• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_damage_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fourcc.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_rect.h>
45 
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dp_mst.h"
50 #include "display/intel_dpll_mgr.h"
51 #include "display/intel_dsi.h"
52 #include "display/intel_dvo.h"
53 #include "display/intel_gmbus.h"
54 #include "display/intel_hdmi.h"
55 #include "display/intel_lvds.h"
56 #include "display/intel_sdvo.h"
57 #include "display/intel_tv.h"
58 #include "display/intel_vdsc.h"
59 
60 #include "gt/intel_rps.h"
61 
62 #include "i915_drv.h"
63 #include "i915_trace.h"
64 #include "intel_acpi.h"
65 #include "intel_atomic.h"
66 #include "intel_atomic_plane.h"
67 #include "intel_bw.h"
68 #include "intel_cdclk.h"
69 #include "intel_color.h"
70 #include "intel_csr.h"
71 #include "intel_display_types.h"
72 #include "intel_dp_link_training.h"
73 #include "intel_fbc.h"
74 #include "intel_fbdev.h"
75 #include "intel_fifo_underrun.h"
76 #include "intel_frontbuffer.h"
77 #include "intel_hdcp.h"
78 #include "intel_hotplug.h"
79 #include "intel_overlay.h"
80 #include "intel_pipe_crc.h"
81 #include "intel_pm.h"
82 #include "intel_psr.h"
83 #include "intel_quirks.h"
84 #include "intel_sideband.h"
85 #include "intel_sprite.h"
86 #include "intel_tc.h"
87 #include "intel_vga.h"
88 
89 /* Primary plane formats for gen <= 3 */
90 static const u32 i8xx_primary_formats[] = {
91 	DRM_FORMAT_C8,
92 	DRM_FORMAT_XRGB1555,
93 	DRM_FORMAT_RGB565,
94 	DRM_FORMAT_XRGB8888,
95 };
96 
97 /* Primary plane formats for ivb (no fp16 due to hw issue) */
98 static const u32 ivb_primary_formats[] = {
99 	DRM_FORMAT_C8,
100 	DRM_FORMAT_RGB565,
101 	DRM_FORMAT_XRGB8888,
102 	DRM_FORMAT_XBGR8888,
103 	DRM_FORMAT_XRGB2101010,
104 	DRM_FORMAT_XBGR2101010,
105 };
106 
107 /* Primary plane formats for gen >= 4, except ivb */
108 static const u32 i965_primary_formats[] = {
109 	DRM_FORMAT_C8,
110 	DRM_FORMAT_RGB565,
111 	DRM_FORMAT_XRGB8888,
112 	DRM_FORMAT_XBGR8888,
113 	DRM_FORMAT_XRGB2101010,
114 	DRM_FORMAT_XBGR2101010,
115 	DRM_FORMAT_XBGR16161616F,
116 };
117 
118 /* Primary plane formats for vlv/chv */
119 static const u32 vlv_primary_formats[] = {
120 	DRM_FORMAT_C8,
121 	DRM_FORMAT_RGB565,
122 	DRM_FORMAT_XRGB8888,
123 	DRM_FORMAT_XBGR8888,
124 	DRM_FORMAT_ARGB8888,
125 	DRM_FORMAT_ABGR8888,
126 	DRM_FORMAT_XRGB2101010,
127 	DRM_FORMAT_XBGR2101010,
128 	DRM_FORMAT_ARGB2101010,
129 	DRM_FORMAT_ABGR2101010,
130 	DRM_FORMAT_XBGR16161616F,
131 };
132 
133 static const u64 i9xx_format_modifiers[] = {
134 	I915_FORMAT_MOD_X_TILED,
135 	DRM_FORMAT_MOD_LINEAR,
136 	DRM_FORMAT_MOD_INVALID
137 };
138 
139 /* Cursor formats */
140 static const u32 intel_cursor_formats[] = {
141 	DRM_FORMAT_ARGB8888,
142 };
143 
144 static const u64 cursor_format_modifiers[] = {
145 	DRM_FORMAT_MOD_LINEAR,
146 	DRM_FORMAT_MOD_INVALID
147 };
148 
149 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
150 				struct intel_crtc_state *pipe_config);
151 static void ilk_pch_clock_get(struct intel_crtc *crtc,
152 			      struct intel_crtc_state *pipe_config);
153 
154 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
155 				  struct drm_i915_gem_object *obj,
156 				  struct drm_mode_fb_cmd2 *mode_cmd);
157 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
158 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
159 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
160 					 const struct intel_link_m_n *m_n,
161 					 const struct intel_link_m_n *m2_n2);
162 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
163 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state);
164 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state);
165 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
166 static void vlv_prepare_pll(struct intel_crtc *crtc,
167 			    const struct intel_crtc_state *pipe_config);
168 static void chv_prepare_pll(struct intel_crtc *crtc,
169 			    const struct intel_crtc_state *pipe_config);
170 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state);
171 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state);
172 static void intel_modeset_setup_hw_state(struct drm_device *dev,
173 					 struct drm_modeset_acquire_ctx *ctx);
174 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc);
175 
176 struct intel_limit {
177 	struct {
178 		int min, max;
179 	} dot, vco, n, m, m1, m2, p, p1;
180 
181 	struct {
182 		int dot_limit;
183 		int p2_slow, p2_fast;
184 	} p2;
185 };
186 
187 /* returns HPLL frequency in kHz */
vlv_get_hpll_vco(struct drm_i915_private * dev_priv)188 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
189 {
190 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
191 
192 	/* Obtain SKU information */
193 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
194 		CCK_FUSE_HPLL_FREQ_MASK;
195 
196 	return vco_freq[hpll_freq] * 1000;
197 }
198 
vlv_get_cck_clock(struct drm_i915_private * dev_priv,const char * name,u32 reg,int ref_freq)199 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
200 		      const char *name, u32 reg, int ref_freq)
201 {
202 	u32 val;
203 	int divider;
204 
205 	val = vlv_cck_read(dev_priv, reg);
206 	divider = val & CCK_FREQUENCY_VALUES;
207 
208 	drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) !=
209 		 (divider << CCK_FREQUENCY_STATUS_SHIFT),
210 		 "%s change in progress\n", name);
211 
212 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
213 }
214 
vlv_get_cck_clock_hpll(struct drm_i915_private * dev_priv,const char * name,u32 reg)215 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
216 			   const char *name, u32 reg)
217 {
218 	int hpll;
219 
220 	vlv_cck_get(dev_priv);
221 
222 	if (dev_priv->hpll_freq == 0)
223 		dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
224 
225 	hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
226 
227 	vlv_cck_put(dev_priv);
228 
229 	return hpll;
230 }
231 
intel_update_czclk(struct drm_i915_private * dev_priv)232 static void intel_update_czclk(struct drm_i915_private *dev_priv)
233 {
234 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
235 		return;
236 
237 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
238 						      CCK_CZ_CLOCK_CONTROL);
239 
240 	drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n",
241 		dev_priv->czclk_freq);
242 }
243 
244 /* units of 100MHz */
intel_fdi_link_freq(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)245 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
246 			       const struct intel_crtc_state *pipe_config)
247 {
248 	if (HAS_DDI(dev_priv))
249 		return pipe_config->port_clock; /* SPLL */
250 	else
251 		return dev_priv->fdi_pll_freq;
252 }
253 
254 static const struct intel_limit intel_limits_i8xx_dac = {
255 	.dot = { .min = 25000, .max = 350000 },
256 	.vco = { .min = 908000, .max = 1512000 },
257 	.n = { .min = 2, .max = 16 },
258 	.m = { .min = 96, .max = 140 },
259 	.m1 = { .min = 18, .max = 26 },
260 	.m2 = { .min = 6, .max = 16 },
261 	.p = { .min = 4, .max = 128 },
262 	.p1 = { .min = 2, .max = 33 },
263 	.p2 = { .dot_limit = 165000,
264 		.p2_slow = 4, .p2_fast = 2 },
265 };
266 
267 static const struct intel_limit intel_limits_i8xx_dvo = {
268 	.dot = { .min = 25000, .max = 350000 },
269 	.vco = { .min = 908000, .max = 1512000 },
270 	.n = { .min = 2, .max = 16 },
271 	.m = { .min = 96, .max = 140 },
272 	.m1 = { .min = 18, .max = 26 },
273 	.m2 = { .min = 6, .max = 16 },
274 	.p = { .min = 4, .max = 128 },
275 	.p1 = { .min = 2, .max = 33 },
276 	.p2 = { .dot_limit = 165000,
277 		.p2_slow = 4, .p2_fast = 4 },
278 };
279 
280 static const struct intel_limit intel_limits_i8xx_lvds = {
281 	.dot = { .min = 25000, .max = 350000 },
282 	.vco = { .min = 908000, .max = 1512000 },
283 	.n = { .min = 2, .max = 16 },
284 	.m = { .min = 96, .max = 140 },
285 	.m1 = { .min = 18, .max = 26 },
286 	.m2 = { .min = 6, .max = 16 },
287 	.p = { .min = 4, .max = 128 },
288 	.p1 = { .min = 1, .max = 6 },
289 	.p2 = { .dot_limit = 165000,
290 		.p2_slow = 14, .p2_fast = 7 },
291 };
292 
293 static const struct intel_limit intel_limits_i9xx_sdvo = {
294 	.dot = { .min = 20000, .max = 400000 },
295 	.vco = { .min = 1400000, .max = 2800000 },
296 	.n = { .min = 1, .max = 6 },
297 	.m = { .min = 70, .max = 120 },
298 	.m1 = { .min = 8, .max = 18 },
299 	.m2 = { .min = 3, .max = 7 },
300 	.p = { .min = 5, .max = 80 },
301 	.p1 = { .min = 1, .max = 8 },
302 	.p2 = { .dot_limit = 200000,
303 		.p2_slow = 10, .p2_fast = 5 },
304 };
305 
306 static const struct intel_limit intel_limits_i9xx_lvds = {
307 	.dot = { .min = 20000, .max = 400000 },
308 	.vco = { .min = 1400000, .max = 2800000 },
309 	.n = { .min = 1, .max = 6 },
310 	.m = { .min = 70, .max = 120 },
311 	.m1 = { .min = 8, .max = 18 },
312 	.m2 = { .min = 3, .max = 7 },
313 	.p = { .min = 7, .max = 98 },
314 	.p1 = { .min = 1, .max = 8 },
315 	.p2 = { .dot_limit = 112000,
316 		.p2_slow = 14, .p2_fast = 7 },
317 };
318 
319 
320 static const struct intel_limit intel_limits_g4x_sdvo = {
321 	.dot = { .min = 25000, .max = 270000 },
322 	.vco = { .min = 1750000, .max = 3500000},
323 	.n = { .min = 1, .max = 4 },
324 	.m = { .min = 104, .max = 138 },
325 	.m1 = { .min = 17, .max = 23 },
326 	.m2 = { .min = 5, .max = 11 },
327 	.p = { .min = 10, .max = 30 },
328 	.p1 = { .min = 1, .max = 3},
329 	.p2 = { .dot_limit = 270000,
330 		.p2_slow = 10,
331 		.p2_fast = 10
332 	},
333 };
334 
335 static const struct intel_limit intel_limits_g4x_hdmi = {
336 	.dot = { .min = 22000, .max = 400000 },
337 	.vco = { .min = 1750000, .max = 3500000},
338 	.n = { .min = 1, .max = 4 },
339 	.m = { .min = 104, .max = 138 },
340 	.m1 = { .min = 16, .max = 23 },
341 	.m2 = { .min = 5, .max = 11 },
342 	.p = { .min = 5, .max = 80 },
343 	.p1 = { .min = 1, .max = 8},
344 	.p2 = { .dot_limit = 165000,
345 		.p2_slow = 10, .p2_fast = 5 },
346 };
347 
348 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
349 	.dot = { .min = 20000, .max = 115000 },
350 	.vco = { .min = 1750000, .max = 3500000 },
351 	.n = { .min = 1, .max = 3 },
352 	.m = { .min = 104, .max = 138 },
353 	.m1 = { .min = 17, .max = 23 },
354 	.m2 = { .min = 5, .max = 11 },
355 	.p = { .min = 28, .max = 112 },
356 	.p1 = { .min = 2, .max = 8 },
357 	.p2 = { .dot_limit = 0,
358 		.p2_slow = 14, .p2_fast = 14
359 	},
360 };
361 
362 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
363 	.dot = { .min = 80000, .max = 224000 },
364 	.vco = { .min = 1750000, .max = 3500000 },
365 	.n = { .min = 1, .max = 3 },
366 	.m = { .min = 104, .max = 138 },
367 	.m1 = { .min = 17, .max = 23 },
368 	.m2 = { .min = 5, .max = 11 },
369 	.p = { .min = 14, .max = 42 },
370 	.p1 = { .min = 2, .max = 6 },
371 	.p2 = { .dot_limit = 0,
372 		.p2_slow = 7, .p2_fast = 7
373 	},
374 };
375 
376 static const struct intel_limit pnv_limits_sdvo = {
377 	.dot = { .min = 20000, .max = 400000},
378 	.vco = { .min = 1700000, .max = 3500000 },
379 	/* Pineview's Ncounter is a ring counter */
380 	.n = { .min = 3, .max = 6 },
381 	.m = { .min = 2, .max = 256 },
382 	/* Pineview only has one combined m divider, which we treat as m2. */
383 	.m1 = { .min = 0, .max = 0 },
384 	.m2 = { .min = 0, .max = 254 },
385 	.p = { .min = 5, .max = 80 },
386 	.p1 = { .min = 1, .max = 8 },
387 	.p2 = { .dot_limit = 200000,
388 		.p2_slow = 10, .p2_fast = 5 },
389 };
390 
391 static const struct intel_limit pnv_limits_lvds = {
392 	.dot = { .min = 20000, .max = 400000 },
393 	.vco = { .min = 1700000, .max = 3500000 },
394 	.n = { .min = 3, .max = 6 },
395 	.m = { .min = 2, .max = 256 },
396 	.m1 = { .min = 0, .max = 0 },
397 	.m2 = { .min = 0, .max = 254 },
398 	.p = { .min = 7, .max = 112 },
399 	.p1 = { .min = 1, .max = 8 },
400 	.p2 = { .dot_limit = 112000,
401 		.p2_slow = 14, .p2_fast = 14 },
402 };
403 
404 /* Ironlake / Sandybridge
405  *
406  * We calculate clock using (register_value + 2) for N/M1/M2, so here
407  * the range value for them is (actual_value - 2).
408  */
409 static const struct intel_limit ilk_limits_dac = {
410 	.dot = { .min = 25000, .max = 350000 },
411 	.vco = { .min = 1760000, .max = 3510000 },
412 	.n = { .min = 1, .max = 5 },
413 	.m = { .min = 79, .max = 127 },
414 	.m1 = { .min = 12, .max = 22 },
415 	.m2 = { .min = 5, .max = 9 },
416 	.p = { .min = 5, .max = 80 },
417 	.p1 = { .min = 1, .max = 8 },
418 	.p2 = { .dot_limit = 225000,
419 		.p2_slow = 10, .p2_fast = 5 },
420 };
421 
422 static const struct intel_limit ilk_limits_single_lvds = {
423 	.dot = { .min = 25000, .max = 350000 },
424 	.vco = { .min = 1760000, .max = 3510000 },
425 	.n = { .min = 1, .max = 3 },
426 	.m = { .min = 79, .max = 118 },
427 	.m1 = { .min = 12, .max = 22 },
428 	.m2 = { .min = 5, .max = 9 },
429 	.p = { .min = 28, .max = 112 },
430 	.p1 = { .min = 2, .max = 8 },
431 	.p2 = { .dot_limit = 225000,
432 		.p2_slow = 14, .p2_fast = 14 },
433 };
434 
435 static const struct intel_limit ilk_limits_dual_lvds = {
436 	.dot = { .min = 25000, .max = 350000 },
437 	.vco = { .min = 1760000, .max = 3510000 },
438 	.n = { .min = 1, .max = 3 },
439 	.m = { .min = 79, .max = 127 },
440 	.m1 = { .min = 12, .max = 22 },
441 	.m2 = { .min = 5, .max = 9 },
442 	.p = { .min = 14, .max = 56 },
443 	.p1 = { .min = 2, .max = 8 },
444 	.p2 = { .dot_limit = 225000,
445 		.p2_slow = 7, .p2_fast = 7 },
446 };
447 
448 /* LVDS 100mhz refclk limits. */
449 static const struct intel_limit ilk_limits_single_lvds_100m = {
450 	.dot = { .min = 25000, .max = 350000 },
451 	.vco = { .min = 1760000, .max = 3510000 },
452 	.n = { .min = 1, .max = 2 },
453 	.m = { .min = 79, .max = 126 },
454 	.m1 = { .min = 12, .max = 22 },
455 	.m2 = { .min = 5, .max = 9 },
456 	.p = { .min = 28, .max = 112 },
457 	.p1 = { .min = 2, .max = 8 },
458 	.p2 = { .dot_limit = 225000,
459 		.p2_slow = 14, .p2_fast = 14 },
460 };
461 
462 static const struct intel_limit ilk_limits_dual_lvds_100m = {
463 	.dot = { .min = 25000, .max = 350000 },
464 	.vco = { .min = 1760000, .max = 3510000 },
465 	.n = { .min = 1, .max = 3 },
466 	.m = { .min = 79, .max = 126 },
467 	.m1 = { .min = 12, .max = 22 },
468 	.m2 = { .min = 5, .max = 9 },
469 	.p = { .min = 14, .max = 42 },
470 	.p1 = { .min = 2, .max = 6 },
471 	.p2 = { .dot_limit = 225000,
472 		.p2_slow = 7, .p2_fast = 7 },
473 };
474 
475 static const struct intel_limit intel_limits_vlv = {
476 	 /*
477 	  * These are the data rate limits (measured in fast clocks)
478 	  * since those are the strictest limits we have. The fast
479 	  * clock and actual rate limits are more relaxed, so checking
480 	  * them would make no difference.
481 	  */
482 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
483 	.vco = { .min = 4000000, .max = 6000000 },
484 	.n = { .min = 1, .max = 7 },
485 	.m1 = { .min = 2, .max = 3 },
486 	.m2 = { .min = 11, .max = 156 },
487 	.p1 = { .min = 2, .max = 3 },
488 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
489 };
490 
491 static const struct intel_limit intel_limits_chv = {
492 	/*
493 	 * These are the data rate limits (measured in fast clocks)
494 	 * since those are the strictest limits we have.  The fast
495 	 * clock and actual rate limits are more relaxed, so checking
496 	 * them would make no difference.
497 	 */
498 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
499 	.vco = { .min = 4800000, .max = 6480000 },
500 	.n = { .min = 1, .max = 1 },
501 	.m1 = { .min = 2, .max = 2 },
502 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
503 	.p1 = { .min = 2, .max = 4 },
504 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
505 };
506 
507 static const struct intel_limit intel_limits_bxt = {
508 	/* FIXME: find real dot limits */
509 	.dot = { .min = 0, .max = INT_MAX },
510 	.vco = { .min = 4800000, .max = 6700000 },
511 	.n = { .min = 1, .max = 1 },
512 	.m1 = { .min = 2, .max = 2 },
513 	/* FIXME: find real m2 limits */
514 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
515 	.p1 = { .min = 2, .max = 4 },
516 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
517 };
518 
519 /* WA Display #0827: Gen9:all */
520 static void
skl_wa_827(struct drm_i915_private * dev_priv,enum pipe pipe,bool enable)521 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
522 {
523 	if (enable)
524 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
525 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS);
526 	else
527 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
528 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
529 }
530 
531 /* Wa_2006604312:icl,ehl */
532 static void
icl_wa_scalerclkgating(struct drm_i915_private * dev_priv,enum pipe pipe,bool enable)533 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
534 		       bool enable)
535 {
536 	if (enable)
537 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
538 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
539 	else
540 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
541 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
542 }
543 
544 static bool
needs_modeset(const struct intel_crtc_state * state)545 needs_modeset(const struct intel_crtc_state *state)
546 {
547 	return drm_atomic_crtc_needs_modeset(&state->uapi);
548 }
549 
550 static bool
is_trans_port_sync_slave(const struct intel_crtc_state * crtc_state)551 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
552 {
553 	return crtc_state->master_transcoder != INVALID_TRANSCODER;
554 }
555 
556 static bool
is_trans_port_sync_master(const struct intel_crtc_state * crtc_state)557 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
558 {
559 	return crtc_state->sync_mode_slaves_mask != 0;
560 }
561 
562 bool
is_trans_port_sync_mode(const struct intel_crtc_state * crtc_state)563 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
564 {
565 	return is_trans_port_sync_master(crtc_state) ||
566 		is_trans_port_sync_slave(crtc_state);
567 }
568 
569 /*
570  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
571  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
572  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
573  * The helpers' return value is the rate of the clock that is fed to the
574  * display engine's pipe which can be the above fast dot clock rate or a
575  * divided-down version of it.
