• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <linux/debugobjects.h>
8 
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13 
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
17 
18 /*
19  * Active refs memory management
20  *
21  * To be more economical with memory, we reap all the i915_active trees as
22  * they idle (when we know the active requests are inactive) and allocate the
23  * nodes from a local slab cache to hopefully reduce the fragmentation.
24  */
25 static struct i915_global_active {
26 	struct i915_global base;
27 	struct kmem_cache *slab_cache;
28 } global;
29 
30 struct active_node {
31 	struct rb_node node;
32 	struct i915_active_fence base;
33 	struct i915_active *ref;
34 	u64 timeline;
35 };
36 
37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
38 
39 static inline struct active_node *
node_from_active(struct i915_active_fence * active)40 node_from_active(struct i915_active_fence *active)
41 {
42 	return container_of(active, struct active_node, base);
43 }
44 
45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
46 
is_barrier(const struct i915_active_fence * active)47 static inline bool is_barrier(const struct i915_active_fence *active)
48 {
49 	return IS_ERR(rcu_access_pointer(active->fence));
50 }
51 
barrier_to_ll(struct active_node * node)52 static inline struct llist_node *barrier_to_ll(struct active_node *node)
53 {
54 	GEM_BUG_ON(!is_barrier(&node->base));
55 	return (struct llist_node *)&node->base.cb.node;
56 }
57 
58 static inline struct intel_engine_cs *
__barrier_to_engine(struct active_node * node)59 __barrier_to_engine(struct active_node *node)
60 {
61 	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
62 }
63 
64 static inline struct intel_engine_cs *
barrier_to_engine(struct active_node * node)65 barrier_to_engine(struct active_node *node)
66 {
67 	GEM_BUG_ON(!is_barrier(&node->base));
68 	return __barrier_to_engine(node);
69 }
70 
barrier_from_ll(struct llist_node * x)71 static inline struct active_node *barrier_from_ll(struct llist_node *x)
72 {
73 	return container_of((struct list_head *)x,
74 			    struct active_node, base.cb.node);
75 }
76 
77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
78 
active_debug_hint(void * addr)79 static void *active_debug_hint(void *addr)
80 {
81 	struct i915_active *ref = addr;
82 
83 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
84 }
85 
86 static const struct debug_obj_descr active_debug_desc = {
87 	.name = "i915_active",
88 	.debug_hint = active_debug_hint,
89 };
90 
debug_active_init(struct i915_active * ref)91 static void debug_active_init(struct i915_active *ref)
92 {
93 	debug_object_init(ref, &active_debug_desc);
94 }
95 
debug_active_activate(struct i915_active * ref)96 static void debug_active_activate(struct i915_active *ref)
97 {
98 	lockdep_assert_held(&ref->tree_lock);
99 	debug_object_activate(ref, &active_debug_desc);
100 }
101 
debug_active_deactivate(struct i915_active * ref)102 static void debug_active_deactivate(struct i915_active *ref)
103 {
104 	lockdep_assert_held(&ref->tree_lock);
105 	if (!atomic_read(&ref->count)) /* after the last dec */
106 		debug_object_deactivate(ref, &active_debug_desc);
107 }
108 
debug_active_fini(struct i915_active * ref)109 static void debug_active_fini(struct i915_active *ref)
110 {
111 	debug_object_free(ref, &active_debug_desc);
112 }
113 
debug_active_assert(struct i915_active * ref)114 static void debug_active_assert(struct i915_active *ref)
115 {
116 	debug_object_assert_init(ref, &active_debug_desc);
117 }
118 
119 #else
120 
debug_active_init(struct i915_active * ref)121 static inline void debug_active_init(struct i915_active *ref) { }
debug_active_activate(struct i915_active * ref)122 static inline void debug_active_activate(struct i915_active *ref) { }
debug_active_deactivate(struct i915_active * ref)123 static inline void debug_active_deactivate(struct i915_active *ref) { }
debug_active_fini(struct i915_active * ref)124 static inline void debug_active_fini(struct i915_active *ref) { }
debug_active_assert(struct i915_active * ref)125 static inline void debug_active_assert(struct i915_active *ref) { }
126 
127 #endif
128 
129 static void
__active_retire(struct i915_active * ref)130 __active_retire(struct i915_active *ref)
131 {
132 	struct rb_root root = RB_ROOT;
133 	struct active_node *it, *n;
134 	unsigned long flags;
135 
136 	GEM_BUG_ON(i915_active_is_idle(ref));
137 
138 	/* return the unused nodes to our slabcache -- flushing the allocator */
139 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
140 		return;
141 
142 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
143 	debug_active_deactivate(ref);
144 
145 	/* Even if we have not used the cache, we may still have a barrier */
