1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 /*
37 * This file should not be included directly. Include t4vf_common.h instead.
38 */
39
40 #ifndef __CXGB4VF_ADAPTER_H__
41 #define __CXGB4VF_ADAPTER_H__
42
43 #include <linux/interrupt.h>
44 #include <linux/pci.h>
45 #include <linux/spinlock.h>
46 #include <linux/skbuff.h>
47 #include <linux/if_ether.h>
48 #include <linux/netdevice.h>
49
50 #include "../cxgb4/t4_hw.h"
51
52 /*
53 * Constants of the implementation.
54 */
55 enum {
56 MAX_NPORTS = 1, /* max # of "ports" */
57 MAX_PORT_QSETS = 8, /* max # of Queue Sets / "port" */
58 MAX_ETH_QSETS = MAX_NPORTS*MAX_PORT_QSETS,
59
60 /*
61 * MSI-X interrupt index usage.
62 */
63 MSIX_FW = 0, /* MSI-X index for firmware Q */
64 MSIX_IQFLINT = 1, /* MSI-X index base for Ingress Qs */
65 MSIX_EXTRAS = 1,
66 MSIX_ENTRIES = MAX_ETH_QSETS + MSIX_EXTRAS,
67
68 /*
69 * The maximum number of Ingress and Egress Queues is determined by
70 * the maximum number of "Queue Sets" which we support plus any
71 * ancillary queues. Each "Queue Set" requires one Ingress Queue
72 * for RX Packet Ingress Event notifications and two Egress Queues for
73 * a Free List and an Ethernet TX list.
74 */
75 INGQ_EXTRAS = 2, /* firmware event queue and */
76 /* forwarded interrupts */
77 MAX_INGQ = MAX_ETH_QSETS+INGQ_EXTRAS,
78 MAX_EGRQ = MAX_ETH_QSETS*2,
79 };
80
81 /*
82 * Forward structure definition references.
83 */
84 struct adapter;
85 struct sge_eth_rxq;
86 struct sge_rspq;
87
88 /*
89 * Per-"port" information. This is really per-Virtual Interface information
90 * but the use of the "port" nomanclature makes it easier to go back and forth
91 * between the PF and VF drivers ...
92 */
93 struct port_info {
94 struct adapter *adapter; /* our adapter */
95 u32 vlan_id; /* vlan id for VST */
96 u16 viid; /* virtual interface ID */
97 int xact_addr_filt; /* index of our MAC address filter */
98 u16 rss_size; /* size of VI's RSS table slice */
99 u8 pidx; /* index into adapter port[] */
100 s8 mdio_addr;
101 u8 port_type; /* firmware port type */
102 u8 mod_type; /* firmware module type */
103 u8 port_id; /* physical port ID */
104 u8 nqsets; /* # of "Queue Sets" */
105 u8 first_qset; /* index of first "Queue Set" */
106 struct link_config link_cfg; /* physical port configuration */
107 };
108
109 /*
110 * Scatter Gather Engine resources for the "adapter". Our ingress and egress
111 * queues are organized into "Queue Sets" with one ingress and one egress
112 * queue per Queue Set. These Queue Sets are aportionable between the "ports"
113 * (Virtual Interfaces). One extra ingress queue is used to receive
114 * asynchronous messages from the firmware. Note that the "Queue IDs" that we
115 * use here are really "Relative Queue IDs" which are returned as part of the
116 * firmware command to allocate queues. These queue IDs are relative to the
117 * absolute Queue ID base of the section of the Queue ID space allocated to
118 * the PF/VF.
119 */
120
121 /*
122 * SGE free-list queue state.
123 */
124 struct rx_sw_desc;
125 struct sge_fl {
126 unsigned int avail; /* # of available RX buffers */
127 unsigned int pend_cred; /* new buffers since last FL DB ring */
128 unsigned int cidx; /* consumer index */
129 unsigned int pidx; /* producer index */
130 unsigned long alloc_failed; /* # of buffer allocation failures */
131 unsigned long large_alloc_failed;
132 unsigned long starving; /* # of times FL was found starving */
133
134 /*
135 * Write-once/infrequently fields.
