5 controls TID 5). 901 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */ 902 __le16 tid_disable_tx; 903 __le16 legacy_reserved; 904 905 /* TID for which to add block-ack support. 906 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */ 907 u8 add_immediate_ba_tid; 908 909 /* TID for which to remove block-ack support. 910 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */ 911 u8 remove_immediate_ba_tid; 912 913 /* Starting Sequence Number for added block-ack support. 914 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */ 915 __le16 add_immediate_ba_ssn; 916 917 /* 918 * Number of packets OK to transmit to station even though 919 * it is asleep -- used to synchronise PS-poll and u-APSD 920 * responses while ucode keeps track of STA sleep state. 921 */ 922 __le16 sleep_tx_count; 923 924 __le16 reserved2; 925 } __packed; 926 927 928 #define ADD_STA_SUCCESS_MSK 0x1 929 #define ADD_STA_NO_ROOM_IN_TABLE 0x2 930 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4 931 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8 932 /* 933 * REPLY_ADD_STA = 0x18 (response) 934 */ 935 struct iwl_add_sta_resp { 936 u8 status; /* ADD_STA_* */ 937 } __packed; 938 939 #define REM_STA_SUCCESS_MSK 0x1 940 /* 941 * REPLY_REM_STA = 0x19 (response) 942 */ 943 struct iwl_rem_sta_resp { 944 u8 status; 945 } __packed; 946 947 /* 948 * REPLY_REM_STA = 0x19 (command) 949 */ 950 struct iwl_rem_sta_cmd { 951 u8 num_sta; /* number of removed stations */ 952 u8 reserved[3]; 953 u8 addr[ETH_ALEN]; /* MAC addr of the first station */ 954 u8 reserved2[2]; 955 } __packed; 956 957 958 /* WiFi queues mask */ 959 #define IWL_SCD_BK_MSK BIT(0) 960 #define IWL_SCD_BE_MSK BIT(1) 961 #define IWL_SCD_VI_MSK BIT(2) 962 #define IWL_SCD_VO_MSK BIT(3) 963 #define IWL_SCD_MGMT_MSK BIT(3) 964 965 /* PAN queues mask */ 966 #define IWL_PAN_SCD_BK_MSK BIT(4) 967 #define IWL_PAN_SCD_BE_MSK BIT(5) 968 #define IWL_PAN_SCD_VI_MSK BIT(6) 969 #define IWL_PAN_SCD_VO_MSK BIT(7) 970 #define IWL_PAN_SCD_MGMT_MSK BIT(7) 971 #define IWL_PAN_SCD_MULTICAST_MSK BIT(8) 972 973 #define IWL_AGG_TX_QUEUE_MSK 0xffc00 974 975 #define IWL_DROP_ALL BIT(1) 976 977 /* 978 * REPLY_TXFIFO_FLUSH = 0x1e(command and response) 979 * 980 * When using full FIFO flush this command checks the scheduler HW block WR/RD 981 * pointers to check if all the frames were transferred by DMA into the 982 * relevant TX FIFO queue. Only when the DMA is finished and the queue is 983 * empty the command can finish. 984 * This command is used to flush the TXFIFO from transmit commands, it may 985 * operate on single or multiple queues, the command queue can't be flushed by 986 * this command. The command response is returned when all the queue flush 987 * operations are done. Each TX command flushed return response with the FLUSH 988 * status set in the TX response status. When FIFO flush operation is used, 989 * the flush operation ends when both the scheduler DMA done and TXFIFO empty 990 * are set. 991 * 992 * @queue_control: bit mask for which queues to flush 993 * @flush_control: flush controls 994 * 0: Dump single MSDU 995 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable. 996 * 2: Dump all FIFO 997 */ 998 struct iwl_txfifo_flush_cmd_v3 { 999 __le32 queue_control; 1000 __le16 flush_control; 1001 __le16 reserved; 1002 } __packed; 1003 1004 struct iwl_txfifo_flush_cmd_v2 { 1005 __le16 queue_control; 1006 __le16 flush_control; 1007 } __packed; 1008 1009 /* 1010 * REPLY_WEP_KEY = 0x20 1011 */ 1012 struct iwl_wep_key { 1013 u8 key_index; 1014 u8 key_offset; 1015 u8 reserved1[2]; 1016 u8 key_size; 1017 u8 reserved2[3]; 1018 u8 key[16]; 1019 } __packed; 1020 1021 struct iwl_wep_cmd { 1022 u8 num_keys; 1023 u8 global_key_type; 1024 u8 flags; 1025 u8 reserved; 1026 struct iwl_wep_key key[]; 1027 } __packed; 1028 1029 #define WEP_KEY_WEP_TYPE 1 1030 #define WEP_KEYS_MAX 4 1031 #define WEP_INVALID_OFFSET 0xff 1032 #define WEP_KEY_LEN_64 5 1033 #define WEP_KEY_LEN_128 13 1034 1035 /****************************************************************************** 1036 * (4) 1037 * Rx Responses: 1038 * 1039 *****************************************************************************/ 1040 1041 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0) 1042 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1) 1043 1044 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0) 1045 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1) 1046 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2) 1047 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3) 1048 #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70 1049 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4 1050 #define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7) 1051 1052 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8) 1053 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8) 1054 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8) 1055 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8) 1056 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8) 1057 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8) 1058 1059 #define RX_RES_STATUS_STATION_FOUND (1<<6) 1060 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7) 1061 1062 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11) 1063 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11) 1064 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11) 1065 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11) 1066 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11) 1067 1068 #define RX_MPDU_RES_STATUS_ICV_OK (0x20) 1069 #define RX_MPDU_RES_STATUS_MIC_OK (0x40) 1070 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7) 1071 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800) 1072 1073 1074 #define IWLAGN_RX_RES_PHY_CNT 8 1075 #define IWLAGN_RX_RES_AGC_IDX 1 1076 #define IWLAGN_RX_RES_RSSI_AB_IDX 2 1077 #define IWLAGN_RX_RES_RSSI_C_IDX 3 1078 #define IWLAGN_OFDM_AGC_MSK 0xfe00 1079 #define IWLAGN_OFDM_AGC_BIT_POS 9 1080 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff 1081 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00 1082 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0 1083 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000 1084 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000 1085 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16 1086 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff 1087 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00 1088 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0 1089 1090 struct iwlagn_non_cfg_phy { 1091 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */ 1092 } __packed; 1093 1094 1095 /* 1096 * REPLY_RX = 0xc3 (response only, not a command) 1097 * Used only for legacy (non 11n) frames. 1098 */ 1099 struct iwl_rx_phy_res { 1100 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */ 1101 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */ 1102 u8 stat_id; /* configurable DSP phy data set ID */ 1103 u8 reserved1; 1104 __le64 timestamp; /* TSF at on air rise */ 1105 __le32 beacon_time_stamp; /* beacon at on-air rise */ 1106 __le16 phy_flags; /* general phy flags: band, modulation, ... */ 1107 __le16 channel; /* channel number */ 1108 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */ 1109 __le32 rate_n_flags; /* RATE_MCS_* */ 1110 __le16 byte_count; /* frame's byte-count */ 1111 __le16 frame_time; /* frame's time on the air */ 1112 } __packed; 1113 1114 struct iwl_rx_mpdu_res_start { 1115 __le16 byte_count; 1116 __le16 reserved; 1117 } __packed; 1118 1119 1120 /****************************************************************************** 1121 * (5) 1122 * Tx Commands & Responses: 1123 * 1124 * Driver must place each REPLY_TX command into one of the prioritized Tx 1125 * queues in host DRAM, shared between driver and device (see comments for 1126 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode 1127 * are preparing to transmit, the device pulls the Tx command over the PCI 1128 * bus via one of the device's Tx DMA channels, to fill an internal FIFO 1129 * from which data will be transmitted. 1130 * 1131 * uCode handles all timing and protocol related to control frames 1132 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler 1133 * handle reception of block-acks; uCode updates the host driver via 1134 * REPLY_COMPRESSED_BA. 1135 * 1136 * uCode handles retrying Tx when an ACK is expected but not received. 1137 * This includes trying lower data rates than the one requested in the Tx 1138 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn). 1139 * 1140 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD. 1141 * This command must be executed after every RXON command, before Tx can occur. 1142 *****************************************************************************/ 1143 1144 /* REPLY_TX Tx flags field */ 1145 1146 /* 1147 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it 1148 * before this frame. if CTS-to-self required check 1149 * RXON_FLG_SELF_CTS_EN status. 1150 */ 1151 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0) 1152 1153 /* 1: Expect ACK from receiving station 1154 * 0: Don't expect ACK (MAC header's duration field s/b 0) 1155 * Set this for unicast frames, but not broadcast/multicast. */ 1156 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3) 1157 1158 /* For agn devices: 1159 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD). 1160 * Tx command's initial_rate_index indicates first rate to try; 1161 * uCode walks through table for additional Tx attempts. 1162 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field. 1163 * This rate will be used for all Tx attempts; it will not be scaled. */ 1164 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4) 1165 1166 /* 1: Expect immediate block-ack. 1167 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */ 1168 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6) 1169 1170 /* Tx antenna selection field; reserved (0) for agn devices. */ 1171 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00) 1172 1173 /* 1: Ignore Bluetooth priority for this frame. 1174 * 0: Delay Tx until Bluetooth device is done (normal usage). */ 1175 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12) 1176 1177 /* 1: uCode overrides sequence control field in MAC header. 1178 * 0: Driver provides sequence control field in MAC header. 1179 * Set this for management frames, non-QOS data frames, non-unicast frames, 1180 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */ 1181 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13) 1182 1183 /* 1: This frame is non-last MPDU; more fragments are coming. 1184 * 0: Last fragment, or not using fragmentation. */ 1185 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14) 1186 1187 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame. 1188 * 0: No TSF required in outgoing frame. 1189 * Set this for transmitting beacons and probe responses. */ 1190 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16) 1191 1192 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword 1193 * alignment of frame's payload data field. 1194 * 0: No pad 1195 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4 1196 * field (but not both). Driver must align frame data (i.e. data following 1197 * MAC header) to DWORD boundary. */ 1198 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20) 1199 1200 /* accelerate aggregation support 1201 * 0 - no CCMP encryption; 1 - CCMP encryption */ 1202 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22) 1203 1204 /* HCCA-AP - disable duration overwriting. */ 1205 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25) 1206 1207 1208 /* 1209 * TX command security control 1210 */ 1211 #define TX_CMD_SEC_WEP 0x01 1212 #define TX_CMD_SEC_CCM 0x02 1213 #define TX_CMD_SEC_TKIP 0x03 1214 #define TX_CMD_SEC_MSK 0x03 1215 #define TX_CMD_SEC_SHIFT 6 1216 #define TX_CMD_SEC_KEY128 0x08 1217 1218 /* 1219 * REPLY_TX = 0x1c (command) 1220 */ 1221 1222 /* 1223 * Used for managing Tx retries when expecting block-acks. 1224 * Driver should set these fields to 0. 1225 */ 1226 struct iwl_dram_scratch { 1227 u8 try_cnt; /* Tx attempts */ 1228 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */ 1229 __le16 reserved; 1230 } __packed; 1231 1232 struct iwl_tx_cmd { 1233 /* 1234 * MPDU byte count: 1235 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size, 1236 * + 8 byte IV for CCM or TKIP (not used for WEP) 1237 * + Data payload 1238 * + 8-byte MIC (not used for CCM/WEP) 1239 * NOTE: Does not include Tx command bytes, post-MAC pad bytes, 1240 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i 1241 * Range: 14-2342 bytes. 1242 */ 1243 __le16 len; 1244 1245 /* 1246 * MPDU or MSDU byte count for next frame. 1247 * Used for fragmentation and bursting, but not 11n aggregation. 1248 * Same as "len", but for next frame. Set to 0 if not applicable. 1249 */ 1250 __le16 next_frame_len; 1251 1252 __le32 tx_flags; /* TX_CMD_FLG_* */ 1253 1254 /* uCode may modify this field of the Tx command (in host DRAM!). 1255 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */ 1256 struct iwl_dram_scratch scratch; 1257 1258 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */ 1259 __le32 rate_n_flags; /* RATE_MCS_* */ 1260 1261 /* Index of destination station in uCode's station table */ 1262 u8 sta_id; 1263 1264 /* Type of security encryption: CCM or TKIP */ 1265 u8 sec_ctl; /* TX_CMD_SEC_* */ 1266 1267 /* 1268 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial 1269 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for 1270 * data frames, this field may be used to selectively reduce initial 1271 * rate (via non-0 value) for special frames (e.g. management), while 1272 * still supporting rate scaling for all frames. 1273 */ 1274 u8 initial_rate_index; 1275 u8 reserved; 1276 u8 key[16]; 1277 __le16 next_frame_flags; 1278 __le16 reserved2; 1279 union { 1280 __le32 life_time; 1281 __le32 attempt; 1282 } stop_time; 1283 1284 /* Host DRAM physical address pointer to "scratch" in this command. 1285 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */ 1286 __le32 dram_lsb_ptr; 1287 u8 dram_msb_ptr; 1288 1289 u8 rts_retry_limit; /*byte 50 */ 1290 u8 data_retry_limit; /*byte 51 */ 1291 u8 tid_tspec; 1292 union { 1293 __le16 pm_frame_timeout; 1294 __le16 attempt_duration; 1295 } timeout; 1296 1297 /* 1298 * Duration of EDCA burst Tx Opportunity, in 32-usec units. 