1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 /*
4 Copyright (c) 2001, 2002 by D-Link Corporation
5 Written by Edward Peng.<edward_peng@dlink.com.tw>
6 Created 03-May-2001, base on Linux' sundance.c.
7
8 */
9
10 #include "dl2k.h"
11 #include <linux/dma-mapping.h>
12
13 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
14 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
15 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
16 #define dr32(reg) ioread32(ioaddr + (reg))
17 #define dr16(reg) ioread16(ioaddr + (reg))
18 #define dr8(reg) ioread8(ioaddr + (reg))
19
20 #define MAX_UNITS 8
21 static int mtu[MAX_UNITS];
22 static int vlan[MAX_UNITS];
23 static int jumbo[MAX_UNITS];
24 static char *media[MAX_UNITS];
25 static int tx_flow=-1;
26 static int rx_flow=-1;
27 static int copy_thresh;
28 static int rx_coalesce=10; /* Rx frame count each interrupt */
29 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
30 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
31
32
33 MODULE_AUTHOR ("Edward Peng");
34 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35 MODULE_LICENSE("GPL");
36 module_param_array(mtu, int, NULL, 0);
37 module_param_array(media, charp, NULL, 0);
38 module_param_array(vlan, int, NULL, 0);
39 module_param_array(jumbo, int, NULL, 0);
40 module_param(tx_flow, int, 0);
41 module_param(rx_flow, int, 0);
42 module_param(copy_thresh, int, 0);
43 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
44 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
45 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
46
47
48 /* Enable the default interrupts */
49 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50 UpdateStats | LinkEvent)
51
dl2k_enable_int(struct netdev_private * np)52 static void dl2k_enable_int(struct netdev_private *np)
53 {
54 void __iomem *ioaddr = np->ioaddr;
55
56 dw16(IntEnable, DEFAULT_INTR);
57 }
58
59 static const int max_intrloop = 50;
60 static const int multicast_filter_limit = 0x40;
61
62 static int rio_open (struct net_device *dev);
63 static void rio_timer (struct timer_list *t);
64 static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67 static void rio_free_tx (struct net_device *dev, int irq);
68 static void tx_error (struct net_device *dev, int tx_status);
69 static int receive_packet (struct net_device *dev);
70 static void rio_error (struct net_device *dev, int int_status);
71 static void set_multicast (struct net_device *dev);
72 static struct net_device_stats *get_stats (struct net_device *dev);
73 static int clear_stats (struct net_device *dev);
74 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75 static int rio_close (struct net_device *dev);
76 static int find_miiphy (struct net_device *dev);
77 static int parse_eeprom (struct net_device *dev);
78 static int read_eeprom (struct netdev_private *, int eep_addr);
79 static int mii_wait_link (struct net_device *dev, int wait);
80 static int mii_set_media (struct net_device *dev);
81 static int mii_get_media (struct net_device *dev);
82 static int mii_set_media_pcs (struct net_device *dev);
83 static int mii_get_media_pcs (struct net_device *dev);
84 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86 u16 data);
87
88 static const struct ethtool_ops ethtool_ops;
89
90 static const struct net_device_ops netdev_ops = {
91 .ndo_open = rio_open,
92 .ndo_start_xmit = start_xmit,
93 .ndo_stop = rio_close,
94 .ndo_get_stats = get_stats,
95 .ndo_validate_addr = eth_validate_addr,
96 .ndo_set_mac_address = eth_mac_addr,
97 .ndo_set_rx_mode = set_multicast,
98 .ndo_do_ioctl = rio_ioctl,
99 .ndo_tx_timeout = rio_tx_timeout,
100 };
101
102 static int
rio_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)103 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
104 {
105 struct net_device *dev;
106 struct netdev_private *np;
107 static int card_idx;
108 int chip_idx = ent->driver_data;
109 int err, irq;
110 void __iomem *ioaddr;
111 void *ring_space;
112 dma_addr_t ring_dma;
113
114 err = pci_enable_device (pdev);
115 if (err)
116 return err;
117
118 irq = pdev->irq;
119 err = pci_request_regions (pdev, "dl2k");
120 if (err)
121 goto err_out_disable;
122
123 pci_set_master (pdev);
124
125 err = -ENOMEM;
126
127 dev = alloc_etherdev (sizeof (*np));
128 if (!dev)
129 goto err_out_res;
130 SET_NETDEV_DEV(dev, &pdev->dev);
131
132 np = netdev_priv(dev);
133
134 /* IO registers range. */
135 ioaddr = pci_iomap(pdev, 0, 0);
136 if (!ioaddr)
137 goto err_out_dev;
138 np->eeprom_addr = ioaddr;
139
140 #ifdef MEM_MAPPING
141 /* MM registers range. */
142 ioaddr = pci_iomap(pdev, 1, 0);
143 if (!ioaddr)
144 goto err_out_iounmap;
145 #endif
146 np->ioaddr = ioaddr;
147 np->chip_id = chip_idx;
148 np->pdev = pdev;
149 spin_lock_init (&np->tx_lock);
150 spin_lock_init (&np->rx_lock);
151
152 /* Parse manual configuration */
153 np->an_enable = 1;
154 np->tx_coalesce = 1;
155 if (card_idx < MAX_UNITS) {
156 if (media[card_idx] != NULL) {
157 np->an_enable = 0;
158 if (strcmp (media[card_idx], "auto") == 0 ||
159 strcmp (media[card_idx], "autosense") == 0 ||
160 strcmp (media[card_idx], "0") == 0 ) {
161 np->an_enable = 2;
162 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163 strcmp (media[card_idx], "4") == 0) {
164 np->speed = 100;
165 np->full_duplex = 1;
166 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
167 strcmp (media[card_idx], "3") == 0) {
168 np->speed = 100;
169 np->full_duplex = 0;
170 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171 strcmp (media[card_idx], "2") == 0) {
172 np->speed = 10;
173 np->full_duplex = 1;
174 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175 strcmp (media[card_idx], "1") == 0) {
176 np->speed = 10;
177 np->full_duplex = 0;
178 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179 strcmp (media[card_idx], "6") == 0) {
180 np->speed=1000;
181 np->full_duplex=1;
182 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183 strcmp (media[card_idx], "5") == 0) {
184 np->speed = 1000;
185 np->full_duplex = 0;
186 } else {
187 np->an_enable = 1;
188 }
189 }
190 if (jumbo[card_idx] != 0) {
191 np->jumbo = 1;
192 dev->mtu = MAX_JUMBO;
193 } else {
194 np->jumbo = 0;
195 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196 dev->mtu = mtu[card_idx];
197 }
198 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199 vlan[card_idx] : 0;
200 if (rx_coalesce > 0 && rx_timeout > 0) {
201 np->rx_coalesce = rx_coalesce;
202 np->rx_timeout = rx_timeout;
203 np->coalesce = 1;
204 }
205 np->tx_flow = (tx_flow == 0) ? 0 : 1;
206 np->rx_flow = (rx_flow == 0) ? 0 : 1;
207
208 if (tx_coalesce < 1)
209 tx_coalesce = 1;
210 else if (tx_coalesce > TX_RING_SIZE-1)
211 tx_coalesce = TX_RING_SIZE - 1;
212 }
213 dev->netdev_ops = &netdev_ops;
214 dev->watchdog_timeo = TX_TIMEOUT;
215 dev->ethtool_ops = ðtool_ops;
216 #if 0
217 dev->features = NETIF_F_IP_CSUM;
