• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
of_node_name_eq(const struct device_node * np,const char * name)58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
of_node_name_prefix(const struct device_node * np,const char * prefix)73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
__of_node_is_type(const struct device_node * np,const char * type)82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 	const char *match = __of_get_property(np, "device_type", NULL);
85 
86 	return np && match && type && !strcmp(match, type);
87 }
88 
of_bus_n_addr_cells(struct device_node * np)89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 	u32 cells;
92 
93 	for (; np; np = np->parent)
94 		if (!of_property_read_u32(np, "#address-cells", &cells))
95 			return cells;
96 
97 	/* No #address-cells property for the root node */
98 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100 
of_n_addr_cells(struct device_node * np)101 int of_n_addr_cells(struct device_node *np)
102 {
103 	if (np->parent)
104 		np = np->parent;
105 
106 	return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109 
of_bus_n_size_cells(struct device_node * np)110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 	u32 cells;
113 
114 	for (; np; np = np->parent)
115 		if (!of_property_read_u32(np, "#size-cells", &cells))
116 			return cells;
117 
118 	/* No #size-cells property for the root node */
119 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121 
of_n_size_cells(struct device_node * np)122 int of_n_size_cells(struct device_node *np)
123 {
124 	if (np->parent)
125 		np = np->parent;
126 
127 	return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130 
131 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 	return NUMA_NO_NODE;
135 }
136 #endif
137 
138 #define OF_PHANDLE_CACHE_BITS	7
139 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
140 
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142 
of_phandle_cache_hash(phandle handle)143 static u32 of_phandle_cache_hash(phandle handle)
144 {
145 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 }
147 
148 /*
149  * Caller must hold devtree_lock.
150  */
__of_phandle_cache_inv_entry(phandle handle)151 void __of_phandle_cache_inv_entry(phandle handle)
152 {
153 	u32 handle_hash;
154 	struct device_node *np;
155 
156 	if (!handle)
157 		return;
158 
159 	handle_hash = of_phandle_cache_hash(handle);
160 
161 	np = phandle_cache[handle_hash];
162 	if (np && handle == np->phandle)
163 		phandle_cache[handle_hash] = NULL;
164 }
165 
of_core_init(void)166 void __init of_core_init(void)
167 {
168 	struct device_node *np;
169 
170 
171 	/* Create the kset, and register existing nodes */
172 	mutex_lock(&of_mutex);
173 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
174 	if (!of_kset) {
175 		mutex_unlock(&of_mutex);
176 		pr_err("failed to register existing nodes\n");
177 		return;
178 	}
179 	for_each_of_allnodes(np) {
180 		__of_attach_node_sysfs(np);
181 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
183 	}
184 	mutex_unlock(&of_mutex);
185 
186 	/* Symlink in /proc as required by userspace ABI */
187 	if (of_root)
188 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
189 }
190 
__of_find_property(const struct device_node * np,const char * name,int * lenp)191 static struct property *__of_find_property(const struct device_node *np,
192 					   const char *name, int *lenp)
193 {
194 	struct property *pp;
195 
196 	if (!np)
197 		return NULL;
198 
199 	for (pp = np->properties; pp; pp = pp->next) {
200 		if (of_prop_cmp(pp->name, name) == 0) {
201 			if (lenp)
202 				*lenp = pp->length;
203 			break;
204 		}
205 	}
206 
207 	return pp;
208 }
209 
of_find_property(const struct device_node * np,const char * name,int * lenp)210 struct property *of_find_property(const struct device_node *np,
211 				  const char *name,
212 				  int *lenp)
213 {
214 	struct property *pp;
215 	unsigned long flags;
216 
217 	raw_spin_lock_irqsave(&devtree_lock, flags);
218 	pp = __of_find_property(np, name, lenp);
219 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
220 
221 	return pp;
222 }
223 EXPORT_SYMBOL(of_find_property);
224 
__of_find_all_nodes(struct device_node * prev)225 struct device_node *__of_find_all_nodes(struct device_node *prev)
226 {
227 	struct device_node *np;
228 	if (!prev) {
229 		np = of_root;
230 	} else if (prev->child) {
231 		np = prev->child;
232 	} else {
233 		/* Walk back up looking for a sibling, or the end of the structure */
234 		np = prev;
235 		while (np->parent && !np->sibling)
236 			np = np->parent;
237 		np = np->sibling; /* Might be null at the end of the tree */
238 	}
239 	return np;
240 }
241 
242 /**
243  * of_find_all_nodes - Get next node in global list
244  * @prev:	Previous node or NULL to start iteration
245  *		of_node_put() will be called on it
246  *
247  * Return: A node pointer with refcount incremented, use
248  * of_node_put() on it when done.
249  */
of_find_all_nodes(struct device_node * prev)250 struct device_node *of_find_all_nodes(struct device_node *prev)
251 {
252 	struct device_node *np;
253 	unsigned long flags;
254 
255 	raw_spin_lock_irqsave(&devtree_lock, flags);
256 	np = __of_find_all_nodes(prev);
257 	of_node_get(np);
258 	of_node_put(prev);
259 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 	return np;
261 }
262 EXPORT_SYMBOL(of_find_all_nodes);
263 
264 /*
265  * Find a property with a given name for a given node
266  * and return the value.
267  */
__of_get_property(const struct device_node * np,const char * name,int * lenp)268 const void *__of_get_property(const struct device_node *np,
269 			      const char *name, int *lenp)
270 {
271 	struct property *pp = __of_find_property(np, name, lenp);
272 
273 	return pp ? pp->value : NULL;
274 }
275 
276 /*
277  * Find a property with a given name for a given node
278  * and return the value.
279  */
of_get_property(const struct device_node * np,const char * name,int * lenp)280 const void *of_get_property(const struct device_node *np, const char *name,
281 			    int *lenp)
282 {
283 	struct property *pp = of_find_property(np, name, lenp);
284 
285 	return pp ? pp->value : NULL;
286 }
287 EXPORT_SYMBOL(of_get_property);
288 
289 /*
290  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
291  *
292  * @cpu: logical cpu index of a core/thread
293  * @phys_id: physical identifier of a core/thread
294  *
295  * CPU logical to physical index mapping is architecture specific.
296  * However this __weak function provides a default match of physical
297  * id to logical cpu index. phys_id provided here is usually values read
298  * from the device tree which must match the hardware internal registers.
299  *
300  * Returns true if the physical identifier and the logical cpu index
301  * correspond to the same core/thread, false otherwise.
302  */
arch_match_cpu_phys_id(int cpu,u64 phys_id)303 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
304 {
305 	return (u32)phys_id == cpu;
306 }
307 
308 /*
309  * Checks if the given "prop_name" property holds the physical id of the
310  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
311  * NULL, local thread number within the core is returned in it.
312  */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)313 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
314 			const char *prop_name, int cpu, unsigned int *thread)
315 {
316 	const __be32 *cell;
317 	int ac, prop_len, tid;
318 	u64 hwid;
319 
320 	ac = of_n_addr_cells(cpun);
321 	cell = of_get_property(cpun, prop_name, &prop_len);
322 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
323 		return true;
324 	if (!cell || !ac)
325 		return false;
326 	prop_len /= sizeof(*cell) * ac;
327 	for (tid = 0; tid < prop_len; tid++) {
328 		hwid = of_read_number(cell, ac);
329 		if (arch_match_cpu_phys_id(cpu, hwid)) {
330 			if (thread)
331 				*thread = tid;
332 			return true;
333 		}
334 		cell += ac;
335 	}
336 	return false;
337 }
338 
339 /*
340  * arch_find_n_match_cpu_physical_id - See if the given device node is
341  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
342  * else false.  If 'thread' is non-NULL, the local thread number within the
343  * core is returned in it.
344  */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)345 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
346 					      int cpu, unsigned int *thread)
347 {
348 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
349 	 * for thread ids on PowerPC. If it doesn't exist fallback to
350 	 * standard "reg" property.
351 	 */
352 	if (IS_ENABLED(CONFIG_PPC) &&
353 	    __of_find_n_match_cpu_property(cpun,
354 					   "ibm,ppc-interrupt-server#s",
355 					   cpu, thread))
356 		return true;
357 
358 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
359 }
360 
361 /**
362  * of_get_cpu_node - Get device node associated with the given logical CPU
363  *
364  * @cpu: CPU number(logical index) for which device node is required
365  * @thread: if not NULL, local thread number within the physical core is
366  *          returned
367  *
368  * The main purpose of this function is to retrieve the device node for the
369  * given logical CPU index. It should be used to initialize the of_node in
370  * cpu device. Once of_node in cpu device is populated, all the further
371  * references can use that instead.
372  *
373  * CPU logical to physical index mapping is architecture specific and is built
374  * before booting secondary cores. This function uses arch_match_cpu_phys_id
375  * which can be overridden by architecture specific implementation.
376  *
377  * Return: A node pointer for the logical cpu with refcount incremented, use
378  * of_node_put() on it when done. Returns NULL if not found.