576  */
577 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)578 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
579 {
580 	clock->m = clock->m2 + 2;
581 	clock->p = clock->p1 * clock->p2;
582 	if (WARN_ON(clock->n == 0 || clock->p == 0))
583 		return 0;
584 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
585 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
586 
587 	return clock->dot;
588 }
589 
i9xx_dpll_compute_m(struct dpll * dpll)590 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
591 {
592 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
593 }
594 
i9xx_calc_dpll_params(int refclk,struct dpll * clock)595 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
596 {
597 	clock->m = i9xx_dpll_compute_m(clock);
598 	clock->p = clock->p1 * clock->p2;
599 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
600 		return 0;
601 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
602 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
603 
604 	return clock->dot;
605 }
606 
vlv_calc_dpll_params(int refclk,struct dpll * clock)607 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
608 {
609 	clock->m = clock->m1 * clock->m2;
610 	clock->p = clock->p1 * clock->p2;
611 	if (WARN_ON(clock->n == 0 || clock->p == 0))
612 		return 0;
613 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
614 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
615 
616 	return clock->dot / 5;
617 }
618 
chv_calc_dpll_params(int refclk,struct dpll * clock)619 int chv_calc_dpll_params(int refclk, struct dpll *clock)
620 {
621 	clock->m = clock->m1 * clock->m2;
622 	clock->p = clock->p1 * clock->p2;
623 	if (WARN_ON(clock->n == 0 || clock->p == 0))
624 		return 0;
625 	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
626 					   clock->n << 22);
627 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
628 
629 	return clock->dot / 5;
630 }
631 
632 /*
633  * Returns whether the given set of divisors are valid for a given refclk with
634  * the given connectors.
635  */
intel_pll_is_valid(struct drm_i915_private * dev_priv,const struct intel_limit * limit,const struct dpll * clock)636 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
637 			       const struct intel_limit *limit,
638 			       const struct dpll *clock)
639 {
640 	if (clock->n < limit->n.min || limit->n.max < clock->n)
641 		return false;
642 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
643 		return false;
644 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
645 		return false;
646 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
647 		return false;
648 
649 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
650 	    !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
651 		if (clock->m1 <= clock->m2)
652 			return false;
653 
654 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
655 	    !IS_GEN9_LP(dev_priv)) {
656 		if (clock->p < limit->p.min || limit->p.max < clock->p)
657 			return false;
658 		if (clock->m < limit->m.min || limit->m.max < clock->m)
659 			return false;
660 	}
661 
662 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
663 		return false;
664 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
665 	 * connector, etc., rather than just a single range.
666 	 */
667 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
668 		return false;
669 
670 	return true;
671 }
672 
673 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)674 i9xx_select_p2_div(const struct intel_limit *limit,
675 		   const struct intel_crtc_state *crtc_state,
676 		   int target)
677 {
678 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
679 
680 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
681 		/*
682 		 * For LVDS just rely on its current settings for dual-channel.
683 		 * We haven't figured out how to reliably set up different
684 		 * single/dual channel state, if we even can.
685 		 */
686 		if (intel_is_dual_link_lvds(dev_priv))
687 			return limit->p2.p2_fast;
688 		else
689 			return limit->p2.p2_slow;
690 	} else {
691 		if (target < limit->p2.dot_limit)
692 			return limit->p2.p2_slow;
693 		else
694 			return limit->p2.p2_fast;
695 	}
696 }
697 
698 /*
699  * Returns a set of divisors for the desired target clock with the given
700  * refclk, or FALSE.  The returned values represent the clock equation:
701  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
702  *
703  * Target and reference clocks are specified in kHz.
704  *
705  * If match_clock is provided, then best_clock P divider must match the P
706  * divider from @match_clock used for LVDS downclocking.
707  */
708 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)709 i9xx_find_best_dpll(const struct intel_limit *limit,
710 		    struct intel_crtc_state *crtc_state,
711 		    int target, int refclk, struct dpll *match_clock,
712 		    struct dpll *best_clock)
713 {
714 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
715 	struct dpll clock;
716 	int err = target;
717 
718 	memset(best_clock, 0, sizeof(*best_clock));
719 
720 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
721 
722 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
723 	     clock.m1++) {
724 		for (clock.m2 = limit->m2.min;
725 		     clock.m2 <= limit->m2.max; clock.m2++) {
726 			if (clock.m2 >= clock.m1)
727 				break;
728 			for (clock.n = limit->n.min;
729 			     clock.n <= limit->n.max; clock.n++) {
730 				for (clock.p1 = limit->p1.min;
731 					clock.p1 <= limit->p1.max; clock.p1++) {
732 					int this_err;
733 
734 					i9xx_calc_dpll_params(refclk, &clock);
735 					if (!intel_pll_is_valid(to_i915(dev),
736 								limit,
737 								&clock))
738 						continue;
739 					if (match_clock &&
740 					    clock.p != match_clock->p)
741 						continue;
742 
743 					this_err = abs(clock.dot - target);
744 					if (this_err < err) {
745 						*best_clock = clock;
746 						err = this_err;
747 					}
748 				}
749 			}
750 		}
751 	}
752 
753 	return (err != target);
754 }
755 
756 /*
757  * Returns a set of divisors for the desired target clock with the given
758  * refclk, or FALSE.  The returned values represent the clock equation:
759  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
760  *
761  * Target and reference clocks are specified in kHz.
762  *
763  * If match_clock is provided, then best_clock P divider must match the P
764  * divider from @match_clock used for LVDS downclocking.
765  */
766 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)767 pnv_find_best_dpll(const struct intel_limit *limit,
768 		   struct intel_crtc_state *crtc_state,
769 		   int target, int refclk, struct dpll *match_clock,
770 		   struct dpll *best_clock)
771 {
772 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
773 	struct dpll clock;
774 	int err = target;
775 
776 	memset(best_clock, 0, sizeof(*best_clock));
777 
778 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779 
780 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781 	     clock.m1++) {
782 		for (clock.m2 = limit->m2.min;
783 		     clock.m2 <= limit->m2.max; clock.m2++) {
784 			for (clock.n = limit->n.min;
785 			     clock.n <= limit->n.max; clock.n++) {
786 				for (clock.p1 = limit->p1.min;
787 					clock.p1 <= limit->p1.max; clock.p1++) {
788 					int this_err;
789 
790 					pnv_calc_dpll_params(refclk, &clock);
791 					if (!intel_pll_is_valid(to_i915(dev),
792 								limit,
793 								&clock))
794 						continue;
795 					if (match_clock &&
796 					    clock.p != match_clock->p)
797 						continue;
798 
799 					this_err = abs(clock.dot - target);
800 					if (this_err < err) {
801 						*best_clock = clock;
802 						err = this_err;
803 					}
804 				}
805 			}
806 		}
807 	}
808 
809 	return (err != target);
810 }
811 
812 /*
813  * Returns a set of divisors for the desired target clock with the given
814  * refclk, or FALSE.  The returned values represent the clock equation:
815  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
816  *
817  * Target and reference clocks are specified in kHz.
818  *
819  * If match_clock is provided, then best_clock P divider must match the P
820  * divider from @match_clock used for LVDS downclocking.
821  */
822 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)823 g4x_find_best_dpll(const struct intel_limit *limit,
824 		   struct intel_crtc_state *crtc_state,
825 		   int target, int refclk, struct dpll *match_clock,
826 		   struct dpll *best_clock)
827 {
828 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
829 	struct dpll clock;
830 	int max_n;
831 	bool found = false;
832 	/* approximately equals target * 0.00585 */
833 	int err_most = (target >> 8) + (target >> 9);
834 
835 	memset(best_clock, 0, sizeof(*best_clock));
836 
837 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
838 
839 	max_n = limit->n.max;
840 	/* based on hardware requirement, prefer smaller n to precision */
841 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
842 		/* based on hardware requirement, prefere larger m1,m2 */
843 		for (clock.m1 = limit->m1.max;
844 		     clock.m1 >= limit->m1.min; clock.m1--) {
845 			for (clock.m2 = limit->m2.max;
846 			     clock.m2 >= limit->m2.min; clock.m2--) {
847 				for (clock.p1 = limit->p1.max;
848 				     clock.p1 >= limit->p1.min; clock.p1--) {
849 					int this_err;
850 
851 					i9xx_calc_dpll_params(refclk, &clock);
852 					if (!intel_pll_is_valid(to_i915(dev),
853 								limit,
854 								&clock))
855 						continue;
856 
857 					this_err = abs(clock.dot - target);
858 					if (this_err < err_most) {
859 						*best_clock = clock;
860 						err_most = this_err;
861 						max_n = clock.n;
862 						found = true;
863 					}
864 				}
865 			}
866 		}
867 	}
868 	return found;
869 }
870 
871 /*
872  * Check if the calculated PLL configuration is more optimal compared to the
873  * best configuration and error found so far. Return the calculated error.
874  */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)875 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
876 			       const struct dpll *calculated_clock,
877 			       const struct dpll *best_clock,
878 			       unsigned int best_error_ppm,
879 			       unsigned int *error_ppm)
880 {
881 	/*
882 	 * For CHV ignore the error and consider only the P value.
883 	 * Prefer a bigger P value based on HW requirements.
884 	 */
885 	if (IS_CHERRYVIEW(to_i915(dev))) {
886 		*error_ppm = 0;
887 
888 		return calculated_clock->p > best_clock->p;
889 	}
890 
891 	if (drm_WARN_ON_ONCE(dev, !target_freq))
892 		return false;
893 
894 	*error_ppm = div_u64(1000000ULL *
895 				abs(target_freq - calculated_clock->dot),
896 			     target_freq);
897 	/*
898 	 * Prefer a better P value over a better (smaller) error if the error
899 	 * is small. Ensure this preference for future configurations too by
900 	 * setting the error to 0.
901 	 */
902 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
903 		*error_ppm = 0;
904 
905 		return true;
906 	}
907 
908 	return *error_ppm + 10 < best_error_ppm;
909 }
910 
911 /*
912  * Returns a set of divisors for the desired target clock with the given
913  * refclk, or FALSE.  The returned values represent the clock equation:
914  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
915  */
916 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)917 vlv_find_best_dpll(const struct intel_limit *limit,
918 		   struct intel_crtc_state *crtc_state,
919 		   int target, int refclk, struct dpll *match_clock,
920 		   struct dpll *best_clock)
921 {
922 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
923 	struct drm_device *dev = crtc->base.dev;
924 	struct dpll clock;
925 	unsigned int bestppm = 1000000;
926 	/* min update 19.2 MHz */
927 	int max_n = min(limit->n.max, refclk / 19200);
928 	bool found = false;
929 
930 	target *= 5; /* fast clock */
931 
932 	memset(best_clock, 0, sizeof(*best_clock));
933 
934 	/* based on hardware requirement, prefer smaller n to precision */
935 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
936 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
937 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
938 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939 				clock.p = clock.p1 * clock.p2;
940 				/* based on hardware requirement, prefer bigger m1,m2 values */
941 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
942 					unsigned int ppm;
943 
944 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
945 								     refclk * clock.m1);
946 
947 					vlv_calc_dpll_params(refclk, &clock);
948 
949 					if (!intel_pll_is_valid(to_i915(dev),
950 								limit,
951 								&clock))
952 						continue;
953 
954 					if (!vlv_PLL_is_optimal(dev, target,
955 								&clock,
956 								best_clock,
957 								bestppm, &ppm))
958 						continue;
959 
960 					*best_clock = clock;
961 					bestppm = ppm;
962 					found = true;
963 				}
964 			}
965 		}
966 	}
967 
968 	return found;
969 }
970 
971 /*
972  * Returns a set of divisors for the desired target clock with the given
973  * refclk, or FALSE.  The returned values represent the clock equation:
974  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
975  */
976 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)977 chv_find_best_dpll(const struct intel_limit *limit,
978 		   struct intel_crtc_state *crtc_state,
979 		   int target, int refclk, struct dpll *match_clock,
980 		   struct dpll *best_clock)
981 {
982 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
983 	struct drm_device *dev = crtc->base.dev;
984 	unsigned int best_error_ppm;
985 	struct dpll clock;
986 	u64 m2;
987 	int found = false;
988 
989 	memset(best_clock, 0, sizeof(*best_clock));
990 	best_error_ppm = 1000000;
991 
992 	/*
993 	 * Based on hardware doc, the n always set to 1, and m1 always
994 	 * set to 2.  If requires to support 200Mhz refclk, we need to
995 	 * revisit this because n may not 1 anymore.
996 	 */
997 	clock.n = 1, clock.m1 = 2;
998 	target *= 5;	/* fast clock */
999 
1000 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1001 		for (clock.p2 = limit->p2.p2_fast;
1002 				clock.p2 >= limit->p2.p2_slow;
1003 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1004 			unsigned int error_ppm;
1005 
1006 			clock.p = clock.p1 * clock.p2;
1007 
1008 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
1009 						   refclk * clock.m1);
1010 
1011 			if (m2 > INT_MAX/clock.m1)
1012 				continue;
1013 
1014 			clock.m2 = m2;
1015 
1016 			chv_calc_dpll_params(refclk, &clock);
1017 
1018 			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
1019 				continue;
1020 
1021 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1022 						best_error_ppm, &error_ppm))
1023 				continue;
1024 
1025 			*best_clock = clock;
1026 			best_error_ppm = error_ppm;
1027 			found = true;
1028 		}
1029 	}
1030 
1031 	return found;
1032 }
1033 
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,struct dpll * best_clock)1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1035 			struct dpll *best_clock)
1036 {
1037 	int refclk = 100000;
1038 	const struct intel_limit *limit = &intel_limits_bxt;
1039 
1040 	return chv_find_best_dpll(limit, crtc_state,
1041 				  crtc_state->port_clock, refclk,
1042 				  NULL, best_clock);
1043 }
1044 
pipe_scanline_is_moving(struct drm_i915_private * dev_priv,enum pipe pipe)1045 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1046 				    enum pipe pipe)
1047 {
1048 	i915_reg_t reg = PIPEDSL(pipe);
1049 	u32 line1, line2;
1050 	u32 line_mask;
1051 
1052 	if (IS_GEN(dev_priv, 2))
1053 		line_mask = DSL_LINEMASK_GEN2;
1054 	else
1055 		line_mask = DSL_LINEMASK_GEN3;
1056 
1057 	line1 = intel_de_read(dev_priv, reg) & line_mask;
1058 	msleep(5);
1059 	line2 = intel_de_read(dev_priv, reg) & line_mask;
1060 
1061 	return line1 != line2;
1062 }
1063 
wait_for_pipe_scanline_moving(struct intel_crtc * crtc,bool state)1064 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1065 {
1066 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1067 	enum pipe pipe = crtc->pipe;
1068 
1069 	/* Wait for the display line to settle/start moving */
1070 	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1071 		drm_err(&dev_priv->drm,
1072 			"pipe %c scanline %s wait timed out\n",
1073 			pipe_name(pipe), onoff(state));
1074 }
1075 
intel_wait_for_pipe_scanline_stopped(struct intel_crtc * crtc)1076 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1077 {
1078 	wait_for_pipe_scanline_moving(crtc, false);
1079 }
1080 
intel_wait_for_pipe_scanline_moving(struct intel_crtc * crtc)1081 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1082 {
1083 	wait_for_pipe_scanline_moving(crtc, true);
1084 }
1085 
1086 static void
intel_wait_for_pipe_off(const struct intel_crtc_state * old_crtc_state)1087 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1088 {
1089 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1090 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1091 
1092 	if (INTEL_GEN(dev_priv) >= 4) {
1093 		enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1094 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1095 
1096 		/* Wait for the Pipe State to go off */
1097 		if (intel_de_wait_for_clear(dev_priv, reg,
1098 					    I965_PIPECONF_ACTIVE, 100))
1099 			drm_WARN(&dev_priv->drm, 1,
1100 				 "pipe_off wait timed out\n");
1101 	} else {
1102 		intel_wait_for_pipe_scanline_stopped(crtc);
1103 	}
1104 }
1105 
1106 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1107 void assert_pll(struct drm_i915_private *dev_priv,
1108 		enum pipe pipe, bool state)
1109 {
1110 	u32 val;
1111 	bool cur_state;
1112 
1113 	val = intel_de_read(dev_priv, DPLL(pipe));
1114 	cur_state = !!(val & DPLL_VCO_ENABLE);
1115 	I915_STATE_WARN(cur_state != state,
1116 	     "PLL state assertion failure (expected %s, current %s)\n",
1117 			onoff(state), onoff(cur_state));
1118 }
1119 
1120 /* XXX: the dsi pll is shared between MIPI DSI ports */
assert_dsi_pll(struct drm_i915_private * dev_priv,bool state)1121 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1122 {
1123 	u32 val;
1124 	bool cur_state;
1125 
1126 	vlv_cck_get(dev_priv);
1127 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1128 	vlv_cck_put(dev_priv);
1129 
1130 	cur_state = val & DSI_PLL_VCO_EN;
1131 	I915_STATE_WARN(cur_state != state,
1132 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1133 			onoff(state), onoff(cur_state));
1134 }
1135 
assert_fdi_tx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1136 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1137 			  enum pipe pipe, bool state)
1138 {
1139 	bool cur_state;
1140 
1141 	if (HAS_DDI(dev_priv)) {
1142 		/*
1143 		 * DDI does not have a specific FDI_TX register.
1144 		 *
1145 		 * FDI is never fed from EDP transcoder
1146 		 * so pipe->transcoder cast is fine here.
