• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7 #define _HAL_INIT_C_
8 
9 #include <linux/firmware.h>
10 #include <linux/vmalloc.h>
11 #include <drv_types.h>
12 #include <rtw_efuse.h>
13 #include <phy.h>
14 #include <rtl8188e_hal.h>
15 
16 #include <rtw_iol.h>
17 
iol_mode_enable(struct adapter * padapter,u8 enable)18 void iol_mode_enable(struct adapter *padapter, u8 enable)
19 {
20 	u8 reg_0xf0 = 0;
21 
22 	if (enable) {
23 		/* Enable initial offload */
24 		reg_0xf0 = usb_read8(padapter, REG_SYS_CFG);
25 		usb_write8(padapter, REG_SYS_CFG, reg_0xf0 | SW_OFFLOAD_EN);
26 
27 		if (!padapter->bFWReady) {
28 			DBG_88E("bFWReady == false call reset 8051...\n");
29 			_8051Reset88E(padapter);
30 		}
31 
32 	} else {
33 		/* disable initial offload */
34 		reg_0xf0 = usb_read8(padapter, REG_SYS_CFG);
35 		usb_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN);
36 	}
37 }
38 
iol_execute(struct adapter * padapter,u8 control)39 s32 iol_execute(struct adapter *padapter, u8 control)
40 {
41 	s32 status = _FAIL;
42 	u8 reg_0x88 = 0;
43 	unsigned long start = 0;
44 
45 	control = control & 0x0f;
46 	reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0);
47 	usb_write8(padapter, REG_HMEBOX_E0,  reg_0x88 | control);
48 
49 	start = jiffies;
50 	while ((reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0)) & control &&
51 	       jiffies_to_msecs(jiffies - start) < 1000) {
52 		udelay(5);
53 	}
54 
55 	reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0);
56 	status = (reg_0x88 & control) ? _FAIL : _SUCCESS;
57 	if (reg_0x88 & control << 4)
58 		status = _FAIL;
59 	return status;
60 }
61 
iol_InitLLTTable(struct adapter * padapter,u8 txpktbuf_bndy)62 static s32 iol_InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
63 {
64 	s32 rst = _SUCCESS;
65 
66 	iol_mode_enable(padapter, 1);
67 	usb_write8(padapter, REG_TDECTRL + 1, txpktbuf_bndy);
68 	rst = iol_execute(padapter, CMD_INIT_LLT);
69 	iol_mode_enable(padapter, 0);
70 	return rst;
71 }
72 
rtl8188e_iol_efuse_patch(struct adapter * padapter)73 s32 rtl8188e_iol_efuse_patch(struct adapter *padapter)
74 {
75 	s32	result = _SUCCESS;
76 
77 	DBG_88E("==> %s\n", __func__);
78 	if (rtw_iol_applied(padapter)) {
79 		iol_mode_enable(padapter, 1);
80 		result = iol_execute(padapter, CMD_READ_EFUSE_MAP);
81 		if (result == _SUCCESS)
82 			result = iol_execute(padapter, CMD_EFUSE_PATCH);
83 
84 		iol_mode_enable(padapter, 0);
85 	}
86 	return result;
87 }
88 
89 #define MAX_REG_BOLCK_SIZE	196
90 
_8051Reset88E(struct adapter * padapter)91 void _8051Reset88E(struct adapter *padapter)
92 {
93 	u8 u1bTmp;
94 
95 	u1bTmp = usb_read8(padapter, REG_SYS_FUNC_EN + 1);
96 	usb_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp & (~BIT(2)));
97 	usb_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp | (BIT(2)));
98 	DBG_88E("=====> %s(): 8051 reset success .\n", __func__);
99 }
100 
rtl8188e_InitializeFirmwareVars(struct adapter * padapter)101 void rtl8188e_InitializeFirmwareVars(struct adapter *padapter)
102 {
103 	/*  Init Fw LPS related. */
104 	padapter->pwrctrlpriv.bFwCurrentInPSMode = false;
105 
106 	/*  Init H2C counter. by tynli. 2009.12.09. */
107 	padapter->HalData->LastHMEBoxNum = 0;
108 }
109 
rtw_hal_free_data(struct adapter * padapter)110 void rtw_hal_free_data(struct adapter *padapter)
111 {
112 	kfree(padapter->HalData);
113 	padapter->HalData = NULL;
114 }
115 
rtw_hal_read_chip_version(struct adapter * padapter)116 void rtw_hal_read_chip_version(struct adapter *padapter)
117 {
118 	u32				value32;
119 	struct HAL_VERSION		ChipVersion;
120 	struct hal_data_8188e *pHalData = padapter->HalData;
121 
122 	value32 = usb_read32(padapter, REG_SYS_CFG);
