1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (WARN_ON(condition)) \
37 set_sbi_flag(sbi, SBI_NEED_FSCK); \
38 } while (0)
39 #endif
40
41 enum {
42 FAULT_KMALLOC,
43 FAULT_KVMALLOC,
44 FAULT_PAGE_ALLOC,
45 FAULT_PAGE_GET,
46 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
47 FAULT_ALLOC_NID,
48 FAULT_ORPHAN,
49 FAULT_BLOCK,
50 FAULT_DIR_DEPTH,
51 FAULT_EVICT_INODE,
52 FAULT_TRUNCATE,
53 FAULT_READ_IO,
54 FAULT_CHECKPOINT,
55 FAULT_DISCARD,
56 FAULT_WRITE_IO,
57 FAULT_SLAB_ALLOC,
58 FAULT_DQUOT_INIT,
59 FAULT_LOCK_OP,
60 FAULT_MAX,
61 };
62
63 #ifdef CONFIG_F2FS_FAULT_INJECTION
64 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
65
66 struct f2fs_fault_info {
67 atomic_t inject_ops;
68 unsigned int inject_rate;
69 unsigned int inject_type;
70 };
71
72 extern const char *f2fs_fault_name[FAULT_MAX];
73 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
74 #endif
75
76 /*
77 * For mount options
78 */
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
80 #define F2FS_MOUNT_DISCARD 0x00000004
81 #define F2FS_MOUNT_NOHEAP 0x00000008
82 #define F2FS_MOUNT_XATTR_USER 0x00000010
83 #define F2FS_MOUNT_POSIX_ACL 0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
86 #define F2FS_MOUNT_INLINE_DATA 0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
89 #define F2FS_MOUNT_NOBARRIER 0x00000800
90 #define F2FS_MOUNT_FASTBOOT 0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
92 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
94 #define F2FS_MOUNT_USRQUOTA 0x00080000
95 #define F2FS_MOUNT_GRPQUOTA 0x00100000
96 #define F2FS_MOUNT_PRJQUOTA 0x00200000
97 #define F2FS_MOUNT_QUOTA 0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
100 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
101 #define F2FS_MOUNT_NORECOVERY 0x04000000
102 #define F2FS_MOUNT_ATGC 0x08000000
103 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000
104 #define F2FS_MOUNT_GC_MERGE 0x20000000
105 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000
106
107 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
108 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
109 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
110 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
111
112 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
113 typecheck(unsigned long long, b) && \
114 ((long long)((a) - (b)) > 0))
115
116 typedef u32 block_t; /*
117 * should not change u32, since it is the on-disk block
118 * address format, __le32.
119 */
120 typedef u32 nid_t;
121
122 #define COMPRESS_EXT_NUM 16
123
124 /*
125 * An implementation of an rwsem that is explicitly unfair to readers. This
126 * prevents priority inversion when a low-priority reader acquires the read lock
127 * while sleeping on the write lock but the write lock is needed by
128 * higher-priority clients.
129 */
130
131 struct f2fs_rwsem {
132 struct rw_semaphore internal_rwsem;
133 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
134 wait_queue_head_t read_waiters;
135 #endif
136 };
137
138 struct f2fs_mount_info {
139 unsigned int opt;
140 int write_io_size_bits; /* Write IO size bits */
141 block_t root_reserved_blocks; /* root reserved blocks */
142 kuid_t s_resuid; /* reserved blocks for uid */
143 kgid_t s_resgid; /* reserved blocks for gid */
144 int active_logs; /* # of active logs */
145 int inline_xattr_size; /* inline xattr size */
146 #ifdef CONFIG_F2FS_FAULT_INJECTION
147 struct f2fs_fault_info fault_info; /* For fault injection */
148 #endif
149 #ifdef CONFIG_QUOTA
150 /* Names of quota files with journalled quota */
151 char *s_qf_names[MAXQUOTAS];
152 int s_jquota_fmt; /* Format of quota to use */
153 #endif
154 /* For which write hints are passed down to block layer */
155 int whint_mode;
156 int alloc_mode; /* segment allocation policy */
157 int fsync_mode; /* fsync policy */
158 int fs_mode; /* fs mode: LFS or ADAPTIVE */
159 int bggc_mode; /* bggc mode: off, on or sync */
160 int memory_mode; /* memory mode */
161 int discard_unit; /*
162 * discard command's offset/size should
163 * be aligned to this unit: block,
164 * segment or section
165 */
166 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
167 block_t unusable_cap_perc; /* percentage for cap */
168 block_t unusable_cap; /* Amount of space allowed to be
169 * unusable when disabling checkpoint
170 */
171
172 /* For compression */
173 unsigned char compress_algorithm; /* algorithm type */
174 unsigned char compress_log_size; /* cluster log size */
175 unsigned char compress_level; /* compress level */
176 bool compress_chksum; /* compressed data chksum */
177 unsigned char compress_ext_cnt; /* extension count */
178 unsigned char nocompress_ext_cnt; /* nocompress extension count */
179 int compress_mode; /* compression mode */
180 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
181 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
182 };
183
184 #define F2FS_FEATURE_ENCRYPT 0x0001
185 #define F2FS_FEATURE_BLKZONED 0x0002
186 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
187 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
188 #define F2FS_FEATURE_PRJQUOTA 0x0010
189 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
190 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
191 #define F2FS_FEATURE_QUOTA_INO 0x0080
192 #define F2FS_FEATURE_INODE_CRTIME 0x0100
193 #define F2FS_FEATURE_LOST_FOUND 0x0200
194 #define F2FS_FEATURE_VERITY 0x0400
195 #define F2FS_FEATURE_SB_CHKSUM 0x0800
196 #define F2FS_FEATURE_CASEFOLD 0x1000
197 #define F2FS_FEATURE_COMPRESSION 0x2000
198 #define F2FS_FEATURE_RO 0x4000
199
200 #define __F2FS_HAS_FEATURE(raw_super, mask) \
201 ((raw_super->feature & cpu_to_le32(mask)) != 0)
202 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
203 #define F2FS_SET_FEATURE(sbi, mask) \
204 (sbi->raw_super->feature |= cpu_to_le32(mask))
205 #define F2FS_CLEAR_FEATURE(sbi, mask) \
206 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
207
208 /*
209 * Default values for user and/or group using reserved blocks
210 */
211 #define F2FS_DEF_RESUID 0
212 #define F2FS_DEF_RESGID 0
213
214 /*
215 * For checkpoint manager
216 */
217 enum {
218 NAT_BITMAP,
219 SIT_BITMAP
220 };
221
222 #define CP_UMOUNT 0x00000001
223 #define CP_FASTBOOT 0x00000002
224 #define CP_SYNC 0x00000004
225 #define CP_RECOVERY 0x00000008
226 #define CP_DISCARD 0x00000010
227 #define CP_TRIMMED 0x00000020
228 #define CP_PAUSE 0x00000040
229 #define CP_RESIZE 0x00000080
230
231 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
232 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
233 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
234 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
235 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
236 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
237 #define DEF_CP_INTERVAL 60 /* 60 secs */
238 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
239 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
240 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
241 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
242
243 struct cp_control {
244 int reason;
245 __u64 trim_start;
246 __u64 trim_end;
247 __u64 trim_minlen;
248 };
249
250 /*
251 * indicate meta/data type
252 */
253 enum {
254 META_CP,
255 META_NAT,
256 META_SIT,
257 META_SSA,
258 META_MAX,
259 META_POR,
260 DATA_GENERIC, /* check range only */
261 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
262 DATA_GENERIC_ENHANCE_READ, /*
263 * strong check on range and segment
264 * bitmap but no warning due to race
265 * condition of read on truncated area
266 * by extent_cache
267 */
268 DATA_GENERIC_ENHANCE_UPDATE, /*
269 * strong check on range and segment
270 * bitmap for update case
271 */
272 META_GENERIC,
273 };
274
275 /* for the list of ino */
276 enum {
277 ORPHAN_INO, /* for orphan ino list */
278 APPEND_INO, /* for append ino list */
279 UPDATE_INO, /* for update ino list */
280 TRANS_DIR_INO, /* for trasactions dir ino list */
281 FLUSH_INO, /* for multiple device flushing */
282 MAX_INO_ENTRY, /* max. list */
283 };
284
285 struct ino_entry {
286 struct list_head list; /* list head */
287 nid_t ino; /* inode number */
288 unsigned int dirty_device; /* dirty device bitmap */
289 };
290
291 /* for the list of inodes to be GCed */
292 struct inode_entry {
293 struct list_head list; /* list head */
294 struct inode *inode; /* vfs inode pointer */
295 };
296
297 struct fsync_node_entry {
298 struct list_head list; /* list head */
299 struct page *page; /* warm node page pointer */
300 unsigned int seq_id; /* sequence id */
301 };
302
303 struct ckpt_req {
304 struct completion wait; /* completion for checkpoint done */
305 struct llist_node llnode; /* llist_node to be linked in wait queue */
306 int ret; /* return code of checkpoint */
307 ktime_t queue_time; /* request queued time */
308 };
309
310 struct ckpt_req_control {
311 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
312 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
313 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
314 atomic_t issued_ckpt; /* # of actually issued ckpts */
315 atomic_t total_ckpt; /* # of total ckpts */
316 atomic_t queued_ckpt; /* # of queued ckpts */
317 struct llist_head issue_list; /* list for command issue */
318 spinlock_t stat_lock; /* lock for below checkpoint time stats */
319 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
320 unsigned int peak_time; /* peak wait time in msec until now */
321 };
322
323 /* for the bitmap indicate blocks to be discarded */
324 struct discard_entry {
325 struct list_head list; /* list head */
326 block_t start_blkaddr; /* start blockaddr of current segment */
327 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
328 };
329
330 /* default discard granularity of inner discard thread, unit: block count */
331 #define DEFAULT_DISCARD_GRANULARITY 16
332
333 /* max discard pend list number */
334 #define MAX_PLIST_NUM 512
335 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
336 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
337
338 enum {
339 D_PREP, /* initial */
340 D_PARTIAL, /* partially submitted */
341 D_SUBMIT, /* all submitted */
342 D_DONE, /* finished */
343 };
344
345 struct discard_info {
346 block_t lstart; /* logical start address */
347 block_t len; /* length */
348 block_t start; /* actual start address in dev */
349 };
350
351 struct discard_cmd {
352 struct rb_node rb_node; /* rb node located in rb-tree */
353 union {
354 struct {
355 block_t lstart; /* logical start address */
356 block_t len; /* length */
357 block_t start; /* actual start address in dev */
358 };
359 struct discard_info di; /* discard info */
360
361 };
362 struct list_head list; /* command list */
363 struct completion wait; /* compleation */
364 struct block_device *bdev; /* bdev */
365 unsigned short ref; /* reference count */
366 unsigned char state; /* state */
367 unsigned char queued; /* queued discard */
368 int error; /* bio error */
369 spinlock_t lock; /* for state/bio_ref updating */
370 unsigned short bio_ref; /* bio reference count */
371 };
372
373 enum {
374 DPOLICY_BG,
375 DPOLICY_FORCE,
376 DPOLICY_FSTRIM,
377 DPOLICY_UMOUNT,
378 MAX_DPOLICY,
379 };
380
381 struct discard_policy {
382 int type; /* type of discard */
383 unsigned int min_interval; /* used for candidates exist */
384 unsigned int mid_interval; /* used for device busy */
385 unsigned int max_interval; /* used for candidates not exist */
386 unsigned int max_requests; /* # of discards issued per round */
387 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
388 bool io_aware; /* issue discard in idle time */
389 bool sync; /* submit discard with REQ_SYNC flag */
390 bool ordered; /* issue discard by lba order */
391 bool timeout; /* discard timeout for put_super */
392 unsigned int granularity; /* discard granularity */
393 };
394
395 struct discard_cmd_control {
396 struct task_struct *f2fs_issue_discard; /* discard thread */
397 struct list_head entry_list; /* 4KB discard entry list */
398 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
399 struct list_head wait_list; /* store on-flushing entries */
400 struct list_head fstrim_list; /* in-flight discard from fstrim */
401 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
402 unsigned int discard_wake; /* to wake up discard thread */
403 struct mutex cmd_lock;
404 unsigned int nr_discards; /* # of discards in the list */
405 unsigned int max_discards; /* max. discards to be issued */
406 unsigned int max_discard_request; /* max. discard request per round */
407 unsigned int min_discard_issue_time; /* min. interval between discard issue */
408 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
409 unsigned int max_discard_issue_time; /* max. interval between discard issue */
410 unsigned int discard_granularity; /* discard granularity */
411 unsigned int undiscard_blks; /* # of undiscard blocks */
412 unsigned int next_pos; /* next discard position */
413 atomic_t issued_discard; /* # of issued discard */
414 atomic_t queued_discard; /* # of queued discard */
415 atomic_t discard_cmd_cnt; /* # of cached cmd count */
416 struct rb_root_cached root; /* root of discard rb-tree */
417 bool rbtree_check; /* config for consistence check */
418 };
419
420 /* for the list of fsync inodes, used only during recovery */
421 struct fsync_inode_entry {
422 struct list_head list; /* list head */
423 struct inode *inode; /* vfs inode pointer */
424 block_t blkaddr; /* block address locating the last fsync */
425 block_t last_dentry; /* block address locating the last dentry */
426 };
427
428 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
429 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
430
431 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
432 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
433 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
434 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
435
436 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
437 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
438
update_nats_in_cursum(struct f2fs_journal * journal,int i)439 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
440 {
441 int before = nats_in_cursum(journal);
442
443 journal->n_nats = cpu_to_le16(before + i);
444 return before;
445 }
446
update_sits_in_cursum(struct f2fs_journal * journal,int i)447 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
448 {
449 int before = sits_in_cursum(journal);
450
451 journal->n_sits = cpu_to_le16(before + i);
452 return before;
453 }
454
__has_cursum_space(struct f2fs_journal * journal,int size,int type)455 static inline bool __has_cursum_space(struct f2fs_journal *journal,
456 int size, int type)
457 {
458 if (type == NAT_JOURNAL)
459 return size <= MAX_NAT_JENTRIES(journal);
460 return size <= MAX_SIT_JENTRIES(journal);
461 }
462
463 /* for inline stuff */
464 #define DEF_INLINE_RESERVED_SIZE 1
465 static inline int get_extra_isize(struct inode *inode);
466 static inline int get_inline_xattr_addrs(struct inode *inode);
467 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
468 (CUR_ADDRS_PER_INODE(inode) - \
469 get_inline_xattr_addrs(inode) - \
470 DEF_INLINE_RESERVED_SIZE))
471
472 /* for inline dir */
473 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
474 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
475 BITS_PER_BYTE + 1))
476 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
477 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
478 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
479 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
480 NR_INLINE_DENTRY(inode) + \
481 INLINE_DENTRY_BITMAP_SIZE(inode)))
482
483 /*
484 * For INODE and NODE manager
485 */
486 /* for directory operations */
487
488 struct f2fs_filename {
489 /*
490 * The filename the user specified. This is NULL for some
491 * filesystem-internal operations, e.g. converting an inline directory
492 * to a non-inline one, or roll-forward recovering an encrypted dentry.
493 */
494 const struct qstr *usr_fname;
495
496 /*
497 * The on-disk filename. For encrypted directories, this is encrypted.
498 * This may be NULL for lookups in an encrypted dir without the key.
499 */
500 struct fscrypt_str disk_name;
501
502 /* The dirhash of this filename */
503 f2fs_hash_t hash;
504
505 #ifdef CONFIG_FS_ENCRYPTION
506 /*
507 * For lookups in encrypted directories: either the buffer backing
508 * disk_name, or a buffer that holds the decoded no-key name.
509 */
510 struct fscrypt_str crypto_buf;
511 #endif
512 #ifdef CONFIG_UNICODE
513 /*
514 * For casefolded directories: the casefolded name, but it's left NULL
515 * if the original name is not valid Unicode, if the original name is
516 * "." or "..", if the directory is both casefolded and encrypted and
517 * its encryption key is unavailable, or if the filesystem is doing an
518 * internal operation where usr_fname is also NULL. In all these cases
519 * we fall back to treating the name as an opaque byte sequence.
520 */
521 struct fscrypt_str cf_name;
522 #endif
523 };
524
525 struct f2fs_dentry_ptr {
526 struct inode *inode;
527 void *bitmap;
528 struct f2fs_dir_entry *dentry;
529 __u8 (*filename)[F2FS_SLOT_LEN];
530 int max;
531 int nr_bitmap;
532 };
533
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)534 static inline void make_dentry_ptr_block(struct inode *inode,
535 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
536 {
537 d->inode = inode;
538 d->max = NR_DENTRY_IN_BLOCK;
539 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
540 d->bitmap = t->dentry_bitmap;
541 d->dentry = t->dentry;
542 d->filename = t->filename;
543 }
544
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)545 static inline void make_dentry_ptr_inline(struct inode *inode,
546 struct f2fs_dentry_ptr *d, void *t)
547 {
548 int entry_cnt = NR_INLINE_DENTRY(inode);
549 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
550 int reserved_size = INLINE_RESERVED_SIZE(inode);
551
552 d->inode = inode;
553 d->max = entry_cnt;
554 d->nr_bitmap = bitmap_size;
555 d->bitmap = t;
556 d->dentry = t + bitmap_size + reserved_size;
557 d->filename = t + bitmap_size + reserved_size +
558 SIZE_OF_DIR_ENTRY * entry_cnt;
559 }
560
561 /*
562 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
563 * as its node offset to distinguish from index node blocks.