146 	if (!ref->cache)
147 		ref->cache = fetch_node(ref->tree.rb_node);
148 
149 	/* Keep the MRU cached node for reuse */
150 	if (ref->cache) {
151 		/* Discard all other nodes in the tree */
152 		rb_erase(&ref->cache->node, &ref->tree);
153 		root = ref->tree;
154 
155 		/* Rebuild the tree with only the cached node */
156 		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
157 		rb_insert_color(&ref->cache->node, &ref->tree);
158 		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
159 
160 		/* Make the cached node available for reuse with any timeline */
161 		if (IS_ENABLED(CONFIG_64BIT))
162 			ref->cache->timeline = 0; /* needs cmpxchg(u64) */
163 	}
164 
165 	spin_unlock_irqrestore(&ref->tree_lock, flags);
166 
167 	/* After the final retire, the entire struct may be freed */
168 	if (ref->retire)
169 		ref->retire(ref);
170 
171 	/* ... except if you wait on it, you must manage your own references! */
172 	wake_up_var(ref);
173 
174 	/* Finally free the discarded timeline tree  */
175 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
176 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
177 		kmem_cache_free(global.slab_cache, it);
178 	}
179 }
180 
181 static void
active_work(struct work_struct * wrk)182 active_work(struct work_struct *wrk)
183 {
184 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
185 
186 	GEM_BUG_ON(!atomic_read(&ref->count));
187 	if (atomic_add_unless(&ref->count, -1, 1))
188 		return;
189 
190 	__active_retire(ref);
191 }
192 
193 static void
active_retire(struct i915_active * ref)194 active_retire(struct i915_active *ref)
195 {
196 	GEM_BUG_ON(!atomic_read(&ref->count));
197 	if (atomic_add_unless(&ref->count, -1, 1))
198 		return;
199 
200 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
201 		queue_work(system_unbound_wq, &ref->work);
202 		return;
203 	}
204 
205 	__active_retire(ref);
206 }
207 
208 static inline struct dma_fence **
__active_fence_slot(struct i915_active_fence * active)209 __active_fence_slot(struct i915_active_fence *active)
210 {
211 	return (struct dma_fence ** __force)&active->fence;
212 }
213 
214 static inline bool
active_fence_cb(struct dma_fence * fence,struct dma_fence_cb * cb)215 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
216 {
217 	struct i915_active_fence *active =
218 		container_of(cb, typeof(*active), cb);
219 
220 	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
221 }
222 
223 static void
node_retire(struct dma_fence * fence,struct dma_fence_cb * cb)224 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
225 {
226 	if (active_fence_cb(fence, cb))
227 		active_retire(container_of(cb, struct active_node, base.cb)->ref);
228 }
229 
230 static void
excl_retire(struct dma_fence * fence,struct dma_fence_cb * cb)231 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
232 {
233 	if (active_fence_cb(fence, cb))
234 		active_retire(container_of(cb, struct i915_active, excl.cb));
235 }
236 
__active_lookup(struct i915_active * ref,u64 idx)237 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
238 {
239 	struct active_node *it;
240 
241 	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
242 
243 	/*
244 	 * We track the most recently used timeline to skip a rbtree search
245 	 * for the common case, under typical loads we never need the rbtree
246 	 * at all. We can reuse the last slot if it is empty, that is
247 	 * after the previous activity has been retired, or if it matches the
248 	 * current timeline.
249 	 */
250 	it = READ_ONCE(ref->cache);
251 	if (it) {
252 		u64 cached = READ_ONCE(it->timeline);
253 
254 		/* Once claimed, this slot will only belong to this idx */
255 		if (cached == idx)
256 			return it;
257 
258 #ifdef CONFIG_64BIT /* for cmpxchg(u64) */
259 		/*
260 		 * An unclaimed cache [.timeline=0] can only be claimed once.
261 		 *
262 		 * If the value is already non-zero, some other thread has
263 		 * claimed the cache and we know that is does not match our
264 		 * idx. If, and only if, the timeline is currently zero is it
265 		 * worth competing to claim it atomically for ourselves (for
266 		 * only the winner of that race will cmpxchg return the old
267 		 * value of 0).
268 		 */
269 		if (!cached && !cmpxchg(&it->timeline, 0, idx))
270 			return it;
271 #endif
272 	}
273 
274 	BUILD_BUG_ON(offsetof(typeof(*it), node));
275 
276 	/* While active, the tree can only be built; not destroyed */
277 	GEM_BUG_ON(i915_active_is_idle(ref));
278 
279 	it = fetch_node(ref->tree.rb_node);
280 	while (it) {
281 		if (it->timeline < idx) {
282 			it = fetch_node(it->node.rb_right);
283 		} else if (it->timeline > idx) {
284 			it = fetch_node(it->node.rb_left);
285 		} else {
286 			WRITE_ONCE(ref->cache, it);