123 	ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
124 	ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
125 	ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
126 
127 	dump_chip_info(ChipVersion);
128 
129 	pHalData->VersionID = ChipVersion;
130 }
131 
rtw_hal_set_odm_var(struct adapter * Adapter,enum hal_odm_variable eVariable,void * pValue1,bool bSet)132 void rtw_hal_set_odm_var(struct adapter *Adapter, enum hal_odm_variable eVariable, void *pValue1, bool bSet)
133 {
134 	struct odm_dm_struct *podmpriv = &Adapter->HalData->odmpriv;
135 
136 	switch (eVariable) {
137 	case HAL_ODM_STA_INFO:
138 		{
139 			struct sta_info *psta = pValue1;
140 
141 			if (bSet) {
142 				DBG_88E("### Set STA_(%d) info\n", psta->mac_id);
143 				ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, psta);
144 				ODM_RAInfo_Init(podmpriv, psta->mac_id);
145 			} else {
146 				DBG_88E("### Clean STA_(%d) info\n", psta->mac_id);
147 				ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, NULL);
148 			}
149 		}
150 		break;
151 	case HAL_ODM_P2P_STATE:
152 		podmpriv->bWIFI_Direct = bSet;
153 		break;
154 	case HAL_ODM_WIFI_DISPLAY_STATE:
155 		podmpriv->bWIFI_Display = bSet;
156 		break;
157 	default:
158 		break;
159 	}
160 }
161 
rtw_hal_notch_filter(struct adapter * adapter,bool enable)162 void rtw_hal_notch_filter(struct adapter *adapter, bool enable)
163 {
164 	if (enable) {
165 		DBG_88E("Enable notch filter\n");
166 		usb_write8(adapter, rOFDM0_RxDSP + 1, usb_read8(adapter, rOFDM0_RxDSP + 1) | BIT(1));
167 	} else {
168 		DBG_88E("Disable notch filter\n");
169 		usb_write8(adapter, rOFDM0_RxDSP + 1, usb_read8(adapter, rOFDM0_RxDSP + 1) & ~BIT(1));
170 	}
171 }
172 
173 /*  */
174 /*  */
175 /*  LLT R/W/Init function */
176 /*  */
177 /*  */
_LLTWrite(struct adapter * padapter,u32 address,u32 data)178 static s32 _LLTWrite(struct adapter *padapter, u32 address, u32 data)
179 {
180 	s32	status = _SUCCESS;
181 	s32	count = 0;
182 	u32	value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
183 	u16	LLTReg = REG_LLT_INIT;
184 
185 	usb_write32(padapter, LLTReg, value);
186 
187 	/* polling */
188 	do {
189 		value = usb_read32(padapter, LLTReg);
190 		if (_LLT_OP_VALUE(value) == _LLT_NO_ACTIVE)
191 			break;
192 
193 		if (count > POLLING_LLT_THRESHOLD) {
194 			RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling write LLT done at address %d!\n", address));
195 			status = _FAIL;
196 			break;
197 		}
198 		udelay(5);
199 	} while (count++);
200 
201 	return status;
202 }
203 
InitLLTTable(struct adapter * padapter,u8 txpktbuf_bndy)204 s32 InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
205 {
206 	s32	status = _FAIL;
207 	u32	i;
208 	u32	Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;/*  176, 22k */
209 
210 	if (rtw_iol_applied(padapter)) {
211 		status = iol_InitLLTTable(padapter, txpktbuf_bndy);
212 	} else {
213 		for (i = 0; i < (txpktbuf_bndy - 1); i++) {
214 			status = _LLTWrite(padapter, i, i + 1);
215 			if (status != _SUCCESS)
216 				return status;
217 		}
218 
219 		/*  end of list */
220 		status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
221 		if (status != _SUCCESS)
222 			return status;
223 
224 		/*  Make the other pages as ring buffer */
225 		/*  This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */
226 		/*  Otherwise used as local loopback buffer. */
227 		for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
228 			status = _LLTWrite(padapter, i, (i + 1));
229 			if (status != _SUCCESS)
230 				return status;
231 		}
232 
233 		/*  Let last entry point to the start entry of ring buffer */
234 		status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
