1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright IBM Corp. 2006, 2012
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 *
10 * Adjunct processor bus.
11 */
12
13 #define KMSG_COMPONENT "ap"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15
16 #include <linux/kernel_stat.h>
17 #include <linux/moduleparam.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/freezer.h>
22 #include <linux/interrupt.h>
23 #include <linux/workqueue.h>
24 #include <linux/slab.h>
25 #include <linux/notifier.h>
26 #include <linux/kthread.h>
27 #include <linux/mutex.h>
28 #include <asm/airq.h>
29 #include <linux/atomic.h>
30 #include <asm/isc.h>
31 #include <linux/hrtimer.h>
32 #include <linux/ktime.h>
33 #include <asm/facility.h>
34 #include <linux/crypto.h>
35 #include <linux/mod_devicetable.h>
36 #include <linux/debugfs.h>
37 #include <linux/ctype.h>
38
39 #include "ap_bus.h"
40 #include "ap_debug.h"
41
42 /*
43 * Module parameters; note though this file itself isn't modular.
44 */
45 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
46 static DEFINE_SPINLOCK(ap_domain_lock);
47 module_param_named(domain, ap_domain_index, int, 0440);
48 MODULE_PARM_DESC(domain, "domain index for ap devices");
49 EXPORT_SYMBOL(ap_domain_index);
50
51 static int ap_thread_flag;
52 module_param_named(poll_thread, ap_thread_flag, int, 0440);
53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
54
55 static char *apm_str;
56 module_param_named(apmask, apm_str, charp, 0440);
57 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
58
59 static char *aqm_str;
60 module_param_named(aqmask, aqm_str, charp, 0440);
61 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
62
63 static struct device *ap_root_device;
64
65 /* Hashtable of all queue devices on the AP bus */
66 DEFINE_HASHTABLE(ap_queues, 8);
67 /* lock used for the ap_queues hashtable */
68 DEFINE_SPINLOCK(ap_queues_lock);
69
70 /* Default permissions (ioctl, card and domain masking) */
71 struct ap_perms ap_perms;
72 EXPORT_SYMBOL(ap_perms);
73 DEFINE_MUTEX(ap_perms_mutex);
74 EXPORT_SYMBOL(ap_perms_mutex);
75
76 static struct ap_config_info *ap_qci_info;
77
78 /*
79 * AP bus related debug feature things.
80 */
81 debug_info_t *ap_dbf_info;
82
83 /*
84 * Workqueue timer for bus rescan.
85 */
86 static struct timer_list ap_config_timer;
87 static int ap_config_time = AP_CONFIG_TIME;
88 static void ap_scan_bus(struct work_struct *);
89 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
90
91 /*
92 * Tasklet & timer for AP request polling and interrupts
93 */
94 static void ap_tasklet_fn(unsigned long);
95 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
96 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
97 static struct task_struct *ap_poll_kthread;
98 static DEFINE_MUTEX(ap_poll_thread_mutex);
99 static DEFINE_SPINLOCK(ap_poll_timer_lock);
100 static struct hrtimer ap_poll_timer;
101 /*
102 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
103 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
104 */
105 static unsigned long long poll_timeout = 250000;
106
107 /* Maximum domain id, if not given via qci */
108 static int ap_max_domain_id = 15;
109 /* Maximum adapter id, if not given via qci */
110 static int ap_max_adapter_id = 63;
111
112 static struct bus_type ap_bus_type;
113
114 /* Adapter interrupt definitions */
115 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
116
117 static bool ap_irq_flag;
118
119 static struct airq_struct ap_airq = {
120 .handler = ap_interrupt_handler,
121 .isc = AP_ISC,
122 };
123
124 /**
125 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
126 *
127 * Returns the address of the local-summary-indicator of the adapter
128 * interrupt handler for AP, or NULL if adapter interrupts are not
129 * available.
130 */
ap_airq_ptr(void)131 void *ap_airq_ptr(void)
132 {
133 if (ap_irq_flag)
134 return ap_airq.lsi_ptr;
135 return NULL;
136 }
137
138 /**
139 * ap_interrupts_available(): Test if AP interrupts are available.
140 *
141 * Returns 1 if AP interrupts are available.
142 */
ap_interrupts_available(void)143 static int ap_interrupts_available(void)
144 {
145 return test_facility(65);
146 }
147
148 /**
149 * ap_qci_available(): Test if AP configuration
150 * information can be queried via QCI subfunction.
151 *
152 * Returns 1 if subfunction PQAP(QCI) is available.
153 */
ap_qci_available(void)154 static int ap_qci_available(void)
155 {
156 return test_facility(12);
157 }
158
159 /**
160 * ap_apft_available(): Test if AP facilities test (APFT)
161 * facility is available.
162 *
163 * Returns 1 if APFT is is available.
164 */
ap_apft_available(void)165 static int ap_apft_available(void)
166 {
167 return test_facility(15);
168 }
169
170 /*
171 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
172 *
173 * Returns 1 if the QACT subfunction is available.
174 */
ap_qact_available(void)175 static inline int ap_qact_available(void)
176 {
177 if (ap_qci_info)
178 return ap_qci_info->qact;
179 return 0;
180 }
181
182 /*
183 * ap_fetch_qci_info(): Fetch cryptographic config info
184 *
185 * Returns the ap configuration info fetched via PQAP(QCI).
186 * On success 0 is returned, on failure a negative errno
187 * is returned, e.g. if the PQAP(QCI) instruction is not
188 * available, the return value will be -EOPNOTSUPP.
189 */
ap_fetch_qci_info(struct ap_config_info * info)190 static inline int ap_fetch_qci_info(struct ap_config_info *info)
191 {
192 if (!ap_qci_available())
193 return -EOPNOTSUPP;
194 if (!info)
195 return -EINVAL;
196 return ap_qci(info);
197 }
198
199 /**
200 * ap_init_qci_info(): Allocate and query qci config info.
201 * Does also update the static variables ap_max_domain_id
202 * and ap_max_adapter_id if this info is available.
203
204 */
ap_init_qci_info(void)205 static void __init ap_init_qci_info(void)
206 {
207 if (!ap_qci_available()) {
208 AP_DBF_INFO("%s QCI not supported\n", __func__);
209 return;
210 }
211
212 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
213 if (!ap_qci_info)
214 return;
215 if (ap_fetch_qci_info(ap_qci_info) != 0) {
216 kfree(ap_qci_info);
217 ap_qci_info = NULL;
218 return;
219 }
220 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
221
222 if (ap_qci_info->apxa) {
223 if (ap_qci_info->Na) {
224 ap_max_adapter_id = ap_qci_info->Na;
225 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
226 __func__, ap_max_adapter_id);
227 }
228 if (ap_qci_info->Nd) {
229 ap_max_domain_id = ap_qci_info->Nd;
230 AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
231 __func__, ap_max_domain_id);
232 }
233 }
234 }
235
236 /*
237 * ap_test_config(): helper function to extract the nrth bit
238 * within the unsigned int array field.
