• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2012
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *
10  * Adjunct processor bus.
11  */
12 
13 #define KMSG_COMPONENT "ap"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15 
16 #include <linux/kernel_stat.h>
17 #include <linux/moduleparam.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/freezer.h>
22 #include <linux/interrupt.h>
23 #include <linux/workqueue.h>
24 #include <linux/slab.h>
25 #include <linux/notifier.h>
26 #include <linux/kthread.h>
27 #include <linux/mutex.h>
28 #include <asm/airq.h>
29 #include <linux/atomic.h>
30 #include <asm/isc.h>
31 #include <linux/hrtimer.h>
32 #include <linux/ktime.h>
33 #include <asm/facility.h>
34 #include <linux/crypto.h>
35 #include <linux/mod_devicetable.h>
36 #include <linux/debugfs.h>
37 #include <linux/ctype.h>
38 
39 #include "ap_bus.h"
40 #include "ap_debug.h"
41 
42 /*
43  * Module parameters; note though this file itself isn't modular.
44  */
45 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
46 static DEFINE_SPINLOCK(ap_domain_lock);
47 module_param_named(domain, ap_domain_index, int, 0440);
48 MODULE_PARM_DESC(domain, "domain index for ap devices");
49 EXPORT_SYMBOL(ap_domain_index);
50 
51 static int ap_thread_flag;
52 module_param_named(poll_thread, ap_thread_flag, int, 0440);
53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
54 
55 static char *apm_str;
56 module_param_named(apmask, apm_str, charp, 0440);
57 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
58 
59 static char *aqm_str;
60 module_param_named(aqmask, aqm_str, charp, 0440);
61 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
62 
63 static struct device *ap_root_device;
64 
65 /* Hashtable of all queue devices on the AP bus */
66 DEFINE_HASHTABLE(ap_queues, 8);
67 /* lock used for the ap_queues hashtable */
68 DEFINE_SPINLOCK(ap_queues_lock);
69 
70 /* Default permissions (ioctl, card and domain masking) */
71 struct ap_perms ap_perms;
72 EXPORT_SYMBOL(ap_perms);
73 DEFINE_MUTEX(ap_perms_mutex);
74 EXPORT_SYMBOL(ap_perms_mutex);
75 
76 static struct ap_config_info *ap_qci_info;
77 
78 /*
79  * AP bus related debug feature things.
80  */
81 debug_info_t *ap_dbf_info;
82 
83 /*
84  * Workqueue timer for bus rescan.
85  */
86 static struct timer_list ap_config_timer;
87 static int ap_config_time = AP_CONFIG_TIME;
88 static void ap_scan_bus(struct work_struct *);
89 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
90 
91 /*
92  * Tasklet & timer for AP request polling and interrupts
93  */
94 static void ap_tasklet_fn(unsigned long);
95 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
96 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
97 static struct task_struct *ap_poll_kthread;
98 static DEFINE_MUTEX(ap_poll_thread_mutex);
99 static DEFINE_SPINLOCK(ap_poll_timer_lock);
100 static struct hrtimer ap_poll_timer;
101 /*
102  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
103  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
104  */
105 static unsigned long long poll_timeout = 250000;
106 
107 /* Maximum domain id, if not given via qci */
108 static int ap_max_domain_id = 15;
109 /* Maximum adapter id, if not given via qci */
110 static int ap_max_adapter_id = 63;
111 
112 static struct bus_type ap_bus_type;
113 
114 /* Adapter interrupt definitions */
115 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
116 
117 static bool ap_irq_flag;
118 
119 static struct airq_struct ap_airq = {
120 	.handler = ap_interrupt_handler,
121 	.isc = AP_ISC,
122 };
123 
124 /**
125  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
126  *
127  * Returns the address of the local-summary-indicator of the adapter
128  * interrupt handler for AP, or NULL if adapter interrupts are not
129  * available.
130  */
ap_airq_ptr(void)131 void *ap_airq_ptr(void)
132 {
133 	if (ap_irq_flag)
134 		return ap_airq.lsi_ptr;
135 	return NULL;
136 }
137 
138 /**
139  * ap_interrupts_available(): Test if AP interrupts are available.
140  *
141  * Returns 1 if AP interrupts are available.
142  */
ap_interrupts_available(void)143 static int ap_interrupts_available(void)
144 {
145 	return test_facility(65);
146 }
147 
148 /**
149  * ap_qci_available(): Test if AP configuration
150  * information can be queried via QCI subfunction.
151  *
152  * Returns 1 if subfunction PQAP(QCI) is available.
153  */
ap_qci_available(void)154 static int ap_qci_available(void)
155 {
156 	return test_facility(12);
157 }
158 
159 /**
160  * ap_apft_available(): Test if AP facilities test (APFT)
161  * facility is available.
162  *
163  * Returns 1 if APFT is is available.
164  */
ap_apft_available(void)165 static int ap_apft_available(void)
166 {
167 	return test_facility(15);
168 }
169 
170 /*
171  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
172  *
173  * Returns 1 if the QACT subfunction is available.
174  */
ap_qact_available(void)175 static inline int ap_qact_available(void)
176 {
177 	if (ap_qci_info)
178 		return ap_qci_info->qact;
179 	return 0;
180 }
181 
182 /*
183  * ap_fetch_qci_info(): Fetch cryptographic config info
184  *
185  * Returns the ap configuration info fetched via PQAP(QCI).
186  * On success 0 is returned, on failure a negative errno
187  * is returned, e.g. if the PQAP(QCI) instruction is not
188  * available, the return value will be -EOPNOTSUPP.
189  */
ap_fetch_qci_info(struct ap_config_info * info)190 static inline int ap_fetch_qci_info(struct ap_config_info *info)
191 {
192 	if (!ap_qci_available())
193 		return -EOPNOTSUPP;
194 	if (!info)
195 		return -EINVAL;
196 	return ap_qci(info);
197 }
198 
199 /**
200  * ap_init_qci_info(): Allocate and query qci config info.
201  * Does also update the static variables ap_max_domain_id
202  * and ap_max_adapter_id if this info is available.
203 
204  */
ap_init_qci_info(void)205 static void __init ap_init_qci_info(void)
206 {
207 	if (!ap_qci_available()) {
208 		AP_DBF_INFO("%s QCI not supported\n", __func__);
209 		return;
210 	}
211 
212 	ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
213 	if (!ap_qci_info)
214 		return;
215 	if (ap_fetch_qci_info(ap_qci_info) != 0) {
216 		kfree(ap_qci_info);
217 		ap_qci_info = NULL;
218 		return;
219 	}
220 	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
221 
222 	if (ap_qci_info->apxa) {
223 		if (ap_qci_info->Na) {
224 			ap_max_adapter_id = ap_qci_info->Na;
225 			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
226 				    __func__, ap_max_adapter_id);
227 		}
228 		if (ap_qci_info->Nd) {
229 			ap_max_domain_id = ap_qci_info->Nd;
230 			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
231 				    __func__, ap_max_domain_id);
232 		}
233 	}
234 }
235 
236 /*
237  * ap_test_config(): helper function to extract the nrth bit
238  *		     within the unsigned int array field.