1147 		 */
1148 		enum transcoder cpu_transcoder = (enum transcoder)pipe;
1149 		u32 val = intel_de_read(dev_priv,
1150 					TRANS_DDI_FUNC_CTL(cpu_transcoder));
1151 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1152 	} else {
1153 		u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1154 		cur_state = !!(val & FDI_TX_ENABLE);
1155 	}
1156 	I915_STATE_WARN(cur_state != state,
1157 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1158 			onoff(state), onoff(cur_state));
1159 }
1160 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1161 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1162 
assert_fdi_rx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1163 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1164 			  enum pipe pipe, bool state)
1165 {
1166 	u32 val;
1167 	bool cur_state;
1168 
1169 	val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1170 	cur_state = !!(val & FDI_RX_ENABLE);
1171 	I915_STATE_WARN(cur_state != state,
1172 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1173 			onoff(state), onoff(cur_state));
1174 }
1175 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1176 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1177 
assert_fdi_tx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)1178 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1179 				      enum pipe pipe)
1180 {
1181 	u32 val;
1182 
1183 	/* ILK FDI PLL is always enabled */
1184 	if (IS_GEN(dev_priv, 5))
1185 		return;
1186 
1187 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1188 	if (HAS_DDI(dev_priv))
1189 		return;
1190 
1191 	val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1192 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1193 }
1194 
assert_fdi_rx_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1195 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1196 		       enum pipe pipe, bool state)
1197 {
1198 	u32 val;
1199 	bool cur_state;
1200 
1201 	val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1202 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1203 	I915_STATE_WARN(cur_state != state,
1204 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1205 			onoff(state), onoff(cur_state));
1206 }
1207 
assert_panel_unlocked(struct drm_i915_private * dev_priv,enum pipe pipe)1208 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1209 {
1210 	i915_reg_t pp_reg;
1211 	u32 val;
1212 	enum pipe panel_pipe = INVALID_PIPE;
1213 	bool locked = true;
1214 
1215 	if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv)))
1216 		return;
1217 
1218 	if (HAS_PCH_SPLIT(dev_priv)) {
1219 		u32 port_sel;
1220 
1221 		pp_reg = PP_CONTROL(0);
1222 		port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1223 
1224 		switch (port_sel) {
1225 		case PANEL_PORT_SELECT_LVDS:
1226 			intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1227 			break;
1228 		case PANEL_PORT_SELECT_DPA:
1229 			intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1230 			break;
1231 		case PANEL_PORT_SELECT_DPC:
1232 			intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1233 			break;
1234 		case PANEL_PORT_SELECT_DPD:
1235 			intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1236 			break;
1237 		default:
1238 			MISSING_CASE(port_sel);
1239 			break;
1240 		}
1241 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1242 		/* presumably write lock depends on pipe, not port select */
1243 		pp_reg = PP_CONTROL(pipe);
1244 		panel_pipe = pipe;
1245 	} else {
1246 		u32 port_sel;
1247 
1248 		pp_reg = PP_CONTROL(0);
1249 		port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1250 
1251 		drm_WARN_ON(&dev_priv->drm,
1252 			    port_sel != PANEL_PORT_SELECT_LVDS);
1253 		intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1254 	}
1255 
1256 	val = intel_de_read(dev_priv, pp_reg);
1257 	if (!(val & PANEL_POWER_ON) ||
1258 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1259 		locked = false;
1260 
1261 	I915_STATE_WARN(panel_pipe == pipe && locked,
1262 	     "panel assertion failure, pipe %c regs locked\n",
1263 	     pipe_name(pipe));
1264 }
1265 
assert_pipe(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder,bool state)1266 void assert_pipe(struct drm_i915_private *dev_priv,
1267 		 enum transcoder cpu_transcoder, bool state)
1268 {
1269 	bool cur_state;
1270 	enum intel_display_power_domain power_domain;
1271 	intel_wakeref_t wakeref;
1272 
1273 	/* we keep both pipes enabled on 830 */
1274 	if (IS_I830(dev_priv))
1275 		state = true;
1276 
1277 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1278 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1279 	if (wakeref) {
1280 		u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1281 		cur_state = !!(val & PIPECONF_ENABLE);
1282 
1283 		intel_display_power_put(dev_priv, power_domain, wakeref);
1284 	} else {
1285 		cur_state = false;
1286 	}
1287 
1288 	I915_STATE_WARN(cur_state != state,
1289 			"transcoder %s assertion failure (expected %s, current %s)\n",
1290 			transcoder_name(cpu_transcoder),
1291 			onoff(state), onoff(cur_state));
1292 }
1293 
assert_plane(struct intel_plane * plane,bool state)1294 static void assert_plane(struct intel_plane *plane, bool state)
1295 {
1296 	enum pipe pipe;
1297 	bool cur_state;
1298 
1299 	cur_state = plane->get_hw_state(plane, &pipe);
1300 
1301 	I915_STATE_WARN(cur_state != state,
1302 			"%s assertion failure (expected %s, current %s)\n",
1303 			plane->base.name, onoff(state), onoff(cur_state));
1304 }
1305 
1306 #define assert_plane_enabled(p) assert_plane(p, true)
1307 #define assert_plane_disabled(p) assert_plane(p, false)
1308 
assert_planes_disabled(struct intel_crtc * crtc)1309 static void assert_planes_disabled(struct intel_crtc *crtc)
1310 {
1311 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1312 	struct intel_plane *plane;
1313 
1314 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1315 		assert_plane_disabled(plane);
1316 }
1317 
assert_vblank_disabled(struct drm_crtc * crtc)1318 static void assert_vblank_disabled(struct drm_crtc *crtc)
1319 {
1320 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1321 		drm_crtc_vblank_put(crtc);
1322 }
1323 
assert_pch_transcoder_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1324 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1325 				    enum pipe pipe)
1326 {
1327 	u32 val;
1328 	bool enabled;
1329 
1330 	val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe));
1331 	enabled = !!(val & TRANS_ENABLE);
1332 	I915_STATE_WARN(enabled,
1333 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1334 	     pipe_name(pipe));
1335 }
1336 
assert_pch_dp_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,enum port port,i915_reg_t dp_reg)1337 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1338 				   enum pipe pipe, enum port port,
1339 				   i915_reg_t dp_reg)
1340 {
1341 	enum pipe port_pipe;
1342 	bool state;
1343 
1344 	state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1345 
1346 	I915_STATE_WARN(state && port_pipe == pipe,
1347 			"PCH DP %c enabled on transcoder %c, should be disabled\n",
1348 			port_name(port), pipe_name(pipe));
1349 
1350 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1351 			"IBX PCH DP %c still using transcoder B\n",
1352 			port_name(port));
1353 }
1354 
assert_pch_hdmi_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,enum port port,i915_reg_t hdmi_reg)1355 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1356 				     enum pipe pipe, enum port port,
1357 				     i915_reg_t hdmi_reg)
1358 {
1359 	enum pipe port_pipe;
1360 	bool state;
1361 
1362 	state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1363 
1364 	I915_STATE_WARN(state && port_pipe == pipe,
1365 			"PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1366 			port_name(port), pipe_name(pipe));
1367 
1368 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1369 			"IBX PCH HDMI %c still using transcoder B\n",
1370 			port_name(port));
1371 }
1372 
assert_pch_ports_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1373 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1374 				      enum pipe pipe)
1375 {
1376 	enum pipe port_pipe;
1377 
1378 	assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1379 	assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1380 	assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1381 
1382 	I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1383 			port_pipe == pipe,
1384 			"PCH VGA enabled on transcoder %c, should be disabled\n",
1385 			pipe_name(pipe));
1386 
1387 	I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1388 			port_pipe == pipe,
1389 			"PCH LVDS enabled on transcoder %c, should be disabled\n",
1390 			pipe_name(pipe));
1391 
1392 	/* PCH SDVOB multiplex with HDMIB */
1393 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1394 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1395 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1396 }
1397 
_vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1398 static void _vlv_enable_pll(struct intel_crtc *crtc,
1399 			    const struct intel_crtc_state *pipe_config)
1400 {
1401 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1402 	enum pipe pipe = crtc->pipe;
1403 
1404 	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1405 	intel_de_posting_read(dev_priv, DPLL(pipe));
1406 	udelay(150);
1407 
1408 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1409 		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1410 }
1411 
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1412 static void vlv_enable_pll(struct intel_crtc *crtc,
1413 			   const struct intel_crtc_state *pipe_config)
1414 {
1415 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1416 	enum pipe pipe = crtc->pipe;
1417 
1418 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1419 
1420 	/* PLL is protected by panel, make sure we can write it */
1421 	assert_panel_unlocked(dev_priv, pipe);
1422 
1423 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1424 		_vlv_enable_pll(crtc, pipe_config);
1425 
1426 	intel_de_write(dev_priv, DPLL_MD(pipe),
1427 		       pipe_config->dpll_hw_state.dpll_md);
1428 	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1429 }
1430 
1431 
_chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1432 static void _chv_enable_pll(struct intel_crtc *crtc,
1433 			    const struct intel_crtc_state *pipe_config)
1434 {
1435 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1436 	enum pipe pipe = crtc->pipe;
1437 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1438 	u32 tmp;
1439 
1440 	vlv_dpio_get(dev_priv);
1441 
1442 	/* Enable back the 10bit clock to display controller */
1443 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1444 	tmp |= DPIO_DCLKP_EN;
1445 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1446 
1447 	vlv_dpio_put(dev_priv);
1448 
1449 	/*
1450 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1451 	 */
1452 	udelay(1);
1453 
1454 	/* Enable PLL */
1455 	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1456 
1457 	/* Check PLL is locked */
1458 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1459 		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1460 }
1461 
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1462 static void chv_enable_pll(struct intel_crtc *crtc,
1463 			   const struct intel_crtc_state *pipe_config)
1464 {
1465 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1466 	enum pipe pipe = crtc->pipe;
1467 
1468 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1469 
1470 	/* PLL is protected by panel, make sure we can write it */
1471 	assert_panel_unlocked(dev_priv, pipe);
1472 
1473 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1474 		_chv_enable_pll(crtc, pipe_config);
1475 
1476 	if (pipe != PIPE_A) {
1477 		/*
1478 		 * WaPixelRepeatModeFixForC0:chv
1479 		 *
1480 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1481 		 * the value from DPLLBMD to either pipe B or C.
1482 		 */
1483 		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1484 		intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1485 			       pipe_config->dpll_hw_state.dpll_md);
1486 		intel_de_write(dev_priv, CBR4_VLV, 0);
1487 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1488 
1489 		/*
1490 		 * DPLLB VGA mode also seems to cause problems.
1491 		 * We should always have it disabled.
1492 		 */
1493 		drm_WARN_ON(&dev_priv->drm,
1494 			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1495 			     DPLL_VGA_MODE_DIS) == 0);
1496 	} else {
1497 		intel_de_write(dev_priv, DPLL_MD(pipe),
1498 			       pipe_config->dpll_hw_state.dpll_md);
1499 		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1500 	}
1501 }
1502 
i9xx_has_pps(struct drm_i915_private * dev_priv)1503 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1504 {
1505 	if (IS_I830(dev_priv))
1506 		return false;
1507 
1508 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1509 }
1510 
i9xx_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)1511 static void i9xx_enable_pll(struct intel_crtc *crtc,
1512 			    const struct intel_crtc_state *crtc_state)
1513 {
1514 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515 	i915_reg_t reg = DPLL(crtc->pipe);
1516 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1517 	int i;
1518 
1519 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1520 
1521 	/* PLL is protected by panel, make sure we can write it */
1522 	if (i9xx_has_pps(dev_priv))
1523 		assert_panel_unlocked(dev_priv, crtc->pipe);
1524 
1525 	/*
1526 	 * Apparently we need to have VGA mode enabled prior to changing
1527 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1528 	 * dividers, even though the register value does change.
1529 	 */
1530 	intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS);
1531 	intel_de_write(dev_priv, reg, dpll);
1532 
1533 	/* Wait for the clocks to stabilize. */
1534 	intel_de_posting_read(dev_priv, reg);
1535 	udelay(150);
1536 
1537 	if (INTEL_GEN(dev_priv) >= 4) {
1538 		intel_de_write(dev_priv, DPLL_MD(crtc->pipe),
1539 			       crtc_state->dpll_hw_state.dpll_md);
1540 	} else {
1541 		/* The pixel multiplier can only be updated once the
1542 		 * DPLL is enabled and the clocks are stable.
1543 		 *
1544 		 * So write it again.
1545 		 */
1546 		intel_de_write(dev_priv, reg, dpll);
1547 	}
1548 
1549 	/* We do this three times for luck */
1550 	for (i = 0; i < 3; i++) {
1551 		intel_de_write(dev_priv, reg, dpll);
1552 		intel_de_posting_read(dev_priv, reg);
1553 		udelay(150); /* wait for warmup */
1554 	}
1555 }
1556 
i9xx_disable_pll(const struct intel_crtc_state * crtc_state)1557 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1558 {
1559 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1560 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 	enum pipe pipe = crtc->pipe;
1562 
1563 	/* Don't disable pipe or pipe PLLs if needed */
1564 	if (IS_I830(dev_priv))
1565 		return;
1566 
1567 	/* Make sure the pipe isn't still relying on us */
1568 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1569 
1570 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1571 	intel_de_posting_read(dev_priv, DPLL(pipe));
1572 }
1573 
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1574 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1575 {
1576 	u32 val;
1577 
1578 	/* Make sure the pipe isn't still relying on us */
1579 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1580 
1581 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1582 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1583 	if (pipe != PIPE_A)
1584 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1585 
1586 	intel_de_write(dev_priv, DPLL(pipe), val);
1587 	intel_de_posting_read(dev_priv, DPLL(pipe));
1588 }
1589 
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1590 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1591 {
1592 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1593 	u32 val;
1594 
1595 	/* Make sure the pipe isn't still relying on us */
1596 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1597 
1598 	val = DPLL_SSC_REF_CLK_CHV |
1599 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1600 	if (pipe != PIPE_A)
1601 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1602 
1603 	intel_de_write(dev_priv, DPLL(pipe), val);
1604 	intel_de_posting_read(dev_priv, DPLL(pipe));
1605 
1606 	vlv_dpio_get(dev_priv);
1607 
1608 	/* Disable 10bit clock to display controller */
1609 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1610 	val &= ~DPIO_DCLKP_EN;
1611 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1612 
1613 	vlv_dpio_put(dev_priv);
1614 }
1615 
vlv_wait_port_ready(struct drm_i915_private * dev_priv,struct intel_digital_port * dig_port,unsigned int expected_mask)1616 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1617 			 struct intel_digital_port *dig_port,
1618 			 unsigned int expected_mask)
1619 {
1620 	u32 port_mask;
1621 	i915_reg_t dpll_reg;
1622 
1623 	switch (dig_port->base.port) {
1624 	case PORT_B:
1625 		port_mask = DPLL_PORTB_READY_MASK;
1626 		dpll_reg = DPLL(0);
1627 		break;
1628 	case PORT_C:
1629 		port_mask = DPLL_PORTC_READY_MASK;
1630 		dpll_reg = DPLL(0);
1631 		expected_mask <<= 4;
1632 		break;
1633 	case PORT_D:
1634 		port_mask = DPLL_PORTD_READY_MASK;
1635 		dpll_reg = DPIO_PHY_STATUS;
1636 		break;
1637 	default:
1638 		BUG();
1639 	}
1640 
1641 	if (intel_de_wait_for_register(dev_priv, dpll_reg,
1642 				       port_mask, expected_mask, 1000))
1643 		drm_WARN(&dev_priv->drm, 1,
1644 			 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1645 			 dig_port->base.base.base.id, dig_port->base.base.name,
1646 			 intel_de_read(dev_priv, dpll_reg) & port_mask,
1647 			 expected_mask);
1648 }
1649 
ilk_enable_pch_transcoder(const struct intel_crtc_state * crtc_state)1650 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1651 {
1652 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1653 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1654 	enum pipe pipe = crtc->pipe;
1655 	i915_reg_t reg;
1656 	u32 val, pipeconf_val;
1657 
1658 	/* Make sure PCH DPLL is enabled */
1659 	assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1660 
1661 	/* FDI must be feeding us bits for PCH ports */
1662 	assert_fdi_tx_enabled(dev_priv, pipe);
1663 	assert_fdi_rx_enabled(dev_priv, pipe);
1664 
1665 	if (HAS_PCH_CPT(dev_priv)) {
1666 		reg = TRANS_CHICKEN2(pipe);
1667 		val = intel_de_read(dev_priv, reg);
1668 		/*
1669 		 * Workaround: Set the timing override bit
1670 		 * before enabling the pch transcoder.
1671 		 */
1672 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1673 		/* Configure frame start delay to match the CPU */
1674 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1675 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1676 		intel_de_write(dev_priv, reg, val);
1677 	}
1678 
1679 	reg = PCH_TRANSCONF(pipe);
1680 	val = intel_de_read(dev_priv, reg);
1681 	pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe));
1682 
1683 	if (HAS_PCH_IBX(dev_priv)) {
1684 		/* Configure frame start delay to match the CPU */
1685 		val &= ~TRANS_FRAME_START_DELAY_MASK;
1686 		val |= TRANS_FRAME_START_DELAY(0);
1687 
1688 		/*
1689 		 * Make the BPC in transcoder be consistent with
1690 		 * that in pipeconf reg. For HDMI we must use 8bpc
1691 		 * here for both 8bpc and 12bpc.
1692 		 */
1693 		val &= ~PIPECONF_BPC_MASK;
1694 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1695 			val |= PIPECONF_8BPC;
1696 		else
1697 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1698 	}
1699 
1700 	val &= ~TRANS_INTERLACE_MASK;
1701 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1702 		if (HAS_PCH_IBX(dev_priv) &&
1703 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1704 			val |= TRANS_LEGACY_INTERLACED_ILK;
1705 		else
1706 			val |= TRANS_INTERLACED;
1707 	} else {
1708 		val |= TRANS_PROGRESSIVE;
1709 	}
1710 
1711 	intel_de_write(dev_priv, reg, val | TRANS_ENABLE);
1712 	if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1713 		drm_err(&dev_priv->drm, "failed to enable transcoder %c\n",
1714 			pipe_name(pipe));
1715 }
1716 
lpt_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)1717 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1718 				      enum transcoder cpu_transcoder)
1719 {
1720 	u32 val, pipeconf_val;
1721 
1722 	/* FDI must be feeding us bits for PCH ports */
1723 	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1724 	assert_fdi_rx_enabled(dev_priv, PIPE_A);
1725 
1726 	val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1727 	/* Workaround: set timing override bit. */
1728 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1729 	/* Configure frame start delay to match the CPU */
1730 	val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1731 	val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1732 	intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1733 
1734 	val = TRANS_ENABLE;
1735 	pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1736 
1737 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1738 	    PIPECONF_INTERLACED_ILK)
1739 		val |= TRANS_INTERLACED;
1740 	else
1741 		val |= TRANS_PROGRESSIVE;
1742 
1743 	intel_de_write(dev_priv, LPT_TRANSCONF, val);
1744 	if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1745 				  TRANS_STATE_ENABLE, 100))
1746 		drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n");
1747 }
1748 
ilk_disable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1749 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750 				       enum pipe pipe)
1751 {
1752 	i915_reg_t reg;
1753 	u32 val;
1754 
1755 	/* FDI relies on the transcoder */
1756 	assert_fdi_tx_disabled(dev_priv, pipe);
1757 	assert_fdi_rx_disabled(dev_priv, pipe);
1758 
1759 	/* Ports must be off as well */
1760 	assert_pch_ports_disabled(dev_priv, pipe);
1761 
1762 	reg = PCH_TRANSCONF(pipe);
1763 	val = intel_de_read(dev_priv, reg);
1764 	val &= ~TRANS_ENABLE;
1765 	intel_de_write(dev_priv, reg, val);
1766 	/* wait for PCH transcoder off, transcoder state */
1767 	if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1768 		drm_err(&dev_priv->drm, "failed to disable transcoder %c\n",
1769 			pipe_name(pipe));
1770 
1771 	if (HAS_PCH_CPT(dev_priv)) {
1772 		/* Workaround: Clear the timing override chicken bit again. */
1773 		reg = TRANS_CHICKEN2(pipe);
1774 		val = intel_de_read(dev_priv, reg);
1775 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1776 		intel_de_write(dev_priv, reg, val);
1777 	}
1778 }
1779 
lpt_disable_pch_transcoder(struct drm_i915_private * dev_priv)1780 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1781 {
1782 	u32 val;
1783 
1784 	val = intel_de_read(dev_priv, LPT_TRANSCONF);
1785 	val &= ~TRANS_ENABLE;
1786 	intel_de_write(dev_priv, LPT_TRANSCONF, val);
1787 	/* wait for PCH transcoder off, transcoder state */
1788 	if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1789 				    TRANS_STATE_ENABLE, 50))
1790 		drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n");
1791 
1792 	/* Workaround: clear timing override bit. */
1793 	val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1794 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1795 	intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1796 }
1797 
intel_crtc_pch_transcoder(struct intel_crtc * crtc)1798 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1799 {
1800 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1801 
1802 	if (HAS_PCH_LPT(dev_priv))
1803 		return PIPE_A;
1804 	else
1805 		return crtc->pipe;
1806 }
1807 
intel_crtc_max_vblank_count(const struct intel_crtc_state * crtc_state)1808 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1809 {
1810 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1811 
1812 	/*
1813 	 * On i965gm the hardware frame counter reads
1814 	 * zero when the TV encoder is enabled :(
1815 	 */
1816 	if (IS_I965GM(dev_priv) &&
1817 	    (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1818 		return 0;
1819 
1820 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1821 		return 0xffffffff; /* full 32 bit counter */
1822 	else if (INTEL_GEN(dev_priv) >= 3)
1823 		return 0xffffff; /* only 24 bits of frame count */
1824 	else
1825 		return 0; /* Gen2 doesn't have a hardware frame counter */
1826 }
1827 
intel_crtc_vblank_on(const struct intel_crtc_state * crtc_state)1828 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1829 {
1830 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1831 
1832 	assert_vblank_disabled(&crtc->base);
1833 	drm_crtc_set_max_vblank_count(&crtc->base,
1834 				      intel_crtc_max_vblank_count(crtc_state));
1835 	drm_crtc_vblank_on(&crtc->base);
1836 }
1837 
intel_crtc_vblank_off(const struct intel_crtc_state * crtc_state)1838 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
1839 {
1840 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1841 
1842 	drm_crtc_vblank_off(&crtc->base);
1843 	assert_vblank_disabled(&crtc->base);
1844 }
1845 
intel_enable_pipe(const struct intel_crtc_state * new_crtc_state)1846 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1847 {
1848 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1849 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1850 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1851 	enum pipe pipe = crtc->pipe;
1852 	i915_reg_t reg;
1853 	u32 val;
1854 
1855 	drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe));
1856 
1857 	assert_planes_disabled(crtc);
1858 
1859 	/*
1860 	 * A pipe without a PLL won't actually be able to drive bits from
1861 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1862 	 * need the check.