564 * But some bits are used to mark the node block.
565 */
566 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
567 >> OFFSET_BIT_SHIFT)
568 enum {
569 ALLOC_NODE, /* allocate a new node page if needed */
570 LOOKUP_NODE, /* look up a node without readahead */
571 LOOKUP_NODE_RA, /*
572 * look up a node with readahead called
573 * by get_data_block.
574 */
575 };
576
577 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
578
579 /* congestion wait timeout value, default: 20ms */
580 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
581
582 /* maximum retry quota flush count */
583 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
584
585 /* maximum retry of EIO'ed page */
586 #define MAX_RETRY_PAGE_EIO 100
587
588 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
589
590 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
591
592 /* dirty segments threshold for triggering CP */
593 #define DEFAULT_DIRTY_THRESHOLD 4
594
595 /* for in-memory extent cache entry */
596 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
597
598 /* number of extent info in extent cache we try to shrink */
599 #define EXTENT_CACHE_SHRINK_NUMBER 128
600
601 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_PAGES
602 #define RECOVERY_MIN_RA_BLOCKS 1
603
604 struct rb_entry {
605 struct rb_node rb_node; /* rb node located in rb-tree */
606 union {
607 struct {
608 unsigned int ofs; /* start offset of the entry */
609 unsigned int len; /* length of the entry */
610 };
611 unsigned long long key; /* 64-bits key */
612 } __packed;
613 };
614
615 struct extent_info {
616 unsigned int fofs; /* start offset in a file */
617 unsigned int len; /* length of the extent */
618 u32 blk; /* start block address of the extent */
619 #ifdef CONFIG_F2FS_FS_COMPRESSION
620 unsigned int c_len; /* physical extent length of compressed blocks */
621 #endif
622 };
623
624 struct extent_node {
625 struct rb_node rb_node; /* rb node located in rb-tree */
626 struct extent_info ei; /* extent info */
627 struct list_head list; /* node in global extent list of sbi */
628 struct extent_tree *et; /* extent tree pointer */
629 };
630
631 struct extent_tree {
632 nid_t ino; /* inode number */
633 struct rb_root_cached root; /* root of extent info rb-tree */
634 struct extent_node *cached_en; /* recently accessed extent node */
635 struct extent_info largest; /* largested extent info */
636 struct list_head list; /* to be used by sbi->zombie_list */
637 rwlock_t lock; /* protect extent info rb-tree */
638 atomic_t node_cnt; /* # of extent node in rb-tree*/
639 bool largest_updated; /* largest extent updated */
640 };
641
642 /*
643 * This structure is taken from ext4_map_blocks.
644 *
645 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
646 */
647 #define F2FS_MAP_NEW (1 << BH_New)
648 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
649 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
650 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
651 F2FS_MAP_UNWRITTEN)
652
653 struct f2fs_map_blocks {
654 struct block_device *m_bdev; /* for multi-device dio */
655 block_t m_pblk;
656 block_t m_lblk;
657 unsigned int m_len;
658 unsigned int m_flags;
659 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
660 pgoff_t *m_next_extent; /* point to next possible extent */
661 int m_seg_type;
662 bool m_may_create; /* indicate it is from write path */
663 bool m_multidev_dio; /* indicate it allows multi-device dio */
664 };
665
666 /* for flag in get_data_block */
667 enum {
668 F2FS_GET_BLOCK_DEFAULT,
669 F2FS_GET_BLOCK_FIEMAP,
670 F2FS_GET_BLOCK_BMAP,
671 F2FS_GET_BLOCK_DIO,
672 F2FS_GET_BLOCK_PRE_DIO,
673 F2FS_GET_BLOCK_PRE_AIO,
674 F2FS_GET_BLOCK_PRECACHE,
675 };
676
677 /*
678 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
679 */
680 #define FADVISE_COLD_BIT 0x01
681 #define FADVISE_LOST_PINO_BIT 0x02
682 #define FADVISE_ENCRYPT_BIT 0x04
683 #define FADVISE_ENC_NAME_BIT 0x08
684 #define FADVISE_KEEP_SIZE_BIT 0x10
685 #define FADVISE_HOT_BIT 0x20
686 #define FADVISE_VERITY_BIT 0x40
687 #define FADVISE_TRUNC_BIT 0x80
688
689 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
690
691 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
692 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
693 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
694
695 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
696 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
697 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
698
699 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
700 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
701
702 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
703 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
704
705 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
706 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
707
708 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
709 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
710 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
711
712 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
713 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
714
715 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
716 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
717 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
718
719 #define DEF_DIR_LEVEL 0
720
721 enum {
722 GC_FAILURE_PIN,
723 GC_FAILURE_ATOMIC,
724 MAX_GC_FAILURE
725 };
726
727 /* used for f2fs_inode_info->flags */
728 enum {
729 FI_NEW_INODE, /* indicate newly allocated inode */
730 FI_DIRTY_INODE, /* indicate inode is dirty or not */
731 FI_AUTO_RECOVER, /* indicate inode is recoverable */
732 FI_DIRTY_DIR, /* indicate directory has dirty pages */
733 FI_INC_LINK, /* need to increment i_nlink */
734 FI_ACL_MODE, /* indicate acl mode */
735 FI_NO_ALLOC, /* should not allocate any blocks */
736 FI_FREE_NID, /* free allocated nide */
737 FI_NO_EXTENT, /* not to use the extent cache */
738 FI_INLINE_XATTR, /* used for inline xattr */
739 FI_INLINE_DATA, /* used for inline data*/
740 FI_INLINE_DENTRY, /* used for inline dentry */
741 FI_APPEND_WRITE, /* inode has appended data */
742 FI_UPDATE_WRITE, /* inode has in-place-update data */
743 FI_NEED_IPU, /* used for ipu per file */
744 FI_ATOMIC_FILE, /* indicate atomic file */
745 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
746 FI_VOLATILE_FILE, /* indicate volatile file */
747 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
748 FI_DROP_CACHE, /* drop dirty page cache */
749 FI_DATA_EXIST, /* indicate data exists */
750 FI_INLINE_DOTS, /* indicate inline dot dentries */
751 FI_SKIP_WRITES, /* should skip data page writeback */
752 FI_OPU_WRITE, /* used for opu per file */
753 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
754 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
755 FI_HOT_DATA, /* indicate file is hot */
756 FI_EXTRA_ATTR, /* indicate file has extra attribute */
757 FI_PROJ_INHERIT, /* indicate file inherits projectid */
758 FI_PIN_FILE, /* indicate file should not be gced */
759 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
760 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
761 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
762 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
763 FI_MMAP_FILE, /* indicate file was mmapped */
764 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
765 FI_COMPRESS_RELEASED, /* compressed blocks were released */
766 FI_ALIGNED_WRITE, /* enable aligned write */
767 FI_MAX, /* max flag, never be used */
768 };
769
770 struct f2fs_inode_info {
771 struct inode vfs_inode; /* serve a vfs inode */
772 unsigned long i_flags; /* keep an inode flags for ioctl */
773 unsigned char i_advise; /* use to give file attribute hints */
774 unsigned char i_dir_level; /* use for dentry level for large dir */
775 unsigned int i_current_depth; /* only for directory depth */
776 /* for gc failure statistic */
777 unsigned int i_gc_failures[MAX_GC_FAILURE];
778 unsigned int i_pino; /* parent inode number */
779 umode_t i_acl_mode; /* keep file acl mode temporarily */
780
781 /* Use below internally in f2fs*/
782 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
783 struct f2fs_rwsem i_sem; /* protect fi info */
784 atomic_t dirty_pages; /* # of dirty pages */
785 f2fs_hash_t chash; /* hash value of given file name */
786 unsigned int clevel; /* maximum level of given file name */
787 struct task_struct *task; /* lookup and create consistency */
788 struct task_struct *cp_task; /* separate cp/wb IO stats*/
789 struct task_struct *wb_task; /* indicate inode is in context of writeback */
790 nid_t i_xattr_nid; /* node id that contains xattrs */
791 loff_t last_disk_size; /* lastly written file size */
792 spinlock_t i_size_lock; /* protect last_disk_size */
793
794 #ifdef CONFIG_QUOTA
795 struct dquot *i_dquot[MAXQUOTAS];
796
797 /* quota space reservation, managed internally by quota code */
798 qsize_t i_reserved_quota;
799 #endif
800 struct list_head dirty_list; /* dirty list for dirs and files */
801 struct list_head gdirty_list; /* linked in global dirty list */
802 struct list_head inmem_ilist; /* list for inmem inodes */
803 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
804 struct task_struct *inmem_task; /* store inmemory task */
805 struct mutex inmem_lock; /* lock for inmemory pages */
806 struct extent_tree *extent_tree; /* cached extent_tree entry */
807
808 /* avoid racing between foreground op and gc */
809 struct f2fs_rwsem i_gc_rwsem[2];
810 struct f2fs_rwsem i_mmap_sem;
811 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
812
813 int i_extra_isize; /* size of extra space located in i_addr */
814 kprojid_t i_projid; /* id for project quota */
815 int i_inline_xattr_size; /* inline xattr size */
816 struct timespec64 i_crtime; /* inode creation time */
817 struct timespec64 i_disk_time[4];/* inode disk times */
818
819 /* for file compress */
820 atomic_t i_compr_blocks; /* # of compressed blocks */
821 unsigned char i_compress_algorithm; /* algorithm type */
822 unsigned char i_log_cluster_size; /* log of cluster size */
823 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
824 unsigned short i_compress_flag; /* compress flag */
825 unsigned int i_cluster_size; /* cluster size */
826 };
827
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)828 static inline void get_extent_info(struct extent_info *ext,
829 struct f2fs_extent *i_ext)
830 {
831 ext->fofs = le32_to_cpu(i_ext->fofs);
832 ext->blk = le32_to_cpu(i_ext->blk);
833 ext->len = le32_to_cpu(i_ext->len);
834 }
835
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)836 static inline void set_raw_extent(struct extent_info *ext,
837 struct f2fs_extent *i_ext)
838 {
839 i_ext->fofs = cpu_to_le32(ext->fofs);
840 i_ext->blk = cpu_to_le32(ext->blk);
841 i_ext->len = cpu_to_le32(ext->len);
842 }
843
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)844 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
845 u32 blk, unsigned int len)
846 {
847 ei->fofs = fofs;
848 ei->blk = blk;
849 ei->len = len;
850 #ifdef CONFIG_F2FS_FS_COMPRESSION
851 ei->c_len = 0;
852 #endif
853 }
854
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)855 static inline bool __is_discard_mergeable(struct discard_info *back,
856 struct discard_info *front, unsigned int max_len)
857 {
858 return (back->lstart + back->len == front->lstart) &&
859 (back->len + front->len <= max_len);
860 }
861
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)862 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
863 struct discard_info *back, unsigned int max_len)
864 {
865 return __is_discard_mergeable(back, cur, max_len);
866 }
867
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)868 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
869 struct discard_info *front, unsigned int max_len)
870 {
871 return __is_discard_mergeable(cur, front, max_len);
872 }
873
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)874 static inline bool __is_extent_mergeable(struct extent_info *back,
875 struct extent_info *front)
876 {
877 #ifdef CONFIG_F2FS_FS_COMPRESSION
878 if (back->c_len && back->len != back->c_len)
879 return false;
880 if (front->c_len && front->len != front->c_len)
881 return false;
882 #endif
883 return (back->fofs + back->len == front->fofs &&
884 back->blk + back->len == front->blk);
885 }
886
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)887 static inline bool __is_back_mergeable(struct extent_info *cur,
888 struct extent_info *back)
889 {
890 return __is_extent_mergeable(back, cur);
891 }
892
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)893 static inline bool __is_front_mergeable(struct extent_info *cur,
894 struct extent_info *front)
895 {
896 return __is_extent_mergeable(cur, front);
897 }
898
899 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)900 static inline void __try_update_largest_extent(struct extent_tree *et,
901 struct extent_node *en)
902 {
903 if (en->ei.len > et->largest.len) {
904 et->largest = en->ei;
905 et->largest_updated = true;
906 }
907 }
908
909 /*
910 * For free nid management
911 */
912 enum nid_state {
913 FREE_NID, /* newly added to free nid list */
914 PREALLOC_NID, /* it is preallocated */
915 MAX_NID_STATE,
916 };
917
918 enum nat_state {
919 TOTAL_NAT,
920 DIRTY_NAT,
921 RECLAIMABLE_NAT,
922 MAX_NAT_STATE,
923 };
924
925 struct f2fs_nm_info {
926 block_t nat_blkaddr; /* base disk address of NAT */
927 nid_t max_nid; /* maximum possible node ids */
928 nid_t available_nids; /* # of available node ids */
929 nid_t next_scan_nid; /* the next nid to be scanned */
930 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
931 unsigned int ram_thresh; /* control the memory footprint */
932 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
933 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
934
935 /* NAT cache management */
936 struct radix_tree_root nat_root;/* root of the nat entry cache */
937 struct radix_tree_root nat_set_root;/* root of the nat set cache */
938 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
939 struct list_head nat_entries; /* cached nat entry list (clean) */
940 spinlock_t nat_list_lock; /* protect clean nat entry list */
941 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
942 unsigned int nat_blocks; /* # of nat blocks */
943
944 /* free node ids management */
945 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
946 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
947 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
948 spinlock_t nid_list_lock; /* protect nid lists ops */
949 struct mutex build_lock; /* lock for build free nids */
950 unsigned char **free_nid_bitmap;
951 unsigned char *nat_block_bitmap;
952 unsigned short *free_nid_count; /* free nid count of NAT block */
953
954 /* for checkpoint */
955 char *nat_bitmap; /* NAT bitmap pointer */
956
957 unsigned int nat_bits_blocks; /* # of nat bits blocks */
958 unsigned char *nat_bits; /* NAT bits blocks */
959 unsigned char *full_nat_bits; /* full NAT pages */
960 unsigned char *empty_nat_bits; /* empty NAT pages */
961 #ifdef CONFIG_F2FS_CHECK_FS
962 char *nat_bitmap_mir; /* NAT bitmap mirror */
963 #endif
964 int bitmap_size; /* bitmap size */
965 };
966
967 /*
968 * this structure is used as one of function parameters.
969 * all the information are dedicated to a given direct node block determined
970 * by the data offset in a file.
971 */
972 struct dnode_of_data {
973 struct inode *inode; /* vfs inode pointer */
974 struct page *inode_page; /* its inode page, NULL is possible */
975 struct page *node_page; /* cached direct node page */
976 nid_t nid; /* node id of the direct node block */
977 unsigned int ofs_in_node; /* data offset in the node page */
978 bool inode_page_locked; /* inode page is locked or not */
979 bool node_changed; /* is node block changed */
980 char cur_level; /* level of hole node page */
981 char max_level; /* level of current page located */
982 block_t data_blkaddr; /* block address of the node block */
983 };
984
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)985 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
986 struct page *ipage, struct page *npage, nid_t nid)
987 {
988 memset(dn, 0, sizeof(*dn));
989 dn->inode = inode;
990 dn->inode_page = ipage;
991 dn->node_page = npage;
992 dn->nid = nid;
993 }
994
995 /*
996 * For SIT manager
997 *
998 * By default, there are 6 active log areas across the whole main area.
999 * When considering hot and cold data separation to reduce cleaning overhead,
1000 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1001 * respectively.
1002 * In the current design, you should not change the numbers intentionally.
1003 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1004 * logs individually according to the underlying devices. (default: 6)
1005 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1006 * data and 8 for node logs.
1007 */
1008 #define NR_CURSEG_DATA_TYPE (3)
1009 #define NR_CURSEG_NODE_TYPE (3)
1010 #define NR_CURSEG_INMEM_TYPE (2)
1011 #define NR_CURSEG_RO_TYPE (2)
1012 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1013 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1014
1015 enum {
1016 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1017 CURSEG_WARM_DATA, /* data blocks */
1018 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1019 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1020 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1021 CURSEG_COLD_NODE, /* indirect node blocks */
1022 NR_PERSISTENT_LOG, /* number of persistent log */
1023 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1024 /* pinned file that needs consecutive block address */
1025 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1026 NO_CHECK_TYPE, /* number of persistent & inmem log */
1027 };
1028
1029 struct flush_cmd {
1030 struct completion wait;
1031 struct llist_node llnode;
1032 nid_t ino;
1033 int ret;
1034 };
1035
1036 struct flush_cmd_control {
1037 struct task_struct *f2fs_issue_flush; /* flush thread */
1038 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1039 atomic_t issued_flush; /* # of issued flushes */
1040 atomic_t queued_flush; /* # of queued flushes */
1041 struct llist_head issue_list; /* list for command issue */
1042 struct llist_node *dispatch_list; /* list for command dispatch */
1043 };
1044
1045 struct f2fs_sm_info {
1046 struct sit_info *sit_info; /* whole segment information */
1047 struct free_segmap_info *free_info; /* free segment information */
1048 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1049 struct curseg_info *curseg_array; /* active segment information */
1050
1051 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1052
1053 block_t seg0_blkaddr; /* block address of 0'th segment */
1054 block_t main_blkaddr; /* start block address of main area */
1055 block_t ssa_blkaddr; /* start block address of SSA area */
1056
1057 unsigned int segment_count; /* total # of segments */
1058 unsigned int main_segments; /* # of segments in main area */
1059 unsigned int reserved_segments; /* # of reserved segments */
1060 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1061 unsigned int ovp_segments; /* # of overprovision segments */
1062
1063 /* a threshold to reclaim prefree segments */
1064 unsigned int rec_prefree_segments;
1065
1066 /* for batched trimming */
1067 unsigned int trim_sections; /* # of sections to trim */
1068
1069 struct list_head sit_entry_set; /* sit entry set list */
1070
1071 unsigned int ipu_policy; /* in-place-update policy */
1072 unsigned int min_ipu_util; /* in-place-update threshold */
1073 unsigned int min_fsync_blocks; /* threshold for fsync */
1074 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1075 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1076 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1077
1078 /* for flush command control */
1079 struct flush_cmd_control *fcc_info;
1080
1081 /* for discard command control */
1082 struct discard_cmd_control *dcc_info;
1083 };
1084
1085 /*
1086 * For superblock
1087 */
1088 /*
1089 * COUNT_TYPE for monitoring
1090 *
1091 * f2fs monitors the number of several block types such as on-writeback,
1092 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1093 */
1094 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1095 enum count_type {
1096 F2FS_DIRTY_DENTS,
1097 F2FS_DIRTY_DATA,
1098 F2FS_DIRTY_QDATA,
1099 F2FS_DIRTY_NODES,
1100 F2FS_DIRTY_META,
1101 F2FS_INMEM_PAGES,
1102 F2FS_DIRTY_IMETA,
1103 F2FS_WB_CP_DATA,
1104 F2FS_WB_DATA,
1105 F2FS_RD_DATA,
1106 F2FS_RD_NODE,
1107 F2FS_RD_META,
1108 F2FS_DIO_WRITE,
1109 F2FS_DIO_READ,
1110 NR_COUNT_TYPE,
1111 };
1112
1113 /*
1114 * The below are the page types of bios used in submit_bio().