218 #endif
219 /* MTU range: 68 - 1536 or 8000 */
220 dev->min_mtu = ETH_MIN_MTU;
221 dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
222
223 pci_set_drvdata (pdev, dev);
224
225 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
226 GFP_KERNEL);
227 if (!ring_space)
228 goto err_out_iounmap;
229 np->tx_ring = ring_space;
230 np->tx_ring_dma = ring_dma;
231
232 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
233 GFP_KERNEL);
234 if (!ring_space)
235 goto err_out_unmap_tx;
236 np->rx_ring = ring_space;
237 np->rx_ring_dma = ring_dma;
238
239 /* Parse eeprom data */
240 parse_eeprom (dev);
241
242 /* Find PHY address */
243 err = find_miiphy (dev);
244 if (err)
245 goto err_out_unmap_rx;
246
247 /* Fiber device? */
248 np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
249 np->link_status = 0;
250 /* Set media and reset PHY */
251 if (np->phy_media) {
252 /* default Auto-Negotiation for fiber deivices */
253 if (np->an_enable == 2) {
254 np->an_enable = 1;
255 }
256 } else {
257 /* Auto-Negotiation is mandatory for 1000BASE-T,
258 IEEE 802.3ab Annex 28D page 14 */
259 if (np->speed == 1000)
260 np->an_enable = 1;
261 }
262
263 err = register_netdev (dev);
264 if (err)
265 goto err_out_unmap_rx;
266
267 card_idx++;
268
269 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
270 dev->name, np->name, dev->dev_addr, irq);
271 if (tx_coalesce > 1)
272 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
273 tx_coalesce);
274 if (np->coalesce)
275 printk(KERN_INFO
276 "rx_coalesce:\t%d packets\n"
277 "rx_timeout: \t%d ns\n",
278 np->rx_coalesce, np->rx_timeout*640);
279 if (np->vlan)
280 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
281 return 0;
282
283 err_out_unmap_rx:
284 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
285 np->rx_ring_dma);
286 err_out_unmap_tx:
287 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
288 np->tx_ring_dma);
289 err_out_iounmap:
290 #ifdef MEM_MAPPING
291 pci_iounmap(pdev, np->ioaddr);
292 #endif
293 pci_iounmap(pdev, np->eeprom_addr);
294 err_out_dev:
295 free_netdev (dev);
296 err_out_res:
297 pci_release_regions (pdev);
298 err_out_disable:
299 pci_disable_device (pdev);
300 return err;
301 }
302
303 static int
find_miiphy(struct net_device * dev)304 find_miiphy (struct net_device *dev)
305 {
306 struct netdev_private *np = netdev_priv(dev);
307 int i, phy_found = 0;
308
309 np->phy_addr = 1;
310
311 for (i = 31; i >= 0; i--) {
312 int mii_status = mii_read (dev, i, 1);
313 if (mii_status != 0xffff && mii_status != 0x0000) {
314 np->phy_addr = i;
315 phy_found++;
316 }
317 }
318 if (!phy_found) {
319 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
320 return -ENODEV;
321 }
322 return 0;
323 }
324
325 static int
parse_eeprom(struct net_device * dev)326 parse_eeprom (struct net_device *dev)
327 {
328 struct netdev_private *np = netdev_priv(dev);
329 void __iomem *ioaddr = np->ioaddr;
330 int i, j;
331 u8 sromdata[256];
332 u8 *psib;
333 u32 crc;
334 PSROM_t psrom = (PSROM_t) sromdata;
335
336 int cid, next;
337
338 for (i = 0; i < 128; i++)
339 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
340
341 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
342 /* Check CRC */
343 crc = ~ether_crc_le (256 - 4, sromdata);
344 if (psrom->crc != cpu_to_le32(crc)) {
345 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
346 dev->name);
347 return -1;
348 }
349 }
350
351 /* Set MAC address */
352 for (i = 0; i < 6; i++)
353 dev->dev_addr[i] = psrom->mac_addr[i];
354
355 if (np->chip_id == CHIP_IP1000A) {
356 np->led_mode = psrom->led_mode;
357 return 0;
358 }
359
360 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
361 return 0;
362 }
363
364 /* Parse Software Information Block */
365 i = 0x30;
366 psib = (u8 *) sromdata;
367 do {
368 cid = psib[i++];
369 next = psib[i++];
370 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
371 printk (KERN_ERR "Cell data error\n");
372 return -1;
373 }
374 switch (cid) {
375 case 0: /* Format version */
376 break;
377 case 1: /* End of cell */
378 return 0;
379 case 2: /* Duplex Polarity */
380 np->duplex_polarity = psib[i];
381 dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
382 break;
383 case 3: /* Wake Polarity */
384 np->wake_polarity = psib[i];
385 break;
386 case 9: /* Adapter description */
387 j = (next - i > 255) ? 255 : next - i;
388 memcpy (np->name, &(psib[i]), j);
389 break;
390 case 4:
391 case 5:
392 case 6:
393 case 7:
394 case 8: /* Reversed */
395 break;
396 default: /* Unknown cell */
397 return -1;
398 }
399 i = next;
400 } while (1);
401
402 return 0;
403 }
404
rio_set_led_mode(struct net_device * dev)405 static void rio_set_led_mode(struct net_device *dev)
406 {
407 struct netdev_private *np = netdev_priv(dev);
408 void __iomem *ioaddr = np->ioaddr;
409 u32 mode;
410
411 if (np->chip_id != CHIP_IP1000A)
412 return;
413
414 mode = dr32(ASICCtrl);
415 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
416
417 if (np->led_mode & 0x01)
418 mode |= IPG_AC_LED_MODE;
419 if (np->led_mode & 0x02)
420 mode |= IPG_AC_LED_MODE_BIT_1;
421 if (np->led_mode & 0x08)
422 mode |= IPG_AC_LED_SPEED;
423
424 dw32(ASICCtrl, mode);
425 }
426
desc_to_dma(struct netdev_desc * desc)427 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
428 {
429 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
430 }
431
free_list(struct net_device * dev)432 static void free_list(struct net_device *dev)
433 {
434 struct netdev_private *np = netdev_priv(dev);
435 struct sk_buff *skb;
436 int i;
437
438 /* Free all the skbuffs in the queue. */
439 for (i = 0; i < RX_RING_SIZE; i++) {
440 skb = np->rx_skbuff[i];
441 if (skb) {
442 dma_unmap_single(&np->pdev->dev,
443 desc_to_dma(&np->rx_ring[i]),
444 skb->len, DMA_FROM_DEVICE);
445 dev_kfree_skb(skb);
446 np->rx_skbuff[i] = NULL;
447 }
448 np->rx_ring[i].status = 0;
449 np->rx_ring[i].fraginfo = 0;
450 }
451 for (i = 0; i < TX_RING_SIZE; i++) {
452 skb = np->tx_skbuff[i];
453 if (skb) {
454 dma_unmap_single(&np->pdev->dev,
455 desc_to_dma(&np->tx_ring[i]),
456 skb->len, DMA_TO_DEVICE);
457 dev_kfree_skb(skb);
458 np->tx_skbuff[i] = NULL;
459 }
460 }
461 }
462
rio_reset_ring(struct netdev_private * np)463 static void rio_reset_ring(struct netdev_private *np)
464 {
465 int i;
466
467 np->cur_rx = 0;
468 np->cur_tx = 0;
469 np->old_rx = 0;
470 np->old_tx = 0;
471
472 for (i = 0; i < TX_RING_SIZE; i++)
473 np->tx_ring[i].status = cpu_to_le64(TFDDone);
474
475 for (i = 0; i < RX_RING_SIZE; i++)
476 np->rx_ring[i].status = 0;
477 }
478
479 /* allocate and initialize Tx and Rx descriptors */
alloc_list(struct net_device * dev)480 static int alloc_list(struct net_device *dev)
481 {
482 struct netdev_private *np = netdev_priv(dev);
483 int i;
484
485 rio_reset_ring(np);
486 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
487