1299 * Set this if txop time is not specified by HCCA protocol (e.g. by AP). 1300 */ 1301 __le16 driver_txop; 1302 1303 /* 1304 * MAC header goes here, followed by 2 bytes padding if MAC header 1305 * length is 26 or 30 bytes, followed by payload data 1306 */ 1307 u8 payload[0]; 1308 struct ieee80211_hdr hdr[]; 1309 } __packed; 1310 1311 /* 1312 * TX command response is sent after *agn* transmission attempts. 1313 * 1314 * both postpone and abort status are expected behavior from uCode. there is 1315 * no special operation required from driver; except for RFKILL_FLUSH, 1316 * which required tx flush host command to flush all the tx frames in queues 1317 */ 1318 enum { 1319 TX_STATUS_SUCCESS = 0x01, 1320 TX_STATUS_DIRECT_DONE = 0x02, 1321 /* postpone TX */ 1322 TX_STATUS_POSTPONE_DELAY = 0x40, 1323 TX_STATUS_POSTPONE_FEW_BYTES = 0x41, 1324 TX_STATUS_POSTPONE_BT_PRIO = 0x42, 1325 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43, 1326 TX_STATUS_POSTPONE_CALC_TTAK = 0x44, 1327 /* abort TX */ 1328 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81, 1329 TX_STATUS_FAIL_SHORT_LIMIT = 0x82, 1330 TX_STATUS_FAIL_LONG_LIMIT = 0x83, 1331 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84, 1332 TX_STATUS_FAIL_DRAIN_FLOW = 0x85, 1333 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86, 1334 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87, 1335 TX_STATUS_FAIL_DEST_PS = 0x88, 1336 TX_STATUS_FAIL_HOST_ABORTED = 0x89, 1337 TX_STATUS_FAIL_BT_RETRY = 0x8a, 1338 TX_STATUS_FAIL_STA_INVALID = 0x8b, 1339 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c, 1340 TX_STATUS_FAIL_TID_DISABLE = 0x8d, 1341 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e, 1342 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f, 1343 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90, 1344 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91, 1345 }; 1346 1347 #define TX_PACKET_MODE_REGULAR 0x0000 1348 #define TX_PACKET_MODE_BURST_SEQ 0x0100 1349 #define TX_PACKET_MODE_BURST_FIRST 0x0200 1350 1351 enum { 1352 TX_POWER_PA_NOT_ACTIVE = 0x0, 1353 }; 1354 1355 enum { 1356 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */ 1357 TX_STATUS_DELAY_MSK = 0x00000040, 1358 TX_STATUS_ABORT_MSK = 0x00000080, 1359 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */ 1360 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */ 1361 TX_RESERVED = 0x00780000, /* bits 19:22 */ 1362 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */ 1363 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */ 1364 }; 1365 1366 /* ******************************* 1367 * TX aggregation status 1368 ******************************* */ 1369 1370 enum { 1371 AGG_TX_STATE_TRANSMITTED = 0x00, 1372 AGG_TX_STATE_UNDERRUN_MSK = 0x01, 1373 AGG_TX_STATE_BT_PRIO_MSK = 0x02, 1374 AGG_TX_STATE_FEW_BYTES_MSK = 0x04, 1375 AGG_TX_STATE_ABORT_MSK = 0x08, 1376 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10, 1377 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20, 1378 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40, 1379 AGG_TX_STATE_SCD_QUERY_MSK = 0x80, 1380 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100, 1381 AGG_TX_STATE_RESPONSE_MSK = 0x1ff, 1382 AGG_TX_STATE_DUMP_TX_MSK = 0x200, 1383 AGG_TX_STATE_DELAY_TX_MSK = 0x400 1384 }; 1385 1386 #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */ 1387 #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */ 1388 #define AGG_TX_TRY_POS 12 1389 1390 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \ 1391 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \ 1392 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK) 1393 1394 /* # tx attempts for first frame in aggregation */ 1395 #define AGG_TX_STATE_TRY_CNT_POS 12 1396 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000 1397 1398 /* Command ID and sequence number of Tx command for this frame */ 1399 #define AGG_TX_STATE_SEQ_NUM_POS 16 1400 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000 1401 1402 /* 1403 * REPLY_TX = 0x1c (response) 1404 * 1405 * This response may be in one of two slightly different formats, indicated 1406 * by the frame_count field: 1407 * 1408 * 1) No aggregation (frame_count == 1). This reports Tx results for 1409 * a single frame. Multiple attempts, at various bit rates, may have 1410 * been made for this frame. 1411 * 1412 * 2) Aggregation (frame_count > 1). This reports Tx results for 1413 * 2 or more frames that used block-acknowledge. All frames were 1414 * transmitted at same rate. Rate scaling may have been used if first 1415 * frame in this new agg block failed in previous agg block(s). 1416 * 1417 * Note that, for aggregation, ACK (block-ack) status is not delivered here; 1418 * block-ack has not been received by the time the agn device records 1419 * this status. 1420 * This status relates to reasons the tx might have been blocked or aborted 1421 * within the sending station (this agn device), rather than whether it was 1422 * received successfully by the destination station. 1423 */ 1424 struct agg_tx_status { 1425 __le16 status; 1426 __le16 sequence; 1427 } __packed; 1428 1429 /* refer to ra_tid */ 1430 #define IWLAGN_TX_RES_TID_POS 0 1431 #define IWLAGN_TX_RES_TID_MSK 0x0f 1432 #define IWLAGN_TX_RES_RA_POS 4 1433 #define IWLAGN_TX_RES_RA_MSK 0xf0 1434 1435 struct iwlagn_tx_resp { 1436 u8 frame_count; /* 1 no aggregation, >1 aggregation */ 1437 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */ 1438 u8 failure_rts; /* # failures due to unsuccessful RTS */ 1439 u8 failure_frame; /* # failures due to no ACK (unused for agg) */ 1440 1441 /* For non-agg: Rate at which frame was successful. 1442 * For agg: Rate at which all frames were transmitted. */ 1443 __le32 rate_n_flags; /* RATE_MCS_* */ 1444 1445 /* For non-agg: RTS + CTS + frame tx attempts time + ACK. 1446 * For agg: RTS + CTS + aggregation tx time + block-ack time. */ 1447 __le16 wireless_media_time; /* uSecs */ 1448 1449 u8 pa_status; /* RF power amplifier measurement (not used) */ 1450 u8 pa_integ_res_a[3]; 1451 u8 pa_integ_res_b[3]; 1452 u8 pa_integ_res_C[3]; 1453 1454 __le32 tfd_info; 1455 __le16 seq_ctl; 1456 __le16 byte_cnt; 1457 u8 tlc_info; 1458 u8 ra_tid; /* tid (0:3), sta_id (4:7) */ 1459 __le16 frame_ctrl; 1460 /* 1461 * For non-agg: frame status TX_STATUS_* 1462 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status 1463 * fields follow this one, up to frame_count. 1464 * Bit fields: 1465 * 11- 0: AGG_TX_STATE_* status code 1466 * 15-12: Retry count for 1st frame in aggregation (retries 1467 * occur if tx failed for this frame when it was a 1468 * member of a previous aggregation block). If rate 1469 * scaling is used, retry count indicates the rate 1470 * table entry used for all frames in the new agg. 1471 * 31-16: Sequence # for this frame's Tx cmd (not SSN!) 1472 */ 1473 struct agg_tx_status status; /* TX status (in aggregation - 1474 * status of 1st frame) */ 1475 } __packed; 1476 /* 1477 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command) 1478 * 1479 * Reports Block-Acknowledge from recipient station 1480 */ 1481 struct iwl_compressed_ba_resp { 1482 __le32 sta_addr_lo32; 1483 __le16 sta_addr_hi16; 1484 __le16 reserved; 1485 1486 /* Index of recipient (BA-sending) station in uCode's station table */ 1487 u8 sta_id; 1488 u8 tid; 1489 __le16 seq_ctl; 1490 __le64 bitmap; 1491 __le16 scd_flow; 1492 __le16 scd_ssn; 1493 u8 txed; /* number of frames sent */ 1494 u8 txed_2_done; /* number of frames acked */ 1495 __le16 reserved1; 1496 } __packed; 1497 1498 /* 1499 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response) 1500 * 1501 */ 1502 1503 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */ 1504 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0) 1505 1506 /* # of EDCA prioritized tx fifos */ 1507 #define LINK_QUAL_AC_NUM AC_NUM 1508 1509 /* # entries in rate scale table to support Tx retries */ 1510 #define LINK_QUAL_MAX_RETRY_NUM 16 1511 1512 /* Tx antenna selection values */ 1513 #define LINK_QUAL_ANT_A_MSK (1 << 0) 1514 #define LINK_QUAL_ANT_B_MSK (1 << 1) 1515 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK) 1516 1517 1518 /** 1519 * struct iwl_link_qual_general_params 1520 * 1521 * Used in REPLY_TX_LINK_QUALITY_CMD 1522 */ 1523 struct iwl_link_qual_general_params { 1524 u8 flags; 1525 1526 /* No entries at or above this (driver chosen) index contain MIMO */ 1527 u8 mimo_delimiter; 1528 1529 /* Best single antenna to use for single stream (legacy, SISO). */ 1530 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */ 1531 1532 /* Best antennas to use for MIMO */ 1533 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */ 1534 1535 /* 1536 * If driver needs to use different initial rates for different 1537 * EDCA QOS access categories (as implemented by tx fifos 0-3), 1538 * this table will set that up, by indicating the indexes in the 1539 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start. 1540 * Otherwise, driver should set all entries to 0. 1541 * 1542 * Entry usage: 1543 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice 1544 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3. 1545 */ 1546 u8 start_rate_index[LINK_QUAL_AC_NUM]; 1547 } __packed; 1548 1549 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */ 1550 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000) 1551 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100) 1552 1553 #define LINK_QUAL_AGG_DISABLE_START_DEF (3) 1554 #define LINK_QUAL_AGG_DISABLE_START_MAX (255) 1555 #define LINK_QUAL_AGG_DISABLE_START_MIN (0) 1556 1557 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63) 1558 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63) 1559 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0) 1560 1561 /** 1562 * struct iwl_link_qual_agg_params 1563 * 1564 * Used in REPLY_TX_LINK_QUALITY_CMD 1565 */ 1566 struct iwl_link_qual_agg_params { 1567 1568 /* 1569 *Maximum number of uSec in aggregation. 1570 * default set to 4000 (4 milliseconds) if not configured in .cfg 1571 */ 1572 __le16 agg_time_limit; 1573 1574 /* 1575 * Number of Tx retries allowed for a frame, before that frame will 1576 * no longer be considered for the start of an aggregation sequence 1577 * (scheduler will then try to tx it as single frame). 1578 * Driver should set this to 3. 1579 */ 1580 u8 agg_dis_start_th; 1581 1582 /* 1583 * Maximum number of frames in aggregation. 1584 * 0 = no limit (default). 1 = no aggregation. 1585 * Other values = max # frames in aggregation. 1586 */ 1587 u8 agg_frame_cnt_limit; 1588 1589 __le32 reserved; 1590 } __packed; 1591 1592 /* 1593 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response) 1594 * 1595 * For agn devices 1596 * 1597 * Each station in the agn device's internal station table has its own table 1598 * of 16 1599 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when 1600 * an ACK is not received. This command replaces the entire table for 1601 * one station. 1602 * 1603 * NOTE: Station must already be in agn device's station table. 1604 * Use REPLY_ADD_STA. 1605 * 1606 * The rate scaling procedures described below work well. Of course, other 1607 * procedures are possible, and may work better for particular environments. 1608 * 1609 * 1610 * FILLING THE RATE TABLE 1611 * 1612 * Given a particular initial rate and mode, as determined by the rate 1613 * scaling algorithm described below, the Linux driver uses the following 1614 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the 1615 * Link Quality command: 1616 * 1617 * 1618 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate: 1619 * a) Use this same initial rate for first 3 entries. 1620 * b) Find next lower available rate using same mode (SISO or MIMO), 1621 * use for next 3 entries. If no lower rate available, switch to 1622 * legacy mode (no HT40 channel, no MIMO, no short guard interval). 1623 * c) If using MIMO, set command's mimo_delimiter to number of entries 1624 * using MIMO (3 or 6). 1625 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel, 1626 * no MIMO, no short guard interval), at the next lower bit rate 1627 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow 1628 * legacy procedure for remaining table entries. 1629 * 1630 * 2) If using legacy initial rate: 1631 * a) Use the initial rate for only one entry. 1632 * b) For each following entry, reduce the rate to next lower available 1633 * rate, until reaching the lowest available rate. 1634 * c) When reducing rate, also switch antenna selection. 1635 * d) Once lowest available rate is reached, repeat this rate until 1636 * rate table is filled (16 entries), switching antenna each entry. 1637 * 1638 * 1639 * ACCUMULATING HISTORY 1640 * 1641 * The rate scaling algorithm for agn devices, as implemented in Linux driver, 1642 * uses two sets of frame Tx success history: One for the current/active 1643 * modulation mode, and one for a speculative/search mode that is being 1644 * attempted. If the speculative mode turns out to be more effective (i.e. 1645 * actual transfer rate is better), then the driver continues to use the 1646 * speculative mode as the new current active mode. 1647 * 1648 * Each history set contains, separately for each possible rate, data for a 1649 * sliding window of the 62 most recent tx attempts at that rate. The data 1650 * includes a shifting bitmap of success(1)/failure(0), and sums of successful 1651 * and attempted frames, from which the driver can additionally calculate a 1652 * success ratio (success / attempted) and number of failures 1653 * (attempted - success), and control the size of the window (attempted). 1654 * The driver uses the bit map to remove successes from the success sum, as 1655 * the oldest tx attempts fall out of the window. 1656 * 1657 * When the agn device makes multiple tx attempts for a given frame, each 1658 * attempt might be at a different rate, and have different modulation 1659 * characteristics (e.g. antenna, fat channel, short guard interval), as set 1660 * up in the rate scaling table in the Link Quality command. The driver must 1661 * determine which rate table entry was used for each tx attempt, to determine 1662 * which rate-specific history to update, and record only those attempts that 1663 * match the modulation characteristics of the history set. 1664 * 1665 * When using block-ack (aggregation), all frames are transmitted at the same 1666 * rate, since there is no per-attempt acknowledgment from the destination 1667 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in 1668 * rate_n_flags field. After receiving a block-ack, the driver can update 1669 * history for the entire block all at once. 1670 * 1671 * 1672 * FINDING BEST STARTING RATE: 1673 * 1674 * When working with a selected initial modulation mode (see below), the 1675 * driver attempts to find a best initial rate. The initial rate is the 1676 * first entry in the Link Quality command's rate table. 