379  */
of_get_cpu_node(int cpu,unsigned int * thread)380 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
381 {
382 	struct device_node *cpun;
383 
384 	for_each_of_cpu_node(cpun) {
385 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
386 			return cpun;
387 	}
388 	return NULL;
389 }
390 EXPORT_SYMBOL(of_get_cpu_node);
391 
392 /**
393  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
394  *
395  * @cpu_node: Pointer to the device_node for CPU.
396  *
397  * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
398  * CPU is not found.
399  */
of_cpu_node_to_id(struct device_node * cpu_node)400 int of_cpu_node_to_id(struct device_node *cpu_node)
401 {
402 	int cpu;
403 	bool found = false;
404 	struct device_node *np;
405 
406 	for_each_possible_cpu(cpu) {
407 		np = of_cpu_device_node_get(cpu);
408 		found = (cpu_node == np);
409 		of_node_put(np);
410 		if (found)
411 			return cpu;
412 	}
413 
414 	return -ENODEV;
415 }
416 EXPORT_SYMBOL(of_cpu_node_to_id);
417 
418 /**
419  * of_get_cpu_state_node - Get CPU's idle state node at the given index
420  *
421  * @cpu_node: The device node for the CPU
422  * @index: The index in the list of the idle states
423  *
424  * Two generic methods can be used to describe a CPU's idle states, either via
425  * a flattened description through the "cpu-idle-states" binding or via the
426  * hierarchical layout, using the "power-domains" and the "domain-idle-states"
427  * bindings. This function check for both and returns the idle state node for
428  * the requested index.
429  *
430  * Return: An idle state node if found at @index. The refcount is incremented
431  * for it, so call of_node_put() on it when done. Returns NULL if not found.
432  */
of_get_cpu_state_node(struct device_node * cpu_node,int index)433 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
434 					  int index)
435 {
436 	struct of_phandle_args args;
437 	int err;
438 
439 	err = of_parse_phandle_with_args(cpu_node, "power-domains",
440 					"#power-domain-cells", 0, &args);
441 	if (!err) {
442 		struct device_node *state_node =
443 			of_parse_phandle(args.np, "domain-idle-states", index);
444 
445 		of_node_put(args.np);
446 		if (state_node)
447 			return state_node;
448 	}
449 
450 	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
451 }
452 EXPORT_SYMBOL(of_get_cpu_state_node);
453 
454 /**
455  * __of_device_is_compatible() - Check if the node matches given constraints
456  * @device: pointer to node
457  * @compat: required compatible string, NULL or "" for any match
458  * @type: required device_type value, NULL or "" for any match
459  * @name: required node name, NULL or "" for any match
460  *
461  * Checks if the given @compat, @type and @name strings match the
462  * properties of the given @device. A constraints can be skipped by
463  * passing NULL or an empty string as the constraint.
464  *
465  * Returns 0 for no match, and a positive integer on match. The return
466  * value is a relative score with larger values indicating better
467  * matches. The score is weighted for the most specific compatible value
468  * to get the highest score. Matching type is next, followed by matching
469  * name. Practically speaking, this results in the following priority
470  * order for matches:
471  *
472  * 1. specific compatible && type && name
473  * 2. specific compatible && type
474  * 3. specific compatible && name
475  * 4. specific compatible
476  * 5. general compatible && type && name
477  * 6. general compatible && type
478  * 7. general compatible && name
479  * 8. general compatible
480  * 9. type && name
481  * 10. type
482  * 11. name
483  */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)484 static int __of_device_is_compatible(const struct device_node *device,
485 				     const char *compat, const char *type, const char *name)
486 {
487 	struct property *prop;
488 	const char *cp;
489 	int index = 0, score = 0;
490 
491 	/* Compatible match has highest priority */
492 	if (compat && compat[0]) {
493 		prop = __of_find_property(device, "compatible", NULL);
494 		for (cp = of_prop_next_string(prop, NULL); cp;
495 		     cp = of_prop_next_string(prop, cp), index++) {
496 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
497 				score = INT_MAX/2 - (index << 2);
498 				break;
499 			}
500 		}
501 		if (!score)
502 			return 0;
503 	}
504 
505 	/* Matching type is better than matching name */
506 	if (type && type[0]) {
507 		if (!__of_node_is_type(device, type))
508 			return 0;
509 		score += 2;
510 	}
511 
512 	/* Matching name is a bit better than not */
513 	if (name && name[0]) {
514 		if (!of_node_name_eq(device, name))
515 			return 0;
516 		score++;
517 	}
518 
519 	return score;
520 }
521 
522 /** Checks if the given "compat" string matches one of the strings in
523  * the device's "compatible" property
524  */
of_device_is_compatible(const struct device_node * device,const char * compat)525 int of_device_is_compatible(const struct device_node *device,
526 		const char *compat)
527 {
528 	unsigned long flags;
529 	int res;
530 
531 	raw_spin_lock_irqsave(&devtree_lock, flags);
532 	res = __of_device_is_compatible(device, compat, NULL, NULL);
533 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
534 	return res;
535 }
536 EXPORT_SYMBOL(of_device_is_compatible);
537 
538 /** Checks if the device is compatible with any of the entries in
539  *  a NULL terminated array of strings. Returns the best match
540  *  score or 0.
541  */
of_device_compatible_match(struct device_node * device,const char * const * compat)542 int of_device_compatible_match(struct device_node *device,
543 			       const char *const *compat)
544 {
545 	unsigned int tmp, score = 0;
546 
547 	if (!compat)
548 		return 0;
549 
550 	while (*compat) {
551 		tmp = of_device_is_compatible(device, *compat);
552 		if (tmp > score)
553 			score = tmp;
554 		compat++;
555 	}
556 
557 	return score;
558 }
559 
560 /**
561  * of_machine_is_compatible - Test root of device tree for a given compatible value
562  * @compat: compatible string to look for in root node's compatible property.
563  *
564  * Return: A positive integer if the root node has the given value in its
565  * compatible property.
566  */
of_machine_is_compatible(const char * compat)567 int of_machine_is_compatible(const char *compat)
568 {
569 	struct device_node *root;
570 	int rc = 0;
571 
572 	root = of_find_node_by_path("/");
573 	if (root) {
574 		rc = of_device_is_compatible(root, compat);
575 		of_node_put(root);
576 	}
577 	return rc;
578 }
579 EXPORT_SYMBOL(of_machine_is_compatible);
580 
581 /**
582  *  __of_device_is_available - check if a device is available for use
583  *
584  *  @device: Node to check for availability, with locks already held
585  *
586  *  Return: True if the status property is absent or set to "okay" or "ok",
587  *  false otherwise
588  */
__of_device_is_available(const struct device_node * device)589 static bool __of_device_is_available(const struct device_node *device)
590 {
591 	const char *status;
592 	int statlen;
593 
594 	if (!device)
595 		return false;
596 
597 	status = __of_get_property(device, "status", &statlen);
598 	if (status == NULL)
599 		return true;
600 
601 	if (statlen > 0) {
602 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
603 			return true;
604 	}
605 
606 	return false;
607 }
608 
609 /**
610  *  of_device_is_available - check if a device is available for use
611  *
612  *  @device: Node to check for availability
613  *
614  *  Return: True if the status property is absent or set to "okay" or "ok",
615  *  false otherwise
616  */
of_device_is_available(const struct device_node * device)617 bool of_device_is_available(const struct device_node *device)
618 {
619 	unsigned long flags;
620 	bool res;
621 
622 	raw_spin_lock_irqsave(&devtree_lock, flags);
623 	res = __of_device_is_available(device);
624 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
625 	return res;
626 
627 }
628 EXPORT_SYMBOL(of_device_is_available);
629 
630 /**
631  *  of_device_is_big_endian - check if a device has BE registers
632  *
633  *  @device: Node to check for endianness
634  *
635  *  Return: True if the device has a "big-endian" property, or if the kernel
636  *  was compiled for BE *and* the device has a "native-endian" property.
637  *  Returns false otherwise.
638  *
639  *  Callers would nominally use ioread32be/iowrite32be if
640  *  of_device_is_big_endian() == true, or readl/writel otherwise.
641  */
of_device_is_big_endian(const struct device_node * device)642 bool of_device_is_big_endian(const struct device_node *device)
643 {
644 	if (of_property_read_bool(device, "big-endian"))
645 		return true;
646 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
647 	    of_property_read_bool(device, "native-endian"))
648 		return true;
649 	return false;
650 }
651 EXPORT_SYMBOL(of_device_is_big_endian);
652 
653 /**
654  * of_get_parent - Get a node's parent if any
655  * @node:	Node to get parent
656  *
657  * Return: A node pointer with refcount incremented, use
658  * of_node_put() on it when done.
