• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *   		Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11 
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28 
29 #define DECRYPT		0
30 #define ENCRYPT		1
31 
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
ecryptfs_from_hex(char * dst,char * src,int dst_size)39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41 	int x;
42 	char tmp[3] = { 0, };
43 
44 	for (x = 0; x < dst_size; x++) {
45 		tmp[0] = src[x * 2];
46 		tmp[1] = src[x * 2 + 1];
47 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48 	}
49 }
50 
51 /**
52  * ecryptfs_calculate_md5 - calculates the md5 of @src
53  * @dst: Pointer to 16 bytes of allocated memory
54  * @crypt_stat: Pointer to crypt_stat struct for the current inode
55  * @src: Data to be md5'd
56  * @len: Length of @src
57  *
58  * Uses the allocated crypto context that crypt_stat references to
59  * generate the MD5 sum of the contents of src.
60  */
ecryptfs_calculate_md5(char * dst,struct ecryptfs_crypt_stat * crypt_stat,char * src,int len)61 static int ecryptfs_calculate_md5(char *dst,
62 				  struct ecryptfs_crypt_stat *crypt_stat,
63 				  char *src, int len)
64 {
65 	int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66 
67 	if (rc) {
68 		printk(KERN_ERR
69 		       "%s: Error computing crypto hash; rc = [%d]\n",
70 		       __func__, rc);
71 		goto out;
72 	}
73 out:
74 	return rc;
75 }
76 
ecryptfs_crypto_api_algify_cipher_name(char ** algified_name,char * cipher_name,char * chaining_modifier)77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78 						  char *cipher_name,
79 						  char *chaining_modifier)
80 {
81 	int cipher_name_len = strlen(cipher_name);
82 	int chaining_modifier_len = strlen(chaining_modifier);
83 	int algified_name_len;
84 	int rc;
85 
86 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88 	if (!(*algified_name)) {
89 		rc = -ENOMEM;
90 		goto out;
91 	}
92 	snprintf((*algified_name), algified_name_len, "%s(%s)",
93 		 chaining_modifier, cipher_name);
94 	rc = 0;
95 out:
96 	return rc;
97 }
98 
99 /**
100  * ecryptfs_derive_iv
101  * @iv: destination for the derived iv vale
102  * @crypt_stat: Pointer to crypt_stat struct for the current inode
103  * @offset: Offset of the extent whose IV we are to derive
104  *
105  * Generate the initialization vector from the given root IV and page
106  * offset.
107  *
108  * Returns zero on success; non-zero on error.
109  */
ecryptfs_derive_iv(char * iv,struct ecryptfs_crypt_stat * crypt_stat,loff_t offset)110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111 		       loff_t offset)
112 {
113 	int rc = 0;
114 	char dst[MD5_DIGEST_SIZE];
115 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
116 
117 	if (unlikely(ecryptfs_verbosity > 0)) {
118 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120 	}
121 	/* TODO: It is probably secure to just cast the least
122 	 * significant bits of the root IV into an unsigned long and
123 	 * add the offset to that rather than go through all this
124 	 * hashing business. -Halcrow */
125 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126 	memset((src + crypt_stat->iv_bytes), 0, 16);
127 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128 	if (unlikely(ecryptfs_verbosity > 0)) {
129 		ecryptfs_printk(KERN_DEBUG, "source:\n");
130 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131 	}
132 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133 				    (crypt_stat->iv_bytes + 16));
134 	if (rc) {
135 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136 				"MD5 while generating IV for a page\n");
137 		goto out;
138 	}
139 	memcpy(iv, dst, crypt_stat->iv_bytes);
140 	if (unlikely(ecryptfs_verbosity > 0)) {
141 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143 	}
144 out:
145 	return rc;
146 }
147 
148 /**
149  * ecryptfs_init_crypt_stat
150  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151  *
152  * Initialize the crypt_stat structure.
153  */
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155 {
156 	struct crypto_shash *tfm;
157 	int rc;
158 
159 	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160 	if (IS_ERR(tfm)) {
161 		rc = PTR_ERR(tfm);
162 		ecryptfs_printk(KERN_ERR, "Error attempting to "
163 				"allocate crypto context; rc = [%d]\n",
164 				rc);
165 		return rc;
166 	}
167 
168 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
170 	mutex_init(&crypt_stat->keysig_list_mutex);
171 	mutex_init(&crypt_stat->cs_mutex);
172 	mutex_init(&crypt_stat->cs_tfm_mutex);
173 	crypt_stat->hash_tfm = tfm;
174 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175 
176 	return 0;
177 }
178 
179 /**
180  * ecryptfs_destroy_crypt_stat
181  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182  *
183  * Releases all memory associated with a crypt_stat struct.
184  */
ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186 {
187 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188 
189 	crypto_free_skcipher(crypt_stat->tfm);
190 	crypto_free_shash(crypt_stat->hash_tfm);
191 	list_for_each_entry_safe(key_sig, key_sig_tmp,
192 				 &crypt_stat->keysig_list, crypt_stat_list) {
193 		list_del(&key_sig->crypt_stat_list);
194 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195 	}
196 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197 }
198 
ecryptfs_destroy_mount_crypt_stat(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)199 void ecryptfs_destroy_mount_crypt_stat(
200 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201 {
202 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203 
204 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205 		return;
206 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208 				 &mount_crypt_stat->global_auth_tok_list,
209 				 mount_crypt_stat_list) {
210 		list_del(&auth_tok->mount_crypt_stat_list);
211 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212 			key_put(auth_tok->global_auth_tok_key);
213 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214 	}
215 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217 }
218 
219 /**
220  * virt_to_scatterlist
221  * @addr: Virtual address
222  * @size: Size of data; should be an even multiple of the block size
223  * @sg: Pointer to scatterlist array; set to NULL to obtain only
224  *      the number of scatterlist structs required in array
225  * @sg_size: Max array size
226  *
227  * Fills in a scatterlist array with page references for a passed
228  * virtual address.
229  *
230  * Returns the number of scatterlist structs in array used
231  */
virt_to_scatterlist(const void * addr,int size,struct scatterlist * sg,int sg_size)232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233 			int sg_size)
234 {
235 	int i = 0;
236 	struct page *pg;
237 	int offset;
238 	int remainder_of_page;
239 
240 	sg_init_table(sg, sg_size);
241 
242 	while (size > 0 && i < sg_size) {
243 		pg = virt_to_page(addr);
244 		offset = offset_in_page(addr);
245 		sg_set_page(&sg[i], pg, 0, offset);
246 		remainder_of_page = PAGE_SIZE - offset;
247 		if (size >= remainder_of_page) {
248 			sg[i].length = remainder_of_page;
249 			addr += remainder_of_page;
250 			size -= remainder_of_page;
251 		} else {
252 			sg[i].length = size;
253 			addr += size;
254 			size = 0;
255 		}
256 		i++;
257 	}
258 	if (size > 0)
259 		return -ENOMEM;
260 	return i;
261 }
262 
263 struct extent_crypt_result {
264 	struct completion completion;
265 	int rc;
266 };
267 
extent_crypt_complete(struct crypto_async_request * req,int rc)268 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
269 {
270 	struct extent_crypt_result *ecr = req->data;
271 
272 	if (rc == -EINPROGRESS)
273 		return;
274 
275 	ecr->rc = rc;
276 	complete(&ecr->completion);
277 }
278 
279 /**
280  * crypt_scatterlist
281  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
282  * @dst_sg: Destination of the data after performing the crypto operation
283  * @src_sg: Data to be encrypted or decrypted
284  * @size: Length of data
285  * @iv: IV to use
286  * @op: ENCRYPT or DECRYPT to indicate the desired operation
287  *
288  * Returns the number of bytes encrypted or decrypted; negative value on error
289  */
crypt_scatterlist(struct ecryptfs_crypt_stat * crypt_stat,struct scatterlist * dst_sg,struct scatterlist * src_sg,int size,unsigned char * iv,int op)290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
291 			     struct scatterlist *dst_sg,
292 			     struct scatterlist *src_sg, int size,
293 			     unsigned char *iv, int op)
294 {
295 	struct skcipher_request *req = NULL;
296 	struct extent_crypt_result ecr;
297 	int rc = 0;
298 
299 	BUG_ON(!crypt_stat || !crypt_stat->tfm
300 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
301 	if (unlikely(ecryptfs_verbosity > 0)) {
302 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
303 				crypt_stat->key_size);
304 		ecryptfs_dump_hex(crypt_stat->key,
305 				  crypt_stat->key_size);
306 	}
307 
308 	init_completion(&ecr.completion);
309 
310 	mutex_lock(&crypt_stat->cs_tfm_mutex);
311 	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
312 	if (!req) {
313 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
314 		rc = -ENOMEM;
315 		goto out;
316 	}
317 
318 	skcipher_request_set_callback(req,
319 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
320 			extent_crypt_complete, &ecr);
321 	/* Consider doing this once, when the file is opened */
322 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
323 		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
324 					    crypt_stat->key_size);
325 		if (rc) {
326 			ecryptfs_printk(KERN_ERR,
327 					"Error setting key; rc = [%d]\n",
328 					rc);
329 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
330 			rc = -EINVAL;
331 			goto out;
332 		}
333 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
334 	}
335 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
336 	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
337 	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
338 			     crypto_skcipher_decrypt(req);
339 	if (rc == -EINPROGRESS || rc == -EBUSY) {
340 		struct extent_crypt_result *ecr = req->base.data;
341 
342 		wait_for_completion(&ecr->completion);
343 		rc = ecr->rc;
344 		reinit_completion(&ecr->completion);
345 	}
346 out:
347 	skcipher_request_free(req);
348 	return rc;
349 }
350 
351 /**
352  * lower_offset_for_page
353  *
354  * Convert an eCryptfs page index into a lower byte offset
355  */
lower_offset_for_page(struct ecryptfs_crypt_stat * crypt_stat,struct page * page)356 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
357 				    struct page *page)
358 {
359 	return ecryptfs_lower_header_size(crypt_stat) +
360 	       ((loff_t)page->index << PAGE_SHIFT);
361 }
362 
363 /**
364  * crypt_extent
365  * @crypt_stat: crypt_stat containing cryptographic context for the
366  *              encryption operation
367  * @dst_page: The page to write the result into
368  * @src_page: The page to read from
369  * @extent_offset: Page extent offset for use in generating IV
370  * @op: ENCRYPT or DECRYPT to indicate the desired operation
371  *
372  * Encrypts or decrypts one extent of data.