488 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
489 for (i = 0; i < TX_RING_SIZE; i++) {
490 np->tx_skbuff[i] = NULL;
491 np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
492 ((i + 1) % TX_RING_SIZE) *
493 sizeof(struct netdev_desc));
494 }
495
496 /* Initialize Rx descriptors & allocate buffers */
497 for (i = 0; i < RX_RING_SIZE; i++) {
498 /* Allocated fixed size of skbuff */
499 struct sk_buff *skb;
500
501 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
502 np->rx_skbuff[i] = skb;
503 if (!skb) {
504 free_list(dev);
505 return -ENOMEM;
506 }
507
508 np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
509 ((i + 1) % RX_RING_SIZE) *
510 sizeof(struct netdev_desc));
511 /* Rubicon now supports 40 bits of addressing space. */
512 np->rx_ring[i].fraginfo =
513 cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
514 np->rx_buf_sz, DMA_FROM_DEVICE));
515 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
516 }
517
518 return 0;
519 }
520
rio_hw_init(struct net_device * dev)521 static void rio_hw_init(struct net_device *dev)
522 {
523 struct netdev_private *np = netdev_priv(dev);
524 void __iomem *ioaddr = np->ioaddr;
525 int i;
526 u16 macctrl;
527
528 /* Reset all logic functions */
529 dw16(ASICCtrl + 2,
530 GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
531 mdelay(10);
532
533 rio_set_led_mode(dev);
534
535 /* DebugCtrl bit 4, 5, 9 must set */
536 dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
537
538 if (np->chip_id == CHIP_IP1000A &&
539 (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
540 /* PHY magic taken from ipg driver, undocumented registers */
541 mii_write(dev, np->phy_addr, 31, 0x0001);
542 mii_write(dev, np->phy_addr, 27, 0x01e0);
543 mii_write(dev, np->phy_addr, 31, 0x0002);
544 mii_write(dev, np->phy_addr, 27, 0xeb8e);
545 mii_write(dev, np->phy_addr, 31, 0x0000);
546 mii_write(dev, np->phy_addr, 30, 0x005e);
547 /* advertise 1000BASE-T half & full duplex, prefer MASTER */
548 mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
549 }
550
551 if (np->phy_media)
552 mii_set_media_pcs(dev);
553 else
554 mii_set_media(dev);
555
556 /* Jumbo frame */
557 if (np->jumbo != 0)
558 dw16(MaxFrameSize, MAX_JUMBO+14);
559
560 /* Set RFDListPtr */
561 dw32(RFDListPtr0, np->rx_ring_dma);
562 dw32(RFDListPtr1, 0);
563
564 /* Set station address */
565 /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
566 * too. However, it doesn't work on IP1000A so we use 16-bit access.
567 */
568 for (i = 0; i < 3; i++)
569 dw16(StationAddr0 + 2 * i,
570 cpu_to_le16(((u16 *)dev->dev_addr)[i]));
571
572 set_multicast (dev);
573 if (np->coalesce) {
574 dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
575 }
576 /* Set RIO to poll every N*320nsec. */
577 dw8(RxDMAPollPeriod, 0x20);
578 dw8(TxDMAPollPeriod, 0xff);
579 dw8(RxDMABurstThresh, 0x30);
580 dw8(RxDMAUrgentThresh, 0x30);
581 dw32(RmonStatMask, 0x0007ffff);
582 /* clear statistics */
583 clear_stats (dev);
584
585 /* VLAN supported */
586 if (np->vlan) {
587 /* priority field in RxDMAIntCtrl */
588 dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
589 /* VLANId */
590 dw16(VLANId, np->vlan);
591 /* Length/Type should be 0x8100 */
592 dw32(VLANTag, 0x8100 << 16 | np->vlan);
593 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
594 VLAN information tagged by TFC' VID, CFI fields. */
595 dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
596 }
597
598 /* Start Tx/Rx */
599 dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
600
601 macctrl = 0;
602 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
603 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
604 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
605 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
606 dw16(MACCtrl, macctrl);
607 }
608
rio_hw_stop(struct net_device * dev)609 static void rio_hw_stop(struct net_device *dev)
610 {
611 struct netdev_private *np = netdev_priv(dev);
612 void __iomem *ioaddr = np->ioaddr;
613
614 /* Disable interrupts */
615 dw16(IntEnable, 0);
616
617 /* Stop Tx and Rx logics */
618 dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
619 }
620
rio_open(struct net_device * dev)621 static int rio_open(struct net_device *dev)
622 {
623 struct netdev_private *np = netdev_priv(dev);
624 const int irq = np->pdev->irq;
625 int i;
626
627 i = alloc_list(dev);
628 if (i)
629 return i;
630
631 rio_hw_init(dev);
632
633 i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
634 if (i) {
635 rio_hw_stop(dev);
636 free_list(dev);
637 return i;
638 }
639
640 timer_setup(&np->timer, rio_timer, 0);
641 np->timer.expires = jiffies + 1 * HZ;
642 add_timer(&np->timer);
643
644 netif_start_queue (dev);
645
646 dl2k_enable_int(np);
647 return 0;
648 }
649
650 static void
rio_timer(struct timer_list * t)651 rio_timer (struct timer_list *t)
652 {
653 struct netdev_private *np = from_timer(np, t, timer);
654 struct net_device *dev = pci_get_drvdata(np->pdev);
655 unsigned int entry;
656 int next_tick = 1*HZ;
657 unsigned long flags;
658
659 spin_lock_irqsave(&np->rx_lock, flags);
660 /* Recover rx ring exhausted error */
661 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
662 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
663 /* Re-allocate skbuffs to fill the descriptor ring */
664 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
665 struct sk_buff *skb;
666 entry = np->old_rx % RX_RING_SIZE;
667 /* Dropped packets don't need to re-allocate */
668 if (np->rx_skbuff[entry] == NULL) {
669 skb = netdev_alloc_skb_ip_align(dev,
670 np->rx_buf_sz);
671 if (skb == NULL) {
672 np->rx_ring[entry].fraginfo = 0;
673 printk (KERN_INFO
674 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
675 dev->name, entry);
676 break;
677 }
678 np->rx_skbuff[entry] = skb;
679 np->rx_ring[entry].fraginfo =
680 cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
681 np->rx_buf_sz, DMA_FROM_DEVICE));
682 }
683 np->rx_ring[entry].fraginfo |=
684 cpu_to_le64((u64)np->rx_buf_sz << 48);
685 np->rx_ring[entry].status = 0;
686 } /* end for */
687 } /* end if */
688 spin_unlock_irqrestore (&np->rx_lock, flags);
689 np->timer.expires = jiffies + next_tick;
690 add_timer(&np->timer);
691 }
692
693 static void
rio_tx_timeout(struct net_device * dev,unsigned int txqueue)694 rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
695 {
696 struct netdev_private *np = netdev_priv(dev);
697 void __iomem *ioaddr = np->ioaddr;
698
699 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
700 dev->name, dr32(TxStatus));
701 rio_free_tx(dev, 0);
702 dev->if_port = 0;
703 netif_trans_update(dev); /* prevent tx timeout */
704 }
705
706 static netdev_tx_t
start_xmit(struct sk_buff * skb,struct net_device * dev)707 start_xmit (struct sk_buff *skb, struct net_device *dev)
708 {
709 struct netdev_private *np = netdev_priv(dev);
