• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20 
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24 
25 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
28 
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 						unsigned short seg_type)
31 {
32 	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34 
35 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38 
39 #define IS_CURSEG(sbi, seg)						\
40 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
41 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
42 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
43 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
44 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
45 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
46 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
47 	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48 
49 #define IS_CURSEC(sbi, secno)						\
50 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
51 	  (sbi)->segs_per_sec) ||	\
52 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
53 	  (sbi)->segs_per_sec) ||	\
54 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
55 	  (sbi)->segs_per_sec) ||	\
56 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
57 	  (sbi)->segs_per_sec) ||	\
58 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
59 	  (sbi)->segs_per_sec) ||	\
60 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
61 	  (sbi)->segs_per_sec) ||	\
62 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
63 	  (sbi)->segs_per_sec) ||	\
64 	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
65 	  (sbi)->segs_per_sec))
66 
67 #define MAIN_BLKADDR(sbi)						\
68 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
69 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi)						\
71 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
72 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73 
74 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi)	((sbi)->total_sections)
76 
77 #define TOTAL_SEGS(sbi)							\
78 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
79 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81 
82 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
84 					(sbi)->log_blocks_per_seg))
85 
86 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
87 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88 
89 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
90 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91 
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
94 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
96 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97 
98 #define GET_SEGNO(sbi, blk_addr)					\
99 	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi)					\
103 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi)					\
105 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg -		\
106 	 (sbi)->unusable_blocks_per_sec)
107 #define CAP_SEGS_PER_SEC(sbi)					\
108 	((sbi)->segs_per_sec - ((sbi)->unusable_blocks_per_sec >>\
109 	(sbi)->log_blocks_per_seg))
110 #define GET_SEC_FROM_SEG(sbi, segno)				\
111 	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
112 #define GET_SEG_FROM_SEC(sbi, secno)				\
113 	((secno) * (sbi)->segs_per_sec)
114 #define GET_ZONE_FROM_SEC(sbi, secno)				\
115 	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
116 #define GET_ZONE_FROM_SEG(sbi, segno)				\
117 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
118 
119 #define GET_SUM_BLOCK(sbi, segno)				\
120 	((sbi)->sm_info->ssa_blkaddr + (segno))
121 
122 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
123 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
124 
125 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
126 	((segno) % (sit_i)->sents_per_block)
127 #define SIT_BLOCK_OFFSET(segno)					\
128 	((segno) / SIT_ENTRY_PER_BLOCK)
129 #define	START_SEGNO(segno)		\
130 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
131 #define SIT_BLK_CNT(sbi)			\
132 	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
133 #define f2fs_bitmap_size(nr)			\
134 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
135 
136 #define SECTOR_FROM_BLOCK(blk_addr)					\
137 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
138 #define SECTOR_TO_BLOCK(sectors)					\
139 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
140 
141 /*
142  * indicate a block allocation direction: RIGHT and LEFT.
143  * RIGHT means allocating new sections towards the end of volume.
144  * LEFT means the opposite direction.
145  */
146 enum {
147 	ALLOC_RIGHT = 0,
148 	ALLOC_LEFT
149 };
150 
151 /*
152  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
153  * LFS writes data sequentially with cleaning operations.
154  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
155  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
156  * fragmented segment which has similar aging degree.
157  */
158 enum {
159 	LFS = 0,
160 	SSR,
161 	AT_SSR,
162 };
163 
164 /*
165  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
166  * GC_CB is based on cost-benefit algorithm.
167  * GC_GREEDY is based on greedy algorithm.
168  * GC_AT is based on age-threshold algorithm.
169  */
170 enum {
171 	GC_CB = 0,
172 	GC_GREEDY,
173 	GC_AT,
174 	ALLOC_NEXT,
175 	FLUSH_DEVICE,
176 	MAX_GC_POLICY,
177 };
178 
179 /*
180  * BG_GC means the background cleaning job.