659  */
of_get_parent(const struct device_node * node)660 struct device_node *of_get_parent(const struct device_node *node)
661 {
662 	struct device_node *np;
663 	unsigned long flags;
664 
665 	if (!node)
666 		return NULL;
667 
668 	raw_spin_lock_irqsave(&devtree_lock, flags);
669 	np = of_node_get(node->parent);
670 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
671 	return np;
672 }
673 EXPORT_SYMBOL(of_get_parent);
674 
675 /**
676  * of_get_next_parent - Iterate to a node's parent
677  * @node:	Node to get parent of
678  *
679  * This is like of_get_parent() except that it drops the
680  * refcount on the passed node, making it suitable for iterating
681  * through a node's parents.
682  *
683  * Return: A node pointer with refcount incremented, use
684  * of_node_put() on it when done.
685  */
of_get_next_parent(struct device_node * node)686 struct device_node *of_get_next_parent(struct device_node *node)
687 {
688 	struct device_node *parent;
689 	unsigned long flags;
690 
691 	if (!node)
692 		return NULL;
693 
694 	raw_spin_lock_irqsave(&devtree_lock, flags);
695 	parent = of_node_get(node->parent);
696 	of_node_put(node);
697 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
698 	return parent;
699 }
700 EXPORT_SYMBOL(of_get_next_parent);
701 
__of_get_next_child(const struct device_node * node,struct device_node * prev)702 static struct device_node *__of_get_next_child(const struct device_node *node,
703 						struct device_node *prev)
704 {
705 	struct device_node *next;
706 
707 	if (!node)
708 		return NULL;
709 
710 	next = prev ? prev->sibling : node->child;
711 	for (; next; next = next->sibling)
712 		if (of_node_get(next))
713 			break;
714 	of_node_put(prev);
715 	return next;
716 }
717 #define __for_each_child_of_node(parent, child) \
718 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
719 	     child = __of_get_next_child(parent, child))
720 
721 /**
722  * of_get_next_child - Iterate a node childs
723  * @node:	parent node
724  * @prev:	previous child of the parent node, or NULL to get first
725  *
726  * Return: A node pointer with refcount incremented, use of_node_put() on
727  * it when done. Returns NULL when prev is the last child. Decrements the
728  * refcount of prev.
729  */
of_get_next_child(const struct device_node * node,struct device_node * prev)730 struct device_node *of_get_next_child(const struct device_node *node,
731 	struct device_node *prev)
732 {
733 	struct device_node *next;
734 	unsigned long flags;
735 
736 	raw_spin_lock_irqsave(&devtree_lock, flags);
737 	next = __of_get_next_child(node, prev);
738 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
739 	return next;
740 }
741 EXPORT_SYMBOL(of_get_next_child);
742 
743 /**
744  * of_get_next_available_child - Find the next available child node
745  * @node:	parent node
746  * @prev:	previous child of the parent node, or NULL to get first
747  *
748  * This function is like of_get_next_child(), except that it
749  * automatically skips any disabled nodes (i.e. status = "disabled").
750  */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)751 struct device_node *of_get_next_available_child(const struct device_node *node,
752 	struct device_node *prev)
753 {
754 	struct device_node *next;
755 	unsigned long flags;
756 
757 	if (!node)
758 		return NULL;
759 
760 	raw_spin_lock_irqsave(&devtree_lock, flags);
761 	next = prev ? prev->sibling : node->child;
762 	for (; next; next = next->sibling) {
763 		if (!__of_device_is_available(next))
764 			continue;
765 		if (of_node_get(next))
766 			break;
767 	}
768 	of_node_put(prev);
769 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
770 	return next;
771 }
772 EXPORT_SYMBOL(of_get_next_available_child);
773 
774 /**
775  * of_get_next_cpu_node - Iterate on cpu nodes
776  * @prev:	previous child of the /cpus node, or NULL to get first
777  *
778  * Return: A cpu node pointer with refcount incremented, use of_node_put()
779  * on it when done. Returns NULL when prev is the last child. Decrements
780  * the refcount of prev.
781  */
of_get_next_cpu_node(struct device_node * prev)782 struct device_node *of_get_next_cpu_node(struct device_node *prev)
783 {
784 	struct device_node *next = NULL;
785 	unsigned long flags;
786 	struct device_node *node;
787 
788 	if (!prev)
789 		node = of_find_node_by_path("/cpus");
790 
791 	raw_spin_lock_irqsave(&devtree_lock, flags);
792 	if (prev)
793 		next = prev->sibling;
794 	else if (node) {
795 		next = node->child;
796 		of_node_put(node);
797 	}
798 	for (; next; next = next->sibling) {
799 		if (!(of_node_name_eq(next, "cpu") ||
800 		      __of_node_is_type(next, "cpu")))
801 			continue;
802 		if (of_node_get(next))
803 			break;
804 	}
805 	of_node_put(prev);
806 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
807 	return next;
808 }
809 EXPORT_SYMBOL(of_get_next_cpu_node);
810 
811 /**
812  * of_get_compatible_child - Find compatible child node
813  * @parent:	parent node
814  * @compatible:	compatible string
815  *
816  * Lookup child node whose compatible property contains the given compatible
817  * string.
818  *
819  * Return: a node pointer with refcount incremented, use of_node_put() on it
820  * when done; or NULL if not found.
821  */
of_get_compatible_child(const struct device_node * parent,const char * compatible)822 struct device_node *of_get_compatible_child(const struct device_node *parent,
823 				const char *compatible)
824 {
825 	struct device_node *child;
826 
827 	for_each_child_of_node(parent, child) {
828 		if (of_device_is_compatible(child, compatible))
829 			break;
830 	}
831 
832 	return child;
833 }
834 EXPORT_SYMBOL(of_get_compatible_child);
835 
836 /**
837  * of_get_child_by_name - Find the child node by name for a given parent
838  * @node:	parent node
839  * @name:	child name to look for.
840  *
841  * This function looks for child node for given matching name
842  *
843  * Return: A node pointer if found, with refcount incremented, use
844  * of_node_put() on it when done.
845  * Returns NULL if node is not found.
846  */
of_get_child_by_name(const struct device_node * node,const char * name)847 struct device_node *of_get_child_by_name(const struct device_node *node,
848 				const char *name)
849 {
850 	struct device_node *child;
851 
852 	for_each_child_of_node(node, child)
853 		if (of_node_name_eq(child, name))
854 			break;
855 	return child;
856 }
857 EXPORT_SYMBOL(of_get_child_by_name);
858 
__of_find_node_by_path(struct device_node * parent,const char * path)859 struct device_node *__of_find_node_by_path(struct device_node *parent,
860 						const char *path)
861 {
862 	struct device_node *child;
863 	int len;
864 
865 	len = strcspn(path, "/:");
866 	if (!len)
867 		return NULL;
868 
869 	__for_each_child_of_node(parent, child) {
870 		const char *name = kbasename(child->full_name);
871 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
872 			return child;
873 	}
874 	return NULL;
875 }
876 
__of_find_node_by_full_path(struct device_node * node,const char * path)877 struct device_node *__of_find_node_by_full_path(struct device_node *node,
878 						const char *path)
879 {
880 	const char *separator = strchr(path, ':');
881 
882 	while (node && *path == '/') {
883 		struct device_node *tmp = node;
884 
885 		path++; /* Increment past '/' delimiter */
886 		node = __of_find_node_by_path(node, path);
887 		of_node_put(tmp);
888 		path = strchrnul(path, '/');
889 		if (separator && separator < path)
890 			break;
891 	}
892 	return node;
893 }
894 
895 /**
896  * of_find_node_opts_by_path - Find a node matching a full OF path
897  * @path: Either the full path to match, or if the path does not
898  *       start with '/', the name of a property of the /aliases
899  *       node (an alias).  In the case of an alias, the node
900  *       matching the alias' value will be returned.
901  * @opts: Address of a pointer into which to store the start of
902  *       an options string appended to the end of the path with
903  *       a ':' separator.
904  *
905  * Valid paths:
906  *  * /foo/bar	Full path
907  *  * foo	Valid alias
908  *  * foo/bar	Valid alias + relative path
909  *
910  * Return: A node pointer with refcount incremented, use
911  * of_node_put() on it when done.
912  */
of_find_node_opts_by_path(const char * path,const char ** opts)913 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
914 {
915 	struct device_node *np = NULL;
916 	struct property *pp;
917 	unsigned long flags;
918 	const char *separator = strchr(path, ':');
919 
920 	if (opts)
921 		*opts = separator ? separator + 1 : NULL;
922 
923 	if (strcmp(path, "/") == 0)
924 		return of_node_get(of_root);
925 
926 	/* The path could begin with an alias */
927 	if (*path != '/') {
928 		int len;
929 		const char *p = separator;
930 
931 		if (!p)
932 			p = strchrnul(path, '/');
933 		len = p - path;
934 
935 		/* of_aliases must not be NULL */
936 		if (!of_aliases)
937 			return NULL;
938 
939 		for_each_property_of_node(of_aliases, pp) {
940 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
941 				np = of_find_node_by_path(pp->value);
942 				break;
943 			}
944 		}
945 		if (!np)
946 			return NULL;
947 		path = p;
948 	}
949 
950 	/* Step down the tree matching path components */
951 	raw_spin_lock_irqsave(&devtree_lock, flags);
952 	if (!np)
953 		np = of_node_get(of_root);
954 	np = __of_find_node_by_full_path(np, path);
955 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
956 	return np;
957 }
958 EXPORT_SYMBOL(of_find_node_opts_by_path);
959 
960 /**
961  * of_find_node_by_name - Find a node by its "name" property
962  * @from:	The node to start searching from or NULL; the node
963  *		you pass will not be searched, only the next one
964  *		will. Typically, you pass what the previous call
965  *		returned. of_node_put() will be called on @from.