373  *
374  * Return zero on success; non-zero otherwise
375  */
crypt_extent(struct ecryptfs_crypt_stat * crypt_stat,struct page * dst_page,struct page * src_page,unsigned long extent_offset,int op)376 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
377 			struct page *dst_page,
378 			struct page *src_page,
379 			unsigned long extent_offset, int op)
380 {
381 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
382 	loff_t extent_base;
383 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
384 	struct scatterlist src_sg, dst_sg;
385 	size_t extent_size = crypt_stat->extent_size;
386 	int rc;
387 
388 	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
389 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
390 				(extent_base + extent_offset));
391 	if (rc) {
392 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
393 			"extent [0x%.16llx]; rc = [%d]\n",
394 			(unsigned long long)(extent_base + extent_offset), rc);
395 		goto out;
396 	}
397 
398 	sg_init_table(&src_sg, 1);
399 	sg_init_table(&dst_sg, 1);
400 
401 	sg_set_page(&src_sg, src_page, extent_size,
402 		    extent_offset * extent_size);
403 	sg_set_page(&dst_sg, dst_page, extent_size,
404 		    extent_offset * extent_size);
405 
406 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
407 			       extent_iv, op);
408 	if (rc < 0) {
409 		printk(KERN_ERR "%s: Error attempting to crypt page with "
410 		       "page_index = [%ld], extent_offset = [%ld]; "
411 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
412 		goto out;
413 	}
414 	rc = 0;
415 out:
416 	return rc;
417 }
418 
419 /**
420  * ecryptfs_encrypt_page
421  * @page: Page mapped from the eCryptfs inode for the file; contains
422  *        decrypted content that needs to be encrypted (to a temporary
423  *        page; not in place) and written out to the lower file
424  *
425  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
426  * that eCryptfs pages may straddle the lower pages -- for instance,
427  * if the file was created on a machine with an 8K page size
428  * (resulting in an 8K header), and then the file is copied onto a
429  * host with a 32K page size, then when reading page 0 of the eCryptfs
430  * file, 24K of page 0 of the lower file will be read and decrypted,
431  * and then 8K of page 1 of the lower file will be read and decrypted.
432  *
433  * Returns zero on success; negative on error
434  */
ecryptfs_encrypt_page(struct page * page)435 int ecryptfs_encrypt_page(struct page *page)
436 {
437 	struct inode *ecryptfs_inode;
438 	struct ecryptfs_crypt_stat *crypt_stat;
439 	char *enc_extent_virt;
440 	struct page *enc_extent_page = NULL;
441 	loff_t extent_offset;
442 	loff_t lower_offset;
443 	int rc = 0;
444 
445 	ecryptfs_inode = page->mapping->host;
446 	crypt_stat =
447 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
448 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
449 	enc_extent_page = alloc_page(GFP_USER);
450 	if (!enc_extent_page) {
451 		rc = -ENOMEM;
452 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
453 				"encrypted extent\n");
454 		goto out;
455 	}
456 
457 	for (extent_offset = 0;
458 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
459 	     extent_offset++) {
460 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
461 				  extent_offset, ENCRYPT);
462 		if (rc) {
463 			printk(KERN_ERR "%s: Error encrypting extent; "
464 			       "rc = [%d]\n", __func__, rc);
465 			goto out;
466 		}
467 	}
468 
469 	lower_offset = lower_offset_for_page(crypt_stat, page);
470 	enc_extent_virt = kmap(enc_extent_page);
471 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
472 				  PAGE_SIZE);
473 	kunmap(enc_extent_page);
474 	if (rc < 0) {
475 		ecryptfs_printk(KERN_ERR,
476 			"Error attempting to write lower page; rc = [%d]\n",
477 			rc);
478 		goto out;
479 	}
480 	rc = 0;
481 out:
482 	if (enc_extent_page) {
483 		__free_page(enc_extent_page);
484 	}
485 	return rc;
486 }
487 
488 /**
489  * ecryptfs_decrypt_page
490  * @page: Page mapped from the eCryptfs inode for the file; data read
491  *        and decrypted from the lower file will be written into this
492  *        page
493  *
494  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
495  * that eCryptfs pages may straddle the lower pages -- for instance,
496  * if the file was created on a machine with an 8K page size
497  * (resulting in an 8K header), and then the file is copied onto a
498  * host with a 32K page size, then when reading page 0 of the eCryptfs
499  * file, 24K of page 0 of the lower file will be read and decrypted,
500  * and then 8K of page 1 of the lower file will be read and decrypted.
501  *
502  * Returns zero on success; negative on error
503  */
ecryptfs_decrypt_page(struct page * page)504 int ecryptfs_decrypt_page(struct page *page)
505 {
506 	struct inode *ecryptfs_inode;
507 	struct ecryptfs_crypt_stat *crypt_stat;
508 	char *page_virt;
509 	unsigned long extent_offset;
510 	loff_t lower_offset;
511 	int rc = 0;
512 
513 	ecryptfs_inode = page->mapping->host;
514 	crypt_stat =
515 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
516 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
517 
518 	lower_offset = lower_offset_for_page(crypt_stat, page);
519 	page_virt = kmap(page);
520 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
521 				 ecryptfs_inode);
522 	kunmap(page);
523 	if (rc < 0) {
524 		ecryptfs_printk(KERN_ERR,
525 			"Error attempting to read lower page; rc = [%d]\n",
526 			rc);
527 		goto out;
528 	}
529 
530 	for (extent_offset = 0;
531 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
532 	     extent_offset++) {
533 		rc = crypt_extent(crypt_stat, page, page,
534 				  extent_offset, DECRYPT);
535 		if (rc) {
536 			printk(KERN_ERR "%s: Error encrypting extent; "
537 			       "rc = [%d]\n", __func__, rc);
538 			goto out;
539 		}
540 	}
541 out:
542 	return rc;
543 }
544 
545 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
546 
547 /**
548  * ecryptfs_init_crypt_ctx
549  * @crypt_stat: Uninitialized crypt stats structure
550  *
551  * Initialize the crypto context.