136 * -------------------------------
137 */
138
139 unsigned int cntxt_id; /* SGE relative QID for the free list */
140 unsigned int abs_id; /* SGE absolute QID for the free list */
141 unsigned int size; /* capacity of free list */
142 struct rx_sw_desc *sdesc; /* address of SW RX descriptor ring */
143 __be64 *desc; /* address of HW RX descriptor ring */
144 dma_addr_t addr; /* PCI bus address of hardware ring */
145 void __iomem *bar2_addr; /* address of BAR2 Queue registers */
146 unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */
147 };
148
149 /*
150 * An ingress packet gather list.
151 */
152 struct pkt_gl {
153 struct page_frag frags[MAX_SKB_FRAGS];
154 void *va; /* virtual address of first byte */
155 unsigned int nfrags; /* # of fragments */
156 unsigned int tot_len; /* total length of fragments */
157 };
158
159 typedef int (*rspq_handler_t)(struct sge_rspq *, const __be64 *,
160 const struct pkt_gl *);
161
162 /*
163 * State for an SGE Response Queue.
164 */
165 struct sge_rspq {
166 struct napi_struct napi; /* NAPI scheduling control */
167 const __be64 *cur_desc; /* current descriptor in queue */
168 unsigned int cidx; /* consumer index */
169 u8 gen; /* current generation bit */
170 u8 next_intr_params; /* holdoff params for next interrupt */
171 int offset; /* offset into current FL buffer */
172
173 unsigned int unhandled_irqs; /* bogus interrupts */
174
175 /*
176 * Write-once/infrequently fields.
177 * -------------------------------
178 */
179
180 u8 intr_params; /* interrupt holdoff parameters */
181 u8 pktcnt_idx; /* interrupt packet threshold */
182 u8 idx; /* queue index within its group */
183 u16 cntxt_id; /* SGE rel QID for the response Q */
184 u16 abs_id; /* SGE abs QID for the response Q */
185 __be64 *desc; /* address of hardware response ring */
186 dma_addr_t phys_addr; /* PCI bus address of ring */
187 void __iomem *bar2_addr; /* address of BAR2 Queue registers */
188 unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */
189 unsigned int iqe_len; /* entry size */
190 unsigned int size; /* capcity of response Q */
191 struct adapter *adapter; /* our adapter */
192 struct net_device *netdev; /* associated net device */
193 rspq_handler_t handler; /* the handler for this response Q */
194 };
195
196 /*
197 * Ethernet queue statistics
198 */
199 struct sge_eth_stats {
200 unsigned long pkts; /* # of ethernet packets */
201 unsigned long lro_pkts; /* # of LRO super packets */
202 unsigned long lro_merged; /* # of wire packets merged by LRO */
203 unsigned long rx_cso; /* # of Rx checksum offloads */
204 unsigned long vlan_ex; /* # of Rx VLAN extractions */
205 unsigned long rx_drops; /* # of packets dropped due to no mem */
206 };
207
208 /*
209 * State for an Ethernet Receive Queue.
210 */
211 struct sge_eth_rxq {
212 struct sge_rspq rspq; /* Response Queue */
213 struct sge_fl fl; /* Free List */
214 struct sge_eth_stats stats; /* receive statistics */
215 };
216
217 /*
218 * SGE Transmit Queue state. This contains all of the resources associated
219 * with the hardware status of a TX Queue which is a circular ring of hardware
220 * TX Descriptors. For convenience, it also contains a pointer to a parallel
221 * "Software Descriptor" array but we don't know anything about it here other
222 * than its type name.
223 */
224 struct tx_desc {
225 /*
226 * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the
227 * hardware: Sizes, Producer and Consumer indices, etc.
228 */
229 __be64 flit[SGE_EQ_IDXSIZE/sizeof(__be64)];
230 };
231 struct tx_sw_desc;
232 struct sge_txq {
233 unsigned int in_use; /* # of in-use TX descriptors */
234 unsigned int size; /* # of descriptors */
235 unsigned int cidx; /* SW consumer index */
236 unsigned int pidx; /* producer index */
237 unsigned long stops; /* # of times queue has been stopped */
238 unsigned long restarts; /* # of queue restarts */
239
240 /*
241 * Write-once/infrequently fields.