1863 	 */
1864 	if (HAS_GMCH(dev_priv)) {
1865 		if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1866 			assert_dsi_pll_enabled(dev_priv);
1867 		else
1868 			assert_pll_enabled(dev_priv, pipe);
1869 	} else {
1870 		if (new_crtc_state->has_pch_encoder) {
1871 			/* if driving the PCH, we need FDI enabled */
1872 			assert_fdi_rx_pll_enabled(dev_priv,
1873 						  intel_crtc_pch_transcoder(crtc));
1874 			assert_fdi_tx_pll_enabled(dev_priv,
1875 						  (enum pipe) cpu_transcoder);
1876 		}
1877 		/* FIXME: assert CPU port conditions for SNB+ */
1878 	}
1879 
1880 	trace_intel_pipe_enable(crtc);
1881 
1882 	reg = PIPECONF(cpu_transcoder);
1883 	val = intel_de_read(dev_priv, reg);
1884 	if (val & PIPECONF_ENABLE) {
1885 		/* we keep both pipes enabled on 830 */
1886 		drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv));
1887 		return;
1888 	}
1889 
1890 	intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE);
1891 	intel_de_posting_read(dev_priv, reg);
1892 
1893 	/*
1894 	 * Until the pipe starts PIPEDSL reads will return a stale value,
1895 	 * which causes an apparent vblank timestamp jump when PIPEDSL
1896 	 * resets to its proper value. That also messes up the frame count
1897 	 * when it's derived from the timestamps. So let's wait for the
1898 	 * pipe to start properly before we call drm_crtc_vblank_on()
1899 	 */
1900 	if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1901 		intel_wait_for_pipe_scanline_moving(crtc);
1902 }
1903 
intel_disable_pipe(const struct intel_crtc_state * old_crtc_state)1904 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1905 {
1906 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1907 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1908 	enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1909 	enum pipe pipe = crtc->pipe;
1910 	i915_reg_t reg;
1911 	u32 val;
1912 
1913 	drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe));
1914 
1915 	/*
1916 	 * Make sure planes won't keep trying to pump pixels to us,
1917 	 * or we might hang the display.
1918 	 */
1919 	assert_planes_disabled(crtc);
1920 
1921 	trace_intel_pipe_disable(crtc);
1922 
1923 	reg = PIPECONF(cpu_transcoder);
1924 	val = intel_de_read(dev_priv, reg);
1925 	if ((val & PIPECONF_ENABLE) == 0)
1926 		return;
1927 
1928 	/*
1929 	 * Double wide has implications for planes
1930 	 * so best keep it disabled when not needed.
1931 	 */
1932 	if (old_crtc_state->double_wide)
1933 		val &= ~PIPECONF_DOUBLE_WIDE;
1934 
1935 	/* Don't disable pipe or pipe PLLs if needed */
1936 	if (!IS_I830(dev_priv))
1937 		val &= ~PIPECONF_ENABLE;
1938 
1939 	intel_de_write(dev_priv, reg, val);
1940 	if ((val & PIPECONF_ENABLE) == 0)
1941 		intel_wait_for_pipe_off(old_crtc_state);
1942 }
1943 
intel_tile_size(const struct drm_i915_private * dev_priv)1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1945 {
1946 	return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1947 }
1948 
is_ccs_plane(const struct drm_framebuffer * fb,int plane)1949 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane)
1950 {
1951 	if (!is_ccs_modifier(fb->modifier))
1952 		return false;
1953 
1954 	return plane >= fb->format->num_planes / 2;
1955 }
1956 
is_gen12_ccs_modifier(u64 modifier)1957 static bool is_gen12_ccs_modifier(u64 modifier)
1958 {
1959 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
1960 	       modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
1961 
1962 }
1963 
is_gen12_ccs_plane(const struct drm_framebuffer * fb,int plane)1964 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane)
1965 {
1966 	return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane);
1967 }
1968 
is_aux_plane(const struct drm_framebuffer * fb,int plane)1969 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane)
1970 {
1971 	if (is_ccs_modifier(fb->modifier))
1972 		return is_ccs_plane(fb, plane);
1973 
1974 	return plane == 1;
1975 }
1976 
main_to_ccs_plane(const struct drm_framebuffer * fb,int main_plane)1977 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane)
1978 {
1979 	drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1980 		    (main_plane && main_plane >= fb->format->num_planes / 2));
1981 
1982 	return fb->format->num_planes / 2 + main_plane;
1983 }
1984 
ccs_to_main_plane(const struct drm_framebuffer * fb,int ccs_plane)1985 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane)
1986 {
1987 	drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1988 		    ccs_plane < fb->format->num_planes / 2);
1989 
1990 	return ccs_plane - fb->format->num_planes / 2;
1991 }
1992 
1993 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */
intel_main_to_aux_plane(const struct drm_framebuffer * fb,int main_plane)1994 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane)
1995 {
1996 	if (is_ccs_modifier(fb->modifier))
1997 		return main_to_ccs_plane(fb, main_plane);
1998 
1999 	return 1;
2000 }
2001 
2002 bool
intel_format_info_is_yuv_semiplanar(const struct drm_format_info * info,uint64_t modifier)2003 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info,
2004 				    uint64_t modifier)
2005 {
2006 	return info->is_yuv &&
2007 	       info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2);
2008 }
2009 
is_semiplanar_uv_plane(const struct drm_framebuffer * fb,int color_plane)2010 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb,
2011 				   int color_plane)
2012 {
2013 	return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
2014 	       color_plane == 1;
2015 }
2016 
2017 static unsigned int
intel_tile_width_bytes(const struct drm_framebuffer * fb,int color_plane)2018 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
2019 {
2020 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2021 	unsigned int cpp = fb->format->cpp[color_plane];
2022 
2023 	switch (fb->modifier) {
2024 	case DRM_FORMAT_MOD_LINEAR:
2025 		return intel_tile_size(dev_priv);
2026 	case I915_FORMAT_MOD_X_TILED:
2027 		if (IS_GEN(dev_priv, 2))
2028 			return 128;
2029 		else
2030 			return 512;
2031 	case I915_FORMAT_MOD_Y_TILED_CCS:
2032 		if (is_ccs_plane(fb, color_plane))
2033 			return 128;
2034 		fallthrough;
2035 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2036 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2037 		if (is_ccs_plane(fb, color_plane))
2038 			return 64;
2039 		fallthrough;
2040 	case I915_FORMAT_MOD_Y_TILED:
2041 		if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
2042 			return 128;
2043 		else
2044 			return 512;
2045 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2046 		if (is_ccs_plane(fb, color_plane))
2047 			return 128;
2048 		fallthrough;
2049 	case I915_FORMAT_MOD_Yf_TILED:
2050 		switch (cpp) {
2051 		case 1:
2052 			return 64;
2053 		case 2:
2054 		case 4:
2055 			return 128;
2056 		case 8:
2057 		case 16:
2058 			return 256;
2059 		default:
2060 			MISSING_CASE(cpp);
2061 			return cpp;
2062 		}
2063 		break;
2064 	default:
2065 		MISSING_CASE(fb->modifier);
2066 		return cpp;
2067 	}
2068 }
2069 
2070 static unsigned int
intel_tile_height(const struct drm_framebuffer * fb,int color_plane)2071 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
2072 {
2073 	if (is_gen12_ccs_plane(fb, color_plane))
2074 		return 1;
2075 
2076 	return intel_tile_size(to_i915(fb->dev)) /
2077 		intel_tile_width_bytes(fb, color_plane);
2078 }
2079 
2080 /* Return the tile dimensions in pixel units */
intel_tile_dims(const struct drm_framebuffer * fb,int color_plane,unsigned int * tile_width,unsigned int * tile_height)2081 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
2082 			    unsigned int *tile_width,
2083 			    unsigned int *tile_height)
2084 {
2085 	unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
2086 	unsigned int cpp = fb->format->cpp[color_plane];
2087 
2088 	*tile_width = tile_width_bytes / cpp;
2089 	*tile_height = intel_tile_height(fb, color_plane);
2090 }
2091 
intel_tile_row_size(const struct drm_framebuffer * fb,int color_plane)2092 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb,
2093 					int color_plane)
2094 {
2095 	unsigned int tile_width, tile_height;
2096 
2097 	intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2098 
2099 	return fb->pitches[color_plane] * tile_height;
2100 }
2101 
2102 unsigned int
intel_fb_align_height(const struct drm_framebuffer * fb,int color_plane,unsigned int height)2103 intel_fb_align_height(const struct drm_framebuffer *fb,
2104 		      int color_plane, unsigned int height)
2105 {
2106 	unsigned int tile_height = intel_tile_height(fb, color_plane);
2107 
2108 	return ALIGN(height, tile_height);
2109 }
2110 
intel_rotation_info_size(const struct intel_rotation_info * rot_info)2111 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2112 {
2113 	unsigned int size = 0;
2114 	int i;
2115 
2116 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2117 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2118 
2119 	return size;
2120 }
2121 
intel_remapped_info_size(const struct intel_remapped_info * rem_info)2122 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2123 {
2124 	unsigned int size = 0;
2125 	int i;
2126 
2127 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2128 		size += rem_info->plane[i].width * rem_info->plane[i].height;
2129 
2130 	return size;
2131 }
2132 
2133 static void
intel_fill_fb_ggtt_view(struct i915_ggtt_view * view,const struct drm_framebuffer * fb,unsigned int rotation)2134 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2135 			const struct drm_framebuffer *fb,
2136 			unsigned int rotation)
2137 {
2138 	view->type = I915_GGTT_VIEW_NORMAL;
2139 	if (drm_rotation_90_or_270(rotation)) {
2140 		view->type = I915_GGTT_VIEW_ROTATED;
2141 		view->rotated = to_intel_framebuffer(fb)->rot_info;
2142 	}
2143 }
2144 
intel_cursor_alignment(const struct drm_i915_private * dev_priv)2145 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2146 {
2147 	if (IS_I830(dev_priv))
2148 		return 16 * 1024;
2149 	else if (IS_I85X(dev_priv))
2150 		return 256;
2151 	else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2152 		return 32;
2153 	else
2154 		return 4 * 1024;
2155 }
2156 
intel_linear_alignment(const struct drm_i915_private * dev_priv)2157 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2158 {
2159 	if (INTEL_GEN(dev_priv) >= 9)
2160 		return 256 * 1024;
2161 	else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2162 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2163 		return 128 * 1024;
2164 	else if (INTEL_GEN(dev_priv) >= 4)
2165 		return 4 * 1024;
2166 	else
2167 		return 0;
2168 }
2169 
intel_surf_alignment(const struct drm_framebuffer * fb,int color_plane)2170 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2171 					 int color_plane)
2172 {
2173 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2174 
2175 	/* AUX_DIST needs only 4K alignment */
2176 	if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) ||
2177 	    is_ccs_plane(fb, color_plane))
2178 		return 4096;
2179 
2180 	switch (fb->modifier) {
2181 	case DRM_FORMAT_MOD_LINEAR:
2182 		return intel_linear_alignment(dev_priv);
2183 	case I915_FORMAT_MOD_X_TILED:
2184 		if (INTEL_GEN(dev_priv) >= 9)
2185 			return 256 * 1024;
2186 		return 0;
2187 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2188 		if (is_semiplanar_uv_plane(fb, color_plane))
2189 			return intel_tile_row_size(fb, color_plane);
2190 		fallthrough;
2191 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2192 		return 16 * 1024;
2193 	case I915_FORMAT_MOD_Y_TILED_CCS:
2194 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2195 	case I915_FORMAT_MOD_Y_TILED:
2196 		if (INTEL_GEN(dev_priv) >= 12 &&
2197 		    is_semiplanar_uv_plane(fb, color_plane))
2198 			return intel_tile_row_size(fb, color_plane);
2199 		fallthrough;
2200 	case I915_FORMAT_MOD_Yf_TILED:
2201 		return 1 * 1024 * 1024;
2202 	default:
2203 		MISSING_CASE(fb->modifier);
2204 		return 0;
2205 	}
2206 }
2207 
intel_plane_uses_fence(const struct intel_plane_state * plane_state)2208 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2209 {
2210 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2211 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2212 
2213 	return INTEL_GEN(dev_priv) < 4 ||
2214 		(plane->has_fbc &&
2215 		 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2216 }
2217 
2218 struct i915_vma *
intel_pin_and_fence_fb_obj(struct drm_framebuffer * fb,const struct i915_ggtt_view * view,bool uses_fence,unsigned long * out_flags)2219 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2220 			   const struct i915_ggtt_view *view,
2221 			   bool uses_fence,
2222 			   unsigned long *out_flags)
2223 {
2224 	struct drm_device *dev = fb->dev;
2225 	struct drm_i915_private *dev_priv = to_i915(dev);
2226 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2227 	intel_wakeref_t wakeref;
2228 	struct i915_vma *vma;
2229 	unsigned int pinctl;
2230 	u32 alignment;
2231 
2232 	if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj)))
2233 		return ERR_PTR(-EINVAL);
2234 
2235 	alignment = intel_surf_alignment(fb, 0);
2236 	if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment)))
2237 		return ERR_PTR(-EINVAL);
2238 
2239 	/* Note that the w/a also requires 64 PTE of padding following the
2240 	 * bo. We currently fill all unused PTE with the shadow page and so
2241 	 * we should always have valid PTE following the scanout preventing
2242 	 * the VT-d warning.
2243 	 */
2244 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2245 		alignment = 256 * 1024;
2246 
2247 	/*
2248 	 * Global gtt pte registers are special registers which actually forward
2249 	 * writes to a chunk of system memory. Which means that there is no risk
2250 	 * that the register values disappear as soon as we call
2251 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2252 	 * pin/unpin/fence and not more.
2253 	 */
2254 	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2255 
2256 	atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2257 
2258 	/*
2259 	 * Valleyview is definitely limited to scanning out the first
2260 	 * 512MiB. Lets presume this behaviour was inherited from the
2261 	 * g4x display engine and that all earlier gen are similarly
2262 	 * limited. Testing suggests that it is a little more
2263 	 * complicated than this. For example, Cherryview appears quite
2264 	 * happy to scanout from anywhere within its global aperture.
2265 	 */
2266 	pinctl = 0;
2267 	if (HAS_GMCH(dev_priv))
2268 		pinctl |= PIN_MAPPABLE;
2269 
2270 	vma = i915_gem_object_pin_to_display_plane(obj,
2271 						   alignment, view, pinctl);
2272 	if (IS_ERR(vma))
2273 		goto err;
2274 
2275 	if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2276 		int ret;
2277 
2278 		/*
2279 		 * Install a fence for tiled scan-out. Pre-i965 always needs a
2280 		 * fence, whereas 965+ only requires a fence if using
2281 		 * framebuffer compression.  For simplicity, we always, when
2282 		 * possible, install a fence as the cost is not that onerous.
2283 		 *
2284 		 * If we fail to fence the tiled scanout, then either the
2285 		 * modeset will reject the change (which is highly unlikely as
2286 		 * the affected systems, all but one, do not have unmappable
2287 		 * space) or we will not be able to enable full powersaving
2288 		 * techniques (also likely not to apply due to various limits
2289 		 * FBC and the like impose on the size of the buffer, which
2290 		 * presumably we violated anyway with this unmappable buffer).
2291 		 * Anyway, it is presumably better to stumble onwards with
2292 		 * something and try to run the system in a "less than optimal"
2293 		 * mode that matches the user configuration.
2294 		 */
2295 		ret = i915_vma_pin_fence(vma);
2296 		if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2297 			i915_vma_unpin(vma);
2298 			vma = ERR_PTR(ret);
2299 			goto err;
2300 		}
2301 
2302 		if (ret == 0 && vma->fence)
2303 			*out_flags |= PLANE_HAS_FENCE;
2304 	}
2305 
2306 	i915_vma_get(vma);
2307 err:
2308 	atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2309 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2310 	return vma;
2311 }
2312 
intel_unpin_fb_vma(struct i915_vma * vma,unsigned long flags)2313 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2314 {
2315 	if (flags & PLANE_HAS_FENCE)
2316 		i915_vma_unpin_fence(vma);
2317 	i915_vma_unpin(vma);
2318 	i915_vma_put(vma);
2319 }
2320 
intel_fb_pitch(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)2321 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2322 			  unsigned int rotation)
2323 {
2324 	if (drm_rotation_90_or_270(rotation))
2325 		return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2326 	else
2327 		return fb->pitches[color_plane];
2328 }
2329 
2330 /*
2331  * Convert the x/y offsets into a linear offset.
2332  * Only valid with 0/180 degree rotation, which is fine since linear
2333  * offset is only used with linear buffers on pre-hsw and tiled buffers
2334  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2335  */
intel_fb_xy_to_linear(int x,int y,const struct intel_plane_state * state,int color_plane)2336 u32 intel_fb_xy_to_linear(int x, int y,
2337 			  const struct intel_plane_state *state,
2338 			  int color_plane)
2339 {
2340 	const struct drm_framebuffer *fb = state->hw.fb;
2341 	unsigned int cpp = fb->format->cpp[color_plane];
2342 	unsigned int pitch = state->color_plane[color_plane].stride;
2343 
2344 	return y * pitch + x * cpp;
2345 }
2346 
2347 /*
2348  * Add the x/y offsets derived from fb->offsets[] to the user
2349  * specified plane src x/y offsets. The resulting x/y offsets
2350  * specify the start of scanout from the beginning of the gtt mapping.
2351  */
intel_add_fb_offsets(int * x,int * y,const struct intel_plane_state * state,int color_plane)2352 void intel_add_fb_offsets(int *x, int *y,
2353 			  const struct intel_plane_state *state,
2354 			  int color_plane)
2355 
2356 {
2357 	*x += state->color_plane[color_plane].x;
2358 	*y += state->color_plane[color_plane].y;
2359 }
2360 
intel_adjust_tile_offset(int * x,int * y,unsigned int tile_width,unsigned int tile_height,unsigned int tile_size,unsigned int pitch_tiles,u32 old_offset,u32 new_offset)2361 static u32 intel_adjust_tile_offset(int *x, int *y,
2362 				    unsigned int tile_width,
2363 				    unsigned int tile_height,
2364 				    unsigned int tile_size,
2365 				    unsigned int pitch_tiles,
2366 				    u32 old_offset,
2367 				    u32 new_offset)
2368 {
2369 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2370 	unsigned int tiles;
2371 
2372 	WARN_ON(old_offset & (tile_size - 1));
2373 	WARN_ON(new_offset & (tile_size - 1));
2374 	WARN_ON(new_offset > old_offset);
2375 
2376 	tiles = (old_offset - new_offset) / tile_size;
2377 
2378 	*y += tiles / pitch_tiles * tile_height;
2379 	*x += tiles % pitch_tiles * tile_width;
2380 
2381 	/* minimize x in case it got needlessly big */
2382 	*y += *x / pitch_pixels * tile_height;
2383 	*x %= pitch_pixels;
2384 
2385 	return new_offset;
2386 }
2387 
is_surface_linear(const struct drm_framebuffer * fb,int color_plane)2388 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane)
2389 {
2390 	return fb->modifier == DRM_FORMAT_MOD_LINEAR ||
2391 	       is_gen12_ccs_plane(fb, color_plane);
2392 }
2393 
intel_adjust_aligned_offset(int * x,int * y,const struct drm_framebuffer * fb,int color_plane,unsigned int rotation,unsigned int pitch,u32 old_offset,u32 new_offset)2394 static u32 intel_adjust_aligned_offset(int *x, int *y,
2395 				       const struct drm_framebuffer *fb,
2396 				       int color_plane,
2397 				       unsigned int rotation,
2398 				       unsigned int pitch,
2399 				       u32 old_offset, u32 new_offset)
2400 {
2401 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2402 	unsigned int cpp = fb->format->cpp[color_plane];
2403 
2404 	drm_WARN_ON(&dev_priv->drm, new_offset > old_offset);
2405 
2406 	if (!is_surface_linear(fb, color_plane)) {
2407 		unsigned int tile_size, tile_width, tile_height;
2408 		unsigned int pitch_tiles;
2409 
2410 		tile_size = intel_tile_size(dev_priv);
2411 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2412 
2413 		if (drm_rotation_90_or_270(rotation)) {
2414 			pitch_tiles = pitch / tile_height;
2415 			swap(tile_width, tile_height);
2416 		} else {
2417 			pitch_tiles = pitch / (tile_width * cpp);
2418 		}
2419 
2420 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2421 					 tile_size, pitch_tiles,
2422 					 old_offset, new_offset);
2423 	} else {
2424 		old_offset += *y * pitch + *x * cpp;
2425 
2426 		*y = (old_offset - new_offset) / pitch;
2427 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2428 	}
2429 
2430 	return new_offset;
2431 }
2432 
2433 /*
2434  * Adjust the tile offset by moving the difference into
2435  * the x/y offsets.