239  */
ap_test_config(unsigned int * field,unsigned int nr)240 static inline int ap_test_config(unsigned int *field, unsigned int nr)
241 {
242 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
243 }
244 
245 /*
246  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
247  *
248  * Returns 0 if the card is not configured
249  *	   1 if the card is configured or
250  *	     if the configuration information is not available
251  */
ap_test_config_card_id(unsigned int id)252 static inline int ap_test_config_card_id(unsigned int id)
253 {
254 	if (id > ap_max_adapter_id)
255 		return 0;
256 	if (ap_qci_info)
257 		return ap_test_config(ap_qci_info->apm, id);
258 	return 1;
259 }
260 
261 /*
262  * ap_test_config_usage_domain(): Test, whether an AP usage domain
263  * is configured.
264  *
265  * Returns 0 if the usage domain is not configured
266  *	   1 if the usage domain is configured or
267  *	     if the configuration information is not available
268  */
ap_test_config_usage_domain(unsigned int domain)269 int ap_test_config_usage_domain(unsigned int domain)
270 {
271 	if (domain > ap_max_domain_id)
272 		return 0;
273 	if (ap_qci_info)
274 		return ap_test_config(ap_qci_info->aqm, domain);
275 	return 1;
276 }
277 EXPORT_SYMBOL(ap_test_config_usage_domain);
278 
279 /*
280  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
281  * is configured.
282  * @domain AP control domain ID
283  *
284  * Returns 1 if the control domain is configured
285  *	   0 in all other cases
286  */
ap_test_config_ctrl_domain(unsigned int domain)287 int ap_test_config_ctrl_domain(unsigned int domain)
288 {
289 	if (!ap_qci_info || domain > ap_max_domain_id)
290 		return 0;
291 	return ap_test_config(ap_qci_info->adm, domain);
292 }
293 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
294 
295 /*
296  * ap_queue_info(): Check and get AP queue info.
297  * Returns true if TAPQ succeeded and the info is filled or
298  * false otherwise.
299  */
ap_queue_info(ap_qid_t qid,int * q_type,unsigned int * q_fac,int * q_depth,bool * q_decfg)300 static bool ap_queue_info(ap_qid_t qid, int *q_type,
301 			  unsigned int *q_fac, int *q_depth, bool *q_decfg)
302 {
303 	struct ap_queue_status status;
304 	unsigned long info = 0;
305 
306 	/* make sure we don't run into a specifiation exception */
307 	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
308 	    AP_QID_QUEUE(qid) > ap_max_domain_id)
309 		return false;
310 
311 	/* call TAPQ on this APQN */
312 	status = ap_test_queue(qid, ap_apft_available(), &info);
313 	switch (status.response_code) {
314 	case AP_RESPONSE_NORMAL:
315 	case AP_RESPONSE_RESET_IN_PROGRESS:
316 	case AP_RESPONSE_DECONFIGURED:
317 	case AP_RESPONSE_CHECKSTOPPED:
318 	case AP_RESPONSE_BUSY:
319 		/*
320 		 * According to the architecture in all these cases the
321 		 * info should be filled. All bits 0 is not possible as
322 		 * there is at least one of the mode bits set.
323 		 */
324 		if (WARN_ON_ONCE(!info))
325 			return false;
326 		*q_type = (int)((info >> 24) & 0xff);
327 		*q_fac = (unsigned int)(info >> 32);
328 		*q_depth = (int)(info & 0xff);
329 		*q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
330 		switch (*q_type) {
331 			/* For CEX2 and CEX3 the available functions
332 			 * are not reflected by the facilities bits.
333 			 * Instead it is coded into the type. So here
334 			 * modify the function bits based on the type.
335 			 */
336 		case AP_DEVICE_TYPE_CEX2A:
337 		case AP_DEVICE_TYPE_CEX3A:
338 			*q_fac |= 0x08000000;
339 			break;
340 		case AP_DEVICE_TYPE_CEX2C:
341 		case AP_DEVICE_TYPE_CEX3C:
342 			*q_fac |= 0x10000000;
343 			break;
344 		default:
345 			break;
346 		}
347 		return true;
348 	default:
349 		/*
350 		 * A response code which indicates, there is no info available.
351 		 */
352 		return false;
353 	}
354 }
355 
ap_wait(enum ap_sm_wait wait)356 void ap_wait(enum ap_sm_wait wait)
357 {
358 	ktime_t hr_time;
359 
360 	switch (wait) {
361 	case AP_SM_WAIT_AGAIN:
362 	case AP_SM_WAIT_INTERRUPT:
363 		if (ap_irq_flag)
364 			break;
365 		if (ap_poll_kthread) {
366 			wake_up(&ap_poll_wait);
367 			break;
368 		}
369 		fallthrough;
370 	case AP_SM_WAIT_TIMEOUT:
371 		spin_lock_bh(&ap_poll_timer_lock);
372 		if (!hrtimer_is_queued(&ap_poll_timer)) {
373 			hr_time = poll_timeout;
374 			hrtimer_forward_now(&ap_poll_timer, hr_time);
375 			hrtimer_restart(&ap_poll_timer);
376 		}
377 		spin_unlock_bh(&ap_poll_timer_lock);
378 		break;
379 	case AP_SM_WAIT_NONE:
380 	default:
381 		break;
382 	}
383 }
384 
385 /**
386  * ap_request_timeout(): Handling of request timeouts
387  * @t: timer making this callback
388  *
389  * Handles request timeouts.
390  */
ap_request_timeout(struct timer_list * t)391 void ap_request_timeout(struct timer_list *t)
392 {
393 	struct ap_queue *aq = from_timer(aq, t, timeout);
394 
395 	spin_lock_bh(&aq->lock);
396 	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
397 	spin_unlock_bh(&aq->lock);
398 }
399 
400 /**
401  * ap_poll_timeout(): AP receive polling for finished AP requests.
402  * @unused: Unused pointer.
403  *
404  * Schedules the AP tasklet using a high resolution timer.
405  */
ap_poll_timeout(struct hrtimer * unused)406 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
407 {
408 	tasklet_schedule(&ap_tasklet);
409 	return HRTIMER_NORESTART;
410 }
411 
412 /**
413  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
414  * @airq: pointer to adapter interrupt descriptor
415  */
ap_interrupt_handler(struct airq_struct * airq,bool floating)416 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
417 {
418 	inc_irq_stat(IRQIO_APB);
419 	tasklet_schedule(&ap_tasklet);
420 }
421 
422 /**
423  * ap_tasklet_fn(): Tasklet to poll all AP devices.
424  * @dummy: Unused variable
425  *
426  * Poll all AP devices on the bus.
427  */
ap_tasklet_fn(unsigned long dummy)428 static void ap_tasklet_fn(unsigned long dummy)
429 {
430 	int bkt;
431 	struct ap_queue *aq;
432 	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
433 
434 	/* Reset the indicator if interrupts are used. Thus new interrupts can
435 	 * be received. Doing it in the beginning of the tasklet is therefor
436 	 * important that no requests on any AP get lost.