239 */
ap_test_config(unsigned int * field,unsigned int nr)240 static inline int ap_test_config(unsigned int *field, unsigned int nr)
241 {
242 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
243 }
244
245 /*
246 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
247 *
248 * Returns 0 if the card is not configured
249 * 1 if the card is configured or
250 * if the configuration information is not available
251 */
ap_test_config_card_id(unsigned int id)252 static inline int ap_test_config_card_id(unsigned int id)
253 {
254 if (id > ap_max_adapter_id)
255 return 0;
256 if (ap_qci_info)
257 return ap_test_config(ap_qci_info->apm, id);
258 return 1;
259 }
260
261 /*
262 * ap_test_config_usage_domain(): Test, whether an AP usage domain
263 * is configured.
264 *
265 * Returns 0 if the usage domain is not configured
266 * 1 if the usage domain is configured or
267 * if the configuration information is not available
268 */
ap_test_config_usage_domain(unsigned int domain)269 int ap_test_config_usage_domain(unsigned int domain)
270 {
271 if (domain > ap_max_domain_id)
272 return 0;
273 if (ap_qci_info)
274 return ap_test_config(ap_qci_info->aqm, domain);
275 return 1;
276 }
277 EXPORT_SYMBOL(ap_test_config_usage_domain);
278
279 /*
280 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
281 * is configured.
282 * @domain AP control domain ID
283 *
284 * Returns 1 if the control domain is configured
285 * 0 in all other cases
286 */
ap_test_config_ctrl_domain(unsigned int domain)287 int ap_test_config_ctrl_domain(unsigned int domain)
288 {
289 if (!ap_qci_info || domain > ap_max_domain_id)
290 return 0;
291 return ap_test_config(ap_qci_info->adm, domain);
292 }
293 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
294
295 /*
296 * ap_queue_info(): Check and get AP queue info.
297 * Returns true if TAPQ succeeded and the info is filled or
298 * false otherwise.
299 */
ap_queue_info(ap_qid_t qid,int * q_type,unsigned int * q_fac,int * q_depth,bool * q_decfg)300 static bool ap_queue_info(ap_qid_t qid, int *q_type,
301 unsigned int *q_fac, int *q_depth, bool *q_decfg)
302 {
303 struct ap_queue_status status;
304 unsigned long info = 0;
305
306 /* make sure we don't run into a specifiation exception */
307 if (AP_QID_CARD(qid) > ap_max_adapter_id ||
308 AP_QID_QUEUE(qid) > ap_max_domain_id)
309 return false;
310
311 /* call TAPQ on this APQN */
312 status = ap_test_queue(qid, ap_apft_available(), &info);
313 switch (status.response_code) {
314 case AP_RESPONSE_NORMAL:
315 case AP_RESPONSE_RESET_IN_PROGRESS:
316 case AP_RESPONSE_DECONFIGURED:
317 case AP_RESPONSE_CHECKSTOPPED:
318 case AP_RESPONSE_BUSY:
319 /*
320 * According to the architecture in all these cases the
321 * info should be filled. All bits 0 is not possible as
322 * there is at least one of the mode bits set.
323 */
324 if (WARN_ON_ONCE(!info))
325 return false;
326 *q_type = (int)((info >> 24) & 0xff);
327 *q_fac = (unsigned int)(info >> 32);
328 *q_depth = (int)(info & 0xff);
329 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
330 switch (*q_type) {
331 /* For CEX2 and CEX3 the available functions
332 * are not reflected by the facilities bits.
333 * Instead it is coded into the type. So here
334 * modify the function bits based on the type.
335 */
336 case AP_DEVICE_TYPE_CEX2A:
337 case AP_DEVICE_TYPE_CEX3A:
338 *q_fac |= 0x08000000;
339 break;
340 case AP_DEVICE_TYPE_CEX2C:
341 case AP_DEVICE_TYPE_CEX3C:
342 *q_fac |= 0x10000000;
343 break;
344 default:
345 break;
346 }
347 return true;
348 default:
349 /*
350 * A response code which indicates, there is no info available.
351 */
352 return false;
353 }
354 }
355
ap_wait(enum ap_sm_wait wait)356 void ap_wait(enum ap_sm_wait wait)
357 {
358 ktime_t hr_time;
359
360 switch (wait) {
361 case AP_SM_WAIT_AGAIN:
362 case AP_SM_WAIT_INTERRUPT:
363 if (ap_irq_flag)
364 break;
365 if (ap_poll_kthread) {
366 wake_up(&ap_poll_wait);
367 break;
368 }
369 fallthrough;
370 case AP_SM_WAIT_TIMEOUT:
371 spin_lock_bh(&ap_poll_timer_lock);
372 if (!hrtimer_is_queued(&ap_poll_timer)) {
373 hr_time = poll_timeout;
374 hrtimer_forward_now(&ap_poll_timer, hr_time);
375 hrtimer_restart(&ap_poll_timer);
376 }
377 spin_unlock_bh(&ap_poll_timer_lock);
378 break;
379 case AP_SM_WAIT_NONE:
380 default:
381 break;
382 }
383 }
384
385 /**
386 * ap_request_timeout(): Handling of request timeouts
387 * @t: timer making this callback
388 *
389 * Handles request timeouts.
390 */
ap_request_timeout(struct timer_list * t)391 void ap_request_timeout(struct timer_list *t)
392 {
393 struct ap_queue *aq = from_timer(aq, t, timeout);
394
395 spin_lock_bh(&aq->lock);
396 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
397 spin_unlock_bh(&aq->lock);
398 }
399
400 /**
401 * ap_poll_timeout(): AP receive polling for finished AP requests.
402 * @unused: Unused pointer.
403 *
404 * Schedules the AP tasklet using a high resolution timer.
405 */
ap_poll_timeout(struct hrtimer * unused)406 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
407 {
408 tasklet_schedule(&ap_tasklet);
409 return HRTIMER_NORESTART;
410 }
411
412 /**
413 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
414 * @airq: pointer to adapter interrupt descriptor
415 */
ap_interrupt_handler(struct airq_struct * airq,bool floating)416 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
417 {
418 inc_irq_stat(IRQIO_APB);
419 tasklet_schedule(&ap_tasklet);
420 }
421
422 /**
423 * ap_tasklet_fn(): Tasklet to poll all AP devices.
424 * @dummy: Unused variable
425 *
426 * Poll all AP devices on the bus.
427 */
ap_tasklet_fn(unsigned long dummy)428 static void ap_tasklet_fn(unsigned long dummy)
429 {
430 int bkt;
431 struct ap_queue *aq;
432 enum ap_sm_wait wait = AP_SM_WAIT_NONE;
433
434 /* Reset the indicator if interrupts are used. Thus new interrupts can
435 * be received. Doing it in the beginning of the tasklet is therefor
436 * important that no requests on any AP get lost.