242 * -------------------------------
243 */
244
245 unsigned int cntxt_id; /* SGE relative QID for the TX Q */
246 unsigned int abs_id; /* SGE absolute QID for the TX Q */
247 struct tx_desc *desc; /* address of HW TX descriptor ring */
248 struct tx_sw_desc *sdesc; /* address of SW TX descriptor ring */
249 struct sge_qstat *stat; /* queue status entry */
250 dma_addr_t phys_addr; /* PCI bus address of hardware ring */
251 void __iomem *bar2_addr; /* address of BAR2 Queue registers */
252 unsigned int bar2_qid; /* Queue ID for BAR2 Queue registers */
253 };
254
255 /*
256 * State for an Ethernet Transmit Queue.
257 */
258 struct sge_eth_txq {
259 struct sge_txq q; /* SGE TX Queue */
260 struct netdev_queue *txq; /* associated netdev TX queue */
261 unsigned long tso; /* # of TSO requests */
262 unsigned long tx_cso; /* # of TX checksum offloads */
263 unsigned long vlan_ins; /* # of TX VLAN insertions */
264 unsigned long mapping_err; /* # of I/O MMU packet mapping errors */
265 };
266
267 /*
268 * The complete set of Scatter/Gather Engine resources.
269 */
270 struct sge {
271 /*
272 * Our "Queue Sets" ...
273 */
274 struct sge_eth_txq ethtxq[MAX_ETH_QSETS];
275 struct sge_eth_rxq ethrxq[MAX_ETH_QSETS];
276
277 /*
278 * Extra ingress queues for asynchronous firmware events and
279 * forwarded interrupts (when in MSI mode).
280 */
281 struct sge_rspq fw_evtq ____cacheline_aligned_in_smp;
282
283 struct sge_rspq intrq ____cacheline_aligned_in_smp;
284 spinlock_t intrq_lock;
285
286 /*
287 * State for managing "starving Free Lists" -- Free Lists which have
288 * fallen below a certain threshold of buffers available to the
289 * hardware and attempts to refill them up to that threshold have
290 * failed. We have a regular "slow tick" timer process which will
291 * make periodic attempts to refill these starving Free Lists ...
292 */
293 DECLARE_BITMAP(starving_fl, MAX_EGRQ);
294 struct timer_list rx_timer;
295
296 /*
297 * State for cleaning up completed TX descriptors.
298 */
299 struct timer_list tx_timer;
300
301 /*
302 * Write-once/infrequently fields.
303 * -------------------------------
304 */
305
306 u16 max_ethqsets; /* # of available Ethernet queue sets */
307 u16 ethqsets; /* # of active Ethernet queue sets */
308 u16 ethtxq_rover; /* Tx queue to clean up next */
309 u16 timer_val[SGE_NTIMERS]; /* interrupt holdoff timer array */
310 u8 counter_val[SGE_NCOUNTERS]; /* interrupt RX threshold array */
311
312 /* Decoded Adapter Parameters.
313 */
314 u32 fl_pg_order; /* large page allocation size */
315 u32 stat_len; /* length of status page at ring end */
316 u32 pktshift; /* padding between CPL & packet data */
317 u32 fl_align; /* response queue message alignment */
318 u32 fl_starve_thres; /* Free List starvation threshold */
319
320 /*
321 * Reverse maps from Absolute Queue IDs to associated queue pointers.
322 * The absolute Queue IDs are in a compact range which start at a
323 * [potentially large] Base Queue ID. We perform the reverse map by
324 * first converting the Absolute Queue ID into a Relative Queue ID by
325 * subtracting off the Base Queue ID and then use a Relative Queue ID
326 * indexed table to get the pointer to the corresponding software
327 * queue structure.