1115 * The available types are:
1116 * DATA User data pages. It operates as async mode.
1117 * NODE Node pages. It operates as async mode.
1118 * META FS metadata pages such as SIT, NAT, CP.
1119 * NR_PAGE_TYPE The number of page types.
1120 * META_FLUSH Make sure the previous pages are written
1121 * with waiting the bio's completion
1122 * ... Only can be used with META.
1123 */
1124 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1125 enum page_type {
1126 DATA = 0,
1127 NODE = 1, /* should not change this */
1128 META,
1129 NR_PAGE_TYPE,
1130 META_FLUSH,
1131 INMEM, /* the below types are used by tracepoints only. */
1132 INMEM_DROP,
1133 INMEM_INVALIDATE,
1134 INMEM_REVOKE,
1135 IPU,
1136 OPU,
1137 };
1138
1139 enum temp_type {
1140 HOT = 0, /* must be zero for meta bio */
1141 WARM,
1142 COLD,
1143 NR_TEMP_TYPE,
1144 };
1145
1146 enum need_lock_type {
1147 LOCK_REQ = 0,
1148 LOCK_DONE,
1149 LOCK_RETRY,
1150 };
1151
1152 enum cp_reason_type {
1153 CP_NO_NEEDED,
1154 CP_NON_REGULAR,
1155 CP_COMPRESSED,
1156 CP_HARDLINK,
1157 CP_SB_NEED_CP,
1158 CP_WRONG_PINO,
1159 CP_NO_SPC_ROLL,
1160 CP_NODE_NEED_CP,
1161 CP_FASTBOOT_MODE,
1162 CP_SPEC_LOG_NUM,
1163 CP_RECOVER_DIR,
1164 };
1165
1166 enum iostat_type {
1167 /* WRITE IO */
1168 APP_DIRECT_IO, /* app direct write IOs */
1169 APP_BUFFERED_IO, /* app buffered write IOs */
1170 APP_WRITE_IO, /* app write IOs */
1171 APP_MAPPED_IO, /* app mapped IOs */
1172 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1173 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1174 FS_META_IO, /* meta IOs from kworker/reclaimer */
1175 FS_GC_DATA_IO, /* data IOs from forground gc */
1176 FS_GC_NODE_IO, /* node IOs from forground gc */
1177 FS_CP_DATA_IO, /* data IOs from checkpoint */
1178 FS_CP_NODE_IO, /* node IOs from checkpoint */
1179 FS_CP_META_IO, /* meta IOs from checkpoint */
1180
1181 /* READ IO */
1182 APP_DIRECT_READ_IO, /* app direct read IOs */
1183 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1184 APP_READ_IO, /* app read IOs */
1185 APP_MAPPED_READ_IO, /* app mapped read IOs */
1186 FS_DATA_READ_IO, /* data read IOs */
1187 FS_GDATA_READ_IO, /* data read IOs from background gc */
1188 FS_CDATA_READ_IO, /* compressed data read IOs */
1189 FS_NODE_READ_IO, /* node read IOs */
1190 FS_META_READ_IO, /* meta read IOs */
1191
1192 /* other */
1193 FS_DISCARD, /* discard */
1194 NR_IO_TYPE,
1195 };
1196
1197 struct f2fs_io_info {
1198 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1199 nid_t ino; /* inode number */
1200 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1201 enum temp_type temp; /* contains HOT/WARM/COLD */
1202 int op; /* contains REQ_OP_ */
1203 int op_flags; /* req_flag_bits */
1204 block_t new_blkaddr; /* new block address to be written */
1205 block_t old_blkaddr; /* old block address before Cow */
1206 struct page *page; /* page to be written */
1207 struct page *encrypted_page; /* encrypted page */
1208 struct page *compressed_page; /* compressed page */
1209 struct list_head list; /* serialize IOs */
1210 bool submitted; /* indicate IO submission */
1211 int need_lock; /* indicate we need to lock cp_rwsem */
1212 bool in_list; /* indicate fio is in io_list */
1213 bool is_por; /* indicate IO is from recovery or not */
1214 bool retry; /* need to reallocate block address */
1215 int compr_blocks; /* # of compressed block addresses */
1216 bool encrypted; /* indicate file is encrypted */
1217 enum iostat_type io_type; /* io type */
1218 struct writeback_control *io_wbc; /* writeback control */
1219 struct bio **bio; /* bio for ipu */
1220 sector_t *last_block; /* last block number in bio */
1221 unsigned char version; /* version of the node */
1222 };
1223
1224 struct bio_entry {
1225 struct bio *bio;
1226 struct list_head list;
1227 };
1228
1229 #define is_read_io(rw) ((rw) == READ)
1230 struct f2fs_bio_info {
1231 struct f2fs_sb_info *sbi; /* f2fs superblock */
1232 struct bio *bio; /* bios to merge */
1233 sector_t last_block_in_bio; /* last block number */
1234 struct f2fs_io_info fio; /* store buffered io info. */
1235 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1236 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1237 struct list_head io_list; /* track fios */
1238 struct list_head bio_list; /* bio entry list head */
1239 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1240 };
1241
1242 #define FDEV(i) (sbi->devs[i])
1243 #define RDEV(i) (raw_super->devs[i])
1244 struct f2fs_dev_info {
1245 struct block_device *bdev;
1246 char path[MAX_PATH_LEN];
1247 unsigned int total_segments;
1248 block_t start_blk;
1249 block_t end_blk;
1250 #ifdef CONFIG_BLK_DEV_ZONED
1251 unsigned int nr_blkz; /* Total number of zones */
1252 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1253 #endif
1254 };
1255
1256 enum inode_type {
1257 DIR_INODE, /* for dirty dir inode */
1258 FILE_INODE, /* for dirty regular/symlink inode */
1259 DIRTY_META, /* for all dirtied inode metadata */
1260 ATOMIC_FILE, /* for all atomic files */
1261 NR_INODE_TYPE,
1262 };
1263
1264 /* for inner inode cache management */
1265 struct inode_management {
1266 struct radix_tree_root ino_root; /* ino entry array */
1267 spinlock_t ino_lock; /* for ino entry lock */
1268 struct list_head ino_list; /* inode list head */
1269 unsigned long ino_num; /* number of entries */
1270 };
1271
1272 /* for GC_AT */
1273 struct atgc_management {
1274 bool atgc_enabled; /* ATGC is enabled or not */
1275 struct rb_root_cached root; /* root of victim rb-tree */
1276 struct list_head victim_list; /* linked with all victim entries */
1277 unsigned int victim_count; /* victim count in rb-tree */
1278 unsigned int candidate_ratio; /* candidate ratio */
1279 unsigned int max_candidate_count; /* max candidate count */
1280 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1281 unsigned long long age_threshold; /* age threshold */
1282 };
1283
1284 /* For s_flag in struct f2fs_sb_info */
1285 enum {
1286 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1287 SBI_IS_CLOSE, /* specify unmounting */
1288 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1289 SBI_POR_DOING, /* recovery is doing or not */
1290 SBI_NEED_SB_WRITE, /* need to recover superblock */
1291 SBI_NEED_CP, /* need to checkpoint */
1292 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1293 SBI_IS_RECOVERED, /* recovered orphan/data */
1294 SBI_CP_DISABLED, /* CP was disabled last mount */
1295 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1296 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1297 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1298 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1299 SBI_IS_RESIZEFS, /* resizefs is in process */
1300 SBI_IS_FREEZING, /* freezefs is in process */
1301 };
1302
1303 enum {
1304 CP_TIME,
1305 REQ_TIME,
1306 DISCARD_TIME,
1307 GC_TIME,
1308 DISABLE_TIME,
1309 UMOUNT_DISCARD_TIMEOUT,
1310 MAX_TIME,
1311 };
1312
1313 enum {
1314 GC_NORMAL,
1315 GC_IDLE_CB,
1316 GC_IDLE_GREEDY,
1317 GC_IDLE_AT,
1318 GC_URGENT_HIGH,
1319 GC_URGENT_LOW,
1320 GC_URGENT_MID,
1321 MAX_GC_MODE,
1322 };
1323
1324 enum {
1325 BGGC_MODE_ON, /* background gc is on */
1326 BGGC_MODE_OFF, /* background gc is off */
1327 BGGC_MODE_SYNC, /*
1328 * background gc is on, migrating blocks
1329 * like foreground gc
1330 */
1331 };
1332
1333 enum {
1334 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1335 FS_MODE_LFS, /* use lfs allocation only */
1336 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1337 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1338 };
1339
1340 enum {
1341 WHINT_MODE_OFF, /* not pass down write hints */
1342 WHINT_MODE_USER, /* try to pass down hints given by users */
1343 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1344 };
1345
1346 enum {
1347 ALLOC_MODE_DEFAULT, /* stay default */
1348 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1349 };
1350
1351 enum fsync_mode {
1352 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1353 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1354 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1355 };
1356
1357 enum {
1358 COMPR_MODE_FS, /*
1359 * automatically compress compression
1360 * enabled files
1361 */
1362 COMPR_MODE_USER, /*
1363 * automatical compression is disabled.
1364 * user can control the file compression
1365 * using ioctls
1366 */
1367 };
1368
1369 enum {
1370 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1371 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1372 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1373 };
1374
1375 enum {
1376 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1377 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1378 };
1379
1380
1381
1382 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1383 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1384 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1385
1386 /*
1387 * Layout of f2fs page.private:
1388 *
1389 * Layout A: lowest bit should be 1
1390 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1391 * bit 0 PAGE_PRIVATE_NOT_POINTER
1392 * bit 1 PAGE_PRIVATE_ATOMIC_WRITE
1393 * bit 2 PAGE_PRIVATE_DUMMY_WRITE
1394 * bit 3 PAGE_PRIVATE_ONGOING_MIGRATION
1395 * bit 4 PAGE_PRIVATE_INLINE_INODE
1396 * bit 5 PAGE_PRIVATE_REF_RESOURCE
1397 * bit 6- f2fs private data
1398 *
1399 * Layout B: lowest bit should be 0
1400 * page.private is a wrapped pointer.
1401 */
1402 enum {
1403 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1404 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1405 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */
1406 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1407 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1408 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1409 PAGE_PRIVATE_MAX
1410 };
1411
1412 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1413 static inline bool page_private_##name(struct page *page) \
1414 { \
1415 return PagePrivate(page) && \
1416 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1417 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1418 }
1419
1420 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1421 static inline void set_page_private_##name(struct page *page) \
1422 { \
1423 if (!PagePrivate(page)) { \
1424 get_page(page); \
1425 SetPagePrivate(page); \
1426 set_page_private(page, 0); \
1427 } \
1428 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1429 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1430 }
1431
1432 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1433 static inline void clear_page_private_##name(struct page *page) \
1434 { \
1435 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1436 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1437 set_page_private(page, 0); \
1438 if (PagePrivate(page)) { \
1439 ClearPagePrivate(page); \
1440 put_page(page); \
1441 }\
1442 } \
1443 }
1444
1445 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1446 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1447 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1448 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1449 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1450 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1451
1452 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1453 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1454 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1455 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1456 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1457
1458 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1459 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1460 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1461 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1462 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1463
get_page_private_data(struct page * page)1464 static inline unsigned long get_page_private_data(struct page *page)
1465 {
1466 unsigned long data = page_private(page);
1467
1468 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1469 return 0;
1470 return data >> PAGE_PRIVATE_MAX;
1471 }
1472
set_page_private_data(struct page * page,unsigned long data)1473 static inline void set_page_private_data(struct page *page, unsigned long data)
1474 {
1475 if (!PagePrivate(page)) {
1476 get_page(page);
1477 SetPagePrivate(page);
1478 set_page_private(page, 0);
1479 }
1480 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1481 page_private(page) |= data << PAGE_PRIVATE_MAX;
1482 }
1483
clear_page_private_data(struct page * page)1484 static inline void clear_page_private_data(struct page *page)
1485 {
1486 page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1487 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1488 set_page_private(page, 0);
1489 if (PagePrivate(page)) {
1490 ClearPagePrivate(page);
1491 put_page(page);
1492 }
1493 }
1494 }
1495
1496 /* For compression */
1497 enum compress_algorithm_type {
1498 COMPRESS_LZO,
1499 COMPRESS_LZ4,
1500 COMPRESS_ZSTD,
1501 COMPRESS_LZORLE,
1502 COMPRESS_MAX,
1503 };
1504
1505 enum compress_flag {
1506 COMPRESS_CHKSUM,
1507 COMPRESS_MAX_FLAG,
1508 };
1509
1510 #define COMPRESS_WATERMARK 20
1511 #define COMPRESS_PERCENT 20
1512
1513 #define COMPRESS_DATA_RESERVED_SIZE 4
1514 struct compress_data {
1515 __le32 clen; /* compressed data size */
1516 __le32 chksum; /* compressed data chksum */
1517 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1518 u8 cdata[]; /* compressed data */
1519 };
1520
1521 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1522
1523 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1524
1525 #define COMPRESS_LEVEL_OFFSET 8
1526
1527 /* compress context */
1528 struct compress_ctx {
1529 struct inode *inode; /* inode the context belong to */
1530 pgoff_t cluster_idx; /* cluster index number */
1531 unsigned int cluster_size; /* page count in cluster */
1532 unsigned int log_cluster_size; /* log of cluster size */
1533 struct page **rpages; /* pages store raw data in cluster */
1534 unsigned int nr_rpages; /* total page number in rpages */
1535 struct page **cpages; /* pages store compressed data in cluster */
1536 unsigned int nr_cpages; /* total page number in cpages */
1537 unsigned int valid_nr_cpages; /* valid page number in cpages */
1538 void *rbuf; /* virtual mapped address on rpages */
1539 struct compress_data *cbuf; /* virtual mapped address on cpages */
1540 size_t rlen; /* valid data length in rbuf */
1541 size_t clen; /* valid data length in cbuf */
1542 void *private; /* payload buffer for specified compression algorithm */
1543 void *private2; /* extra payload buffer */
1544 };
1545
1546 /* compress context for write IO path */
1547 struct compress_io_ctx {
1548 u32 magic; /* magic number to indicate page is compressed */
1549 struct inode *inode; /* inode the context belong to */
1550 struct page **rpages; /* pages store raw data in cluster */
1551 unsigned int nr_rpages; /* total page number in rpages */
1552 atomic_t pending_pages; /* in-flight compressed page count */
1553 };
1554
1555 /* Context for decompressing one cluster on the read IO path */
1556 struct decompress_io_ctx {
1557 u32 magic; /* magic number to indicate page is compressed */
1558 struct inode *inode; /* inode the context belong to */
1559 pgoff_t cluster_idx; /* cluster index number */
1560 unsigned int cluster_size; /* page count in cluster */
1561 unsigned int log_cluster_size; /* log of cluster size */
1562 struct page **rpages; /* pages store raw data in cluster */
1563 unsigned int nr_rpages; /* total page number in rpages */
1564 struct page **cpages; /* pages store compressed data in cluster */
1565 unsigned int nr_cpages; /* total page number in cpages */
1566 struct page **tpages; /* temp pages to pad holes in cluster */
1567 void *rbuf; /* virtual mapped address on rpages */
1568 struct compress_data *cbuf; /* virtual mapped address on cpages */
1569 size_t rlen; /* valid data length in rbuf */
1570 size_t clen; /* valid data length in cbuf */
1571
1572 /*
1573 * The number of compressed pages remaining to be read in this cluster.
1574 * This is initially nr_cpages. It is decremented by 1 each time a page
1575 * has been read (or failed to be read). When it reaches 0, the cluster
1576 * is decompressed (or an error is reported).
1577 *
1578 * If an error occurs before all the pages have been submitted for I/O,
1579 * then this will never reach 0. In this case the I/O submitter is
1580 * responsible for calling f2fs_decompress_end_io() instead.
1581 */
1582 atomic_t remaining_pages;
1583
1584 /*
1585 * Number of references to this decompress_io_ctx.