437 	 */
438 	if (ap_irq_flag)
439 		xchg(ap_airq.lsi_ptr, 0);
440 
441 	spin_lock_bh(&ap_queues_lock);
442 	hash_for_each(ap_queues, bkt, aq, hnode) {
443 		spin_lock_bh(&aq->lock);
444 		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
445 		spin_unlock_bh(&aq->lock);
446 	}
447 	spin_unlock_bh(&ap_queues_lock);
448 
449 	ap_wait(wait);
450 }
451 
ap_pending_requests(void)452 static int ap_pending_requests(void)
453 {
454 	int bkt;
455 	struct ap_queue *aq;
456 
457 	spin_lock_bh(&ap_queues_lock);
458 	hash_for_each(ap_queues, bkt, aq, hnode) {
459 		if (aq->queue_count == 0)
460 			continue;
461 		spin_unlock_bh(&ap_queues_lock);
462 		return 1;
463 	}
464 	spin_unlock_bh(&ap_queues_lock);
465 	return 0;
466 }
467 
468 /**
469  * ap_poll_thread(): Thread that polls for finished requests.
470  * @data: Unused pointer
471  *
472  * AP bus poll thread. The purpose of this thread is to poll for
473  * finished requests in a loop if there is a "free" cpu - that is
474  * a cpu that doesn't have anything better to do. The polling stops
475  * as soon as there is another task or if all messages have been
476  * delivered.
477  */
ap_poll_thread(void * data)478 static int ap_poll_thread(void *data)
479 {
480 	DECLARE_WAITQUEUE(wait, current);
481 
482 	set_user_nice(current, MAX_NICE);
483 	set_freezable();
484 	while (!kthread_should_stop()) {
485 		add_wait_queue(&ap_poll_wait, &wait);
486 		set_current_state(TASK_INTERRUPTIBLE);
487 		if (!ap_pending_requests()) {
488 			schedule();
489 			try_to_freeze();
490 		}
491 		set_current_state(TASK_RUNNING);
492 		remove_wait_queue(&ap_poll_wait, &wait);
493 		if (need_resched()) {
494 			schedule();
495 			try_to_freeze();
496 			continue;
497 		}
498 		ap_tasklet_fn(0);
499 	}
500 
501 	return 0;
502 }
503 
ap_poll_thread_start(void)504 static int ap_poll_thread_start(void)
505 {
506 	int rc;
507 
508 	if (ap_irq_flag || ap_poll_kthread)
509 		return 0;
510 	mutex_lock(&ap_poll_thread_mutex);
511 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
512 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
513 	if (rc)
514 		ap_poll_kthread = NULL;
515 	mutex_unlock(&ap_poll_thread_mutex);
516 	return rc;
517 }
518 
ap_poll_thread_stop(void)519 static void ap_poll_thread_stop(void)
520 {
521 	if (!ap_poll_kthread)
522 		return;
523 	mutex_lock(&ap_poll_thread_mutex);
524 	kthread_stop(ap_poll_kthread);
525 	ap_poll_kthread = NULL;
526 	mutex_unlock(&ap_poll_thread_mutex);
527 }
528 
529 #define is_card_dev(x) ((x)->parent == ap_root_device)
530 #define is_queue_dev(x) ((x)->parent != ap_root_device)
531 
532 /**
533  * ap_bus_match()
534  * @dev: Pointer to device
535  * @drv: Pointer to device_driver
536  *
537  * AP bus driver registration/unregistration.
538  */
ap_bus_match(struct device * dev,struct device_driver * drv)539 static int ap_bus_match(struct device *dev, struct device_driver *drv)
540 {
541 	struct ap_driver *ap_drv = to_ap_drv(drv);
542 	struct ap_device_id *id;
543 
544 	/*
545 	 * Compare device type of the device with the list of
546 	 * supported types of the device_driver.
547 	 */
548 	for (id = ap_drv->ids; id->match_flags; id++) {
549 		if (is_card_dev(dev) &&
550 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
551 		    id->dev_type == to_ap_dev(dev)->device_type)
552 			return 1;
553 		if (is_queue_dev(dev) &&
554 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
555 		    id->dev_type == to_ap_dev(dev)->device_type)
556 			return 1;
557 	}
558 	return 0;
559 }
560 
561 /**
562  * ap_uevent(): Uevent function for AP devices.
563  * @dev: Pointer to device
564  * @env: Pointer to kobj_uevent_env
565  *
566  * It sets up a single environment variable DEV_TYPE which contains the
567  * hardware device type.
568  */
ap_uevent(struct device * dev,struct kobj_uevent_env * env)569 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
570 {
571 	struct ap_device *ap_dev = to_ap_dev(dev);
572 	int retval = 0;
573 
574 	if (!ap_dev)
575 		return -ENODEV;
576 
577 	/* Set up DEV_TYPE environment variable. */
578 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
579 	if (retval)
580 		return retval;
581 
582 	/* Add MODALIAS= */
583 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
584 
585 	return retval;
586 }
587 
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)588 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
589 {
590 	if (is_queue_dev(dev) &&
591 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
592 		device_unregister(dev);
593 	return 0;
594 }
595 
596 static struct bus_type ap_bus_type = {
597 	.name = "ap",
598 	.match = &ap_bus_match,
599 	.uevent = &ap_uevent,
600 };
601 
__ap_revise_reserved(struct device * dev,void * dummy)602 static int __ap_revise_reserved(struct device *dev, void *dummy)
603 {
604 	int rc, card, queue, devres, drvres;
605 
606 	if (is_queue_dev(dev)) {
607 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
608 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
609 		mutex_lock(&ap_perms_mutex);
610 		devres = test_bit_inv(card, ap_perms.apm)
611 			&& test_bit_inv(queue, ap_perms.aqm);
612 		mutex_unlock(&ap_perms_mutex);
613 		drvres = to_ap_drv(dev->driver)->flags
614 			& AP_DRIVER_FLAG_DEFAULT;
615 		if (!!devres != !!drvres) {
616 			AP_DBF_DBG("reprobing queue=%02x.%04x\n",
617 				   card, queue);
618 			rc = device_reprobe(dev);
619 		}
620 	}
621 
622 	return 0;
623 }
624 
ap_bus_revise_bindings(void)625 static void ap_bus_revise_bindings(void)
626 {
627 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
628 }
629 
ap_owned_by_def_drv(int card,int queue)630 int ap_owned_by_def_drv(int card, int queue)
631 {
632 	int rc = 0;
633 
634 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
635 		return -EINVAL;
636 
637 	mutex_lock(&ap_perms_mutex);
638 
639 	if (test_bit_inv(card, ap_perms.apm)
640 	    && test_bit_inv(queue, ap_perms.aqm))
641 		rc = 1;
642 
643 	mutex_unlock(&ap_perms_mutex);
644 
645 	return rc;
646 }
647 EXPORT_SYMBOL(ap_owned_by_def_drv);
648 
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)649 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
650 				       unsigned long *aqm)
651 {
652 	int card, queue, rc = 0;
653 
654 	mutex_lock(&ap_perms_mutex);
655 
656 	for (card = 0; !rc && card < AP_DEVICES; card++)
657 		if (test_bit_inv(card, apm) &&
658 		    test_bit_inv(card, ap_perms.apm))
659 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
660 				if (test_bit_inv(queue, aqm) &&
661 				    test_bit_inv(queue, ap_perms.aqm))
662 					rc = 1;
663 
664 	mutex_unlock(&ap_perms_mutex);
665 
666 	return rc;
667 }
668 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
669 
ap_device_probe(struct device * dev)670 static int ap_device_probe(struct device *dev)
671 {
672 	struct ap_device *ap_dev = to_ap_dev(dev);
673 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
674 	int card, queue, devres, drvres, rc = -ENODEV;
675 
676 	if (!get_device(dev))
677 		return rc;
678 
679 	if (is_queue_dev(dev)) {
680 		/*
681 		 * If the apqn is marked as reserved/used by ap bus and
682 		 * default drivers, only probe with drivers with the default
683 		 * flag set. If it is not marked, only probe with drivers
684 		 * with the default flag not set.