2436  */
intel_plane_adjust_aligned_offset(int * x,int * y,const struct intel_plane_state * state,int color_plane,u32 old_offset,u32 new_offset)2437 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2438 					     const struct intel_plane_state *state,
2439 					     int color_plane,
2440 					     u32 old_offset, u32 new_offset)
2441 {
2442 	return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane,
2443 					   state->hw.rotation,
2444 					   state->color_plane[color_plane].stride,
2445 					   old_offset, new_offset);
2446 }
2447 
2448 /*
2449  * Computes the aligned offset to the base tile and adjusts
2450  * x, y. bytes per pixel is assumed to be a power-of-two.
2451  *
2452  * In the 90/270 rotated case, x and y are assumed
2453  * to be already rotated to match the rotated GTT view, and
2454  * pitch is the tile_height aligned framebuffer height.
2455  *
2456  * This function is used when computing the derived information
2457  * under intel_framebuffer, so using any of that information
2458  * here is not allowed. Anything under drm_framebuffer can be
2459  * used. This is why the user has to pass in the pitch since it
2460  * is specified in the rotated orientation.
2461  */
intel_compute_aligned_offset(struct drm_i915_private * dev_priv,int * x,int * y,const struct drm_framebuffer * fb,int color_plane,unsigned int pitch,unsigned int rotation,u32 alignment)2462 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2463 					int *x, int *y,
2464 					const struct drm_framebuffer *fb,
2465 					int color_plane,
2466 					unsigned int pitch,
2467 					unsigned int rotation,
2468 					u32 alignment)
2469 {
2470 	unsigned int cpp = fb->format->cpp[color_plane];
2471 	u32 offset, offset_aligned;
2472 
2473 	if (!is_surface_linear(fb, color_plane)) {
2474 		unsigned int tile_size, tile_width, tile_height;
2475 		unsigned int tile_rows, tiles, pitch_tiles;
2476 
2477 		tile_size = intel_tile_size(dev_priv);
2478 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2479 
2480 		if (drm_rotation_90_or_270(rotation)) {
2481 			pitch_tiles = pitch / tile_height;
2482 			swap(tile_width, tile_height);
2483 		} else {
2484 			pitch_tiles = pitch / (tile_width * cpp);
2485 		}
2486 
2487 		tile_rows = *y / tile_height;
2488 		*y %= tile_height;
2489 
2490 		tiles = *x / tile_width;
2491 		*x %= tile_width;
2492 
2493 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2494 
2495 		offset_aligned = offset;
2496 		if (alignment)
2497 			offset_aligned = rounddown(offset_aligned, alignment);
2498 
2499 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2500 					 tile_size, pitch_tiles,
2501 					 offset, offset_aligned);
2502 	} else {
2503 		offset = *y * pitch + *x * cpp;
2504 		offset_aligned = offset;
2505 		if (alignment) {
2506 			offset_aligned = rounddown(offset_aligned, alignment);
2507 			*y = (offset % alignment) / pitch;
2508 			*x = ((offset % alignment) - *y * pitch) / cpp;
2509 		} else {
2510 			*y = *x = 0;
2511 		}
2512 	}
2513 
2514 	return offset_aligned;
2515 }
2516 
intel_plane_compute_aligned_offset(int * x,int * y,const struct intel_plane_state * state,int color_plane)2517 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2518 					      const struct intel_plane_state *state,
2519 					      int color_plane)
2520 {
2521 	struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane);
2522 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2523 	const struct drm_framebuffer *fb = state->hw.fb;
2524 	unsigned int rotation = state->hw.rotation;
2525 	int pitch = state->color_plane[color_plane].stride;
2526 	u32 alignment;
2527 
2528 	if (intel_plane->id == PLANE_CURSOR)
2529 		alignment = intel_cursor_alignment(dev_priv);
2530 	else
2531 		alignment = intel_surf_alignment(fb, color_plane);
2532 
2533 	return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2534 					    pitch, rotation, alignment);
2535 }
2536 
2537 /* Convert the fb->offset[] into x/y offsets */
intel_fb_offset_to_xy(int * x,int * y,const struct drm_framebuffer * fb,int color_plane)2538 static int intel_fb_offset_to_xy(int *x, int *y,
2539 				 const struct drm_framebuffer *fb,
2540 				 int color_plane)
2541 {
2542 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2543 	unsigned int height;
2544 	u32 alignment;
2545 
2546 	if (INTEL_GEN(dev_priv) >= 12 &&
2547 	    is_semiplanar_uv_plane(fb, color_plane))
2548 		alignment = intel_tile_row_size(fb, color_plane);
2549 	else if (fb->modifier != DRM_FORMAT_MOD_LINEAR)
2550 		alignment = intel_tile_size(dev_priv);
2551 	else
2552 		alignment = 0;
2553 
2554 	if (alignment != 0 && fb->offsets[color_plane] % alignment) {
2555 		drm_dbg_kms(&dev_priv->drm,
2556 			    "Misaligned offset 0x%08x for color plane %d\n",
2557 			    fb->offsets[color_plane], color_plane);
2558 		return -EINVAL;
2559 	}
2560 
2561 	height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2562 	height = ALIGN(height, intel_tile_height(fb, color_plane));
2563 
2564 	/* Catch potential overflows early */
2565 	if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2566 			    fb->offsets[color_plane])) {
2567 		drm_dbg_kms(&dev_priv->drm,
2568 			    "Bad offset 0x%08x or pitch %d for color plane %d\n",
2569 			    fb->offsets[color_plane], fb->pitches[color_plane],
2570 			    color_plane);
2571 		return -ERANGE;
2572 	}
2573 
2574 	*x = 0;
2575 	*y = 0;
2576 
2577 	intel_adjust_aligned_offset(x, y,
2578 				    fb, color_plane, DRM_MODE_ROTATE_0,
2579 				    fb->pitches[color_plane],
2580 				    fb->offsets[color_plane], 0);
2581 
2582 	return 0;
2583 }
2584 
intel_fb_modifier_to_tiling(u64 fb_modifier)2585 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2586 {
2587 	switch (fb_modifier) {
2588 	case I915_FORMAT_MOD_X_TILED:
2589 		return I915_TILING_X;
2590 	case I915_FORMAT_MOD_Y_TILED:
2591 	case I915_FORMAT_MOD_Y_TILED_CCS:
2592 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2593 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2594 		return I915_TILING_Y;
2595 	default:
2596 		return I915_TILING_NONE;
2597 	}
2598 }
2599 
2600 /*
2601  * From the Sky Lake PRM:
2602  * "The Color Control Surface (CCS) contains the compression status of
2603  *  the cache-line pairs. The compression state of the cache-line pair
2604  *  is specified by 2 bits in the CCS. Each CCS cache-line represents
2605  *  an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2606  *  cache-line-pairs. CCS is always Y tiled."
2607  *
2608  * Since cache line pairs refers to horizontally adjacent cache lines,
2609  * each cache line in the CCS corresponds to an area of 32x16 cache
2610  * lines on the main surface. Since each pixel is 4 bytes, this gives
2611  * us a ratio of one byte in the CCS for each 8x16 pixels in the
2612  * main surface.
2613  */
2614 static const struct drm_format_info skl_ccs_formats[] = {
2615 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2616 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2617 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2618 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2619 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2620 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2621 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2622 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2623 };
2624 
2625 /*
2626  * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the
2627  * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles
2628  * in the main surface. With 4 byte pixels and each Y-tile having dimensions of
2629  * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in
2630  * the main surface.
2631  */
2632 static const struct drm_format_info gen12_ccs_formats[] = {
2633 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2634 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2635 	  .hsub = 1, .vsub = 1, },
2636 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2637 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2638 	  .hsub = 1, .vsub = 1, },
2639 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2640 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2641 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2642 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2643 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2644 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2645 	{ .format = DRM_FORMAT_YUYV, .num_planes = 2,
2646 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2647 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2648 	{ .format = DRM_FORMAT_YVYU, .num_planes = 2,
2649 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2650 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2651 	{ .format = DRM_FORMAT_UYVY, .num_planes = 2,
2652 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2653 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2654 	{ .format = DRM_FORMAT_VYUY, .num_planes = 2,
2655 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2656 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2657 	{ .format = DRM_FORMAT_NV12, .num_planes = 4,
2658 	  .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 },
2659 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2660 	{ .format = DRM_FORMAT_P010, .num_planes = 4,
2661 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2662 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2663 	{ .format = DRM_FORMAT_P012, .num_planes = 4,
2664 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2665 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2666 	{ .format = DRM_FORMAT_P016, .num_planes = 4,
2667 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2668 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2669 };
2670 
2671 static const struct drm_format_info *
lookup_format_info(const struct drm_format_info formats[],int num_formats,u32 format)2672 lookup_format_info(const struct drm_format_info formats[],
2673 		   int num_formats, u32 format)
2674 {
2675 	int i;
2676 
2677 	for (i = 0; i < num_formats; i++) {
2678 		if (formats[i].format == format)
2679 			return &formats[i];
2680 	}
2681 
2682 	return NULL;
2683 }
2684 
2685 static const struct drm_format_info *
intel_get_format_info(const struct drm_mode_fb_cmd2 * cmd)2686 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2687 {
2688 	switch (cmd->modifier[0]) {
2689 	case I915_FORMAT_MOD_Y_TILED_CCS:
2690 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2691 		return lookup_format_info(skl_ccs_formats,
2692 					  ARRAY_SIZE(skl_ccs_formats),
2693 					  cmd->pixel_format);
2694 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2695 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2696 		return lookup_format_info(gen12_ccs_formats,
2697 					  ARRAY_SIZE(gen12_ccs_formats),
2698 					  cmd->pixel_format);
2699 	default:
2700 		return NULL;
2701 	}
2702 }
2703 
is_ccs_modifier(u64 modifier)2704 bool is_ccs_modifier(u64 modifier)
2705 {
2706 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
2707 	       modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
2708 	       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2709 	       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2710 }
2711 
gen12_ccs_aux_stride(struct drm_framebuffer * fb,int ccs_plane)2712 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane)
2713 {
2714 	return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)],
2715 			    512) * 64;
2716 }
2717 
intel_plane_fb_max_stride(struct drm_i915_private * dev_priv,u32 pixel_format,u64 modifier)2718 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2719 			      u32 pixel_format, u64 modifier)
2720 {
2721 	struct intel_crtc *crtc;
2722 	struct intel_plane *plane;
2723 
2724 	/*
2725 	 * We assume the primary plane for pipe A has
2726 	 * the highest stride limits of them all,
2727 	 * if in case pipe A is disabled, use the first pipe from pipe_mask.
2728 	 */
2729 	crtc = intel_get_first_crtc(dev_priv);
2730 	if (!crtc)
2731 		return 0;
2732 
2733 	plane = to_intel_plane(crtc->base.primary);
2734 
2735 	return plane->max_stride(plane, pixel_format, modifier,
2736 				 DRM_MODE_ROTATE_0);
2737 }
2738 
2739 static
intel_fb_max_stride(struct drm_i915_private * dev_priv,u32 pixel_format,u64 modifier)2740 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2741 			u32 pixel_format, u64 modifier)
2742 {
2743 	/*
2744 	 * Arbitrary limit for gen4+ chosen to match the
2745 	 * render engine max stride.
2746 	 *
2747 	 * The new CCS hash mode makes remapping impossible
2748 	 */
2749 	if (!is_ccs_modifier(modifier)) {
2750 		if (INTEL_GEN(dev_priv) >= 7)
2751 			return 256*1024;
2752 		else if (INTEL_GEN(dev_priv) >= 4)
2753 			return 128*1024;
2754 	}
2755 
2756 	return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2757 }
2758 
2759 static u32
intel_fb_stride_alignment(const struct drm_framebuffer * fb,int color_plane)2760 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2761 {
2762 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2763 	u32 tile_width;
2764 
2765 	if (is_surface_linear(fb, color_plane)) {
2766 		u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2767 							   fb->format->format,
2768 							   fb->modifier);
2769 
2770 		/*
2771 		 * To make remapping with linear generally feasible
2772 		 * we need the stride to be page aligned.
2773 		 */
2774 		if (fb->pitches[color_plane] > max_stride &&
2775 		    !is_ccs_modifier(fb->modifier))
2776 			return intel_tile_size(dev_priv);
2777 		else
2778 			return 64;
2779 	}
2780 
2781 	tile_width = intel_tile_width_bytes(fb, color_plane);
2782 	if (is_ccs_modifier(fb->modifier)) {
2783 		/*
2784 		 * Display WA #0531: skl,bxt,kbl,glk
2785 		 *
2786 		 * Render decompression and plane width > 3840
2787 		 * combined with horizontal panning requires the
2788 		 * plane stride to be a multiple of 4. We'll just
2789 		 * require the entire fb to accommodate that to avoid
2790 		 * potential runtime errors at plane configuration time.
2791 		 */
2792 		if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840)
2793 			tile_width *= 4;
2794 		/*
2795 		 * The main surface pitch must be padded to a multiple of four
2796 		 * tile widths.
2797 		 */
2798 		else if (INTEL_GEN(dev_priv) >= 12)
2799 			tile_width *= 4;
2800 	}
2801 	return tile_width;
2802 }
2803 
intel_plane_can_remap(const struct intel_plane_state * plane_state)2804 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2805 {
2806 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2807 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2808 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2809 	int i;
2810 
2811 	/* We don't want to deal with remapping with cursors */
2812 	if (plane->id == PLANE_CURSOR)
2813 		return false;
2814 
2815 	/*
2816 	 * The display engine limits already match/exceed the
2817 	 * render engine limits, so not much point in remapping.
2818 	 * Would also need to deal with the fence POT alignment
2819 	 * and gen2 2KiB GTT tile size.
2820 	 */
2821 	if (INTEL_GEN(dev_priv) < 4)
2822 		return false;
2823 
2824 	/*
2825 	 * The new CCS hash mode isn't compatible with remapping as
2826 	 * the virtual address of the pages affects the compressed data.
2827 	 */
2828 	if (is_ccs_modifier(fb->modifier))
2829 		return false;
2830 
2831 	/* Linear needs a page aligned stride for remapping */
2832 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2833 		unsigned int alignment = intel_tile_size(dev_priv) - 1;
2834 
2835 		for (i = 0; i < fb->format->num_planes; i++) {
2836 			if (fb->pitches[i] & alignment)
2837 				return false;
2838 		}
2839 	}
2840 
2841 	return true;
2842 }
2843 
intel_plane_needs_remap(const struct intel_plane_state * plane_state)2844 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2845 {
2846 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2847 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2848 	unsigned int rotation = plane_state->hw.rotation;
2849 	u32 stride, max_stride;
2850 
2851 	/*
2852 	 * No remapping for invisible planes since we don't have
2853 	 * an actual source viewport to remap.
2854 	 */
2855 	if (!plane_state->uapi.visible)
2856 		return false;
2857 
2858 	if (!intel_plane_can_remap(plane_state))
2859 		return false;
2860 
2861 	/*
2862 	 * FIXME: aux plane limits on gen9+ are
2863 	 * unclear in Bspec, for now no checking.
2864 	 */
2865 	stride = intel_fb_pitch(fb, 0, rotation);
2866 	max_stride = plane->max_stride(plane, fb->format->format,
2867 				       fb->modifier, rotation);
2868 
2869 	return stride > max_stride;
2870 }
2871 
2872 static void
intel_fb_plane_get_subsampling(int * hsub,int * vsub,const struct drm_framebuffer * fb,int color_plane)2873 intel_fb_plane_get_subsampling(int *hsub, int *vsub,
2874 			       const struct drm_framebuffer *fb,
2875 			       int color_plane)
2876 {
2877 	int main_plane;
2878 
2879 	if (color_plane == 0) {
2880 		*hsub = 1;
2881 		*vsub = 1;
2882 
2883 		return;
2884 	}
2885 
2886 	/*
2887 	 * TODO: Deduct the subsampling from the char block for all CCS
2888 	 * formats and planes.
2889 	 */
2890 	if (!is_gen12_ccs_plane(fb, color_plane)) {
2891 		*hsub = fb->format->hsub;
2892 		*vsub = fb->format->vsub;
2893 
2894 		return;
2895 	}
2896 
2897 	main_plane = ccs_to_main_plane(fb, color_plane);
2898 	*hsub = drm_format_info_block_width(fb->format, color_plane) /
2899 		drm_format_info_block_width(fb->format, main_plane);
2900 
2901 	/*
2902 	 * The min stride check in the core framebuffer_check() function
2903 	 * assumes that format->hsub applies to every plane except for the
2904 	 * first plane. That's incorrect for the CCS AUX plane of the first
2905 	 * plane, but for the above check to pass we must define the block
2906 	 * width with that subsampling applied to it. Adjust the width here
2907 	 * accordingly, so we can calculate the actual subsampling factor.
2908 	 */
2909 	if (main_plane == 0)
2910 		*hsub *= fb->format->hsub;
2911 
2912 	*vsub = 32;
2913 }
2914 static int
intel_fb_check_ccs_xy(struct drm_framebuffer * fb,int ccs_plane,int x,int y)2915 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y)
2916 {
2917 	struct drm_i915_private *i915 = to_i915(fb->dev);
2918 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2919 	int main_plane;
2920 	int hsub, vsub;
2921 	int tile_width, tile_height;
2922 	int ccs_x, ccs_y;
2923 	int main_x, main_y;
2924 
2925 	if (!is_ccs_plane(fb, ccs_plane))
2926 		return 0;
2927 
2928 	intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height);
2929 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
2930 
2931 	tile_width *= hsub;
2932 	tile_height *= vsub;
2933 
2934 	ccs_x = (x * hsub) % tile_width;
2935 	ccs_y = (y * vsub) % tile_height;
2936 
2937 	main_plane = ccs_to_main_plane(fb, ccs_plane);
2938 	main_x = intel_fb->normal[main_plane].x % tile_width;
2939 	main_y = intel_fb->normal[main_plane].y % tile_height;
2940 
2941 	/*
2942 	 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2943 	 * x/y offsets must match between CCS and the main surface.
2944 	 */
2945 	if (main_x != ccs_x || main_y != ccs_y) {
2946 		drm_dbg_kms(&i915->drm,
2947 			      "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2948 			      main_x, main_y,
2949 			      ccs_x, ccs_y,
2950 			      intel_fb->normal[main_plane].x,
2951 			      intel_fb->normal[main_plane].y,
2952 			      x, y);
2953 		return -EINVAL;
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 static void
intel_fb_plane_dims(int * w,int * h,struct drm_framebuffer * fb,int color_plane)2960 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane)
2961 {
2962 	int main_plane = is_ccs_plane(fb, color_plane) ?
2963 			 ccs_to_main_plane(fb, color_plane) : 0;
2964 	int main_hsub, main_vsub;
2965 	int hsub, vsub;
2966 
2967 	intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane);
2968 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane);
2969 	*w = fb->width / main_hsub / hsub;
2970 	*h = fb->height / main_vsub / vsub;
2971 }
2972 
2973 /*
2974  * Setup the rotated view for an FB plane and return the size the GTT mapping
2975  * requires for this view.