1586 *
1587 * One reference is held for I/O completion. This reference is dropped
1588 * after the pagecache pages are updated and unlocked -- either after
1589 * decompression (and verity if enabled), or after an error.
1590 *
1591 * In addition, each compressed page holds a reference while it is in a
1592 * bio. These references are necessary prevent compressed pages from
1593 * being freed while they are still in a bio.
1594 */
1595 refcount_t refcnt;
1596
1597 bool failed; /* IO error occurred before decompression? */
1598 bool need_verity; /* need fs-verity verification after decompression? */
1599 void *private; /* payload buffer for specified decompression algorithm */
1600 void *private2; /* extra payload buffer */
1601 struct work_struct verity_work; /* work to verify the decompressed pages */
1602 struct work_struct free_work; /* work for late free this structure itself */
1603 };
1604
1605 #define NULL_CLUSTER ((unsigned int)(~0))
1606 #define MIN_COMPRESS_LOG_SIZE 2
1607 #define MAX_COMPRESS_LOG_SIZE 8
1608 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1609
1610 struct f2fs_sb_info {
1611 struct super_block *sb; /* pointer to VFS super block */
1612 struct proc_dir_entry *s_proc; /* proc entry */
1613 struct f2fs_super_block *raw_super; /* raw super block pointer */
1614 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1615 int valid_super_block; /* valid super block no */
1616 unsigned long s_flag; /* flags for sbi */
1617 struct mutex writepages; /* mutex for writepages() */
1618
1619 #ifdef CONFIG_BLK_DEV_ZONED
1620 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1621 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1622 #endif
1623
1624 /* for node-related operations */
1625 struct f2fs_nm_info *nm_info; /* node manager */
1626 struct inode *node_inode; /* cache node blocks */
1627
1628 /* for segment-related operations */
1629 struct f2fs_sm_info *sm_info; /* segment manager */
1630
1631 /* for bio operations */
1632 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1633 /* keep migration IO order for LFS mode */
1634 struct f2fs_rwsem io_order_lock;
1635 mempool_t *write_io_dummy; /* Dummy pages */
1636 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1637 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1638
1639 /* for checkpoint */
1640 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1641 int cur_cp_pack; /* remain current cp pack */
1642 spinlock_t cp_lock; /* for flag in ckpt */
1643 struct inode *meta_inode; /* cache meta blocks */
1644 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1645 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1646 struct f2fs_rwsem node_write; /* locking node writes */
1647 struct f2fs_rwsem node_change; /* locking node change */
1648 wait_queue_head_t cp_wait;
1649 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1650 long interval_time[MAX_TIME]; /* to store thresholds */
1651 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1652
1653 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1654
1655 spinlock_t fsync_node_lock; /* for node entry lock */
1656 struct list_head fsync_node_list; /* node list head */
1657 unsigned int fsync_seg_id; /* sequence id */
1658 unsigned int fsync_node_num; /* number of node entries */
1659
1660 /* for orphan inode, use 0'th array */
1661 unsigned int max_orphans; /* max orphan inodes */
1662
1663 /* for inode management */
1664 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1665 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1666 struct mutex flush_lock; /* for flush exclusion */
1667
1668 /* for extent tree cache */
1669 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1670 struct mutex extent_tree_lock; /* locking extent radix tree */
1671 struct list_head extent_list; /* lru list for shrinker */
1672 spinlock_t extent_lock; /* locking extent lru list */
1673 atomic_t total_ext_tree; /* extent tree count */
1674 struct list_head zombie_list; /* extent zombie tree list */
1675 atomic_t total_zombie_tree; /* extent zombie tree count */
1676 atomic_t total_ext_node; /* extent info count */
1677
1678 /* basic filesystem units */
1679 unsigned int log_sectors_per_block; /* log2 sectors per block */
1680 unsigned int log_blocksize; /* log2 block size */
1681 unsigned int blocksize; /* block size */
1682 unsigned int root_ino_num; /* root inode number*/
1683 unsigned int node_ino_num; /* node inode number*/
1684 unsigned int meta_ino_num; /* meta inode number*/
1685 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1686 unsigned int blocks_per_seg; /* blocks per segment */
1687 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1688 unsigned int segs_per_sec; /* segments per section */
1689 unsigned int secs_per_zone; /* sections per zone */
1690 unsigned int total_sections; /* total section count */
1691 unsigned int total_node_count; /* total node block count */
1692 unsigned int total_valid_node_count; /* valid node block count */
1693 int dir_level; /* directory level */
1694 int readdir_ra; /* readahead inode in readdir */
1695 u64 max_io_bytes; /* max io bytes to merge IOs */
1696
1697 block_t user_block_count; /* # of user blocks */
1698 block_t total_valid_block_count; /* # of valid blocks */
1699 block_t discard_blks; /* discard command candidats */
1700 block_t last_valid_block_count; /* for recovery */
1701 block_t reserved_blocks; /* configurable reserved blocks */
1702 block_t current_reserved_blocks; /* current reserved blocks */
1703
1704 /* Additional tracking for no checkpoint mode */
1705 block_t unusable_block_count; /* # of blocks saved by last cp */
1706
1707 unsigned int nquota_files; /* # of quota sysfile */
1708 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1709
1710 /* # of pages, see count_type */
1711 atomic_t nr_pages[NR_COUNT_TYPE];
1712 /* # of allocated blocks */
1713 struct percpu_counter alloc_valid_block_count;
1714 /* # of node block writes as roll forward recovery */
1715 struct percpu_counter rf_node_block_count;
1716
1717 /* writeback control */
1718 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1719
1720 /* valid inode count */
1721 struct percpu_counter total_valid_inode_count;
1722
1723 struct f2fs_mount_info mount_opt; /* mount options */
1724
1725 /* for cleaning operations */
1726 struct f2fs_rwsem gc_lock; /*
1727 * semaphore for GC, avoid
1728 * race between GC and GC or CP
1729 */
1730 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1731 struct atgc_management am; /* atgc management */
1732 unsigned int cur_victim_sec; /* current victim section num */
1733 unsigned int gc_mode; /* current GC state */
1734 unsigned int next_victim_seg[2]; /* next segment in victim section */
1735 spinlock_t gc_urgent_high_lock;
1736 unsigned int gc_urgent_high_remaining; /* remaining trial count for GC_URGENT_HIGH */
1737
1738 /* for skip statistic */
1739 unsigned int atomic_files; /* # of opened atomic file */
1740 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1741 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1742
1743 /* threshold for gc trials on pinned files */
1744 u64 gc_pin_file_threshold;
1745 struct f2fs_rwsem pin_sem;
1746
1747 /* maximum # of trials to find a victim segment for SSR and GC */
1748 unsigned int max_victim_search;
1749 /* migration granularity of garbage collection, unit: segment */
1750 unsigned int migration_granularity;
1751
1752 /*
1753 * for stat information.
1754 * one is for the LFS mode, and the other is for the SSR mode.
1755 */
1756 #ifdef CONFIG_F2FS_STAT_FS
1757 struct f2fs_stat_info *stat_info; /* FS status information */
1758 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1759 unsigned int segment_count[2]; /* # of allocated segments */
1760 unsigned int block_count[2]; /* # of allocated blocks */
1761 atomic_t inplace_count; /* # of inplace update */
1762 atomic64_t total_hit_ext; /* # of lookup extent cache */
1763 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1764 atomic64_t read_hit_largest; /* # of hit largest extent node */
1765 atomic64_t read_hit_cached; /* # of hit cached extent node */
1766 atomic_t inline_xattr; /* # of inline_xattr inodes */
1767 atomic_t inline_inode; /* # of inline_data inodes */
1768 atomic_t inline_dir; /* # of inline_dentry inodes */
1769 atomic_t compr_inode; /* # of compressed inodes */
1770 atomic64_t compr_blocks; /* # of compressed blocks */
1771 atomic_t vw_cnt; /* # of volatile writes */
1772 atomic_t max_aw_cnt; /* max # of atomic writes */
1773 atomic_t max_vw_cnt; /* max # of volatile writes */
1774 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1775 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1776 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1777 #endif
1778 spinlock_t stat_lock; /* lock for stat operations */
1779
1780 /* to attach REQ_META|REQ_FUA flags */
1781 unsigned int data_io_flag;
1782 unsigned int node_io_flag;
1783
1784 /* For sysfs suppport */
1785 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1786 struct completion s_kobj_unregister;
1787
1788 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1789 struct completion s_stat_kobj_unregister;
1790
1791 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1792 struct completion s_feature_list_kobj_unregister;
1793
1794 /* For shrinker support */
1795 struct list_head s_list;
1796 struct mutex umount_mutex;
1797 unsigned int shrinker_run_no;
1798
1799 /* For multi devices */
1800 int s_ndevs; /* number of devices */
1801 struct f2fs_dev_info *devs; /* for device list */
1802 unsigned int dirty_device; /* for checkpoint data flush */
1803 spinlock_t dev_lock; /* protect dirty_device */
1804 bool aligned_blksize; /* all devices has the same logical blksize */
1805
1806 /* For write statistics */
1807 u64 sectors_written_start;
1808 u64 kbytes_written;
1809
1810 /* Reference to checksum algorithm driver via cryptoapi */
1811 struct crypto_shash *s_chksum_driver;
1812
1813 /* Precomputed FS UUID checksum for seeding other checksums */
1814 __u32 s_chksum_seed;
1815
1816 struct workqueue_struct *post_read_wq; /* post read workqueue */
1817
1818 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1819 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1820
1821 /* For reclaimed segs statistics per each GC mode */
1822 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1823 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1824
1825 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1826
1827 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1828 int max_fragment_hole; /* max hole size for block fragmentation mode */
1829
1830 #ifdef CONFIG_F2FS_FS_COMPRESSION
1831 struct kmem_cache *page_array_slab; /* page array entry */
1832 unsigned int page_array_slab_size; /* default page array slab size */
1833
1834 /* For runtime compression statistics */
1835 u64 compr_written_block;
1836 u64 compr_saved_block;
1837 u32 compr_new_inode;
1838
1839 /* For compressed block cache */
1840 struct inode *compress_inode; /* cache compressed blocks */
1841 unsigned int compress_percent; /* cache page percentage */
1842 unsigned int compress_watermark; /* cache page watermark */
1843 atomic_t compress_page_hit; /* cache hit count */
1844 #endif
1845
1846 #ifdef CONFIG_F2FS_IOSTAT
1847 /* For app/fs IO statistics */
1848 spinlock_t iostat_lock;
1849 unsigned long long rw_iostat[NR_IO_TYPE];
1850 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1851 bool iostat_enable;
1852 unsigned long iostat_next_period;
1853 unsigned int iostat_period_ms;
1854
1855 /* For io latency related statistics info in one iostat period */
1856 spinlock_t iostat_lat_lock;
1857 struct iostat_lat_info *iostat_io_lat;
1858 #endif
1859 };
1860
1861 #ifdef CONFIG_F2FS_FAULT_INJECTION
1862 #define f2fs_show_injection_info(sbi, type) \
1863 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1864 KERN_INFO, sbi->sb->s_id, \
1865 f2fs_fault_name[type], \
1866 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1867 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1868 {
1869 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1870
1871 if (!ffi->inject_rate)
1872 return false;
1873
1874 if (!IS_FAULT_SET(ffi, type))
1875 return false;
1876
1877 atomic_inc(&ffi->inject_ops);
1878 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1879 atomic_set(&ffi->inject_ops, 0);
1880 return true;
1881 }
1882 return false;
1883 }
1884 #else
1885 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1886 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1887 {
1888 return false;
1889 }
1890 #endif
1891
1892 /*
1893 * Test if the mounted volume is a multi-device volume.
1894 * - For a single regular disk volume, sbi->s_ndevs is 0.
1895 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1896 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1897 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1898 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1899 {
1900 return sbi->s_ndevs > 1;
1901 }
1902
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1903 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1904 {
1905 unsigned long now = jiffies;
1906
1907 sbi->last_time[type] = now;
1908
1909 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1910 if (type == REQ_TIME) {
1911 sbi->last_time[DISCARD_TIME] = now;
1912 sbi->last_time[GC_TIME] = now;
1913 }
1914 }
1915
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1916 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1917 {
1918 unsigned long interval = sbi->interval_time[type] * HZ;
1919
1920 return time_after(jiffies, sbi->last_time[type] + interval);
1921 }
1922
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1923 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1924 int type)
1925 {
1926 unsigned long interval = sbi->interval_time[type] * HZ;
1927 unsigned int wait_ms = 0;
1928 long delta;
1929
1930 delta = (sbi->last_time[type] + interval) - jiffies;
1931 if (delta > 0)
1932 wait_ms = jiffies_to_msecs(delta);
1933
1934 return wait_ms;
1935 }
1936
1937 /*
1938 * Inline functions
1939 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1940 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1941 const void *address, unsigned int length)
1942 {
1943 struct {
1944 struct shash_desc shash;
1945 char ctx[4];
1946 } desc;
1947 int err;
1948
1949 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1950
1951 desc.shash.tfm = sbi->s_chksum_driver;
1952 *(u32 *)desc.ctx = crc;
1953
1954 err = crypto_shash_update(&desc.shash, address, length);
1955 BUG_ON(err);
1956
1957 return *(u32 *)desc.ctx;
1958 }
1959
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1960 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1961 unsigned int length)
1962 {
1963 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1964 }
1965
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1966 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1967 void *buf, size_t buf_size)
1968 {
1969 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1970 }
1971
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1972 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1973 const void *address, unsigned int length)
1974 {
1975 return __f2fs_crc32(sbi, crc, address, length);
1976 }
1977
F2FS_I(struct inode * inode)1978 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1979 {
1980 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1981 }
1982
F2FS_SB(struct super_block * sb)1983 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1984 {
1985 return sb->s_fs_info;
1986 }
1987
F2FS_I_SB(struct inode * inode)1988 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1989 {
1990 return F2FS_SB(inode->i_sb);
1991 }
1992
F2FS_M_SB(struct address_space * mapping)1993 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1994 {
1995 return F2FS_I_SB(mapping->host);
1996 }
1997
F2FS_P_SB(struct page * page)1998 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1999 {
2000 return F2FS_M_SB(page_file_mapping(page));
2001 }
2002
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2003 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2004 {
2005 return (struct f2fs_super_block *)(sbi->raw_super);
2006 }
2007
F2FS_CKPT(struct f2fs_sb_info * sbi)2008 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2009 {
2010 return (struct f2fs_checkpoint *)(sbi->ckpt);
2011 }
2012
F2FS_NODE(struct page * page)2013 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2014 {
2015 return (struct f2fs_node *)page_address(page);
2016 }
2017
F2FS_INODE(struct page * page)2018 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2019 {
2020 return &((struct f2fs_node *)page_address(page))->i;
2021 }
2022
NM_I(struct f2fs_sb_info * sbi)2023 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2024 {
2025 return (struct f2fs_nm_info *)(sbi->nm_info);
2026 }
2027
SM_I(struct f2fs_sb_info * sbi)2028 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2029 {
2030 return (struct f2fs_sm_info *)(sbi->sm_info);
2031 }
2032
SIT_I(struct f2fs_sb_info * sbi)2033 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2034 {
2035 return (struct sit_info *)(SM_I(sbi)->sit_info);
2036 }
2037
FREE_I(struct f2fs_sb_info * sbi)2038 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2039 {
2040 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2041 }
2042
DIRTY_I(struct f2fs_sb_info * sbi)2043 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2044 {
2045 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2046 }
2047
META_MAPPING(struct f2fs_sb_info * sbi)2048 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2049 {
2050 return sbi->meta_inode->i_mapping;
2051 }
2052
NODE_MAPPING(struct f2fs_sb_info * sbi)2053 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2054 {
2055 return sbi->node_inode->i_mapping;
2056 }
2057
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2058 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2059 {
2060 return test_bit(type, &sbi->s_flag);
2061 }
2062
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2063 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2064 {
2065 set_bit(type, &sbi->s_flag);
2066 }
2067
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2068 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2069 {
2070 clear_bit(type, &sbi->s_flag);
2071 }
2072
cur_cp_version(struct f2fs_checkpoint * cp)2073 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2074 {
2075 return le64_to_cpu(cp->checkpoint_ver);
2076 }
2077
f2fs_qf_ino(struct super_block * sb,int type)2078 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2079 {
2080 if (type < F2FS_MAX_QUOTAS)
2081 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2082 return 0;
2083 }
2084
cur_cp_crc(struct f2fs_checkpoint * cp)2085 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2086 {
2087 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2088 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2089 }
2090
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2091 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2092 {
2093 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2094
2095 return ckpt_flags & f;
2096 }
2097
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2098 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2099 {
2100 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2101 }
2102
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2103 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2104 {
2105 unsigned int ckpt_flags;
2106
2107 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2108 ckpt_flags |= f;
2109 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2110 }
2111
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2112 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2113 {
2114 unsigned long flags;
2115
2116 spin_lock_irqsave(&sbi->cp_lock, flags);