710 void __iomem *ioaddr = np->ioaddr;
711 struct netdev_desc *txdesc;
712 unsigned entry;
713 u64 tfc_vlan_tag = 0;
714
715 if (np->link_status == 0) { /* Link Down */
716 dev_kfree_skb(skb);
717 return NETDEV_TX_OK;
718 }
719 entry = np->cur_tx % TX_RING_SIZE;
720 np->tx_skbuff[entry] = skb;
721 txdesc = &np->tx_ring[entry];
722
723 #if 0
724 if (skb->ip_summed == CHECKSUM_PARTIAL) {
725 txdesc->status |=
726 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
727 IPChecksumEnable);
728 }
729 #endif
730 if (np->vlan) {
731 tfc_vlan_tag = VLANTagInsert |
732 ((u64)np->vlan << 32) |
733 ((u64)skb->priority << 45);
734 }
735 txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
736 skb->len, DMA_TO_DEVICE));
737 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
738
739 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
740 * Work around: Always use 1 descriptor in 10Mbps mode */
741 if (entry % np->tx_coalesce == 0 || np->speed == 10)
742 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
743 WordAlignDisable |
744 TxDMAIndicate |
745 (1 << FragCountShift));
746 else
747 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
748 WordAlignDisable |
749 (1 << FragCountShift));
750
751 /* TxDMAPollNow */
752 dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
753 /* Schedule ISR */
754 dw32(CountDown, 10000);
755 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
756 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
757 < TX_QUEUE_LEN - 1 && np->speed != 10) {
758 /* do nothing */
759 } else if (!netif_queue_stopped(dev)) {
760 netif_stop_queue (dev);
761 }
762
763 /* The first TFDListPtr */
764 if (!dr32(TFDListPtr0)) {
765 dw32(TFDListPtr0, np->tx_ring_dma +
766 entry * sizeof (struct netdev_desc));
767 dw32(TFDListPtr1, 0);
768 }
769
770 return NETDEV_TX_OK;
771 }
772
773 static irqreturn_t
rio_interrupt(int irq,void * dev_instance)774 rio_interrupt (int irq, void *dev_instance)
775 {
776 struct net_device *dev = dev_instance;
777 struct netdev_private *np = netdev_priv(dev);
778 void __iomem *ioaddr = np->ioaddr;
779 unsigned int_status;
780 int cnt = max_intrloop;
781 int handled = 0;
782
783 while (1) {
784 int_status = dr16(IntStatus);
785 dw16(IntStatus, int_status);
786 int_status &= DEFAULT_INTR;
787 if (int_status == 0 || --cnt < 0)
788 break;
789 handled = 1;
790 /* Processing received packets */
791 if (int_status & RxDMAComplete)
792 receive_packet (dev);
793 /* TxDMAComplete interrupt */
794 if ((int_status & (TxDMAComplete|IntRequested))) {
795 int tx_status;
796 tx_status = dr32(TxStatus);
797 if (tx_status & 0x01)
798 tx_error (dev, tx_status);
799 /* Free used tx skbuffs */
800 rio_free_tx (dev, 1);
801 }
802
803 /* Handle uncommon events */
804 if (int_status &
805 (HostError | LinkEvent | UpdateStats))
806 rio_error (dev, int_status);
807 }
808 if (np->cur_tx != np->old_tx)
809 dw32(CountDown, 100);
810 return IRQ_RETVAL(handled);
811 }
812
813 static void
rio_free_tx(struct net_device * dev,int irq)814 rio_free_tx (struct net_device *dev, int irq)
815 {
816 struct netdev_private *np = netdev_priv(dev);
817 int entry = np->old_tx % TX_RING_SIZE;
818 int tx_use = 0;
819 unsigned long flag = 0;
820
821 if (irq)
822 spin_lock(&np->tx_lock);
823 else
824 spin_lock_irqsave(&np->tx_lock, flag);
825
826 /* Free used tx skbuffs */
827 while (entry != np->cur_tx) {
828 struct sk_buff *skb;
829
830 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
831 break;
832 skb = np->tx_skbuff[entry];
833 dma_unmap_single(&np->pdev->dev,
834 desc_to_dma(&np->tx_ring[entry]), skb->len,
835 DMA_TO_DEVICE);
836 if (irq)
837 dev_consume_skb_irq(skb);
838 else
839 dev_kfree_skb(skb);
840
841 np->tx_skbuff[entry] = NULL;
842 entry = (entry + 1) % TX_RING_SIZE;
843 tx_use++;
844 }
845 if (irq)
846 spin_unlock(&np->tx_lock);
847 else
848 spin_unlock_irqrestore(&np->tx_lock, flag);
849 np->old_tx = entry;
850
851 /* If the ring is no longer full, clear tx_full and
852 call netif_wake_queue() */
853
854 if (netif_queue_stopped(dev) &&
855 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
856 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
857 netif_wake_queue (dev);
858 }
859 }
860
861 static void
tx_error(struct net_device * dev,int tx_status)862 tx_error (struct net_device *dev, int tx_status)
863 {
864 struct netdev_private *np = netdev_priv(dev);
865 void __iomem *ioaddr = np->ioaddr;
866 int frame_id;
867 int i;
868
869 frame_id = (tx_status & 0xffff0000);
870 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
871 dev->name, tx_status, frame_id);
872 dev->stats.tx_errors++;
873 /* Ttransmit Underrun */
874 if (tx_status & 0x10) {
875 dev->stats.tx_fifo_errors++;
876 dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
877 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
878 dw16(ASICCtrl + 2,
879 TxReset | DMAReset | FIFOReset | NetworkReset);
880 /* Wait for ResetBusy bit clear */
881 for (i = 50; i > 0; i--) {
882 if (!(dr16(ASICCtrl + 2) & ResetBusy))
883 break;
884 mdelay (1);
885 }
886 rio_set_led_mode(dev);
887 rio_free_tx (dev, 1);
888 /* Reset TFDListPtr */
889 dw32(TFDListPtr0, np->tx_ring_dma +
890 np->old_tx * sizeof (struct netdev_desc));
891 dw32(TFDListPtr1, 0);
892
893 /* Let TxStartThresh stay default value */
894 }
895 /* Late Collision */
896 if (tx_status & 0x04) {
897 dev->stats.tx_fifo_errors++;
898 /* TxReset and clear FIFO */
899 dw16(ASICCtrl + 2, TxReset | FIFOReset);
900 /* Wait reset done */
901 for (i = 50; i > 0; i--) {
902 if (!(dr16(ASICCtrl + 2) & ResetBusy))
903 break;
904 mdelay (1);
905 }
906 rio_set_led_mode(dev);
907 /* Let TxStartThresh stay default value */
908 }
909 /* Maximum Collisions */
910 if (tx_status & 0x08)
911 dev->stats.collisions++;
912 /* Restart the Tx */
913 dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
914 }
915
916 static int
receive_packet(struct net_device * dev)917 receive_packet (struct net_device *dev)
918 {
919 struct netdev_private *np = netdev_priv(dev);
920 int entry = np->cur_rx % RX_RING_SIZE;
921 int cnt = 30;
922
923 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
924 while (1) {
925 struct netdev_desc *desc = &np->rx_ring[entry];
926 int pkt_len;
927 u64 frame_status;
928
929 if (!(desc->status & cpu_to_le64(RFDDone)) ||
930 !(desc->status & cpu_to_le64(FrameStart)) ||
931 !(desc->status & cpu_to_le64(FrameEnd)))
932 break;
933
934 /* Chip omits the CRC. */
935 frame_status = le64_to_cpu(desc->status);
936 pkt_len = frame_status & 0xffff;
937 if (--cnt < 0)
938 break;
939 /* Update rx error statistics, drop packet. */
940 if (frame_status & RFS_Errors) {
941 dev->stats.rx_errors++;
942 if (frame_status & (RxRuntFrame | RxLengthError))
943 dev->stats.rx_length_errors++;
944 if (frame_status & RxFCSError)
945 dev->stats.rx_crc_errors++;
946 if (frame_status & RxAlignmentError && np->speed != 1000)