437 */
438 if (ap_irq_flag)
439 xchg(ap_airq.lsi_ptr, 0);
440
441 spin_lock_bh(&ap_queues_lock);
442 hash_for_each(ap_queues, bkt, aq, hnode) {
443 spin_lock_bh(&aq->lock);
444 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
445 spin_unlock_bh(&aq->lock);
446 }
447 spin_unlock_bh(&ap_queues_lock);
448
449 ap_wait(wait);
450 }
451
ap_pending_requests(void)452 static int ap_pending_requests(void)
453 {
454 int bkt;
455 struct ap_queue *aq;
456
457 spin_lock_bh(&ap_queues_lock);
458 hash_for_each(ap_queues, bkt, aq, hnode) {
459 if (aq->queue_count == 0)
460 continue;
461 spin_unlock_bh(&ap_queues_lock);
462 return 1;
463 }
464 spin_unlock_bh(&ap_queues_lock);
465 return 0;
466 }
467
468 /**
469 * ap_poll_thread(): Thread that polls for finished requests.
470 * @data: Unused pointer
471 *
472 * AP bus poll thread. The purpose of this thread is to poll for
473 * finished requests in a loop if there is a "free" cpu - that is
474 * a cpu that doesn't have anything better to do. The polling stops
475 * as soon as there is another task or if all messages have been
476 * delivered.
477 */
ap_poll_thread(void * data)478 static int ap_poll_thread(void *data)
479 {
480 DECLARE_WAITQUEUE(wait, current);
481
482 set_user_nice(current, MAX_NICE);
483 set_freezable();
484 while (!kthread_should_stop()) {
485 add_wait_queue(&ap_poll_wait, &wait);
486 set_current_state(TASK_INTERRUPTIBLE);
487 if (!ap_pending_requests()) {
488 schedule();
489 try_to_freeze();
490 }
491 set_current_state(TASK_RUNNING);
492 remove_wait_queue(&ap_poll_wait, &wait);
493 if (need_resched()) {
494 schedule();
495 try_to_freeze();
496 continue;
497 }
498 ap_tasklet_fn(0);
499 }
500
501 return 0;
502 }
503
ap_poll_thread_start(void)504 static int ap_poll_thread_start(void)
505 {
506 int rc;
507
508 if (ap_irq_flag || ap_poll_kthread)
509 return 0;
510 mutex_lock(&ap_poll_thread_mutex);
511 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
512 rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
513 if (rc)
514 ap_poll_kthread = NULL;
515 mutex_unlock(&ap_poll_thread_mutex);
516 return rc;
517 }
518
ap_poll_thread_stop(void)519 static void ap_poll_thread_stop(void)
520 {
521 if (!ap_poll_kthread)
522 return;
523 mutex_lock(&ap_poll_thread_mutex);
524 kthread_stop(ap_poll_kthread);
525 ap_poll_kthread = NULL;
526 mutex_unlock(&ap_poll_thread_mutex);
527 }
528
529 #define is_card_dev(x) ((x)->parent == ap_root_device)
530 #define is_queue_dev(x) ((x)->parent != ap_root_device)
531
532 /**
533 * ap_bus_match()
534 * @dev: Pointer to device
535 * @drv: Pointer to device_driver
536 *
537 * AP bus driver registration/unregistration.
538 */
ap_bus_match(struct device * dev,struct device_driver * drv)539 static int ap_bus_match(struct device *dev, struct device_driver *drv)
540 {
541 struct ap_driver *ap_drv = to_ap_drv(drv);
542 struct ap_device_id *id;
543
544 /*
545 * Compare device type of the device with the list of
546 * supported types of the device_driver.
547 */
548 for (id = ap_drv->ids; id->match_flags; id++) {
549 if (is_card_dev(dev) &&
550 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
551 id->dev_type == to_ap_dev(dev)->device_type)
552 return 1;
553 if (is_queue_dev(dev) &&
554 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
555 id->dev_type == to_ap_dev(dev)->device_type)
556 return 1;
557 }
558 return 0;
559 }
560
561 /**
562 * ap_uevent(): Uevent function for AP devices.
563 * @dev: Pointer to device
564 * @env: Pointer to kobj_uevent_env
565 *
566 * It sets up a single environment variable DEV_TYPE which contains the
567 * hardware device type.
568 */
ap_uevent(struct device * dev,struct kobj_uevent_env * env)569 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
570 {
571 struct ap_device *ap_dev = to_ap_dev(dev);
572 int retval = 0;
573
574 if (!ap_dev)
575 return -ENODEV;
576
577 /* Set up DEV_TYPE environment variable. */
578 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
579 if (retval)
580 return retval;
581
582 /* Add MODALIAS= */
583 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
584
585 return retval;
586 }
587
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)588 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
589 {
590 if (is_queue_dev(dev) &&
591 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
592 device_unregister(dev);
593 return 0;
594 }
595
596 static struct bus_type ap_bus_type = {
597 .name = "ap",
598 .match = &ap_bus_match,
599 .uevent = &ap_uevent,
600 };
601
__ap_revise_reserved(struct device * dev,void * dummy)602 static int __ap_revise_reserved(struct device *dev, void *dummy)
603 {
604 int rc, card, queue, devres, drvres;
605
606 if (is_queue_dev(dev)) {
607 card = AP_QID_CARD(to_ap_queue(dev)->qid);
608 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
609 mutex_lock(&ap_perms_mutex);
610 devres = test_bit_inv(card, ap_perms.apm)
611 && test_bit_inv(queue, ap_perms.aqm);
612 mutex_unlock(&ap_perms_mutex);
613 drvres = to_ap_drv(dev->driver)->flags
614 & AP_DRIVER_FLAG_DEFAULT;
615 if (!!devres != !!drvres) {
616 AP_DBF_DBG("reprobing queue=%02x.%04x\n",
617 card, queue);
618 rc = device_reprobe(dev);
619 }
620 }
621
622 return 0;
623 }
624
ap_bus_revise_bindings(void)625 static void ap_bus_revise_bindings(void)
626 {
627 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
628 }
629
ap_owned_by_def_drv(int card,int queue)630 int ap_owned_by_def_drv(int card, int queue)
631 {
632 int rc = 0;
633
634 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
635 return -EINVAL;
636
637 mutex_lock(&ap_perms_mutex);
638
639 if (test_bit_inv(card, ap_perms.apm)
640 && test_bit_inv(queue, ap_perms.aqm))
641 rc = 1;
642
643 mutex_unlock(&ap_perms_mutex);
644
645 return rc;
646 }
647 EXPORT_SYMBOL(ap_owned_by_def_drv);
648
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)649 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
650 unsigned long *aqm)
651 {
652 int card, queue, rc = 0;
653
654 mutex_lock(&ap_perms_mutex);
655
656 for (card = 0; !rc && card < AP_DEVICES; card++)
657 if (test_bit_inv(card, apm) &&
658 test_bit_inv(card, ap_perms.apm))
659 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
660 if (test_bit_inv(queue, aqm) &&
661 test_bit_inv(queue, ap_perms.aqm))
662 rc = 1;
663
664 mutex_unlock(&ap_perms_mutex);
665
666 return rc;
667 }
668 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
669
ap_device_probe(struct device * dev)670 static int ap_device_probe(struct device *dev)
671 {
672 struct ap_device *ap_dev = to_ap_dev(dev);
673 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
674 int card, queue, devres, drvres, rc = -ENODEV;
675
676 if (!get_device(dev))
677 return rc;
678
679 if (is_queue_dev(dev)) {
680 /*
681 * If the apqn is marked as reserved/used by ap bus and
682 * default drivers, only probe with drivers with the default
683 * flag set. If it is not marked, only probe with drivers
684 * with the default flag not set.