685 		 */
686 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
687 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
688 		mutex_lock(&ap_perms_mutex);
689 		devres = test_bit_inv(card, ap_perms.apm)
690 			&& test_bit_inv(queue, ap_perms.aqm);
691 		mutex_unlock(&ap_perms_mutex);
692 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
693 		if (!!devres != !!drvres)
694 			goto out;
695 	}
696 
697 	/* Add queue/card to list of active queues/cards */
698 	spin_lock_bh(&ap_queues_lock);
699 	if (is_queue_dev(dev))
700 		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
701 			 to_ap_queue(dev)->qid);
702 	spin_unlock_bh(&ap_queues_lock);
703 
704 	ap_dev->drv = ap_drv;
705 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
706 
707 	if (rc) {
708 		spin_lock_bh(&ap_queues_lock);
709 		if (is_queue_dev(dev))
710 			hash_del(&to_ap_queue(dev)->hnode);
711 		spin_unlock_bh(&ap_queues_lock);
712 		ap_dev->drv = NULL;
713 	}
714 
715 out:
716 	if (rc)
717 		put_device(dev);
718 	return rc;
719 }
720 
ap_device_remove(struct device * dev)721 static int ap_device_remove(struct device *dev)
722 {
723 	struct ap_device *ap_dev = to_ap_dev(dev);
724 	struct ap_driver *ap_drv = ap_dev->drv;
725 
726 	/* prepare ap queue device removal */
727 	if (is_queue_dev(dev))
728 		ap_queue_prepare_remove(to_ap_queue(dev));
729 
730 	/* driver's chance to clean up gracefully */
731 	if (ap_drv->remove)
732 		ap_drv->remove(ap_dev);
733 
734 	/* now do the ap queue device remove */
735 	if (is_queue_dev(dev))
736 		ap_queue_remove(to_ap_queue(dev));
737 
738 	/* Remove queue/card from list of active queues/cards */
739 	spin_lock_bh(&ap_queues_lock);
740 	if (is_queue_dev(dev))
741 		hash_del(&to_ap_queue(dev)->hnode);
742 	spin_unlock_bh(&ap_queues_lock);
743 
744 	put_device(dev);
745 
746 	return 0;
747 }
748 
ap_get_qdev(ap_qid_t qid)749 struct ap_queue *ap_get_qdev(ap_qid_t qid)
750 {
751 	int bkt;
752 	struct ap_queue *aq;
753 
754 	spin_lock_bh(&ap_queues_lock);
755 	hash_for_each(ap_queues, bkt, aq, hnode) {
756 		if (aq->qid == qid) {
757 			get_device(&aq->ap_dev.device);
758 			spin_unlock_bh(&ap_queues_lock);
759 			return aq;
760 		}
761 	}
762 	spin_unlock_bh(&ap_queues_lock);
763 
764 	return NULL;
765 }
766 EXPORT_SYMBOL(ap_get_qdev);
767 
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)768 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
769 		       char *name)
770 {
771 	struct device_driver *drv = &ap_drv->driver;
772 
773 	drv->bus = &ap_bus_type;
774 	drv->probe = ap_device_probe;
775 	drv->remove = ap_device_remove;
776 	drv->owner = owner;
777 	drv->name = name;
778 	return driver_register(drv);
779 }
780 EXPORT_SYMBOL(ap_driver_register);
781 
ap_driver_unregister(struct ap_driver * ap_drv)782 void ap_driver_unregister(struct ap_driver *ap_drv)
783 {
784 	driver_unregister(&ap_drv->driver);
785 }
786 EXPORT_SYMBOL(ap_driver_unregister);
787 
ap_bus_force_rescan(void)788 void ap_bus_force_rescan(void)
789 {
790 	/* processing a asynchronous bus rescan */
791 	del_timer(&ap_config_timer);
792 	queue_work(system_long_wq, &ap_scan_work);
793 	flush_work(&ap_scan_work);
794 }
795 EXPORT_SYMBOL(ap_bus_force_rescan);
796 
797 /*
798 * A config change has happened, force an ap bus rescan.
799 */
ap_bus_cfg_chg(void)800 void ap_bus_cfg_chg(void)
801 {
802 	AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
803 
804 	ap_bus_force_rescan();
805 }
806 
807 /*
808  * hex2bitmap() - parse hex mask string and set bitmap.
809  * Valid strings are "0x012345678" with at least one valid hex number.
810  * Rest of the bitmap to the right is padded with 0. No spaces allowed
811  * within the string, the leading 0x may be omitted.
812  * Returns the bitmask with exactly the bits set as given by the hex
813  * string (both in big endian order).
814  */
hex2bitmap(const char * str,unsigned long * bitmap,int bits)815 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
816 {
817 	int i, n, b;
818 
819 	/* bits needs to be a multiple of 8 */
820 	if (bits & 0x07)
821 		return -EINVAL;
822 
823 	if (str[0] == '0' && str[1] == 'x')
824 		str++;
825 	if (*str == 'x')
826 		str++;
827 
828 	for (i = 0; isxdigit(*str) && i < bits; str++) {
829 		b = hex_to_bin(*str);
830 		for (n = 0; n < 4; n++)
831 			if (b & (0x08 >> n))
832 				set_bit_inv(i + n, bitmap);
833 		i += 4;
834 	}
835 
836 	if (*str == '\n')
837 		str++;
838 	if (*str)
839 		return -EINVAL;
840 	return 0;
841 }
842 
843 /*
844  * modify_bitmap() - parse bitmask argument and modify an existing
845  * bit mask accordingly. A concatenation (done with ',') of these
846  * terms is recognized:
847  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
848  * <bitnr> may be any valid number (hex, decimal or octal) in the range
849  * 0...bits-1; the leading + or - is required. Here are some examples:
850  *   +0-15,+32,-128,-0xFF
851  *   -0-255,+1-16,+0x128
852  *   +1,+2,+3,+4,-5,-7-10
853  * Returns the new bitmap after all changes have been applied. Every
854  * positive value in the string will set a bit and every negative value
855  * in the string will clear a bit. As a bit may be touched more than once,
856  * the last 'operation' wins:
857  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
858  * cleared again. All other bits are unmodified.