966  * @name:	The name string to match against
967  *
968  * Return: A node pointer with refcount incremented, use
969  * of_node_put() on it when done.
970  */
of_find_node_by_name(struct device_node * from,const char * name)971 struct device_node *of_find_node_by_name(struct device_node *from,
972 	const char *name)
973 {
974 	struct device_node *np;
975 	unsigned long flags;
976 
977 	raw_spin_lock_irqsave(&devtree_lock, flags);
978 	for_each_of_allnodes_from(from, np)
979 		if (of_node_name_eq(np, name) && of_node_get(np))
980 			break;
981 	of_node_put(from);
982 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
983 	return np;
984 }
985 EXPORT_SYMBOL(of_find_node_by_name);
986 
987 /**
988  * of_find_node_by_type - Find a node by its "device_type" property
989  * @from:	The node to start searching from, or NULL to start searching
990  *		the entire device tree. The node you pass will not be
991  *		searched, only the next one will; typically, you pass
992  *		what the previous call returned. of_node_put() will be
993  *		called on from for you.
994  * @type:	The type string to match against
995  *
996  * Return: A node pointer with refcount incremented, use
997  * of_node_put() on it when done.
998  */
of_find_node_by_type(struct device_node * from,const char * type)999 struct device_node *of_find_node_by_type(struct device_node *from,
1000 	const char *type)
1001 {
1002 	struct device_node *np;
1003 	unsigned long flags;
1004 
1005 	raw_spin_lock_irqsave(&devtree_lock, flags);
1006 	for_each_of_allnodes_from(from, np)
1007 		if (__of_node_is_type(np, type) && of_node_get(np))
1008 			break;
1009 	of_node_put(from);
1010 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1011 	return np;
1012 }
1013 EXPORT_SYMBOL(of_find_node_by_type);
1014 
1015 /**
1016  * of_find_compatible_node - Find a node based on type and one of the
1017  *                                tokens in its "compatible" property
1018  * @from:	The node to start searching from or NULL, the node
1019  *		you pass will not be searched, only the next one
1020  *		will; typically, you pass what the previous call
1021  *		returned. of_node_put() will be called on it
1022  * @type:	The type string to match "device_type" or NULL to ignore
1023  * @compatible:	The string to match to one of the tokens in the device
1024  *		"compatible" list.
1025  *
1026  * Return: A node pointer with refcount incremented, use
1027  * of_node_put() on it when done.
1028  */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1029 struct device_node *of_find_compatible_node(struct device_node *from,
1030 	const char *type, const char *compatible)
1031 {
1032 	struct device_node *np;
1033 	unsigned long flags;
1034 
1035 	raw_spin_lock_irqsave(&devtree_lock, flags);
1036 	for_each_of_allnodes_from(from, np)
1037 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1038 		    of_node_get(np))
1039 			break;
1040 	of_node_put(from);
1041 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1042 	return np;
1043 }
1044 EXPORT_SYMBOL(of_find_compatible_node);
1045 
1046 /**
1047  * of_find_node_with_property - Find a node which has a property with
1048  *                              the given name.
1049  * @from:	The node to start searching from or NULL, the node
1050  *		you pass will not be searched, only the next one
1051  *		will; typically, you pass what the previous call
1052  *		returned. of_node_put() will be called on it
1053  * @prop_name:	The name of the property to look for.
1054  *
1055  * Return: A node pointer with refcount incremented, use
1056  * of_node_put() on it when done.
1057  */
of_find_node_with_property(struct device_node * from,const char * prop_name)1058 struct device_node *of_find_node_with_property(struct device_node *from,
1059 	const char *prop_name)
1060 {
1061 	struct device_node *np;
1062 	struct property *pp;
1063 	unsigned long flags;
1064 
1065 	raw_spin_lock_irqsave(&devtree_lock, flags);
1066 	for_each_of_allnodes_from(from, np) {
1067 		for (pp = np->properties; pp; pp = pp->next) {
1068 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1069 				of_node_get(np);
1070 				goto out;
1071 			}
1072 		}
1073 	}
1074 out:
1075 	of_node_put(from);
1076 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1077 	return np;
1078 }
1079 EXPORT_SYMBOL(of_find_node_with_property);
1080 
1081 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1082 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1083 					   const struct device_node *node)
1084 {
1085 	const struct of_device_id *best_match = NULL;
1086 	int score, best_score = 0;
1087 
1088 	if (!matches)
1089 		return NULL;
1090 
1091 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1092 		score = __of_device_is_compatible(node, matches->compatible,
1093 						  matches->type, matches->name);
1094 		if (score > best_score) {
1095 			best_match = matches;
1096 			best_score = score;
1097 		}
1098 	}
1099 
1100 	return best_match;
1101 }
1102 
1103 /**
1104  * of_match_node - Tell if a device_node has a matching of_match structure
1105  * @matches:	array of of device match structures to search in
1106  * @node:	the of device structure to match against
1107  *
1108  * Low level utility function used by device matching.
1109  */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1110 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1111 					 const struct device_node *node)
1112 {
1113 	const struct of_device_id *match;
1114 	unsigned long flags;
1115 
1116 	raw_spin_lock_irqsave(&devtree_lock, flags);
1117 	match = __of_match_node(matches, node);
1118 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1119 	return match;
1120 }
1121 EXPORT_SYMBOL(of_match_node);
1122 
1123 /**
1124  * of_find_matching_node_and_match - Find a node based on an of_device_id
1125  *				     match table.
1126  * @from:	The node to start searching from or NULL, the node
1127  *		you pass will not be searched, only the next one
1128  *		will; typically, you pass what the previous call
1129  *		returned. of_node_put() will be called on it
1130  * @matches:	array of of device match structures to search in
1131  * @match:	Updated to point at the matches entry which matched
1132  *
1133  * Return: A node pointer with refcount incremented, use
1134  * of_node_put() on it when done.
1135  */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1136 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1137 					const struct of_device_id *matches,
1138 					const struct of_device_id **match)
1139 {
1140 	struct device_node *np;
1141 	const struct of_device_id *m;
1142 	unsigned long flags;
1143 
1144 	if (match)
1145 		*match = NULL;
1146 
1147 	raw_spin_lock_irqsave(&devtree_lock, flags);
1148 	for_each_of_allnodes_from(from, np) {
1149 		m = __of_match_node(matches, np);
1150 		if (m && of_node_get(np)) {
1151 			if (match)
1152 				*match = m;
1153 			break;
1154 		}
1155 	}
1156 	of_node_put(from);
1157 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1158 	return np;
1159 }
1160 EXPORT_SYMBOL(of_find_matching_node_and_match);
1161 
1162 /**
1163  * of_modalias_node - Lookup appropriate modalias for a device node
1164  * @node:	pointer to a device tree node
1165  * @modalias:	Pointer to buffer that modalias value will be copied into
1166  * @len:	Length of modalias value
1167  *
1168  * Based on the value of the compatible property, this routine will attempt
1169  * to choose an appropriate modalias value for a particular device tree node.
1170  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1171  * from the first entry in the compatible list property.
1172  *
1173  * Return: This routine returns 0 on success, <0 on failure.
1174  */
of_modalias_node(struct device_node * node,char * modalias,int len)1175 int of_modalias_node(struct device_node *node, char *modalias, int len)
1176 {
1177 	const char *compatible, *p;
1178 	int cplen;
1179 
1180 	compatible = of_get_property(node, "compatible", &cplen);
1181 	if (!compatible || strlen(compatible) > cplen)
1182 		return -ENODEV;
1183 	p = strchr(compatible, ',');
1184 	strlcpy(modalias, p ? p + 1 : compatible, len);
1185 	return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(of_modalias_node);
1188 
1189 /**
1190  * of_find_node_by_phandle - Find a node given a phandle
1191  * @handle:	phandle of the node to find
1192  *
1193  * Return: A node pointer with refcount incremented, use
1194  * of_node_put() on it when done.