2117 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2118 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2119 }
2120
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2121 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2122 {
2123 unsigned int ckpt_flags;
2124
2125 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2126 ckpt_flags &= (~f);
2127 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2128 }
2129
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2130 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2131 {
2132 unsigned long flags;
2133
2134 spin_lock_irqsave(&sbi->cp_lock, flags);
2135 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2136 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2137 }
2138
2139 #define init_f2fs_rwsem(sem) \
2140 do { \
2141 static struct lock_class_key __key; \
2142 \
2143 __init_f2fs_rwsem((sem), #sem, &__key); \
2144 } while (0)
2145
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2146 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2147 const char *sem_name, struct lock_class_key *key)
2148 {
2149 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2150 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2151 init_waitqueue_head(&sem->read_waiters);
2152 #endif
2153 }
2154
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2155 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2156 {
2157 return rwsem_is_locked(&sem->internal_rwsem);
2158 }
2159
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2160 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2161 {
2162 return rwsem_is_contended(&sem->internal_rwsem);
2163 }
2164
f2fs_down_read(struct f2fs_rwsem * sem)2165 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2166 {
2167 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2168 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2169 #else
2170 down_read(&sem->internal_rwsem);
2171 #endif
2172 }
2173
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2174 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2175 {
2176 return down_read_trylock(&sem->internal_rwsem);
2177 }
2178
2179 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2180 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2181 {
2182 down_read_nested(&sem->internal_rwsem, subclass);
2183 }
2184 #else
2185 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2186 #endif
2187
f2fs_up_read(struct f2fs_rwsem * sem)2188 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2189 {
2190 up_read(&sem->internal_rwsem);
2191 }
2192
f2fs_down_write(struct f2fs_rwsem * sem)2193 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2194 {
2195 down_write(&sem->internal_rwsem);
2196 }
2197
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2198 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2199 {
2200 return down_write_trylock(&sem->internal_rwsem);
2201 }
2202
f2fs_up_write(struct f2fs_rwsem * sem)2203 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2204 {
2205 up_write(&sem->internal_rwsem);
2206 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2207 wake_up_all(&sem->read_waiters);
2208 #endif
2209 }
2210
f2fs_lock_op(struct f2fs_sb_info * sbi)2211 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2212 {
2213 f2fs_down_read(&sbi->cp_rwsem);
2214 }
2215
f2fs_trylock_op(struct f2fs_sb_info * sbi)2216 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2217 {
2218 if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2219 f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2220 return 0;
2221 }
2222 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2223 }
2224
f2fs_unlock_op(struct f2fs_sb_info * sbi)2225 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2226 {
2227 f2fs_up_read(&sbi->cp_rwsem);
2228 }
2229
f2fs_lock_all(struct f2fs_sb_info * sbi)2230 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2231 {
2232 f2fs_down_write(&sbi->cp_rwsem);
2233 }
2234
f2fs_unlock_all(struct f2fs_sb_info * sbi)2235 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2236 {
2237 f2fs_up_write(&sbi->cp_rwsem);
2238 }
2239
__get_cp_reason(struct f2fs_sb_info * sbi)2240 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2241 {
2242 int reason = CP_SYNC;
2243
2244 if (test_opt(sbi, FASTBOOT))
2245 reason = CP_FASTBOOT;
2246 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2247 reason = CP_UMOUNT;
2248 return reason;
2249 }
2250
__remain_node_summaries(int reason)2251 static inline bool __remain_node_summaries(int reason)
2252 {
2253 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2254 }
2255
__exist_node_summaries(struct f2fs_sb_info * sbi)2256 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2257 {
2258 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2259 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2260 }
2261
2262 /*
2263 * Check whether the inode has blocks or not
2264 */
F2FS_HAS_BLOCKS(struct inode * inode)2265 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2266 {
2267 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2268
2269 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2270 }
2271
f2fs_has_xattr_block(unsigned int ofs)2272 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2273 {
2274 return ofs == XATTR_NODE_OFFSET;
2275 }
2276
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2277 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2278 struct inode *inode, bool cap)
2279 {
2280 if (!inode)
2281 return true;
2282 if (!test_opt(sbi, RESERVE_ROOT))
2283 return false;
2284 if (IS_NOQUOTA(inode))
2285 return true;
2286 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2287 return true;
2288 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2289 in_group_p(F2FS_OPTION(sbi).s_resgid))
2290 return true;
2291 if (cap && capable(CAP_SYS_RESOURCE))
2292 return true;
2293 return false;
2294 }
2295
2296 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2297 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2298 struct inode *inode, blkcnt_t *count)
2299 {
2300 blkcnt_t diff = 0, release = 0;
2301 block_t avail_user_block_count;
2302 int ret;
2303
2304 ret = dquot_reserve_block(inode, *count);
2305 if (ret)
2306 return ret;
2307
2308 if (time_to_inject(sbi, FAULT_BLOCK)) {
2309 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2310 release = *count;
2311 goto release_quota;
2312 }
2313
2314 /*
2315 * let's increase this in prior to actual block count change in order
2316 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2317 */
2318 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2319
2320 spin_lock(&sbi->stat_lock);
2321 sbi->total_valid_block_count += (block_t)(*count);
2322 avail_user_block_count = sbi->user_block_count -
2323 sbi->current_reserved_blocks;
2324
2325 if (!__allow_reserved_blocks(sbi, inode, true))
2326 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2327
2328 if (F2FS_IO_ALIGNED(sbi))
2329 avail_user_block_count -= sbi->blocks_per_seg *
2330 SM_I(sbi)->additional_reserved_segments;
2331
2332 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2333 if (avail_user_block_count > sbi->unusable_block_count)
2334 avail_user_block_count -= sbi->unusable_block_count;
2335 else
2336 avail_user_block_count = 0;
2337 }
2338 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2339 diff = sbi->total_valid_block_count - avail_user_block_count;
2340 if (diff > *count)
2341 diff = *count;
2342 *count -= diff;
2343 release = diff;
2344 sbi->total_valid_block_count -= diff;
2345 if (!*count) {
2346 spin_unlock(&sbi->stat_lock);
2347 goto enospc;
2348 }
2349 }
2350 spin_unlock(&sbi->stat_lock);
2351
2352 if (unlikely(release)) {
2353 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2354 dquot_release_reservation_block(inode, release);
2355 }
2356 f2fs_i_blocks_write(inode, *count, true, true);
2357 return 0;
2358
2359 enospc:
2360 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2361 release_quota:
2362 dquot_release_reservation_block(inode, release);
2363 return -ENOSPC;
2364 }
2365
2366 __printf(2, 3)
2367 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2368
2369 #define f2fs_err(sbi, fmt, ...) \
2370 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2371 #define f2fs_warn(sbi, fmt, ...) \
2372 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2373 #define f2fs_notice(sbi, fmt, ...) \
2374 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2375 #define f2fs_info(sbi, fmt, ...) \
2376 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2377 #define f2fs_debug(sbi, fmt, ...) \
2378 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2379
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2380 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2381 struct inode *inode,
2382 block_t count)
2383 {
2384 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2385
2386 spin_lock(&sbi->stat_lock);
2387 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2388 sbi->total_valid_block_count -= (block_t)count;
2389 if (sbi->reserved_blocks &&
2390 sbi->current_reserved_blocks < sbi->reserved_blocks)
2391 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2392 sbi->current_reserved_blocks + count);
2393 spin_unlock(&sbi->stat_lock);
2394 if (unlikely(inode->i_blocks < sectors)) {
2395 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2396 inode->i_ino,
2397 (unsigned long long)inode->i_blocks,
2398 (unsigned long long)sectors);
2399 set_sbi_flag(sbi, SBI_NEED_FSCK);
2400 return;
2401 }
2402 f2fs_i_blocks_write(inode, count, false, true);
2403 }
2404
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2405 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2406 {
2407 atomic_inc(&sbi->nr_pages[count_type]);
2408
2409 if (count_type == F2FS_DIRTY_DENTS ||
2410 count_type == F2FS_DIRTY_NODES ||
2411 count_type == F2FS_DIRTY_META ||
2412 count_type == F2FS_DIRTY_QDATA ||
2413 count_type == F2FS_DIRTY_IMETA)
2414 set_sbi_flag(sbi, SBI_IS_DIRTY);
2415 }
2416
inode_inc_dirty_pages(struct inode * inode)2417 static inline void inode_inc_dirty_pages(struct inode *inode)
2418 {
2419 atomic_inc(&F2FS_I(inode)->dirty_pages);
2420 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2421 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2422 if (IS_NOQUOTA(inode))
2423 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2424 }
2425
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2426 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2427 {
2428 atomic_dec(&sbi->nr_pages[count_type]);
2429 }
2430
inode_dec_dirty_pages(struct inode * inode)2431 static inline void inode_dec_dirty_pages(struct inode *inode)
2432 {
2433 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2434 !S_ISLNK(inode->i_mode))
2435 return;
2436
2437 atomic_dec(&F2FS_I(inode)->dirty_pages);
2438 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2439 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2440 if (IS_NOQUOTA(inode))
2441 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2442 }
2443
get_pages(struct f2fs_sb_info * sbi,int count_type)2444 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2445 {
2446 return atomic_read(&sbi->nr_pages[count_type]);
2447 }
2448
get_dirty_pages(struct inode * inode)2449 static inline int get_dirty_pages(struct inode *inode)
2450 {
2451 return atomic_read(&F2FS_I(inode)->dirty_pages);
2452 }
2453
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2454 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2455 {
2456 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2457 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2458 sbi->log_blocks_per_seg;
2459
2460 return segs / sbi->segs_per_sec;
2461 }
2462
valid_user_blocks(struct f2fs_sb_info * sbi)2463 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2464 {
2465 return sbi->total_valid_block_count;
2466 }
2467
discard_blocks(struct f2fs_sb_info * sbi)2468 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2469 {
2470 return sbi->discard_blks;
2471 }
2472
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2473 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2474 {
2475 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2476
2477 /* return NAT or SIT bitmap */
2478 if (flag == NAT_BITMAP)
2479 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2480 else if (flag == SIT_BITMAP)
2481 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2482
2483 return 0;
2484 }
2485
__cp_payload(struct f2fs_sb_info * sbi)2486 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2487 {
2488 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2489 }
2490
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2491 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2492 {
2493 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2494 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2495 int offset;
2496
2497 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2498 offset = (flag == SIT_BITMAP) ?
2499 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2500 /*
2501 * if large_nat_bitmap feature is enabled, leave checksum
2502 * protection for all nat/sit bitmaps.
2503 */
2504 return tmp_ptr + offset + sizeof(__le32);
2505 }
2506
2507 if (__cp_payload(sbi) > 0) {
2508 if (flag == NAT_BITMAP)
2509 return &ckpt->sit_nat_version_bitmap;
2510 else
2511 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2512 } else {
2513 offset = (flag == NAT_BITMAP) ?
2514 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2515 return tmp_ptr + offset;
2516 }
2517 }
2518
__start_cp_addr(struct f2fs_sb_info * sbi)2519 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2520 {
2521 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2522
2523 if (sbi->cur_cp_pack == 2)
2524 start_addr += sbi->blocks_per_seg;
2525 return start_addr;
2526 }
2527
__start_cp_next_addr(struct f2fs_sb_info * sbi)2528 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2529 {
2530 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2531
2532 if (sbi->cur_cp_pack == 1)
2533 start_addr += sbi->blocks_per_seg;
2534 return start_addr;
2535 }
2536
__set_cp_next_pack(struct f2fs_sb_info * sbi)2537 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2538 {
2539 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2540 }
2541
__start_sum_addr(struct f2fs_sb_info * sbi)2542 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2543 {
2544 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2545 }
2546
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2547 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2548 struct inode *inode, bool is_inode)
2549 {
2550 block_t valid_block_count;
2551 unsigned int valid_node_count, user_block_count;
2552 int err;
2553
2554 if (is_inode) {
2555 if (inode) {
2556 err = dquot_alloc_inode(inode);
2557 if (err)
2558 return err;
2559 }
2560 } else {
2561 err = dquot_reserve_block(inode, 1);
2562 if (err)
2563 return err;
2564 }
2565
2566 if (time_to_inject(sbi, FAULT_BLOCK)) {
2567 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2568 goto enospc;
2569 }
2570
2571 spin_lock(&sbi->stat_lock);
2572
2573 valid_block_count = sbi->total_valid_block_count +
2574 sbi->current_reserved_blocks + 1;
2575
2576 if (!__allow_reserved_blocks(sbi, inode, false))
2577 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2578
2579 if (F2FS_IO_ALIGNED(sbi))
2580 valid_block_count += sbi->blocks_per_seg *
2581 SM_I(sbi)->additional_reserved_segments;
2582
2583 user_block_count = sbi->user_block_count;
2584 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2585 user_block_count -= sbi->unusable_block_count;
2586
2587 if (unlikely(valid_block_count > user_block_count)) {
2588 spin_unlock(&sbi->stat_lock);
2589 goto enospc;
2590 }
2591
2592 valid_node_count = sbi->total_valid_node_count + 1;
2593 if (unlikely(valid_node_count > sbi->total_node_count)) {
2594 spin_unlock(&sbi->stat_lock);
2595 goto enospc;
2596 }
2597
2598 sbi->total_valid_node_count++;
2599 sbi->total_valid_block_count++;
2600 spin_unlock(&sbi->stat_lock);
2601
2602 if (inode) {
2603 if (is_inode)
2604 f2fs_mark_inode_dirty_sync(inode, true);
2605 else
2606 f2fs_i_blocks_write(inode, 1, true, true);
2607 }
2608
2609 percpu_counter_inc(&sbi->alloc_valid_block_count);
2610 return 0;
2611
2612 enospc:
2613 if (is_inode) {
2614 if (inode)
2615 dquot_free_inode(inode);
2616 } else {
2617 dquot_release_reservation_block(inode, 1);
2618 }
2619 return -ENOSPC;
2620 }
2621
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2622 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2623 struct inode *inode, bool is_inode)
2624 {
2625 spin_lock(&sbi->stat_lock);
2626
2627 if (unlikely(!sbi->total_valid_block_count ||
2628 !sbi->total_valid_node_count)) {
2629 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2630 sbi->total_valid_block_count,
2631 sbi->total_valid_node_count);
2632 set_sbi_flag(sbi, SBI_NEED_FSCK);
2633 } else {
2634 sbi->total_valid_block_count--;
2635 sbi->total_valid_node_count--;
2636 }
2637
2638 if (sbi->reserved_blocks &&
2639 sbi->current_reserved_blocks < sbi->reserved_blocks)
2640 sbi->current_reserved_blocks++;
2641
2642 spin_unlock(&sbi->stat_lock);
2643
2644 if (is_inode) {
2645 dquot_free_inode(inode);
2646 } else {
2647 if (unlikely(inode->i_blocks == 0)) {
2648 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2649 inode->i_ino,
2650 (unsigned long long)inode->i_blocks);
2651 set_sbi_flag(sbi, SBI_NEED_FSCK);
2652 return;
2653 }
2654 f2fs_i_blocks_write(inode, 1, false, true);
2655 }
2656 }
2657
valid_node_count(struct f2fs_sb_info * sbi)2658 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2659 {
2660 return sbi->total_valid_node_count;
2661 }
2662
inc_valid_inode_count(struct f2fs_sb_info * sbi)2663 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2664 {
2665 percpu_counter_inc(&sbi->total_valid_inode_count);
2666 }
2667
dec_valid_inode_count(struct f2fs_sb_info * sbi)2668 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2669 {
2670 percpu_counter_dec(&sbi->total_valid_inode_count);
2671 }
2672
valid_inode_count(struct f2fs_sb_info * sbi)2673 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2674 {
2675 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2676 }
2677
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2678 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2679 pgoff_t index, bool for_write)
2680 {
2681 struct page *page;
2682
2683 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2684 if (!for_write)
2685 page = find_get_page_flags(mapping, index,
2686 FGP_LOCK | FGP_ACCESSED);
2687 else
2688 page = find_lock_page(mapping, index);
2689 if (page)
2690 return page;
2691
2692 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2693 f2fs_show_injection_info(F2FS_M_SB(mapping),
2694 FAULT_PAGE_ALLOC);
2695 return NULL;
2696 }
2697 }
2698
2699 if (!for_write)
2700 return grab_cache_page(mapping, index);
2701 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2702 }
2703
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2704 static inline struct page *f2fs_pagecache_get_page(
2705 struct address_space *mapping, pgoff_t index,
2706 int fgp_flags, gfp_t gfp_mask)
2707 {
2708 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2709 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2710 return NULL;
2711 }
2712
2713 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2714 }
2715
f2fs_copy_page(struct page * src,struct page * dst)2716 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2717 {
2718 char *src_kaddr = kmap(src);
2719 char *dst_kaddr = kmap(dst);
2720
2721 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2722 kunmap(dst);
2723 kunmap(src);
2724 }
2725
f2fs_put_page(struct page * page,int unlock)2726 static inline void f2fs_put_page(struct page *page, int unlock)
2727 {
2728 if (!page)
2729 return;
2730
2731 if (unlock) {
2732 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2733 unlock_page(page);