2976  */
2977 static u32
setup_fb_rotation(int plane,const struct intel_remapped_plane_info * plane_info,u32 gtt_offset_rotated,int x,int y,unsigned int width,unsigned int height,unsigned int tile_size,unsigned int tile_width,unsigned int tile_height,struct drm_framebuffer * fb)2978 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info,
2979 		  u32 gtt_offset_rotated, int x, int y,
2980 		  unsigned int width, unsigned int height,
2981 		  unsigned int tile_size,
2982 		  unsigned int tile_width, unsigned int tile_height,
2983 		  struct drm_framebuffer *fb)
2984 {
2985 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2986 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2987 	unsigned int pitch_tiles;
2988 	struct drm_rect r;
2989 
2990 	/* Y or Yf modifiers required for 90/270 rotation */
2991 	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
2992 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
2993 		return 0;
2994 
2995 	if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane)))
2996 		return 0;
2997 
2998 	rot_info->plane[plane] = *plane_info;
2999 
3000 	intel_fb->rotated[plane].pitch = plane_info->height * tile_height;
3001 
3002 	/* rotate the x/y offsets to match the GTT view */
3003 	drm_rect_init(&r, x, y, width, height);
3004 	drm_rect_rotate(&r,
3005 			plane_info->width * tile_width,
3006 			plane_info->height * tile_height,
3007 			DRM_MODE_ROTATE_270);
3008 	x = r.x1;
3009 	y = r.y1;
3010 
3011 	/* rotate the tile dimensions to match the GTT view */
3012 	pitch_tiles = intel_fb->rotated[plane].pitch / tile_height;
3013 	swap(tile_width, tile_height);
3014 
3015 	/*
3016 	 * We only keep the x/y offsets, so push all of the
3017 	 * gtt offset into the x/y offsets.
3018 	 */
3019 	intel_adjust_tile_offset(&x, &y,
3020 				 tile_width, tile_height,
3021 				 tile_size, pitch_tiles,
3022 				 gtt_offset_rotated * tile_size, 0);
3023 
3024 	/*
3025 	 * First pixel of the framebuffer from
3026 	 * the start of the rotated gtt mapping.
3027 	 */
3028 	intel_fb->rotated[plane].x = x;
3029 	intel_fb->rotated[plane].y = y;
3030 
3031 	return plane_info->width * plane_info->height;
3032 }
3033 
3034 static int
intel_fill_fb_info(struct drm_i915_private * dev_priv,struct drm_framebuffer * fb)3035 intel_fill_fb_info(struct drm_i915_private *dev_priv,
3036 		   struct drm_framebuffer *fb)
3037 {
3038 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3039 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3040 	u32 gtt_offset_rotated = 0;
3041 	unsigned int max_size = 0;
3042 	int i, num_planes = fb->format->num_planes;
3043 	unsigned int tile_size = intel_tile_size(dev_priv);
3044 
3045 	for (i = 0; i < num_planes; i++) {
3046 		unsigned int width, height;
3047 		unsigned int cpp, size;
3048 		u32 offset;
3049 		int x, y;
3050 		int ret;
3051 
3052 		cpp = fb->format->cpp[i];
3053 		intel_fb_plane_dims(&width, &height, fb, i);
3054 
3055 		ret = intel_fb_offset_to_xy(&x, &y, fb, i);
3056 		if (ret) {
3057 			drm_dbg_kms(&dev_priv->drm,
3058 				    "bad fb plane %d offset: 0x%x\n",
3059 				    i, fb->offsets[i]);
3060 			return ret;
3061 		}
3062 
3063 		ret = intel_fb_check_ccs_xy(fb, i, x, y);
3064 		if (ret)
3065 			return ret;
3066 
3067 		/*
3068 		 * The fence (if used) is aligned to the start of the object
3069 		 * so having the framebuffer wrap around across the edge of the
3070 		 * fenced region doesn't really work. We have no API to configure
3071 		 * the fence start offset within the object (nor could we probably
3072 		 * on gen2/3). So it's just easier if we just require that the
3073 		 * fb layout agrees with the fence layout. We already check that the
3074 		 * fb stride matches the fence stride elsewhere.
3075 		 */
3076 		if (i == 0 && i915_gem_object_is_tiled(obj) &&
3077 		    (x + width) * cpp > fb->pitches[i]) {
3078 			drm_dbg_kms(&dev_priv->drm,
3079 				    "bad fb plane %d offset: 0x%x\n",
3080 				     i, fb->offsets[i]);
3081 			return -EINVAL;
3082 		}
3083 
3084 		/*
3085 		 * First pixel of the framebuffer from
3086 		 * the start of the normal gtt mapping.
3087 		 */
3088 		intel_fb->normal[i].x = x;
3089 		intel_fb->normal[i].y = y;
3090 
3091 		offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
3092 						      fb->pitches[i],
3093 						      DRM_MODE_ROTATE_0,
3094 						      tile_size);
3095 		offset /= tile_size;
3096 
3097 		if (!is_surface_linear(fb, i)) {
3098 			struct intel_remapped_plane_info plane_info;
3099 			unsigned int tile_width, tile_height;
3100 
3101 			intel_tile_dims(fb, i, &tile_width, &tile_height);
3102 
3103 			plane_info.offset = offset;
3104 			plane_info.stride = DIV_ROUND_UP(fb->pitches[i],
3105 							 tile_width * cpp);
3106 			plane_info.width = DIV_ROUND_UP(x + width, tile_width);
3107 			plane_info.height = DIV_ROUND_UP(y + height,
3108 							 tile_height);
3109 
3110 			/* how many tiles does this plane need */
3111 			size = plane_info.stride * plane_info.height;
3112 			/*
3113 			 * If the plane isn't horizontally tile aligned,
3114 			 * we need one more tile.
3115 			 */
3116 			if (x != 0)
3117 				size++;
3118 
3119 			gtt_offset_rotated +=
3120 				setup_fb_rotation(i, &plane_info,
3121 						  gtt_offset_rotated,
3122 						  x, y, width, height,
3123 						  tile_size,
3124 						  tile_width, tile_height,
3125 						  fb);
3126 		} else {
3127 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
3128 					    x * cpp, tile_size);
3129 		}
3130 
3131 		/* how many tiles in total needed in the bo */
3132 		max_size = max(max_size, offset + size);
3133 	}
3134 
3135 	if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
3136 		drm_dbg_kms(&dev_priv->drm,
3137 			    "fb too big for bo (need %llu bytes, have %zu bytes)\n",
3138 			    mul_u32_u32(max_size, tile_size), obj->base.size);
3139 		return -EINVAL;
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 static void
intel_plane_remap_gtt(struct intel_plane_state * plane_state)3146 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
3147 {
3148 	struct drm_i915_private *dev_priv =
3149 		to_i915(plane_state->uapi.plane->dev);
3150 	struct drm_framebuffer *fb = plane_state->hw.fb;
3151 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3152 	struct intel_rotation_info *info = &plane_state->view.rotated;
3153 	unsigned int rotation = plane_state->hw.rotation;
3154 	int i, num_planes = fb->format->num_planes;
3155 	unsigned int tile_size = intel_tile_size(dev_priv);
3156 	unsigned int src_x, src_y;
3157 	unsigned int src_w, src_h;
3158 	u32 gtt_offset = 0;
3159 
3160 	memset(&plane_state->view, 0, sizeof(plane_state->view));
3161 	plane_state->view.type = drm_rotation_90_or_270(rotation) ?
3162 		I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
3163 
3164 	src_x = plane_state->uapi.src.x1 >> 16;
3165 	src_y = plane_state->uapi.src.y1 >> 16;
3166 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
3167 	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
3168 
3169 	drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier));
3170 
3171 	/* Make src coordinates relative to the viewport */
3172 	drm_rect_translate(&plane_state->uapi.src,
3173 			   -(src_x << 16), -(src_y << 16));
3174 
3175 	/* Rotate src coordinates to match rotated GTT view */
3176 	if (drm_rotation_90_or_270(rotation))
3177 		drm_rect_rotate(&plane_state->uapi.src,
3178 				src_w << 16, src_h << 16,
3179 				DRM_MODE_ROTATE_270);
3180 
3181 	for (i = 0; i < num_planes; i++) {
3182 		unsigned int hsub = i ? fb->format->hsub : 1;
3183 		unsigned int vsub = i ? fb->format->vsub : 1;
3184 		unsigned int cpp = fb->format->cpp[i];
3185 		unsigned int tile_width, tile_height;
3186 		unsigned int width, height;
3187 		unsigned int pitch_tiles;
3188 		unsigned int x, y;
3189 		u32 offset;
3190 
3191 		intel_tile_dims(fb, i, &tile_width, &tile_height);
3192 
3193 		x = src_x / hsub;
3194 		y = src_y / vsub;
3195 		width = src_w / hsub;
3196 		height = src_h / vsub;
3197 
3198 		/*
3199 		 * First pixel of the src viewport from the
3200 		 * start of the normal gtt mapping.
3201 		 */
3202 		x += intel_fb->normal[i].x;
3203 		y += intel_fb->normal[i].y;
3204 
3205 		offset = intel_compute_aligned_offset(dev_priv, &x, &y,
3206 						      fb, i, fb->pitches[i],
3207 						      DRM_MODE_ROTATE_0, tile_size);
3208 		offset /= tile_size;
3209 
3210 		drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane));
3211 		info->plane[i].offset = offset;
3212 		info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
3213 						     tile_width * cpp);
3214 		info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
3215 		info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
3216 
3217 		if (drm_rotation_90_or_270(rotation)) {
3218 			struct drm_rect r;
3219 
3220 			/* rotate the x/y offsets to match the GTT view */
3221 			drm_rect_init(&r, x, y, width, height);
3222 			drm_rect_rotate(&r,
3223 					info->plane[i].width * tile_width,
3224 					info->plane[i].height * tile_height,
3225 					DRM_MODE_ROTATE_270);
3226 			x = r.x1;
3227 			y = r.y1;
3228 
3229 			pitch_tiles = info->plane[i].height;
3230 			plane_state->color_plane[i].stride = pitch_tiles * tile_height;
3231 
3232 			/* rotate the tile dimensions to match the GTT view */
3233 			swap(tile_width, tile_height);
3234 		} else {
3235 			pitch_tiles = info->plane[i].width;
3236 			plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
3237 		}
3238 
3239 		/*
3240 		 * We only keep the x/y offsets, so push all of the
3241 		 * gtt offset into the x/y offsets.
3242 		 */
3243 		intel_adjust_tile_offset(&x, &y,
3244 					 tile_width, tile_height,
3245 					 tile_size, pitch_tiles,
3246 					 gtt_offset * tile_size, 0);
3247 
3248 		gtt_offset += info->plane[i].width * info->plane[i].height;
3249 
3250 		plane_state->color_plane[i].offset = 0;
3251 		plane_state->color_plane[i].x = x;
3252 		plane_state->color_plane[i].y = y;
3253 	}
3254 }
3255 
3256 static int
intel_plane_compute_gtt(struct intel_plane_state * plane_state)3257 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
3258 {
3259 	const struct intel_framebuffer *fb =
3260 		to_intel_framebuffer(plane_state->hw.fb);
3261 	unsigned int rotation = plane_state->hw.rotation;
3262 	int i, num_planes;
3263 
3264 	if (!fb)
3265 		return 0;
3266 
3267 	num_planes = fb->base.format->num_planes;
3268 
3269 	if (intel_plane_needs_remap(plane_state)) {
3270 		intel_plane_remap_gtt(plane_state);
3271 
3272 		/*
3273 		 * Sometimes even remapping can't overcome
3274 		 * the stride limitations :( Can happen with
3275 		 * big plane sizes and suitably misaligned
3276 		 * offsets.
3277 		 */
3278 		return intel_plane_check_stride(plane_state);
3279 	}
3280 
3281 	intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
3282 
3283 	for (i = 0; i < num_planes; i++) {
3284 		plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
3285 		plane_state->color_plane[i].offset = 0;
3286 
3287 		if (drm_rotation_90_or_270(rotation)) {
3288 			plane_state->color_plane[i].x = fb->rotated[i].x;
3289 			plane_state->color_plane[i].y = fb->rotated[i].y;
3290 		} else {
3291 			plane_state->color_plane[i].x = fb->normal[i].x;
3292 			plane_state->color_plane[i].y = fb->normal[i].y;
3293 		}
3294 	}
3295 
3296 	/* Rotate src coordinates to match rotated GTT view */
3297 	if (drm_rotation_90_or_270(rotation))
3298 		drm_rect_rotate(&plane_state->uapi.src,
3299 				fb->base.width << 16, fb->base.height << 16,
3300 				DRM_MODE_ROTATE_270);
3301 
3302 	return intel_plane_check_stride(plane_state);
3303 }
3304 
i9xx_format_to_fourcc(int format)3305 static int i9xx_format_to_fourcc(int format)
3306 {
3307 	switch (format) {
3308 	case DISPPLANE_8BPP:
3309 		return DRM_FORMAT_C8;
3310 	case DISPPLANE_BGRA555:
3311 		return DRM_FORMAT_ARGB1555;
3312 	case DISPPLANE_BGRX555:
3313 		return DRM_FORMAT_XRGB1555;
3314 	case DISPPLANE_BGRX565:
3315 		return DRM_FORMAT_RGB565;
3316 	default:
3317 	case DISPPLANE_BGRX888:
3318 		return DRM_FORMAT_XRGB8888;
3319 	case DISPPLANE_RGBX888:
3320 		return DRM_FORMAT_XBGR8888;
3321 	case DISPPLANE_BGRA888:
3322 		return DRM_FORMAT_ARGB8888;
3323 	case DISPPLANE_RGBA888:
3324 		return DRM_FORMAT_ABGR8888;
3325 	case DISPPLANE_BGRX101010:
3326 		return DRM_FORMAT_XRGB2101010;
3327 	case DISPPLANE_RGBX101010:
3328 		return DRM_FORMAT_XBGR2101010;
3329 	case DISPPLANE_BGRA101010:
3330 		return DRM_FORMAT_ARGB2101010;
3331 	case DISPPLANE_RGBA101010:
3332 		return DRM_FORMAT_ABGR2101010;
3333 	case DISPPLANE_RGBX161616:
3334 		return DRM_FORMAT_XBGR16161616F;
3335 	}
3336 }
3337 
skl_format_to_fourcc(int format,bool rgb_order,bool alpha)3338 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
3339 {
3340 	switch (format) {
3341 	case PLANE_CTL_FORMAT_RGB_565:
3342 		return DRM_FORMAT_RGB565;
3343 	case PLANE_CTL_FORMAT_NV12:
3344 		return DRM_FORMAT_NV12;
3345 	case PLANE_CTL_FORMAT_XYUV:
3346 		return DRM_FORMAT_XYUV8888;
3347 	case PLANE_CTL_FORMAT_P010:
3348 		return DRM_FORMAT_P010;
3349 	case PLANE_CTL_FORMAT_P012:
3350 		return DRM_FORMAT_P012;
3351 	case PLANE_CTL_FORMAT_P016:
3352 		return DRM_FORMAT_P016;
3353 	case PLANE_CTL_FORMAT_Y210:
3354 		return DRM_FORMAT_Y210;
3355 	case PLANE_CTL_FORMAT_Y212:
3356 		return DRM_FORMAT_Y212;
3357 	case PLANE_CTL_FORMAT_Y216:
3358 		return DRM_FORMAT_Y216;
3359 	case PLANE_CTL_FORMAT_Y410:
3360 		return DRM_FORMAT_XVYU2101010;
3361 	case PLANE_CTL_FORMAT_Y412:
3362 		return DRM_FORMAT_XVYU12_16161616;
3363 	case PLANE_CTL_FORMAT_Y416:
3364 		return DRM_FORMAT_XVYU16161616;
3365 	default:
3366 	case PLANE_CTL_FORMAT_XRGB_8888:
3367 		if (rgb_order) {
3368 			if (alpha)
3369 				return DRM_FORMAT_ABGR8888;
3370 			else
3371 				return DRM_FORMAT_XBGR8888;
3372 		} else {
3373 			if (alpha)
3374 				return DRM_FORMAT_ARGB8888;
3375 			else
3376 				return DRM_FORMAT_XRGB8888;
3377 		}
3378 	case PLANE_CTL_FORMAT_XRGB_2101010:
3379 		if (rgb_order) {
3380 			if (alpha)
3381 				return DRM_FORMAT_ABGR2101010;
3382 			else
3383 				return DRM_FORMAT_XBGR2101010;
3384 		} else {
3385 			if (alpha)
3386 				return DRM_FORMAT_ARGB2101010;
3387 			else
3388 				return DRM_FORMAT_XRGB2101010;
3389 		}
3390 	case PLANE_CTL_FORMAT_XRGB_16161616F:
3391 		if (rgb_order) {
3392 			if (alpha)
3393 				return DRM_FORMAT_ABGR16161616F;
3394 			else
3395 				return DRM_FORMAT_XBGR16161616F;
3396 		} else {
3397 			if (alpha)
3398 				return DRM_FORMAT_ARGB16161616F;
3399 			else
3400 				return DRM_FORMAT_XRGB16161616F;
3401 		}
3402 	}
3403 }
3404 
3405 static struct i915_vma *
initial_plane_vma(struct drm_i915_private * i915,struct intel_initial_plane_config * plane_config)3406 initial_plane_vma(struct drm_i915_private *i915,
3407 		  struct intel_initial_plane_config *plane_config)
3408 {
3409 	struct drm_i915_gem_object *obj;
3410 	struct i915_vma *vma;
3411 	u32 base, size;
3412 
3413 	if (plane_config->size == 0)
3414 		return NULL;
3415 
3416 	base = round_down(plane_config->base,
3417 			  I915_GTT_MIN_ALIGNMENT);
3418 	size = round_up(plane_config->base + plane_config->size,
3419 			I915_GTT_MIN_ALIGNMENT);
3420 	size -= base;
3421 
3422 	/*
3423 	 * If the FB is too big, just don't use it since fbdev is not very
3424 	 * important and we should probably use that space with FBC or other
3425 	 * features.
3426 	 */
3427 	if (size * 2 > i915->stolen_usable_size)
3428 		return NULL;
3429 
3430 	obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size);
3431 	if (IS_ERR(obj))
3432 		return NULL;
3433 
3434 	/*
3435 	 * Mark it WT ahead of time to avoid changing the
3436 	 * cache_level during fbdev initialization. The
3437 	 * unbind there would get stuck waiting for rcu.
3438 	 */
3439 	i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ?
3440 					    I915_CACHE_WT : I915_CACHE_NONE);
3441 
3442 	switch (plane_config->tiling) {
3443 	case I915_TILING_NONE:
3444 		break;
3445 	case I915_TILING_X:
3446 	case I915_TILING_Y:
3447 		obj->tiling_and_stride =
3448 			plane_config->fb->base.pitches[0] |
3449 			plane_config->tiling;
3450 		break;
3451 	default:
3452 		MISSING_CASE(plane_config->tiling);
3453 		goto err_obj;
3454 	}
3455 
3456 	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
3457 	if (IS_ERR(vma))
3458 		goto err_obj;
3459 
3460 	if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base))
3461 		goto err_obj;
3462 
3463 	if (i915_gem_object_is_tiled(obj) &&
3464 	    !i915_vma_is_map_and_fenceable(vma))
3465 		goto err_obj;
3466 
3467 	return vma;
3468 
3469 err_obj:
3470 	i915_gem_object_put(obj);
3471 	return NULL;
3472 }
3473 
3474 static bool
intel_alloc_initial_plane_obj(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)3475 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3476 			      struct intel_initial_plane_config *plane_config)
3477 {
3478 	struct drm_device *dev = crtc->base.dev;
3479 	struct drm_i915_private *dev_priv = to_i915(dev);
3480 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3481 	struct drm_framebuffer *fb = &plane_config->fb->base;
3482 	struct i915_vma *vma;
3483 
3484 	switch (fb->modifier) {
3485 	case DRM_FORMAT_MOD_LINEAR:
3486 	case I915_FORMAT_MOD_X_TILED:
3487 	case I915_FORMAT_MOD_Y_TILED:
3488 		break;
3489 	default:
3490 		drm_dbg(&dev_priv->drm,
3491 			"Unsupported modifier for initial FB: 0x%llx\n",
3492 			fb->modifier);
3493 		return false;
3494 	}
3495 
3496 	vma = initial_plane_vma(dev_priv, plane_config);
3497 	if (!vma)
3498 		return false;
3499 
3500 	mode_cmd.pixel_format = fb->format->format;
3501 	mode_cmd.width = fb->width;
3502 	mode_cmd.height = fb->height;
3503 	mode_cmd.pitches[0] = fb->pitches[0];
3504 	mode_cmd.modifier[0] = fb->modifier;
3505 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3506 
3507 	if (intel_framebuffer_init(to_intel_framebuffer(fb),
3508 				   vma->obj, &mode_cmd)) {
3509 		drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n");
3510 		goto err_vma;
3511 	}
3512 
3513 	plane_config->vma = vma;
3514 	return true;
3515 
3516 err_vma:
3517 	i915_vma_put(vma);
3518 	return false;
3519 }
3520 
3521 static void
intel_set_plane_visible(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state,bool visible)3522 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3523 			struct intel_plane_state *plane_state,
3524 			bool visible)
3525 {
3526 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3527 
3528 	plane_state->uapi.visible = visible;
3529 
3530 	if (visible)
3531 		crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
3532 	else
3533 		crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
3534 }
3535 
fixup_active_planes(struct intel_crtc_state * crtc_state)3536 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3537 {
3538 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3539 	struct drm_plane *plane;
3540 
3541 	/*
3542 	 * Active_planes aliases if multiple "primary" or cursor planes
3543 	 * have been used on the same (or wrong) pipe. plane_mask uses
3544 	 * unique ids, hence we can use that to reconstruct active_planes.