947 dev->stats.rx_frame_errors++;
948 if (frame_status & RxFIFOOverrun)
949 dev->stats.rx_fifo_errors++;
950 } else {
951 struct sk_buff *skb;
952
953 /* Small skbuffs for short packets */
954 if (pkt_len > copy_thresh) {
955 dma_unmap_single(&np->pdev->dev,
956 desc_to_dma(desc),
957 np->rx_buf_sz,
958 DMA_FROM_DEVICE);
959 skb_put (skb = np->rx_skbuff[entry], pkt_len);
960 np->rx_skbuff[entry] = NULL;
961 } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
962 dma_sync_single_for_cpu(&np->pdev->dev,
963 desc_to_dma(desc),
964 np->rx_buf_sz,
965 DMA_FROM_DEVICE);
966 skb_copy_to_linear_data (skb,
967 np->rx_skbuff[entry]->data,
968 pkt_len);
969 skb_put (skb, pkt_len);
970 dma_sync_single_for_device(&np->pdev->dev,
971 desc_to_dma(desc),
972 np->rx_buf_sz,
973 DMA_FROM_DEVICE);
974 }
975 skb->protocol = eth_type_trans (skb, dev);
976 #if 0
977 /* Checksum done by hw, but csum value unavailable. */
978 if (np->pdev->pci_rev_id >= 0x0c &&
979 !(frame_status & (TCPError | UDPError | IPError))) {
980 skb->ip_summed = CHECKSUM_UNNECESSARY;
981 }
982 #endif
983 netif_rx (skb);
984 }
985 entry = (entry + 1) % RX_RING_SIZE;
986 }
987 spin_lock(&np->rx_lock);
988 np->cur_rx = entry;
989 /* Re-allocate skbuffs to fill the descriptor ring */
990 entry = np->old_rx;
991 while (entry != np->cur_rx) {
992 struct sk_buff *skb;
993 /* Dropped packets don't need to re-allocate */
994 if (np->rx_skbuff[entry] == NULL) {
995 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
996 if (skb == NULL) {
997 np->rx_ring[entry].fraginfo = 0;
998 printk (KERN_INFO
999 "%s: receive_packet: "
1000 "Unable to re-allocate Rx skbuff.#%d\n",
1001 dev->name, entry);
1002 break;
1003 }
1004 np->rx_skbuff[entry] = skb;
1005 np->rx_ring[entry].fraginfo =
1006 cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1007 np->rx_buf_sz, DMA_FROM_DEVICE));
1008 }
1009 np->rx_ring[entry].fraginfo |=
1010 cpu_to_le64((u64)np->rx_buf_sz << 48);
1011 np->rx_ring[entry].status = 0;
1012 entry = (entry + 1) % RX_RING_SIZE;
1013 }
1014 np->old_rx = entry;
1015 spin_unlock(&np->rx_lock);
1016 return 0;
1017 }
1018
1019 static void
rio_error(struct net_device * dev,int int_status)1020 rio_error (struct net_device *dev, int int_status)
1021 {
1022 struct netdev_private *np = netdev_priv(dev);
1023 void __iomem *ioaddr = np->ioaddr;
1024 u16 macctrl;
1025
1026 /* Link change event */
1027 if (int_status & LinkEvent) {
1028 if (mii_wait_link (dev, 10) == 0) {
1029 printk (KERN_INFO "%s: Link up\n", dev->name);
1030 if (np->phy_media)
1031 mii_get_media_pcs (dev);
1032 else
1033 mii_get_media (dev);
1034 if (np->speed == 1000)
1035 np->tx_coalesce = tx_coalesce;
1036 else
1037 np->tx_coalesce = 1;
1038 macctrl = 0;
1039 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1040 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1041 macctrl |= (np->tx_flow) ?
1042 TxFlowControlEnable : 0;
1043 macctrl |= (np->rx_flow) ?
1044 RxFlowControlEnable : 0;
1045 dw16(MACCtrl, macctrl);
1046 np->link_status = 1;
1047 netif_carrier_on(dev);
1048 } else {
1049 printk (KERN_INFO "%s: Link off\n", dev->name);
1050 np->link_status = 0;
1051 netif_carrier_off(dev);
1052 }
1053 }
1054
1055 /* UpdateStats statistics registers */
1056 if (int_status & UpdateStats) {
1057 get_stats (dev);
1058 }
1059
1060 /* PCI Error, a catastronphic error related to the bus interface
1061 occurs, set GlobalReset and HostReset to reset. */
1062 if (int_status & HostError) {
1063 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1064 dev->name, int_status);
1065 dw16(ASICCtrl + 2, GlobalReset | HostReset);
1066 mdelay (500);
1067 rio_set_led_mode(dev);
1068 }
1069 }
1070
1071 static struct net_device_stats *
get_stats(struct net_device * dev)1072 get_stats (struct net_device *dev)
1073 {
1074 struct netdev_private *np = netdev_priv(dev);
1075 void __iomem *ioaddr = np->ioaddr;
1076 #ifdef MEM_MAPPING
1077 int i;
1078 #endif
1079 unsigned int stat_reg;
1080
1081 /* All statistics registers need to be acknowledged,
1082 else statistic overflow could cause problems */
1083
1084 dev->stats.rx_packets += dr32(FramesRcvOk);
1085 dev->stats.tx_packets += dr32(FramesXmtOk);
1086 dev->stats.rx_bytes += dr32(OctetRcvOk);
1087 dev->stats.tx_bytes += dr32(OctetXmtOk);
1088
1089 dev->stats.multicast = dr32(McstFramesRcvdOk);
1090 dev->stats.collisions += dr32(SingleColFrames)
1091 + dr32(MultiColFrames);
1092
1093 /* detailed tx errors */
1094 stat_reg = dr16(FramesAbortXSColls);
1095 dev->stats.tx_aborted_errors += stat_reg;
1096 dev->stats.tx_errors += stat_reg;
1097
1098 stat_reg = dr16(CarrierSenseErrors);
1099 dev->stats.tx_carrier_errors += stat_reg;
1100 dev->stats.tx_errors += stat_reg;
1101
1102 /* Clear all other statistic register. */
1103 dr32(McstOctetXmtOk);
1104 dr16(BcstFramesXmtdOk);
1105 dr32(McstFramesXmtdOk);
1106 dr16(BcstFramesRcvdOk);
1107 dr16(MacControlFramesRcvd);
1108 dr16(FrameTooLongErrors);
1109 dr16(InRangeLengthErrors);
1110 dr16(FramesCheckSeqErrors);
1111 dr16(FramesLostRxErrors);
1112 dr32(McstOctetXmtOk);
1113 dr32(BcstOctetXmtOk);
1114 dr32(McstFramesXmtdOk);
1115 dr32(FramesWDeferredXmt);
1116 dr32(LateCollisions);
1117 dr16(BcstFramesXmtdOk);
1118 dr16(MacControlFramesXmtd);
1119 dr16(FramesWEXDeferal);
1120
1121 #ifdef MEM_MAPPING
1122 for (i = 0x100; i <= 0x150; i += 4)
1123 dr32(i);
1124 #endif
1125 dr16(TxJumboFrames);
1126 dr16(RxJumboFrames);
1127 dr16(TCPCheckSumErrors);
1128 dr16(UDPCheckSumErrors);
1129 dr16(IPCheckSumErrors);
1130 return &dev->stats;
1131 }
1132
1133 static int
clear_stats(struct net_device * dev)1134 clear_stats (struct net_device *dev)
1135 {
1136 struct netdev_private *np = netdev_priv(dev);
1137 void __iomem *ioaddr = np->ioaddr;
1138 #ifdef MEM_MAPPING
1139 int i;
1140 #endif
1141
1142 /* All statistics registers need to be acknowledged,
1143 else statistic overflow could cause problems */
1144 dr32(FramesRcvOk);
1145 dr32(FramesXmtOk);
1146 dr32(OctetRcvOk);
1147 dr32(OctetXmtOk);
1148
1149 dr32(McstFramesRcvdOk);
1150 dr32(SingleColFrames);
1151 dr32(MultiColFrames);
1152 dr32(LateCollisions);
1153 /* detailed rx errors */
1154 dr16(FrameTooLongErrors);
1155 dr16(InRangeLengthErrors);
1156 dr16(FramesCheckSeqErrors);
1157 dr16(FramesLostRxErrors);
1158
1159 /* detailed tx errors */
1160 dr16(FramesAbortXSColls);
1161 dr16(CarrierSenseErrors);
1162
1163 /* Clear all other statistic register. */
1164 dr32(McstOctetXmtOk);
1165 dr16(BcstFramesXmtdOk);
1166 dr32(McstFramesXmtdOk);
1167 dr16(BcstFramesRcvdOk);
1168 dr16(MacControlFramesRcvd);
1169 dr32(McstOctetXmtOk);
1170 dr32(BcstOctetXmtOk);
1171 dr32(McstFramesXmtdOk);
1172 dr32(FramesWDeferredXmt);
1173 dr16(BcstFramesXmtdOk);
1174 dr16(MacControlFramesXmtd);
1175 dr16(FramesWEXDeferal);
1176 #ifdef MEM_MAPPING
1177 for (i = 0x100; i <= 0x150; i += 4)