287 			break;
288 		}
289 	}
290 
291 	/* NB: If the tree rotated beneath us, we may miss our target. */
292 	return it;
293 }
294 
295 static struct i915_active_fence *
active_instance(struct i915_active * ref,u64 idx)296 active_instance(struct i915_active *ref, u64 idx)
297 {
298 	struct active_node *node, *prealloc;
299 	struct rb_node **p, *parent;
300 
301 	node = __active_lookup(ref, idx);
302 	if (likely(node))
303 		return &node->base;
304 
305 	/* Preallocate a replacement, just in case */
306 	prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
307 	if (!prealloc)
308 		return NULL;
309 
310 	spin_lock_irq(&ref->tree_lock);
311 	GEM_BUG_ON(i915_active_is_idle(ref));
312 
313 	parent = NULL;
314 	p = &ref->tree.rb_node;
315 	while (*p) {
316 		parent = *p;
317 
318 		node = rb_entry(parent, struct active_node, node);
319 		if (node->timeline == idx) {
320 			kmem_cache_free(global.slab_cache, prealloc);
321 			goto out;
322 		}
323 
324 		if (node->timeline < idx)
325 			p = &parent->rb_right;
326 		else
327 			p = &parent->rb_left;
328 	}
329 
330 	node = prealloc;
331 	__i915_active_fence_init(&node->base, NULL, node_retire);
332 	node->ref = ref;
333 	node->timeline = idx;
334 
335 	rb_link_node(&node->node, parent, p);
336 	rb_insert_color(&node->node, &ref->tree);
337 
338 out:
339 	WRITE_ONCE(ref->cache, node);
340 	spin_unlock_irq(&ref->tree_lock);
341 
342 	return &node->base;
343 }
344 
__i915_active_init(struct i915_active * ref,int (* active)(struct i915_active * ref),void (* retire)(struct i915_active * ref),struct lock_class_key * mkey,struct lock_class_key * wkey)345 void __i915_active_init(struct i915_active *ref,
346 			int (*active)(struct i915_active *ref),
347 			void (*retire)(struct i915_active *ref),
348 			struct lock_class_key *mkey,
349 			struct lock_class_key *wkey)
350 {
351 	unsigned long bits;
352 
353 	debug_active_init(ref);
354 
355 	ref->flags = 0;
356 	ref->active = active;
357 	ref->retire = ptr_unpack_bits(retire, &bits, 2);
358 	if (bits & I915_ACTIVE_MAY_SLEEP)
359 		ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
360 
361 	spin_lock_init(&ref->tree_lock);
362 	ref->tree = RB_ROOT;
363 	ref->cache = NULL;
364 
365 	init_llist_head(&ref->preallocated_barriers);
366 	atomic_set(&ref->count, 0);
367 	__mutex_init(&ref->mutex, "i915_active", mkey);
368 	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
369 	INIT_WORK(&ref->work, active_work);
370 #if IS_ENABLED(CONFIG_LOCKDEP)
371 	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
372 #endif
373 }
374 
____active_del_barrier(struct i915_active * ref,struct active_node * node,struct intel_engine_cs * engine)375 static bool ____active_del_barrier(struct i915_active *ref,
376 				   struct active_node *node,
377 				   struct intel_engine_cs *engine)
378 
379 {
380 	struct llist_node *head = NULL, *tail = NULL;
381 	struct llist_node *pos, *next;
382 
383 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
384 
385 	/*
386 	 * Rebuild the llist excluding our node. We may perform this
387 	 * outside of the kernel_context timeline mutex and so someone
388 	 * else may be manipulating the engine->barrier_tasks, in
389 	 * which case either we or they will be upset :)
390 	 *
391 	 * A second __active_del_barrier() will report failure to claim
392 	 * the active_node and the caller will just shrug and know not to
393 	 * claim ownership of its node.
394 	 *
395 	 * A concurrent i915_request_add_active_barriers() will miss adding
396 	 * any of the tasks, but we will try again on the next -- and since
397 	 * we are actively using the barrier, we know that there will be
398 	 * at least another opportunity when we idle.
399 	 */
400 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
401 		if (node == barrier_from_ll(pos)) {
402 			node = NULL;
403 			continue;
404 		}
405 
406 		pos->next = head;
407 		head = pos;
408 		if (!tail)
409 			tail = pos;
410 	}
411 	if (head)
412 		llist_add_batch(head, tail, &engine->barrier_tasks);
413 
414 	return !node;
415 }
416 
417 static bool
__active_del_barrier(struct i915_active * ref,struct active_node * node)418 __active_del_barrier(struct i915_active *ref, struct active_node *node)
419 {
420 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
421 }
422 
423 static bool
replace_barrier(struct i915_active * ref,struct i915_active_fence * active)424 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
425 {
426 	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
427 		return false;
428 
429 	/*
430 	 * This request is on the kernel_context timeline, and so
431 	 * we can use it to substitute for the pending idle-barrer
432 	 * request that we want to emit on the kernel_context.