685 */
686 card = AP_QID_CARD(to_ap_queue(dev)->qid);
687 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
688 mutex_lock(&ap_perms_mutex);
689 devres = test_bit_inv(card, ap_perms.apm)
690 && test_bit_inv(queue, ap_perms.aqm);
691 mutex_unlock(&ap_perms_mutex);
692 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
693 if (!!devres != !!drvres)
694 goto out;
695 }
696
697 /* Add queue/card to list of active queues/cards */
698 spin_lock_bh(&ap_queues_lock);
699 if (is_queue_dev(dev))
700 hash_add(ap_queues, &to_ap_queue(dev)->hnode,
701 to_ap_queue(dev)->qid);
702 spin_unlock_bh(&ap_queues_lock);
703
704 ap_dev->drv = ap_drv;
705 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
706
707 if (rc) {
708 spin_lock_bh(&ap_queues_lock);
709 if (is_queue_dev(dev))
710 hash_del(&to_ap_queue(dev)->hnode);
711 spin_unlock_bh(&ap_queues_lock);
712 ap_dev->drv = NULL;
713 }
714
715 out:
716 if (rc)
717 put_device(dev);
718 return rc;
719 }
720
ap_device_remove(struct device * dev)721 static int ap_device_remove(struct device *dev)
722 {
723 struct ap_device *ap_dev = to_ap_dev(dev);
724 struct ap_driver *ap_drv = ap_dev->drv;
725
726 /* prepare ap queue device removal */
727 if (is_queue_dev(dev))
728 ap_queue_prepare_remove(to_ap_queue(dev));
729
730 /* driver's chance to clean up gracefully */
731 if (ap_drv->remove)
732 ap_drv->remove(ap_dev);
733
734 /* now do the ap queue device remove */
735 if (is_queue_dev(dev))
736 ap_queue_remove(to_ap_queue(dev));
737
738 /* Remove queue/card from list of active queues/cards */
739 spin_lock_bh(&ap_queues_lock);
740 if (is_queue_dev(dev))
741 hash_del(&to_ap_queue(dev)->hnode);
742 spin_unlock_bh(&ap_queues_lock);
743
744 put_device(dev);
745
746 return 0;
747 }
748
ap_get_qdev(ap_qid_t qid)749 struct ap_queue *ap_get_qdev(ap_qid_t qid)
750 {
751 int bkt;
752 struct ap_queue *aq;
753
754 spin_lock_bh(&ap_queues_lock);
755 hash_for_each(ap_queues, bkt, aq, hnode) {
756 if (aq->qid == qid) {
757 get_device(&aq->ap_dev.device);
758 spin_unlock_bh(&ap_queues_lock);
759 return aq;
760 }
761 }
762 spin_unlock_bh(&ap_queues_lock);
763
764 return NULL;
765 }
766 EXPORT_SYMBOL(ap_get_qdev);
767
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)768 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
769 char *name)
770 {
771 struct device_driver *drv = &ap_drv->driver;
772
773 drv->bus = &ap_bus_type;
774 drv->probe = ap_device_probe;
775 drv->remove = ap_device_remove;
776 drv->owner = owner;
777 drv->name = name;
778 return driver_register(drv);
779 }
780 EXPORT_SYMBOL(ap_driver_register);
781
ap_driver_unregister(struct ap_driver * ap_drv)782 void ap_driver_unregister(struct ap_driver *ap_drv)
783 {
784 driver_unregister(&ap_drv->driver);
785 }
786 EXPORT_SYMBOL(ap_driver_unregister);
787
ap_bus_force_rescan(void)788 void ap_bus_force_rescan(void)
789 {
790 /* processing a asynchronous bus rescan */
791 del_timer(&ap_config_timer);
792 queue_work(system_long_wq, &ap_scan_work);
793 flush_work(&ap_scan_work);
794 }
795 EXPORT_SYMBOL(ap_bus_force_rescan);
796
797 /*
798 * A config change has happened, force an ap bus rescan.
799 */
ap_bus_cfg_chg(void)800 void ap_bus_cfg_chg(void)
801 {
802 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
803
804 ap_bus_force_rescan();
805 }
806
807 /*
808 * hex2bitmap() - parse hex mask string and set bitmap.
809 * Valid strings are "0x012345678" with at least one valid hex number.
810 * Rest of the bitmap to the right is padded with 0. No spaces allowed
811 * within the string, the leading 0x may be omitted.
812 * Returns the bitmask with exactly the bits set as given by the hex
813 * string (both in big endian order).
814 */
hex2bitmap(const char * str,unsigned long * bitmap,int bits)815 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
816 {
817 int i, n, b;
818
819 /* bits needs to be a multiple of 8 */
820 if (bits & 0x07)
821 return -EINVAL;
822
823 if (str[0] == '0' && str[1] == 'x')
824 str++;
825 if (*str == 'x')
826 str++;
827
828 for (i = 0; isxdigit(*str) && i < bits; str++) {
829 b = hex_to_bin(*str);
830 for (n = 0; n < 4; n++)
831 if (b & (0x08 >> n))
832 set_bit_inv(i + n, bitmap);
833 i += 4;
834 }
835
836 if (*str == '\n')
837 str++;
838 if (*str)
839 return -EINVAL;
840 return 0;
841 }
842
843 /*
844 * modify_bitmap() - parse bitmask argument and modify an existing
845 * bit mask accordingly. A concatenation (done with ',') of these
846 * terms is recognized:
847 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
848 * <bitnr> may be any valid number (hex, decimal or octal) in the range
849 * 0...bits-1; the leading + or - is required. Here are some examples:
850 * +0-15,+32,-128,-0xFF
851 * -0-255,+1-16,+0x128
852 * +1,+2,+3,+4,-5,-7-10
853 * Returns the new bitmap after all changes have been applied. Every
854 * positive value in the string will set a bit and every negative value
855 * in the string will clear a bit. As a bit may be touched more than once,
856 * the last 'operation' wins:
857 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
858 * cleared again. All other bits are unmodified.