552  *
553  * TODO: Performance: Keep a cache of initialized cipher contexts;
554  * only init if needed
555  */
ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat * crypt_stat)556 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
557 {
558 	char *full_alg_name;
559 	int rc = -EINVAL;
560 
561 	ecryptfs_printk(KERN_DEBUG,
562 			"Initializing cipher [%s]; strlen = [%d]; "
563 			"key_size_bits = [%zd]\n",
564 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
565 			crypt_stat->key_size << 3);
566 	mutex_lock(&crypt_stat->cs_tfm_mutex);
567 	if (crypt_stat->tfm) {
568 		rc = 0;
569 		goto out_unlock;
570 	}
571 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
572 						    crypt_stat->cipher, "cbc");
573 	if (rc)
574 		goto out_unlock;
575 	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
576 	if (IS_ERR(crypt_stat->tfm)) {
577 		rc = PTR_ERR(crypt_stat->tfm);
578 		crypt_stat->tfm = NULL;
579 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
580 				"Error initializing cipher [%s]\n",
581 				full_alg_name);
582 		goto out_free;
583 	}
584 	crypto_skcipher_set_flags(crypt_stat->tfm,
585 				  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
586 	rc = 0;
587 out_free:
588 	kfree(full_alg_name);
589 out_unlock:
590 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
591 	return rc;
592 }
593 
set_extent_mask_and_shift(struct ecryptfs_crypt_stat * crypt_stat)594 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
595 {
596 	int extent_size_tmp;
597 
598 	crypt_stat->extent_mask = 0xFFFFFFFF;
599 	crypt_stat->extent_shift = 0;
600 	if (crypt_stat->extent_size == 0)
601 		return;
602 	extent_size_tmp = crypt_stat->extent_size;
603 	while ((extent_size_tmp & 0x01) == 0) {
604 		extent_size_tmp >>= 1;
605 		crypt_stat->extent_mask <<= 1;
606 		crypt_stat->extent_shift++;
607 	}
608 }
609 
ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat * crypt_stat)610 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
611 {
612 	/* Default values; may be overwritten as we are parsing the
613 	 * packets. */
614 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
615 	set_extent_mask_and_shift(crypt_stat);
616 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
617 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
618 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
619 	else {
620 		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
621 			crypt_stat->metadata_size =
622 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
623 		else
624 			crypt_stat->metadata_size = PAGE_SIZE;
625 	}
626 }
627 
628 /**
629  * ecryptfs_compute_root_iv
630  * @crypt_stats
631  *
632  * On error, sets the root IV to all 0's.
633  */
ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat * crypt_stat)634 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
635 {
636 	int rc = 0;
637 	char dst[MD5_DIGEST_SIZE];
638 
639 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
640 	BUG_ON(crypt_stat->iv_bytes <= 0);
641 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
642 		rc = -EINVAL;
643 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
644 				"cannot generate root IV\n");
645 		goto out;
646 	}
647 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
648 				    crypt_stat->key_size);
649 	if (rc) {
650 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
651 				"MD5 while generating root IV\n");
652 		goto out;
653 	}
654 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
655 out:
656 	if (rc) {
657 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
658 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
659 	}
660 	return rc;
661 }
662 
ecryptfs_generate_new_key(struct ecryptfs_crypt_stat * crypt_stat)663 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
664 {
665 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
666 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
667 	ecryptfs_compute_root_iv(crypt_stat);
668 	if (unlikely(ecryptfs_verbosity > 0)) {
669 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
670 		ecryptfs_dump_hex(crypt_stat->key,
671 				  crypt_stat->key_size);
672 	}
673 }
674 
675 /**
676  * ecryptfs_copy_mount_wide_flags_to_inode_flags
677  * @crypt_stat: The inode's cryptographic context
678  * @mount_crypt_stat: The mount point's cryptographic context
679  *
680  * This function propagates the mount-wide flags to individual inode
681  * flags.
682  */
ecryptfs_copy_mount_wide_flags_to_inode_flags(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)683 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
684 	struct ecryptfs_crypt_stat *crypt_stat,
685 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
686 {
687 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
688 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
689 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
690 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
691 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
692 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
693 		if (mount_crypt_stat->flags
694 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
695 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
696 		else if (mount_crypt_stat->flags
697 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
698 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
699 	}
700 }
701 
ecryptfs_copy_mount_wide_sigs_to_inode_sigs(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)702 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
703 	struct ecryptfs_crypt_stat *crypt_stat,
704 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
705 {
706 	struct ecryptfs_global_auth_tok *global_auth_tok;
707 	int rc = 0;
708 
709 	mutex_lock(&crypt_stat->keysig_list_mutex);
710 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
711 
712 	list_for_each_entry(global_auth_tok,
713 			    &mount_crypt_stat->global_auth_tok_list,
714 			    mount_crypt_stat_list) {
715 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
716 			continue;
717 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
718 		if (rc) {
719 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
720 			goto out;
721 		}
722 	}
723 
724 out:
725 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
726 	mutex_unlock(&crypt_stat->keysig_list_mutex);
727 	return rc;
728 }
729 
730 /**
731  * ecryptfs_set_default_crypt_stat_vals
732  * @crypt_stat: The inode's cryptographic context
733  * @mount_crypt_stat: The mount point's cryptographic context
734  *
735  * Default values in the event that policy does not override them.
736  */
ecryptfs_set_default_crypt_stat_vals(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)737 static void ecryptfs_set_default_crypt_stat_vals(
738 	struct ecryptfs_crypt_stat *crypt_stat,
739 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
740 {
741 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
742 						      mount_crypt_stat);
743 	ecryptfs_set_default_sizes(crypt_stat);
744 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
745 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
746 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
747 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
748 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
749 }
750 
751 /**
752  * ecryptfs_new_file_context
753  * @ecryptfs_inode: The eCryptfs inode
754  *
755  * If the crypto context for the file has not yet been established,
756  * this is where we do that.  Establishing a new crypto context
757  * involves the following decisions:
758  *  - What cipher to use?
759  *  - What set of authentication tokens to use?
760  * Here we just worry about getting enough information into the
761  * authentication tokens so that we know that they are available.
762  * We associate the available authentication tokens with the new file
763  * via the set of signatures in the crypt_stat struct.  Later, when
764  * the headers are actually written out, we may again defer to
765  * userspace to perform the encryption of the session key; for the
766  * foreseeable future, this will be the case with public key packets.