1677 * 1678 * 1) Calculate actual throughput (success ratio * expected throughput, see 1679 * table below) for current initial rate. Do this only if enough frames 1680 * have been attempted to make the value meaningful: at least 6 failed 1681 * tx attempts, or at least 8 successes. If not enough, don't try rate 1682 * scaling yet. 1683 * 1684 * 2) Find available rates adjacent to current initial rate. Available means: 1685 * a) supported by hardware && 1686 * b) supported by association && 1687 * c) within any constraints selected by user 1688 * 1689 * 3) Gather measured throughputs for adjacent rates. These might not have 1690 * enough history to calculate a throughput. That's okay, we might try 1691 * using one of them anyway! 1692 * 1693 * 4) Try decreasing rate if, for current rate: 1694 * a) success ratio is < 15% || 1695 * b) lower adjacent rate has better measured throughput || 1696 * c) higher adjacent rate has worse throughput, and lower is unmeasured 1697 * 1698 * As a sanity check, if decrease was determined above, leave rate 1699 * unchanged if: 1700 * a) lower rate unavailable 1701 * b) success ratio at current rate > 85% (very good) 1702 * c) current measured throughput is better than expected throughput 1703 * of lower rate (under perfect 100% tx conditions, see table below) 1704 * 1705 * 5) Try increasing rate if, for current rate: 1706 * a) success ratio is < 15% || 1707 * b) both adjacent rates' throughputs are unmeasured (try it!) || 1708 * b) higher adjacent rate has better measured throughput || 1709 * c) lower adjacent rate has worse throughput, and higher is unmeasured 1710 * 1711 * As a sanity check, if increase was determined above, leave rate 1712 * unchanged if: 1713 * a) success ratio at current rate < 70%. This is not particularly 1714 * good performance; higher rate is sure to have poorer success. 1715 * 1716 * 6) Re-evaluate the rate after each tx frame. If working with block- 1717 * acknowledge, history and statistics may be calculated for the entire 1718 * block (including prior history that fits within the history windows), 1719 * before re-evaluation. 1720 * 1721 * FINDING BEST STARTING MODULATION MODE: 1722 * 1723 * After working with a modulation mode for a "while" (and doing rate scaling), 1724 * the driver searches for a new initial mode in an attempt to improve 1725 * throughput. The "while" is measured by numbers of attempted frames: 1726 * 1727 * For legacy mode, search for new mode after: 1728 * 480 successful frames, or 160 failed frames 1729 * For high-throughput modes (SISO or MIMO), search for new mode after: 1730 * 4500 successful frames, or 400 failed frames 1731 * 1732 * Mode switch possibilities are (3 for each mode): 1733 * 1734 * For legacy: 1735 * Change antenna, try SISO (if HT association), try MIMO (if HT association) 1736 * For SISO: 1737 * Change antenna, try MIMO, try shortened guard interval (SGI) 1738 * For MIMO: 1739 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI) 1740 * 1741 * When trying a new mode, use the same bit rate as the old/current mode when 1742 * trying antenna switches and shortened guard interval. When switching to 1743 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate 1744 * for which the expected throughput (under perfect conditions) is about the 1745 * same or slightly better than the actual measured throughput delivered by 1746 * the old/current mode. 1747 * 1748 * Actual throughput can be estimated by multiplying the expected throughput 1749 * by the success ratio (successful / attempted tx frames). Frame size is 1750 * not considered in this calculation; it assumes that frame size will average 1751 * out to be fairly consistent over several samples. The following are 1752 * metric values for expected throughput assuming 100% success ratio. 1753 * Only G band has support for CCK rates: 1754 * 1755 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60 1756 * 1757 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186 1758 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186 1759 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202 1760 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211 1761 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251 1762 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257 1763 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257 1764 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264 1765 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289 1766 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293 1767 * 1768 * After the new mode has been tried for a short while (minimum of 6 failed 1769 * frames or 8 successful frames), compare success ratio and actual throughput 1770 * estimate of the new mode with the old. If either is better with the new 1771 * mode, continue to use the new mode. 1772 * 1773 * Continue comparing modes until all 3 possibilities have been tried. 1774 * If moving from legacy to HT, try all 3 possibilities from the new HT 1775 * mode. After trying all 3, a best mode is found. Continue to use this mode 1776 * for the longer "while" described above (e.g. 480 successful frames for 1777 * legacy), and then repeat the search process. 1778 * 1779 */ 1780 struct iwl_link_quality_cmd { 1781 1782 /* Index of destination/recipient station in uCode's station table */ 1783 u8 sta_id; 1784 u8 reserved1; 1785 __le16 control; /* not used */ 1786 struct iwl_link_qual_general_params general_params; 1787 struct iwl_link_qual_agg_params agg_params; 1788 1789 /* 1790 * Rate info; when using rate-scaling, Tx command's initial_rate_index 1791 * specifies 1st Tx rate attempted, via index into this table. 1792 * agn devices works its way through table when retrying Tx. 1793 */ 1794 struct { 1795 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */ 1796 } rs_table[LINK_QUAL_MAX_RETRY_NUM]; 1797 __le32 reserved2; 1798 } __packed; 1799 1800 /* 1801 * BT configuration enable flags: 1802 * bit 0 - 1: BT channel announcement enabled 1803 * 0: disable 1804 * bit 1 - 1: priority of BT device enabled 1805 * 0: disable 1806 * bit 2 - 1: BT 2 wire support enabled 1807 * 0: disable 1808 */ 1809 #define BT_COEX_DISABLE (0x0) 1810 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0) 1811 #define BT_ENABLE_PRIORITY BIT(1) 1812 #define BT_ENABLE_2_WIRE BIT(2) 1813 1814 #define BT_COEX_DISABLE (0x0) 1815 #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY) 1816 1817 #define BT_LEAD_TIME_MIN (0x0) 1818 #define BT_LEAD_TIME_DEF (0x1E) 1819 #define BT_LEAD_TIME_MAX (0xFF) 1820 1821 #define BT_MAX_KILL_MIN (0x1) 1822 #define BT_MAX_KILL_DEF (0x5) 1823 #define BT_MAX_KILL_MAX (0xFF) 1824 1825 #define BT_DURATION_LIMIT_DEF 625 1826 #define BT_DURATION_LIMIT_MAX 1250 1827 #define BT_DURATION_LIMIT_MIN 625 1828 1829 #define BT_ON_THRESHOLD_DEF 4 1830 #define BT_ON_THRESHOLD_MAX 1000 1831 #define BT_ON_THRESHOLD_MIN 1 1832 1833 #define BT_FRAG_THRESHOLD_DEF 0 1834 #define BT_FRAG_THRESHOLD_MAX 0 1835 #define BT_FRAG_THRESHOLD_MIN 0 1836 1837 #define BT_AGG_THRESHOLD_DEF 1200 1838 #define BT_AGG_THRESHOLD_MAX 8000 1839 #define BT_AGG_THRESHOLD_MIN 400 1840 1841 /* 1842 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response) 1843 * 1844 * agn devices support hardware handshake with Bluetooth device on 1845 * same platform. Bluetooth device alerts wireless device when it will Tx; 1846 * wireless device can delay or kill its own Tx to accommodate. 1847 */ 1848 struct iwl_bt_cmd { 1849 u8 flags; 1850 u8 lead_time; 1851 u8 max_kill; 1852 u8 reserved; 1853 __le32 kill_ack_mask; 1854 __le32 kill_cts_mask; 1855 } __packed; 1856 1857 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0) 1858 1859 #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5)) 1860 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3 1861 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0 1862 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1 1863 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2 1864 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3 1865 1866 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6) 1867 /* Disable Sync PSPoll on SCO/eSCO */ 1868 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7) 1869 1870 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */ 1871 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */ 1872 1873 #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF 1874 #define IWLAGN_BT_PRIO_BOOST_MIN 0x00 1875 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0 1876 #define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0 1877 1878 #define IWLAGN_BT_MAX_KILL_DEFAULT 5 1879 1880 #define IWLAGN_BT3_T7_DEFAULT 1 1881 1882 enum iwl_bt_kill_idx { 1883 IWL_BT_KILL_DEFAULT = 0, 1884 IWL_BT_KILL_OVERRIDE = 1, 1885 IWL_BT_KILL_REDUCE = 2, 1886 }; 1887 1888 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000) 1889 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000) 1890 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff) 1891 #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0) 1892 1893 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2 1894 1895 #define IWLAGN_BT3_T2_DEFAULT 0xc 1896 1897 #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0)) 1898 #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1)) 1899 #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2)) 1900 #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3)) 1901 #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4)) 1902 #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5)) 1903 #define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6)) 1904 #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7)) 1905 1906 #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \ 1907 IWLAGN_BT_VALID_BOOST | \ 1908 IWLAGN_BT_VALID_MAX_KILL | \ 1909 IWLAGN_BT_VALID_3W_TIMERS | \ 1910 IWLAGN_BT_VALID_KILL_ACK_MASK | \ 1911 IWLAGN_BT_VALID_KILL_CTS_MASK | \ 1912 IWLAGN_BT_VALID_REDUCED_TX_PWR | \ 1913 IWLAGN_BT_VALID_3W_LUT) 1914 1915 #define IWLAGN_BT_REDUCED_TX_PWR BIT(0) 1916 1917 #define IWLAGN_BT_DECISION_LUT_SIZE 12 1918 1919 struct iwl_basic_bt_cmd { 1920 u8 flags; 1921 u8 ledtime; /* unused */ 1922 u8 max_kill; 1923 u8 bt3_timer_t7_value; 1924 __le32 kill_ack_mask; 1925 __le32 kill_cts_mask; 1926 u8 bt3_prio_sample_time; 1927 u8 bt3_timer_t2_value; 1928 __le16 bt4_reaction_time; /* unused */ 1929 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE]; 1930 /* 1931 * bit 0: use reduced tx power for control frame 1932 * bit 1 - 7: reserved 1933 */ 1934 u8 reduce_txpower; 1935 u8 reserved; 1936 __le16 valid; 1937 }; 1938 1939 struct iwl_bt_cmd_v1 { 1940 struct iwl_basic_bt_cmd basic; 1941 u8 prio_boost; 1942 /* 1943 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask 1944 * if configure the following patterns 1945 */ 1946 u8 tx_prio_boost; /* SW boost of WiFi tx priority */ 1947 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */ 1948 }; 1949 1950 struct iwl_bt_cmd_v2 { 1951 struct iwl_basic_bt_cmd basic; 1952 __le32 prio_boost; 1953 /* 1954 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask 1955 * if configure the following patterns 1956 */ 1957 u8 reserved; 1958 u8 tx_prio_boost; /* SW boost of WiFi tx priority */ 1959 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */ 1960 }; 1961 1962 #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0)) 1963 1964 struct iwlagn_bt_sco_cmd { 1965 __le32 flags; 1966 }; 1967 1968 /****************************************************************************** 1969 * (6) 1970 * Spectrum Management (802.11h) Commands, Responses, Notifications: 1971 * 1972 *****************************************************************************/ 1973 1974 /* 1975 * Spectrum Management 1976 */ 1977 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \ 1978 RXON_FILTER_CTL2HOST_MSK | \ 1979 RXON_FILTER_ACCEPT_GRP_MSK | \ 1980 RXON_FILTER_DIS_DECRYPT_MSK | \ 1981 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \ 1982 RXON_FILTER_ASSOC_MSK | \ 1983 RXON_FILTER_BCON_AWARE_MSK) 1984 1985 struct iwl_measure_channel { 1986 __le32 duration; /* measurement duration in extended beacon 1987 * format */ 1988 u8 channel; /* channel to measure */ 1989 u8 type; /* see enum iwl_measure_type */ 1990 __le16 reserved; 1991 } __packed; 1992 1993 /* 1994 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command) 1995 */ 1996 struct iwl_spectrum_cmd { 1997 __le16 len; /* number of bytes starting from token */ 1998 u8 token; /* token id */ 1999 u8 id; /* measurement id -- 0 or 1 */ 2000 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */ 2001 u8 periodic; /* 1 = periodic */ 2002 __le16 path_loss_timeout; 2003 __le32 start_time; /* start time in extended beacon format */ 2004 __le32 reserved2; 2005 __le32 flags; /* rxon flags */ 2006 __le32 filter_flags; /* rxon filter flags */ 2007 __le16 channel_count; /* minimum 1, maximum 10 */ 2008 __le16 reserved3; 2009 struct iwl_measure_channel channels[10]; 2010 } __packed; 2011 2012 /* 2013 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response) 2014 */ 2015 struct iwl_spectrum_resp { 2016 u8 token; 2017 u8 id; /* id of the prior command replaced, or 0xff */ 2018 __le16 status; /* 0 - command will be handled 2019 * 1 - cannot handle (conflicts with another 2020 * measurement) */ 2021 } __packed; 2022 2023 enum iwl_measurement_state { 2024 IWL_MEASUREMENT_START = 0, 2025 IWL_MEASUREMENT_STOP = 1, 2026 }; 2027 2028 enum iwl_measurement_status { 2029 IWL_MEASUREMENT_OK = 0, 2030 IWL_MEASUREMENT_CONCURRENT = 1, 2031 IWL_MEASUREMENT_CSA_CONFLICT = 2, 2032 IWL_MEASUREMENT_TGH_CONFLICT = 3, 2033 /* 4-5 reserved */ 2034 IWL_MEASUREMENT_STOPPED = 6, 2035 IWL_MEASUREMENT_TIMEOUT = 7, 2036 IWL_MEASUREMENT_PERIODIC_FAILED = 8, 2037 }; 2038 2039 #define NUM_ELEMENTS_IN_HISTOGRAM 8 2040 2041 struct iwl_measurement_histogram { 2042 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */ 2043 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */ 2044 } __packed; 2045 2046 /* clear channel availability counters */ 2047 struct iwl_measurement_cca_counters { 2048 __le32 ofdm; 2049 __le32 cck; 2050 } __packed; 2051 2052 enum iwl_measure_type { 2053 IWL_MEASURE_BASIC = (1 << 0), 2054 IWL_MEASURE_CHANNEL_LOAD = (1 << 1), 2055 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2), 2056 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3), 2057 IWL_MEASURE_FRAME = (1 << 4), 2058 /* bits 5:6 are reserved */ 2059 IWL_MEASURE_IDLE = (1 << 7), 2060 }; 2061 2062 /* 2063 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command) 2064 */ 2065 struct iwl_spectrum_notification { 2066 u8 id; /* measurement id -- 0 or 1 */ 2067 u8 token; 2068 u8 channel_index; /* index in measurement channel list */ 2069 u8 state; /* 0 - start, 1 - stop */ 2070 __le32 start_time; /* lower 32-bits of TSF */ 2071 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */ 2072 u8 channel; 2073 u8 type; /* see enum iwl_measurement_type */ 2074 u8 reserved1; 2075 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only 2076 * valid if applicable for measurement type requested. */ 2077 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */ 2078 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */ 2079 __le32 cca_time; /* channel load time in usecs */ 2080 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 - 2081 * unidentified */ 2082 u8 reserved2[3]; 2083 struct iwl_measurement_histogram histogram; 2084 __le32 stop_time; /* lower 32-bits of TSF */ 2085 __le32 status; /* see iwl_measurement_status */ 2086 } __packed; 2087 2088 /****************************************************************************** 2089 * (7) 2090 * Power Management Commands, Responses, Notifications: 2091 * 2092 *****************************************************************************/ 2093 2094 /** 2095 * struct iwl_powertable_cmd - Power Table Command 2096 * @flags: See below: 2097 * 2098 * POWER_TABLE_CMD = 0x77 (command, has simple generic response) 2099 * 2100 * PM allow: 2101 * bit 0 - '0' Driver not allow power management 2102 * '1' Driver allow PM (use rest of parameters) 2103 * 2104 * uCode send sleep notifications: 2105 * bit 1 - '0' Don't send sleep notification 2106 * '1' send sleep notification (SEND_PM_NOTIFICATION) 2107 * 2108 * Sleep over DTIM 2109 * bit 2 - '0' PM have to walk up every DTIM 2110 * '1' PM could sleep over DTIM till listen Interval. 2111 * 2112 * PCI power managed 2113 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1) 2114 * '1' !(PCI_CFG_LINK_CTRL & 0x1) 2115 * 2116 * Fast PD 2117 * bit 4 - '1' Put radio to sleep when receiving frame for others 2118 * 2119 * Force sleep Modes 2120 * bit 31/30- '00' use both mac/xtal sleeps 2121 * '01' force Mac sleep 2122 * '10' force xtal sleep 2123 * '11' Illegal set 2124 * 2125 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then 2126 * ucode assume sleep over DTIM is allowed and we don't need to wake up 2127 * for every DTIM. 2128 */ 2129 #define IWL_POWER_VEC_SIZE 5 2130 2131 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0)) 2132 #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0)) 2133 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1)) 2134 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2)) 2135 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3)) 2136 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4)) 2137 #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5)) 2138 #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6)) 2139 #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7)) 2140 #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8)) 2141 #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9)) 2142 2143 struct iwl_powertable_cmd { 2144 __le16 flags; 2145 u8 keep_alive_seconds; 2146 u8 debug_flags; 2147 __le32 rx_data_timeout; 2148 __le32 tx_data_timeout; 2149 __le32 sleep_interval[IWL_POWER_VEC_SIZE]; 2150 __le32 keep_alive_beacons; 2151 } __packed; 2152 2153 /* 2154 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command) 2155 * all devices identical. 2156 */ 2157 struct iwl_sleep_notification { 2158 u8 pm_sleep_mode; 2159 u8 pm_wakeup_src; 2160 __le16 reserved; 2161 __le32 sleep_time; 2162 __le32 tsf_low; 2163 __le32 bcon_timer; 2164 } __packed; 2165 2166 /* Sleep states. all devices identical. */ 2167 enum { 2168 IWL_PM_NO_SLEEP = 0, 2169 IWL_PM_SLP_MAC = 1, 2170 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2, 2171 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3, 2172 IWL_PM_SLP_PHY = 4, 2173 IWL_PM_SLP_REPENT = 5, 2174 IWL_PM_WAKEUP_BY_TIMER = 6, 2175 IWL_PM_WAKEUP_BY_DRIVER = 7, 2176 IWL_PM_WAKEUP_BY_RFKILL = 8, 2177 /* 3 reserved */ 2178 IWL_PM_NUM_OF_MODES = 12, 2179 }; 2180 2181 /* 2182 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response) 2183 */ 2184 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */ 2185 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */ 2186 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */ 2187 struct iwl_card_state_cmd { 2188 __le32 status; /* CARD_STATE_CMD_* request new power state */ 2189 } __packed; 2190 2191 /* 2192 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command) 2193 */ 2194 struct iwl_card_state_notif { 2195 __le32 flags; 2196 } __packed; 2197 2198 #define HW_CARD_DISABLED 0x01 2199 #define SW_CARD_DISABLED 0x02 2200 #define CT_CARD_DISABLED 0x04 2201 #define RXON_CARD_DISABLED 0x10 2202 2203 struct iwl_ct_kill_config { 2204 __le32 reserved; 2205 __le32 critical_temperature_M; 2206 __le32 critical_temperature_R; 2207 } __packed; 2208 2209 /* 1000, and 6x00 */ 2210 struct iwl_ct_kill_throttling_config { 2211 __le32 critical_temperature_exit; 2212 __le32 reserved; 2213 __le32 critical_temperature_enter; 2214 } __packed; 2215 2216 /****************************************************************************** 2217 * (8) 2218 * Scan Commands, Responses, Notifications: 2219 * 2220 *****************************************************************************/ 2221 2222 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0) 2223 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1) 2224 2225 /** 2226 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table 2227 * 2228 * One for each channel in the scan list. 2229 * Each channel can independently select: 2230 * 1) SSID for directed active scans 2231 * 2) Txpower setting (for rate specified within Tx command) 2232 * 3) How long to stay on-channel (behavior may be modified by quiet_time, 2233 * quiet_plcp_th, good_CRC_th) 2234 * 2235 * To avoid uCode errors, make sure the following are true (see comments 2236 * under struct iwl_scan_cmd about max_out_time and quiet_time): 2237 * 1) If using passive_dwell (i.e. passive_dwell != 0): 2238 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0) 2239 * 2) quiet_time <= active_dwell 2240 * 3) If restricting off-channel time (i.e. max_out_time !=0): 2241 * passive_dwell < max_out_time 2242 * active_dwell < max_out_time 2243 */ 2244 2245 struct iwl_scan_channel { 2246 /* 2247 * type is defined as: 2248 * 0:0 1 = active, 0 = passive 2249 * 1:20 SSID direct bit map; if a bit is set, then corresponding 2250 * SSID IE is transmitted in probe request. 2251 * 21:31 reserved 2252 */ 2253 __le32 type; 2254 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */ 2255 u8 tx_gain; /* gain for analog radio */ 2256 u8 dsp_atten; /* gain for DSP */ 2257 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */ 2258 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */ 2259 } __packed; 2260 2261 /* set number of direct probes __le32 type */ 2262 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1)))) 2263 2264 /** 2265 * struct iwl_ssid_ie - directed scan network information element 2266 * 2267 * Up to 20 of these may appear in REPLY_SCAN_CMD, 2268 * selected by "type" bit field in struct iwl_scan_channel; 2269 * each channel may select different ssids from among the 20 entries. 2270 * SSID IEs get transmitted in reverse order of entry. 2271 */ 2272 struct iwl_ssid_ie { 2273 u8 id; 2274 u8 len; 2275 u8 ssid[32]; 2276 } __packed; 2277 2278 #define PROBE_OPTION_MAX 20 2279 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF) 2280 #define IWL_GOOD_CRC_TH_DISABLED 0 2281 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1) 2282 #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff) 2283 #define IWL_MAX_CMD_SIZE 4096 2284 2285 /* 2286 * REPLY_SCAN_CMD = 0x80 (command) 2287 * 2288 * The hardware scan command is very powerful; the driver can set it up to 2289 * maintain (relatively) normal network traffic while doing a scan in the 2290 * background. The max_out_time and suspend_time control the ratio of how 2291 * long the device stays on an associated network channel ("service channel") 2292 * vs. how long it's away from the service channel, i.e. tuned to other channels 2293 * for scanning. 2294 * 2295 * max_out_time is the max time off-channel (in usec), and suspend_time 2296 * is how long (in "extended beacon" format) that the scan is "suspended" 2297 * after returning to the service channel. That is, suspend_time is the 2298 * time that we stay on the service channel, doing normal work, between 2299 * scan segments. The driver may set these parameters differently to support 2300 * scanning when associated vs. not associated, and light vs. heavy traffic 2301 * loads when associated. 2302 * 2303 * After receiving this command, the device's scan engine does the following; 2304 * 2305 * 1) Sends SCAN_START notification to driver 2306 * 2) Checks to see if it has time to do scan for one channel 2307 * 3) Sends NULL packet, with power-save (PS) bit set to 1, 2308 * to tell AP that we're going off-channel 2309 * 4) Tunes to first channel in scan list, does active or passive scan 2310 * 5) Sends SCAN_RESULT notification to driver 2311 * 6) Checks to see if it has time to do scan on *next* channel in list 2312 * 7) Repeats 4-6 until it no longer has time to scan the next channel 2313 * before max_out_time expires 2314 * 8) Returns to service channel 2315 * 9) Sends NULL packet with PS=0 to tell AP that we're back 2316 * 10) Stays on service channel until suspend_time expires 2317 * 11) Repeats entire process 2-10 until list is complete 2318 * 12) Sends SCAN_COMPLETE notification 2319 * 2320 * For fast, efficient scans, the scan command also has support for staying on 2321 * a channel for just a short time, if doing active scanning and getting no 2322 * responses to the transmitted probe request. This time is controlled by 2323 * quiet_time, and the number of received packets below which a channel is 2324 * considered "quiet" is controlled by quiet_plcp_threshold. 2325 * 2326 * For active scanning on channels that have regulatory restrictions against 2327 * blindly transmitting, the scan can listen before transmitting, to make sure 2328 * that there is already legitimate activity on the channel. If enough 2329 * packets are cleanly received on the channel (controlled by good_CRC_th, 2330 * typical value 1), the scan engine starts transmitting probe requests. 2331 * 2332 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands. 2333 * 2334 * To avoid uCode errors, see timing restrictions described under 2335 * struct iwl_scan_channel. 2336 */ 2337 2338 enum iwl_scan_flags { 2339 /* BIT(0) currently unused */ 2340 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1), 2341 /* bits 2-7 reserved */ 2342 }; 2343 2344 struct iwl_scan_cmd { 2345 __le16 len; 2346 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */ 2347 u8 channel_count; /* # channels in channel list */ 2348 __le16 quiet_time; /* dwell only this # millisecs on quiet channel 2349 * (only for active scan) */ 2350 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */ 2351 __le16 good_CRC_th; /* passive -> active promotion threshold */ 2352 __le16 rx_chain; /* RXON_RX_CHAIN_* */ 2353 __le32 max_out_time; /* max usec to be away from associated (service) 2354 * channel */ 2355 __le32 suspend_time; /* pause scan this long (in "extended beacon 2356 * format") when returning to service chnl: 2357 */ 2358 __le32 flags; /* RXON_FLG_* */ 2359 __le32 filter_flags; /* RXON_FILTER_* */ 2360 2361 /* For active scans (set to all-0s for passive scans). 2362 * Does not include payload. Must specify Tx rate; no rate scaling. */ 2363 struct iwl_tx_cmd tx_cmd; 2364 2365 /* For directed active scans (set to all-0s otherwise) */ 2366 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX]; 2367 2368 /* 2369 * Probe request frame, followed by channel list. 2370 * 2371 * Size of probe request frame is specified by byte count in tx_cmd. 2372 * Channel list follows immediately after probe request frame. 2373 * Number of channels in list is specified by channel_count. 