328 */
329 unsigned int egr_base;
330 unsigned int ingr_base;
331 void *egr_map[MAX_EGRQ];
332 struct sge_rspq *ingr_map[MAX_INGQ];
333 };
334
335 /*
336 * Utility macros to convert Absolute- to Relative-Queue indices and Egress-
337 * and Ingress-Queues. The EQ_MAP() and IQ_MAP() macros which provide
338 * pointers to Ingress- and Egress-Queues can be used as both L- and R-values
339 */
340 #define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base))
341 #define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base))
342
343 #define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)])
344 #define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)])
345
346 /*
347 * Macro to iterate across Queue Sets ("rxq" is a historic misnomer).
348 */
349 #define for_each_ethrxq(sge, iter) \
350 for (iter = 0; iter < (sge)->ethqsets; iter++)
351
352 struct hash_mac_addr {
353 struct list_head list;
354 u8 addr[ETH_ALEN];
355 unsigned int iface_mac;
356 };
357
358 struct mbox_list {
359 struct list_head list;
360 };
361
362 /*
363 * Per-"adapter" (Virtual Function) information.
364 */
365 struct adapter {
366 /* PCI resources */
367 void __iomem *regs;
368 void __iomem *bar2;
369 struct pci_dev *pdev;
370 struct device *pdev_dev;
371
372 /* "adapter" resources */
373 unsigned long registered_device_map;
374 unsigned long open_device_map;
375 unsigned long flags;
376 struct adapter_params params;
377
378 /* queue and interrupt resources */
379 struct {
380 unsigned short vec;
381 char desc[22];
382 } msix_info[MSIX_ENTRIES];
383 struct sge sge;
384
385 /* Linux network device resources */
386 struct net_device *port[MAX_NPORTS];
387 const char *name;
388 unsigned int msg_enable;
389
390 /* debugfs resources */
391 struct dentry *debugfs_root;
392
393 /* various locks */
394 spinlock_t stats_lock;
395
396 /* lock for mailbox cmd list */
397 spinlock_t mbox_lock;
398 struct mbox_list mlist;
399
400 /* support for mailbox command/reply logging */
401 #define T4VF_OS_LOG_MBOX_CMDS 256
402 struct mbox_cmd_log *mbox_log;
403
404 /* list of MAC addresses in MPS Hash */
405 struct list_head mac_hlist;
406 };
407
408 enum { /* adapter flags */
409 CXGB4VF_FULL_INIT_DONE = (1UL << 0),
410 CXGB4VF_USING_MSI = (1UL << 1),
411 CXGB4VF_USING_MSIX = (1UL << 2),
412 CXGB4VF_QUEUES_BOUND = (1UL << 3),
413 CXGB4VF_ROOT_NO_RELAXED_ORDERING = (1UL << 4),
414 CXGB4VF_FW_OK = (1UL << 5),
415 };
416
417 /*
418 * The following register read/write routine definitions are required by
419 * the common code.
420 */
421
422 /**
423 * t4_read_reg - read a HW register
424 * @adapter: the adapter
425 * @reg_addr: the register address
426 *
427 * Returns the 32-bit value of the given HW register.
428 */
t4_read_reg(struct adapter * adapter,u32 reg_addr)429 static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr)
430 {
431 return readl(adapter->regs + reg_addr);
432 }
433
434 /**
435 * t4_write_reg - write a HW register
436 * @adapter: the adapter
437 * @reg_addr: the register address
438 * @val: the value to write
439 *
440 * Write a 32-bit value into the given HW register.
441 */
t4_write_reg(struct adapter * adapter,u32 reg_addr,u32 val)442 static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val)
443 {
444 writel(val, adapter->regs + reg_addr);
445 }
446
447 #ifndef readq
readq(const volatile void __iomem * addr)448 static inline u64 readq(const volatile void __iomem *addr)
449 {
450 return readl(addr) + ((u64)readl(addr + 4) << 32);
451 }
452
writeq(u64 val,volatile void __iomem * addr)453 static inline void writeq(u64 val, volatile void __iomem *addr)
454 {
455 writel(val, addr);
456 writel(val >> 32, addr + 4);
457 }
458 #endif
459
460 /**
461 * t4_read_reg64 - read a 64-bit HW register
462 * @adapter: the adapter
463 * @reg_addr: the register address
464 *
465 * Returns the 64-bit value of the given HW register.