1178 dr32(i);
1179 #endif
1180 dr16(TxJumboFrames);
1181 dr16(RxJumboFrames);
1182 dr16(TCPCheckSumErrors);
1183 dr16(UDPCheckSumErrors);
1184 dr16(IPCheckSumErrors);
1185 return 0;
1186 }
1187
1188 static void
set_multicast(struct net_device * dev)1189 set_multicast (struct net_device *dev)
1190 {
1191 struct netdev_private *np = netdev_priv(dev);
1192 void __iomem *ioaddr = np->ioaddr;
1193 u32 hash_table[2];
1194 u16 rx_mode = 0;
1195
1196 hash_table[0] = hash_table[1] = 0;
1197 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1198 hash_table[1] |= 0x02000000;
1199 if (dev->flags & IFF_PROMISC) {
1200 /* Receive all frames promiscuously. */
1201 rx_mode = ReceiveAllFrames;
1202 } else if ((dev->flags & IFF_ALLMULTI) ||
1203 (netdev_mc_count(dev) > multicast_filter_limit)) {
1204 /* Receive broadcast and multicast frames */
1205 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1206 } else if (!netdev_mc_empty(dev)) {
1207 struct netdev_hw_addr *ha;
1208 /* Receive broadcast frames and multicast frames filtering
1209 by Hashtable */
1210 rx_mode =
1211 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1212 netdev_for_each_mc_addr(ha, dev) {
1213 int bit, index = 0;
1214 int crc = ether_crc_le(ETH_ALEN, ha->addr);
1215 /* The inverted high significant 6 bits of CRC are
1216 used as an index to hashtable */
1217 for (bit = 0; bit < 6; bit++)
1218 if (crc & (1 << (31 - bit)))
1219 index |= (1 << bit);
1220 hash_table[index / 32] |= (1 << (index % 32));
1221 }
1222 } else {
1223 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1224 }
1225 if (np->vlan) {
1226 /* ReceiveVLANMatch field in ReceiveMode */
1227 rx_mode |= ReceiveVLANMatch;
1228 }
1229
1230 dw32(HashTable0, hash_table[0]);
1231 dw32(HashTable1, hash_table[1]);
1232 dw16(ReceiveMode, rx_mode);
1233 }
1234
rio_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1235 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1236 {
1237 struct netdev_private *np = netdev_priv(dev);
1238
1239 strlcpy(info->driver, "dl2k", sizeof(info->driver));
1240 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1241 }
1242
rio_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1243 static int rio_get_link_ksettings(struct net_device *dev,
1244 struct ethtool_link_ksettings *cmd)
1245 {
1246 struct netdev_private *np = netdev_priv(dev);
1247 u32 supported, advertising;
1248
1249 if (np->phy_media) {
1250 /* fiber device */
1251 supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1252 advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1253 cmd->base.port = PORT_FIBRE;
1254 } else {
1255 /* copper device */
1256 supported = SUPPORTED_10baseT_Half |
1257 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1258 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1259 SUPPORTED_Autoneg | SUPPORTED_MII;
1260 advertising = ADVERTISED_10baseT_Half |
1261 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1262 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1263 ADVERTISED_Autoneg | ADVERTISED_MII;
1264 cmd->base.port = PORT_MII;
1265 }
1266 if (np->link_status) {
1267 cmd->base.speed = np->speed;
1268 cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1269 } else {
1270 cmd->base.speed = SPEED_UNKNOWN;
1271 cmd->base.duplex = DUPLEX_UNKNOWN;
1272 }
1273 if (np->an_enable)
1274 cmd->base.autoneg = AUTONEG_ENABLE;
1275 else
1276 cmd->base.autoneg = AUTONEG_DISABLE;
1277
1278 cmd->base.phy_address = np->phy_addr;
1279
1280 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1281 supported);
1282 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1283 advertising);
1284
1285 return 0;
1286 }
1287
rio_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1288 static int rio_set_link_ksettings(struct net_device *dev,
1289 const struct ethtool_link_ksettings *cmd)
1290 {
1291 struct netdev_private *np = netdev_priv(dev);
1292 u32 speed = cmd->base.speed;
1293 u8 duplex = cmd->base.duplex;
1294
1295 netif_carrier_off(dev);
1296 if (cmd->base.autoneg == AUTONEG_ENABLE) {
1297 if (np->an_enable) {
1298 return 0;
1299 } else {
1300 np->an_enable = 1;
1301 mii_set_media(dev);
1302 return 0;
1303 }
1304 } else {
1305 np->an_enable = 0;
1306 if (np->speed == 1000) {
1307 speed = SPEED_100;
1308 duplex = DUPLEX_FULL;
1309 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1310 }
1311 switch (speed) {
1312 case SPEED_10:
1313 np->speed = 10;
1314 np->full_duplex = (duplex == DUPLEX_FULL);
1315 break;
1316 case SPEED_100:
1317 np->speed = 100;
1318 np->full_duplex = (duplex == DUPLEX_FULL);
1319 break;
1320 case SPEED_1000: /* not supported */
1321 default:
1322 return -EINVAL;
1323 }
1324 mii_set_media(dev);
1325 }
1326 return 0;
1327 }
1328
rio_get_link(struct net_device * dev)1329 static u32 rio_get_link(struct net_device *dev)
1330 {
1331 struct netdev_private *np = netdev_priv(dev);
1332 return np->link_status;
1333 }
1334
1335 static const struct ethtool_ops ethtool_ops = {
1336 .get_drvinfo = rio_get_drvinfo,
1337 .get_link = rio_get_link,
1338 .get_link_ksettings = rio_get_link_ksettings,
1339 .set_link_ksettings = rio_set_link_ksettings,
1340 };
1341
1342 static int
rio_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1343 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1344 {
1345 int phy_addr;
1346 struct netdev_private *np = netdev_priv(dev);
1347 struct mii_ioctl_data *miidata = if_mii(rq);
1348
1349 phy_addr = np->phy_addr;
1350 switch (cmd) {
1351 case SIOCGMIIPHY:
1352 miidata->phy_id = phy_addr;
1353 break;
1354 case SIOCGMIIREG:
1355 miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1356 break;
1357 case SIOCSMIIREG:
1358 if (!capable(CAP_NET_ADMIN))
1359 return -EPERM;
1360 mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1361 break;
1362 default:
1363 return -EOPNOTSUPP;
1364 }
1365 return 0;
1366 }
1367
1368 #define EEP_READ 0x0200
1369 #define EEP_BUSY 0x8000
1370 /* Read the EEPROM word */
1371 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
read_eeprom(struct netdev_private * np,int eep_addr)1372 static int read_eeprom(struct netdev_private *np, int eep_addr)
1373 {
1374 void __iomem *ioaddr = np->eeprom_addr;
1375 int i = 1000;
1376
1377 dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1378 while (i-- > 0) {
1379 if (!(dr16(EepromCtrl) & EEP_BUSY))
1380 return dr16(EepromData);
1381 }
1382 return 0;
1383 }
1384
1385 enum phy_ctrl_bits {
1386 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1387 MII_DUPLEX = 0x08,
1388 };
1389
1390 #define mii_delay() dr8(PhyCtrl)
1391 static void
mii_sendbit(struct net_device * dev,u32 data)1392 mii_sendbit (struct net_device *dev, u32 data)
1393 {
1394 struct netdev_private *np = netdev_priv(dev);
1395 void __iomem *ioaddr = np->ioaddr;
1396
1397 data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1398 dw8(PhyCtrl, data);
1399 mii_delay ();