181  * FG_GC means the on-demand cleaning job.
182  */
183 enum {
184 	BG_GC = 0,
185 	FG_GC,
186 };
187 
188 /* for a function parameter to select a victim segment */
189 struct victim_sel_policy {
190 	int alloc_mode;			/* LFS or SSR */
191 	int gc_mode;			/* GC_CB or GC_GREEDY */
192 	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
193 	unsigned int max_search;	/*
194 					 * maximum # of segments/sections
195 					 * to search
196 					 */
197 	unsigned int offset;		/* last scanned bitmap offset */
198 	unsigned int ofs_unit;		/* bitmap search unit */
199 	unsigned int min_cost;		/* minimum cost */
200 	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
201 	unsigned int min_segno;		/* segment # having min. cost */
202 	unsigned long long age;		/* mtime of GCed section*/
203 	unsigned long long age_threshold;/* age threshold */
204 };
205 
206 struct seg_entry {
207 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
208 	unsigned int valid_blocks:10;	/* # of valid blocks */
209 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
210 	unsigned int padding:6;		/* padding */
211 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
212 #ifdef CONFIG_F2FS_CHECK_FS
213 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
214 #endif
215 	/*
216 	 * # of valid blocks and the validity bitmap stored in the last
217 	 * checkpoint pack. This information is used by the SSR mode.
218 	 */
219 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
220 	unsigned char *discard_map;
221 	unsigned long long mtime;	/* modification time of the segment */
222 };
223 
224 struct sec_entry {
225 	unsigned int valid_blocks;	/* # of valid blocks in a section */
226 };
227 
228 struct segment_allocation {
229 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
230 };
231 
232 #define MAX_SKIP_GC_COUNT			16
233 
234 struct inmem_pages {
235 	struct list_head list;
236 	struct page *page;
237 	block_t old_addr;		/* for revoking when fail to commit */
238 };
239 
240 struct sit_info {
241 	const struct segment_allocation *s_ops;
242 
243 	block_t sit_base_addr;		/* start block address of SIT area */
244 	block_t sit_blocks;		/* # of blocks used by SIT area */
245 	block_t written_valid_blocks;	/* # of valid blocks in main area */
246 	char *bitmap;			/* all bitmaps pointer */
247 	char *sit_bitmap;		/* SIT bitmap pointer */
248 #ifdef CONFIG_F2FS_CHECK_FS
249 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
250 
251 	/* bitmap of segments to be ignored by GC in case of errors */
252 	unsigned long *invalid_segmap;
253 #endif
254 	unsigned int bitmap_size;	/* SIT bitmap size */
255 
256 	unsigned long *tmp_map;			/* bitmap for temporal use */
257 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
258 	unsigned int dirty_sentries;		/* # of dirty sentries */
259 	unsigned int sents_per_block;		/* # of SIT entries per block */
260 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
261 	struct seg_entry *sentries;		/* SIT segment-level cache */
262 	struct sec_entry *sec_entries;		/* SIT section-level cache */
263 
264 	/* for cost-benefit algorithm in cleaning procedure */
265 	unsigned long long elapsed_time;	/* elapsed time after mount */
266 	unsigned long long mounted_time;	/* mount time */
267 	unsigned long long min_mtime;		/* min. modification time */
268 	unsigned long long max_mtime;		/* max. modification time */
269 	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
270 	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
271 
272 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
273 };
274 
275 struct free_segmap_info {
276 	unsigned int start_segno;	/* start segment number logically */
277 	unsigned int free_segments;	/* # of free segments */
278 	unsigned int free_sections;	/* # of free sections */
279 	spinlock_t segmap_lock;		/* free segmap lock */
280 	unsigned long *free_segmap;	/* free segment bitmap */
281 	unsigned long *free_secmap;	/* free section bitmap */
282 };
283 
284 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
285 enum dirty_type {
286 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
287 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
288 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
289 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
290 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
291 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
292 	DIRTY,			/* to count # of dirty segments */
293 	PRE,			/* to count # of entirely obsolete segments */
294 	NR_DIRTY_TYPE
295 };
296 
297 struct dirty_seglist_info {
298 	const struct victim_selection *v_ops;	/* victim selction operation */