859 */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)860 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
861 {
862 int a, i, z;
863 char *np, sign;
864
865 /* bits needs to be a multiple of 8 */
866 if (bits & 0x07)
867 return -EINVAL;
868
869 while (*str) {
870 sign = *str++;
871 if (sign != '+' && sign != '-')
872 return -EINVAL;
873 a = z = simple_strtoul(str, &np, 0);
874 if (str == np || a >= bits)
875 return -EINVAL;
876 str = np;
877 if (*str == '-') {
878 z = simple_strtoul(++str, &np, 0);
879 if (str == np || a > z || z >= bits)
880 return -EINVAL;
881 str = np;
882 }
883 for (i = a; i <= z; i++)
884 if (sign == '+')
885 set_bit_inv(i, bitmap);
886 else
887 clear_bit_inv(i, bitmap);
888 while (*str == ',' || *str == '\n')
889 str++;
890 }
891
892 return 0;
893 }
894
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)895 int ap_parse_mask_str(const char *str,
896 unsigned long *bitmap, int bits,
897 struct mutex *lock)
898 {
899 unsigned long *newmap, size;
900 int rc;
901
902 /* bits needs to be a multiple of 8 */
903 if (bits & 0x07)
904 return -EINVAL;
905
906 size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
907 newmap = kmalloc(size, GFP_KERNEL);
908 if (!newmap)
909 return -ENOMEM;
910 if (mutex_lock_interruptible(lock)) {
911 kfree(newmap);
912 return -ERESTARTSYS;
913 }
914
915 if (*str == '+' || *str == '-') {
916 memcpy(newmap, bitmap, size);
917 rc = modify_bitmap(str, newmap, bits);
918 } else {
919 memset(newmap, 0, size);
920 rc = hex2bitmap(str, newmap, bits);
921 }
922 if (rc == 0)
923 memcpy(bitmap, newmap, size);
924 mutex_unlock(lock);
925 kfree(newmap);
926 return rc;
927 }
928 EXPORT_SYMBOL(ap_parse_mask_str);
929
930 /*
931 * AP bus attributes.
932 */
933
ap_domain_show(struct bus_type * bus,char * buf)934 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
935 {
936 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
937 }
938
ap_domain_store(struct bus_type * bus,const char * buf,size_t count)939 static ssize_t ap_domain_store(struct bus_type *bus,
940 const char *buf, size_t count)
941 {
942 int domain;
943
944 if (sscanf(buf, "%i\n", &domain) != 1 ||
945 domain < 0 || domain > ap_max_domain_id ||
946 !test_bit_inv(domain, ap_perms.aqm))
947 return -EINVAL;
948
949 spin_lock_bh(&ap_domain_lock);
950 ap_domain_index = domain;
951 spin_unlock_bh(&ap_domain_lock);
952
953 AP_DBF_INFO("stored new default domain=%d\n", domain);
954
955 return count;
956 }
957
958 static BUS_ATTR_RW(ap_domain);
959
ap_control_domain_mask_show(struct bus_type * bus,char * buf)960 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
961 {
962 if (!ap_qci_info) /* QCI not supported */
963 return scnprintf(buf, PAGE_SIZE, "not supported\n");
964
965 return scnprintf(buf, PAGE_SIZE,
966 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
967 ap_qci_info->adm[0], ap_qci_info->adm[1],
968 ap_qci_info->adm[2], ap_qci_info->adm[3],
969 ap_qci_info->adm[4], ap_qci_info->adm[5],
970 ap_qci_info->adm[6], ap_qci_info->adm[7]);
971 }
972
973 static BUS_ATTR_RO(ap_control_domain_mask);
974
ap_usage_domain_mask_show(struct bus_type * bus,char * buf)975 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
976 {
977 if (!ap_qci_info) /* QCI not supported */
978 return scnprintf(buf, PAGE_SIZE, "not supported\n");
979
980 return scnprintf(buf, PAGE_SIZE,
981 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
982 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
983 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
984 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
985 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
986 }
987
988 static BUS_ATTR_RO(ap_usage_domain_mask);
989
ap_adapter_mask_show(struct bus_type * bus,char * buf)990 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
991 {
992 if (!ap_qci_info) /* QCI not supported */
993 return scnprintf(buf, PAGE_SIZE, "not supported\n");
994
995 return scnprintf(buf, PAGE_SIZE,
996 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
997 ap_qci_info->apm[0], ap_qci_info->apm[1],
998 ap_qci_info->apm[2], ap_qci_info->apm[3],
999 ap_qci_info->apm[4], ap_qci_info->apm[5],
1000 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1001 }
1002
1003 static BUS_ATTR_RO(ap_adapter_mask);
1004
ap_interrupts_show(struct bus_type * bus,char * buf)1005 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1006 {
1007 return scnprintf(buf, PAGE_SIZE, "%d\n",
1008 ap_irq_flag ? 1 : 0);
1009 }
1010
1011 static BUS_ATTR_RO(ap_interrupts);
1012
config_time_show(struct bus_type * bus,char * buf)1013 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1014 {
1015 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1016 }
1017
config_time_store(struct bus_type * bus,const char * buf,size_t count)1018 static ssize_t config_time_store(struct bus_type *bus,
1019 const char *buf, size_t count)
1020 {
1021 int time;
1022
1023 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1024 return -EINVAL;
1025 ap_config_time = time;
1026 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1027 return count;
1028 }
1029
1030 static BUS_ATTR_RW(config_time);
1031
poll_thread_show(struct bus_type * bus,char * buf)1032 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1033 {
1034 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1035 }
1036
poll_thread_store(struct bus_type * bus,const char * buf,size_t count)1037 static ssize_t poll_thread_store(struct bus_type *bus,
1038 const char *buf, size_t count)
1039 {
1040 int flag, rc;
1041
1042 if (sscanf(buf, "%d\n", &flag) != 1)
1043 return -EINVAL;
1044 if (flag) {
1045 rc = ap_poll_thread_start();
1046 if (rc)
1047 count = rc;
1048 } else
1049 ap_poll_thread_stop();
1050 return count;
1051 }
1052
1053 static BUS_ATTR_RW(poll_thread);
1054
poll_timeout_show(struct bus_type * bus,char * buf)1055 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1056 {
1057 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1058 }
1059
poll_timeout_store(struct bus_type * bus,const char * buf,size_t count)1060 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1061 size_t count)
1062 {
1063 unsigned long long time;
1064 ktime_t hr_time;
1065
1066 /* 120 seconds = maximum poll interval */
1067 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1068 time > 120000000000ULL)
1069 return -EINVAL;
1070 poll_timeout = time;
1071 hr_time = poll_timeout;
1072
1073 spin_lock_bh(&ap_poll_timer_lock);
1074 hrtimer_cancel(&ap_poll_timer);
1075 hrtimer_set_expires(&ap_poll_timer, hr_time);
1076 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1077 spin_unlock_bh(&ap_poll_timer_lock);
1078
1079 return count;
1080 }
1081
1082 static BUS_ATTR_RW(poll_timeout);
1083
ap_max_domain_id_show(struct bus_type * bus,char * buf)1084 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1085 {
1086 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id);
1087 }
1088
1089 static BUS_ATTR_RO(ap_max_domain_id);
1090
ap_max_adapter_id_show(struct bus_type * bus,char * buf)1091 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf)
1092 {
1093 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id);