2734 }
2735 put_page(page);
2736 }
2737
f2fs_put_dnode(struct dnode_of_data * dn)2738 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2739 {
2740 if (dn->node_page)
2741 f2fs_put_page(dn->node_page, 1);
2742 if (dn->inode_page && dn->node_page != dn->inode_page)
2743 f2fs_put_page(dn->inode_page, 0);
2744 dn->node_page = NULL;
2745 dn->inode_page = NULL;
2746 }
2747
f2fs_kmem_cache_create(const char * name,size_t size)2748 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2749 size_t size)
2750 {
2751 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2752 }
2753
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2754 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2755 gfp_t flags)
2756 {
2757 void *entry;
2758
2759 entry = kmem_cache_alloc(cachep, flags);
2760 if (!entry)
2761 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2762 return entry;
2763 }
2764
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2765 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2766 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2767 {
2768 if (nofail)
2769 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2770
2771 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2772 f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2773 return NULL;
2774 }
2775
2776 return kmem_cache_alloc(cachep, flags);
2777 }
2778
is_inflight_io(struct f2fs_sb_info * sbi,int type)2779 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2780 {
2781 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2782 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2783 get_pages(sbi, F2FS_WB_CP_DATA) ||
2784 get_pages(sbi, F2FS_DIO_READ) ||
2785 get_pages(sbi, F2FS_DIO_WRITE))
2786 return true;
2787
2788 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2789 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2790 return true;
2791
2792 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2793 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2794 return true;
2795 return false;
2796 }
2797
is_idle(struct f2fs_sb_info * sbi,int type)2798 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2799 {
2800 if (sbi->gc_mode == GC_URGENT_HIGH)
2801 return true;
2802
2803 if (is_inflight_io(sbi, type))
2804 return false;
2805
2806 if (sbi->gc_mode == GC_URGENT_MID)
2807 return true;
2808
2809 if (sbi->gc_mode == GC_URGENT_LOW &&
2810 (type == DISCARD_TIME || type == GC_TIME))
2811 return true;
2812
2813 return f2fs_time_over(sbi, type);
2814 }
2815
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2816 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2817 unsigned long index, void *item)
2818 {
2819 while (radix_tree_insert(root, index, item))
2820 cond_resched();
2821 }
2822
2823 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2824
IS_INODE(struct page * page)2825 static inline bool IS_INODE(struct page *page)
2826 {
2827 struct f2fs_node *p = F2FS_NODE(page);
2828
2829 return RAW_IS_INODE(p);
2830 }
2831
offset_in_addr(struct f2fs_inode * i)2832 static inline int offset_in_addr(struct f2fs_inode *i)
2833 {
2834 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2835 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2836 }
2837
blkaddr_in_node(struct f2fs_node * node)2838 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2839 {
2840 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2841 }
2842
2843 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2844 static inline block_t data_blkaddr(struct inode *inode,
2845 struct page *node_page, unsigned int offset)
2846 {
2847 struct f2fs_node *raw_node;
2848 __le32 *addr_array;
2849 int base = 0;
2850 bool is_inode = IS_INODE(node_page);
2851
2852 raw_node = F2FS_NODE(node_page);
2853
2854 if (is_inode) {
2855 if (!inode)
2856 /* from GC path only */
2857 base = offset_in_addr(&raw_node->i);
2858 else if (f2fs_has_extra_attr(inode))
2859 base = get_extra_isize(inode);
2860 }
2861
2862 addr_array = blkaddr_in_node(raw_node);
2863 return le32_to_cpu(addr_array[base + offset]);
2864 }
2865
f2fs_data_blkaddr(struct dnode_of_data * dn)2866 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2867 {
2868 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2869 }
2870
f2fs_test_bit(unsigned int nr,char * addr)2871 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2872 {
2873 int mask;
2874
2875 addr += (nr >> 3);
2876 mask = 1 << (7 - (nr & 0x07));
2877 return mask & *addr;
2878 }
2879
f2fs_set_bit(unsigned int nr,char * addr)2880 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2881 {
2882 int mask;
2883
2884 addr += (nr >> 3);
2885 mask = 1 << (7 - (nr & 0x07));
2886 *addr |= mask;
2887 }
2888
f2fs_clear_bit(unsigned int nr,char * addr)2889 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2890 {
2891 int mask;
2892
2893 addr += (nr >> 3);
2894 mask = 1 << (7 - (nr & 0x07));
2895 *addr &= ~mask;
2896 }
2897
f2fs_test_and_set_bit(unsigned int nr,char * addr)2898 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2899 {
2900 int mask;
2901 int ret;
2902
2903 addr += (nr >> 3);
2904 mask = 1 << (7 - (nr & 0x07));
2905 ret = mask & *addr;
2906 *addr |= mask;
2907 return ret;
2908 }
2909
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2910 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2911 {
2912 int mask;
2913 int ret;
2914
2915 addr += (nr >> 3);
2916 mask = 1 << (7 - (nr & 0x07));
2917 ret = mask & *addr;
2918 *addr &= ~mask;
2919 return ret;
2920 }
2921
f2fs_change_bit(unsigned int nr,char * addr)2922 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2923 {
2924 int mask;
2925
2926 addr += (nr >> 3);
2927 mask = 1 << (7 - (nr & 0x07));
2928 *addr ^= mask;
2929 }
2930
2931 /*
2932 * On-disk inode flags (f2fs_inode::i_flags)
2933 */
2934 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2935 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2936 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2937 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2938 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2939 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2940 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2941 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2942 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2943 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2944 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2945
2946 /* Flags that should be inherited by new inodes from their parent. */
2947 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2948 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2949 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2950
2951 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2952 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2953 F2FS_CASEFOLD_FL))
2954
2955 /* Flags that are appropriate for non-directories/regular files. */
2956 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2957
f2fs_mask_flags(umode_t mode,__u32 flags)2958 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2959 {
2960 if (S_ISDIR(mode))
2961 return flags;
2962 else if (S_ISREG(mode))
2963 return flags & F2FS_REG_FLMASK;
2964 else
2965 return flags & F2FS_OTHER_FLMASK;
2966 }
2967
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2968 static inline void __mark_inode_dirty_flag(struct inode *inode,
2969 int flag, bool set)
2970 {
2971 switch (flag) {
2972 case FI_INLINE_XATTR:
2973 case FI_INLINE_DATA:
2974 case FI_INLINE_DENTRY:
2975 case FI_NEW_INODE:
2976 if (set)
2977 return;
2978 fallthrough;
2979 case FI_DATA_EXIST:
2980 case FI_INLINE_DOTS:
2981 case FI_PIN_FILE:
2982 case FI_COMPRESS_RELEASED:
2983 f2fs_mark_inode_dirty_sync(inode, true);
2984 }
2985 }
2986
set_inode_flag(struct inode * inode,int flag)2987 static inline void set_inode_flag(struct inode *inode, int flag)
2988 {
2989 set_bit(flag, F2FS_I(inode)->flags);
2990 __mark_inode_dirty_flag(inode, flag, true);
2991 }
2992
is_inode_flag_set(struct inode * inode,int flag)2993 static inline int is_inode_flag_set(struct inode *inode, int flag)
2994 {
2995 return test_bit(flag, F2FS_I(inode)->flags);
2996 }
2997
clear_inode_flag(struct inode * inode,int flag)2998 static inline void clear_inode_flag(struct inode *inode, int flag)
2999 {
3000 clear_bit(flag, F2FS_I(inode)->flags);
3001 __mark_inode_dirty_flag(inode, flag, false);
3002 }
3003
f2fs_verity_in_progress(struct inode * inode)3004 static inline bool f2fs_verity_in_progress(struct inode *inode)
3005 {
3006 return IS_ENABLED(CONFIG_FS_VERITY) &&
3007 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3008 }
3009
set_acl_inode(struct inode * inode,umode_t mode)3010 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3011 {
3012 F2FS_I(inode)->i_acl_mode = mode;
3013 set_inode_flag(inode, FI_ACL_MODE);
3014 f2fs_mark_inode_dirty_sync(inode, false);
3015 }
3016
f2fs_i_links_write(struct inode * inode,bool inc)3017 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3018 {
3019 if (inc)
3020 inc_nlink(inode);
3021 else
3022 drop_nlink(inode);
3023 f2fs_mark_inode_dirty_sync(inode, true);
3024 }
3025
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3026 static inline void f2fs_i_blocks_write(struct inode *inode,
3027 block_t diff, bool add, bool claim)
3028 {
3029 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3030 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3031
3032 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3033 if (add) {
3034 if (claim)
3035 dquot_claim_block(inode, diff);
3036 else
3037 dquot_alloc_block_nofail(inode, diff);
3038 } else {
3039 dquot_free_block(inode, diff);
3040 }
3041
3042 f2fs_mark_inode_dirty_sync(inode, true);
3043 if (clean || recover)
3044 set_inode_flag(inode, FI_AUTO_RECOVER);
3045 }
3046
f2fs_i_size_write(struct inode * inode,loff_t i_size)3047 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3048 {
3049 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3050 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3051
3052 if (i_size_read(inode) == i_size)
3053 return;
3054
3055 i_size_write(inode, i_size);
3056 f2fs_mark_inode_dirty_sync(inode, true);
3057 if (clean || recover)
3058 set_inode_flag(inode, FI_AUTO_RECOVER);
3059 }
3060
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3061 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3062 {
3063 F2FS_I(inode)->i_current_depth = depth;
3064 f2fs_mark_inode_dirty_sync(inode, true);
3065 }
3066
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3067 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3068 unsigned int count)
3069 {
3070 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3071 f2fs_mark_inode_dirty_sync(inode, true);
3072 }
3073
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3074 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3075 {
3076 F2FS_I(inode)->i_xattr_nid = xnid;
3077 f2fs_mark_inode_dirty_sync(inode, true);
3078 }
3079
f2fs_i_pino_write(struct inode * inode,nid_t pino)3080 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3081 {
3082 F2FS_I(inode)->i_pino = pino;
3083 f2fs_mark_inode_dirty_sync(inode, true);
3084 }
3085
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3086 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3087 {
3088 struct f2fs_inode_info *fi = F2FS_I(inode);
3089
3090 if (ri->i_inline & F2FS_INLINE_XATTR)
3091 set_bit(FI_INLINE_XATTR, fi->flags);
3092 if (ri->i_inline & F2FS_INLINE_DATA)
3093 set_bit(FI_INLINE_DATA, fi->flags);
3094 if (ri->i_inline & F2FS_INLINE_DENTRY)
3095 set_bit(FI_INLINE_DENTRY, fi->flags);
3096 if (ri->i_inline & F2FS_DATA_EXIST)
3097 set_bit(FI_DATA_EXIST, fi->flags);
3098 if (ri->i_inline & F2FS_INLINE_DOTS)
3099 set_bit(FI_INLINE_DOTS, fi->flags);
3100 if (ri->i_inline & F2FS_EXTRA_ATTR)
3101 set_bit(FI_EXTRA_ATTR, fi->flags);
3102 if (ri->i_inline & F2FS_PIN_FILE)
3103 set_bit(FI_PIN_FILE, fi->flags);
3104 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3105 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3106 }
3107
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3108 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3109 {
3110 ri->i_inline = 0;
3111
3112 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3113 ri->i_inline |= F2FS_INLINE_XATTR;
3114 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3115 ri->i_inline |= F2FS_INLINE_DATA;
3116 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3117 ri->i_inline |= F2FS_INLINE_DENTRY;
3118 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3119 ri->i_inline |= F2FS_DATA_EXIST;
3120 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3121 ri->i_inline |= F2FS_INLINE_DOTS;
3122 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3123 ri->i_inline |= F2FS_EXTRA_ATTR;
3124 if (is_inode_flag_set(inode, FI_PIN_FILE))
3125 ri->i_inline |= F2FS_PIN_FILE;
3126 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3127 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3128 }
3129
f2fs_has_extra_attr(struct inode * inode)3130 static inline int f2fs_has_extra_attr(struct inode *inode)
3131 {
3132 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3133 }
3134
f2fs_has_inline_xattr(struct inode * inode)3135 static inline int f2fs_has_inline_xattr(struct inode *inode)
3136 {
3137 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3138 }
3139
f2fs_compressed_file(struct inode * inode)3140 static inline int f2fs_compressed_file(struct inode *inode)
3141 {
3142 return S_ISREG(inode->i_mode) &&
3143 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3144 }
3145
f2fs_need_compress_data(struct inode * inode)3146 static inline bool f2fs_need_compress_data(struct inode *inode)
3147 {
3148 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3149
3150 if (!f2fs_compressed_file(inode))
3151 return false;
3152
3153 if (compress_mode == COMPR_MODE_FS)
3154 return true;
3155 else if (compress_mode == COMPR_MODE_USER &&
3156 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3157 return true;
3158
3159 return false;
3160 }
3161
addrs_per_inode(struct inode * inode)3162 static inline unsigned int addrs_per_inode(struct inode *inode)
3163 {
3164 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3165 get_inline_xattr_addrs(inode);
3166
3167 if (!f2fs_compressed_file(inode))
3168 return addrs;
3169 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3170 }
3171
addrs_per_block(struct inode * inode)3172 static inline unsigned int addrs_per_block(struct inode *inode)
3173 {
3174 if (!f2fs_compressed_file(inode))
3175 return DEF_ADDRS_PER_BLOCK;
3176 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3177 }
3178
inline_xattr_addr(struct inode * inode,struct page * page)3179 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3180 {
3181 struct f2fs_inode *ri = F2FS_INODE(page);
3182
3183 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3184 get_inline_xattr_addrs(inode)]);
3185 }
3186
inline_xattr_size(struct inode * inode)3187 static inline int inline_xattr_size(struct inode *inode)
3188 {
3189 if (f2fs_has_inline_xattr(inode))
3190 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3191 return 0;
3192 }
3193
f2fs_has_inline_data(struct inode * inode)3194 static inline int f2fs_has_inline_data(struct inode *inode)
3195 {
3196 return is_inode_flag_set(inode, FI_INLINE_DATA);
3197 }
3198
f2fs_exist_data(struct inode * inode)3199 static inline int f2fs_exist_data(struct inode *inode)
3200 {
3201 return is_inode_flag_set(inode, FI_DATA_EXIST);
3202 }
3203
f2fs_has_inline_dots(struct inode * inode)3204 static inline int f2fs_has_inline_dots(struct inode *inode)
3205 {
3206 return is_inode_flag_set(inode, FI_INLINE_DOTS);
3207 }
3208
f2fs_is_mmap_file(struct inode * inode)3209 static inline int f2fs_is_mmap_file(struct inode *inode)
3210 {
3211 return is_inode_flag_set(inode, FI_MMAP_FILE);
3212 }
3213
f2fs_is_pinned_file(struct inode * inode)3214 static inline bool f2fs_is_pinned_file(struct inode *inode)
3215 {
3216 return is_inode_flag_set(inode, FI_PIN_FILE);
3217 }
3218
f2fs_is_atomic_file(struct inode * inode)3219 static inline bool f2fs_is_atomic_file(struct inode *inode)
3220 {
3221 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3222 }
3223
f2fs_is_commit_atomic_write(struct inode * inode)3224 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3225 {
3226 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3227 }
3228
f2fs_is_volatile_file(struct inode * inode)3229 static inline bool f2fs_is_volatile_file(struct inode *inode)
3230 {
3231 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3232 }
3233
f2fs_is_first_block_written(struct inode * inode)3234 static inline bool f2fs_is_first_block_written(struct inode *inode)
3235 {
3236 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3237 }
3238
f2fs_is_drop_cache(struct inode * inode)3239 static inline bool f2fs_is_drop_cache(struct inode *inode)
3240 {
3241 return is_inode_flag_set(inode, FI_DROP_CACHE);
3242 }
3243
inline_data_addr(struct inode * inode,struct page * page)3244 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3245 {
3246 struct f2fs_inode *ri = F2FS_INODE(page);
3247 int extra_size = get_extra_isize(inode);
3248
3249 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3250 }
3251
f2fs_has_inline_dentry(struct inode * inode)3252 static inline int f2fs_has_inline_dentry(struct inode *inode)
3253 {
3254 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3255 }
3256
is_file(struct inode * inode,int type)3257 static inline int is_file(struct inode *inode, int type)
3258 {
3259 return F2FS_I(inode)->i_advise & type;
3260 }
3261
set_file(struct inode * inode,int type)3262 static inline void set_file(struct inode *inode, int type)
3263 {
3264 if (is_file(inode, type))
3265 return;
3266 F2FS_I(inode)->i_advise |= type;
3267 f2fs_mark_inode_dirty_sync(inode, true);
3268 }
3269
clear_file(struct inode * inode,int type)3270 static inline void clear_file(struct inode *inode, int type)
3271 {
3272 if (!is_file(inode, type))
3273 return;
3274 F2FS_I(inode)->i_advise &= ~type;
3275 f2fs_mark_inode_dirty_sync(inode, true);
3276 }
3277
f2fs_is_time_consistent(struct inode * inode)3278 static inline bool f2fs_is_time_consistent(struct inode *inode)
3279 {
3280 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3281 return false;
3282 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3283 return false;
3284 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3285 return false;
3286 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3287 &F2FS_I(inode)->i_crtime))
3288 return false;
3289 return true;
3290 }
3291
f2fs_skip_inode_update(struct inode * inode,int dsync)3292 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3293 {
3294 bool ret;
3295
3296 if (dsync) {
3297 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3298
3299 spin_lock(&sbi->inode_lock[DIRTY_META]);
3300 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3301 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3302 return ret;
3303 }
3304 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3305 file_keep_isize(inode) ||
3306 i_size_read(inode) & ~PAGE_MASK)
3307 return false;
3308
3309 if (!f2fs_is_time_consistent(inode))
3310 return false;
3311
3312 spin_lock(&F2FS_I(inode)->i_size_lock);
3313 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3314 spin_unlock(&F2FS_I(inode)->i_size_lock);
3315
3316 return ret;
3317 }
3318
f2fs_readonly(struct super_block * sb)3319 static inline bool f2fs_readonly(struct super_block *sb)
3320 {
3321 return sb_rdonly(sb);
3322 }
3323
f2fs_cp_error(struct f2fs_sb_info * sbi)3324 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3325 {
3326 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3327 }
3328
is_dot_dotdot(const u8 * name,size_t len)3329 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3330 {
3331 if (len == 1 && name[0] == '.')
3332 return true;
3333
3334 if (len == 2 && name[0] == '.' && name[1] == '.')