433 	 */
434 	return __active_del_barrier(ref, node_from_active(active));
435 }
436 
i915_active_ref(struct i915_active * ref,u64 idx,struct dma_fence * fence)437 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
438 {
439 	struct i915_active_fence *active;
440 	int err;
441 
442 	/* Prevent reaping in case we malloc/wait while building the tree */
443 	err = i915_active_acquire(ref);
444 	if (err)
445 		return err;
446 
447 	do {
448 		active = active_instance(ref, idx);
449 		if (!active) {
450 			err = -ENOMEM;
451 			goto out;
452 		}
453 
454 		if (replace_barrier(ref, active)) {
455 			RCU_INIT_POINTER(active->fence, NULL);
456 			atomic_dec(&ref->count);
457 		}
458 	} while (unlikely(is_barrier(active)));
459 
460 	fence = __i915_active_fence_set(active, fence);
461 	if (!fence)
462 		__i915_active_acquire(ref);
463 	else
464 		dma_fence_put(fence);
465 
466 out:
467 	i915_active_release(ref);
468 	return err;
469 }
470 
471 static struct dma_fence *
__i915_active_set_fence(struct i915_active * ref,struct i915_active_fence * active,struct dma_fence * fence)472 __i915_active_set_fence(struct i915_active *ref,
473 			struct i915_active_fence *active,
474 			struct dma_fence *fence)
475 {
476 	struct dma_fence *prev;
477 
478 	if (replace_barrier(ref, active)) {
479 		RCU_INIT_POINTER(active->fence, fence);
480 		return NULL;
481 	}
482 
483 	prev = __i915_active_fence_set(active, fence);
484 	if (!prev)
485 		__i915_active_acquire(ref);
486 
487 	return prev;
488 }
489 
490 static struct i915_active_fence *
__active_fence(struct i915_active * ref,u64 idx)491 __active_fence(struct i915_active *ref, u64 idx)
492 {
493 	struct active_node *it;
494 
495 	it = __active_lookup(ref, idx);
496 	if (unlikely(!it)) { /* Contention with parallel tree builders! */
497 		spin_lock_irq(&ref->tree_lock);
498 		it = __active_lookup(ref, idx);
499 		spin_unlock_irq(&ref->tree_lock);
500 	}
501 	GEM_BUG_ON(!it); /* slot must be preallocated */
502 
503 	return &it->base;
504 }
505 
506 struct dma_fence *
__i915_active_ref(struct i915_active * ref,u64 idx,struct dma_fence * fence)507 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
508 {
509 	/* Only valid while active, see i915_active_acquire_for_context() */
510 	return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
511 }
512 
513 struct dma_fence *
i915_active_set_exclusive(struct i915_active * ref,struct dma_fence * f)514 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
515 {
516 	/* We expect the caller to manage the exclusive timeline ordering */
517 	return __i915_active_set_fence(ref, &ref->excl, f);
518 }
519 
i915_active_acquire_if_busy(struct i915_active * ref)520 bool i915_active_acquire_if_busy(struct i915_active *ref)
521 {
522 	debug_active_assert(ref);
523 	return atomic_add_unless(&ref->count, 1, 0);
524 }
525 
__i915_active_activate(struct i915_active * ref)526 static void __i915_active_activate(struct i915_active *ref)
527 {
528 	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
529 	if (!atomic_fetch_inc(&ref->count))
530 		debug_active_activate(ref);
531 	spin_unlock_irq(&ref->tree_lock);
532 }
533 
i915_active_acquire(struct i915_active * ref)534 int i915_active_acquire(struct i915_active *ref)
535 {
536 	int err;
537 
538 	if (i915_active_acquire_if_busy(ref))
539 		return 0;
540 
541 	if (!ref->active) {
542 		__i915_active_activate(ref);
543 		return 0;
544 	}
545 
546 	err = mutex_lock_interruptible(&ref->mutex);
547 	if (err)
548 		return err;
549 
550 	if (likely(!i915_active_acquire_if_busy(ref))) {
551 		err = ref->active(ref);
552 		if (!err)
553 			__i915_active_activate(ref);
554 	}
555 
556 	mutex_unlock(&ref->mutex);
557 
558 	return err;
559 }
560 
i915_active_acquire_for_context(struct i915_active * ref,u64 idx)561 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
562 {
563 	struct i915_active_fence *active;
564 	int err;
565 
566 	err = i915_active_acquire(ref);
567 	if (err)
568 		return err;
569 
570 	active = active_instance(ref, idx);
571 	if (!active) {
572 		i915_active_release(ref);
573 		return -ENOMEM;
574 	}
575 
576 	return 0; /* return with active ref */
577 }
578 
i915_active_release(struct i915_active * ref)579 void i915_active_release(struct i915_active *ref)
580 {
581 	debug_active_assert(ref);
582 	active_retire(ref);
583 }
584 
enable_signaling(struct i915_active_fence * active)585 static void enable_signaling(struct i915_active_fence *active)
586 {
587 	struct dma_fence *fence;
588 
589 	if (unlikely(is_barrier(active)))
590 		return;
591 
592 	fence = i915_active_fence_get(active);
593 	if (!fence)
594 		return;
595 
596 	dma_fence_enable_sw_signaling(fence);
597 	dma_fence_put(fence);
598 }
599 
flush_barrier(struct active_node * it)600 static int flush_barrier(struct active_node *it)
601 {
602 	struct intel_engine_cs *engine;
603 
604 	if (likely(!is_barrier(&it->base)))
605 		return 0;
606 
607 	engine = __barrier_to_engine(it);
608 	smp_rmb(); /* serialise with add_active_barriers */
609 	if (!is_barrier(&it->base))
610 		return 0;
611 
612 	return intel_engine_flush_barriers(engine);
613 }
614 
flush_lazy_signals(struct i915_active * ref)615 static int flush_lazy_signals(struct i915_active *ref)
616 {
617 	struct active_node *it, *n;
618 	int err = 0;
619 
620 	enable_signaling(&ref->excl);
621 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
622 		err = flush_barrier(it); /* unconnected idle barrier? */
623 		if (err)
624 			break;
625 
626 		enable_signaling(&it->base);
627 	}
628 
629 	return err;
630 }
631 
__i915_active_wait(struct i915_active * ref,int state)632 int __i915_active_wait(struct i915_active *ref, int state)
633 {
634 	might_sleep();
635 
636 	/* Any fence added after the wait begins will not be auto-signaled */
637 	if (i915_active_acquire_if_busy(ref)) {
638 		int err;
639 
640 		err = flush_lazy_signals(ref);
641 		i915_active_release(ref);
642 		if (err)
643 			return err;
644 
645 		if (___wait_var_event(ref, i915_active_is_idle(ref),
646 				      state, 0, 0, schedule()))
647 			return -EINTR;
648 	}
649 
650 	/*
651 	 * After the wait is complete, the caller may free the active.