1400 dw8(PhyCtrl, data | MII_CLK);
1401 mii_delay ();
1402 }
1403
1404 static int
mii_getbit(struct net_device * dev)1405 mii_getbit (struct net_device *dev)
1406 {
1407 struct netdev_private *np = netdev_priv(dev);
1408 void __iomem *ioaddr = np->ioaddr;
1409 u8 data;
1410
1411 data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1412 dw8(PhyCtrl, data);
1413 mii_delay ();
1414 dw8(PhyCtrl, data | MII_CLK);
1415 mii_delay ();
1416 return (dr8(PhyCtrl) >> 1) & 1;
1417 }
1418
1419 static void
mii_send_bits(struct net_device * dev,u32 data,int len)1420 mii_send_bits (struct net_device *dev, u32 data, int len)
1421 {
1422 int i;
1423
1424 for (i = len - 1; i >= 0; i--) {
1425 mii_sendbit (dev, data & (1 << i));
1426 }
1427 }
1428
1429 static int
mii_read(struct net_device * dev,int phy_addr,int reg_num)1430 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1431 {
1432 u32 cmd;
1433 int i;
1434 u32 retval = 0;
1435
1436 /* Preamble */
1437 mii_send_bits (dev, 0xffffffff, 32);
1438 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1439 /* ST,OP = 0110'b for read operation */
1440 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1441 mii_send_bits (dev, cmd, 14);
1442 /* Turnaround */
1443 if (mii_getbit (dev))
1444 goto err_out;
1445 /* Read data */
1446 for (i = 0; i < 16; i++) {
1447 retval |= mii_getbit (dev);
1448 retval <<= 1;
1449 }
1450 /* End cycle */
1451 mii_getbit (dev);
1452 return (retval >> 1) & 0xffff;
1453
1454 err_out:
1455 return 0;
1456 }
1457 static int
mii_write(struct net_device * dev,int phy_addr,int reg_num,u16 data)1458 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1459 {
1460 u32 cmd;
1461
1462 /* Preamble */
1463 mii_send_bits (dev, 0xffffffff, 32);
1464 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1465 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1466 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1467 mii_send_bits (dev, cmd, 32);
1468 /* End cycle */
1469 mii_getbit (dev);
1470 return 0;
1471 }
1472 static int
mii_wait_link(struct net_device * dev,int wait)1473 mii_wait_link (struct net_device *dev, int wait)
1474 {
1475 __u16 bmsr;
1476 int phy_addr;
1477 struct netdev_private *np;
1478
1479 np = netdev_priv(dev);
1480 phy_addr = np->phy_addr;
1481
1482 do {
1483 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1484 if (bmsr & BMSR_LSTATUS)
1485 return 0;
1486 mdelay (1);
1487 } while (--wait > 0);
1488 return -1;
1489 }
1490 static int
mii_get_media(struct net_device * dev)1491 mii_get_media (struct net_device *dev)
1492 {
1493 __u16 negotiate;
1494 __u16 bmsr;
1495 __u16 mscr;
1496 __u16 mssr;
1497 int phy_addr;
1498 struct netdev_private *np;
1499
1500 np = netdev_priv(dev);
1501 phy_addr = np->phy_addr;
1502
1503 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1504 if (np->an_enable) {
1505 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1506 /* Auto-Negotiation not completed */
1507 return -1;
1508 }
1509 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1510 mii_read (dev, phy_addr, MII_LPA);
1511 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1512 mssr = mii_read (dev, phy_addr, MII_STAT1000);
1513 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1514 np->speed = 1000;
1515 np->full_duplex = 1;
1516 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1517 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1518 np->speed = 1000;
1519 np->full_duplex = 0;
1520 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1521 } else if (negotiate & ADVERTISE_100FULL) {
1522 np->speed = 100;
1523 np->full_duplex = 1;
1524 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1525 } else if (negotiate & ADVERTISE_100HALF) {
1526 np->speed = 100;
1527 np->full_duplex = 0;
1528 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1529 } else if (negotiate & ADVERTISE_10FULL) {
1530 np->speed = 10;
1531 np->full_duplex = 1;
1532 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1533 } else if (negotiate & ADVERTISE_10HALF) {
1534 np->speed = 10;
1535 np->full_duplex = 0;
1536 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1537 }
1538 if (negotiate & ADVERTISE_PAUSE_CAP) {
1539 np->tx_flow &= 1;
1540 np->rx_flow &= 1;
1541 } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1542 np->tx_flow = 0;
1543 np->rx_flow &= 1;
1544 }
1545 /* else tx_flow, rx_flow = user select */
1546 } else {
1547 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1548 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1549 case BMCR_SPEED1000:
1550 printk (KERN_INFO "Operating at 1000 Mbps, ");
1551 break;
1552 case BMCR_SPEED100:
1553 printk (KERN_INFO "Operating at 100 Mbps, ");
1554 break;
1555 case 0:
1556 printk (KERN_INFO "Operating at 10 Mbps, ");
1557 }
1558 if (bmcr & BMCR_FULLDPLX) {
1559 printk (KERN_CONT "Full duplex\n");
1560 } else {
1561 printk (KERN_CONT "Half duplex\n");
1562 }
1563 }
1564 if (np->tx_flow)
1565 printk(KERN_INFO "Enable Tx Flow Control\n");
1566 else
1567 printk(KERN_INFO "Disable Tx Flow Control\n");
1568 if (np->rx_flow)
1569 printk(KERN_INFO "Enable Rx Flow Control\n");
1570 else
1571 printk(KERN_INFO "Disable Rx Flow Control\n");
1572
1573 return 0;
1574 }
1575
1576 static int
mii_set_media(struct net_device * dev)1577 mii_set_media (struct net_device *dev)
1578 {
1579 __u16 pscr;
1580 __u16 bmcr;
1581 __u16 bmsr;
1582 __u16 anar;
1583 int phy_addr;
1584 struct netdev_private *np;
1585 np = netdev_priv(dev);
1586 phy_addr = np->phy_addr;
1587
1588 /* Does user set speed? */
1589 if (np->an_enable) {
1590 /* Advertise capabilities */
1591 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1592 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1593 ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1594 ADVERTISE_100HALF | ADVERTISE_10HALF |
1595 ADVERTISE_100BASE4);
1596 if (bmsr & BMSR_100FULL)
1597 anar |= ADVERTISE_100FULL;
1598 if (bmsr & BMSR_100HALF)
1599 anar |= ADVERTISE_100HALF;
1600 if (bmsr & BMSR_100BASE4)
1601 anar |= ADVERTISE_100BASE4;
1602 if (bmsr & BMSR_10FULL)
1603 anar |= ADVERTISE_10FULL;
1604 if (bmsr & BMSR_10HALF)
1605 anar |= ADVERTISE_10HALF;
1606 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1607 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1608
1609 /* Enable Auto crossover */
1610 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1611 pscr |= 3 << 5; /* 11'b */
1612 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1613
1614 /* Soft reset PHY */
1615 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1616 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1617 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1618 mdelay(1);
1619 } else {
1620 /* Force speed setting */
1621 /* 1) Disable Auto crossover */
1622 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1623 pscr &= ~(3 << 5);
1624 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1625