3335 return true;
3336
3337 return false;
3338 }
3339
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3340 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3341 size_t size, gfp_t flags)
3342 {
3343 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3344 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3345 return NULL;
3346 }
3347
3348 return kmalloc(size, flags);
3349 }
3350
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3351 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3352 size_t size, gfp_t flags)
3353 {
3354 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3355 }
3356
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3357 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3358 size_t size, gfp_t flags)
3359 {
3360 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3361 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3362 return NULL;
3363 }
3364
3365 return kvmalloc(size, flags);
3366 }
3367
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3368 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3369 size_t size, gfp_t flags)
3370 {
3371 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3372 }
3373
get_extra_isize(struct inode * inode)3374 static inline int get_extra_isize(struct inode *inode)
3375 {
3376 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3377 }
3378
get_inline_xattr_addrs(struct inode * inode)3379 static inline int get_inline_xattr_addrs(struct inode *inode)
3380 {
3381 return F2FS_I(inode)->i_inline_xattr_size;
3382 }
3383
3384 #define f2fs_get_inode_mode(i) \
3385 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3386 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3387
3388 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3389 (offsetof(struct f2fs_inode, i_extra_end) - \
3390 offsetof(struct f2fs_inode, i_extra_isize)) \
3391
3392 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3393 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3394 ((offsetof(typeof(*(f2fs_inode)), field) + \
3395 sizeof((f2fs_inode)->field)) \
3396 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3397
3398 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3399
3400 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3401
3402 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3403 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3404 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3405 block_t blkaddr, int type)
3406 {
3407 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3408 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3409 blkaddr, type);
3410 f2fs_bug_on(sbi, 1);
3411 }
3412 }
3413
__is_valid_data_blkaddr(block_t blkaddr)3414 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3415 {
3416 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3417 blkaddr == COMPRESS_ADDR)
3418 return false;
3419 return true;
3420 }
3421
3422 /*
3423 * file.c
3424 */
3425 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3426 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3427 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3428 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3429 int f2fs_truncate(struct inode *inode);
3430 int f2fs_getattr(const struct path *path, struct kstat *stat,
3431 u32 request_mask, unsigned int flags);
3432 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3433 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3434 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3435 int f2fs_precache_extents(struct inode *inode);
3436 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3437 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3438 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3439 int f2fs_pin_file_control(struct inode *inode, bool inc);
3440
3441 /*
3442 * inode.c
3443 */
3444 void f2fs_set_inode_flags(struct inode *inode);
3445 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3446 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3447 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3448 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3449 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3450 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3451 void f2fs_update_inode_page(struct inode *inode);
3452 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3453 void f2fs_evict_inode(struct inode *inode);
3454 void f2fs_handle_failed_inode(struct inode *inode);
3455
3456 /*
3457 * namei.c
3458 */
3459 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3460 bool hot, bool set);
3461 struct dentry *f2fs_get_parent(struct dentry *child);
3462
3463 /*
3464 * dir.c
3465 */
3466 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3467 int f2fs_init_casefolded_name(const struct inode *dir,
3468 struct f2fs_filename *fname);
3469 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3470 int lookup, struct f2fs_filename *fname);
3471 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3472 struct f2fs_filename *fname);
3473 void f2fs_free_filename(struct f2fs_filename *fname);
3474 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3475 const struct f2fs_filename *fname, int *max_slots);
3476 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3477 unsigned int start_pos, struct fscrypt_str *fstr);
3478 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3479 struct f2fs_dentry_ptr *d);
3480 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3481 const struct f2fs_filename *fname, struct page *dpage);
3482 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3483 unsigned int current_depth);
3484 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3485 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3486 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3487 const struct f2fs_filename *fname,
3488 struct page **res_page);
3489 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3490 const struct qstr *child, struct page **res_page);
3491 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3492 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3493 struct page **page);
3494 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3495 struct page *page, struct inode *inode);
3496 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3497 const struct f2fs_filename *fname);
3498 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3499 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3500 unsigned int bit_pos);
3501 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3502 struct inode *inode, nid_t ino, umode_t mode);
3503 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3504 struct inode *inode, nid_t ino, umode_t mode);
3505 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3506 struct inode *inode, nid_t ino, umode_t mode);
3507 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3508 struct inode *dir, struct inode *inode);
3509 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3510 bool f2fs_empty_dir(struct inode *dir);
3511
f2fs_add_link(struct dentry * dentry,struct inode * inode)3512 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3513 {
3514 if (fscrypt_is_nokey_name(dentry))
3515 return -ENOKEY;
3516 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3517 inode, inode->i_ino, inode->i_mode);
3518 }
3519
3520 /*
3521 * super.c
3522 */
3523 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3524 void f2fs_inode_synced(struct inode *inode);
3525 int f2fs_dquot_initialize(struct inode *inode);
3526 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3527 int f2fs_quota_sync(struct super_block *sb, int type);
3528 loff_t max_file_blocks(struct inode *inode);
3529 void f2fs_quota_off_umount(struct super_block *sb);
3530 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3531 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3532 int f2fs_sync_fs(struct super_block *sb, int sync);
3533 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3534
3535 /*
3536 * hash.c
3537 */
3538 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3539
3540 /*
3541 * node.c
3542 */
3543 struct node_info;
3544
3545 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3546 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3547 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3548 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3549 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3550 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3551 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3552 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3553 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3554 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3555 struct node_info *ni, bool checkpoint_context);
3556 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3557 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3558 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3559 int f2fs_truncate_xattr_node(struct inode *inode);
3560 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3561 unsigned int seq_id);
3562 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3563 int f2fs_remove_inode_page(struct inode *inode);
3564 struct page *f2fs_new_inode_page(struct inode *inode);
3565 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3566 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3567 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3568 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3569 int f2fs_move_node_page(struct page *node_page, int gc_type);
3570 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3571 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3572 struct writeback_control *wbc, bool atomic,
3573 unsigned int *seq_id);
3574 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3575 struct writeback_control *wbc,
3576 bool do_balance, enum iostat_type io_type);
3577 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3578 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3579 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3580 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3581 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3582 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3583 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3584 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3585 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3586 unsigned int segno, struct f2fs_summary_block *sum);
3587 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3588 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3589 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3590 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3591 int __init f2fs_create_node_manager_caches(void);
3592 void f2fs_destroy_node_manager_caches(void);
3593
3594 /*
3595 * segment.c
3596 */
3597 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3598 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3599 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3600 void f2fs_drop_inmem_pages(struct inode *inode);
3601 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3602 int f2fs_commit_inmem_pages(struct inode *inode);
3603 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3604 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3605 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3606 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3607 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3608 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3609 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3610 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3611 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3612 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3613 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3614 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3615 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3616 struct cp_control *cpc);
3617 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3618 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3619 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3620 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3621 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3622 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3623 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3624 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3625 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3626 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3627 unsigned int *newseg, bool new_sec, int dir);
3628 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3629 unsigned int start, unsigned int end);
3630 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3631 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3632 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3633 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3634 struct cp_control *cpc);
3635 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3636 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3637 block_t blk_addr);
3638 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3639 enum iostat_type io_type);
3640 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3641 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3642 struct f2fs_io_info *fio);
3643 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3644 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3645 block_t old_blkaddr, block_t new_blkaddr,
3646 bool recover_curseg, bool recover_newaddr,
3647 bool from_gc);
3648 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3649 block_t old_addr, block_t new_addr,
3650 unsigned char version, bool recover_curseg,
3651 bool recover_newaddr);
3652 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3653 block_t old_blkaddr, block_t *new_blkaddr,
3654 struct f2fs_summary *sum, int type,
3655 struct f2fs_io_info *fio);
3656 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3657 block_t blkaddr, unsigned int blkcnt);
3658 void f2fs_wait_on_page_writeback(struct page *page,
3659 enum page_type type, bool ordered, bool locked);
3660 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3661 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3662 block_t len);
3663 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3664 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3665 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3666 unsigned int val, int alloc);
3667 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3668 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3669 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3670 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3671 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3672 int __init f2fs_create_segment_manager_caches(void);
3673 void f2fs_destroy_segment_manager_caches(void);
3674 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3675 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3676 enum page_type type, enum temp_type temp);
3677 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3678 unsigned int segno);
3679 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3680 unsigned int segno);
3681
3682 #define DEF_FRAGMENT_SIZE 4
3683 #define MIN_FRAGMENT_SIZE 1
3684 #define MAX_FRAGMENT_SIZE 512
3685
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3686 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3687 {
3688 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3689 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3690 }
3691
3692 /*
3693 * checkpoint.c
3694 */
3695 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3696 unsigned char reason);
3697 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3698 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3699 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3700 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3701 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3702 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3703 block_t blkaddr, int type);
3704 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3705 int type, bool sync);
3706 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3707 unsigned int ra_blocks);
3708 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3709 long nr_to_write, enum iostat_type io_type);
3710 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3711 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3712 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3713 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3714 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3715 unsigned int devidx, int type);
3716 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3717 unsigned int devidx, int type);
3718 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3719 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3720 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3721 void f2fs_add_orphan_inode(struct inode *inode);
3722 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3723 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3724 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3725 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3726 void f2fs_remove_dirty_inode(struct inode *inode);
3727 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3728 bool from_cp);
3729 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3730 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3731 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3732 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3733 int __init f2fs_create_checkpoint_caches(void);
3734 void f2fs_destroy_checkpoint_caches(void);
3735 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3736 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3737 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3738 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3739
3740 /*
3741 * data.c
3742 */
3743 int __init f2fs_init_bioset(void);
3744 void f2fs_destroy_bioset(void);
3745 int f2fs_init_bio_entry_cache(void);
3746 void f2fs_destroy_bio_entry_cache(void);
3747 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3748 struct bio *bio, enum page_type type);
3749 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3750 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3751 struct inode *inode, struct page *page,
3752 nid_t ino, enum page_type type);
3753 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3754 struct bio **bio, struct page *page);
3755 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3756 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3757 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3758 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3759 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3760 block_t blk_addr, struct bio *bio);
3761 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3762 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3763 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3764 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3765 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3766 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3767 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3768 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3769 int op_flags, bool for_write);
3770 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3771 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3772 bool for_write);
3773 struct page *f2fs_get_new_data_page(struct inode *inode,
3774 struct page *ipage, pgoff_t index, bool new_i_size);
3775 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3776 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3777 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3778 int create, int flag);
3779 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3780 u64 start, u64 len);
3781 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3782 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3783 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3784 int f2fs_write_single_data_page(struct page *page, int *submitted,
3785 struct bio **bio, sector_t *last_block,
3786 struct writeback_control *wbc,
3787 enum iostat_type io_type,
3788 int compr_blocks, bool allow_balance);
3789 void f2fs_write_failed(struct inode *inode, loff_t to);
3790 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3791 unsigned int length);
3792 int f2fs_release_page(struct page *page, gfp_t wait);
3793 #ifdef CONFIG_MIGRATION
3794 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3795 struct page *page, enum migrate_mode mode);
3796 #endif
3797 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3798 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3799 int f2fs_init_post_read_processing(void);
3800 void f2fs_destroy_post_read_processing(void);
3801 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3802 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3803 extern const struct iomap_ops f2fs_iomap_ops;
3804
3805 /*
3806 * gc.c
3807 */
3808 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3809 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3810 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3811 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3812 unsigned int segno);
3813 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3814 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3815 int __init f2fs_create_garbage_collection_cache(void);
3816 void f2fs_destroy_garbage_collection_cache(void);
3817
3818 /*
3819 * recovery.c
3820 */
3821 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3822 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3823 int __init f2fs_create_recovery_cache(void);
3824 void f2fs_destroy_recovery_cache(void);
3825
3826 /*
3827 * debug.c
3828 */
3829 #ifdef CONFIG_F2FS_STAT_FS
3830 struct f2fs_stat_info {
3831 struct list_head stat_list;
3832 struct f2fs_sb_info *sbi;
3833 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3834 int main_area_segs, main_area_sections, main_area_zones;
3835 unsigned long long hit_largest, hit_cached, hit_rbtree;
3836 unsigned long long hit_total, total_ext;
3837 int ext_tree, zombie_tree, ext_node;
3838 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3839 int ndirty_data, ndirty_qdata;
3840 int inmem_pages;
3841 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3842 int nats, dirty_nats, sits, dirty_sits;
3843 int free_nids, avail_nids, alloc_nids;
3844 int total_count, utilization;
3845 int bg_gc, nr_wb_cp_data, nr_wb_data;
3846 int nr_rd_data, nr_rd_node, nr_rd_meta;
3847 int nr_dio_read, nr_dio_write;
3848 unsigned int io_skip_bggc, other_skip_bggc;
3849 int nr_flushing, nr_flushed, flush_list_empty;
3850 int nr_discarding, nr_discarded;
3851 int nr_discard_cmd;
3852 unsigned int undiscard_blks;
3853 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3854 unsigned int cur_ckpt_time, peak_ckpt_time;
3855 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3856 int compr_inode;
3857 unsigned long long compr_blocks;
3858 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3859 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3860 unsigned int bimodal, avg_vblocks;
3861 int util_free, util_valid, util_invalid;
3862 int rsvd_segs, overp_segs;
3863 int dirty_count, node_pages, meta_pages, compress_pages;
3864 int compress_page_hit;
3865 int prefree_count, call_count, cp_count, bg_cp_count;
3866 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3867 int bg_node_segs, bg_data_segs;
3868 int tot_blks, data_blks, node_blks;
3869 int bg_data_blks, bg_node_blks;
3870 unsigned long long skipped_atomic_files[2];
3871 int curseg[NR_CURSEG_TYPE];
3872 int cursec[NR_CURSEG_TYPE];
3873 int curzone[NR_CURSEG_TYPE];
3874 unsigned int dirty_seg[NR_CURSEG_TYPE];
3875 unsigned int full_seg[NR_CURSEG_TYPE];
3876 unsigned int valid_blks[NR_CURSEG_TYPE];
3877
3878 unsigned int meta_count[META_MAX];
3879 unsigned int segment_count[2];
3880 unsigned int block_count[2];
3881 unsigned int inplace_count;
3882 unsigned long long base_mem, cache_mem, page_mem;
3883 };
3884
F2FS_STAT(struct f2fs_sb_info * sbi)3885 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3886 {
3887 return (struct f2fs_stat_info *)sbi->stat_info;
3888 }
3889
3890 #define stat_inc_cp_count(si) ((si)->cp_count++)
3891 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3892 #define stat_inc_call_count(si) ((si)->call_count++)
3893 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3894 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3895 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3896 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3897 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3898 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3899 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3900 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3901 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3902 #define stat_inc_inline_xattr(inode) \
3903 do { \
3904 if (f2fs_has_inline_xattr(inode)) \
3905 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3906 } while (0)
3907 #define stat_dec_inline_xattr(inode) \
3908 do { \
3909 if (f2fs_has_inline_xattr(inode)) \
3910 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3911 } while (0)
3912 #define stat_inc_inline_inode(inode) \
3913 do { \
3914 if (f2fs_has_inline_data(inode)) \
3915 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3916 } while (0)
3917 #define stat_dec_inline_inode(inode) \
3918 do { \
3919 if (f2fs_has_inline_data(inode)) \
3920 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3921 } while (0)
3922 #define stat_inc_inline_dir(inode) \
3923 do { \
3924 if (f2fs_has_inline_dentry(inode)) \
3925 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3926 } while (0)
3927 #define stat_dec_inline_dir(inode) \
3928 do { \
3929 if (f2fs_has_inline_dentry(inode)) \
3930 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3931 } while (0)
3932 #define stat_inc_compr_inode(inode) \
3933 do { \
3934 if (f2fs_compressed_file(inode)) \
3935 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3936 } while (0)
3937 #define stat_dec_compr_inode(inode) \