3545 	 */
3546 	crtc_state->active_planes = 0;
3547 
3548 	drm_for_each_plane_mask(plane, &dev_priv->drm,
3549 				crtc_state->uapi.plane_mask)
3550 		crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3551 }
3552 
intel_plane_disable_noatomic(struct intel_crtc * crtc,struct intel_plane * plane)3553 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3554 					 struct intel_plane *plane)
3555 {
3556 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3557 	struct intel_crtc_state *crtc_state =
3558 		to_intel_crtc_state(crtc->base.state);
3559 	struct intel_plane_state *plane_state =
3560 		to_intel_plane_state(plane->base.state);
3561 
3562 	drm_dbg_kms(&dev_priv->drm,
3563 		    "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3564 		    plane->base.base.id, plane->base.name,
3565 		    crtc->base.base.id, crtc->base.name);
3566 
3567 	intel_set_plane_visible(crtc_state, plane_state, false);
3568 	fixup_active_planes(crtc_state);
3569 	crtc_state->data_rate[plane->id] = 0;
3570 	crtc_state->min_cdclk[plane->id] = 0;
3571 
3572 	if (plane->id == PLANE_PRIMARY)
3573 		hsw_disable_ips(crtc_state);
3574 
3575 	/*
3576 	 * Vblank time updates from the shadow to live plane control register
3577 	 * are blocked if the memory self-refresh mode is active at that
3578 	 * moment. So to make sure the plane gets truly disabled, disable
3579 	 * first the self-refresh mode. The self-refresh enable bit in turn
3580 	 * will be checked/applied by the HW only at the next frame start
3581 	 * event which is after the vblank start event, so we need to have a
3582 	 * wait-for-vblank between disabling the plane and the pipe.
3583 	 */
3584 	if (HAS_GMCH(dev_priv) &&
3585 	    intel_set_memory_cxsr(dev_priv, false))
3586 		intel_wait_for_vblank(dev_priv, crtc->pipe);
3587 
3588 	/*
3589 	 * Gen2 reports pipe underruns whenever all planes are disabled.
3590 	 * So disable underrun reporting before all the planes get disabled.
3591 	 */
3592 	if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes)
3593 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3594 
3595 	intel_disable_plane(plane, crtc_state);
3596 }
3597 
3598 static struct intel_frontbuffer *
to_intel_frontbuffer(struct drm_framebuffer * fb)3599 to_intel_frontbuffer(struct drm_framebuffer *fb)
3600 {
3601 	return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3602 }
3603 
3604 static void
intel_find_initial_plane_obj(struct intel_crtc * intel_crtc,struct intel_initial_plane_config * plane_config)3605 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3606 			     struct intel_initial_plane_config *plane_config)
3607 {
3608 	struct drm_device *dev = intel_crtc->base.dev;
3609 	struct drm_i915_private *dev_priv = to_i915(dev);
3610 	struct drm_crtc *c;
3611 	struct drm_plane *primary = intel_crtc->base.primary;
3612 	struct drm_plane_state *plane_state = primary->state;
3613 	struct intel_plane *intel_plane = to_intel_plane(primary);
3614 	struct intel_plane_state *intel_state =
3615 		to_intel_plane_state(plane_state);
3616 	struct drm_framebuffer *fb;
3617 	struct i915_vma *vma;
3618 
3619 	if (!plane_config->fb)
3620 		return;
3621 
3622 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3623 		fb = &plane_config->fb->base;
3624 		vma = plane_config->vma;
3625 		goto valid_fb;
3626 	}
3627 
3628 	/*
3629 	 * Failed to alloc the obj, check to see if we should share
3630 	 * an fb with another CRTC instead
3631 	 */
3632 	for_each_crtc(dev, c) {
3633 		struct intel_plane_state *state;
3634 
3635 		if (c == &intel_crtc->base)
3636 			continue;
3637 
3638 		if (!to_intel_crtc(c)->active)
3639 			continue;
3640 
3641 		state = to_intel_plane_state(c->primary->state);
3642 		if (!state->vma)
3643 			continue;
3644 
3645 		if (intel_plane_ggtt_offset(state) == plane_config->base) {
3646 			fb = state->hw.fb;
3647 			vma = state->vma;
3648 			goto valid_fb;
3649 		}
3650 	}
3651 
3652 	/*
3653 	 * We've failed to reconstruct the BIOS FB.  Current display state
3654 	 * indicates that the primary plane is visible, but has a NULL FB,
3655 	 * which will lead to problems later if we don't fix it up.  The
3656 	 * simplest solution is to just disable the primary plane now and
3657 	 * pretend the BIOS never had it enabled.
3658 	 */
3659 	intel_plane_disable_noatomic(intel_crtc, intel_plane);
3660 
3661 	return;
3662 
3663 valid_fb:
3664 	intel_state->hw.rotation = plane_config->rotation;
3665 	intel_fill_fb_ggtt_view(&intel_state->view, fb,
3666 				intel_state->hw.rotation);
3667 	intel_state->color_plane[0].stride =
3668 		intel_fb_pitch(fb, 0, intel_state->hw.rotation);
3669 
3670 	__i915_vma_pin(vma);
3671 	intel_state->vma = i915_vma_get(vma);
3672 	if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0)
3673 		if (vma->fence)
3674 			intel_state->flags |= PLANE_HAS_FENCE;
3675 
3676 	plane_state->src_x = 0;
3677 	plane_state->src_y = 0;
3678 	plane_state->src_w = fb->width << 16;
3679 	plane_state->src_h = fb->height << 16;
3680 
3681 	plane_state->crtc_x = 0;
3682 	plane_state->crtc_y = 0;
3683 	plane_state->crtc_w = fb->width;
3684 	plane_state->crtc_h = fb->height;
3685 
3686 	intel_state->uapi.src = drm_plane_state_src(plane_state);
3687 	intel_state->uapi.dst = drm_plane_state_dest(plane_state);
3688 
3689 	if (plane_config->tiling)
3690 		dev_priv->preserve_bios_swizzle = true;
3691 
3692 	plane_state->fb = fb;
3693 	drm_framebuffer_get(fb);
3694 
3695 	plane_state->crtc = &intel_crtc->base;
3696 	intel_plane_copy_uapi_to_hw_state(intel_state, intel_state);
3697 
3698 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3699 
3700 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3701 		  &to_intel_frontbuffer(fb)->bits);
3702 }
3703 
skl_max_plane_width(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)3704 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3705 			       int color_plane,
3706 			       unsigned int rotation)
3707 {
3708 	int cpp = fb->format->cpp[color_plane];
3709 
3710 	switch (fb->modifier) {
3711 	case DRM_FORMAT_MOD_LINEAR:
3712 	case I915_FORMAT_MOD_X_TILED:
3713 		/*
3714 		 * Validated limit is 4k, but has 5k should
3715 		 * work apart from the following features:
3716 		 * - Ytile (already limited to 4k)
3717 		 * - FP16 (already limited to 4k)
3718 		 * - render compression (already limited to 4k)
3719 		 * - KVMR sprite and cursor (don't care)
3720 		 * - horizontal panning (TODO verify this)
3721 		 * - pipe and plane scaling (TODO verify this)
3722 		 */
3723 		if (cpp == 8)
3724 			return 4096;
3725 		else
3726 			return 5120;
3727 	case I915_FORMAT_MOD_Y_TILED_CCS:
3728 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3729 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
3730 		/* FIXME AUX plane? */
3731 	case I915_FORMAT_MOD_Y_TILED:
3732 	case I915_FORMAT_MOD_Yf_TILED:
3733 		if (cpp == 8)
3734 			return 2048;
3735 		else
3736 			return 4096;
3737 	default:
3738 		MISSING_CASE(fb->modifier);
3739 		return 2048;
3740 	}
3741 }
3742 
glk_max_plane_width(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)3743 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3744 			       int color_plane,
3745 			       unsigned int rotation)
3746 {
3747 	int cpp = fb->format->cpp[color_plane];
3748 
3749 	switch (fb->modifier) {
3750 	case DRM_FORMAT_MOD_LINEAR:
3751 	case I915_FORMAT_MOD_X_TILED:
3752 		if (cpp == 8)
3753 			return 4096;
3754 		else
3755 			return 5120;
3756 	case I915_FORMAT_MOD_Y_TILED_CCS:
3757 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3758 		/* FIXME AUX plane? */
3759 	case I915_FORMAT_MOD_Y_TILED:
3760 	case I915_FORMAT_MOD_Yf_TILED:
3761 		if (cpp == 8)
3762 			return 2048;
3763 		else
3764 			return 5120;
3765 	default:
3766 		MISSING_CASE(fb->modifier);
3767 		return 2048;
3768 	}
3769 }
3770 
icl_min_plane_width(const struct drm_framebuffer * fb)3771 static int icl_min_plane_width(const struct drm_framebuffer *fb)
3772 {
3773 	/* Wa_14011264657, Wa_14011050563: gen11+ */
3774 	switch (fb->format->format) {
3775 	case DRM_FORMAT_C8:
3776 		return 18;
3777 	case DRM_FORMAT_RGB565:
3778 		return 10;
3779 	case DRM_FORMAT_XRGB8888:
3780 	case DRM_FORMAT_XBGR8888:
3781 	case DRM_FORMAT_ARGB8888:
3782 	case DRM_FORMAT_ABGR8888:
3783 	case DRM_FORMAT_XRGB2101010:
3784 	case DRM_FORMAT_XBGR2101010:
3785 	case DRM_FORMAT_ARGB2101010:
3786 	case DRM_FORMAT_ABGR2101010:
3787 	case DRM_FORMAT_XVYU2101010:
3788 	case DRM_FORMAT_Y212:
3789 	case DRM_FORMAT_Y216:
3790 		return 6;
3791 	case DRM_FORMAT_NV12:
3792 		return 20;
3793 	case DRM_FORMAT_P010:
3794 	case DRM_FORMAT_P012:
3795 	case DRM_FORMAT_P016:
3796 		return 12;
3797 	case DRM_FORMAT_XRGB16161616F:
3798 	case DRM_FORMAT_XBGR16161616F:
3799 	case DRM_FORMAT_ARGB16161616F:
3800 	case DRM_FORMAT_ABGR16161616F:
3801 	case DRM_FORMAT_XVYU12_16161616:
3802 	case DRM_FORMAT_XVYU16161616:
3803 		return 4;
3804 	default:
3805 		return 1;
3806 	}
3807 }
3808 
icl_max_plane_width(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)3809 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3810 			       int color_plane,
3811 			       unsigned int rotation)
3812 {
3813 	return 5120;
3814 }
3815 
skl_max_plane_height(void)3816 static int skl_max_plane_height(void)
3817 {
3818 	return 4096;
3819 }
3820 
icl_max_plane_height(void)3821 static int icl_max_plane_height(void)
3822 {
3823 	return 4320;
3824 }
3825 
3826 static bool
skl_check_main_ccs_coordinates(struct intel_plane_state * plane_state,int main_x,int main_y,u32 main_offset,int ccs_plane)3827 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3828 			       int main_x, int main_y, u32 main_offset,
3829 			       int ccs_plane)
3830 {
3831 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3832 	int aux_x = plane_state->color_plane[ccs_plane].x;
3833 	int aux_y = plane_state->color_plane[ccs_plane].y;
3834 	u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3835 	u32 alignment = intel_surf_alignment(fb, ccs_plane);
3836 	int hsub;
3837 	int vsub;
3838 
3839 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3840 	while (aux_offset >= main_offset && aux_y <= main_y) {
3841 		int x, y;
3842 
3843 		if (aux_x == main_x && aux_y == main_y)
3844 			break;
3845 
3846 		if (aux_offset == 0)
3847 			break;
3848 
3849 		x = aux_x / hsub;
3850 		y = aux_y / vsub;
3851 		aux_offset = intel_plane_adjust_aligned_offset(&x, &y,
3852 							       plane_state,
3853 							       ccs_plane,
3854 							       aux_offset,
3855 							       aux_offset -
3856 								alignment);
3857 		aux_x = x * hsub + aux_x % hsub;
3858 		aux_y = y * vsub + aux_y % vsub;
3859 	}
3860 
3861 	if (aux_x != main_x || aux_y != main_y)
3862 		return false;
3863 
3864 	plane_state->color_plane[ccs_plane].offset = aux_offset;
3865 	plane_state->color_plane[ccs_plane].x = aux_x;
3866 	plane_state->color_plane[ccs_plane].y = aux_y;
3867 
3868 	return true;
3869 }
3870 
3871 unsigned int
intel_plane_fence_y_offset(const struct intel_plane_state * plane_state)3872 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state)
3873 {
3874 	int x = 0, y = 0;
3875 
3876 	intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3877 					  plane_state->color_plane[0].offset, 0);
3878 
3879 	return y;
3880 }
3881 
skl_check_main_surface(struct intel_plane_state * plane_state)3882 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3883 {
3884 	struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev);
3885 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3886 	unsigned int rotation = plane_state->hw.rotation;
3887 	int x = plane_state->uapi.src.x1 >> 16;
3888 	int y = plane_state->uapi.src.y1 >> 16;
3889 	int w = drm_rect_width(&plane_state->uapi.src) >> 16;
3890 	int h = drm_rect_height(&plane_state->uapi.src) >> 16;
3891 	int max_width, min_width, max_height;
3892 	u32 alignment, offset;
3893 	int aux_plane = intel_main_to_aux_plane(fb, 0);
3894 	u32 aux_offset = plane_state->color_plane[aux_plane].offset;
3895 
3896 	if (INTEL_GEN(dev_priv) >= 11) {
3897 		max_width = icl_max_plane_width(fb, 0, rotation);
3898 		min_width = icl_min_plane_width(fb);
3899 	} else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
3900 		max_width = glk_max_plane_width(fb, 0, rotation);
3901 		min_width = 1;
3902 	} else {
3903 		max_width = skl_max_plane_width(fb, 0, rotation);
3904 		min_width = 1;
3905 	}
3906 
3907 	if (INTEL_GEN(dev_priv) >= 11)
3908 		max_height = icl_max_plane_height();
3909 	else
3910 		max_height = skl_max_plane_height();
3911 
3912 	if (w > max_width || w < min_width || h > max_height) {
3913 		drm_dbg_kms(&dev_priv->drm,
3914 			    "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n",
3915 			    w, h, min_width, max_width, max_height);
3916 		return -EINVAL;
3917 	}
3918 
3919 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3920 	offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3921 	alignment = intel_surf_alignment(fb, 0);
3922 	if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment)))
3923 		return -EINVAL;
3924 
3925 	/*
3926 	 * AUX surface offset is specified as the distance from the
3927 	 * main surface offset, and it must be non-negative. Make
3928 	 * sure that is what we will get.
3929 	 */
3930 	if (offset > aux_offset)
3931 		offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3932 							   offset, aux_offset & ~(alignment - 1));
3933 
3934 	/*
3935 	 * When using an X-tiled surface, the plane blows up
3936 	 * if the x offset + width exceed the stride.
3937 	 *
3938 	 * TODO: linear and Y-tiled seem fine, Yf untested,
3939 	 */
3940 	if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3941 		int cpp = fb->format->cpp[0];
3942 
3943 		while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3944 			if (offset == 0) {
3945 				drm_dbg_kms(&dev_priv->drm,
3946 					    "Unable to find suitable display surface offset due to X-tiling\n");
3947 				return -EINVAL;
3948 			}
3949 
3950 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3951 								   offset, offset - alignment);
3952 		}
3953 	}
3954 
3955 	/*
3956 	 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3957 	 * they match with the main surface x/y offsets.
3958 	 */
3959 	if (is_ccs_modifier(fb->modifier)) {
3960 		while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3961 						       offset, aux_plane)) {
3962 			if (offset == 0)
3963 				break;
3964 
3965 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3966 								   offset, offset - alignment);
3967 		}
3968 
3969 		if (x != plane_state->color_plane[aux_plane].x ||
3970 		    y != plane_state->color_plane[aux_plane].y) {
3971 			drm_dbg_kms(&dev_priv->drm,
3972 				    "Unable to find suitable display surface offset due to CCS\n");
3973 			return -EINVAL;
3974 		}
3975 	}
3976 
3977 	plane_state->color_plane[0].offset = offset;
3978 	plane_state->color_plane[0].x = x;
3979 	plane_state->color_plane[0].y = y;
3980 
3981 	/*
3982 	 * Put the final coordinates back so that the src
3983 	 * coordinate checks will see the right values.
3984 	 */
3985 	drm_rect_translate_to(&plane_state->uapi.src,
3986 			      x << 16, y << 16);
3987 
3988 	return 0;
3989 }
3990 
skl_check_nv12_aux_surface(struct intel_plane_state * plane_state)3991 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3992 {
3993 	struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
3994 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3995 	unsigned int rotation = plane_state->hw.rotation;
3996 	int uv_plane = 1;
3997 	int max_width = skl_max_plane_width(fb, uv_plane, rotation);
3998 	int max_height = 4096;
3999 	int x = plane_state->uapi.src.x1 >> 17;
4000 	int y = plane_state->uapi.src.y1 >> 17;
4001 	int w = drm_rect_width(&plane_state->uapi.src) >> 17;
4002 	int h = drm_rect_height(&plane_state->uapi.src) >> 17;
4003 	u32 offset;
4004 
4005 	intel_add_fb_offsets(&x, &y, plane_state, uv_plane);
4006 	offset = intel_plane_compute_aligned_offset(&x, &y,
4007 						    plane_state, uv_plane);
4008 
4009 	/* FIXME not quite sure how/if these apply to the chroma plane */
4010 	if (w > max_width || h > max_height) {
4011 		drm_dbg_kms(&i915->drm,
4012 			    "CbCr source size %dx%d too big (limit %dx%d)\n",
4013 			    w, h, max_width, max_height);
4014 		return -EINVAL;
4015 	}
4016 
4017 	if (is_ccs_modifier(fb->modifier)) {
4018 		int ccs_plane = main_to_ccs_plane(fb, uv_plane);
4019 		int aux_offset = plane_state->color_plane[ccs_plane].offset;
4020 		int alignment = intel_surf_alignment(fb, uv_plane);
4021 
4022 		if (offset > aux_offset)
4023 			offset = intel_plane_adjust_aligned_offset(&x, &y,
4024 								   plane_state,
4025 								   uv_plane,
4026 								   offset,
4027 								   aux_offset & ~(alignment - 1));
4028 
4029 		while (!skl_check_main_ccs_coordinates(plane_state, x, y,
4030 						       offset, ccs_plane)) {
4031 			if (offset == 0)
4032 				break;
4033 
4034 			offset = intel_plane_adjust_aligned_offset(&x, &y,
4035 								   plane_state,
4036 								   uv_plane,
4037 								   offset, offset - alignment);
4038 		}
4039 
4040 		if (x != plane_state->color_plane[ccs_plane].x ||
4041 		    y != plane_state->color_plane[ccs_plane].y) {
4042 			drm_dbg_kms(&i915->drm,
4043 				    "Unable to find suitable display surface offset due to CCS\n");
4044 			return -EINVAL;
4045 		}
4046 	}
4047 
4048 	plane_state->color_plane[uv_plane].offset = offset;
4049 	plane_state->color_plane[uv_plane].x = x;
4050 	plane_state->color_plane[uv_plane].y = y;
4051 
4052 	return 0;
4053 }
4054 
skl_check_ccs_aux_surface(struct intel_plane_state * plane_state)4055 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
4056 {
4057 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4058 	int src_x = plane_state->uapi.src.x1 >> 16;
4059 	int src_y = plane_state->uapi.src.y1 >> 16;
4060 	u32 offset;
4061 	int ccs_plane;
4062 
4063 	for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) {
4064 		int main_hsub, main_vsub;
4065 		int hsub, vsub;
4066 		int x, y;
4067 
4068 		if (!is_ccs_plane(fb, ccs_plane))
4069 			continue;
4070 
4071 		intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb,
4072 					       ccs_to_main_plane(fb, ccs_plane));
4073 		intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
4074 
4075 		hsub *= main_hsub;
4076 		vsub *= main_vsub;
4077 		x = src_x / hsub;
4078 		y = src_y / vsub;
4079 
4080 		intel_add_fb_offsets(&x, &y, plane_state, ccs_plane);
4081 
4082 		offset = intel_plane_compute_aligned_offset(&x, &y,
4083 							    plane_state,
4084 							    ccs_plane);
4085 
4086 		plane_state->color_plane[ccs_plane].offset = offset;
4087 		plane_state->color_plane[ccs_plane].x = (x * hsub +
4088 							 src_x % hsub) /
4089 							main_hsub;
4090 		plane_state->color_plane[ccs_plane].y = (y * vsub +
4091 							 src_y % vsub) /
4092 							main_vsub;
4093 	}
4094 
4095 	return 0;
4096 }
4097 
skl_check_plane_surface(struct intel_plane_state * plane_state)4098 int skl_check_plane_surface(struct intel_plane_state *plane_state)
4099 {
4100 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4101 	int ret, i;
4102 
4103 	ret = intel_plane_compute_gtt(plane_state);
4104 	if (ret)
4105 		return ret;
4106 
4107 	if (!plane_state->uapi.visible)
4108 		return 0;
4109 
4110 	/*
4111 	 * Handle the AUX surface first since the main surface setup depends on
4112 	 * it.