299 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
300 	unsigned long *dirty_secmap;
301 	struct mutex seglist_lock;		/* lock for segment bitmaps */
302 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
303 	unsigned long *victim_secmap;		/* background GC victims */
304 	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
305 	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
306 	bool enable_pin_section;		/* enable pinning section */
307 };
308 
309 /* victim selection function for cleaning and SSR */
310 struct victim_selection {
311 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
312 					int, int, char, unsigned long long);
313 };
314 
315 /* for active log information */
316 struct curseg_info {
317 	struct mutex curseg_mutex;		/* lock for consistency */
318 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
319 	struct rw_semaphore journal_rwsem;	/* protect journal area */
320 	struct f2fs_journal *journal;		/* cached journal info */
321 	unsigned char alloc_type;		/* current allocation type */
322 	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
323 	unsigned int segno;			/* current segment number */
324 	unsigned short next_blkoff;		/* next block offset to write */
325 	unsigned int zone;			/* current zone number */
326 	unsigned int next_segno;		/* preallocated segment */
327 	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
328 	bool inited;				/* indicate inmem log is inited */
329 };
330 
331 struct sit_entry_set {
332 	struct list_head set_list;	/* link with all sit sets */
333 	unsigned int start_segno;	/* start segno of sits in set */
334 	unsigned int entry_cnt;		/* the # of sit entries in set */
335 };
336 
337 /*
338  * inline functions
339  */
CURSEG_I(struct f2fs_sb_info * sbi,int type)340 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
341 {
342 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
343 }
344 
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)345 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
346 						unsigned int segno)
347 {
348 	struct sit_info *sit_i = SIT_I(sbi);
349 	return &sit_i->sentries[segno];
350 }
351 
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)352 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
353 						unsigned int segno)
354 {
355 	struct sit_info *sit_i = SIT_I(sbi);
356 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
357 }
358 
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)359 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
360 				unsigned int segno, bool use_section)
361 {
362 	/*
363 	 * In order to get # of valid blocks in a section instantly from many
364 	 * segments, f2fs manages two counting structures separately.
365 	 */
366 	if (use_section && __is_large_section(sbi))
367 		return get_sec_entry(sbi, segno)->valid_blocks;
368 	else
369 		return get_seg_entry(sbi, segno)->valid_blocks;
370 }
371 
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)372 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
373 				unsigned int segno, bool use_section)
374 {
375 	if (use_section && __is_large_section(sbi)) {
376 		unsigned int start_segno = START_SEGNO(segno);
377 		unsigned int blocks = 0;
378 		int i;
379 
380 		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
381 			struct seg_entry *se = get_seg_entry(sbi, start_segno);
382 
383 			blocks += se->ckpt_valid_blocks;
384 		}
385 		return blocks;
386 	}
387 	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
388 }
389 
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)390 static inline void seg_info_from_raw_sit(struct seg_entry *se,
391 					struct f2fs_sit_entry *rs)
392 {
393 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
394 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
395 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
396 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
397 #ifdef CONFIG_F2FS_CHECK_FS
398 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
399 #endif
400 	se->type = GET_SIT_TYPE(rs);
401 	se->mtime = le64_to_cpu(rs->mtime);
402 }
403 
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)404 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
405 					struct f2fs_sit_entry *rs)
406 {
407 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
408 					se->valid_blocks;
409 	rs->vblocks = cpu_to_le16(raw_vblocks);
410 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
411 	rs->mtime = cpu_to_le64(se->mtime);
412 }
413 
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)414 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
415 				struct page *page, unsigned int start)
416 {
417 	struct f2fs_sit_block *raw_sit;