859  */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)860 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
861 {
862 	int a, i, z;
863 	char *np, sign;
864 
865 	/* bits needs to be a multiple of 8 */
866 	if (bits & 0x07)
867 		return -EINVAL;
868 
869 	while (*str) {
870 		sign = *str++;
871 		if (sign != '+' && sign != '-')
872 			return -EINVAL;
873 		a = z = simple_strtoul(str, &np, 0);
874 		if (str == np || a >= bits)
875 			return -EINVAL;
876 		str = np;
877 		if (*str == '-') {
878 			z = simple_strtoul(++str, &np, 0);
879 			if (str == np || a > z || z >= bits)
880 				return -EINVAL;
881 			str = np;
882 		}
883 		for (i = a; i <= z; i++)
884 			if (sign == '+')
885 				set_bit_inv(i, bitmap);
886 			else
887 				clear_bit_inv(i, bitmap);
888 		while (*str == ',' || *str == '\n')
889 			str++;
890 	}
891 
892 	return 0;
893 }
894 
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)895 int ap_parse_mask_str(const char *str,
896 		      unsigned long *bitmap, int bits,
897 		      struct mutex *lock)
898 {
899 	unsigned long *newmap, size;
900 	int rc;
901 
902 	/* bits needs to be a multiple of 8 */
903 	if (bits & 0x07)
904 		return -EINVAL;
905 
906 	size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
907 	newmap = kmalloc(size, GFP_KERNEL);
908 	if (!newmap)
909 		return -ENOMEM;
910 	if (mutex_lock_interruptible(lock)) {
911 		kfree(newmap);
912 		return -ERESTARTSYS;
913 	}
914 
915 	if (*str == '+' || *str == '-') {
916 		memcpy(newmap, bitmap, size);
917 		rc = modify_bitmap(str, newmap, bits);
918 	} else {
919 		memset(newmap, 0, size);
920 		rc = hex2bitmap(str, newmap, bits);
921 	}
922 	if (rc == 0)
923 		memcpy(bitmap, newmap, size);
924 	mutex_unlock(lock);
925 	kfree(newmap);
926 	return rc;
927 }
928 EXPORT_SYMBOL(ap_parse_mask_str);
929 
930 /*
931  * AP bus attributes.
932  */
933 
ap_domain_show(struct bus_type * bus,char * buf)934 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
935 {
936 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
937 }
938 
ap_domain_store(struct bus_type * bus,const char * buf,size_t count)939 static ssize_t ap_domain_store(struct bus_type *bus,
940 			       const char *buf, size_t count)
941 {
942 	int domain;
943 
944 	if (sscanf(buf, "%i\n", &domain) != 1 ||
945 	    domain < 0 || domain > ap_max_domain_id ||
946 	    !test_bit_inv(domain, ap_perms.aqm))
947 		return -EINVAL;
948 
949 	spin_lock_bh(&ap_domain_lock);
950 	ap_domain_index = domain;
951 	spin_unlock_bh(&ap_domain_lock);
952 
953 	AP_DBF_INFO("stored new default domain=%d\n", domain);
954 
955 	return count;
956 }
957 
958 static BUS_ATTR_RW(ap_domain);
959 
ap_control_domain_mask_show(struct bus_type * bus,char * buf)960 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
961 {
962 	if (!ap_qci_info)	/* QCI not supported */
963 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
964 
965 	return scnprintf(buf, PAGE_SIZE,
966 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
967 			 ap_qci_info->adm[0], ap_qci_info->adm[1],
968 			 ap_qci_info->adm[2], ap_qci_info->adm[3],
969 			 ap_qci_info->adm[4], ap_qci_info->adm[5],
970 			 ap_qci_info->adm[6], ap_qci_info->adm[7]);
971 }
972 
973 static BUS_ATTR_RO(ap_control_domain_mask);
974 
ap_usage_domain_mask_show(struct bus_type * bus,char * buf)975 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
976 {
977 	if (!ap_qci_info)	/* QCI not supported */
978 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
979 
980 	return scnprintf(buf, PAGE_SIZE,
981 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
982 			 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
983 			 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
984 			 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
985 			 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
986 }
987 
988 static BUS_ATTR_RO(ap_usage_domain_mask);
989 
ap_adapter_mask_show(struct bus_type * bus,char * buf)990 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
991 {
992 	if (!ap_qci_info)	/* QCI not supported */
993 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
994 
995 	return scnprintf(buf, PAGE_SIZE,
996 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
997 			 ap_qci_info->apm[0], ap_qci_info->apm[1],
998 			 ap_qci_info->apm[2], ap_qci_info->apm[3],
999 			 ap_qci_info->apm[4], ap_qci_info->apm[5],
1000 			 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1001 }
1002 
1003 static BUS_ATTR_RO(ap_adapter_mask);
1004 
ap_interrupts_show(struct bus_type * bus,char * buf)1005 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1006 {
1007 	return scnprintf(buf, PAGE_SIZE, "%d\n",
1008 			 ap_irq_flag ? 1 : 0);
1009 }
1010 
1011 static BUS_ATTR_RO(ap_interrupts);
1012 
config_time_show(struct bus_type * bus,char * buf)1013 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1014 {
1015 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1016 }
1017 
config_time_store(struct bus_type * bus,const char * buf,size_t count)1018 static ssize_t config_time_store(struct bus_type *bus,
1019 				 const char *buf, size_t count)
1020 {
1021 	int time;
1022 
1023 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1024 		return -EINVAL;
1025 	ap_config_time = time;
1026 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1027 	return count;
1028 }
1029 
1030 static BUS_ATTR_RW(config_time);
1031 
poll_thread_show(struct bus_type * bus,char * buf)1032 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1033 {
1034 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1035 }
1036 
poll_thread_store(struct bus_type * bus,const char * buf,size_t count)1037 static ssize_t poll_thread_store(struct bus_type *bus,
1038 				 const char *buf, size_t count)
1039 {
1040 	int flag, rc;
1041 
1042 	if (sscanf(buf, "%d\n", &flag) != 1)
1043 		return -EINVAL;
1044 	if (flag) {
1045 		rc = ap_poll_thread_start();
1046 		if (rc)
1047 			count = rc;
1048 	} else
1049 		ap_poll_thread_stop();
1050 	return count;
1051 }
1052 
1053 static BUS_ATTR_RW(poll_thread);
1054 
poll_timeout_show(struct bus_type * bus,char * buf)1055 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1056 {
1057 	return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1058 }
1059 
poll_timeout_store(struct bus_type * bus,const char * buf,size_t count)1060 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1061 				  size_t count)
1062 {
1063 	unsigned long long time;
1064 	ktime_t hr_time;
1065 
1066 	/* 120 seconds = maximum poll interval */
1067 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1068 	    time > 120000000000ULL)
1069 		return -EINVAL;
1070 	poll_timeout = time;
1071 	hr_time = poll_timeout;
1072 
1073 	spin_lock_bh(&ap_poll_timer_lock);
1074 	hrtimer_cancel(&ap_poll_timer);
1075 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1076 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1077 	spin_unlock_bh(&ap_poll_timer_lock);
1078 
1079 	return count;
1080 }
1081 
1082 static BUS_ATTR_RW(poll_timeout);
1083 
ap_max_domain_id_show(struct bus_type * bus,char * buf)1084 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1085 {
1086 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id);
1087 }
1088 
1089 static BUS_ATTR_RO(ap_max_domain_id);
1090 
ap_max_adapter_id_show(struct bus_type * bus,char * buf)1091 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf)
1092 {
1093 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id);
1094 }
1095 
1096 static BUS_ATTR_RO(ap_max_adapter_id);
1097 
apmask_show(struct bus_type * bus,char * buf)1098 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1099 {
1100 	int rc;
1101 
1102 	if (mutex_lock_interruptible(&ap_perms_mutex))
1103 		return -ERESTARTSYS;
1104 	rc = scnprintf(buf, PAGE_SIZE,
1105 		       "0x%016lx%016lx%016lx%016lx\n",
1106 		       ap_perms.apm[0], ap_perms.apm[1],
1107 		       ap_perms.apm[2], ap_perms.apm[3]);
1108 	mutex_unlock(&ap_perms_mutex);
1109 
1110 	return rc;
1111 }
1112 
apmask_store(struct bus_type * bus,const char * buf,size_t count)1113 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1114 			    size_t count)
1115 {
1116 	int rc;
1117 
1118 	rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1119 	if (rc)
1120 		return rc;
1121 
1122 	ap_bus_revise_bindings();
1123 
1124 	return count;
1125 }
1126 
1127 static BUS_ATTR_RW(apmask);
1128 
aqmask_show(struct bus_type * bus,char * buf)1129 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1130 {
1131 	int rc;
1132 
1133 	if (mutex_lock_interruptible(&ap_perms_mutex))
1134 		return -ERESTARTSYS;
1135 	rc = scnprintf(buf, PAGE_SIZE,
1136 		       "0x%016lx%016lx%016lx%016lx\n",
1137 		       ap_perms.aqm[0], ap_perms.aqm[1],
1138 		       ap_perms.aqm[2], ap_perms.aqm[3]);
1139 	mutex_unlock(&ap_perms_mutex);
1140 
1141 	return rc;
1142 }
1143 
aqmask_store(struct bus_type * bus,const char * buf,size_t count)1144 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1145 			    size_t count)
1146 {
1147 	int rc;
1148 
1149 	rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1150 	if (rc)
1151 		return rc;
1152 
1153 	ap_bus_revise_bindings();
1154 
1155 	return count;
1156 }
1157 
1158 static BUS_ATTR_RW(aqmask);
1159 
1160 static struct bus_attribute *const ap_bus_attrs[] = {
1161 	&bus_attr_ap_domain,
1162 	&bus_attr_ap_control_domain_mask,
1163 	&bus_attr_ap_usage_domain_mask,
1164 	&bus_attr_ap_adapter_mask,
1165 	&bus_attr_config_time,
1166 	&bus_attr_poll_thread,
1167 	&bus_attr_ap_interrupts,
1168 	&bus_attr_poll_timeout,
1169 	&bus_attr_ap_max_domain_id,
1170 	&bus_attr_ap_max_adapter_id,
1171 	&bus_attr_apmask,
1172 	&bus_attr_aqmask,
1173 	NULL,
1174 };
1175 
1176 /**
1177  * ap_select_domain(): Select an AP domain if possible and we haven't
1178  * already done so before.