1094 }
1095
1096 static BUS_ATTR_RO(ap_max_adapter_id);
1097
apmask_show(struct bus_type * bus,char * buf)1098 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1099 {
1100 int rc;
1101
1102 if (mutex_lock_interruptible(&ap_perms_mutex))
1103 return -ERESTARTSYS;
1104 rc = scnprintf(buf, PAGE_SIZE,
1105 "0x%016lx%016lx%016lx%016lx\n",
1106 ap_perms.apm[0], ap_perms.apm[1],
1107 ap_perms.apm[2], ap_perms.apm[3]);
1108 mutex_unlock(&ap_perms_mutex);
1109
1110 return rc;
1111 }
1112
apmask_store(struct bus_type * bus,const char * buf,size_t count)1113 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1114 size_t count)
1115 {
1116 int rc;
1117
1118 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1119 if (rc)
1120 return rc;
1121
1122 ap_bus_revise_bindings();
1123
1124 return count;
1125 }
1126
1127 static BUS_ATTR_RW(apmask);
1128
aqmask_show(struct bus_type * bus,char * buf)1129 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1130 {
1131 int rc;
1132
1133 if (mutex_lock_interruptible(&ap_perms_mutex))
1134 return -ERESTARTSYS;
1135 rc = scnprintf(buf, PAGE_SIZE,
1136 "0x%016lx%016lx%016lx%016lx\n",
1137 ap_perms.aqm[0], ap_perms.aqm[1],
1138 ap_perms.aqm[2], ap_perms.aqm[3]);
1139 mutex_unlock(&ap_perms_mutex);
1140
1141 return rc;
1142 }
1143
aqmask_store(struct bus_type * bus,const char * buf,size_t count)1144 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1145 size_t count)
1146 {
1147 int rc;
1148
1149 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1150 if (rc)
1151 return rc;
1152
1153 ap_bus_revise_bindings();
1154
1155 return count;
1156 }
1157
1158 static BUS_ATTR_RW(aqmask);
1159
1160 static struct bus_attribute *const ap_bus_attrs[] = {
1161 &bus_attr_ap_domain,
1162 &bus_attr_ap_control_domain_mask,
1163 &bus_attr_ap_usage_domain_mask,
1164 &bus_attr_ap_adapter_mask,
1165 &bus_attr_config_time,
1166 &bus_attr_poll_thread,
1167 &bus_attr_ap_interrupts,
1168 &bus_attr_poll_timeout,
1169 &bus_attr_ap_max_domain_id,
1170 &bus_attr_ap_max_adapter_id,
1171 &bus_attr_apmask,
1172 &bus_attr_aqmask,
1173 NULL,
1174 };
1175
1176 /**
1177 * ap_select_domain(): Select an AP domain if possible and we haven't
1178 * already done so before.
1179 */
ap_select_domain(void)1180 static void ap_select_domain(void)
1181 {
1182 struct ap_queue_status status;
1183 int card, dom;
1184
1185 /*
1186 * Choose the default domain. Either the one specified with
1187 * the "domain=" parameter or the first domain with at least
1188 * one valid APQN.
1189 */
1190 spin_lock_bh(&ap_domain_lock);
1191 if (ap_domain_index >= 0) {
1192 /* Domain has already been selected. */
1193 goto out;
1194 }
1195 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1196 if (!ap_test_config_usage_domain(dom) ||
1197 !test_bit_inv(dom, ap_perms.aqm))
1198 continue;
1199 for (card = 0; card <= ap_max_adapter_id; card++) {
1200 if (!ap_test_config_card_id(card) ||
1201 !test_bit_inv(card, ap_perms.apm))
1202 continue;
1203 status = ap_test_queue(AP_MKQID(card, dom),
1204 ap_apft_available(),
1205 NULL);
1206 if (status.response_code == AP_RESPONSE_NORMAL)
1207 break;
1208 }
1209 if (card <= ap_max_adapter_id)
1210 break;
1211 }
1212 if (dom <= ap_max_domain_id) {
1213 ap_domain_index = dom;
1214 AP_DBF_INFO("%s new default domain is %d\n",
1215 __func__, ap_domain_index);
1216 }
1217 out:
1218 spin_unlock_bh(&ap_domain_lock);
1219 }
1220
1221 /*
1222 * This function checks the type and returns either 0 for not
1223 * supported or the highest compatible type value (which may
1224 * include the input type value).
1225 */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1226 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1227 {
1228 int comp_type = 0;
1229
1230 /* < CEX2A is not supported */
1231 if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1232 AP_DBF_WARN("get_comp_type queue=%02x.%04x unsupported type %d\n",
1233 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1234 return 0;
1235 }
1236 /* up to CEX7 known and fully supported */
1237 if (rawtype <= AP_DEVICE_TYPE_CEX7)
1238 return rawtype;
1239 /*
1240 * unknown new type > CEX7, check for compatibility
1241 * to the highest known and supported type which is
1242 * currently CEX7 with the help of the QACT function.
1243 */
1244 if (ap_qact_available()) {
1245 struct ap_queue_status status;
1246 union ap_qact_ap_info apinfo = {0};
1247
1248 apinfo.mode = (func >> 26) & 0x07;
1249 apinfo.cat = AP_DEVICE_TYPE_CEX7;
1250 status = ap_qact(qid, 0, &apinfo);
1251 if (status.response_code == AP_RESPONSE_NORMAL
1252 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1253 && apinfo.cat <= AP_DEVICE_TYPE_CEX7)
1254 comp_type = apinfo.cat;
1255 }
1256 if (!comp_type)
1257 AP_DBF_WARN("get_comp_type queue=%02x.%04x unable to map type %d\n",
1258 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1259 else if (comp_type != rawtype)
1260 AP_DBF_INFO("get_comp_type queue=%02x.%04x map type %d to %d\n",
1261 AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1262 rawtype, comp_type);
1263 return comp_type;
1264 }
1265
1266 /*
1267 * Helper function to be used with bus_find_dev
1268 * matches for the card device with the given id
1269 */
__match_card_device_with_id(struct device * dev,const void * data)1270 static int __match_card_device_with_id(struct device *dev, const void *data)
1271 {
1272 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data;
1273 }
1274
1275 /*
1276 * Helper function to be used with bus_find_dev
1277 * matches for the queue device with a given qid
1278 */
__match_queue_device_with_qid(struct device * dev,const void * data)1279 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1280 {
1281 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1282 }
1283
1284 /*
1285 * Helper function to be used with bus_find_dev
1286 * matches any queue device with given queue id
1287 */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1288 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1289 {
1290 return is_queue_dev(dev)
1291 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data;
1292 }
1293
1294 /*
1295 * Helper function for ap_scan_bus().
1296 * Remove card device and associated queue devices.
1297 */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1298 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1299 {
1300 bus_for_each_dev(&ap_bus_type, NULL,
1301 (void *)(long) ac->id,
1302 __ap_queue_devices_with_id_unregister);
1303 device_unregister(&ac->ap_dev.device);
1304 }
1305
1306 /*
1307 * Helper function for ap_scan_bus().
1308 * Does the scan bus job for all the domains within
1309 * a valid adapter given by an ap_card ptr.
1310 */
ap_scan_domains(struct ap_card * ac)1311 static inline void ap_scan_domains(struct ap_card *ac)
1312 {
1313 bool decfg;
1314 ap_qid_t qid;
1315 unsigned int func;
1316 struct device *dev;
1317 struct ap_queue *aq;
1318 int rc, dom, depth, type;
1319
1320 /*
1321 * Go through the configuration for the domains and compare them
1322 * to the existing queue devices. Also take care of the config
1323 * and error state for the queue devices.