767  *
768  * Returns zero on success; non-zero otherwise
769  */
ecryptfs_new_file_context(struct inode * ecryptfs_inode)770 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
771 {
772 	struct ecryptfs_crypt_stat *crypt_stat =
773 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
774 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
775 	    &ecryptfs_superblock_to_private(
776 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
777 	int cipher_name_len;
778 	int rc = 0;
779 
780 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
781 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
782 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
783 						      mount_crypt_stat);
784 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
785 							 mount_crypt_stat);
786 	if (rc) {
787 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
788 		       "to the inode key sigs; rc = [%d]\n", rc);
789 		goto out;
790 	}
791 	cipher_name_len =
792 		strlen(mount_crypt_stat->global_default_cipher_name);
793 	memcpy(crypt_stat->cipher,
794 	       mount_crypt_stat->global_default_cipher_name,
795 	       cipher_name_len);
796 	crypt_stat->cipher[cipher_name_len] = '\0';
797 	crypt_stat->key_size =
798 		mount_crypt_stat->global_default_cipher_key_size;
799 	ecryptfs_generate_new_key(crypt_stat);
800 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
801 	if (rc)
802 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
803 				"context for cipher [%s]: rc = [%d]\n",
804 				crypt_stat->cipher, rc);
805 out:
806 	return rc;
807 }
808 
809 /**
810  * ecryptfs_validate_marker - check for the ecryptfs marker
811  * @data: The data block in which to check
812  *
813  * Returns zero if marker found; -EINVAL if not found
814  */
ecryptfs_validate_marker(char * data)815 static int ecryptfs_validate_marker(char *data)
816 {
817 	u32 m_1, m_2;
818 
819 	m_1 = get_unaligned_be32(data);
820 	m_2 = get_unaligned_be32(data + 4);
821 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
822 		return 0;
823 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
824 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
825 			MAGIC_ECRYPTFS_MARKER);
826 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
827 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
828 	return -EINVAL;
829 }
830 
831 struct ecryptfs_flag_map_elem {
832 	u32 file_flag;
833 	u32 local_flag;
834 };
835 
836 /* Add support for additional flags by adding elements here. */
837 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
838 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
839 	{0x00000002, ECRYPTFS_ENCRYPTED},
840 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
841 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
842 };
843 
844 /**
845  * ecryptfs_process_flags
846  * @crypt_stat: The cryptographic context
847  * @page_virt: Source data to be parsed
848  * @bytes_read: Updated with the number of bytes read
849  */
ecryptfs_process_flags(struct ecryptfs_crypt_stat * crypt_stat,char * page_virt,int * bytes_read)850 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
851 				  char *page_virt, int *bytes_read)
852 {
853 	int i;
854 	u32 flags;
855 
856 	flags = get_unaligned_be32(page_virt);
857 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
858 		if (flags & ecryptfs_flag_map[i].file_flag) {
859 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
860 		} else
861 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
862 	/* Version is in top 8 bits of the 32-bit flag vector */
863 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
864 	(*bytes_read) = 4;
865 }
866 
867 /**
868  * write_ecryptfs_marker
869  * @page_virt: The pointer to in a page to begin writing the marker
870  * @written: Number of bytes written
871  *
872  * Marker = 0x3c81b7f5
873  */
write_ecryptfs_marker(char * page_virt,size_t * written)874 static void write_ecryptfs_marker(char *page_virt, size_t *written)
875 {
876 	u32 m_1, m_2;
877 
878 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
879 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
880 	put_unaligned_be32(m_1, page_virt);
881 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
882 	put_unaligned_be32(m_2, page_virt);
883 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
884 }
885 
ecryptfs_write_crypt_stat_flags(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)886 void ecryptfs_write_crypt_stat_flags(char *page_virt,
887 				     struct ecryptfs_crypt_stat *crypt_stat,
888 				     size_t *written)
889 {
890 	u32 flags = 0;
891 	int i;
892 
893 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
894 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
895 			flags |= ecryptfs_flag_map[i].file_flag;
896 	/* Version is in top 8 bits of the 32-bit flag vector */
897 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
898 	put_unaligned_be32(flags, page_virt);
899 	(*written) = 4;
900 }
901 
902 struct ecryptfs_cipher_code_str_map_elem {
903 	char cipher_str[16];
904 	u8 cipher_code;
905 };
906 
907 /* Add support for additional ciphers by adding elements here. The
908  * cipher_code is whatever OpenPGP applications use to identify the
909  * ciphers. List in order of probability. */
910 static struct ecryptfs_cipher_code_str_map_elem
911 ecryptfs_cipher_code_str_map[] = {
912 	{"aes",RFC2440_CIPHER_AES_128 },
913 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
914 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
915 	{"cast5", RFC2440_CIPHER_CAST_5},
916 	{"twofish", RFC2440_CIPHER_TWOFISH},
917 	{"cast6", RFC2440_CIPHER_CAST_6},
918 	{"aes", RFC2440_CIPHER_AES_192},
919 	{"aes", RFC2440_CIPHER_AES_256}
920 };
921 
922 /**
923  * ecryptfs_code_for_cipher_string
924  * @cipher_name: The string alias for the cipher
925  * @key_bytes: Length of key in bytes; used for AES code selection
926  *
927  * Returns zero on no match, or the cipher code on match
928  */
ecryptfs_code_for_cipher_string(char * cipher_name,size_t key_bytes)929 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
930 {
931 	int i;
932 	u8 code = 0;
933 	struct ecryptfs_cipher_code_str_map_elem *map =
934 		ecryptfs_cipher_code_str_map;
935 
936 	if (strcmp(cipher_name, "aes") == 0) {
937 		switch (key_bytes) {
938 		case 16:
939 			code = RFC2440_CIPHER_AES_128;
940 			break;
941 		case 24:
942 			code = RFC2440_CIPHER_AES_192;
943 			break;
944 		case 32:
945 			code = RFC2440_CIPHER_AES_256;
946 		}
947 	} else {
948 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
949 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
950 				code = map[i].cipher_code;
951 				break;
952 			}
953 	}
954 	return code;
955 }
956 
957 /**
958  * ecryptfs_cipher_code_to_string
959  * @str: Destination to write out the cipher name
960  * @cipher_code: The code to convert to cipher name string
961  *
962  * Returns zero on success
963  */
ecryptfs_cipher_code_to_string(char * str,u8 cipher_code)964 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
965 {
966 	int rc = 0;
967 	int i;
968 
969 	str[0] = '\0';
970 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
971 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
972 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
973 	if (str[0] == '\0') {
974 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
975 				"[%d]\n", cipher_code);
976 		rc = -EINVAL;
977 	}
978 	return rc;
979 }
980 
ecryptfs_read_and_validate_header_region(struct inode * inode)981 int ecryptfs_read_and_validate_header_region(struct inode *inode)
982 {
983 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
984 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
985 	int rc;
986 
987 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
988 				 inode);
989 	if (rc < 0)
990 		return rc;
991 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
992 		return -EINVAL;
993 	rc = ecryptfs_validate_marker(marker);
994 	if (!rc)
995 		ecryptfs_i_size_init(file_size, inode);
996 	return rc;
997 }
998 
999 void
ecryptfs_write_header_metadata(char * virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)1000 ecryptfs_write_header_metadata(char *virt,
1001 			       struct ecryptfs_crypt_stat *crypt_stat,
1002 			       size_t *written)
1003 {
1004 	u32 header_extent_size;
1005 	u16 num_header_extents_at_front;
1006 
1007 	header_extent_size = (u32)crypt_stat->extent_size;
1008 	num_header_extents_at_front =
1009 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1010 	put_unaligned_be32(header_extent_size, virt);
1011 	virt += 4;
1012 	put_unaligned_be16(num_header_extents_at_front, virt);
1013 	(*written) = 6;
1014 }
1015 
1016 struct kmem_cache *ecryptfs_header_cache;
1017 
1018 /**
1019  * ecryptfs_write_headers_virt
1020  * @page_virt: The virtual address to write the headers to
1021  * @max: The size of memory allocated at page_virt
1022  * @size: Set to the number of bytes written by this function
1023  * @crypt_stat: The cryptographic context
1024  * @ecryptfs_dentry: The eCryptfs dentry
1025  *
1026  * Format version: 1
1027  *
1028  *   Header Extent:
1029  *     Octets 0-7:        Unencrypted file size (big-endian)
1030  *     Octets 8-15:       eCryptfs special marker
1031  *     Octets 16-19:      Flags
1032  *      Octet 16:         File format version number (between 0 and 255)
1033  *      Octets 17-18:     Reserved
1034  *      Octet 19:         Bit 1 (lsb): Reserved
1035  *                        Bit 2: Encrypted?
1036  *                        Bits 3-8: Reserved
1037  *     Octets 20-23:      Header extent size (big-endian)
1038  *     Octets 24-25:      Number of header extents at front of file
1039  *                        (big-endian)
1040  *     Octet  26:         Begin RFC 2440 authentication token packet set
1041  *   Data Extent 0:
1042  *     Lower data (CBC encrypted)
1043  *   Data Extent 1:
1044  *     Lower data (CBC encrypted)
1045  *   ...