1195  */
of_find_node_by_phandle(phandle handle)1196 struct device_node *of_find_node_by_phandle(phandle handle)
1197 {
1198 	struct device_node *np = NULL;
1199 	unsigned long flags;
1200 	u32 handle_hash;
1201 
1202 	if (!handle)
1203 		return NULL;
1204 
1205 	handle_hash = of_phandle_cache_hash(handle);
1206 
1207 	raw_spin_lock_irqsave(&devtree_lock, flags);
1208 
1209 	if (phandle_cache[handle_hash] &&
1210 	    handle == phandle_cache[handle_hash]->phandle)
1211 		np = phandle_cache[handle_hash];
1212 
1213 	if (!np) {
1214 		for_each_of_allnodes(np)
1215 			if (np->phandle == handle &&
1216 			    !of_node_check_flag(np, OF_DETACHED)) {
1217 				phandle_cache[handle_hash] = np;
1218 				break;
1219 			}
1220 	}
1221 
1222 	of_node_get(np);
1223 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1224 	return np;
1225 }
1226 EXPORT_SYMBOL(of_find_node_by_phandle);
1227 
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1228 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1229 {
1230 	int i;
1231 	printk("%s %pOF", msg, args->np);
1232 	for (i = 0; i < args->args_count; i++) {
1233 		const char delim = i ? ',' : ':';
1234 
1235 		pr_cont("%c%08x", delim, args->args[i]);
1236 	}
1237 	pr_cont("\n");
1238 }
1239 
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1240 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1241 		const struct device_node *np,
1242 		const char *list_name,
1243 		const char *cells_name,
1244 		int cell_count)
1245 {
1246 	const __be32 *list;
1247 	int size;
1248 
1249 	memset(it, 0, sizeof(*it));
1250 
1251 	/*
1252 	 * one of cell_count or cells_name must be provided to determine the
1253 	 * argument length.
1254 	 */
1255 	if (cell_count < 0 && !cells_name)
1256 		return -EINVAL;
1257 
1258 	list = of_get_property(np, list_name, &size);
1259 	if (!list)
1260 		return -ENOENT;
1261 
1262 	it->cells_name = cells_name;
1263 	it->cell_count = cell_count;
1264 	it->parent = np;
1265 	it->list_end = list + size / sizeof(*list);
1266 	it->phandle_end = list;
1267 	it->cur = list;
1268 
1269 	return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1272 
of_phandle_iterator_next(struct of_phandle_iterator * it)1273 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1274 {
1275 	uint32_t count = 0;
1276 
1277 	if (it->node) {
1278 		of_node_put(it->node);
1279 		it->node = NULL;
1280 	}
1281 
1282 	if (!it->cur || it->phandle_end >= it->list_end)
1283 		return -ENOENT;
1284 
1285 	it->cur = it->phandle_end;
1286 
1287 	/* If phandle is 0, then it is an empty entry with no arguments. */
1288 	it->phandle = be32_to_cpup(it->cur++);
1289 
1290 	if (it->phandle) {
1291 
1292 		/*
1293 		 * Find the provider node and parse the #*-cells property to
1294 		 * determine the argument length.
1295 		 */
1296 		it->node = of_find_node_by_phandle(it->phandle);
1297 
1298 		if (it->cells_name) {
1299 			if (!it->node) {
1300 				pr_err("%pOF: could not find phandle\n",
1301 				       it->parent);
1302 				goto err;
1303 			}
1304 
1305 			if (of_property_read_u32(it->node, it->cells_name,
1306 						 &count)) {
1307 				/*
1308 				 * If both cell_count and cells_name is given,
1309 				 * fall back to cell_count in absence
1310 				 * of the cells_name property
1311 				 */
1312 				if (it->cell_count >= 0) {
1313 					count = it->cell_count;
1314 				} else {
1315 					pr_err("%pOF: could not get %s for %pOF\n",
1316 					       it->parent,
1317 					       it->cells_name,
1318 					       it->node);
1319 					goto err;
1320 				}
1321 			}
1322 		} else {
1323 			count = it->cell_count;
1324 		}
1325 
1326 		/*
1327 		 * Make sure that the arguments actually fit in the remaining
1328 		 * property data length
1329 		 */
1330 		if (it->cur + count > it->list_end) {
1331 			if (it->cells_name)
1332 				pr_err("%pOF: %s = %d found %td\n",
1333 					it->parent, it->cells_name,
1334 					count, it->list_end - it->cur);
1335 			else
1336 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1337 					it->parent, of_node_full_name(it->node),
1338 					count, it->list_end - it->cur);
1339 			goto err;
1340 		}
1341 	}
1342 
1343 	it->phandle_end = it->cur + count;
1344 	it->cur_count = count;
1345 
1346 	return 0;
1347 
1348 err:
1349 	if (it->node) {
1350 		of_node_put(it->node);
1351 		it->node = NULL;
1352 	}
1353 
1354 	return -EINVAL;
1355 }
1356 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1357 
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1358 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1359 			     uint32_t *args,
1360 			     int size)
1361 {
1362 	int i, count;
1363 
1364 	count = it->cur_count;
1365 
1366 	if (WARN_ON(size < count))
1367 		count = size;
1368 
1369 	for (i = 0; i < count; i++)
1370 		args[i] = be32_to_cpup(it->cur++);
1371 
1372 	return count;
1373 }
1374 
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1375 static int __of_parse_phandle_with_args(const struct device_node *np,
1376 					const char *list_name,
1377 					const char *cells_name,
1378 					int cell_count, int index,
1379 					struct of_phandle_args *out_args)
1380 {
1381 	struct of_phandle_iterator it;
1382 	int rc, cur_index = 0;
1383 
1384 	/* Loop over the phandles until all the requested entry is found */
1385 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1386 		/*
1387 		 * All of the error cases bail out of the loop, so at
1388 		 * this point, the parsing is successful. If the requested
1389 		 * index matches, then fill the out_args structure and return,
1390 		 * or return -ENOENT for an empty entry.
1391 		 */
1392 		rc = -ENOENT;
1393 		if (cur_index == index) {
1394 			if (!it.phandle)
1395 				goto err;
1396 
1397 			if (out_args) {
1398 				int c;
1399 
1400 				c = of_phandle_iterator_args(&it,
1401 							     out_args->args,
1402 							     MAX_PHANDLE_ARGS);
1403 				out_args->np = it.node;
1404 				out_args->args_count = c;
1405 			} else {
1406 				of_node_put(it.node);
1407 			}
1408 
1409 			/* Found it! return success */
1410 			return 0;
1411 		}
1412 
1413 		cur_index++;
1414 	}
1415 
1416 	/*
1417 	 * Unlock node before returning result; will be one of:
1418 	 * -ENOENT : index is for empty phandle
1419 	 * -EINVAL : parsing error on data
1420 	 */
1421 
1422  err:
1423 	of_node_put(it.node);
1424 	return rc;
1425 }
1426 
1427 /**
1428  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1429  * @np: Pointer to device node holding phandle property
1430  * @phandle_name: Name of property holding a phandle value
1431  * @index: For properties holding a table of phandles, this is the index into
1432  *         the table
1433  *
1434  * Return: The device_node pointer with refcount incremented.  Use
1435  * of_node_put() on it when done.
1436  */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1437 struct device_node *of_parse_phandle(const struct device_node *np,
1438 				     const char *phandle_name, int index)
1439 {
1440 	struct of_phandle_args args;
1441 
1442 	if (index < 0)
1443 		return NULL;
1444 
1445 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1446 					 index, &args))
1447 		return NULL;
1448 
1449 	return args.np;
1450 }
1451 EXPORT_SYMBOL(of_parse_phandle);
1452 
1453 /**
1454  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1455  * @np:		pointer to a device tree node containing a list
1456  * @list_name:	property name that contains a list
1457  * @cells_name:	property name that specifies phandles' arguments count
1458  * @index:	index of a phandle to parse out
1459  * @out_args:	optional pointer to output arguments structure (will be filled)
1460  *
1461  * This function is useful to parse lists of phandles and their arguments.
1462  * Returns 0 on success and fills out_args, on error returns appropriate
1463  * errno value.
1464  *
1465  * Caller is responsible to call of_node_put() on the returned out_args->np
1466  * pointer.
1467  *
1468  * Example::
1469  *
1470  *  phandle1: node1 {
1471  *	#list-cells = <2>;
1472  *  };
1473  *
1474  *  phandle2: node2 {
1475  *	#list-cells = <1>;
1476  *  };
1477  *
1478  *  node3 {
1479  *	list = <&phandle1 1 2 &phandle2 3>;
1480  *  };
1481  *
1482  * To get a device_node of the ``node2`` node you may call this:
1483  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1484  */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1485 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1486 				const char *cells_name, int index,
1487 				struct of_phandle_args *out_args)
1488 {
1489 	int cell_count = -1;
1490 
1491 	if (index < 0)
1492 		return -EINVAL;
1493 
1494 	/* If cells_name is NULL we assume a cell count of 0 */
1495 	if (!cells_name)
1496 		cell_count = 0;
1497 
1498 	return __of_parse_phandle_with_args(np, list_name, cells_name,
1499 					    cell_count, index, out_args);
1500 }
1501 EXPORT_SYMBOL(of_parse_phandle_with_args);
1502 
1503 /**
1504  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1505  * @np:		pointer to a device tree node containing a list
1506  * @list_name:	property name that contains a list
1507  * @stem_name:	stem of property names that specify phandles' arguments count
1508  * @index:	index of a phandle to parse out
1509  * @out_args:	optional pointer to output arguments structure (will be filled)
1510  *
1511  * This function is useful to parse lists of phandles and their arguments.