1324 */
1325
1326 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1327 qid = AP_MKQID(ac->id, dom);
1328 dev = bus_find_device(&ap_bus_type, NULL,
1329 (void *)(long) qid,
1330 __match_queue_device_with_qid);
1331 aq = dev ? to_ap_queue(dev) : NULL;
1332 if (!ap_test_config_usage_domain(dom)) {
1333 if (dev) {
1334 AP_DBF_INFO("%s(%d,%d) not in config any more, rm queue device\n",
1335 __func__, ac->id, dom);
1336 device_unregister(dev);
1337 put_device(dev);
1338 }
1339 continue;
1340 }
1341 /* domain is valid, get info from this APQN */
1342 if (!ap_queue_info(qid, &type, &func, &depth, &decfg)) {
1343 if (aq) {
1344 AP_DBF_INFO(
1345 "%s(%d,%d) ap_queue_info() not successful, rm queue device\n",
1346 __func__, ac->id, dom);
1347 device_unregister(dev);
1348 put_device(dev);
1349 }
1350 continue;
1351 }
1352 /* if no queue device exists, create a new one */
1353 if (!aq) {
1354 aq = ap_queue_create(qid, ac->ap_dev.device_type);
1355 if (!aq) {
1356 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1357 __func__, ac->id, dom);
1358 continue;
1359 }
1360 aq->card = ac;
1361 aq->config = !decfg;
1362 dev = &aq->ap_dev.device;
1363 dev->bus = &ap_bus_type;
1364 dev->parent = &ac->ap_dev.device;
1365 dev_set_name(dev, "%02x.%04x", ac->id, dom);
1366 /* register queue device */
1367 rc = device_register(dev);
1368 if (rc) {
1369 AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1370 __func__, ac->id, dom);
1371 goto put_dev_and_continue;
1372 }
1373 /* get it and thus adjust reference counter */
1374 get_device(dev);
1375 if (decfg)
1376 AP_DBF_INFO("%s(%d,%d) new (decfg) queue device created\n",
1377 __func__, ac->id, dom);
1378 else
1379 AP_DBF_INFO("%s(%d,%d) new queue device created\n",
1380 __func__, ac->id, dom);
1381 goto put_dev_and_continue;
1382 }
1383 /* Check config state on the already existing queue device */
1384 spin_lock_bh(&aq->lock);
1385 if (decfg && aq->config) {
1386 /* config off this queue device */
1387 aq->config = false;
1388 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1389 aq->dev_state = AP_DEV_STATE_ERROR;
1390 aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1391 }
1392 spin_unlock_bh(&aq->lock);
1393 AP_DBF_INFO("%s(%d,%d) queue device config off\n",
1394 __func__, ac->id, dom);
1395 /* 'receive' pending messages with -EAGAIN */
1396 ap_flush_queue(aq);
1397 goto put_dev_and_continue;
1398 }
1399 if (!decfg && !aq->config) {
1400 /* config on this queue device */
1401 aq->config = true;
1402 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1403 aq->dev_state = AP_DEV_STATE_OPERATING;
1404 aq->sm_state = AP_SM_STATE_RESET_START;
1405 }
1406 spin_unlock_bh(&aq->lock);
1407 AP_DBF_INFO("%s(%d,%d) queue device config on\n",
1408 __func__, ac->id, dom);
1409 goto put_dev_and_continue;
1410 }
1411 /* handle other error states */
1412 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1413 spin_unlock_bh(&aq->lock);
1414 /* 'receive' pending messages with -EAGAIN */
1415 ap_flush_queue(aq);
1416 /* re-init (with reset) the queue device */
1417 ap_queue_init_state(aq);
1418 AP_DBF_INFO("%s(%d,%d) queue device reinit enforced\n",
1419 __func__, ac->id, dom);
1420 goto put_dev_and_continue;
1421 }
1422 spin_unlock_bh(&aq->lock);
1423 put_dev_and_continue:
1424 put_device(dev);
1425 }
1426 }
1427
1428 /*
1429 * Helper function for ap_scan_bus().
1430 * Does the scan bus job for the given adapter id.
1431 */
ap_scan_adapter(int ap)1432 static inline void ap_scan_adapter(int ap)
1433 {
1434 bool decfg;
1435 ap_qid_t qid;
1436 unsigned int func;
1437 struct device *dev;
1438 struct ap_card *ac;
1439 int rc, dom, depth, type, comp_type;
1440
1441 /* Is there currently a card device for this adapter ? */
1442 dev = bus_find_device(&ap_bus_type, NULL,
1443 (void *)(long) ap,
1444 __match_card_device_with_id);
1445 ac = dev ? to_ap_card(dev) : NULL;
1446
1447 /* Adapter not in configuration ? */
1448 if (!ap_test_config_card_id(ap)) {
1449 if (ac) {
1450 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devices\n",
1451 __func__, ap);
1452 ap_scan_rm_card_dev_and_queue_devs(ac);
1453 put_device(dev);
1454 }
1455 return;
1456 }
1457
1458 /*
1459 * Adapter ap is valid in the current configuration. So do some checks:
1460 * If no card device exists, build one. If a card device exists, check
1461 * for type and functions changed. For all this we need to find a valid
1462 * APQN first.