235 		if (status != _SUCCESS)
236 			return status;
237 	}
238 
239 	return status;
240 }
241 
Hal_InitPGData88E(struct adapter * padapter)242 void Hal_InitPGData88E(struct adapter *padapter)
243 {
244 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
245 
246 	if (!pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
247 		if (!is_boot_from_eeprom(padapter)) {
248 			/*  Read EFUSE real map to shadow. */
249 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI);
250 		}
251 	} else {/* autoload fail */
252 		RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
253 		/* update to default value 0xFF */
254 		if (!is_boot_from_eeprom(padapter))
255 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI);
256 	}
257 }
258 
Hal_EfuseParseIDCode88E(struct adapter * padapter,u8 * hwinfo)259 void Hal_EfuseParseIDCode88E(struct adapter *padapter, u8 *hwinfo)
260 {
261 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
262 	u16			EEPROMId;
263 
264 	/*  Checl 0x8129 again for making sure autoload status!! */
265 	EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
266 	if (EEPROMId != RTL_EEPROM_ID) {
267 		DBG_88E("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
268 		pEEPROM->bautoload_fail_flag = true;
269 	} else {
270 		pEEPROM->bautoload_fail_flag = false;
271 	}
272 
273 	DBG_88E("EEPROM ID = 0x%04x\n", EEPROMId);
274 }
275 
Hal_ReadPowerValueFromPROM_8188E(struct txpowerinfo24g * pwrInfo24G,u8 * PROMContent,bool AutoLoadFail)276 static void Hal_ReadPowerValueFromPROM_8188E(struct txpowerinfo24g *pwrInfo24G, u8 *PROMContent, bool AutoLoadFail)
277 {
278 	u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_88E, group, TxCount = 0;
279 
280 	memset(pwrInfo24G, 0, sizeof(struct txpowerinfo24g));
281 
282 	if (AutoLoadFail) {
283 		for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
284 			/* 2.4G default value */
285 			for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
286 				pwrInfo24G->IndexCCK_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
287 				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
288 			}
289 			for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
290 				if (TxCount == 0) {
291 					pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
292 					pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
293 				} else {
294 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
295 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
296 					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
297 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
298 				}
299 			}
300 		}
301 		return;
302 	}
303 
304 	for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
305 		/* 2.4G default value */
306 		for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
307 			pwrInfo24G->IndexCCK_Base[rfPath][group] =	PROMContent[eeAddr++];
308 			if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
309 				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
310 		}
311 		for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) {
312 			pwrInfo24G->IndexBW40_Base[rfPath][group] =	PROMContent[eeAddr++];
313 			if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
314 				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
315 		}
316 		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
317 			if (TxCount == 0) {
318 				pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
319 				if (PROMContent[eeAddr] == 0xFF) {
320 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF;
321 				} else {
322 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr] & 0xf0) >> 4;
323 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