2374 * Each channel in list is of type: 2375 * 2376 * struct iwl_scan_channel channels[0]; 2377 * 2378 * NOTE: Only one band of channels can be scanned per pass. You 2379 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait 2380 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION) 2381 * before requesting another scan. 2382 */ 2383 u8 data[]; 2384 } __packed; 2385 2386 /* Can abort will notify by complete notification with abort status. */ 2387 #define CAN_ABORT_STATUS cpu_to_le32(0x1) 2388 /* complete notification statuses */ 2389 #define ABORT_STATUS 0x2 2390 2391 /* 2392 * REPLY_SCAN_CMD = 0x80 (response) 2393 */ 2394 struct iwl_scanreq_notification { 2395 __le32 status; /* 1: okay, 2: cannot fulfill request */ 2396 } __packed; 2397 2398 /* 2399 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command) 2400 */ 2401 struct iwl_scanstart_notification { 2402 __le32 tsf_low; 2403 __le32 tsf_high; 2404 __le32 beacon_timer; 2405 u8 channel; 2406 u8 band; 2407 u8 reserved[2]; 2408 __le32 status; 2409 } __packed; 2410 2411 #define SCAN_OWNER_STATUS 0x1 2412 #define MEASURE_OWNER_STATUS 0x2 2413 2414 #define IWL_PROBE_STATUS_OK 0 2415 #define IWL_PROBE_STATUS_TX_FAILED BIT(0) 2416 /* error statuses combined with TX_FAILED */ 2417 #define IWL_PROBE_STATUS_FAIL_TTL BIT(1) 2418 #define IWL_PROBE_STATUS_FAIL_BT BIT(2) 2419 2420 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */ 2421 /* 2422 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command) 2423 */ 2424 struct iwl_scanresults_notification { 2425 u8 channel; 2426 u8 band; 2427 u8 probe_status; 2428 u8 num_probe_not_sent; /* not enough time to send */ 2429 __le32 tsf_low; 2430 __le32 tsf_high; 2431 __le32 statistics[NUMBER_OF_STATISTICS]; 2432 } __packed; 2433 2434 /* 2435 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command) 2436 */ 2437 struct iwl_scancomplete_notification { 2438 u8 scanned_channels; 2439 u8 status; 2440 u8 bt_status; /* BT On/Off status */ 2441 u8 last_channel; 2442 __le32 tsf_low; 2443 __le32 tsf_high; 2444 } __packed; 2445 2446 2447 /****************************************************************************** 2448 * (9) 2449 * IBSS/AP Commands and Notifications: 2450 * 2451 *****************************************************************************/ 2452 2453 enum iwl_ibss_manager { 2454 IWL_NOT_IBSS_MANAGER = 0, 2455 IWL_IBSS_MANAGER = 1, 2456 }; 2457 2458 /* 2459 * BEACON_NOTIFICATION = 0x90 (notification only, not a command) 2460 */ 2461 2462 struct iwlagn_beacon_notif { 2463 struct iwlagn_tx_resp beacon_notify_hdr; 2464 __le32 low_tsf; 2465 __le32 high_tsf; 2466 __le32 ibss_mgr_status; 2467 } __packed; 2468 2469 /* 2470 * REPLY_TX_BEACON = 0x91 (command, has simple generic response) 2471 */ 2472 2473 struct iwl_tx_beacon_cmd { 2474 struct iwl_tx_cmd tx; 2475 __le16 tim_idx; 2476 u8 tim_size; 2477 u8 reserved1; 2478 struct ieee80211_hdr frame[]; /* beacon frame */ 2479 } __packed; 2480 2481 /****************************************************************************** 2482 * (10) 2483 * Statistics Commands and Notifications: 2484 * 2485 *****************************************************************************/ 2486 2487 #define IWL_TEMP_CONVERT 260 2488 2489 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8 2490 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4 2491 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12 2492 2493 /* Used for passing to driver number of successes and failures per rate */ 2494 struct rate_histogram { 2495 union { 2496 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS]; 2497 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS]; 2498 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS]; 2499 } success; 2500 union { 2501 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS]; 2502 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS]; 2503 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS]; 2504 } failed; 2505 } __packed; 2506 2507 /* statistics command response */ 2508 2509 struct statistics_dbg { 2510 __le32 burst_check; 2511 __le32 burst_count; 2512 __le32 wait_for_silence_timeout_cnt; 2513 __le32 reserved[3]; 2514 } __packed; 2515 2516 struct statistics_rx_phy { 2517 __le32 ina_cnt; 2518 __le32 fina_cnt; 2519 __le32 plcp_err; 2520 __le32 crc32_err; 2521 __le32 overrun_err; 2522 __le32 early_overrun_err; 2523 __le32 crc32_good; 2524 __le32 false_alarm_cnt; 2525 __le32 fina_sync_err_cnt; 2526 __le32 sfd_timeout; 2527 __le32 fina_timeout; 2528 __le32 unresponded_rts; 2529 __le32 rxe_frame_limit_overrun; 2530 __le32 sent_ack_cnt; 2531 __le32 sent_cts_cnt; 2532 __le32 sent_ba_rsp_cnt; 2533 __le32 dsp_self_kill; 2534 __le32 mh_format_err; 2535 __le32 re_acq_main_rssi_sum; 2536 __le32 reserved3; 2537 } __packed; 2538 2539 struct statistics_rx_ht_phy { 2540 __le32 plcp_err; 2541 __le32 overrun_err; 2542 __le32 early_overrun_err; 2543 __le32 crc32_good; 2544 __le32 crc32_err; 2545 __le32 mh_format_err; 2546 __le32 agg_crc32_good; 2547 __le32 agg_mpdu_cnt; 2548 __le32 agg_cnt; 2549 __le32 unsupport_mcs; 2550 } __packed; 2551 2552 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1) 2553 2554 struct statistics_rx_non_phy { 2555 __le32 bogus_cts; /* CTS received when not expecting CTS */ 2556 __le32 bogus_ack; /* ACK received when not expecting ACK */ 2557 __le32 non_bssid_frames; /* number of frames with BSSID that 2558 * doesn't belong to the STA BSSID */ 2559 __le32 filtered_frames; /* count frames that were dumped in the 2560 * filtering process */ 2561 __le32 non_channel_beacons; /* beacons with our bss id but not on 2562 * our serving channel */ 2563 __le32 channel_beacons; /* beacons with our bss id and in our 2564 * serving channel */ 2565 __le32 num_missed_bcon; /* number of missed beacons */ 2566 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the 2567 * ADC was in saturation */ 2568 __le32 ina_detection_search_time;/* total time (in 0.8us) searched 2569 * for INA */ 2570 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */ 2571 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */ 2572 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */ 2573 __le32 interference_data_flag; /* flag for interference data 2574 * availability. 1 when data is 2575 * available. */ 2576 __le32 channel_load; /* counts RX Enable time in uSec */ 2577 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM 2578 * and CCK) counter */ 2579 __le32 beacon_rssi_a; 2580 __le32 beacon_rssi_b; 2581 __le32 beacon_rssi_c; 2582 __le32 beacon_energy_a; 2583 __le32 beacon_energy_b; 2584 __le32 beacon_energy_c; 2585 } __packed; 2586 2587 struct statistics_rx_non_phy_bt { 2588 struct statistics_rx_non_phy common; 2589 /* additional stats for bt */ 2590 __le32 num_bt_kills; 2591 __le32 reserved[2]; 2592 } __packed; 2593 2594 struct statistics_rx { 2595 struct statistics_rx_phy ofdm; 2596 struct statistics_rx_phy cck; 2597 struct statistics_rx_non_phy general; 2598 struct statistics_rx_ht_phy ofdm_ht; 2599 } __packed; 2600 2601 struct statistics_rx_bt { 2602 struct statistics_rx_phy ofdm; 2603 struct statistics_rx_phy cck; 2604 struct statistics_rx_non_phy_bt general; 2605 struct statistics_rx_ht_phy ofdm_ht; 2606 } __packed; 2607 2608 /** 2609 * struct statistics_tx_power - current tx power 2610 * 2611 * @ant_a: current tx power on chain a in 1/2 dB step 2612 * @ant_b: current tx power on chain b in 1/2 dB step 2613 * @ant_c: current tx power on chain c in 1/2 dB step 2614 */ 2615 struct statistics_tx_power { 2616 u8 ant_a; 2617 u8 ant_b; 2618 u8 ant_c; 2619 u8 reserved; 2620 } __packed; 2621 2622 struct statistics_tx_non_phy_agg { 2623 __le32 ba_timeout; 2624 __le32 ba_reschedule_frames; 2625 __le32 scd_query_agg_frame_cnt; 2626 __le32 scd_query_no_agg; 2627 __le32 scd_query_agg; 2628 __le32 scd_query_mismatch; 2629 __le32 frame_not_ready; 2630 __le32 underrun; 2631 __le32 bt_prio_kill; 2632 __le32 rx_ba_rsp_cnt; 2633 } __packed; 2634 2635 struct statistics_tx { 2636 __le32 preamble_cnt; 2637 __le32 rx_detected_cnt; 2638 __le32 bt_prio_defer_cnt; 2639 __le32 bt_prio_kill_cnt; 2640 __le32 few_bytes_cnt; 2641 __le32 cts_timeout; 2642 __le32 ack_timeout; 2643 __le32 expected_ack_cnt; 2644 __le32 actual_ack_cnt; 2645 __le32 dump_msdu_cnt; 2646 __le32 burst_abort_next_frame_mismatch_cnt; 2647 __le32 burst_abort_missing_next_frame_cnt; 2648 __le32 cts_timeout_collision; 2649 __le32 ack_or_ba_timeout_collision; 2650 struct statistics_tx_non_phy_agg agg; 2651 /* 2652 * "tx_power" are optional parameters provided by uCode, 2653 * 6000 series is the only device provide the information, 2654 * Those are reserved fields for all the other devices 2655 */ 2656 struct statistics_tx_power tx_power; 2657 __le32 reserved1; 2658 } __packed; 2659 2660 2661 struct statistics_div { 2662 __le32 tx_on_a; 2663 __le32 tx_on_b; 2664 __le32 exec_time; 2665 __le32 probe_time; 2666 __le32 reserved1; 2667 __le32 reserved2; 2668 } __packed; 2669 2670 struct statistics_general_common { 2671 __le32 temperature; /* radio temperature */ 2672 __le32 temperature_m; /* radio voltage */ 2673 struct statistics_dbg dbg; 2674 __le32 sleep_time; 2675 __le32 slots_out; 2676 __le32 slots_idle; 2677 __le32 ttl_timestamp; 2678 struct statistics_div div; 2679 __le32 rx_enable_counter; 2680 /* 2681 * num_of_sos_states: 2682 * count the number of times we have to re-tune 2683 * in order to get out of bad PHY status 2684 */ 2685 __le32 num_of_sos_states; 2686 } __packed; 2687 2688 struct statistics_bt_activity { 2689 /* Tx statistics */ 2690 __le32 hi_priority_tx_req_cnt; 2691 __le32 hi_priority_tx_denied_cnt; 2692 __le32 lo_priority_tx_req_cnt; 2693 __le32 lo_priority_tx_denied_cnt; 2694 /* Rx statistics */ 2695 __le32 hi_priority_rx_req_cnt; 2696 __le32 hi_priority_rx_denied_cnt; 2697 __le32 lo_priority_rx_req_cnt; 2698 __le32 lo_priority_rx_denied_cnt; 2699 } __packed; 2700 2701 struct statistics_general { 2702 struct statistics_general_common common; 2703 __le32 reserved2; 2704 __le32 reserved3; 2705 } __packed; 2706 2707 struct statistics_general_bt { 2708 struct statistics_general_common common; 2709 struct statistics_bt_activity activity; 2710 __le32 reserved2; 2711 __le32 reserved3; 2712 } __packed; 2713 2714 #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0) 2715 #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1) 2716 #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2) 2717 2718 /* 2719 * REPLY_STATISTICS_CMD = 0x9c, 2720 * all devices identical. 2721 * 2722 * This command triggers an immediate response containing uCode statistics. 2723 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below. 2724 * 2725 * If the CLEAR_STATS configuration flag is set, uCode will clear its 2726 * internal copy of the statistics (counters) after issuing the response. 2727 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below). 2728 * 2729 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue 2730 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag 2731 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself. 2732 */ 2733 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */ 2734 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */ 2735 struct iwl_statistics_cmd { 2736 __le32 configuration_flags; /* IWL_STATS_CONF_* */ 2737 } __packed; 2738 2739 /* 2740 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command) 2741 * 2742 * By default, uCode issues this notification after receiving a beacon 2743 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the 2744 * REPLY_STATISTICS_CMD 0x9c, above. 2745 * 2746 * Statistics counters continue to increment beacon after beacon, but are 2747 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD 2748 * 0x9c with CLEAR_STATS bit set (see above). 2749 * 2750 * uCode also issues this notification during scans. uCode clears statistics 2751 * appropriately so that each notification contains statistics for only the 2752 * one channel that has just been scanned. 2753 */ 2754 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2) 2755 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8) 2756 2757 struct iwl_notif_statistics { 2758 __le32 flag; 2759 struct statistics_rx rx; 2760 struct statistics_tx tx; 2761 struct statistics_general general; 2762 } __packed; 2763 2764 struct iwl_bt_notif_statistics { 2765 __le32 flag; 2766 struct statistics_rx_bt rx; 2767 struct statistics_tx tx; 2768 struct statistics_general_bt general; 2769 } __packed; 2770 2771 /* 2772 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command) 2773 * 2774 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed 2775 * in regardless of how many missed beacons, which mean when driver receive the 2776 * notification, inside the command, it can find all the beacons information 2777 * which include number of total missed beacons, number of consecutive missed 2778 * beacons, number of beacons received and number of beacons expected to 2779 * receive. 2780 * 2781 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio 2782 * in order to bring the radio/PHY back to working state; which has no relation 2783 * to when driver will perform sensitivity calibration. 2784 * 2785 * Driver should set it own missed_beacon_threshold to decide when to perform 2786 * sensitivity calibration based on number of consecutive missed beacons in 2787 * order to improve overall performance, especially in noisy environment. 2788 * 2789 */ 2790 2791 #define IWL_MISSED_BEACON_THRESHOLD_MIN (1) 2792 #define IWL_MISSED_BEACON_THRESHOLD_DEF (5) 2793 #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF 2794 2795 struct iwl_missed_beacon_notif { 2796 __le32 consecutive_missed_beacons; 2797 __le32 total_missed_becons; 2798 __le32 num_expected_beacons; 2799 __le32 num_recvd_beacons; 2800 } __packed; 2801 2802 2803 /****************************************************************************** 2804 * (11) 2805 * Rx Calibration Commands: 2806 * 2807 * With the uCode used for open source drivers, most Tx calibration (except 2808 * for Tx Power) and most Rx calibration is done by uCode during the 2809 * "initialize" phase of uCode boot. Driver must calibrate only: 2810 * 2811 * 1) Tx power (depends on temperature), described elsewhere 2812 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas) 2813 * 3) Receiver sensitivity (to optimize signal detection) 2814 * 2815 *****************************************************************************/ 2816 2817 /** 2818 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response) 2819 * 2820 * This command sets up the Rx signal detector for a sensitivity level that 2821 * is high enough to lock onto all signals within the associated network, 2822 * but low enough to ignore signals that are below a certain threshold, so as 2823 * not to have too many "false alarms". False alarms are signals that the 2824 * Rx DSP tries to lock onto, but then discards after determining that they 2825 * are noise. 2826 * 2827 * The optimum number of false alarms is between 5 and 50 per 200 TUs 2828 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e. 2829 * time listening, not transmitting). Driver must adjust sensitivity so that 2830 * the ratio of actual false alarms to actual Rx time falls within this range. 2831 * 2832 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each 2833 * received beacon. These provide information to the driver to analyze the 2834 * sensitivity. Don't analyze statistics that come in from scanning, or any 2835 * other non-associated-network source. Pertinent statistics include: 2836 * 2837 * From "general" statistics (struct statistics_rx_non_phy): 2838 * 2839 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level) 2840 * Measure of energy of desired signal. Used for establishing a level 2841 * below which the device does not detect signals. 2842 * 2843 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB) 2844 * Measure of background noise in silent period after beacon. 