1512  * Returns 0 on success and fills out_args, on error returns appropriate errno
1513  * value. The difference between this function and of_parse_phandle_with_args()
1514  * is that this API remaps a phandle if the node the phandle points to has
1515  * a <@stem_name>-map property.
1516  *
1517  * Caller is responsible to call of_node_put() on the returned out_args->np
1518  * pointer.
1519  *
1520  * Example::
1521  *
1522  *  phandle1: node1 {
1523  *  	#list-cells = <2>;
1524  *  };
1525  *
1526  *  phandle2: node2 {
1527  *  	#list-cells = <1>;
1528  *  };
1529  *
1530  *  phandle3: node3 {
1531  *  	#list-cells = <1>;
1532  *  	list-map = <0 &phandle2 3>,
1533  *  		   <1 &phandle2 2>,
1534  *  		   <2 &phandle1 5 1>;
1535  *  	list-map-mask = <0x3>;
1536  *  };
1537  *
1538  *  node4 {
1539  *  	list = <&phandle1 1 2 &phandle3 0>;
1540  *  };
1541  *
1542  * To get a device_node of the ``node2`` node you may call this:
1543  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1544  */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1545 int of_parse_phandle_with_args_map(const struct device_node *np,
1546 				   const char *list_name,
1547 				   const char *stem_name,
1548 				   int index, struct of_phandle_args *out_args)
1549 {
1550 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1551 	char *pass_name = NULL;
1552 	struct device_node *cur, *new = NULL;
1553 	const __be32 *map, *mask, *pass;
1554 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1555 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1556 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1557 	const __be32 *match_array = initial_match_array;
1558 	int i, ret, map_len, match;
1559 	u32 list_size, new_size;
1560 
1561 	if (index < 0)
1562 		return -EINVAL;
1563 
1564 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1565 	if (!cells_name)
1566 		return -ENOMEM;
1567 
1568 	ret = -ENOMEM;
1569 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1570 	if (!map_name)
1571 		goto free;
1572 
1573 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1574 	if (!mask_name)
1575 		goto free;
1576 
1577 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1578 	if (!pass_name)
1579 		goto free;
1580 
1581 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1582 					   out_args);
1583 	if (ret)
1584 		goto free;
1585 
1586 	/* Get the #<list>-cells property */
1587 	cur = out_args->np;
1588 	ret = of_property_read_u32(cur, cells_name, &list_size);
1589 	if (ret < 0)
1590 		goto put;
1591 
1592 	/* Precalculate the match array - this simplifies match loop */
1593 	for (i = 0; i < list_size; i++)
1594 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1595 
1596 	ret = -EINVAL;
1597 	while (cur) {
1598 		/* Get the <list>-map property */
1599 		map = of_get_property(cur, map_name, &map_len);
1600 		if (!map) {
1601 			ret = 0;
1602 			goto free;
1603 		}
1604 		map_len /= sizeof(u32);
1605 
1606 		/* Get the <list>-map-mask property (optional) */
1607 		mask = of_get_property(cur, mask_name, NULL);
1608 		if (!mask)
1609 			mask = dummy_mask;
1610 		/* Iterate through <list>-map property */
1611 		match = 0;
1612 		while (map_len > (list_size + 1) && !match) {
1613 			/* Compare specifiers */
1614 			match = 1;
1615 			for (i = 0; i < list_size; i++, map_len--)
1616 				match &= !((match_array[i] ^ *map++) & mask[i]);
1617 
1618 			of_node_put(new);
1619 			new = of_find_node_by_phandle(be32_to_cpup(map));
1620 			map++;
1621 			map_len--;
1622 
1623 			/* Check if not found */
1624 			if (!new)
1625 				goto put;
1626 
1627 			if (!of_device_is_available(new))
1628 				match = 0;
1629 
1630 			ret = of_property_read_u32(new, cells_name, &new_size);
1631 			if (ret)
1632 				goto put;
1633 
1634 			/* Check for malformed properties */
1635 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1636 				goto put;
1637 			if (map_len < new_size)
1638 				goto put;
1639 
1640 			/* Move forward by new node's #<list>-cells amount */
1641 			map += new_size;
1642 			map_len -= new_size;
1643 		}
1644 		if (!match)
1645 			goto put;
1646 
1647 		/* Get the <list>-map-pass-thru property (optional) */
1648 		pass = of_get_property(cur, pass_name, NULL);
1649 		if (!pass)
1650 			pass = dummy_pass;
1651 
1652 		/*
1653 		 * Successfully parsed a <list>-map translation; copy new
1654 		 * specifier into the out_args structure, keeping the
1655 		 * bits specified in <list>-map-pass-thru.
1656 		 */
1657 		match_array = map - new_size;
1658 		for (i = 0; i < new_size; i++) {
1659 			__be32 val = *(map - new_size + i);
1660 
1661 			if (i < list_size) {
1662 				val &= ~pass[i];
1663 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1664 			}
1665 
1666 			out_args->args[i] = be32_to_cpu(val);
1667 		}
1668 		out_args->args_count = list_size = new_size;
1669 		/* Iterate again with new provider */
1670 		out_args->np = new;
1671 		of_node_put(cur);
1672 		cur = new;
1673 		new = NULL;
1674 	}
1675 put:
1676 	of_node_put(cur);
1677 	of_node_put(new);
1678 free:
1679 	kfree(mask_name);
1680 	kfree(map_name);
1681 	kfree(cells_name);
1682 	kfree(pass_name);
1683 
1684 	return ret;
1685 }
1686 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1687 
1688 /**
1689  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1690  * @np:		pointer to a device tree node containing a list
1691  * @list_name:	property name that contains a list
1692  * @cell_count: number of argument cells following the phandle
1693  * @index:	index of a phandle to parse out
1694  * @out_args:	optional pointer to output arguments structure (will be filled)
1695  *
1696  * This function is useful to parse lists of phandles and their arguments.
1697  * Returns 0 on success and fills out_args, on error returns appropriate
1698  * errno value.
1699  *
1700  * Caller is responsible to call of_node_put() on the returned out_args->np
1701  * pointer.
1702  *
1703  * Example::
1704  *
1705  *  phandle1: node1 {
1706  *  };
1707  *
1708  *  phandle2: node2 {
1709  *  };
1710  *
1711  *  node3 {
1712  *  	list = <&phandle1 0 2 &phandle2 2 3>;
1713  *  };
1714  *
1715  * To get a device_node of the ``node2`` node you may call this:
1716  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1717  */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1718 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1719 				const char *list_name, int cell_count,
1720 				int index, struct of_phandle_args *out_args)
1721 {
1722 	if (index < 0)
1723 		return -EINVAL;
1724 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1725 					   index, out_args);
1726 }
1727 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1728 
1729 /**
1730  * of_count_phandle_with_args() - Find the number of phandles references in a property
1731  * @np:		pointer to a device tree node containing a list
1732  * @list_name:	property name that contains a list
1733  * @cells_name:	property name that specifies phandles' arguments count
1734  *
1735  * Return: The number of phandle + argument tuples within a property. It
1736  * is a typical pattern to encode a list of phandle and variable
1737  * arguments into a single property. The number of arguments is encoded
1738  * by a property in the phandle-target node. For example, a gpios
1739  * property would contain a list of GPIO specifies consisting of a
1740  * phandle and 1 or more arguments. The number of arguments are
1741  * determined by the #gpio-cells property in the node pointed to by the
1742  * phandle.
1743  */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1744 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1745 				const char *cells_name)
1746 {
1747 	struct of_phandle_iterator it;
1748 	int rc, cur_index = 0;
1749 
1750 	/*
1751 	 * If cells_name is NULL we assume a cell count of 0. This makes
1752 	 * counting the phandles trivial as each 32bit word in the list is a
1753 	 * phandle and no arguments are to consider. So we don't iterate through
1754 	 * the list but just use the length to determine the phandle count.