324 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
325 				}
326 
327 				if (PROMContent[eeAddr] == 0xFF) {
328 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_24G_OFDM_DIFF;
329 				} else {
330 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	(PROMContent[eeAddr] & 0x0f);
331 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
332 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
333 				}
334 				pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
335 				eeAddr++;
336 			} else {
337 				if (PROMContent[eeAddr] == 0xFF) {
338 					pwrInfo24G->BW40_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
339 				} else {
340 					pwrInfo24G->BW40_Diff[rfPath][TxCount] =	(PROMContent[eeAddr] & 0xf0) >> 4;
341 					if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
342 						pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
343 				}
344 
345 				if (PROMContent[eeAddr] == 0xFF) {
346 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
347 				} else {
348 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	(PROMContent[eeAddr] & 0x0f);
349 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
350 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
351 				}
352 				eeAddr++;
353 
354 				if (PROMContent[eeAddr] == 0xFF) {
355 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
356 				} else {
357 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	(PROMContent[eeAddr] & 0xf0) >> 4;
358 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
359 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
360 				}
361 
362 				if (PROMContent[eeAddr] == 0xFF) {
363 					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
364 				} else {
365 					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	(PROMContent[eeAddr] & 0x0f);
366 					if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
367 						pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
368 				}
369 				eeAddr++;
370 			}
371 		}
372 	}
373 }
374 
Hal_GetChnlGroup88E(u8 chnl,u8 * group)375 void Hal_GetChnlGroup88E(u8 chnl, u8 *group)
376 {
377 	if (chnl < 3)			/*  Channel 1-2 */
378 		*group = 0;
379 	else if (chnl < 6)		/*  Channel 3-5 */
380 		*group = 1;
381 	else if (chnl < 9)		/*  Channel 6-8 */
382 		*group = 2;
383 	else if (chnl < 12)		/*  Channel 9-11 */
384 		*group = 3;
385 	else if (chnl < 14)		/*  Channel 12-13 */
386 		*group = 4;
387 	else if (chnl == 14)		/*  Channel 14 */
388 		*group = 5;
389 }
390 
Hal_ReadPowerSavingMode88E(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)391 void Hal_ReadPowerSavingMode88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
392 {
393 	if (AutoLoadFail) {
394 		padapter->pwrctrlpriv.bHWPowerdown = false;
395 		padapter->pwrctrlpriv.bSupportRemoteWakeup = false;
396 	} else {
397 		/* hw power down mode selection , 0:rf-off / 1:power down */
398 
399 		if (padapter->registrypriv.hwpdn_mode == 2)
400 			padapter->pwrctrlpriv.bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT(4));
401 		else
402 			padapter->pwrctrlpriv.bHWPowerdown = padapter->registrypriv.hwpdn_mode;
403 
404 		/*  decide hw if support remote wakeup function */
405 		/*  if hw supported, 8051 (SIE) will generate WeakUP signal(D+/D- toggle) when autoresume */
406 		padapter->pwrctrlpriv.bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT(1)) ? true : false;
407 
408 		DBG_88E("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) , bSupportRemoteWakeup(%x)\n", __func__,
409 			padapter->pwrctrlpriv.bHWPwrPindetect, padapter->pwrctrlpriv.bHWPowerdown, padapter->pwrctrlpriv.bSupportRemoteWakeup);
410 
411 		DBG_88E("### PS params =>  power_mgnt(%x), usbss_enable(%x) ###\n", padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable);