652 	 * We have to flush any concurrent retirement before returning.
653 	 */
654 	flush_work(&ref->work);
655 	return 0;
656 }
657 
__await_active(struct i915_active_fence * active,int (* fn)(void * arg,struct dma_fence * fence),void * arg)658 static int __await_active(struct i915_active_fence *active,
659 			  int (*fn)(void *arg, struct dma_fence *fence),
660 			  void *arg)
661 {
662 	struct dma_fence *fence;
663 
664 	if (is_barrier(active)) /* XXX flush the barrier? */
665 		return 0;
666 
667 	fence = i915_active_fence_get(active);
668 	if (fence) {
669 		int err;
670 
671 		err = fn(arg, fence);
672 		dma_fence_put(fence);
673 		if (err < 0)
674 			return err;
675 	}
676 
677 	return 0;
678 }
679 
680 struct wait_barrier {
681 	struct wait_queue_entry base;
682 	struct i915_active *ref;
683 };
684 
685 static int
barrier_wake(wait_queue_entry_t * wq,unsigned int mode,int flags,void * key)686 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
687 {
688 	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
689 
690 	if (i915_active_is_idle(wb->ref)) {
691 		list_del(&wq->entry);
692 		i915_sw_fence_complete(wq->private);
693 		kfree(wq);
694 	}
695 
696 	return 0;
697 }
698 
__await_barrier(struct i915_active * ref,struct i915_sw_fence * fence)699 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
700 {
701 	struct wait_barrier *wb;
702 
703 	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
704 	if (unlikely(!wb))
705 		return -ENOMEM;
706 
707 	GEM_BUG_ON(i915_active_is_idle(ref));
708 	if (!i915_sw_fence_await(fence)) {
709 		kfree(wb);
710 		return -EINVAL;
711 	}
712 
713 	wb->base.flags = 0;
714 	wb->base.func = barrier_wake;
715 	wb->base.private = fence;
716 	wb->ref = ref;
717 
718 	add_wait_queue(__var_waitqueue(ref), &wb->base);
719 	return 0;
720 }
721 
await_active(struct i915_active * ref,unsigned int flags,int (* fn)(void * arg,struct dma_fence * fence),void * arg,struct i915_sw_fence * barrier)722 static int await_active(struct i915_active *ref,
723 			unsigned int flags,
724 			int (*fn)(void *arg, struct dma_fence *fence),
725 			void *arg, struct i915_sw_fence *barrier)
726 {
727 	int err = 0;
728 
729 	if (!i915_active_acquire_if_busy(ref))
730 		return 0;
731 
732 	if (flags & I915_ACTIVE_AWAIT_EXCL &&
733 	    rcu_access_pointer(ref->excl.fence)) {
734 		err = __await_active(&ref->excl, fn, arg);
735 		if (err)
736 			goto out;
737 	}
738 
739 	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
740 		struct active_node *it, *n;
741 
742 		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
743 			err = __await_active(&it->base, fn, arg);
744 			if (err)
745 				goto out;
746 		}
747 	}
748 
749 	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
750 		err = flush_lazy_signals(ref);
751 		if (err)
752 			goto out;
753 
754 		err = __await_barrier(ref, barrier);
755 		if (err)
756 			goto out;
757 	}
758 
759 out:
760 	i915_active_release(ref);
761 	return err;
762 }
763 
rq_await_fence(void * arg,struct dma_fence * fence)764 static int rq_await_fence(void *arg, struct dma_fence *fence)
765 {
766 	return i915_request_await_dma_fence(arg, fence);
767 }
768 
i915_request_await_active(struct i915_request * rq,struct i915_active * ref,unsigned int flags)769 int i915_request_await_active(struct i915_request *rq,
770 			      struct i915_active *ref,
771 			      unsigned int flags)
772 {
773 	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
774 }
775 
sw_await_fence(void * arg,struct dma_fence * fence)776 static int sw_await_fence(void *arg, struct dma_fence *fence)
777 {
778 	return i915_sw_fence_await_dma_fence(arg, fence, 0,
779 					     GFP_NOWAIT | __GFP_NOWARN);
780 }
781 
i915_sw_fence_await_active(struct i915_sw_fence * fence,struct i915_active * ref,unsigned int flags)782 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
783 			       struct i915_active *ref,
784 			       unsigned int flags)
785 {
786 	return await_active(ref, flags, sw_await_fence, fence, fence);
787 }
788 
i915_active_fini(struct i915_active * ref)789 void i915_active_fini(struct i915_active *ref)
790 {
791 	debug_active_fini(ref);
792 	GEM_BUG_ON(atomic_read(&ref->count));
793 	GEM_BUG_ON(work_pending(&ref->work));
794 	mutex_destroy(&ref->mutex);
795 
796 	if (ref->cache)
797 		kmem_cache_free(global.slab_cache, ref->cache);
798 }
799 
is_idle_barrier(struct active_node * node,u64 idx)800 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
801 {
802 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
803 }
804 
reuse_idle_barrier(struct i915_active * ref,u64 idx)805 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
806 {
807 	struct rb_node *prev, *p;
808 
809 	if (RB_EMPTY_ROOT(&ref->tree))
810 		return NULL;
811 
812 	GEM_BUG_ON(i915_active_is_idle(ref));
813 
814 	/*
815 	 * Try to reuse any existing barrier nodes already allocated for this
816 	 * i915_active, due to overlapping active phases there is likely a
817 	 * node kept alive (as we reuse before parking). We prefer to reuse
818 	 * completely idle barriers (less hassle in manipulating the llists),
819 	 * but otherwise any will do.