418 	struct seg_entry *se;
419 	struct f2fs_sit_entry *rs;
420 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
421 					(unsigned long)MAIN_SEGS(sbi));
422 	int i;
423 
424 	raw_sit = (struct f2fs_sit_block *)page_address(page);
425 	memset(raw_sit, 0, PAGE_SIZE);
426 	for (i = 0; i < end - start; i++) {
427 		rs = &raw_sit->entries[i];
428 		se = get_seg_entry(sbi, start + i);
429 		__seg_info_to_raw_sit(se, rs);
430 	}
431 }
432 
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)433 static inline void seg_info_to_raw_sit(struct seg_entry *se,
434 					struct f2fs_sit_entry *rs)
435 {
436 	__seg_info_to_raw_sit(se, rs);
437 
438 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
439 	se->ckpt_valid_blocks = se->valid_blocks;
440 }
441 
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)442 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
443 		unsigned int max, unsigned int segno)
444 {
445 	unsigned int ret;
446 	spin_lock(&free_i->segmap_lock);
447 	ret = find_next_bit(free_i->free_segmap, max, segno);
448 	spin_unlock(&free_i->segmap_lock);
449 	return ret;
450 }
451 
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)452 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
453 {
454 	struct free_segmap_info *free_i = FREE_I(sbi);
455 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
456 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
457 	unsigned int next;
458 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
459 
460 	spin_lock(&free_i->segmap_lock);
461 	clear_bit(segno, free_i->free_segmap);
462 	free_i->free_segments++;
463 
464 	next = find_next_bit(free_i->free_segmap,
465 			start_segno + sbi->segs_per_sec, start_segno);
466 	if (next >= start_segno + usable_segs) {
467 		clear_bit(secno, free_i->free_secmap);
468 		free_i->free_sections++;
469 	}
470 	spin_unlock(&free_i->segmap_lock);
471 }
472 
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)473 static inline void __set_inuse(struct f2fs_sb_info *sbi,
474 		unsigned int segno)
475 {
476 	struct free_segmap_info *free_i = FREE_I(sbi);
477 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
478 
479 	set_bit(segno, free_i->free_segmap);
480 	free_i->free_segments--;
481 	if (!test_and_set_bit(secno, free_i->free_secmap))
482 		free_i->free_sections--;
483 }
484 
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)485 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
486 		unsigned int segno, bool inmem)
487 {
488 	struct free_segmap_info *free_i = FREE_I(sbi);
489 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
490 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
491 	unsigned int next;
492 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
493 
494 	spin_lock(&free_i->segmap_lock);
495 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
496 		free_i->free_segments++;
497 
498 		if (!inmem && IS_CURSEC(sbi, secno))
499 			goto skip_free;
500 		next = find_next_bit(free_i->free_segmap,
501 				start_segno + sbi->segs_per_sec, start_segno);
502 		if (next >= start_segno + usable_segs) {
503 			if (test_and_clear_bit(secno, free_i->free_secmap))
504 				free_i->free_sections++;
505 		}
506 	}
507 skip_free:
508 	spin_unlock(&free_i->segmap_lock);
509 }
510 
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)511 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
512 		unsigned int segno)
513 {
514 	struct free_segmap_info *free_i = FREE_I(sbi);
515 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
516 
517 	spin_lock(&free_i->segmap_lock);
518 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
519 		free_i->free_segments--;
520 		if (!test_and_set_bit(secno, free_i->free_secmap))
521 			free_i->free_sections--;
522 	}
523 	spin_unlock(&free_i->segmap_lock);
524 }
525 
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)526 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
527 		void *dst_addr)
528 {
529 	struct sit_info *sit_i = SIT_I(sbi);
530 
531 #ifdef CONFIG_F2FS_CHECK_FS
532 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
533 						sit_i->bitmap_size))
534 		f2fs_bug_on(sbi, 1);
535 #endif
536 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
537 }
538 
written_block_count(struct f2fs_sb_info * sbi)539 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
540 {
541 	return SIT_I(sbi)->written_valid_blocks;
542 }
543 
free_segments(struct f2fs_sb_info * sbi)544 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
545 {
546 	return FREE_I(sbi)->free_segments;
547 }
548 
reserved_segments(struct f2fs_sb_info * sbi)549 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
550 {
551 	return SM_I(sbi)->reserved_segments +