412 	}
413 }
414 
Hal_ReadTxPowerInfo88E(struct adapter * padapter,u8 * PROMContent,bool AutoLoadFail)415 void Hal_ReadTxPowerInfo88E(struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail)
416 {
417 	struct hal_data_8188e *pHalData = padapter->HalData;
418 	struct txpowerinfo24g pwrInfo24G;
419 	u8 ch, group;
420 	u8 TxCount;
421 
422 	Hal_ReadPowerValueFromPROM_8188E(&pwrInfo24G, PROMContent, AutoLoadFail);
423 
424 	if (!AutoLoadFail)
425 		pHalData->bTXPowerDataReadFromEEPORM = true;
426 
427 	for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
428 		Hal_GetChnlGroup88E(ch, &group);
429 		pHalData->Index24G_CCK_Base[0][ch] = pwrInfo24G.IndexCCK_Base[0][group];
430 		if (ch == 14)
431 			pHalData->Index24G_BW40_Base[0][ch] = pwrInfo24G.IndexBW40_Base[0][4];
432 		else
433 			pHalData->Index24G_BW40_Base[0][ch] = pwrInfo24G.IndexBW40_Base[0][group];
434 
435 		DBG_88E("======= Path %d, Channel %d =======\n", 0, ch);
436 		DBG_88E("Index24G_CCK_Base[%d][%d] = 0x%x\n", 0, ch, pHalData->Index24G_CCK_Base[0][ch]);
437 		DBG_88E("Index24G_BW40_Base[%d][%d] = 0x%x\n", 0, ch, pHalData->Index24G_BW40_Base[0][ch]);
438 	}
439 	for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
440 		pHalData->CCK_24G_Diff[0][TxCount] = pwrInfo24G.CCK_Diff[0][TxCount];
441 		pHalData->OFDM_24G_Diff[0][TxCount] = pwrInfo24G.OFDM_Diff[0][TxCount];
442 		pHalData->BW20_24G_Diff[0][TxCount] = pwrInfo24G.BW20_Diff[0][TxCount];
443 		pHalData->BW40_24G_Diff[0][TxCount] = pwrInfo24G.BW40_Diff[0][TxCount];
444 		DBG_88E("======= TxCount %d =======\n", TxCount);
445 		DBG_88E("CCK_24G_Diff[%d][%d] = %d\n", 0, TxCount, pHalData->CCK_24G_Diff[0][TxCount]);
446 		DBG_88E("OFDM_24G_Diff[%d][%d] = %d\n", 0, TxCount, pHalData->OFDM_24G_Diff[0][TxCount]);
447 		DBG_88E("BW20_24G_Diff[%d][%d] = %d\n", 0, TxCount, pHalData->BW20_24G_Diff[0][TxCount]);
448 		DBG_88E("BW40_24G_Diff[%d][%d] = %d\n", 0, TxCount, pHalData->BW40_24G_Diff[0][TxCount]);
449 	}
450 
451 	/*  2010/10/19 MH Add Regulator recognize for CU. */
452 	if (!AutoLoadFail) {
453 		pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E] & 0x7);	/* bit0~2 */
454 		if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
455 			pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7);	/* bit0~2 */
456 	} else {
457 		pHalData->EEPROMRegulatory = 0;
458 	}
459 	DBG_88E("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
460 }
461 
Hal_EfuseParseXtal_8188E(struct adapter * pAdapter,u8 * hwinfo,bool AutoLoadFail)462 void Hal_EfuseParseXtal_8188E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail)
463 {
464 	struct hal_data_8188e *pHalData = pAdapter->HalData;
465 
466 	if (!AutoLoadFail) {
467 		pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E];
468 		if (pHalData->CrystalCap == 0xFF)
469 			pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
470 	} else {
471 		pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
472 	}
473 	DBG_88E("CrystalCap: 0x%2x\n", pHalData->CrystalCap);
474 }
475 
Hal_EfuseParseBoardType88E(struct adapter * pAdapter,u8 * hwinfo,bool AutoLoadFail)476 void Hal_EfuseParseBoardType88E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail)
477 {
478 	struct hal_data_8188e *pHalData = pAdapter->HalData;
479 
480 	if (!AutoLoadFail)
481 		pHalData->BoardType = (hwinfo[EEPROM_RF_BOARD_OPTION_88E]
482 					& 0xE0) >> 5;
483 	else
484 		pHalData->BoardType = 0;
485 	DBG_88E("Board Type: 0x%2x\n", pHalData->BoardType);
486 }
487 
Hal_EfuseParseEEPROMVer88E(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)488 void Hal_EfuseParseEEPROMVer88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