820 	 */
821 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
822 		p = &ref->cache->node;
823 		goto match;
824 	}
825 
826 	prev = NULL;
827 	p = ref->tree.rb_node;
828 	while (p) {
829 		struct active_node *node =
830 			rb_entry(p, struct active_node, node);
831 
832 		if (is_idle_barrier(node, idx))
833 			goto match;
834 
835 		prev = p;
836 		if (node->timeline < idx)
837 			p = READ_ONCE(p->rb_right);
838 		else
839 			p = READ_ONCE(p->rb_left);
840 	}
841 
842 	/*
843 	 * No quick match, but we did find the leftmost rb_node for the
844 	 * kernel_context. Walk the rb_tree in-order to see if there were
845 	 * any idle-barriers on this timeline that we missed, or just use
846 	 * the first pending barrier.
847 	 */
848 	for (p = prev; p; p = rb_next(p)) {
849 		struct active_node *node =
850 			rb_entry(p, struct active_node, node);
851 		struct intel_engine_cs *engine;
852 
853 		if (node->timeline > idx)
854 			break;
855 
856 		if (node->timeline < idx)
857 			continue;
858 
859 		if (is_idle_barrier(node, idx))
860 			goto match;
861 
862 		/*
863 		 * The list of pending barriers is protected by the
864 		 * kernel_context timeline, which notably we do not hold
865 		 * here. i915_request_add_active_barriers() may consume
866 		 * the barrier before we claim it, so we have to check
867 		 * for success.
868 		 */
869 		engine = __barrier_to_engine(node);
870 		smp_rmb(); /* serialise with add_active_barriers */
871 		if (is_barrier(&node->base) &&
872 		    ____active_del_barrier(ref, node, engine))
873 			goto match;
874 	}
875 
876 	return NULL;
877 
878 match:
879 	spin_lock_irq(&ref->tree_lock);
880 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
881 	if (p == &ref->cache->node)
882 		WRITE_ONCE(ref->cache, NULL);
883 	spin_unlock_irq(&ref->tree_lock);
884 
885 	return rb_entry(p, struct active_node, node);
886 }
887 
i915_active_acquire_preallocate_barrier(struct i915_active * ref,struct intel_engine_cs * engine)888 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
889 					    struct intel_engine_cs *engine)
890 {
891 	intel_engine_mask_t tmp, mask = engine->mask;
892 	struct llist_node *first = NULL, *last = NULL;
893 	struct intel_gt *gt = engine->gt;
894 
895 	GEM_BUG_ON(i915_active_is_idle(ref));
896 
897 	/* Wait until the previous preallocation is completed */
898 	while (!llist_empty(&ref->preallocated_barriers))
899 		cond_resched();
900 
901 	/*
902 	 * Preallocate a node for each physical engine supporting the target
903 	 * engine (remember virtual engines have more than one sibling).
904 	 * We can then use the preallocated nodes in
905 	 * i915_active_acquire_barrier()
906 	 */
907 	GEM_BUG_ON(!mask);
908 	for_each_engine_masked(engine, gt, mask, tmp) {
909 		u64 idx = engine->kernel_context->timeline->fence_context;
910 		struct llist_node *prev = first;
911 		struct active_node *node;
912 
913 		rcu_read_lock();
914 		node = reuse_idle_barrier(ref, idx);
915 		rcu_read_unlock();
916 		if (!node) {
917 			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
918 			if (!node)
919 				goto unwind;
920 
921 			RCU_INIT_POINTER(node->base.fence, NULL);
922 			node->base.cb.func = node_retire;
923 			node->timeline = idx;
924 			node->ref = ref;
925 		}
926 
927 		if (!i915_active_fence_isset(&node->base)) {
928 			/*
929 			 * Mark this as being *our* unconnected proto-node.
930 			 *
931 			 * Since this node is not in any list, and we have
932 			 * decoupled it from the rbtree, we can reuse the
933 			 * request to indicate this is an idle-barrier node
934 			 * and then we can use the rb_node and list pointers
935 			 * for our tracking of the pending barrier.