466 */
t4_read_reg64(struct adapter * adapter,u32 reg_addr)467 static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr)
468 {
469 return readq(adapter->regs + reg_addr);
470 }
471
472 /**
473 * t4_write_reg64 - write a 64-bit HW register
474 * @adapter: the adapter
475 * @reg_addr: the register address
476 * @val: the value to write
477 *
478 * Write a 64-bit value into the given HW register.
479 */
t4_write_reg64(struct adapter * adapter,u32 reg_addr,u64 val)480 static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr,
481 u64 val)
482 {
483 writeq(val, adapter->regs + reg_addr);
484 }
485
486 /**
487 * port_name - return the string name of a port
488 * @adapter: the adapter
489 * @pidx: the port index
490 *
491 * Return the string name of the selected port.
492 */
port_name(struct adapter * adapter,int pidx)493 static inline const char *port_name(struct adapter *adapter, int pidx)
494 {
495 return adapter->port[pidx]->name;
496 }
497
498 /**
499 * t4_os_set_hw_addr - store a port's MAC address in SW
500 * @adapter: the adapter
501 * @pidx: the port index
502 * @hw_addr: the Ethernet address
503 *
504 * Store the Ethernet address of the given port in SW. Called by the common
505 * code when it retrieves a port's Ethernet address from EEPROM.
506 */
t4_os_set_hw_addr(struct adapter * adapter,int pidx,u8 hw_addr[])507 static inline void t4_os_set_hw_addr(struct adapter *adapter, int pidx,
508 u8 hw_addr[])
509 {
510 memcpy(adapter->port[pidx]->dev_addr, hw_addr, ETH_ALEN);
511 }
512
513 /**
514 * netdev2pinfo - return the port_info structure associated with a net_device
515 * @dev: the netdev
516 *
517 * Return the struct port_info associated with a net_device
518 */
netdev2pinfo(const struct net_device * dev)519 static inline struct port_info *netdev2pinfo(const struct net_device *dev)
520 {
521 return netdev_priv(dev);
522 }
523
524 /**
525 * adap2pinfo - return the port_info of a port
526 * @adap: the adapter
527 * @pidx: the port index
528 *
529 * Return the port_info structure for the adapter.
530 */
adap2pinfo(struct adapter * adapter,int pidx)531 static inline struct port_info *adap2pinfo(struct adapter *adapter, int pidx)
532 {
533 return netdev_priv(adapter->port[pidx]);
534 }
535
536 /**
537 * netdev2adap - return the adapter structure associated with a net_device
538 * @dev: the netdev
539 *
540 * Return the struct adapter associated with a net_device
541 */
netdev2adap(const struct net_device * dev)542 static inline struct adapter *netdev2adap(const struct net_device *dev)
543 {
544 return netdev2pinfo(dev)->adapter;
545 }
546
547 /*
548 * OS "Callback" function declarations. These are functions that the OS code
549 * is "contracted" to provide for the common code.
550 */
551 void t4vf_os_link_changed(struct adapter *, int, int);
552 void t4vf_os_portmod_changed(struct adapter *, int);
553
554 /*
555 * SGE function prototype declarations.
556 */
557 int t4vf_sge_alloc_rxq(struct adapter *, struct sge_rspq *, bool,
558 struct net_device *, int,
559 struct sge_fl *, rspq_handler_t);
560 int t4vf_sge_alloc_eth_txq(struct adapter *, struct sge_eth_txq *,
561 struct net_device *, struct netdev_queue *,
562 unsigned int);
563 void t4vf_free_sge_resources(struct adapter *);
564
565 netdev_tx_t t4vf_eth_xmit(struct sk_buff *, struct net_device *);
566 int t4vf_ethrx_handler(struct sge_rspq *, const __be64 *,
567 const struct pkt_gl *);
568
569 irq_handler_t t4vf_intr_handler(struct adapter *);
570 irqreturn_t t4vf_sge_intr_msix(int, void *);
571
572 int t4vf_sge_init(struct adapter *);
573 void t4vf_sge_start(struct adapter *);
574 void t4vf_sge_stop(struct adapter *);
575
576 #endif /* __CXGB4VF_ADAPTER_H__ */
577