489 {
490 	struct hal_data_8188e *pHalData = padapter->HalData;
491 
492 	if (!AutoLoadFail) {
493 		pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E];
494 		if (pHalData->EEPROMVersion == 0xFF)
495 			pHalData->EEPROMVersion = EEPROM_Default_Version;
496 	} else {
497 		pHalData->EEPROMVersion = 1;
498 	}
499 	RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
500 		 ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
501 		 pHalData->EEPROMVersion));
502 }
503 
rtl8188e_EfuseParseChnlPlan(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)504 void rtl8188e_EfuseParseChnlPlan(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
505 {
506 	padapter->mlmepriv.ChannelPlan =
507 		 hal_com_get_channel_plan(hwinfo ? hwinfo[EEPROM_ChannelPlan_88E] : 0xFF,
508 					  padapter->registrypriv.channel_plan,
509 					  RT_CHANNEL_DOMAIN_WORLD_WIDE_13, AutoLoadFail);
510 
511 	DBG_88E("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan);
512 }
513 
Hal_EfuseParseCustomerID88E(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)514 void Hal_EfuseParseCustomerID88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
515 {
516 	struct hal_data_8188e	*pHalData = padapter->HalData;
517 
518 	if (!AutoLoadFail) {
519 		pHalData->EEPROMCustomerID = hwinfo[EEPROM_CUSTOMERID_88E];
520 	} else {
521 		pHalData->EEPROMCustomerID = 0;
522 		pHalData->EEPROMSubCustomerID = 0;
523 	}
524 	DBG_88E("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID);
525 }
526 
Hal_ReadAntennaDiversity88E(struct adapter * pAdapter,u8 * PROMContent,bool AutoLoadFail)527 void Hal_ReadAntennaDiversity88E(struct adapter *pAdapter, u8 *PROMContent, bool AutoLoadFail)
528 {
529 	struct hal_data_8188e *pHalData = pAdapter->HalData;
530 	struct registry_priv	*registry_par = &pAdapter->registrypriv;
531 
532 	if (!AutoLoadFail) {
533 		/*  Antenna Diversity setting. */
534 		if (registry_par->antdiv_cfg == 2) { /*  2:By EFUSE */
535 			pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E] & 0x18) >> 3;
536 			if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
537 				pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION & 0x18) >> 3;
538 		} else {
539 			pHalData->AntDivCfg = registry_par->antdiv_cfg;  /*  0:OFF , 1:ON, 2:By EFUSE */
540 		}
541 
542 		if (registry_par->antdiv_type == 0) {
543 			/* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */
544 			pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E];
545 			if (pHalData->TRxAntDivType == 0xFF)
546 				pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; /*  For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */
547 		} else {
548 			pHalData->TRxAntDivType = registry_par->antdiv_type;
549 		}
550 
551 		if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV)
552 			pHalData->AntDivCfg = 1; /*  0xC1[3] is ignored. */
553 	} else {
554 		pHalData->AntDivCfg = 0;
555 	}
556 	DBG_88E("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType);
557 }
558 
Hal_ReadThermalMeter_88E(struct adapter * Adapter,u8 * PROMContent,bool AutoloadFail)559 void Hal_ReadThermalMeter_88E(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail)
560 {
561 	struct hal_data_8188e *pHalData = Adapter->HalData;
562 
563 	/*  ThermalMeter from EEPROM */
564 	if (!AutoloadFail)
565 		pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E];
566 	else
567 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
568 
569 	if (pHalData->EEPROMThermalMeter == 0xff || AutoloadFail) {
570 		pHalData->bAPKThermalMeterIgnore = true;
571 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
572 	}
573 	DBG_88E("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter);
574 }
575