1046  *
1047  * Returns zero on success
1048  */
ecryptfs_write_headers_virt(char * page_virt,size_t max,size_t * size,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry)1049 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1050 				       size_t *size,
1051 				       struct ecryptfs_crypt_stat *crypt_stat,
1052 				       struct dentry *ecryptfs_dentry)
1053 {
1054 	int rc;
1055 	size_t written;
1056 	size_t offset;
1057 
1058 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1059 	write_ecryptfs_marker((page_virt + offset), &written);
1060 	offset += written;
1061 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1062 					&written);
1063 	offset += written;
1064 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1065 				       &written);
1066 	offset += written;
1067 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1068 					      ecryptfs_dentry, &written,
1069 					      max - offset);
1070 	if (rc)
1071 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1072 				"set; rc = [%d]\n", rc);
1073 	if (size) {
1074 		offset += written;
1075 		*size = offset;
1076 	}
1077 	return rc;
1078 }
1079 
1080 static int
ecryptfs_write_metadata_to_contents(struct inode * ecryptfs_inode,char * virt,size_t virt_len)1081 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1082 				    char *virt, size_t virt_len)
1083 {
1084 	int rc;
1085 
1086 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1087 				  0, virt_len);
1088 	if (rc < 0)
1089 		printk(KERN_ERR "%s: Error attempting to write header "
1090 		       "information to lower file; rc = [%d]\n", __func__, rc);
1091 	else
1092 		rc = 0;
1093 	return rc;
1094 }
1095 
1096 static int
ecryptfs_write_metadata_to_xattr(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode,char * page_virt,size_t size)1097 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1098 				 struct inode *ecryptfs_inode,
1099 				 char *page_virt, size_t size)
1100 {
1101 	int rc;
1102 	struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1103 	struct inode *lower_inode = d_inode(lower_dentry);
1104 
1105 	if (!(lower_inode->i_opflags & IOP_XATTR)) {
1106 		rc = -EOPNOTSUPP;
1107 		goto out;
1108 	}
1109 
1110 	inode_lock(lower_inode);
1111 	rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1112 			    page_virt, size, 0);
1113 	if (!rc && ecryptfs_inode)
1114 		fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1115 	inode_unlock(lower_inode);
1116 out:
1117 	return rc;
1118 }
1119 
ecryptfs_get_zeroed_pages(gfp_t gfp_mask,unsigned int order)1120 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1121 					       unsigned int order)
1122 {
1123 	struct page *page;
1124 
1125 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1126 	if (page)
1127 		return (unsigned long) page_address(page);
1128 	return 0;
1129 }
1130 
1131 /**
1132  * ecryptfs_write_metadata
1133  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1134  * @ecryptfs_inode: The newly created eCryptfs inode
1135  *
1136  * Write the file headers out.  This will likely involve a userspace
1137  * callout, in which the session key is encrypted with one or more
1138  * public keys and/or the passphrase necessary to do the encryption is
1139  * retrieved via a prompt.  Exactly what happens at this point should
1140  * be policy-dependent.
1141  *
1142  * Returns zero on success; non-zero on error
1143  */
ecryptfs_write_metadata(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode)1144 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1145 			    struct inode *ecryptfs_inode)
1146 {
1147 	struct ecryptfs_crypt_stat *crypt_stat =
1148 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1149 	unsigned int order;
1150 	char *virt;
1151 	size_t virt_len;
1152 	size_t size = 0;
1153 	int rc = 0;
1154 
1155 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1156 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1157 			printk(KERN_ERR "Key is invalid; bailing out\n");
1158 			rc = -EINVAL;
1159 			goto out;
1160 		}
1161 	} else {
1162 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1163 		       __func__);
1164 		rc = -EINVAL;
1165 		goto out;
1166 	}
1167 	virt_len = crypt_stat->metadata_size;
1168 	order = get_order(virt_len);
1169 	/* Released in this function */
1170 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1171 	if (!virt) {
1172 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1173 		rc = -ENOMEM;
1174 		goto out;
1175 	}
1176 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1177 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1178 					 ecryptfs_dentry);
1179 	if (unlikely(rc)) {
1180 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1181 		       __func__, rc);
1182 		goto out_free;
1183 	}
1184 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1185 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1186 						      virt, size);
1187 	else
1188 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1189 							 virt_len);
1190 	if (rc) {
1191 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1192 		       "rc = [%d]\n", __func__, rc);
1193 		goto out_free;
1194 	}
1195 out_free:
1196 	free_pages((unsigned long)virt, order);
1197 out:
1198 	return rc;
1199 }
1200 
1201 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1202 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
parse_header_metadata(struct ecryptfs_crypt_stat * crypt_stat,char * virt,int * bytes_read,int validate_header_size)1203 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1204 				 char *virt, int *bytes_read,
1205 				 int validate_header_size)
1206 {
1207 	int rc = 0;
1208 	u32 header_extent_size;
1209 	u16 num_header_extents_at_front;
1210 
1211 	header_extent_size = get_unaligned_be32(virt);
1212 	virt += sizeof(__be32);
1213 	num_header_extents_at_front = get_unaligned_be16(virt);
1214 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1215 				     * (size_t)header_extent_size));
1216 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1217 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1218 	    && (crypt_stat->metadata_size
1219 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1220 		rc = -EINVAL;
1221 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1222 		       crypt_stat->metadata_size);
1223 	}
1224 	return rc;
1225 }
1226 
1227 /**
1228  * set_default_header_data
1229  * @crypt_stat: The cryptographic context
1230  *
1231  * For version 0 file format; this function is only for backwards
1232  * compatibility for files created with the prior versions of
1233  * eCryptfs.
1234  */
set_default_header_data(struct ecryptfs_crypt_stat * crypt_stat)1235 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1236 {
1237 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1238 }
1239 
ecryptfs_i_size_init(const char * page_virt,struct inode * inode)1240 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1241 {
1242 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1243 	struct ecryptfs_crypt_stat *crypt_stat;
1244 	u64 file_size;
1245 
1246 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1247 	mount_crypt_stat =
1248 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1249 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1250 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1251 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1252 			file_size += crypt_stat->metadata_size;
1253 	} else
1254 		file_size = get_unaligned_be64(page_virt);
1255 	i_size_write(inode, (loff_t)file_size);
1256 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1257 }
1258 
1259 /**
1260  * ecryptfs_read_headers_virt
1261  * @page_virt: The virtual address into which to read the headers
1262  * @crypt_stat: The cryptographic context
1263  * @ecryptfs_dentry: The eCryptfs dentry
1264  * @validate_header_size: Whether to validate the header size while reading
1265  *
1266  * Read/parse the header data. The header format is detailed in the
1267  * comment block for the ecryptfs_write_headers_virt() function.
1268  *
1269  * Returns zero on success
1270  */
ecryptfs_read_headers_virt(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,int validate_header_size)1271 static int ecryptfs_read_headers_virt(char *page_virt,
1272 				      struct ecryptfs_crypt_stat *crypt_stat,
1273 				      struct dentry *ecryptfs_dentry,
1274 				      int validate_header_size)
1275 {
1276 	int rc = 0;
1277 	int offset;
1278 	int bytes_read;
1279 
1280 	ecryptfs_set_default_sizes(crypt_stat);
1281 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1282 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1283 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1284 	rc = ecryptfs_validate_marker(page_virt + offset);
1285 	if (rc)
1286 		goto out;
1287 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1288 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1289 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1290 	ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1291 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1292 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1293 				"file version [%d] is supported by this "
1294 				"version of eCryptfs\n",
1295 				crypt_stat->file_version,
1296 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1297 		rc = -EINVAL;
1298 		goto out;
1299 	}
1300 	offset += bytes_read;
1301 	if (crypt_stat->file_version >= 1) {
1302 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1303 					   &bytes_read, validate_header_size);
1304 		if (rc) {
1305 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1306 					"metadata; rc = [%d]\n", rc);
1307 		}
1308 		offset += bytes_read;
1309 	} else
1310 		set_default_header_data(crypt_stat);
1311 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1312 				       ecryptfs_dentry);
1313 out:
1314 	return rc;
1315 }
1316 
1317 /**
1318  * ecryptfs_read_xattr_region
1319  * @page_virt: The vitual address into which to read the xattr data
1320  * @ecryptfs_inode: The eCryptfs inode
1321  *
1322  * Attempts to read the crypto metadata from the extended attribute
1323  * region of the lower file.