2845 * 2846 * channel_load 2847 * uSecs of actual Rx time during beacon period (varies according to 2848 * how much time was spent transmitting). 2849 * 2850 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately: 2851 * 2852 * false_alarm_cnt 2853 * Signal locks abandoned early (before phy-level header). 2854 * 2855 * plcp_err 2856 * Signal locks abandoned late (during phy-level header). 2857 * 2858 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from 2859 * beacon to beacon, i.e. each value is an accumulation of all errors 2860 * before and including the latest beacon. Values will wrap around to 0 2861 * after counting up to 2^32 - 1. Driver must differentiate vs. 2862 * previous beacon's values to determine # false alarms in the current 2863 * beacon period. 2864 * 2865 * Total number of false alarms = false_alarms + plcp_errs 2866 * 2867 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd 2868 * (notice that the start points for OFDM are at or close to settings for 2869 * maximum sensitivity): 2870 * 2871 * START / MIN / MAX 2872 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120 2873 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210 2874 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140 2875 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270 2876 * 2877 * If actual rate of OFDM false alarms (+ plcp_errors) is too high 2878 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity 2879 * by *adding* 1 to all 4 of the table entries above, up to the max for 2880 * each entry. Conversely, if false alarm rate is too low (less than 5 2881 * for each 204.8 msecs listening), *subtract* 1 from each entry to 2882 * increase sensitivity. 2883 * 2884 * For CCK sensitivity, keep track of the following: 2885 * 2886 * 1). 20-beacon history of maximum background noise, indicated by 2887 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the 2888 * 3 receivers. For any given beacon, the "silence reference" is 2889 * the maximum of last 60 samples (20 beacons * 3 receivers). 2890 * 2891 * 2). 10-beacon history of strongest signal level, as indicated 2892 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers, 2893 * i.e. the strength of the signal through the best receiver at the 2894 * moment. These measurements are "upside down", with lower values 2895 * for stronger signals, so max energy will be *minimum* value. 2896 * 2897 * Then for any given beacon, the driver must determine the *weakest* 2898 * of the strongest signals; this is the minimum level that needs to be 2899 * successfully detected, when using the best receiver at the moment. 2900 * "Max cck energy" is the maximum (higher value means lower energy!) 2901 * of the last 10 minima. Once this is determined, driver must add 2902 * a little margin by adding "6" to it. 2903 * 2904 * 3). Number of consecutive beacon periods with too few false alarms. 2905 * Reset this to 0 at the first beacon period that falls within the 2906 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx). 2907 * 2908 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd 2909 * (notice that the start points for CCK are at maximum sensitivity): 2910 * 2911 * START / MIN / MAX 2912 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200 2913 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400 2914 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100 2915 * 2916 * If actual rate of CCK false alarms (+ plcp_errors) is too high 2917 * (greater than 50 for each 204.8 msecs listening), method for reducing 2918 * sensitivity is: 2919 * 2920 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, 2921 * up to max 400. 2922 * 2923 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160, 2924 * sensitivity has been reduced a significant amount; bring it up to 2925 * a moderate 161. Otherwise, *add* 3, up to max 200. 2926 * 2927 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160, 2928 * sensitivity has been reduced only a moderate or small amount; 2929 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX, 2930 * down to min 0. Otherwise (if gain has been significantly reduced), 2931 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value. 2932 * 2933 * b) Save a snapshot of the "silence reference". 2934 * 2935 * If actual rate of CCK false alarms (+ plcp_errors) is too low 2936 * (less than 5 for each 204.8 msecs listening), method for increasing 2937 * sensitivity is used only if: 2938 * 2939 * 1a) Previous beacon did not have too many false alarms 2940 * 1b) AND difference between previous "silence reference" and current 2941 * "silence reference" (prev - current) is 2 or more, 2942 * OR 2) 100 or more consecutive beacon periods have had rate of 2943 * less than 5 false alarms per 204.8 milliseconds rx time. 2944 * 2945 * Method for increasing sensitivity: 2946 * 2947 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX, 2948 * down to min 125. 2949 * 2950 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, 2951 * down to min 200. 2952 * 2953 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100. 2954 * 2955 * If actual rate of CCK false alarms (+ plcp_errors) is within good range 2956 * (between 5 and 50 for each 204.8 msecs listening): 2957 * 2958 * 1) Save a snapshot of the silence reference. 2959 * 2960 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors), 2961 * give some extra margin to energy threshold by *subtracting* 8 2962 * from value in HD_MIN_ENERGY_CCK_DET_INDEX. 2963 * 2964 * For all cases (too few, too many, good range), make sure that the CCK 2965 * detection threshold (energy) is below the energy level for robust 2966 * detection over the past 10 beacon periods, the "Max cck energy". 2967 * Lower values mean higher energy; this means making sure that the value 2968 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy". 2969 * 2970 */ 2971 2972 /* 2973 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd) 2974 */ 2975 #define HD_TABLE_SIZE (11) /* number of entries */ 2976 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */ 2977 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1) 2978 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2) 2979 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3) 2980 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4) 2981 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5) 2982 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6) 2983 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7) 2984 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8) 2985 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9) 2986 #define HD_OFDM_ENERGY_TH_IN_INDEX (10) 2987 2988 /* 2989 * Additional table entries in enhance SENSITIVITY_CMD 2990 */ 2991 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11) 2992 #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12) 2993 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13) 2994 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14) 2995 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15) 2996 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16) 2997 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17) 2998 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18) 2999 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19) 3000 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20) 3001 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21) 3002 #define HD_RESERVED (22) 3003 3004 /* number of entries for enhanced tbl */ 3005 #define ENHANCE_HD_TABLE_SIZE (23) 3006 3007 /* number of additional entries for enhanced tbl */ 3008 #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE) 3009 3010 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0) 3011 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0) 3012 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0) 3013 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668) 3014 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4) 3015 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486) 3016 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37) 3017 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853) 3018 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4) 3019 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476) 3020 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99) 3021 3022 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1) 3023 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1) 3024 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1) 3025 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600) 3026 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40) 3027 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486) 3028 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45) 3029 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853) 3030 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60) 3031 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476) 3032 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99) 3033 3034 3035 /* Control field in struct iwl_sensitivity_cmd */ 3036 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0) 3037 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1) 3038 3039 /** 3040 * struct iwl_sensitivity_cmd 3041 * @control: (1) updates working table, (0) updates default table 3042 * @table: energy threshold values, use HD_* as index into table 3043 * 3044 * Always use "1" in "control" to update uCode's working table and DSP. 3045 */ 3046 struct iwl_sensitivity_cmd { 3047 __le16 control; /* always use "1" */ 3048 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */ 3049 } __packed; 3050 3051 /* 3052 * 3053 */ 3054 struct iwl_enhance_sensitivity_cmd { 3055 __le16 control; /* always use "1" */ 3056 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */ 3057 } __packed; 3058 3059 3060 /** 3061 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response) 3062 * 3063 * This command sets the relative gains of agn device's 3 radio receiver chains. 3064 * 3065 * After the first association, driver should accumulate signal and noise 3066 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20 3067 * beacons from the associated network (don't collect statistics that come 3068 * in from scanning, or any other non-network source). 3069 * 3070 * DISCONNECTED ANTENNA: 3071 * 3072 * Driver should determine which antennas are actually connected, by comparing 3073 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the 3074 * following values over 20 beacons, one accumulator for each of the chains 3075 * a/b/c, from struct statistics_rx_non_phy: 3076 * 3077 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB) 3078 * 3079 * Find the strongest signal from among a/b/c. Compare the other two to the 3080 * strongest. If any signal is more than 15 dB (times 20, unless you 3081 * divide the accumulated values by 20) below the strongest, the driver 3082 * considers that antenna to be disconnected, and should not try to use that 3083 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected, 3084 * driver should declare the stronger one as connected, and attempt to use it 3085 * (A and B are the only 2 Tx chains!). 3086 * 3087 * 3088 * RX BALANCE: 3089 * 3090 * Driver should balance the 3 receivers (but just the ones that are connected 3091 * to antennas, see above) for gain, by comparing the average signal levels 3092 * detected during the silence after each beacon (background noise). 3093 * Accumulate (add) the following values over 20 beacons, one accumulator for 3094 * each of the chains a/b/c, from struct statistics_rx_non_phy: 3095 * 3096 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB) 3097 * 3098 * Find the weakest background noise level from among a/b/c. This Rx chain 3099 * will be the reference, with 0 gain adjustment. Attenuate other channels by 3100 * finding noise difference: 3101 * 3102 * (accum_noise[i] - accum_noise[reference]) / 30 3103 * 3104 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB. 3105 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the 3106 * driver should limit the difference results to a range of 0-3 (0-4.5 dB), 3107 * and set bit 2 to indicate "reduce gain". The value for the reference 3108 * (weakest) chain should be "0". 3109 * 3110 * diff_gain_[abc] bit fields: 3111 * 2: (1) reduce gain, (0) increase gain 3112 * 1-0: amount of gain, units of 1.5 dB 3113 */ 3114 3115 /* Phy calibration command for series */ 3116 enum { 3117 IWL_PHY_CALIBRATE_DC_CMD = 8, 3118 IWL_PHY_CALIBRATE_LO_CMD = 9, 3119 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11, 3120 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15, 3121 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16, 3122 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17, 3123 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18, 3124 }; 3125 3126 /* This enum defines the bitmap of various calibrations to enable in both 3127 * init ucode and runtime ucode through CALIBRATION_CFG_CMD. 3128 */ 3129 enum iwl_ucode_calib_cfg { 3130 IWL_CALIB_CFG_RX_BB_IDX = BIT(0), 3131 IWL_CALIB_CFG_DC_IDX = BIT(1), 3132 IWL_CALIB_CFG_LO_IDX = BIT(2), 3133 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3), 3134 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4), 3135 IWL_CALIB_CFG_NOISE_IDX = BIT(5), 3136 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6), 3137 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7), 3138 IWL_CALIB_CFG_PAPD_IDX = BIT(8), 3139 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9), 3140 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10), 3141 }; 3142 3143 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \ 3144 IWL_CALIB_CFG_DC_IDX | \ 3145 IWL_CALIB_CFG_LO_IDX | \ 3146 IWL_CALIB_CFG_TX_IQ_IDX | \ 3147 IWL_CALIB_CFG_RX_IQ_IDX | \ 3148 IWL_CALIB_CFG_CRYSTAL_IDX) 3149 3150 #define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \ 3151 IWL_CALIB_CFG_DC_IDX | \ 3152 IWL_CALIB_CFG_LO_IDX | \ 3153 IWL_CALIB_CFG_TX_IQ_IDX | \ 3154 IWL_CALIB_CFG_RX_IQ_IDX | \ 3155 IWL_CALIB_CFG_TEMPERATURE_IDX | \ 3156 IWL_CALIB_CFG_PAPD_IDX | \ 3157 IWL_CALIB_CFG_TX_PWR_IDX | \ 3158 IWL_CALIB_CFG_CRYSTAL_IDX) 3159 3160 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0)) 3161 3162 struct iwl_calib_cfg_elmnt_s { 3163 __le32 is_enable; 3164 __le32 start; 3165 __le32 send_res; 3166 __le32 apply_res; 3167 __le32 reserved; 3168 } __packed; 3169 3170 struct iwl_calib_cfg_status_s { 3171 struct iwl_calib_cfg_elmnt_s once; 3172 struct iwl_calib_cfg_elmnt_s perd; 3173 __le32 flags; 3174 } __packed; 3175 3176 struct iwl_calib_cfg_cmd { 3177 struct iwl_calib_cfg_status_s ucd_calib_cfg; 3178 struct iwl_calib_cfg_status_s drv_calib_cfg; 3179 __le32 reserved1; 3180 } __packed; 3181 3182 struct iwl_calib_hdr { 3183 u8 op_code; 3184 u8 first_group; 3185 u8 groups_num; 3186 u8 data_valid; 3187 } __packed; 3188 3189 struct iwl_calib_cmd { 3190 struct iwl_calib_hdr hdr; 3191 u8 data[]; 3192 } __packed; 3193 3194 struct iwl_calib_xtal_freq_cmd { 3195 struct iwl_calib_hdr hdr; 3196 u8 cap_pin1; 3197 u8 cap_pin2; 3198 u8 pad[2]; 3199 } __packed; 3200 3201 #define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700) 3202 struct iwl_calib_temperature_offset_cmd { 3203 struct iwl_calib_hdr hdr; 3204 __le16 radio_sensor_offset; 3205 __le16 reserved; 3206 } __packed; 3207 3208 struct iwl_calib_temperature_offset_v2_cmd { 3209 struct iwl_calib_hdr hdr; 3210 __le16 radio_sensor_offset_high; 3211 __le16 radio_sensor_offset_low; 3212 __le16 burntVoltageRef; 3213 __le16 reserved; 3214 } __packed; 3215 3216 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */ 3217 struct iwl_calib_chain_noise_reset_cmd { 3218 struct iwl_calib_hdr hdr; 3219 u8 data[]; 3220 }; 3221 3222 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */ 3223 struct iwl_calib_chain_noise_gain_cmd { 3224 struct iwl_calib_hdr hdr; 3225 u8 delta_gain_1; 3226 u8 delta_gain_2; 3227 u8 pad[2]; 3228 } __packed; 3229 3230 /****************************************************************************** 3231 * (12) 3232 * Miscellaneous Commands: 3233 * 3234 *****************************************************************************/ 3235 3236 /* 3237 * LEDs Command & Response 3238 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response) 3239 * 3240 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field), 3241 * this command turns it on or off, or sets up a periodic blinking cycle. 