1179  */
ap_select_domain(void)1180 static void ap_select_domain(void)
1181 {
1182 	struct ap_queue_status status;
1183 	int card, dom;
1184 
1185 	/*
1186 	 * Choose the default domain. Either the one specified with
1187 	 * the "domain=" parameter or the first domain with at least
1188 	 * one valid APQN.
1189 	 */
1190 	spin_lock_bh(&ap_domain_lock);
1191 	if (ap_domain_index >= 0) {
1192 		/* Domain has already been selected. */
1193 		goto out;
1194 	}
1195 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1196 		if (!ap_test_config_usage_domain(dom) ||
1197 		    !test_bit_inv(dom, ap_perms.aqm))
1198 			continue;
1199 		for (card = 0; card <= ap_max_adapter_id; card++) {
1200 			if (!ap_test_config_card_id(card) ||
1201 			    !test_bit_inv(card, ap_perms.apm))
1202 				continue;
1203 			status = ap_test_queue(AP_MKQID(card, dom),
1204 					       ap_apft_available(),
1205 					       NULL);
1206 			if (status.response_code == AP_RESPONSE_NORMAL)
1207 				break;
1208 		}
1209 		if (card <= ap_max_adapter_id)
1210 			break;
1211 	}
1212 	if (dom <= ap_max_domain_id) {
1213 		ap_domain_index = dom;
1214 		AP_DBF_INFO("%s new default domain is %d\n",
1215 			    __func__, ap_domain_index);
1216 	}
1217 out:
1218 	spin_unlock_bh(&ap_domain_lock);
1219 }
1220 
1221 /*
1222  * This function checks the type and returns either 0 for not
1223  * supported or the highest compatible type value (which may
1224  * include the input type value).
1225  */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1226 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1227 {
1228 	int comp_type = 0;
1229 
1230 	/* < CEX2A is not supported */
1231 	if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1232 		AP_DBF_WARN("get_comp_type queue=%02x.%04x unsupported type %d\n",
1233 			    AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1234 		return 0;
1235 	}
1236 	/* up to CEX7 known and fully supported */
1237 	if (rawtype <= AP_DEVICE_TYPE_CEX7)
1238 		return rawtype;
1239 	/*
1240 	 * unknown new type > CEX7, check for compatibility
1241 	 * to the highest known and supported type which is
1242 	 * currently CEX7 with the help of the QACT function.
1243 	 */
1244 	if (ap_qact_available()) {
1245 		struct ap_queue_status status;
1246 		union ap_qact_ap_info apinfo = {0};
1247 
1248 		apinfo.mode = (func >> 26) & 0x07;
1249 		apinfo.cat = AP_DEVICE_TYPE_CEX7;
1250 		status = ap_qact(qid, 0, &apinfo);
1251 		if (status.response_code == AP_RESPONSE_NORMAL
1252 		    && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1253 		    && apinfo.cat <= AP_DEVICE_TYPE_CEX7)
1254 			comp_type = apinfo.cat;
1255 	}
1256 	if (!comp_type)
1257 		AP_DBF_WARN("get_comp_type queue=%02x.%04x unable to map type %d\n",
1258 			    AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1259 	else if (comp_type != rawtype)
1260 		AP_DBF_INFO("get_comp_type queue=%02x.%04x map type %d to %d\n",
1261 			    AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1262 			    rawtype, comp_type);
1263 	return comp_type;
1264 }
1265 
1266 /*
1267  * Helper function to be used with bus_find_dev
1268  * matches for the card device with the given id
1269  */
__match_card_device_with_id(struct device * dev,const void * data)1270 static int __match_card_device_with_id(struct device *dev, const void *data)
1271 {
1272 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data;
1273 }
1274 
1275 /*
1276  * Helper function to be used with bus_find_dev
1277  * matches for the queue device with a given qid
1278  */
__match_queue_device_with_qid(struct device * dev,const void * data)1279 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1280 {
1281 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1282 }
1283 
1284 /*
1285  * Helper function to be used with bus_find_dev
1286  * matches any queue device with given queue id
1287  */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1288 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1289 {
1290 	return is_queue_dev(dev)
1291 		&& AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data;
1292 }
1293 
1294 /*
1295  * Helper function for ap_scan_bus().
1296  * Remove card device and associated queue devices.
1297  */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1298 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1299 {
1300 	bus_for_each_dev(&ap_bus_type, NULL,
1301 			 (void *)(long) ac->id,
1302 			 __ap_queue_devices_with_id_unregister);
1303 	device_unregister(&ac->ap_dev.device);
1304 }
1305 
1306 /*
1307  * Helper function for ap_scan_bus().
1308  * Does the scan bus job for all the domains within
1309  * a valid adapter given by an ap_card ptr.
1310  */
ap_scan_domains(struct ap_card * ac)1311 static inline void ap_scan_domains(struct ap_card *ac)
1312 {
1313 	bool decfg;
1314 	ap_qid_t qid;
1315 	unsigned int func;
1316 	struct device *dev;
1317 	struct ap_queue *aq;
1318 	int rc, dom, depth, type;
1319 
1320 	/*
1321 	 * Go through the configuration for the domains and compare them
1322 	 * to the existing queue devices. Also take care of the config
1323 	 * and error state for the queue devices.