1324  *
1325  * Returns zero on success; non-zero on error
1326  */
ecryptfs_read_xattr_region(char * page_virt,struct inode * ecryptfs_inode)1327 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1328 {
1329 	struct dentry *lower_dentry =
1330 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1331 	ssize_t size;
1332 	int rc = 0;
1333 
1334 	size = ecryptfs_getxattr_lower(lower_dentry,
1335 				       ecryptfs_inode_to_lower(ecryptfs_inode),
1336 				       ECRYPTFS_XATTR_NAME,
1337 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1338 	if (size < 0) {
1339 		if (unlikely(ecryptfs_verbosity > 0))
1340 			printk(KERN_INFO "Error attempting to read the [%s] "
1341 			       "xattr from the lower file; return value = "
1342 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1343 		rc = -EINVAL;
1344 		goto out;
1345 	}
1346 out:
1347 	return rc;
1348 }
1349 
ecryptfs_read_and_validate_xattr_region(struct dentry * dentry,struct inode * inode)1350 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1351 					    struct inode *inode)
1352 {
1353 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1354 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1355 	int rc;
1356 
1357 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1358 				     ecryptfs_inode_to_lower(inode),
1359 				     ECRYPTFS_XATTR_NAME, file_size,
1360 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1361 	if (rc < 0)
1362 		return rc;
1363 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1364 		return -EINVAL;
1365 	rc = ecryptfs_validate_marker(marker);
1366 	if (!rc)
1367 		ecryptfs_i_size_init(file_size, inode);
1368 	return rc;
1369 }
1370 
1371 /**
1372  * ecryptfs_read_metadata
1373  *
1374  * Common entry point for reading file metadata. From here, we could
1375  * retrieve the header information from the header region of the file,
1376  * the xattr region of the file, or some other repository that is
1377  * stored separately from the file itself. The current implementation
1378  * supports retrieving the metadata information from the file contents
1379  * and from the xattr region.
1380  *
1381  * Returns zero if valid headers found and parsed; non-zero otherwise
1382  */
ecryptfs_read_metadata(struct dentry * ecryptfs_dentry)1383 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1384 {
1385 	int rc;
1386 	char *page_virt;
1387 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1388 	struct ecryptfs_crypt_stat *crypt_stat =
1389 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1390 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1391 		&ecryptfs_superblock_to_private(
1392 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1393 
1394 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1395 						      mount_crypt_stat);
1396 	/* Read the first page from the underlying file */
1397 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1398 	if (!page_virt) {
1399 		rc = -ENOMEM;
1400 		goto out;
1401 	}
1402 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1403 				 ecryptfs_inode);
1404 	if (rc >= 0)
1405 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1406 						ecryptfs_dentry,
1407 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1408 	if (rc) {
1409 		/* metadata is not in the file header, so try xattrs */
1410 		memset(page_virt, 0, PAGE_SIZE);
1411 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1412 		if (rc) {
1413 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1414 			       "file header region or xattr region, inode %lu\n",
1415 				ecryptfs_inode->i_ino);
1416 			rc = -EINVAL;
1417 			goto out;
1418 		}
1419 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1420 						ecryptfs_dentry,
1421 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1422 		if (rc) {
1423 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1424 			       "file xattr region either, inode %lu\n",
1425 				ecryptfs_inode->i_ino);
1426 			rc = -EINVAL;
1427 		}
1428 		if (crypt_stat->mount_crypt_stat->flags
1429 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1430 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1431 		} else {
1432 			printk(KERN_WARNING "Attempt to access file with "
1433 			       "crypto metadata only in the extended attribute "
1434 			       "region, but eCryptfs was mounted without "
1435 			       "xattr support enabled. eCryptfs will not treat "
1436 			       "this like an encrypted file, inode %lu\n",
1437 				ecryptfs_inode->i_ino);
1438 			rc = -EINVAL;
1439 		}
1440 	}
1441 out:
1442 	if (page_virt) {
1443 		memset(page_virt, 0, PAGE_SIZE);
1444 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1445 	}
1446 	return rc;
1447 }
1448 
1449 /**
1450  * ecryptfs_encrypt_filename - encrypt filename
1451  *
1452  * CBC-encrypts the filename. We do not want to encrypt the same
1453  * filename with the same key and IV, which may happen with hard
1454  * links, so we prepend random bits to each filename.
1455  *
1456  * Returns zero on success; non-zero otherwise
1457  */
1458 static int
ecryptfs_encrypt_filename(struct ecryptfs_filename * filename,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)1459 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1460 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1461 {
1462 	int rc = 0;
1463 
1464 	filename->encrypted_filename = NULL;
1465 	filename->encrypted_filename_size = 0;
1466 	if (mount_crypt_stat && (mount_crypt_stat->flags
1467 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1468 		size_t packet_size;
1469 		size_t remaining_bytes;
1470 
1471 		rc = ecryptfs_write_tag_70_packet(
1472 			NULL, NULL,
1473 			&filename->encrypted_filename_size,
1474 			mount_crypt_stat, NULL,
1475 			filename->filename_size);
1476 		if (rc) {
1477 			printk(KERN_ERR "%s: Error attempting to get packet "
1478 			       "size for tag 72; rc = [%d]\n", __func__,
1479 			       rc);
1480 			filename->encrypted_filename_size = 0;
1481 			goto out;
1482 		}
1483 		filename->encrypted_filename =
1484 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1485 		if (!filename->encrypted_filename) {
1486 			rc = -ENOMEM;
1487 			goto out;
1488 		}
1489 		remaining_bytes = filename->encrypted_filename_size;
1490 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1491 						  &remaining_bytes,
1492 						  &packet_size,
1493 						  mount_crypt_stat,
1494 						  filename->filename,
1495 						  filename->filename_size);
1496 		if (rc) {
1497 			printk(KERN_ERR "%s: Error attempting to generate "
1498 			       "tag 70 packet; rc = [%d]\n", __func__,
1499 			       rc);
1500 			kfree(filename->encrypted_filename);
1501 			filename->encrypted_filename = NULL;
1502 			filename->encrypted_filename_size = 0;
1503 			goto out;
1504 		}
1505 		filename->encrypted_filename_size = packet_size;
1506 	} else {
1507 		printk(KERN_ERR "%s: No support for requested filename "
1508 		       "encryption method in this release\n", __func__);
1509 		rc = -EOPNOTSUPP;
1510 		goto out;
1511 	}
1512 out:
1513 	return rc;
1514 }
1515 
ecryptfs_copy_filename(char ** copied_name,size_t * copied_name_size,const char * name,size_t name_size)1516 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1517 				  const char *name, size_t name_size)
1518 {
1519 	int rc = 0;
1520 
1521 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1522 	if (!(*copied_name)) {
1523 		rc = -ENOMEM;
1524 		goto out;
1525 	}
1526 	memcpy((void *)(*copied_name), (void *)name, name_size);
1527 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1528 						 * in printing out the
1529 						 * string in debug
1530 						 * messages */
1531 	(*copied_name_size) = name_size;
1532 out:
1533 	return rc;
1534 }
1535 
1536 /**
1537  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1538  * @key_tfm: Crypto context for key material, set by this function
1539  * @cipher_name: Name of the cipher
1540  * @key_size: Size of the key in bytes
1541  *
1542  * Returns zero on success. Any crypto_tfm structs allocated here
1543  * should be released by other functions, such as on a superblock put
1544  * event, regardless of whether this function succeeds for fails.