3938 do { \
3939 if (f2fs_compressed_file(inode)) \
3940 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3941 } while (0)
3942 #define stat_add_compr_blocks(inode, blocks) \
3943 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3944 #define stat_sub_compr_blocks(inode, blocks) \
3945 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3946 #define stat_inc_meta_count(sbi, blkaddr) \
3947 do { \
3948 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3949 atomic_inc(&(sbi)->meta_count[META_CP]); \
3950 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3951 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3952 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3953 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3954 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3955 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3956 } while (0)
3957 #define stat_inc_seg_type(sbi, curseg) \
3958 ((sbi)->segment_count[(curseg)->alloc_type]++)
3959 #define stat_inc_block_count(sbi, curseg) \
3960 ((sbi)->block_count[(curseg)->alloc_type]++)
3961 #define stat_inc_inplace_blocks(sbi) \
3962 (atomic_inc(&(sbi)->inplace_count))
3963 #define stat_update_max_atomic_write(inode) \
3964 do { \
3965 int cur = F2FS_I_SB(inode)->atomic_files; \
3966 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3967 if (cur > max) \
3968 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3969 } while (0)
3970 #define stat_inc_volatile_write(inode) \
3971 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3972 #define stat_dec_volatile_write(inode) \
3973 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3974 #define stat_update_max_volatile_write(inode) \
3975 do { \
3976 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3977 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3978 if (cur > max) \
3979 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3980 } while (0)
3981 #define stat_inc_seg_count(sbi, type, gc_type) \
3982 do { \
3983 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3984 si->tot_segs++; \
3985 if ((type) == SUM_TYPE_DATA) { \
3986 si->data_segs++; \
3987 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3988 } else { \
3989 si->node_segs++; \
3990 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3991 } \
3992 } while (0)
3993
3994 #define stat_inc_tot_blk_count(si, blks) \
3995 ((si)->tot_blks += (blks))
3996
3997 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3998 do { \
3999 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4000 stat_inc_tot_blk_count(si, blks); \
4001 si->data_blks += (blks); \
4002 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4003 } while (0)
4004
4005 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4006 do { \
4007 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4008 stat_inc_tot_blk_count(si, blks); \
4009 si->node_blks += (blks); \
4010 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4011 } while (0)
4012
4013 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4014 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4015 void __init f2fs_create_root_stats(void);
4016 void f2fs_destroy_root_stats(void);
4017 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4018 #else
4019 #define stat_inc_cp_count(si) do { } while (0)
4020 #define stat_inc_bg_cp_count(si) do { } while (0)
4021 #define stat_inc_call_count(si) do { } while (0)
4022 #define stat_inc_bggc_count(si) do { } while (0)
4023 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4024 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4025 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4026 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4027 #define stat_inc_total_hit(sbi) do { } while (0)
4028 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
4029 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4030 #define stat_inc_cached_node_hit(sbi) do { } while (0)
4031 #define stat_inc_inline_xattr(inode) do { } while (0)
4032 #define stat_dec_inline_xattr(inode) do { } while (0)
4033 #define stat_inc_inline_inode(inode) do { } while (0)
4034 #define stat_dec_inline_inode(inode) do { } while (0)
4035 #define stat_inc_inline_dir(inode) do { } while (0)
4036 #define stat_dec_inline_dir(inode) do { } while (0)
4037 #define stat_inc_compr_inode(inode) do { } while (0)
4038 #define stat_dec_compr_inode(inode) do { } while (0)
4039 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4040 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4041 #define stat_update_max_atomic_write(inode) do { } while (0)
4042 #define stat_inc_volatile_write(inode) do { } while (0)
4043 #define stat_dec_volatile_write(inode) do { } while (0)
4044 #define stat_update_max_volatile_write(inode) do { } while (0)
4045 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4046 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4047 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4048 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4049 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
4050 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4051 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4052 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4053
f2fs_build_stats(struct f2fs_sb_info * sbi)4054 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4055 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4056 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4057 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4058 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4059 #endif
4060
4061 extern const struct file_operations f2fs_dir_operations;
4062 extern const struct file_operations f2fs_file_operations;
4063 extern const struct inode_operations f2fs_file_inode_operations;
4064 extern const struct address_space_operations f2fs_dblock_aops;
4065 extern const struct address_space_operations f2fs_node_aops;
4066 extern const struct address_space_operations f2fs_meta_aops;
4067 extern const struct inode_operations f2fs_dir_inode_operations;
4068 extern const struct inode_operations f2fs_symlink_inode_operations;
4069 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4070 extern const struct inode_operations f2fs_special_inode_operations;
4071 extern struct kmem_cache *f2fs_inode_entry_slab;
4072
4073 /*
4074 * inline.c
4075 */
4076 bool f2fs_may_inline_data(struct inode *inode);
4077 bool f2fs_sanity_check_inline_data(struct inode *inode);
4078 bool f2fs_may_inline_dentry(struct inode *inode);
4079 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4080 void f2fs_truncate_inline_inode(struct inode *inode,
4081 struct page *ipage, u64 from);
4082 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4083 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4084 int f2fs_convert_inline_inode(struct inode *inode);
4085 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4086 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4087 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4088 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4089 const struct f2fs_filename *fname,
4090 struct page **res_page);
4091 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4092 struct page *ipage);
4093 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4094 struct inode *inode, nid_t ino, umode_t mode);
4095 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4096 struct page *page, struct inode *dir,
4097 struct inode *inode);
4098 bool f2fs_empty_inline_dir(struct inode *dir);
4099 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4100 struct fscrypt_str *fstr);
4101 int f2fs_inline_data_fiemap(struct inode *inode,
4102 struct fiemap_extent_info *fieinfo,
4103 __u64 start, __u64 len);
4104
4105 /*
4106 * shrinker.c
4107 */
4108 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4109 struct shrink_control *sc);
4110 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4111 struct shrink_control *sc);
4112 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4113 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4114
4115 /*
4116 * extent_cache.c
4117 */
4118 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4119 struct rb_entry *cached_re, unsigned int ofs);
4120 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4121 struct rb_root_cached *root,
4122 struct rb_node **parent,
4123 unsigned long long key, bool *left_most);
4124 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4125 struct rb_root_cached *root,
4126 struct rb_node **parent,
4127 unsigned int ofs, bool *leftmost);
4128 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4129 struct rb_entry *cached_re, unsigned int ofs,
4130 struct rb_entry **prev_entry, struct rb_entry **next_entry,
4131 struct rb_node ***insert_p, struct rb_node **insert_parent,
4132 bool force, bool *leftmost);
4133 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4134 struct rb_root_cached *root, bool check_key);
4135 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4136 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4137 void f2fs_drop_extent_tree(struct inode *inode);
4138 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4139 void f2fs_destroy_extent_tree(struct inode *inode);
4140 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4141 struct extent_info *ei);
4142 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4143 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4144 pgoff_t fofs, block_t blkaddr, unsigned int len);
4145 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4146 int __init f2fs_create_extent_cache(void);
4147 void f2fs_destroy_extent_cache(void);
4148
4149 /*
4150 * sysfs.c
4151 */
4152 #define MIN_RA_MUL 2
4153 #define MAX_RA_MUL 256
4154
4155 int __init f2fs_init_sysfs(void);
4156 void f2fs_exit_sysfs(void);
4157 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4158 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4159
4160 /* verity.c */
4161 extern const struct fsverity_operations f2fs_verityops;
4162
4163 /*
4164 * crypto support
4165 */
f2fs_encrypted_file(struct inode * inode)4166 static inline bool f2fs_encrypted_file(struct inode *inode)
4167 {
4168 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4169 }
4170
f2fs_set_encrypted_inode(struct inode * inode)4171 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4172 {
4173 #ifdef CONFIG_FS_ENCRYPTION
4174 file_set_encrypt(inode);
4175 f2fs_set_inode_flags(inode);
4176 #endif
4177 }
4178
4179 /*
4180 * Returns true if the reads of the inode's data need to undergo some
4181 * postprocessing step, like decryption or authenticity verification.
4182 */
f2fs_post_read_required(struct inode * inode)4183 static inline bool f2fs_post_read_required(struct inode *inode)
4184 {
4185 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4186 f2fs_compressed_file(inode);
4187 }
4188
4189 /*
4190 * compress.c
4191 */
4192 #ifdef CONFIG_F2FS_FS_COMPRESSION
4193 bool f2fs_is_compressed_page(struct page *page);
4194 struct page *f2fs_compress_control_page(struct page *page);
4195 int f2fs_prepare_compress_overwrite(struct inode *inode,
4196 struct page **pagep, pgoff_t index, void **fsdata);
4197 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4198 pgoff_t index, unsigned copied);
4199 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4200 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4201 bool f2fs_is_compress_backend_ready(struct inode *inode);
4202 int f2fs_init_compress_mempool(void);
4203 void f2fs_destroy_compress_mempool(void);
4204 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4205 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4206 block_t blkaddr, bool in_task);
4207 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4208 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4209 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4210 int index, int nr_pages);
4211 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4212 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4213 int f2fs_write_multi_pages(struct compress_ctx *cc,
4214 int *submitted,
4215 struct writeback_control *wbc,
4216 enum iostat_type io_type);
4217 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4218 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4219 pgoff_t fofs, block_t blkaddr, unsigned int llen,
4220 unsigned int c_len);
4221 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4222 unsigned nr_pages, sector_t *last_block_in_bio,
4223 bool is_readahead, bool for_write);
4224 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4225 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4226 bool in_task);
4227 void f2fs_put_page_dic(struct page *page, bool in_task);
4228 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4229 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4230 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4231 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4232 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4233 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4234 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4235 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4236 int __init f2fs_init_compress_cache(void);
4237 void f2fs_destroy_compress_cache(void);
4238 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4239 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4240 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4241 nid_t ino, block_t blkaddr);
4242 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4243 block_t blkaddr);
4244 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4245 #define inc_compr_inode_stat(inode) \
4246 do { \
4247 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4248 sbi->compr_new_inode++; \
4249 } while (0)
4250 #define add_compr_block_stat(inode, blocks) \
4251 do { \
4252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4253 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4254 sbi->compr_written_block += blocks; \
4255 sbi->compr_saved_block += diff; \
4256 } while (0)
4257 #else
f2fs_is_compressed_page(struct page * page)4258 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4259 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4260 {
4261 if (!f2fs_compressed_file(inode))
4262 return true;
4263 /* not support compression */
4264 return false;
4265 }
f2fs_compress_control_page(struct page * page)4266 static inline struct page *f2fs_compress_control_page(struct page *page)
4267 {
4268 WARN_ON_ONCE(1);
4269 return ERR_PTR(-EINVAL);
4270 }
f2fs_init_compress_mempool(void)4271 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4272 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4273 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4274 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4275 static inline void f2fs_end_read_compressed_page(struct page *page,
4276 bool failed, block_t blkaddr, bool in_task)
4277 {
4278 WARN_ON_ONCE(1);
4279 }
f2fs_put_page_dic(struct page * page,bool in_task)4280 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4281 {
4282 WARN_ON_ONCE(1);
4283 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4284 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4285 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4286 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4287 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4288 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4289 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4290 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4291 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4292 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4293 block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4294 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4295 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4296 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4297 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4298 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4299 nid_t ino) { }
4300 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_update_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4301 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4302 pgoff_t fofs, block_t blkaddr, unsigned int llen,
4303 unsigned int c_len) { }
4304 #endif
4305
set_compress_context(struct inode * inode)4306 static inline int set_compress_context(struct inode *inode)
4307 {
4308 #ifdef CONFIG_F2FS_FS_COMPRESSION
4309 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4310
4311 F2FS_I(inode)->i_compress_algorithm =
4312 F2FS_OPTION(sbi).compress_algorithm;
4313 F2FS_I(inode)->i_log_cluster_size =
4314 F2FS_OPTION(sbi).compress_log_size;
4315 F2FS_I(inode)->i_compress_flag =
4316 F2FS_OPTION(sbi).compress_chksum ?
4317 1 << COMPRESS_CHKSUM : 0;
4318 F2FS_I(inode)->i_cluster_size =
4319 1 << F2FS_I(inode)->i_log_cluster_size;
4320 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4321 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4322 F2FS_OPTION(sbi).compress_level)
4323 F2FS_I(inode)->i_compress_flag |=
4324 F2FS_OPTION(sbi).compress_level <<
4325 COMPRESS_LEVEL_OFFSET;
4326 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4327 set_inode_flag(inode, FI_COMPRESSED_FILE);
4328 stat_inc_compr_inode(inode);
4329 inc_compr_inode_stat(inode);
4330 f2fs_mark_inode_dirty_sync(inode, true);
4331 return 0;
4332 #else
4333 return -EOPNOTSUPP;
4334 #endif
4335 }
4336
f2fs_disable_compressed_file(struct inode * inode)4337 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4338 {
4339 struct f2fs_inode_info *fi = F2FS_I(inode);
4340
4341 if (!f2fs_compressed_file(inode))
4342 return true;
4343 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4344 return false;
4345
4346 fi->i_flags &= ~F2FS_COMPR_FL;
4347 stat_dec_compr_inode(inode);
4348 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4349 f2fs_mark_inode_dirty_sync(inode, true);
4350 return true;
4351 }
4352
4353 #define F2FS_FEATURE_FUNCS(name, flagname) \
4354 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4355 { \
4356 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4357 }
4358
4359 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4360 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4361 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4362 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4363 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4364 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4365 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4366 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4367 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4368 F2FS_FEATURE_FUNCS(verity, VERITY);
4369 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4370 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4371 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4372 F2FS_FEATURE_FUNCS(readonly, RO);
4373
f2fs_may_extent_tree(struct inode * inode)4374 static inline bool f2fs_may_extent_tree(struct inode *inode)
4375 {
4376 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4377
4378 if (!test_opt(sbi, EXTENT_CACHE) ||
4379 is_inode_flag_set(inode, FI_NO_EXTENT) ||
4380 (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4381 !f2fs_sb_has_readonly(sbi)))
4382 return false;
4383
4384 /*
4385 * for recovered files during mount do not create extents
4386 * if shrinker is not registered.
4387 */
4388 if (list_empty(&sbi->s_list))
4389 return false;
4390
4391 return S_ISREG(inode->i_mode);
4392 }
4393
4394 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4395 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4396 block_t blkaddr)
4397 {
4398 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4399
4400 return test_bit(zno, FDEV(devi).blkz_seq);
4401 }
4402 #endif
4403
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4404 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4405 {
4406 return f2fs_sb_has_blkzoned(sbi);
4407 }
4408
f2fs_bdev_support_discard(struct block_device * bdev)4409 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4410 {
4411 return blk_queue_discard(bdev_get_queue(bdev)) ||
4412 bdev_is_zoned(bdev);
4413 }
4414
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4415 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4416 {
4417 int i;
4418
4419 if (!f2fs_is_multi_device(sbi))
4420 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4421
4422 for (i = 0; i < sbi->s_ndevs; i++)
4423 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4424 return true;
4425 return false;
4426 }
4427
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4428 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4429 {
4430 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4431 f2fs_hw_should_discard(sbi);
4432 }
4433
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4434 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4435 {
4436 int i;
4437
4438 if (!f2fs_is_multi_device(sbi))
4439 return bdev_read_only(sbi->sb->s_bdev);
4440
4441 for (i = 0; i < sbi->s_ndevs; i++)
4442 if (bdev_read_only(FDEV(i).bdev))
4443 return true;
4444 return false;
4445 }
4446
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4447 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4448 {
4449 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4450 }
4451
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4452 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4453 {
4454 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4455 }
4456
f2fs_may_compress(struct inode * inode)4457 static inline bool f2fs_may_compress(struct inode *inode)
4458 {
4459 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4460 f2fs_is_atomic_file(inode) ||
4461 f2fs_is_volatile_file(inode))
4462 return false;
4463 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4464 }
4465
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4466 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4467 u64 blocks, bool add)
4468 {
4469 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4470 struct f2fs_inode_info *fi = F2FS_I(inode);
4471
4472 /* don't update i_compr_blocks if saved blocks were released */
4473 if (!add && !atomic_read(&fi->i_compr_blocks))
4474 return;
4475
4476 if (add) {
4477 atomic_add(diff, &fi->i_compr_blocks);
4478 stat_add_compr_blocks(inode, diff);
4479 } else {
4480 atomic_sub(diff, &fi->i_compr_blocks);
4481 stat_sub_compr_blocks(inode, diff);
4482 }
4483 f2fs_mark_inode_dirty_sync(inode, true);
4484 }
4485
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4486 static inline int block_unaligned_IO(struct inode *inode,
4487 struct kiocb *iocb, struct iov_iter *iter)
4488 {
4489 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4490 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4491 loff_t offset = iocb->ki_pos;
4492 unsigned long align = offset | iov_iter_alignment(iter);
4493
4494 return align & blocksize_mask;
4495 }
4496
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4497 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4498 int flag)
4499 {
4500 if (!f2fs_is_multi_device(sbi))
4501 return false;
4502 if (flag != F2FS_GET_BLOCK_DIO)
4503 return false;
4504 return sbi->aligned_blksize;
4505 }
4506
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4507 static inline bool f2fs_force_buffered_io(struct inode *inode,
4508 struct kiocb *iocb, struct iov_iter *iter)
4509 {
4510 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4511 int rw = iov_iter_rw(iter);
4512
4513 if (!fscrypt_dio_supported(iocb, iter))
4514 return true;
4515 if (fsverity_active(inode))
4516 return true;
4517 if (f2fs_compressed_file(inode))
4518 return true;
4519
4520 /* disallow direct IO if any of devices has unaligned blksize */
4521 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4522 return true;
4523 /*
4524 * for blkzoned device, fallback direct IO to buffered IO, so
4525 * all IOs can be serialized by log-structured write.
4526 */
4527 if (f2fs_sb_has_blkzoned(sbi))
4528 return true;
4529 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4530 if (block_unaligned_IO(inode, iocb, iter))
4531 return true;
4532 if (F2FS_IO_ALIGNED(sbi))
4533 return true;
4534 }
4535 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4536 return true;
4537
4538 return false;
4539 }
4540
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4541 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4542 {
4543 return fsverity_active(inode) &&
4544 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4545 }
4546
4547 #ifdef CONFIG_F2FS_FAULT_INJECTION
4548 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4549 unsigned int type);
4550 #else
4551 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4552 #endif
4553
is_journalled_quota(struct f2fs_sb_info * sbi)4554 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4555 {
4556 #ifdef CONFIG_QUOTA
4557 if (f2fs_sb_has_quota_ino(sbi))
4558 return true;
4559 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4560 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4561 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4562 return true;
4563 #endif
4564 return false;
4565 }
4566
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4567 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4568 {
4569 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4570 }
4571
f2fs_io_schedule_timeout(long timeout)4572 static inline void f2fs_io_schedule_timeout(long timeout)
4573 {
4574 set_current_state(TASK_UNINTERRUPTIBLE);
4575 io_schedule_timeout(timeout);
4576 }
4577
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4578 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4579 enum page_type type)
4580 {
4581 if (unlikely(f2fs_cp_error(sbi)))
4582 return;
4583
4584 if (ofs == sbi->page_eio_ofs[type]) {
4585 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4586 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4587 } else {
4588 sbi->page_eio_ofs[type] = ofs;
4589 sbi->page_eio_cnt[type] = 0;
4590 }
4591 }
4592
4593 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4594 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4595
4596 #endif /* _LINUX_F2FS_H */
4597