552 			SM_I(sbi)->additional_reserved_segments;
553 }
554 
free_sections(struct f2fs_sb_info * sbi)555 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
556 {
557 	return FREE_I(sbi)->free_sections;
558 }
559 
prefree_segments(struct f2fs_sb_info * sbi)560 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
561 {
562 	return DIRTY_I(sbi)->nr_dirty[PRE];
563 }
564 
dirty_segments(struct f2fs_sb_info * sbi)565 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
566 {
567 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
568 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
569 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
570 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
571 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
572 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
573 }
574 
overprovision_segments(struct f2fs_sb_info * sbi)575 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
576 {
577 	return SM_I(sbi)->ovp_segments;
578 }
579 
reserved_sections(struct f2fs_sb_info * sbi)580 static inline int reserved_sections(struct f2fs_sb_info *sbi)
581 {
582 	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
583 }
584 
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int dent_blocks)585 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
586 			unsigned int node_blocks, unsigned int dent_blocks)
587 {
588 
589 	unsigned int segno, left_blocks;
590 	int i;
591 
592 	/* check current node segment */
593 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
594 		segno = CURSEG_I(sbi, i)->segno;
595 		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
596 				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
597 
598 		if (node_blocks > left_blocks)
599 			return false;
600 	}
601 
602 	/* check current data segment */
603 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
604 	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
605 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
606 	if (dent_blocks > left_blocks)
607 		return false;
608 	return true;
609 }
610 
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)611 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
612 					int freed, int needed)
613 {
614 	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
615 					get_pages(sbi, F2FS_DIRTY_DENTS) +
616 					get_pages(sbi, F2FS_DIRTY_IMETA);
617 	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
618 	unsigned int node_secs = total_node_blocks / BLKS_PER_SEC(sbi);
619 	unsigned int dent_secs = total_dent_blocks / BLKS_PER_SEC(sbi);
620 	unsigned int node_blocks = total_node_blocks % BLKS_PER_SEC(sbi);
621 	unsigned int dent_blocks = total_dent_blocks % BLKS_PER_SEC(sbi);
622 	unsigned int free, need_lower, need_upper;
623 
624 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
625 		return false;
626 
627 	free = free_sections(sbi) + freed;
628 	need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
629 	need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
630 
631 	if (free > need_upper)
632 		return false;
633 	else if (free <= need_lower)
634 		return true;
635 	return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
636 }
637 
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)638 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
639 {
640 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
641 		return true;
642 	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
643 		return true;
644 	return false;
645 }
646 
excess_prefree_segs(struct f2fs_sb_info * sbi)647 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
648 {
649 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
650 }
651 
utilization(struct f2fs_sb_info * sbi)652 static inline int utilization(struct f2fs_sb_info *sbi)
653 {
654 	return div_u64((u64)valid_user_blocks(sbi) * 100,
655 					sbi->user_block_count);
656 }
657 
658 /*
659  * Sometimes f2fs may be better to drop out-of-place update policy.
660  * And, users can control the policy through sysfs entries.
661  * There are five policies with triggering conditions as follows.
662  * F2FS_IPU_FORCE - all the time,
663  * F2FS_IPU_SSR - if SSR mode is activated,
664  * F2FS_IPU_UTIL - if FS utilization is over threashold,
665  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
666  *                     threashold,
667  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
668  *                     storages. IPU will be triggered only if the # of dirty
669  *                     pages over min_fsync_blocks. (=default option)
670  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
671  * F2FS_IPU_NOCACHE - disable IPU bio cache.