3242 */ 3243 struct iwl_led_cmd { 3244 __le32 interval; /* "interval" in uSec */ 3245 u8 id; /* 1: Activity, 2: Link, 3: Tech */ 3246 u8 off; /* # intervals off while blinking; 3247 * "0", with >0 "on" value, turns LED on */ 3248 u8 on; /* # intervals on while blinking; 3249 * "0", regardless of "off", turns LED off */ 3250 u8 reserved; 3251 } __packed; 3252 3253 /* 3254 * station priority table entries 3255 * also used as potential "events" value for both 3256 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD 3257 */ 3258 3259 /* 3260 * COEX events entry flag masks 3261 * RP - Requested Priority 3262 * WP - Win Medium Priority: priority assigned when the contention has been won 3263 */ 3264 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1) 3265 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2) 3266 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4) 3267 3268 #define COEX_CU_UNASSOC_IDLE_RP 4 3269 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4 3270 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4 3271 #define COEX_CU_CALIBRATION_RP 4 3272 #define COEX_CU_PERIODIC_CALIBRATION_RP 4 3273 #define COEX_CU_CONNECTION_ESTAB_RP 4 3274 #define COEX_CU_ASSOCIATED_IDLE_RP 4 3275 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4 3276 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4 3277 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4 3278 #define COEX_CU_RF_ON_RP 6 3279 #define COEX_CU_RF_OFF_RP 4 3280 #define COEX_CU_STAND_ALONE_DEBUG_RP 6 3281 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4 3282 #define COEX_CU_RSRVD1_RP 4 3283 #define COEX_CU_RSRVD2_RP 4 3284 3285 #define COEX_CU_UNASSOC_IDLE_WP 3 3286 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3 3287 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3 3288 #define COEX_CU_CALIBRATION_WP 3 3289 #define COEX_CU_PERIODIC_CALIBRATION_WP 3 3290 #define COEX_CU_CONNECTION_ESTAB_WP 3 3291 #define COEX_CU_ASSOCIATED_IDLE_WP 3 3292 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3 3293 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3 3294 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3 3295 #define COEX_CU_RF_ON_WP 3 3296 #define COEX_CU_RF_OFF_WP 3 3297 #define COEX_CU_STAND_ALONE_DEBUG_WP 6 3298 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3 3299 #define COEX_CU_RSRVD1_WP 3 3300 #define COEX_CU_RSRVD2_WP 3 3301 3302 #define COEX_UNASSOC_IDLE_FLAGS 0 3303 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \ 3304 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3305 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3306 #define COEX_UNASSOC_AUTO_SCAN_FLAGS \ 3307 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3308 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3309 #define COEX_CALIBRATION_FLAGS \ 3310 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3311 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3312 #define COEX_PERIODIC_CALIBRATION_FLAGS 0 3313 /* 3314 * COEX_CONNECTION_ESTAB: 3315 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. 3316 */ 3317 #define COEX_CONNECTION_ESTAB_FLAGS \ 3318 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3319 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3320 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3321 #define COEX_ASSOCIATED_IDLE_FLAGS 0 3322 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \ 3323 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3324 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3325 #define COEX_ASSOC_AUTO_SCAN_FLAGS \ 3326 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3327 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3328 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0 3329 #define COEX_RF_ON_FLAGS 0 3330 #define COEX_RF_OFF_FLAGS 0 3331 #define COEX_STAND_ALONE_DEBUG_FLAGS \ 3332 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3333 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG) 3334 #define COEX_IPAN_ASSOC_LEVEL_FLAGS \ 3335 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3336 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3337 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3338 #define COEX_RSRVD1_FLAGS 0 3339 #define COEX_RSRVD2_FLAGS 0 3340 /* 3341 * COEX_CU_RF_ON is the event wrapping all radio ownership. 3342 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. 3343 */ 3344 #define COEX_CU_RF_ON_FLAGS \ 3345 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \ 3346 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \ 3347 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG) 3348 3349 3350 enum { 3351 /* un-association part */ 3352 COEX_UNASSOC_IDLE = 0, 3353 COEX_UNASSOC_MANUAL_SCAN = 1, 3354 COEX_UNASSOC_AUTO_SCAN = 2, 3355 /* calibration */ 3356 COEX_CALIBRATION = 3, 3357 COEX_PERIODIC_CALIBRATION = 4, 3358 /* connection */ 3359 COEX_CONNECTION_ESTAB = 5, 3360 /* association part */ 3361 COEX_ASSOCIATED_IDLE = 6, 3362 COEX_ASSOC_MANUAL_SCAN = 7, 3363 COEX_ASSOC_AUTO_SCAN = 8, 3364 COEX_ASSOC_ACTIVE_LEVEL = 9, 3365 /* RF ON/OFF */ 3366 COEX_RF_ON = 10, 3367 COEX_RF_OFF = 11, 3368 COEX_STAND_ALONE_DEBUG = 12, 3369 /* IPAN */ 3370 COEX_IPAN_ASSOC_LEVEL = 13, 3371 /* reserved */ 3372 COEX_RSRVD1 = 14, 3373 COEX_RSRVD2 = 15, 3374 COEX_NUM_OF_EVENTS = 16 3375 }; 3376 3377 /* 3378 * Coexistence WIFI/WIMAX Command 3379 * COEX_PRIORITY_TABLE_CMD = 0x5a 3380 * 3381 */ 3382 struct iwl_wimax_coex_event_entry { 3383 u8 request_prio; 3384 u8 win_medium_prio; 3385 u8 reserved; 3386 u8 flags; 3387 } __packed; 3388 3389 /* COEX flag masks */ 3390 3391 /* Station table is valid */ 3392 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1) 3393 /* UnMask wake up src at unassociated sleep */ 3394 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4) 3395 /* UnMask wake up src at associated sleep */ 3396 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8) 3397 /* Enable CoEx feature. */ 3398 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80) 3399 3400 struct iwl_wimax_coex_cmd { 3401 u8 flags; 3402 u8 reserved[3]; 3403 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS]; 3404 } __packed; 3405 3406 /* 3407 * Coexistence MEDIUM NOTIFICATION 3408 * COEX_MEDIUM_NOTIFICATION = 0x5b 3409 * 3410 * notification from uCode to host to indicate medium changes 3411 * 3412 */ 3413 /* 3414 * status field 3415 * bit 0 - 2: medium status 3416 * bit 3: medium change indication 3417 * bit 4 - 31: reserved 3418 */ 3419 /* status option values, (0 - 2 bits) */ 3420 #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */ 3421 #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */ 3422 #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */ 3423 #define COEX_MEDIUM_MSK (0x7) 3424 3425 /* send notification status (1 bit) */ 3426 #define COEX_MEDIUM_CHANGED (0x8) 3427 #define COEX_MEDIUM_CHANGED_MSK (0x8) 3428 #define COEX_MEDIUM_SHIFT (3) 3429 3430 struct iwl_coex_medium_notification { 3431 __le32 status; 3432 __le32 events; 3433 } __packed; 3434 3435 /* 3436 * Coexistence EVENT Command 3437 * COEX_EVENT_CMD = 0x5c 3438 * 3439 * send from host to uCode for coex event request. 3440 */ 3441 /* flags options */ 3442 #define COEX_EVENT_REQUEST_MSK (0x1) 3443 3444 struct iwl_coex_event_cmd { 3445 u8 flags; 3446 u8 event; 3447 __le16 reserved; 3448 } __packed; 3449 3450 struct iwl_coex_event_resp { 3451 __le32 status; 3452 } __packed; 3453 3454 3455 /****************************************************************************** 3456 * Bluetooth Coexistence commands 3457 * 3458 *****************************************************************************/ 3459 3460 /* 3461 * BT Status notification 3462 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce 3463 */ 3464 enum iwl_bt_coex_profile_traffic_load { 3465 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0, 3466 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1, 3467 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2, 3468 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3, 3469 /* 3470 * There are no more even though below is a u8, the 3471 * indication from the BT device only has two bits. 3472 */ 3473 }; 3474 3475 #define BT_SESSION_ACTIVITY_1_UART_MSG 0x1 3476 #define BT_SESSION_ACTIVITY_2_UART_MSG 0x2 3477 3478 /* BT UART message - Share Part (BT -> WiFi) */ 3479 #define BT_UART_MSG_FRAME1MSGTYPE_POS (0) 3480 #define BT_UART_MSG_FRAME1MSGTYPE_MSK \ 3481 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS) 3482 #define BT_UART_MSG_FRAME1SSN_POS (3) 3483 #define BT_UART_MSG_FRAME1SSN_MSK \ 3484 (0x3 << BT_UART_MSG_FRAME1SSN_POS) 3485 #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5) 3486 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \ 3487 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS) 3488 #define BT_UART_MSG_FRAME1RESERVED_POS (6) 3489 #define BT_UART_MSG_FRAME1RESERVED_MSK \ 3490 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS) 3491 3492 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0) 3493 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \ 3494 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS) 3495 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2) 3496 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \ 3497 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS) 3498 #define BT_UART_MSG_FRAME2CHLSEQN_POS (4) 3499 #define BT_UART_MSG_FRAME2CHLSEQN_MSK \ 3500 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS) 3501 #define BT_UART_MSG_FRAME2INBAND_POS (5) 3502 #define BT_UART_MSG_FRAME2INBAND_MSK \ 3503 (0x1 << BT_UART_MSG_FRAME2INBAND_POS) 3504 #define BT_UART_MSG_FRAME2RESERVED_POS (6) 3505 #define BT_UART_MSG_FRAME2RESERVED_MSK \ 3506 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS) 3507 3508 #define BT_UART_MSG_FRAME3SCOESCO_POS (0) 3509 #define BT_UART_MSG_FRAME3SCOESCO_MSK \ 3510 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS) 3511 #define BT_UART_MSG_FRAME3SNIFF_POS (1) 3512 #define BT_UART_MSG_FRAME3SNIFF_MSK \ 3513 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS) 3514 #define BT_UART_MSG_FRAME3A2DP_POS (2) 3515 #define BT_UART_MSG_FRAME3A2DP_MSK \ 3516 (0x1 << BT_UART_MSG_FRAME3A2DP_POS) 3517 #define BT_UART_MSG_FRAME3ACL_POS (3) 3518 #define BT_UART_MSG_FRAME3ACL_MSK \ 3519 (0x1 << BT_UART_MSG_FRAME3ACL_POS) 3520 #define BT_UART_MSG_FRAME3MASTER_POS (4) 3521 #define BT_UART_MSG_FRAME3MASTER_MSK \ 3522 (0x1 << BT_UART_MSG_FRAME3MASTER_POS) 3523 #define BT_UART_MSG_FRAME3OBEX_POS (5) 3524 #define BT_UART_MSG_FRAME3OBEX_MSK \ 3525 (0x1 << BT_UART_MSG_FRAME3OBEX_POS) 3526 #define BT_UART_MSG_FRAME3RESERVED_POS (6) 3527 #define BT_UART_MSG_FRAME3RESERVED_MSK \ 3528 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS) 3529 3530 #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0) 3531 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \ 3532 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS) 3533 #define BT_UART_MSG_FRAME4RESERVED_POS (6) 3534 #define BT_UART_MSG_FRAME4RESERVED_MSK \ 3535 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS) 3536 3537 #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0) 3538 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \ 3539 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS) 3540 #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2) 3541 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \ 3542 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS) 3543 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4) 3544 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \ 3545 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS) 3546 #define BT_UART_MSG_FRAME5RESERVED_POS (6) 3547 #define BT_UART_MSG_FRAME5RESERVED_MSK \ 3548 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS) 3549 3550 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0) 3551 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \ 3552 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS) 3553 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5) 3554 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \ 3555 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS) 3556 #define BT_UART_MSG_FRAME6RESERVED_POS (6) 3557 #define BT_UART_MSG_FRAME6RESERVED_MSK \ 3558 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS) 3559 3560 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0) 3561 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \ 3562 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS) 3563 #define