1324 	 */
1325 
1326 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1327 		qid = AP_MKQID(ac->id, dom);
1328 		dev = bus_find_device(&ap_bus_type, NULL,
1329 				      (void *)(long) qid,
1330 				      __match_queue_device_with_qid);
1331 		aq = dev ? to_ap_queue(dev) : NULL;
1332 		if (!ap_test_config_usage_domain(dom)) {
1333 			if (dev) {
1334 				AP_DBF_INFO("%s(%d,%d) not in config any more, rm queue device\n",
1335 					    __func__, ac->id, dom);
1336 				device_unregister(dev);
1337 				put_device(dev);
1338 			}
1339 			continue;
1340 		}
1341 		/* domain is valid, get info from this APQN */
1342 		if (!ap_queue_info(qid, &type, &func, &depth, &decfg)) {
1343 			if (aq) {
1344 				AP_DBF_INFO(
1345 					"%s(%d,%d) ap_queue_info() not successful, rm queue device\n",
1346 					__func__, ac->id, dom);
1347 				device_unregister(dev);
1348 				put_device(dev);
1349 			}
1350 			continue;
1351 		}
1352 		/* if no queue device exists, create a new one */
1353 		if (!aq) {
1354 			aq = ap_queue_create(qid, ac->ap_dev.device_type);
1355 			if (!aq) {
1356 				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1357 					    __func__, ac->id, dom);
1358 				continue;
1359 			}
1360 			aq->card = ac;
1361 			aq->config = !decfg;
1362 			dev = &aq->ap_dev.device;
1363 			dev->bus = &ap_bus_type;
1364 			dev->parent = &ac->ap_dev.device;
1365 			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1366 			/* register queue device */
1367 			rc = device_register(dev);
1368 			if (rc) {
1369 				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1370 					    __func__, ac->id, dom);
1371 				goto put_dev_and_continue;
1372 			}
1373 			/* get it and thus adjust reference counter */
1374 			get_device(dev);
1375 			if (decfg)
1376 				AP_DBF_INFO("%s(%d,%d) new (decfg) queue device created\n",
1377 					    __func__, ac->id, dom);
1378 			else
1379 				AP_DBF_INFO("%s(%d,%d) new queue device created\n",
1380 					    __func__, ac->id, dom);
1381 			goto put_dev_and_continue;
1382 		}
1383 		/* Check config state on the already existing queue device */
1384 		spin_lock_bh(&aq->lock);
1385 		if (decfg && aq->config) {
1386 			/* config off this queue device */
1387 			aq->config = false;
1388 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1389 				aq->dev_state = AP_DEV_STATE_ERROR;
1390 				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1391 			}
1392 			spin_unlock_bh(&aq->lock);
1393 			AP_DBF_INFO("%s(%d,%d) queue device config off\n",
1394 				    __func__, ac->id, dom);
1395 			/* 'receive' pending messages with -EAGAIN */
1396 			ap_flush_queue(aq);
1397 			goto put_dev_and_continue;
1398 		}
1399 		if (!decfg && !aq->config) {
1400 			/* config on this queue device */
1401 			aq->config = true;
1402 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1403 				aq->dev_state = AP_DEV_STATE_OPERATING;
1404 				aq->sm_state = AP_SM_STATE_RESET_START;
1405 			}
1406 			spin_unlock_bh(&aq->lock);
1407 			AP_DBF_INFO("%s(%d,%d) queue device config on\n",
1408 				    __func__, ac->id, dom);
1409 			goto put_dev_and_continue;
1410 		}
1411 		/* handle other error states */
1412 		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1413 			spin_unlock_bh(&aq->lock);
1414 			/* 'receive' pending messages with -EAGAIN */
1415 			ap_flush_queue(aq);
1416 			/* re-init (with reset) the queue device */
1417 			ap_queue_init_state(aq);
1418 			AP_DBF_INFO("%s(%d,%d) queue device reinit enforced\n",
1419 				    __func__, ac->id, dom);
1420 			goto put_dev_and_continue;
1421 		}
1422 		spin_unlock_bh(&aq->lock);
1423 put_dev_and_continue:
1424 		put_device(dev);
1425 	}
1426 }
1427 
1428 /*
1429  * Helper function for ap_scan_bus().
1430  * Does the scan bus job for the given adapter id.
1431  */
ap_scan_adapter(int ap)1432 static inline void ap_scan_adapter(int ap)
1433 {
1434 	bool decfg;
1435 	ap_qid_t qid;
1436 	unsigned int func;
1437 	struct device *dev;
1438 	struct ap_card *ac;
1439 	int rc, dom, depth, type, comp_type;
1440 
1441 	/* Is there currently a card device for this adapter ? */
1442 	dev = bus_find_device(&ap_bus_type, NULL,
1443 			      (void *)(long) ap,
1444 			      __match_card_device_with_id);
1445 	ac = dev ? to_ap_card(dev) : NULL;
1446 
1447 	/* Adapter not in configuration ? */
1448 	if (!ap_test_config_card_id(ap)) {
1449 		if (ac) {
1450 			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devices\n",
1451 				    __func__, ap);
1452 			ap_scan_rm_card_dev_and_queue_devs(ac);
1453 			put_device(dev);
1454 		}
1455 		return;
1456 	}
1457 
1458 	/*
1459 	 * Adapter ap is valid in the current configuration. So do some checks:
1460 	 * If no card device exists, build one. If a card device exists, check
1461 	 * for type and functions changed. For all this we need to find a valid
1462 	 * APQN first.