1755 	 */
1756 	if (!cells_name) {
1757 		const __be32 *list;
1758 		int size;
1759 
1760 		list = of_get_property(np, list_name, &size);
1761 		if (!list)
1762 			return -ENOENT;
1763 
1764 		return size / sizeof(*list);
1765 	}
1766 
1767 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1768 	if (rc)
1769 		return rc;
1770 
1771 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1772 		cur_index += 1;
1773 
1774 	if (rc != -ENOENT)
1775 		return rc;
1776 
1777 	return cur_index;
1778 }
1779 EXPORT_SYMBOL(of_count_phandle_with_args);
1780 
1781 /**
1782  * __of_add_property - Add a property to a node without lock operations
1783  * @np:		Caller's Device Node
1784  * @prob:	Property to add
1785  */
__of_add_property(struct device_node * np,struct property * prop)1786 int __of_add_property(struct device_node *np, struct property *prop)
1787 {
1788 	struct property **next;
1789 
1790 	prop->next = NULL;
1791 	next = &np->properties;
1792 	while (*next) {
1793 		if (strcmp(prop->name, (*next)->name) == 0)
1794 			/* duplicate ! don't insert it */
1795 			return -EEXIST;
1796 
1797 		next = &(*next)->next;
1798 	}
1799 	*next = prop;
1800 
1801 	return 0;
1802 }
1803 
1804 /**
1805  * of_add_property - Add a property to a node
1806  * @np:		Caller's Device Node
1807  * @prob:	Property to add
1808  */
of_add_property(struct device_node * np,struct property * prop)1809 int of_add_property(struct device_node *np, struct property *prop)
1810 {
1811 	unsigned long flags;
1812 	int rc;
1813 
1814 	mutex_lock(&of_mutex);
1815 
1816 	raw_spin_lock_irqsave(&devtree_lock, flags);
1817 	rc = __of_add_property(np, prop);
1818 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1819 
1820 	if (!rc)
1821 		__of_add_property_sysfs(np, prop);
1822 
1823 	mutex_unlock(&of_mutex);
1824 
1825 	if (!rc)
1826 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1827 
1828 	return rc;
1829 }
1830 EXPORT_SYMBOL_GPL(of_add_property);
1831 
__of_remove_property(struct device_node * np,struct property * prop)1832 int __of_remove_property(struct device_node *np, struct property *prop)
1833 {
1834 	struct property **next;
1835 
1836 	for (next = &np->properties; *next; next = &(*next)->next) {
1837 		if (*next == prop)
1838 			break;
1839 	}
1840 	if (*next == NULL)
1841 		return -ENODEV;
1842 
1843 	/* found the node */
1844 	*next = prop->next;
1845 	prop->next = np->deadprops;
1846 	np->deadprops = prop;
1847 
1848 	return 0;
1849 }
1850 
1851 /**
1852  * of_remove_property - Remove a property from a node.
1853  * @np:		Caller's Device Node
1854  * @prob:	Property to remove
1855  *
1856  * Note that we don't actually remove it, since we have given out
1857  * who-knows-how-many pointers to the data using get-property.
1858  * Instead we just move the property to the "dead properties"
1859  * list, so it won't be found any more.
1860  */
of_remove_property(struct device_node * np,struct property * prop)1861 int of_remove_property(struct device_node *np, struct property *prop)
1862 {
1863 	unsigned long flags;
1864 	int rc;
1865 
1866 	if (!prop)
1867 		return -ENODEV;
1868 
1869 	mutex_lock(&of_mutex);
1870 
1871 	raw_spin_lock_irqsave(&devtree_lock, flags);
1872 	rc = __of_remove_property(np, prop);
1873 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1874 
1875 	if (!rc)
1876 		__of_remove_property_sysfs(np, prop);
1877 
1878 	mutex_unlock(&of_mutex);
1879 
1880 	if (!rc)
1881 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1882 
1883 	return rc;
1884 }
1885 EXPORT_SYMBOL_GPL(of_remove_property);
1886 
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1887 int __of_update_property(struct device_node *np, struct property *newprop,
1888 		struct property **oldpropp)
1889 {
1890 	struct property **next, *oldprop;
1891 
1892 	for (next = &np->properties; *next; next = &(*next)->next) {
1893 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1894 			break;
1895 	}
1896 	*oldpropp = oldprop = *next;
1897 
1898 	if (oldprop) {
1899 		/* replace the node */
1900 		newprop->next = oldprop->next;
1901 		*next = newprop;
1902 		oldprop->next = np->deadprops;
1903 		np->deadprops = oldprop;
1904 	} else {
1905 		/* new node */
1906 		newprop->next = NULL;
1907 		*next = newprop;
1908 	}
1909 
1910 	return 0;
1911 }
1912 
1913 /*
1914  * of_update_property - Update a property in a node, if the property does
1915  * not exist, add it.
1916  *
1917  * Note that we don't actually remove it, since we have given out
1918  * who-knows-how-many pointers to the data using get-property.
1919  * Instead we just move the property to the "dead properties" list,
1920  * and add the new property to the property list
1921  */
of_update_property(struct device_node * np,struct property * newprop)1922 int of_update_property(struct device_node *np, struct property *newprop)
1923 {
1924 	struct property *oldprop;
1925 	unsigned long flags;
1926 	int rc;
1927 
1928 	if (!newprop->name)
1929 		return -EINVAL;
1930 
1931 	mutex_lock(&of_mutex);
1932 
1933 	raw_spin_lock_irqsave(&devtree_lock, flags);
1934 	rc = __of_update_property(np, newprop, &oldprop);
1935 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1936 
1937 	if (!rc)
1938 		__of_update_property_sysfs(np, newprop, oldprop);
1939 
1940 	mutex_unlock(&of_mutex);
1941 
1942 	if (!rc)
1943 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1944 
1945 	return rc;
1946 }
1947 
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1948 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1949 			 int id, const char *stem, int stem_len)
1950 {
1951 	ap->np = np;
1952 	ap->id = id;
1953 	strncpy(ap->stem, stem, stem_len);
1954 	ap->stem[stem_len] = 0;
1955 	list_add_tail(&ap->link, &aliases_lookup);
1956 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1957 		 ap->alias, ap->stem, ap->id, np);
1958 }
1959 
1960 /**
1961  * of_alias_scan - Scan all properties of the 'aliases' node
1962  * @dt_alloc:	An allocator that provides a virtual address to memory
1963  *		for storing the resulting tree
1964  *
1965  * The function scans all the properties of the 'aliases' node and populates
1966  * the global lookup table with the properties.  It returns the
1967  * number of alias properties found, or an error code in case of failure.
1968  */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1969 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1970 {
1971 	struct property *pp;
1972 
1973 	of_aliases = of_find_node_by_path("/aliases");
1974 	of_chosen = of_find_node_by_path("/chosen");
1975 	if (of_chosen == NULL)
1976 		of_chosen = of_find_node_by_path("/chosen@0");
1977 
1978 	if (of_chosen) {
1979 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1980 		const char *name = NULL;
1981 
1982 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1983 			of_property_read_string(of_chosen, "linux,stdout-path",
1984 						&name);
1985 		if (IS_ENABLED(CONFIG_PPC) && !name)
1986 			of_property_read_string(of_aliases, "stdout", &name);
1987 		if (name)
1988 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1989 	}
1990 
1991 	if (!of_aliases)
1992 		return;
1993 
1994 	for_each_property_of_node(of_aliases, pp) {
1995 		const char *start = pp->name;
1996 		const char *end = start + strlen(start);
1997 		struct device_node *np;
1998 		struct alias_prop *ap;
1999 		int id, len;
2000 
2001 		/* Skip those we do not want to proceed */
2002 		if (!strcmp(pp->name, "name") ||
2003 		    !strcmp(pp->name, "phandle") ||
2004 		    !strcmp(pp->name, "linux,phandle"))
2005 			continue;
2006 
2007 		np = of_find_node_by_path(pp->value);
2008 		if (!np)
2009 			continue;
2010 
2011 		/* walk the alias backwards to extract the id and work out
2012 		 * the 'stem' string */
2013 		while (isdigit(*(end-1)) && end > start)
2014 			end--;
2015 		len = end - start;
2016 
2017 		if (kstrtoint(end, 10, &id) < 0)
2018 			continue;
2019 
2020 		/* Allocate an alias_prop with enough space for the stem */
2021 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2022 		if (!ap)
2023 			continue;
2024 		memset(ap, 0, sizeof(*ap) + len + 1);
2025 		ap->alias = start;
2026 		of_alias_add(ap, np, id, start, len);
2027 	}
2028 }
2029 
2030 /**
2031  * of_alias_get_id - Get alias id for the given device_node
2032  * @np:		Pointer to the given device_node
2033  * @stem:	Alias stem of the given device_node
2034  *
2035  * The function travels the lookup table to get the alias id for the given
2036  * device_node and alias stem.
2037  *
2038  * Return: The alias id if found.
2039  */
of_alias_get_id(struct device_node * np,const char * stem)2040 int of_alias_get_id(struct device_node *np, const char *stem)
2041 {
2042 	struct alias_prop *app;
2043 	int id = -ENODEV;
2044 
2045 	mutex_lock(&of_mutex);
2046 	list_for_each_entry(app, &aliases_lookup, link) {
2047 		if (strcmp(app->stem, stem) != 0)
2048 			continue;
2049 
2050 		if (np == app->np) {
2051 			id = app->id;
2052 			break;
2053 		}
2054 	}
2055 	mutex_unlock(&of_mutex);
2056 
2057 	return id;
2058 }
2059 EXPORT_SYMBOL_GPL(of_alias_get_id);
2060 
2061 /**
2062  * of_alias_get_alias_list - Get alias list for the given device driver
2063  * @matches:	Array of OF device match structures to search in
2064  * @stem:	Alias stem of the given device_node
2065  * @bitmap:	Bitmap field pointer
2066  * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2067  *
2068  * The function travels the lookup table to record alias ids for the given
2069  * device match structures and alias stem.