936 			 */
937 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
938 			node->base.cb.node.prev = (void *)engine;
939 			__i915_active_acquire(ref);
940 		}
941 		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
942 
943 		GEM_BUG_ON(barrier_to_engine(node) != engine);
944 		first = barrier_to_ll(node);
945 		first->next = prev;
946 		if (!last)
947 			last = first;
948 		intel_engine_pm_get(engine);
949 	}
950 
951 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
952 	llist_add_batch(first, last, &ref->preallocated_barriers);
953 
954 	return 0;
955 
956 unwind:
957 	while (first) {
958 		struct active_node *node = barrier_from_ll(first);
959 
960 		first = first->next;
961 
962 		atomic_dec(&ref->count);
963 		intel_engine_pm_put(barrier_to_engine(node));
964 
965 		kmem_cache_free(global.slab_cache, node);
966 	}
967 	return -ENOMEM;
968 }
969 
i915_active_acquire_barrier(struct i915_active * ref)970 void i915_active_acquire_barrier(struct i915_active *ref)
971 {
972 	struct llist_node *pos, *next;
973 	unsigned long flags;
974 
975 	GEM_BUG_ON(i915_active_is_idle(ref));
976 
977 	/*
978 	 * Transfer the list of preallocated barriers into the
979 	 * i915_active rbtree, but only as proto-nodes. They will be
980 	 * populated by i915_request_add_active_barriers() to point to the
981 	 * request that will eventually release them.
982 	 */
983 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
984 		struct active_node *node = barrier_from_ll(pos);
985 		struct intel_engine_cs *engine = barrier_to_engine(node);
986 		struct rb_node **p, *parent;
987 
988 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
989 					 SINGLE_DEPTH_NESTING);
990 		parent = NULL;
991 		p = &ref->tree.rb_node;
992 		while (*p) {
993 			struct active_node *it;
994 
995 			parent = *p;
996 
997 			it = rb_entry(parent, struct active_node, node);
998 			if (it->timeline < node->timeline)
999 				p = &parent->rb_right;
1000 			else
1001 				p = &parent->rb_left;
1002 		}
1003 		rb_link_node(&node->node, parent, p);
1004 		rb_insert_color(&node->node, &ref->tree);
1005 		spin_unlock_irqrestore(&ref->tree_lock, flags);
1006 
1007 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1008 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1009 		intel_engine_pm_put_delay(engine, 1);
1010 	}
1011 }
1012 
ll_to_fence_slot(struct llist_node * node)1013 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1014 {
1015 	return __active_fence_slot(&barrier_from_ll(node)->base);
1016 }
1017 
i915_request_add_active_barriers(struct i915_request * rq)1018 void i915_request_add_active_barriers(struct i915_request *rq)
1019 {
1020 	struct intel_engine_cs *engine = rq->engine;
1021 	struct llist_node *node, *next;
1022 	unsigned long flags;
1023 
1024 	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1025 	GEM_BUG_ON(intel_engine_is_virtual(engine));
1026 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1027 
1028 	node = llist_del_all(&engine->barrier_tasks);
1029 	if (!node)
1030 		return;
1031 	/*
1032 	 * Attach the list of proto-fences to the in-flight request such
1033 	 * that the parent i915_active will be released when this request
1034 	 * is retired.
1035 	 */
1036 	spin_lock_irqsave(&rq->lock, flags);
1037 	llist_for_each_safe(node, next, node) {
1038 		/* serialise with reuse_idle_barrier */
1039 		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1040 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1041 	}
1042 	spin_unlock_irqrestore(&rq->lock, flags);
1043 }
1044 
1045 /*
1046  * __i915_active_fence_set: Update the last active fence along its timeline
1047  * @active: the active tracker
1048  * @fence: the new fence (under construction)
1049  *
1050  * Records the new @fence as the last active fence along its timeline in
1051  * this active tracker, moving the tracking callbacks from the previous
1052  * fence onto this one. Gets and returns a reference to the previous fence
1053  * (if not already completed), which the caller must put after making sure
1054  * that it is executed before the new fence. To ensure that the order of
1055  * fences within the timeline of the i915_active_fence is understood, it
1056  * should be locked by the caller.
1057  */
1058 struct dma_fence *
__i915_active_fence_set(struct i915_active_fence * active,struct dma_fence * fence)1059 __i915_active_fence_set(struct i915_active_fence *active,
1060 			struct dma_fence *fence)
1061 {
1062 	struct dma_fence *prev;
1063 	unsigned long flags;
1064 
1065 	/*
1066 	 * In case of fences embedded in i915_requests, their memory is
1067 	 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release
1068 	 * by new requests.  Then, there is a risk of passing back a pointer
1069 	 * to a new, completely unrelated fence that reuses the same memory
1070 	 * while tracked under a different active tracker.  Combined with i915
1071 	 * perf open/close operations that build await dependencies between
1072 	 * engine kernel context requests and user requests from different
1073 	 * timelines, this can lead to dependency loops and infinite waits.
1074 	 *
1075 	 * As a countermeasure, we try to get a reference to the active->fence
1076 	 * first, so if we succeed and pass it back to our user then it is not
1077 	 * released and potentially reused by an unrelated request before the
1078 	 * user has a chance to set up an await dependency on it.
1079 	 */
1080 	prev = i915_active_fence_get(active);
1081 	if (fence == prev)
1082 		return fence;
1083 
1084 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1085 
1086 	/*
1087 	 * Consider that we have two threads arriving (A and B), with
1088 	 * C already resident as the active->fence.
1089 	 *
1090 	 * Both A and B have got a reference to C or NULL, depending on the
1091 	 * timing of the interrupt handler.  Let's assume that if A has got C
1092 	 * then it has locked C first (before B).
1093 	 *
1094 	 * Note the strong ordering of the timeline also provides consistent
1095 	 * nesting rules for the fence->lock; the inner lock is always the
1096 	 * older lock.