1463 */
1464
1465 for (dom = 0; dom <= ap_max_domain_id; dom++)
1466 if (ap_test_config_usage_domain(dom)) {
1467 qid = AP_MKQID(ap, dom);
1468 if (ap_queue_info(qid, &type, &func, &depth, &decfg))
1469 break;
1470 }
1471 if (dom > ap_max_domain_id) {
1472 /* Could not find a valid APQN for this adapter */
1473 if (ac) {
1474 AP_DBF_INFO(
1475 "%s(%d) no type info (no APQN found), rm card and queue devices\n",
1476 __func__, ap);
1477 ap_scan_rm_card_dev_and_queue_devs(ac);
1478 put_device(dev);
1479 } else {
1480 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
1481 __func__, ap);
1482 }
1483 return;
1484 }
1485 if (!type) {
1486 /* No apdater type info available, an unusable adapter */
1487 if (ac) {
1488 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devices\n",
1489 __func__, ap);
1490 ap_scan_rm_card_dev_and_queue_devs(ac);
1491 put_device(dev);
1492 } else {
1493 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
1494 __func__, ap);
1495 }
1496 return;
1497 }
1498
1499 if (ac) {
1500 /* Check APQN against existing card device for changes */
1501 if (ac->raw_hwtype != type) {
1502 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devices\n",
1503 __func__, ap, type);
1504 ap_scan_rm_card_dev_and_queue_devs(ac);
1505 put_device(dev);
1506 ac = NULL;
1507 } else if (ac->functions != func) {
1508 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devices\n",
1509 __func__, ap, type);
1510 ap_scan_rm_card_dev_and_queue_devs(ac);
1511 put_device(dev);
1512 ac = NULL;
1513 } else {
1514 if (decfg && ac->config) {
1515 ac->config = false;
1516 AP_DBF_INFO("%s(%d) card device config off\n",
1517 __func__, ap);
1518
1519 }
1520 if (!decfg && !ac->config) {
1521 ac->config = true;
1522 AP_DBF_INFO("%s(%d) card device config on\n",
1523 __func__, ap);
1524 }
1525 }
1526 }
1527
1528 if (!ac) {
1529 /* Build a new card device */
1530 comp_type = ap_get_compatible_type(qid, type, func);
1531 if (!comp_type) {
1532 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
1533 __func__, ap, type);
1534 return;
1535 }
1536 ac = ap_card_create(ap, depth, type, comp_type, func);
1537 if (!ac) {
1538 AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
1539 __func__, ap);
1540 return;
1541 }
1542 ac->config = !decfg;
1543 dev = &ac->ap_dev.device;
1544 dev->bus = &ap_bus_type;
1545 dev->parent = ap_root_device;
1546 dev_set_name(dev, "card%02x", ap);
1547 /* Register the new card device with AP bus */
1548 rc = device_register(dev);
1549 if (rc) {
1550 AP_DBF_WARN("%s(%d) device_register() failed\n",
1551 __func__, ap);
1552 put_device(dev);
1553 return;
1554 }
1555 /* get it and thus adjust reference counter */
1556 get_device(dev);
1557 if (decfg)
1558 AP_DBF_INFO("%s(%d) new (decfg) card device type=%d func=0x%08x created\n",
1559 __func__, ap, type, func);
1560 else
1561 AP_DBF_INFO("%s(%d) new card device type=%d func=0x%08x created\n",
1562 __func__, ap, type, func);
1563 }
1564
1565 /* Verify the domains and the queue devices for this card */
1566 ap_scan_domains(ac);
1567
1568 /* release the card device */
1569 put_device(&ac->ap_dev.device);
1570 }
1571
1572 /**
1573 * ap_scan_bus(): Scan the AP bus for new devices
1574 * Runs periodically, workqueue timer (ap_config_time)
1575 */
ap_scan_bus(struct work_struct * unused)1576 static void ap_scan_bus(struct work_struct *unused)
1577 {
1578 int ap;
1579
1580 ap_fetch_qci_info(ap_qci_info);
1581 ap_select_domain();
1582
1583 AP_DBF_DBG("%s running\n", __func__);
1584
1585 /* loop over all possible adapters */
1586 for (ap = 0; ap <= ap_max_adapter_id; ap++)
1587 ap_scan_adapter(ap);
1588
1589 /* check if there is at least one queue available with default domain */
1590 if (ap_domain_index >= 0) {
1591 struct device *dev =
1592 bus_find_device(&ap_bus_type, NULL,
1593 (void *)(long) ap_domain_index,
1594 __match_queue_device_with_queue_id);
1595 if (dev)
1596 put_device(dev);
1597 else
1598 AP_DBF_INFO("no queue device with default domain %d available\n",
1599 ap_domain_index);
1600 }
1601
1602 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1603 }
1604
ap_config_timeout(struct timer_list * unused)1605 static void ap_config_timeout(struct timer_list *unused)
1606 {
1607 queue_work(system_long_wq, &ap_scan_work);
1608 }
1609
ap_debug_init(void)1610 static int __init ap_debug_init(void)
1611 {
1612 ap_dbf_info = debug_register("ap", 1, 1,
1613 DBF_MAX_SPRINTF_ARGS * sizeof(long));
1614 debug_register_view(ap_dbf_info, &debug_sprintf_view);
1615 debug_set_level(ap_dbf_info, DBF_ERR);
1616
1617 return 0;
1618 }
1619
ap_perms_init(void)1620 static void __init ap_perms_init(void)
1621 {
1622 /* all resources useable if no kernel parameter string given */
1623 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
1624 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1625 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1626
1627 /* apm kernel parameter string */
1628 if (apm_str) {
1629 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1630 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
1631 &ap_perms_mutex);
1632 }
1633
1634 /* aqm kernel parameter string */
1635 if (aqm_str) {
1636 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1637 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
1638 &ap_perms_mutex);
1639 }
1640 }
1641
1642 /**
1643 * ap_module_init(): The module initialization code.
1644 *
1645 * Initializes the module.
1646 */
ap_module_init(void)1647 static int __init ap_module_init(void)
1648 {
1649 int rc, i;
1650
1651 rc = ap_debug_init();
1652 if (rc)
1653 return rc;
1654
1655 if (!ap_instructions_available()) {
1656 pr_warn("The hardware system does not support AP instructions\n");
1657 return -ENODEV;
1658 }
1659
1660 /* init ap_queue hashtable */
1661 hash_init(ap_queues);
1662
1663 /* set up the AP permissions (ioctls, ap and aq masks) */
1664 ap_perms_init();
1665
1666 /* Get AP configuration data if available */
1667 ap_init_qci_info();
1668
1669 /* check default domain setting */
1670 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
1671 (ap_domain_index >= 0 &&
1672 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1673 pr_warn("%d is not a valid cryptographic domain\n",
1674 ap_domain_index);
1675 ap_domain_index = -1;
1676 }
1677
1678 /* enable interrupts if available */
1679 if (ap_interrupts_available()) {
1680 rc = register_adapter_interrupt(&ap_airq);
1681 ap_irq_flag = (rc == 0);
1682 }
1683
1684 /* Create /sys/bus/ap. */
1685 rc = bus_register(&ap_bus_type);
1686 if (rc)
1687 goto out;
1688 for (i = 0; ap_bus_attrs[i]; i++) {
1689 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1690 if (rc)
1691 goto out_bus;
1692 }
1693
1694 /* Create /sys/devices/ap. */
1695 ap_root_device = root_device_register("ap");
1696 rc = PTR_ERR_OR_ZERO(ap_root_device);
1697 if (rc)
1698 goto out_bus;
1699
1700 /* Setup the AP bus rescan timer. */
1701 timer_setup(&ap_config_timer, ap_config_timeout, 0);
1702
1703 /*
1704 * Setup the high resultion poll timer.
1705 * If we are running under z/VM adjust polling to z/VM polling rate.
1706 */
1707 if (MACHINE_IS_VM)
1708 poll_timeout = 1500000;
1709 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1710 ap_poll_timer.function = ap_poll_timeout;
1711
1712 /* Start the low priority AP bus poll thread. */
1713 if (ap_thread_flag) {
1714 rc = ap_poll_thread_start();
1715 if (rc)
1716 goto out_work;
1717 }
1718
1719 queue_work(system_long_wq, &ap_scan_work);
1720
1721 return 0;
1722
1723 out_work:
1724 hrtimer_cancel(&ap_poll_timer);
1725 root_device_unregister(ap_root_device);
1726 out_bus:
1727 while (i--)
1728 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1729 bus_unregister(&ap_bus_type);
1730 out:
1731 if (ap_irq_flag)
1732 unregister_adapter_interrupt(&ap_airq);
1733 kfree(ap_qci_info);
1734 return rc;
1735 }
1736 device_initcall(ap_module_init);
1737