1626 /* 2) PHY Reset */
1627 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1628 bmcr |= BMCR_RESET;
1629 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1630
1631 /* 3) Power Down */
1632 bmcr = 0x1940; /* must be 0x1940 */
1633 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1634 mdelay (100); /* wait a certain time */
1635
1636 /* 4) Advertise nothing */
1637 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1638
1639 /* 5) Set media and Power Up */
1640 bmcr = BMCR_PDOWN;
1641 if (np->speed == 100) {
1642 bmcr |= BMCR_SPEED100;
1643 printk (KERN_INFO "Manual 100 Mbps, ");
1644 } else if (np->speed == 10) {
1645 printk (KERN_INFO "Manual 10 Mbps, ");
1646 }
1647 if (np->full_duplex) {
1648 bmcr |= BMCR_FULLDPLX;
1649 printk (KERN_CONT "Full duplex\n");
1650 } else {
1651 printk (KERN_CONT "Half duplex\n");
1652 }
1653 #if 0
1654 /* Set 1000BaseT Master/Slave setting */
1655 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1656 mscr |= MII_MSCR_CFG_ENABLE;
1657 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1658 #endif
1659 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1660 mdelay(10);
1661 }
1662 return 0;
1663 }
1664
1665 static int
mii_get_media_pcs(struct net_device * dev)1666 mii_get_media_pcs (struct net_device *dev)
1667 {
1668 __u16 negotiate;
1669 __u16 bmsr;
1670 int phy_addr;
1671 struct netdev_private *np;
1672
1673 np = netdev_priv(dev);
1674 phy_addr = np->phy_addr;
1675
1676 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1677 if (np->an_enable) {
1678 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1679 /* Auto-Negotiation not completed */
1680 return -1;
1681 }
1682 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1683 mii_read (dev, phy_addr, PCS_ANLPAR);
1684 np->speed = 1000;
1685 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1686 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1687 np->full_duplex = 1;
1688 } else {
1689 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1690 np->full_duplex = 0;
1691 }
1692 if (negotiate & PCS_ANAR_PAUSE) {
1693 np->tx_flow &= 1;
1694 np->rx_flow &= 1;
1695 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1696 np->tx_flow = 0;
1697 np->rx_flow &= 1;
1698 }
1699 /* else tx_flow, rx_flow = user select */
1700 } else {
1701 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1702 printk (KERN_INFO "Operating at 1000 Mbps, ");
1703 if (bmcr & BMCR_FULLDPLX) {
1704 printk (KERN_CONT "Full duplex\n");
1705 } else {
1706 printk (KERN_CONT "Half duplex\n");
1707 }
1708 }
1709 if (np->tx_flow)
1710 printk(KERN_INFO "Enable Tx Flow Control\n");
1711 else
1712 printk(KERN_INFO "Disable Tx Flow Control\n");
1713 if (np->rx_flow)
1714 printk(KERN_INFO "Enable Rx Flow Control\n");
1715 else
1716 printk(KERN_INFO "Disable Rx Flow Control\n");
1717
1718 return 0;
1719 }
1720
1721 static int
mii_set_media_pcs(struct net_device * dev)1722 mii_set_media_pcs (struct net_device *dev)
1723 {
1724 __u16 bmcr;
1725 __u16 esr;
1726 __u16 anar;
1727 int phy_addr;
1728 struct netdev_private *np;
1729 np = netdev_priv(dev);
1730 phy_addr = np->phy_addr;
1731
1732 /* Auto-Negotiation? */
1733 if (np->an_enable) {
1734 /* Advertise capabilities */
1735 esr = mii_read (dev, phy_addr, PCS_ESR);
1736 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1737 ~PCS_ANAR_HALF_DUPLEX &
1738 ~PCS_ANAR_FULL_DUPLEX;
1739 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1740 anar |= PCS_ANAR_HALF_DUPLEX;
1741 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1742 anar |= PCS_ANAR_FULL_DUPLEX;
1743 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1744 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1745
1746 /* Soft reset PHY */
1747 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1748 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1749 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1750 mdelay(1);
1751 } else {
1752 /* Force speed setting */
1753 /* PHY Reset */
1754 bmcr = BMCR_RESET;
1755 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1756 mdelay(10);
1757 if (np->full_duplex) {
1758 bmcr = BMCR_FULLDPLX;
1759 printk (KERN_INFO "Manual full duplex\n");
1760 } else {
1761 bmcr = 0;
1762 printk (KERN_INFO "Manual half duplex\n");
1763 }
1764 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1765 mdelay(10);
1766
1767 /* Advertise nothing */
1768 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1769 }
1770 return 0;
1771 }
1772
1773
1774 static int
rio_close(struct net_device * dev)1775 rio_close (struct net_device *dev)
1776 {
1777 struct netdev_private *np = netdev_priv(dev);
1778 struct pci_dev *pdev = np->pdev;
1779
1780 netif_stop_queue (dev);
1781
1782 rio_hw_stop(dev);
1783
1784 free_irq(pdev->irq, dev);
1785 del_timer_sync (&np->timer);
1786
1787 free_list(dev);
1788
1789 return 0;
1790 }
1791
1792 static void
rio_remove1(struct pci_dev * pdev)1793 rio_remove1 (struct pci_dev *pdev)
1794 {
1795 struct net_device *dev = pci_get_drvdata (pdev);
1796
1797 if (dev) {
1798 struct netdev_private *np = netdev_priv(dev);
1799
1800 unregister_netdev (dev);
1801 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1802 np->rx_ring_dma);
1803 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1804 np->tx_ring_dma);
1805 #ifdef MEM_MAPPING
1806 pci_iounmap(pdev, np->ioaddr);
1807 #endif
1808 pci_iounmap(pdev, np->eeprom_addr);
1809 free_netdev (dev);
1810 pci_release_regions (pdev);
1811 pci_disable_device (pdev);
1812 }
1813 }
1814
1815 #ifdef CONFIG_PM_SLEEP
rio_suspend(struct device * device)1816 static int rio_suspend(struct device *device)
1817 {
1818 struct net_device *dev = dev_get_drvdata(device);
1819 struct netdev_private *np = netdev_priv(dev);
1820
1821 if (!netif_running(dev))
1822 return 0;
1823
1824 netif_device_detach(dev);
1825 del_timer_sync(&np->timer);
1826 rio_hw_stop(dev);
1827
1828 return 0;
1829 }
1830
rio_resume(struct device * device)1831 static int rio_resume(struct device *device)
1832 {
1833 struct net_device *dev = dev_get_drvdata(device);
1834 struct netdev_private *np = netdev_priv(dev);
1835
1836 if (!netif_running(dev))
1837 return 0;
1838
1839 rio_reset_ring(np);
1840 rio_hw_init(dev);
1841 np->timer.expires = jiffies + 1 * HZ;
1842 add_timer(&np->timer);
1843 netif_device_attach(dev);
1844 dl2k_enable_int(np);
1845
1846 return 0;
1847 }
1848
1849 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1850 #define RIO_PM_OPS (&rio_pm_ops)
1851
1852 #else
1853
1854 #define RIO_PM_OPS NULL
1855
1856 #endif /* CONFIG_PM_SLEEP */
1857
1858 static struct pci_driver rio_driver = {
1859 .name = "dl2k",
1860 .id_table = rio_pci_tbl,
1861 .probe = rio_probe1,
1862 .remove = rio_remove1,
1863 .driver.pm = RIO_PM_OPS,
1864 };
1865
1866 module_pci_driver(rio_driver);
1867
1868 /* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1869