1097 	 */
1098 	spin_lock_irqsave(fence->lock, flags);
1099 	if (prev)
1100 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1101 
1102 	/*
1103 	 * A does the cmpxchg first, and so it sees C or NULL, as before, or
1104 	 * something else, depending on the timing of other threads and/or
1105 	 * interrupt handler.  If not the same as before then A unlocks C if
1106 	 * applicable and retries, starting from an attempt to get a new
1107 	 * active->fence.  Meanwhile, B follows the same path as A.
1108 	 * Once A succeeds with cmpxch, B fails again, retires, gets A from
1109 	 * active->fence, locks it as soon as A completes, and possibly
1110 	 * succeeds with cmpxchg.
1111 	 */
1112 	while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) {
1113 		if (prev) {
1114 			spin_unlock(prev->lock);
1115 			dma_fence_put(prev);
1116 		}
1117 		spin_unlock_irqrestore(fence->lock, flags);
1118 
1119 		prev = i915_active_fence_get(active);
1120 		GEM_BUG_ON(prev == fence);
1121 
1122 		spin_lock_irqsave(fence->lock, flags);
1123 		if (prev)
1124 			spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1125 	}
1126 
1127 	/*
1128 	 * If prev is NULL then the previous fence must have been signaled
1129 	 * and we know that we are first on the timeline.  If it is still
1130 	 * present then, having the lock on that fence already acquired, we
1131 	 * serialise with the interrupt handler, in the process of removing it
1132 	 * from any future interrupt callback.  A will then wait on C before
1133 	 * executing (if present).
1134 	 *
1135 	 * As B is second, it sees A as the previous fence and so waits for
1136 	 * it to complete its transition and takes over the occupancy for
1137 	 * itself -- remembering that it needs to wait on A before executing.
1138 	 */
1139 	if (prev) {
1140 		__list_del_entry(&active->cb.node);
1141 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
1142 	}
1143 	list_add_tail(&active->cb.node, &fence->cb_list);
1144 	spin_unlock_irqrestore(fence->lock, flags);
1145 
1146 	return prev;
1147 }
1148 
i915_active_fence_set(struct i915_active_fence * active,struct i915_request * rq)1149 int i915_active_fence_set(struct i915_active_fence *active,
1150 			  struct i915_request *rq)
1151 {
1152 	struct dma_fence *fence;
1153 	int err = 0;
1154 
1155 	/* Must maintain timeline ordering wrt previous active requests */
1156 	fence = __i915_active_fence_set(active, &rq->fence);
1157 	if (fence) {
1158 		err = i915_request_await_dma_fence(rq, fence);
1159 		dma_fence_put(fence);
1160 	}
1161 
1162 	return err;
1163 }
1164 
i915_active_noop(struct dma_fence * fence,struct dma_fence_cb * cb)1165 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1166 {
1167 	active_fence_cb(fence, cb);
1168 }
1169 
1170 struct auto_active {
1171 	struct i915_active base;
1172 	struct kref ref;
1173 };
1174 
i915_active_get(struct i915_active * ref)1175 struct i915_active *i915_active_get(struct i915_active *ref)
1176 {
1177 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1178 
1179 	kref_get(&aa->ref);
1180 	return &aa->base;
1181 }
1182 
auto_release(struct kref * ref)1183 static void auto_release(struct kref *ref)
1184 {
1185 	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1186 
1187 	i915_active_fini(&aa->base);
1188 	kfree(aa);
1189 }
1190 
i915_active_put(struct i915_active * ref)1191 void i915_active_put(struct i915_active *ref)
1192 {
1193 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1194 
1195 	kref_put(&aa->ref, auto_release);
1196 }
1197 
auto_active(struct i915_active * ref)1198 static int auto_active(struct i915_active *ref)
1199 {
1200 	i915_active_get(ref);
1201 	return 0;
1202 }
1203 
1204 __i915_active_call static void
auto_retire(struct i915_active * ref)1205 auto_retire(struct i915_active *ref)
1206 {
1207 	i915_active_put(ref);
1208 }
1209 
i915_active_create(void)1210 struct i915_active *i915_active_create(void)
1211 {
1212 	struct auto_active *aa;
1213 
1214 	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1215 	if (!aa)
1216 		return NULL;
1217 
1218 	kref_init(&aa->ref);
1219 	i915_active_init(&aa->base, auto_active, auto_retire);
1220 
1221 	return &aa->base;
1222 }
1223 
1224 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1225 #include "selftests/i915_active.c"
1226 #endif
1227 
i915_global_active_shrink(void)1228 static void i915_global_active_shrink(void)
1229 {
1230 	kmem_cache_shrink(global.slab_cache);
1231 }
1232 
i915_global_active_exit(void)1233 static void i915_global_active_exit(void)
1234 {
1235 	kmem_cache_destroy(global.slab_cache);
1236 }
1237 
1238 static struct i915_global_active global = { {
1239 	.shrink = i915_global_active_shrink,
1240 	.exit = i915_global_active_exit,
1241 } };
1242 
i915_global_active_init(void)1243 int __init i915_global_active_init(void)
1244 {
1245 	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1246 	if (!global.slab_cache)
1247 		return -ENOMEM;
1248 
1249 	i915_global_register(&global.base);
1250 	return 0;
1251 }
1252