672  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
673  *                            FI_OPU_WRITE flag.
674  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
675  */
676 #define DEF_MIN_IPU_UTIL	70
677 #define DEF_MIN_FSYNC_BLOCKS	8
678 #define DEF_MIN_HOT_BLOCKS	16
679 
680 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
681 
682 enum {
683 	F2FS_IPU_FORCE,
684 	F2FS_IPU_SSR,
685 	F2FS_IPU_UTIL,
686 	F2FS_IPU_SSR_UTIL,
687 	F2FS_IPU_FSYNC,
688 	F2FS_IPU_ASYNC,
689 	F2FS_IPU_NOCACHE,
690 	F2FS_IPU_HONOR_OPU_WRITE,
691 };
692 
curseg_segno(struct f2fs_sb_info * sbi,int type)693 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
694 		int type)
695 {
696 	struct curseg_info *curseg = CURSEG_I(sbi, type);
697 	return curseg->segno;
698 }
699 
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)700 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
701 		int type)
702 {
703 	struct curseg_info *curseg = CURSEG_I(sbi, type);
704 	return curseg->alloc_type;
705 }
706 
curseg_blkoff(struct f2fs_sb_info * sbi,int type)707 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
708 {
709 	struct curseg_info *curseg = CURSEG_I(sbi, type);
710 	return curseg->next_blkoff;
711 }
712 
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)713 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
714 {
715 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
716 }
717 
verify_fio_blkaddr(struct f2fs_io_info * fio)718 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
719 {
720 	struct f2fs_sb_info *sbi = fio->sbi;
721 
722 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
723 		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
724 					META_GENERIC : DATA_GENERIC);
725 	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
726 					META_GENERIC : DATA_GENERIC_ENHANCE);
727 }
728 
729 /*
730  * Summary block is always treated as an invalid block
731  */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)732 static inline int check_block_count(struct f2fs_sb_info *sbi,
733 		int segno, struct f2fs_sit_entry *raw_sit)
734 {
735 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
736 	int valid_blocks = 0;
737 	int cur_pos = 0, next_pos;
738 	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
739 
740 	/* check bitmap with valid block count */
741 	do {
742 		if (is_valid) {
743 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
744 					usable_blks_per_seg,
745 					cur_pos);
746 			valid_blocks += next_pos - cur_pos;
747 		} else
748 			next_pos = find_next_bit_le(&raw_sit->valid_map,
749 					usable_blks_per_seg,
750 					cur_pos);
751 		cur_pos = next_pos;
752 		is_valid = !is_valid;
753 	} while (cur_pos < usable_blks_per_seg);
754 
755 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
756 		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
757 			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
758 		set_sbi_flag(sbi, SBI_NEED_FSCK);
759 		return -EFSCORRUPTED;
760 	}
761 
762 	if (usable_blks_per_seg < sbi->blocks_per_seg)
763 		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
764 				sbi->blocks_per_seg,
765 				usable_blks_per_seg) != sbi->blocks_per_seg);
766 
767 	/* check segment usage, and check boundary of a given segment number */
768 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
769 					|| segno > TOTAL_SEGS(sbi) - 1)) {
770 		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
771 			 GET_SIT_VBLOCKS(raw_sit), segno);
772 		set_sbi_flag(sbi, SBI_NEED_FSCK);
773 		return -EFSCORRUPTED;
774 	}
775 	return 0;
776 }
777 
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)778 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
779 						unsigned int start)
780 {
781 	struct sit_info *sit_i = SIT_I(sbi);
782 	unsigned int offset = SIT_BLOCK_OFFSET(start);
783 	block_t blk_addr = sit_i->sit_base_addr + offset;
784 
785 	check_seg_range(sbi, start);
786 
787 #ifdef CONFIG_F2FS_CHECK_FS
788 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
789 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
790 		f2fs_bug_on(sbi, 1);
791 #endif
792 
793 	/* calculate sit block address */
794 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
795 		blk_addr += sit_i->sit_blocks;
796 
797 	return blk_addr;
798 }
799 