1545  */
1546 static int
ecryptfs_process_key_cipher(struct crypto_skcipher ** key_tfm,char * cipher_name,size_t * key_size)1547 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1548 			    char *cipher_name, size_t *key_size)
1549 {
1550 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1551 	char *full_alg_name = NULL;
1552 	int rc;
1553 
1554 	*key_tfm = NULL;
1555 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1556 		rc = -EINVAL;
1557 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1558 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1559 		goto out;
1560 	}
1561 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1562 						    "ecb");
1563 	if (rc)
1564 		goto out;
1565 	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1566 	if (IS_ERR(*key_tfm)) {
1567 		rc = PTR_ERR(*key_tfm);
1568 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1569 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1570 		goto out;
1571 	}
1572 	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1573 	if (*key_size == 0)
1574 		*key_size = crypto_skcipher_max_keysize(*key_tfm);
1575 	get_random_bytes(dummy_key, *key_size);
1576 	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1577 	if (rc) {
1578 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1579 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1580 		       rc);
1581 		rc = -EINVAL;
1582 		goto out;
1583 	}
1584 out:
1585 	kfree(full_alg_name);
1586 	return rc;
1587 }
1588 
1589 struct kmem_cache *ecryptfs_key_tfm_cache;
1590 static struct list_head key_tfm_list;
1591 struct mutex key_tfm_list_mutex;
1592 
ecryptfs_init_crypto(void)1593 int __init ecryptfs_init_crypto(void)
1594 {
1595 	mutex_init(&key_tfm_list_mutex);
1596 	INIT_LIST_HEAD(&key_tfm_list);
1597 	return 0;
1598 }
1599 
1600 /**
1601  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1602  *
1603  * Called only at module unload time
1604  */
ecryptfs_destroy_crypto(void)1605 int ecryptfs_destroy_crypto(void)
1606 {
1607 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1608 
1609 	mutex_lock(&key_tfm_list_mutex);
1610 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1611 				 key_tfm_list) {
1612 		list_del(&key_tfm->key_tfm_list);
1613 		crypto_free_skcipher(key_tfm->key_tfm);
1614 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1615 	}
1616 	mutex_unlock(&key_tfm_list_mutex);
1617 	return 0;
1618 }
1619 
1620 int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm ** key_tfm,char * cipher_name,size_t key_size)1621 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1622 			 size_t key_size)
1623 {
1624 	struct ecryptfs_key_tfm *tmp_tfm;
1625 	int rc = 0;
1626 
1627 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1628 
1629 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1630 	if (key_tfm)
1631 		(*key_tfm) = tmp_tfm;
1632 	if (!tmp_tfm) {
1633 		rc = -ENOMEM;
1634 		goto out;
1635 	}
1636 	mutex_init(&tmp_tfm->key_tfm_mutex);
1637 	strncpy(tmp_tfm->cipher_name, cipher_name,
1638 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1639 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1640 	tmp_tfm->key_size = key_size;
1641 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1642 					 tmp_tfm->cipher_name,
1643 					 &tmp_tfm->key_size);
1644 	if (rc) {
1645 		printk(KERN_ERR "Error attempting to initialize key TFM "
1646 		       "cipher with name = [%s]; rc = [%d]\n",
1647 		       tmp_tfm->cipher_name, rc);
1648 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1649 		if (key_tfm)
1650 			(*key_tfm) = NULL;
1651 		goto out;
1652 	}
1653 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1654 out:
1655 	return rc;
1656 }
1657 
1658 /**
1659  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1660  * @cipher_name: the name of the cipher to search for
1661  * @key_tfm: set to corresponding tfm if found
1662  *
1663  * Searches for cached key_tfm matching @cipher_name
1664  * Must be called with &key_tfm_list_mutex held
1665  * Returns 1 if found, with @key_tfm set
1666  * Returns 0 if not found, with @key_tfm set to NULL
1667  */
ecryptfs_tfm_exists(char * cipher_name,struct ecryptfs_key_tfm ** key_tfm)1668 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1669 {
1670 	struct ecryptfs_key_tfm *tmp_key_tfm;
1671 
1672 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1673 
1674 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1675 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1676 			if (key_tfm)
1677 				(*key_tfm) = tmp_key_tfm;
1678 			return 1;
1679 		}
1680 	}
1681 	if (key_tfm)
1682 		(*key_tfm) = NULL;
1683 	return 0;
1684 }
1685 
1686 /**
1687  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1688  *
1689  * @tfm: set to cached tfm found, or new tfm created
1690  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1691  * @cipher_name: the name of the cipher to search for and/or add
1692  *
1693  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1694  * Searches for cached item first, and creates new if not found.
1695  * Returns 0 on success, non-zero if adding new cipher failed
1696  */
ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher ** tfm,struct mutex ** tfm_mutex,char * cipher_name)1697 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1698 					       struct mutex **tfm_mutex,
1699 					       char *cipher_name)
1700 {
1701 	struct ecryptfs_key_tfm *key_tfm;
1702 	int rc = 0;
1703 
1704 	(*tfm) = NULL;
1705 	(*tfm_mutex) = NULL;
1706 
1707 	mutex_lock(&key_tfm_list_mutex);
1708 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1709 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1710 		if (rc) {
1711 			printk(KERN_ERR "Error adding new key_tfm to list; "
1712 					"rc = [%d]\n", rc);
1713 			goto out;
1714 		}
1715 	}
1716 	(*tfm) = key_tfm->key_tfm;
1717 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1718 out:
1719 	mutex_unlock(&key_tfm_list_mutex);
1720 	return rc;
1721 }
1722 
1723 /* 64 characters forming a 6-bit target field */
1724 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1725 						 "EFGHIJKLMNOPQRST"
1726 						 "UVWXYZabcdefghij"
1727 						 "klmnopqrstuvwxyz");
1728 
1729 /* We could either offset on every reverse map or just pad some 0x00's
1730  * at the front here */
1731 static const unsigned char filename_rev_map[256] = {
1732 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1733 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1734 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1735 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1736 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1737 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1738 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1739 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1740 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1741 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1742 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1743 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1744 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1745 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1746 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1747 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1748 };
1749 
1750 /**
1751  * ecryptfs_encode_for_filename
1752  * @dst: Destination location for encoded filename
1753  * @dst_size: Size of the encoded filename in bytes
1754  * @src: Source location for the filename to encode
1755  * @src_size: Size of the source in bytes
1756  */
ecryptfs_encode_for_filename(unsigned char * dst,size_t * dst_size,unsigned char * src,size_t src_size)1757 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1758 				  unsigned char *src, size_t src_size)
1759 {
1760 	size_t num_blocks;
1761 	size_t block_num = 0;
1762 	size_t dst_offset = 0;
1763 	unsigned char last_block[3];
1764 
1765 	if (src_size == 0) {
1766 		(*dst_size) = 0;
1767 		goto out;
1768 	}
1769 	num_blocks = (src_size / 3);
1770 	if ((src_size % 3) == 0) {
1771 		memcpy(last_block, (&src[src_size - 3]), 3);
1772 	} else {
1773 		num_blocks++;
1774 		last_block[2] = 0x00;
1775 		switch (src_size % 3) {
1776 		case 1:
1777 			last_block[0] = src[src_size - 1];
1778 			last_block[1] = 0x00;
1779 			break;
1780 		case 2:
1781 			last_block[0] = src[src_size - 2];
1782 			last_block[1] = src[src_size - 1];
1783 		}
1784 	}
1785 	(*dst_size) = (num_blocks * 4);
1786 	if (!dst)
1787 		goto out;
1788 	while (block_num < num_blocks) {
1789 		unsigned char *src_block;
1790 		unsigned char dst_block[4];
1791 
1792 		if (block_num == (num_blocks - 1))
1793 			src_block = last_block;
1794 		else
1795 			src_block = &src[block_num * 3];
1796 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1797 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1798 				| ((src_block[1] >> 4) & 0x0F));
1799 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1800 				| ((src_block[2] >> 6) & 0x03));
1801 		dst_block[3] = (src_block[2] & 0x3F);
1802 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1803 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1804 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1805 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1806 		block_num++;
1807 	}
1808 out:
1809 	return;
1810 }
1811 
ecryptfs_max_decoded_size(size_t encoded_size)1812 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1813 {
1814 	/* Not exact; conservatively long. Every block of 4
1815 	 * encoded characters decodes into a block of 3
1816 	 * decoded characters. This segment of code provides
1817 	 * the caller with the maximum amount of allocated
1818 	 * space that @dst will need to point to in a
1819 	 * subsequent call. */
1820 	return ((encoded_size + 1) * 3) / 4;
1821 }
1822 
1823 /**
1824  * ecryptfs_decode_from_filename
1825  * @dst: If NULL, this function only sets @dst_size and returns. If
1826  *       non-NULL, this function decodes the encoded octets in @src
1827  *       into the memory that @dst points to.
1828  * @dst_size: Set to the size of the decoded string.
1829  * @src: The encoded set of octets to decode.
1830  * @src_size: The size of the encoded set of octets to decode.