2070  *
2071  * Return:	0 or -ENOSYS when !CONFIG_OF or
2072  *		-EOVERFLOW if alias ID is greater then allocated nbits
2073  */
of_alias_get_alias_list(const struct of_device_id * matches,const char * stem,unsigned long * bitmap,unsigned int nbits)2074 int of_alias_get_alias_list(const struct of_device_id *matches,
2075 			     const char *stem, unsigned long *bitmap,
2076 			     unsigned int nbits)
2077 {
2078 	struct alias_prop *app;
2079 	int ret = 0;
2080 
2081 	/* Zero bitmap field to make sure that all the time it is clean */
2082 	bitmap_zero(bitmap, nbits);
2083 
2084 	mutex_lock(&of_mutex);
2085 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2086 	list_for_each_entry(app, &aliases_lookup, link) {
2087 		pr_debug("%s: stem: %s, id: %d\n",
2088 			 __func__, app->stem, app->id);
2089 
2090 		if (strcmp(app->stem, stem) != 0) {
2091 			pr_debug("%s: stem comparison didn't pass %s\n",
2092 				 __func__, app->stem);
2093 			continue;
2094 		}
2095 
2096 		if (of_match_node(matches, app->np)) {
2097 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2098 
2099 			if (app->id >= nbits) {
2100 				pr_warn("%s: ID %d >= than bitmap field %d\n",
2101 					__func__, app->id, nbits);
2102 				ret = -EOVERFLOW;
2103 			} else {
2104 				set_bit(app->id, bitmap);
2105 			}
2106 		}
2107 	}
2108 	mutex_unlock(&of_mutex);
2109 
2110 	return ret;
2111 }
2112 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2113 
2114 /**
2115  * of_alias_get_highest_id - Get highest alias id for the given stem
2116  * @stem:	Alias stem to be examined
2117  *
2118  * The function travels the lookup table to get the highest alias id for the
2119  * given alias stem.  It returns the alias id if found.
2120  */
of_alias_get_highest_id(const char * stem)2121 int of_alias_get_highest_id(const char *stem)
2122 {
2123 	struct alias_prop *app;
2124 	int id = -ENODEV;
2125 
2126 	mutex_lock(&of_mutex);
2127 	list_for_each_entry(app, &aliases_lookup, link) {
2128 		if (strcmp(app->stem, stem) != 0)
2129 			continue;
2130 
2131 		if (app->id > id)
2132 			id = app->id;
2133 	}
2134 	mutex_unlock(&of_mutex);
2135 
2136 	return id;
2137 }
2138 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2139 
2140 /**
2141  * of_console_check() - Test and setup console for DT setup
2142  * @dn: Pointer to device node
2143  * @name: Name to use for preferred console without index. ex. "ttyS"
2144  * @index: Index to use for preferred console.
2145  *
2146  * Check if the given device node matches the stdout-path property in the
2147  * /chosen node. If it does then register it as the preferred console.
2148  *
2149  * Return: TRUE if console successfully setup. Otherwise return FALSE.
2150  */
of_console_check(struct device_node * dn,char * name,int index)2151 bool of_console_check(struct device_node *dn, char *name, int index)
2152 {
2153 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2154 		return false;
2155 
2156 	/*
2157 	 * XXX: cast `options' to char pointer to suppress complication
2158 	 * warnings: printk, UART and console drivers expect char pointer.
2159 	 */
2160 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2161 }
2162 EXPORT_SYMBOL_GPL(of_console_check);
2163 
2164 /**
2165  * of_find_next_cache_node - Find a node's subsidiary cache
2166  * @np:	node of type "cpu" or "cache"
2167  *
2168  * Return: A node pointer with refcount incremented, use
2169  * of_node_put() on it when done.  Caller should hold a reference
2170  * to np.
2171  */
of_find_next_cache_node(const struct device_node * np)2172 struct device_node *of_find_next_cache_node(const struct device_node *np)
2173 {
2174 	struct device_node *child, *cache_node;
2175 
2176 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2177 	if (!cache_node)
2178 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2179 
2180 	if (cache_node)
2181 		return cache_node;
2182 
2183 	/* OF on pmac has nodes instead of properties named "l2-cache"
2184 	 * beneath CPU nodes.
2185 	 */
2186 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2187 		for_each_child_of_node(np, child)
2188 			if (of_node_is_type(child, "cache"))
2189 				return child;
2190 
2191 	return NULL;
2192 }
2193 
2194 /**
2195  * of_find_last_cache_level - Find the level at which the last cache is
2196  * 		present for the given logical cpu
2197  *
2198  * @cpu: cpu number(logical index) for which the last cache level is needed
2199  *
2200  * Return: The the level at which the last cache is present. It is exactly
2201  * same as  the total number of cache levels for the given logical cpu.
2202  */
of_find_last_cache_level(unsigned int cpu)2203 int of_find_last_cache_level(unsigned int cpu)
2204 {
2205 	u32 cache_level = 0;
2206 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2207 
2208 	while (np) {
2209 		prev = np;
2210 		of_node_put(np);
2211 		np = of_find_next_cache_node(np);
2212 	}
2213 
2214 	of_property_read_u32(prev, "cache-level", &cache_level);
2215 
2216 	return cache_level;
2217 }
2218 
2219 /**
2220  * of_map_id - Translate an ID through a downstream mapping.
2221  * @np: root complex device node.
2222  * @id: device ID to map.
2223  * @map_name: property name of the map to use.
2224  * @map_mask_name: optional property name of the mask to use.
2225  * @target: optional pointer to a target device node.
2226  * @id_out: optional pointer to receive the translated ID.
2227  *
2228  * Given a device ID, look up the appropriate implementation-defined
2229  * platform ID and/or the target device which receives transactions on that
2230  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2231  * @id_out may be NULL if only the other is required. If @target points to
2232  * a non-NULL device node pointer, only entries targeting that node will be
2233  * matched; if it points to a NULL value, it will receive the device node of
2234  * the first matching target phandle, with a reference held.
2235  *
2236  * Return: 0 on success or a standard error code on failure.
2237  */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)2238 int of_map_id(struct device_node *np, u32 id,
2239 	       const char *map_name, const char *map_mask_name,
2240 	       struct device_node **target, u32 *id_out)
2241 {
2242 	u32 map_mask, masked_id;
2243 	int map_len;
2244 	const __be32 *map = NULL;
2245 
2246 	if (!np || !map_name || (!target && !id_out))
2247 		return -EINVAL;
2248 
2249 	map = of_get_property(np, map_name, &map_len);
2250 	if (!map) {
2251 		if (target)
2252 			return -ENODEV;
2253 		/* Otherwise, no map implies no translation */
2254 		*id_out = id;
2255 		return 0;
2256 	}
2257 
2258 	if (!map_len || map_len % (4 * sizeof(*map))) {
2259 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2260 			map_name, map_len);
2261 		return -EINVAL;
2262 	}
2263 
2264 	/* The default is to select all bits. */
2265 	map_mask = 0xffffffff;
2266 
2267 	/*
2268 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2269 	 * If of_property_read_u32() fails, the default is used.
2270 	 */
2271 	if (map_mask_name)
2272 		of_property_read_u32(np, map_mask_name, &map_mask);
2273 
2274 	masked_id = map_mask & id;
2275 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2276 		struct device_node *phandle_node;
2277 		u32 id_base = be32_to_cpup(map + 0);
2278 		u32 phandle = be32_to_cpup(map + 1);
2279 		u32 out_base = be32_to_cpup(map + 2);
2280 		u32 id_len = be32_to_cpup(map + 3);
2281 
2282 		if (id_base & ~map_mask) {
2283 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2284 				np, map_name, map_name,
2285 				map_mask, id_base);
2286 			return -EFAULT;
2287 		}
2288 
2289 		if (masked_id < id_base || masked_id >= id_base + id_len)
2290 			continue;
2291 
2292 		phandle_node = of_find_node_by_phandle(phandle);
2293 		if (!phandle_node)
2294 			return -ENODEV;
2295 
2296 		if (target) {
2297 			if (*target)
2298 				of_node_put(phandle_node);
2299 			else
2300 				*target = phandle_node;
2301 
2302 			if (*target != phandle_node)
2303 				continue;
2304 		}
2305 
2306 		if (id_out)
2307 			*id_out = masked_id - id_base + out_base;
2308 
2309 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2310 			np, map_name, map_mask, id_base, out_base,
2311 			id_len, id, masked_id - id_base + out_base);
2312 		return 0;
2313 	}
2314 
2315 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2316 		id, target && *target ? *target : NULL);
2317 
2318 	/* Bypasses translation */
2319 	if (id_out)
2320 		*id_out = id;
2321 	return 0;
2322 }
2323 EXPORT_SYMBOL_GPL(of_map_id);
2324