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)800 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
801 						pgoff_t block_addr)
802 {
803 	struct sit_info *sit_i = SIT_I(sbi);
804 	block_addr -= sit_i->sit_base_addr;
805 	if (block_addr < sit_i->sit_blocks)
806 		block_addr += sit_i->sit_blocks;
807 	else
808 		block_addr -= sit_i->sit_blocks;
809 
810 	return block_addr + sit_i->sit_base_addr;
811 }
812 
set_to_next_sit(struct sit_info * sit_i,unsigned int start)813 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
814 {
815 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
816 
817 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
818 #ifdef CONFIG_F2FS_CHECK_FS
819 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
820 #endif
821 }
822 
get_mtime(struct f2fs_sb_info * sbi,bool base_time)823 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
824 						bool base_time)
825 {
826 	struct sit_info *sit_i = SIT_I(sbi);
827 	time64_t diff, now = ktime_get_boottime_seconds();
828 
829 	if (now >= sit_i->mounted_time)
830 		return sit_i->elapsed_time + now - sit_i->mounted_time;
831 
832 	/* system time is set to the past */
833 	if (!base_time) {
834 		diff = sit_i->mounted_time - now;
835 		if (sit_i->elapsed_time >= diff)
836 			return sit_i->elapsed_time - diff;
837 		return 0;
838 	}
839 	return sit_i->elapsed_time;
840 }
841 
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)842 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
843 			unsigned int ofs_in_node, unsigned char version)
844 {
845 	sum->nid = cpu_to_le32(nid);
846 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
847 	sum->version = version;
848 }
849 
start_sum_block(struct f2fs_sb_info * sbi)850 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
851 {
852 	return __start_cp_addr(sbi) +
853 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
854 }
855 
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)856 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
857 {
858 	return __start_cp_addr(sbi) +
859 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
860 				- (base + 1) + type;
861 }
862 
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)863 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
864 {
865 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
866 		return true;
867 	return false;
868 }
869 
870 /*
871  * It is very important to gather dirty pages and write at once, so that we can
872  * submit a big bio without interfering other data writes.
873  * By default, 512 pages for directory data,
874  * 512 pages (2MB) * 8 for nodes, and
875  * 256 pages * 8 for meta are set.
876  */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)877 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
878 {
879 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
880 		return 0;
881 
882 	if (type == DATA)
883 		return sbi->blocks_per_seg;
884 	else if (type == NODE)
885 		return 8 * sbi->blocks_per_seg;
886 	else if (type == META)
887 		return 8 * BIO_MAX_PAGES;
888 	else
889 		return 0;
890 }
891 
892 /*
893  * When writing pages, it'd better align nr_to_write for segment size.
894  */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)895 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
896 					struct writeback_control *wbc)
897 {
898 	long nr_to_write, desired;
899 
900 	if (wbc->sync_mode != WB_SYNC_NONE)
901 		return 0;
902 
903 	nr_to_write = wbc->nr_to_write;
904 	desired = BIO_MAX_PAGES;
905 	if (type == NODE)
906 		desired <<= 1;
907 
908 	wbc->nr_to_write = desired;
909 	return desired - nr_to_write;
910 }
911 
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)912 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
913 {
914 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
915 	bool wakeup = false;
916 	int i;
917 
918 	if (force)
919 		goto wake_up;
920 
921 	mutex_lock(&dcc->cmd_lock);
922 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
923 		if (i + 1 < dcc->discard_granularity)
924 			break;
925 		if (!list_empty(&dcc->pend_list[i])) {
926 			wakeup = true;
927 			break;
928 		}
929 	}
930 	mutex_unlock(&dcc->cmd_lock);
931 	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
932 		return;
933 wake_up:
934 	dcc->discard_wake = 1;
935 	wake_up_interruptible_all(&dcc->discard_wait_queue);
936 }
937