1831  */
1832 static void
ecryptfs_decode_from_filename(unsigned char * dst,size_t * dst_size,const unsigned char * src,size_t src_size)1833 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1834 			      const unsigned char *src, size_t src_size)
1835 {
1836 	u8 current_bit_offset = 0;
1837 	size_t src_byte_offset = 0;
1838 	size_t dst_byte_offset = 0;
1839 
1840 	if (!dst) {
1841 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1842 		goto out;
1843 	}
1844 	while (src_byte_offset < src_size) {
1845 		unsigned char src_byte =
1846 				filename_rev_map[(int)src[src_byte_offset]];
1847 
1848 		switch (current_bit_offset) {
1849 		case 0:
1850 			dst[dst_byte_offset] = (src_byte << 2);
1851 			current_bit_offset = 6;
1852 			break;
1853 		case 6:
1854 			dst[dst_byte_offset++] |= (src_byte >> 4);
1855 			dst[dst_byte_offset] = ((src_byte & 0xF)
1856 						 << 4);
1857 			current_bit_offset = 4;
1858 			break;
1859 		case 4:
1860 			dst[dst_byte_offset++] |= (src_byte >> 2);
1861 			dst[dst_byte_offset] = (src_byte << 6);
1862 			current_bit_offset = 2;
1863 			break;
1864 		case 2:
1865 			dst[dst_byte_offset++] |= (src_byte);
1866 			current_bit_offset = 0;
1867 			break;
1868 		}
1869 		src_byte_offset++;
1870 	}
1871 	(*dst_size) = dst_byte_offset;
1872 out:
1873 	return;
1874 }
1875 
1876 /**
1877  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1878  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1879  * @name: The plaintext name
1880  * @length: The length of the plaintext
1881  * @encoded_name: The encypted name
1882  *
1883  * Encrypts and encodes a filename into something that constitutes a
1884  * valid filename for a filesystem, with printable characters.
1885  *
1886  * We assume that we have a properly initialized crypto context,
1887  * pointed to by crypt_stat->tfm.
1888  *
1889  * Returns zero on success; non-zero on otherwise
1890  */
ecryptfs_encrypt_and_encode_filename(char ** encoded_name,size_t * encoded_name_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,const char * name,size_t name_size)1891 int ecryptfs_encrypt_and_encode_filename(
1892 	char **encoded_name,
1893 	size_t *encoded_name_size,
1894 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1895 	const char *name, size_t name_size)
1896 {
1897 	size_t encoded_name_no_prefix_size;
1898 	int rc = 0;
1899 
1900 	(*encoded_name) = NULL;
1901 	(*encoded_name_size) = 0;
1902 	if (mount_crypt_stat && (mount_crypt_stat->flags
1903 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1904 		struct ecryptfs_filename *filename;
1905 
1906 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1907 		if (!filename) {
1908 			rc = -ENOMEM;
1909 			goto out;
1910 		}
1911 		filename->filename = (char *)name;
1912 		filename->filename_size = name_size;
1913 		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1914 		if (rc) {
1915 			printk(KERN_ERR "%s: Error attempting to encrypt "
1916 			       "filename; rc = [%d]\n", __func__, rc);
1917 			kfree(filename);
1918 			goto out;
1919 		}
1920 		ecryptfs_encode_for_filename(
1921 			NULL, &encoded_name_no_prefix_size,
1922 			filename->encrypted_filename,
1923 			filename->encrypted_filename_size);
1924 		if (mount_crypt_stat
1925 			&& (mount_crypt_stat->flags
1926 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1927 			(*encoded_name_size) =
1928 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1929 				 + encoded_name_no_prefix_size);
1930 		else
1931 			(*encoded_name_size) =
1932 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1933 				 + encoded_name_no_prefix_size);
1934 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1935 		if (!(*encoded_name)) {
1936 			rc = -ENOMEM;
1937 			kfree(filename->encrypted_filename);
1938 			kfree(filename);
1939 			goto out;
1940 		}
1941 		if (mount_crypt_stat
1942 			&& (mount_crypt_stat->flags
1943 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1944 			memcpy((*encoded_name),
1945 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1946 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1947 			ecryptfs_encode_for_filename(
1948 			    ((*encoded_name)
1949 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1950 			    &encoded_name_no_prefix_size,
1951 			    filename->encrypted_filename,
1952 			    filename->encrypted_filename_size);
1953 			(*encoded_name_size) =
1954 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1955 				 + encoded_name_no_prefix_size);
1956 			(*encoded_name)[(*encoded_name_size)] = '\0';
1957 		} else {
1958 			rc = -EOPNOTSUPP;
1959 		}
1960 		if (rc) {
1961 			printk(KERN_ERR "%s: Error attempting to encode "
1962 			       "encrypted filename; rc = [%d]\n", __func__,
1963 			       rc);
1964 			kfree((*encoded_name));
1965 			(*encoded_name) = NULL;
1966 			(*encoded_name_size) = 0;
1967 		}
1968 		kfree(filename->encrypted_filename);
1969 		kfree(filename);
1970 	} else {
1971 		rc = ecryptfs_copy_filename(encoded_name,
1972 					    encoded_name_size,
1973 					    name, name_size);
1974 	}
1975 out:
1976 	return rc;
1977 }
1978 
is_dot_dotdot(const char * name,size_t name_size)1979 static bool is_dot_dotdot(const char *name, size_t name_size)
1980 {
1981 	if (name_size == 1 && name[0] == '.')
1982 		return true;
1983 	else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1984 		return true;
1985 
1986 	return false;
1987 }
1988 
1989 /**
1990  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1991  * @plaintext_name: The plaintext name
1992  * @plaintext_name_size: The plaintext name size
1993  * @ecryptfs_dir_dentry: eCryptfs directory dentry
1994  * @name: The filename in cipher text
1995  * @name_size: The cipher text name size
1996  *
1997  * Decrypts and decodes the filename.
1998  *
1999  * Returns zero on error; non-zero otherwise
2000  */
ecryptfs_decode_and_decrypt_filename(char ** plaintext_name,size_t * plaintext_name_size,struct super_block * sb,const char * name,size_t name_size)2001 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2002 					 size_t *plaintext_name_size,
2003 					 struct super_block *sb,
2004 					 const char *name, size_t name_size)
2005 {
2006 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2007 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2008 	char *decoded_name;
2009 	size_t decoded_name_size;
2010 	size_t packet_size;
2011 	int rc = 0;
2012 
2013 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2014 	    !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2015 		if (is_dot_dotdot(name, name_size)) {
2016 			rc = ecryptfs_copy_filename(plaintext_name,
2017 						    plaintext_name_size,
2018 						    name, name_size);
2019 			goto out;
2020 		}
2021 
2022 		if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2023 		    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2024 			    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2025 			rc = -EINVAL;
2026 			goto out;
2027 		}
2028 
2029 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2030 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2031 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2032 					      name, name_size);
2033 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2034 		if (!decoded_name) {
2035 			rc = -ENOMEM;
2036 			goto out;
2037 		}
2038 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2039 					      name, name_size);
2040 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2041 						  plaintext_name_size,
2042 						  &packet_size,
2043 						  mount_crypt_stat,
2044 						  decoded_name,
2045 						  decoded_name_size);
2046 		if (rc) {
2047 			ecryptfs_printk(KERN_DEBUG,
2048 					"%s: Could not parse tag 70 packet from filename\n",
2049 					__func__);
2050 			goto out_free;
2051 		}
2052 	} else {
2053 		rc = ecryptfs_copy_filename(plaintext_name,
2054 					    plaintext_name_size,
2055 					    name, name_size);
2056 		goto out;
2057 	}
2058 out_free:
2059 	kfree(decoded_name);
2060 out:
2061 	return rc;
2062 }
2063 
2064 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2065 
ecryptfs_set_f_namelen(long * namelen,long lower_namelen,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)2066 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2067 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2068 {
2069 	struct crypto_skcipher *tfm;
2070 	struct mutex *tfm_mutex;
2071 	size_t cipher_blocksize;
2072 	int rc;
2073 
2074 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2075 		(*namelen) = lower_namelen;
2076 		return 0;
2077 	}
2078 
2079 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2080 			mount_crypt_stat->global_default_fn_cipher_name);
2081 	if (unlikely(rc)) {
2082 		(*namelen) = 0;
2083 		return rc;
2084 	}
2085 
2086 	mutex_lock(tfm_mutex);
2087 	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2088 	mutex_unlock(tfm_mutex);
2089 
2090 	/* Return an exact amount for the common cases */
2091 	if (lower_namelen == NAME_MAX
2092 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2093 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2094 		return 0;
2095 	}
2096 
2097 	/* Return a safe estimate for the uncommon cases */
2098 	(*namelen) = lower_namelen;
2099 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2100 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2101 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2102 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2103 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2104 	/* Worst case is that the filename is padded nearly a full block size */
2105 	(*namelen) -= cipher_blocksize - 1;
2106 
2107 	if ((*namelen) < 0)
2108 		(*namelen) = 0;
2109 
2110 	return 0;
2111 }
2112