BT_UART_MSG_FRAME7PAGE_POS (3) 3564 #define BT_UART_MSG_FRAME7PAGE_MSK \ 3565 (0x1 << BT_UART_MSG_FRAME7PAGE_POS) 3566 #define BT_UART_MSG_FRAME7INQUIRY_POS (4) 3567 #define BT_UART_MSG_FRAME7INQUIRY_MSK \ 3568 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS) 3569 #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5) 3570 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \ 3571 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS) 3572 #define BT_UART_MSG_FRAME7RESERVED_POS (6) 3573 #define BT_UART_MSG_FRAME7RESERVED_MSK \ 3574 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS) 3575 3576 /* BT Session Activity 2 UART message (BT -> WiFi) */ 3577 #define BT_UART_MSG_2_FRAME1RESERVED1_POS (5) 3578 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK \ 3579 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS) 3580 #define BT_UART_MSG_2_FRAME1RESERVED2_POS (6) 3581 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK \ 3582 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS) 3583 3584 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0) 3585 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \ 3586 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS) 3587 #define BT_UART_MSG_2_FRAME2RESERVED_POS (6) 3588 #define BT_UART_MSG_2_FRAME2RESERVED_MSK \ 3589 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS) 3590 3591 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0) 3592 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \ 3593 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS) 3594 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4) 3595 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \ 3596 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS) 3597 #define BT_UART_MSG_2_FRAME3LEMASTER_POS (5) 3598 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK \ 3599 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS) 3600 #define BT_UART_MSG_2_FRAME3RESERVED_POS (6) 3601 #define BT_UART_MSG_2_FRAME3RESERVED_MSK \ 3602 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS) 3603 3604 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0) 3605 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \ 3606 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS) 3607 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4) 3608 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \ 3609 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS) 3610 #define BT_UART_MSG_2_FRAME4RESERVED_POS (6) 3611 #define BT_UART_MSG_2_FRAME4RESERVED_MSK \ 3612 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS) 3613 3614 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0) 3615 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \ 3616 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS) 3617 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4) 3618 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \ 3619 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS) 3620 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5) 3621 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \ 3622 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS) 3623 #define BT_UART_MSG_2_FRAME5RESERVED_POS (6) 3624 #define BT_UART_MSG_2_FRAME5RESERVED_MSK \ 3625 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS) 3626 3627 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0) 3628 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \ 3629 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS) 3630 #define BT_UART_MSG_2_FRAME6RFU_POS (5) 3631 #define BT_UART_MSG_2_FRAME6RFU_MSK \ 3632 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS) 3633 #define BT_UART_MSG_2_FRAME6RESERVED_POS (6) 3634 #define BT_UART_MSG_2_FRAME6RESERVED_MSK \ 3635 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS) 3636 3637 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0) 3638 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \ 3639 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS) 3640 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3) 3641 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \ 3642 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS) 3643 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4) 3644 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \ 3645 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS) 3646 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5) 3647 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \ 3648 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS) 3649 #define BT_UART_MSG_2_FRAME7RESERVED_POS (6) 3650 #define BT_UART_MSG_2_FRAME7RESERVED_MSK \ 3651 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS) 3652 3653 3654 #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62) 3655 #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65) 3656 3657 struct iwl_bt_uart_msg { 3658 u8 header; 3659 u8 frame1; 3660 u8 frame2; 3661 u8 frame3; 3662 u8 frame4; 3663 u8 frame5; 3664 u8 frame6; 3665 u8 frame7; 3666 } __packed; 3667 3668 struct iwl_bt_coex_profile_notif { 3669 struct iwl_bt_uart_msg last_bt_uart_msg; 3670 u8 bt_status; /* 0 - off, 1 - on */ 3671 u8 bt_traffic_load; /* 0 .. 3? */ 3672 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */ 3673 u8 reserved; 3674 } __packed; 3675 3676 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0 3677 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1 3678 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1 3679 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e 3680 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4 3681 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0 3682 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1 3683 3684 /* 3685 * BT Coexistence Priority table 3686 * REPLY_BT_COEX_PRIO_TABLE = 0xcc 3687 */ 3688 enum bt_coex_prio_table_events { 3689 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0, 3690 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1, 3691 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2, 3692 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */ 3693 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4, 3694 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5, 3695 BT_COEX_PRIO_TBL_EVT_DTIM = 6, 3696 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7, 3697 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8, 3698 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9, 3699 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10, 3700 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11, 3701 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12, 3702 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13, 3703 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14, 3704 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15, 3705 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */ 3706 BT_COEX_PRIO_TBL_EVT_MAX, 3707 }; 3708 3709 enum bt_coex_prio_table_priorities { 3710 BT_COEX_PRIO_TBL_DISABLED = 0, 3711 BT_COEX_PRIO_TBL_PRIO_LOW = 1, 3712 BT_COEX_PRIO_TBL_PRIO_HIGH = 2, 3713 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3, 3714 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4, 3715 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5, 3716 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6, 3717 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7, 3718 BT_COEX_PRIO_TBL_MAX, 3719 }; 3720 3721 struct iwl_bt_coex_prio_table_cmd { 3722 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX]; 3723 } __packed; 3724 3725 #define IWL_BT_COEX_ENV_CLOSE 0 3726 #define IWL_BT_COEX_ENV_OPEN 1 3727 /* 3728 * BT Protection Envelope 3729 * REPLY_BT_COEX_PROT_ENV = 0xcd 3730 */ 3731 struct iwl_bt_coex_prot_env_cmd { 3732 u8 action; /* 0 = closed, 1 = open */ 3733 u8 type; /* 0 .. 15 */ 3734 u8 reserved[2]; 3735 } __packed; 3736 3737 /* 3738 * REPLY_D3_CONFIG 3739 */ 3740 enum iwlagn_d3_wakeup_filters { 3741 IWLAGN_D3_WAKEUP_RFKILL = BIT(0), 3742 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1), 3743 }; 3744 3745 struct iwlagn_d3_config_cmd { 3746 __le32 min_sleep_time; 3747 __le32 wakeup_flags; 3748 } __packed; 3749 3750 /* 3751 * REPLY_WOWLAN_PATTERNS 3752 */ 3753 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16 3754 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128 3755 3756 struct iwlagn_wowlan_pattern { 3757 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8]; 3758 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN]; 3759 u8 mask_size; 3760 u8 pattern_size; 3761 __le16 reserved; 3762 } __packed; 3763 3764 #define IWLAGN_WOWLAN_MAX_PATTERNS 20 3765 3766 struct iwlagn_wowlan_patterns_cmd { 3767 __le32 n_patterns; 3768 struct iwlagn_wowlan_pattern patterns[]; 3769 } __packed; 3770 3771 /* 3772 * REPLY_WOWLAN_WAKEUP_FILTER 3773 */ 3774 enum iwlagn_wowlan_wakeup_filters { 3775 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0), 3776 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1), 3777 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2), 3778 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3), 3779 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4), 3780 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5), 3781 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6), 3782 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7), 3783 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8), 3784 }; 3785 3786 struct iwlagn_wowlan_wakeup_filter_cmd { 3787 __le32 enabled; 3788 __le16 non_qos_seq; 3789 __le16 reserved; 3790 __le16 qos_seq[8]; 3791 }; 3792 3793 /* 3794 * REPLY_WOWLAN_TSC_RSC_PARAMS 3795 */ 3796 #define IWLAGN_NUM_RSC 16 3797 3798 struct tkip_sc { 3799 __le16 iv16; 3800 __le16 pad; 3801 __le32 iv32; 3802 } __packed; 3803 3804 struct iwlagn_tkip_rsc_tsc { 3805 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC]; 3806 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC]; 3807 struct tkip_sc tsc; 3808 } __packed; 3809 3810 struct aes_sc { 3811 __le64 pn; 3812 } __packed; 3813 3814 struct iwlagn_aes_rsc_tsc { 3815 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC]; 3816 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC]; 3817 struct aes_sc tsc; 3818 } __packed; 3819 3820 union iwlagn_all_tsc_rsc { 3821 struct iwlagn_tkip_rsc_tsc tkip; 3822 struct iwlagn_aes_rsc_tsc aes; 3823 }; 3824 3825 struct iwlagn_wowlan_rsc_tsc_params_cmd { 3826 union iwlagn_all_tsc_rsc all_tsc_rsc; 3827 } __packed; 3828 3829 /* 3830 * REPLY_WOWLAN_TKIP_PARAMS 3831 */ 3832 #define IWLAGN_MIC_KEY_SIZE 8 3833 #define IWLAGN_P1K_SIZE 5 3834 struct iwlagn_mic_keys { 3835 u8 tx[IWLAGN_MIC_KEY_SIZE]; 3836 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE]; 3837 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE]; 3838 } __packed; 3839 3840 struct iwlagn_p1k_cache { 3841 __le16 p1k[IWLAGN_P1K_SIZE]; 3842 } __packed; 3843 3844 #define IWLAGN_NUM_RX_P1K_CACHE 2 3845 3846 struct iwlagn_wowlan_tkip_params_cmd { 3847 struct iwlagn_mic_keys mic_keys; 3848 struct iwlagn_p1k_cache tx; 3849 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE]; 3850 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE]; 3851 } __packed; 3852 3853 /* 3854 * REPLY_WOWLAN_KEK_KCK_MATERIAL 3855 */ 3856 3857 #define IWLAGN_KCK_MAX_SIZE 32 3858 #define IWLAGN_KEK_MAX_SIZE 32 3859 3860 struct iwlagn_wowlan_kek_kck_material_cmd { 3861 u8 kck[IWLAGN_KCK_MAX_SIZE]; 3862 u8 kek[IWLAGN_KEK_MAX_SIZE]; 3863 __le16 kck_len; 3864 __le16 kek_len; 3865 __le64 replay_ctr; 3866 } __packed; 3867 3868 #define RF_KILL_INDICATOR_FOR_WOWLAN 0x87 3869 3870 /* 3871 * REPLY_WOWLAN_GET_STATUS = 0xe5 3872 */ 3873 struct iwlagn_wowlan_status { 3874 __le64 replay_ctr; 3875 __le32 rekey_status; 3876 __le32 wakeup_reason; 3877 u8 pattern_number; 3878 u8 reserved1; 3879 __le16 qos_seq_ctr[8]; 3880 __le16 non_qos_seq_ctr; 3881 __le16 reserved2; 3882 union iwlagn_all_tsc_rsc tsc_rsc; 3883 __le16 reserved3; 3884 } __packed; 3885 3886 /* 3887 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification) 3888 */ 3889 3890 /* 3891 * Minimum slot time in TU 3892 */ 3893 #define IWL_MIN_SLOT_TIME 20 3894 3895 /** 3896 * struct iwl_wipan_slot 3897 * @width: Time in TU 3898 * @type: 3899 * 0 - BSS 3900 * 1 - PAN 3901 */ 3902 struct iwl_wipan_slot { 3903 __le16 width; 3904 u8 type; 3905 u8 reserved; 3906 } __packed; 3907 3908 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */ 3909 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */ 3910 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */ 3911 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4) 3912 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5) 3913 3914 /** 3915 * struct iwl_wipan_params_cmd 3916 * @flags: 3917 * bit0: reserved 3918 * bit1: CP leave channel with CTS 3919 * bit2: CP leave channel qith Quiet 3920 * bit3: slotted mode 3921 * 1 - work in slotted mode 3922 * 0 - work in non slotted mode 3923 * bit4: filter beacon notification 3924 * bit5: full tx slotted mode. if this flag is set, 3925 * uCode will perform leaving channel methods in context switch 3926 * also when working in same channel mode 3927 * @num_slots: 1 - 10 3928 */ 3929 struct iwl_wipan_params_cmd { 3930 __le16 flags; 3931 u8 reserved; 3932 u8 num_slots; 3933 struct iwl_wipan_slot slots[10]; 3934 } __packed; 3935 3936 /* 3937 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9 3938 * 3939 * TODO: Figure out what this is used for, 3940 * it can only switch between 2.4 GHz 3941 * channels!! 3942 */ 3943 3944 struct iwl_wipan_p2p_channel_switch_cmd { 3945 __le16 channel; 3946 __le16 reserved; 3947 }; 3948 3949 /* 3950 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc 3951 * 3952 * This is used by the device to notify us of the 3953 * NoA schedule it determined so we can forward it 3954 * to userspace for inclusion in probe responses. 3955 * 3956 * In beacons, the NoA schedule is simply appended 3957 * to the frame we give the device. 3958 */ 3959 3960 struct iwl_wipan_noa_descriptor { 3961 u8 count; 3962 __le32 duration; 3963 __le32 interval; 3964 __le32 starttime; 3965 } __packed; 3966 3967 struct iwl_wipan_noa_attribute { 3968 u8 id; 3969 __le16 length; 3970 u8 index; 3971 u8 ct_window; 3972 struct iwl_wipan_noa_descriptor descr0, descr1; 3973 u8 reserved; 3974 } __packed; 3975 3976 struct iwl_wipan_noa_notification { 3977 u32 noa_active; 3978 struct iwl_wipan_noa_attribute noa_attribute; 3979 } __packed; 3980 3981 #endif /* __iwl_commands_h__ */ 3982