1463 	 */
1464 
1465 	for (dom = 0; dom <= ap_max_domain_id; dom++)
1466 		if (ap_test_config_usage_domain(dom)) {
1467 			qid = AP_MKQID(ap, dom);
1468 			if (ap_queue_info(qid, &type, &func, &depth, &decfg))
1469 				break;
1470 		}
1471 	if (dom > ap_max_domain_id) {
1472 		/* Could not find a valid APQN for this adapter */
1473 		if (ac) {
1474 			AP_DBF_INFO(
1475 				"%s(%d) no type info (no APQN found), rm card and queue devices\n",
1476 				__func__, ap);
1477 			ap_scan_rm_card_dev_and_queue_devs(ac);
1478 			put_device(dev);
1479 		} else {
1480 			AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
1481 				   __func__, ap);
1482 		}
1483 		return;
1484 	}
1485 	if (!type) {
1486 		/* No apdater type info available, an unusable adapter */
1487 		if (ac) {
1488 			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devices\n",
1489 				    __func__, ap);
1490 			ap_scan_rm_card_dev_and_queue_devs(ac);
1491 			put_device(dev);
1492 		} else {
1493 			AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
1494 				   __func__, ap);
1495 		}
1496 		return;
1497 	}
1498 
1499 	if (ac) {
1500 		/* Check APQN against existing card device for changes */
1501 		if (ac->raw_hwtype != type) {
1502 			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devices\n",
1503 				    __func__, ap, type);
1504 			ap_scan_rm_card_dev_and_queue_devs(ac);
1505 			put_device(dev);
1506 			ac = NULL;
1507 		} else if (ac->functions != func) {
1508 			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devices\n",
1509 				    __func__, ap, type);
1510 			ap_scan_rm_card_dev_and_queue_devs(ac);
1511 			put_device(dev);
1512 			ac = NULL;
1513 		} else {
1514 			if (decfg && ac->config) {
1515 				ac->config = false;
1516 				AP_DBF_INFO("%s(%d) card device config off\n",
1517 					    __func__, ap);
1518 
1519 			}
1520 			if (!decfg && !ac->config) {
1521 				ac->config = true;
1522 				AP_DBF_INFO("%s(%d) card device config on\n",
1523 					    __func__, ap);
1524 			}
1525 		}
1526 	}
1527 
1528 	if (!ac) {
1529 		/* Build a new card device */
1530 		comp_type = ap_get_compatible_type(qid, type, func);
1531 		if (!comp_type) {
1532 			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
1533 				    __func__, ap, type);
1534 			return;
1535 		}
1536 		ac = ap_card_create(ap, depth, type, comp_type, func);
1537 		if (!ac) {
1538 			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
1539 				    __func__, ap);
1540 			return;
1541 		}
1542 		ac->config = !decfg;
1543 		dev = &ac->ap_dev.device;
1544 		dev->bus = &ap_bus_type;
1545 		dev->parent = ap_root_device;
1546 		dev_set_name(dev, "card%02x", ap);
1547 		/* Register the new card device with AP bus */
1548 		rc = device_register(dev);
1549 		if (rc) {
1550 			AP_DBF_WARN("%s(%d) device_register() failed\n",
1551 				    __func__, ap);
1552 			put_device(dev);
1553 			return;
1554 		}
1555 		/* get it and thus adjust reference counter */
1556 		get_device(dev);
1557 		if (decfg)
1558 			AP_DBF_INFO("%s(%d) new (decfg) card device type=%d func=0x%08x created\n",
1559 				    __func__, ap, type, func);
1560 		else
1561 			AP_DBF_INFO("%s(%d) new card device type=%d func=0x%08x created\n",
1562 				    __func__, ap, type, func);
1563 	}
1564 
1565 	/* Verify the domains and the queue devices for this card */
1566 	ap_scan_domains(ac);
1567 
1568 	/* release the card device */
1569 	put_device(&ac->ap_dev.device);
1570 }
1571 
1572 /**
1573  * ap_scan_bus(): Scan the AP bus for new devices
1574  * Runs periodically, workqueue timer (ap_config_time)
1575  */
ap_scan_bus(struct work_struct * unused)1576 static void ap_scan_bus(struct work_struct *unused)
1577 {
1578 	int ap;
1579 
1580 	ap_fetch_qci_info(ap_qci_info);
1581 	ap_select_domain();
1582 
1583 	AP_DBF_DBG("%s running\n", __func__);
1584 
1585 	/* loop over all possible adapters */
1586 	for (ap = 0; ap <= ap_max_adapter_id; ap++)
1587 		ap_scan_adapter(ap);
1588 
1589 	/* check if there is at least one queue available with default domain */
1590 	if (ap_domain_index >= 0) {
1591 		struct device *dev =
1592 			bus_find_device(&ap_bus_type, NULL,
1593 					(void *)(long) ap_domain_index,
1594 					__match_queue_device_with_queue_id);
1595 		if (dev)
1596 			put_device(dev);
1597 		else
1598 			AP_DBF_INFO("no queue device with default domain %d available\n",
1599 				    ap_domain_index);
1600 	}
1601 
1602 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1603 }
1604 
ap_config_timeout(struct timer_list * unused)1605 static void ap_config_timeout(struct timer_list *unused)
1606 {
1607 	queue_work(system_long_wq, &ap_scan_work);
1608 }
1609 
ap_debug_init(void)1610 static int __init ap_debug_init(void)
1611 {
1612 	ap_dbf_info = debug_register("ap", 1, 1,
1613 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
1614 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
1615 	debug_set_level(ap_dbf_info, DBF_ERR);
1616 
1617 	return 0;
1618 }
1619 
ap_perms_init(void)1620 static void __init ap_perms_init(void)
1621 {
1622 	/* all resources useable if no kernel parameter string given */
1623 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
1624 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1625 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1626 
1627 	/* apm kernel parameter string */
1628 	if (apm_str) {
1629 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1630 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
1631 				  &ap_perms_mutex);
1632 	}
1633 
1634 	/* aqm kernel parameter string */
1635 	if (aqm_str) {
1636 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1637 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
1638 				  &ap_perms_mutex);
1639 	}
1640 }
1641 
1642 /**
1643  * ap_module_init(): The module initialization code.
1644  *
1645  * Initializes the module.
1646  */
ap_module_init(void)1647 static int __init ap_module_init(void)
1648 {
1649 	int rc, i;
1650 
1651 	rc = ap_debug_init();
1652 	if (rc)
1653 		return rc;
1654 
1655 	if (!ap_instructions_available()) {
1656 		pr_warn("The hardware system does not support AP instructions\n");
1657 		return -ENODEV;
1658 	}
1659 
1660 	/* init ap_queue hashtable */
1661 	hash_init(ap_queues);
1662 
1663 	/* set up the AP permissions (ioctls, ap and aq masks) */
1664 	ap_perms_init();
1665 
1666 	/* Get AP configuration data if available */
1667 	ap_init_qci_info();
1668 
1669 	/* check default domain setting */
1670 	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
1671 	    (ap_domain_index >= 0 &&
1672 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1673 		pr_warn("%d is not a valid cryptographic domain\n",
1674 			ap_domain_index);
1675 		ap_domain_index = -1;
1676 	}
1677 
1678 	/* enable interrupts if available */
1679 	if (ap_interrupts_available()) {
1680 		rc = register_adapter_interrupt(&ap_airq);
1681 		ap_irq_flag = (rc == 0);
1682 	}
1683 
1684 	/* Create /sys/bus/ap. */
1685 	rc = bus_register(&ap_bus_type);
1686 	if (rc)
1687 		goto out;
1688 	for (i = 0; ap_bus_attrs[i]; i++) {
1689 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1690 		if (rc)
1691 			goto out_bus;
1692 	}
1693 
1694 	/* Create /sys/devices/ap. */
1695 	ap_root_device = root_device_register("ap");
1696 	rc = PTR_ERR_OR_ZERO(ap_root_device);
1697 	if (rc)
1698 		goto out_bus;
1699 
1700 	/* Setup the AP bus rescan timer. */
1701 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
1702 
1703 	/*
1704 	 * Setup the high resultion poll timer.
1705 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1706 	 */
1707 	if (MACHINE_IS_VM)
1708 		poll_timeout = 1500000;
1709 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1710 	ap_poll_timer.function = ap_poll_timeout;
1711 
1712 	/* Start the low priority AP bus poll thread. */
1713 	if (ap_thread_flag) {
1714 		rc = ap_poll_thread_start();
1715 		if (rc)
1716 			goto out_work;
1717 	}
1718 
1719 	queue_work(system_long_wq, &ap_scan_work);
1720 
1721 	return 0;
1722 
1723 out_work:
1724 	hrtimer_cancel(&ap_poll_timer);
1725 	root_device_unregister(ap_root_device);
1726 out_bus:
1727 	while (i--)
1728 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1729 	bus_unregister(&ap_bus_type);
1730 out:
1731 	if (ap_irq_flag)
1732 		unregister_adapter_interrupt(&ap_airq);
1733 	kfree(ap_qci_info);
1734 	return rc;
1735 }
1736 device_initcall(ap_module_init);
1737