4113 	 */
4114 	if (is_ccs_modifier(fb->modifier)) {
4115 		ret = skl_check_ccs_aux_surface(plane_state);
4116 		if (ret)
4117 			return ret;
4118 	}
4119 
4120 	if (intel_format_info_is_yuv_semiplanar(fb->format,
4121 						fb->modifier)) {
4122 		ret = skl_check_nv12_aux_surface(plane_state);
4123 		if (ret)
4124 			return ret;
4125 	}
4126 
4127 	for (i = fb->format->num_planes; i < ARRAY_SIZE(plane_state->color_plane); i++) {
4128 		plane_state->color_plane[i].offset = ~0xfff;
4129 		plane_state->color_plane[i].x = 0;
4130 		plane_state->color_plane[i].y = 0;
4131 	}
4132 
4133 	ret = skl_check_main_surface(plane_state);
4134 	if (ret)
4135 		return ret;
4136 
4137 	return 0;
4138 }
4139 
i9xx_plane_ratio(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,unsigned int * num,unsigned int * den)4140 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
4141 			     const struct intel_plane_state *plane_state,
4142 			     unsigned int *num, unsigned int *den)
4143 {
4144 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4145 	unsigned int cpp = fb->format->cpp[0];
4146 
4147 	/*
4148 	 * g4x bspec says 64bpp pixel rate can't exceed 80%
4149 	 * of cdclk when the sprite plane is enabled on the
4150 	 * same pipe. ilk/snb bspec says 64bpp pixel rate is
4151 	 * never allowed to exceed 80% of cdclk. Let's just go
4152 	 * with the ilk/snb limit always.
4153 	 */
4154 	if (cpp == 8) {
4155 		*num = 10;
4156 		*den = 8;
4157 	} else {
4158 		*num = 1;
4159 		*den = 1;
4160 	}
4161 }
4162 
i9xx_plane_min_cdclk(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4163 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
4164 				const struct intel_plane_state *plane_state)
4165 {
4166 	unsigned int pixel_rate;
4167 	unsigned int num, den;
4168 
4169 	/*
4170 	 * Note that crtc_state->pixel_rate accounts for both
4171 	 * horizontal and vertical panel fitter downscaling factors.
4172 	 * Pre-HSW bspec tells us to only consider the horizontal
4173 	 * downscaling factor here. We ignore that and just consider
4174 	 * both for simplicity.
4175 	 */
4176 	pixel_rate = crtc_state->pixel_rate;
4177 
4178 	i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
4179 
4180 	/* two pixels per clock with double wide pipe */
4181 	if (crtc_state->double_wide)
4182 		den *= 2;
4183 
4184 	return DIV_ROUND_UP(pixel_rate * num, den);
4185 }
4186 
4187 unsigned int
i9xx_plane_max_stride(struct intel_plane * plane,u32 pixel_format,u64 modifier,unsigned int rotation)4188 i9xx_plane_max_stride(struct intel_plane *plane,
4189 		      u32 pixel_format, u64 modifier,
4190 		      unsigned int rotation)
4191 {
4192 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4193 
4194 	if (!HAS_GMCH(dev_priv)) {
4195 		return 32*1024;
4196 	} else if (INTEL_GEN(dev_priv) >= 4) {
4197 		if (modifier == I915_FORMAT_MOD_X_TILED)
4198 			return 16*1024;
4199 		else
4200 			return 32*1024;
4201 	} else if (INTEL_GEN(dev_priv) >= 3) {
4202 		if (modifier == I915_FORMAT_MOD_X_TILED)
4203 			return 8*1024;
4204 		else
4205 			return 16*1024;
4206 	} else {
4207 		if (plane->i9xx_plane == PLANE_C)
4208 			return 4*1024;
4209 		else
4210 			return 8*1024;
4211 	}
4212 }
4213 
i9xx_plane_ctl_crtc(const struct intel_crtc_state * crtc_state)4214 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4215 {
4216 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4217 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4218 	u32 dspcntr = 0;
4219 
4220 	if (crtc_state->gamma_enable)
4221 		dspcntr |= DISPPLANE_GAMMA_ENABLE;
4222 
4223 	if (crtc_state->csc_enable)
4224 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
4225 
4226 	if (INTEL_GEN(dev_priv) < 5)
4227 		dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
4228 
4229 	return dspcntr;
4230 }
4231 
i9xx_plane_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4232 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
4233 			  const struct intel_plane_state *plane_state)
4234 {
4235 	struct drm_i915_private *dev_priv =
4236 		to_i915(plane_state->uapi.plane->dev);
4237 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4238 	unsigned int rotation = plane_state->hw.rotation;
4239 	u32 dspcntr;
4240 
4241 	dspcntr = DISPLAY_PLANE_ENABLE;
4242 
4243 	if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
4244 	    IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
4245 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
4246 
4247 	switch (fb->format->format) {
4248 	case DRM_FORMAT_C8:
4249 		dspcntr |= DISPPLANE_8BPP;
4250 		break;
4251 	case DRM_FORMAT_XRGB1555:
4252 		dspcntr |= DISPPLANE_BGRX555;
4253 		break;
4254 	case DRM_FORMAT_ARGB1555:
4255 		dspcntr |= DISPPLANE_BGRA555;
4256 		break;
4257 	case DRM_FORMAT_RGB565:
4258 		dspcntr |= DISPPLANE_BGRX565;
4259 		break;
4260 	case DRM_FORMAT_XRGB8888:
4261 		dspcntr |= DISPPLANE_BGRX888;
4262 		break;
4263 	case DRM_FORMAT_XBGR8888:
4264 		dspcntr |= DISPPLANE_RGBX888;
4265 		break;
4266 	case DRM_FORMAT_ARGB8888:
4267 		dspcntr |= DISPPLANE_BGRA888;
4268 		break;
4269 	case DRM_FORMAT_ABGR8888:
4270 		dspcntr |= DISPPLANE_RGBA888;
4271 		break;
4272 	case DRM_FORMAT_XRGB2101010:
4273 		dspcntr |= DISPPLANE_BGRX101010;
4274 		break;
4275 	case DRM_FORMAT_XBGR2101010:
4276 		dspcntr |= DISPPLANE_RGBX101010;
4277 		break;
4278 	case DRM_FORMAT_ARGB2101010:
4279 		dspcntr |= DISPPLANE_BGRA101010;
4280 		break;
4281 	case DRM_FORMAT_ABGR2101010:
4282 		dspcntr |= DISPPLANE_RGBA101010;
4283 		break;
4284 	case DRM_FORMAT_XBGR16161616F:
4285 		dspcntr |= DISPPLANE_RGBX161616;
4286 		break;
4287 	default:
4288 		MISSING_CASE(fb->format->format);
4289 		return 0;
4290 	}
4291 
4292 	if (INTEL_GEN(dev_priv) >= 4 &&
4293 	    fb->modifier == I915_FORMAT_MOD_X_TILED)
4294 		dspcntr |= DISPPLANE_TILED;
4295 
4296 	if (rotation & DRM_MODE_ROTATE_180)
4297 		dspcntr |= DISPPLANE_ROTATE_180;
4298 
4299 	if (rotation & DRM_MODE_REFLECT_X)
4300 		dspcntr |= DISPPLANE_MIRROR;
4301 
4302 	return dspcntr;
4303 }
4304 
i9xx_check_plane_surface(struct intel_plane_state * plane_state)4305 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
4306 {
4307 	struct drm_i915_private *dev_priv =
4308 		to_i915(plane_state->uapi.plane->dev);
4309 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4310 	int src_x, src_y, src_w;
4311 	u32 offset;
4312 	int ret;
4313 
4314 	ret = intel_plane_compute_gtt(plane_state);
4315 	if (ret)
4316 		return ret;
4317 
4318 	if (!plane_state->uapi.visible)
4319 		return 0;
4320 
4321 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4322 	src_x = plane_state->uapi.src.x1 >> 16;
4323 	src_y = plane_state->uapi.src.y1 >> 16;
4324 
4325 	/* Undocumented hardware limit on i965/g4x/vlv/chv */
4326 	if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
4327 		return -EINVAL;
4328 
4329 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
4330 
4331 	if (INTEL_GEN(dev_priv) >= 4)
4332 		offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
4333 							    plane_state, 0);
4334 	else
4335 		offset = 0;
4336 
4337 	/*
4338 	 * Put the final coordinates back so that the src
4339 	 * coordinate checks will see the right values.
4340 	 */
4341 	drm_rect_translate_to(&plane_state->uapi.src,
4342 			      src_x << 16, src_y << 16);
4343 
4344 	/* HSW/BDW do this automagically in hardware */
4345 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
4346 		unsigned int rotation = plane_state->hw.rotation;
4347 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4348 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4349 
4350 		if (rotation & DRM_MODE_ROTATE_180) {
4351 			src_x += src_w - 1;
4352 			src_y += src_h - 1;
4353 		} else if (rotation & DRM_MODE_REFLECT_X) {
4354 			src_x += src_w - 1;
4355 		}
4356 	}
4357 
4358 	plane_state->color_plane[0].offset = offset;
4359 	plane_state->color_plane[0].x = src_x;
4360 	plane_state->color_plane[0].y = src_y;
4361 
4362 	return 0;
4363 }
4364 
i9xx_plane_has_windowing(struct intel_plane * plane)4365 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
4366 {
4367 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4368 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4369 
4370 	if (IS_CHERRYVIEW(dev_priv))
4371 		return i9xx_plane == PLANE_B;
4372 	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4373 		return false;
4374 	else if (IS_GEN(dev_priv, 4))
4375 		return i9xx_plane == PLANE_C;
4376 	else
4377 		return i9xx_plane == PLANE_B ||
4378 			i9xx_plane == PLANE_C;
4379 }
4380 
4381 static int
i9xx_plane_check(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)4382 i9xx_plane_check(struct intel_crtc_state *crtc_state,
4383 		 struct intel_plane_state *plane_state)
4384 {
4385 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4386 	int ret;
4387 
4388 	ret = chv_plane_check_rotation(plane_state);
4389 	if (ret)
4390 		return ret;
4391 
4392 	ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
4393 						  &crtc_state->uapi,
4394 						  DRM_PLANE_HELPER_NO_SCALING,
4395 						  DRM_PLANE_HELPER_NO_SCALING,
4396 						  i9xx_plane_has_windowing(plane),
4397 						  true);
4398 	if (ret)
4399 		return ret;
4400 
4401 	ret = i9xx_check_plane_surface(plane_state);
4402 	if (ret)
4403 		return ret;
4404 
4405 	if (!plane_state->uapi.visible)
4406 		return 0;
4407 
4408 	ret = intel_plane_check_src_coordinates(plane_state);
4409 	if (ret)
4410 		return ret;
4411 
4412 	plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
4413 
4414 	return 0;
4415 }
4416 
i9xx_update_plane(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4417 static void i9xx_update_plane(struct intel_plane *plane,
4418 			      const struct intel_crtc_state *crtc_state,
4419 			      const struct intel_plane_state *plane_state)
4420 {
4421 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4422 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4423 	u32 linear_offset;
4424 	int x = plane_state->color_plane[0].x;
4425 	int y = plane_state->color_plane[0].y;
4426 	int crtc_x = plane_state->uapi.dst.x1;
4427 	int crtc_y = plane_state->uapi.dst.y1;
4428 	int crtc_w = drm_rect_width(&plane_state->uapi.dst);
4429 	int crtc_h = drm_rect_height(&plane_state->uapi.dst);
4430 	unsigned long irqflags;
4431 	u32 dspaddr_offset;
4432 	u32 dspcntr;
4433 
4434 	dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
4435 
4436 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
4437 
4438 	if (INTEL_GEN(dev_priv) >= 4)
4439 		dspaddr_offset = plane_state->color_plane[0].offset;
4440 	else
4441 		dspaddr_offset = linear_offset;
4442 
4443 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4444 
4445 	intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane),
4446 			  plane_state->color_plane[0].stride);
4447 
4448 	if (INTEL_GEN(dev_priv) < 4) {
4449 		/*
4450 		 * PLANE_A doesn't actually have a full window
4451 		 * generator but let's assume we still need to
4452 		 * program whatever is there.
4453 		 */
4454 		intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane),
4455 				  (crtc_y << 16) | crtc_x);
4456 		intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane),
4457 				  ((crtc_h - 1) << 16) | (crtc_w - 1));
4458 	} else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
4459 		intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane),
4460 				  (crtc_y << 16) | crtc_x);
4461 		intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane),
4462 				  ((crtc_h - 1) << 16) | (crtc_w - 1));
4463 		intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0);
4464 	}
4465 
4466 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
4467 		intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane),
4468 				  (y << 16) | x);
4469 	} else if (INTEL_GEN(dev_priv) >= 4) {
4470 		intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane),
4471 				  linear_offset);
4472 		intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane),
4473 				  (y << 16) | x);
4474 	}
4475 
4476 	/*
4477 	 * The control register self-arms if the plane was previously
4478 	 * disabled. Try to make the plane enable atomic by writing
4479 	 * the control register just before the surface register.
4480 	 */
4481 	intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4482 	if (INTEL_GEN(dev_priv) >= 4)
4483 		intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane),
4484 				  intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4485 	else
4486 		intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane),
4487 				  intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4488 
4489 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4490 }
4491 
i9xx_disable_plane(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)4492 static void i9xx_disable_plane(struct intel_plane *plane,
4493 			       const struct intel_crtc_state *crtc_state)
4494 {
4495 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4496 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4497 	unsigned long irqflags;
4498 	u32 dspcntr;
4499 
4500 	/*
4501 	 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
4502 	 * enable on ilk+ affect the pipe bottom color as
4503 	 * well, so we must configure them even if the plane
4504 	 * is disabled.
4505 	 *
4506 	 * On pre-g4x there is no way to gamma correct the
4507 	 * pipe bottom color but we'll keep on doing this
4508 	 * anyway so that the crtc state readout works correctly.
4509 	 */
4510 	dspcntr = i9xx_plane_ctl_crtc(crtc_state);
4511 
4512 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4513 
4514 	intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4515 	if (INTEL_GEN(dev_priv) >= 4)
4516 		intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0);
4517 	else
4518 		intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0);
4519 
4520 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4521 }
4522 
i9xx_plane_get_hw_state(struct intel_plane * plane,enum pipe * pipe)4523 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
4524 				    enum pipe *pipe)
4525 {
4526 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4527 	enum intel_display_power_domain power_domain;
4528 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4529 	intel_wakeref_t wakeref;
4530 	bool ret;
4531 	u32 val;
4532 
4533 	/*
4534 	 * Not 100% correct for planes that can move between pipes,
4535 	 * but that's only the case for gen2-4 which don't have any
4536 	 * display power wells.
4537 	 */
4538 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
4539 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4540 	if (!wakeref)
4541 		return false;
4542 
4543 	val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
4544 
4545 	ret = val & DISPLAY_PLANE_ENABLE;
4546 
4547 	if (INTEL_GEN(dev_priv) >= 5)
4548 		*pipe = plane->pipe;
4549 	else
4550 		*pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
4551 			DISPPLANE_SEL_PIPE_SHIFT;
4552 
4553 	intel_display_power_put(dev_priv, power_domain, wakeref);
4554 
4555 	return ret;
4556 }
4557 
skl_detach_scaler(struct intel_crtc * intel_crtc,int id)4558 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4559 {
4560 	struct drm_device *dev = intel_crtc->base.dev;
4561 	struct drm_i915_private *dev_priv = to_i915(dev);
4562 	unsigned long irqflags;
4563 
4564 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4565 
4566 	intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4567 	intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4568 	intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4569 
4570 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4571 }
4572 
4573 /*
4574  * This function detaches (aka. unbinds) unused scalers in hardware
4575  */
skl_detach_scalers(const struct intel_crtc_state * crtc_state)4576 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4577 {
4578 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
4579 	const struct intel_crtc_scaler_state *scaler_state =
4580 		&crtc_state->scaler_state;
4581 	int i;
4582 
4583 	/* loop through and disable scalers that aren't in use */
4584 	for (i = 0; i < intel_crtc->num_scalers; i++) {
4585 		if (!scaler_state->scalers[i].in_use)
4586 			skl_detach_scaler(intel_crtc, i);
4587 	}
4588 }
4589 
skl_plane_stride_mult(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)4590 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4591 					  int color_plane, unsigned int rotation)
4592 {
4593 	/*
4594 	 * The stride is either expressed as a multiple of 64 bytes chunks for
4595 	 * linear buffers or in number of tiles for tiled buffers.
4596 	 */
4597 	if (is_surface_linear(fb, color_plane))
4598 		return 64;
4599 	else if (drm_rotation_90_or_270(rotation))
4600 		return intel_tile_height(fb, color_plane);
4601 	else
4602 		return intel_tile_width_bytes(fb, color_plane);
4603 }
4604 
skl_plane_stride(const struct intel_plane_state * plane_state,int color_plane)4605 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4606 		     int color_plane)
4607 {
4608 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4609 	unsigned int rotation = plane_state->hw.rotation;
4610 	u32 stride = plane_state->color_plane[color_plane].stride;
4611 
4612 	if (color_plane >= fb->format->num_planes)
4613 		return 0;
4614 
4615 	return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4616 }
4617 
skl_plane_ctl_format(u32 pixel_format)4618 static u32 skl_plane_ctl_format(u32 pixel_format)
4619 {
4620 	switch (pixel_format) {
4621 	case DRM_FORMAT_C8:
4622 		return PLANE_CTL_FORMAT_INDEXED;
4623 	case DRM_FORMAT_RGB565:
4624 		return PLANE_CTL_FORMAT_RGB_565;
4625 	case DRM_FORMAT_XBGR8888:
4626 	case DRM_FORMAT_ABGR8888:
4627 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4628 	case DRM_FORMAT_XRGB8888:
4629 	case DRM_FORMAT_ARGB8888:
4630 		return PLANE_CTL_FORMAT_XRGB_8888;
4631 	case DRM_FORMAT_XBGR2101010:
4632 	case DRM_FORMAT_ABGR2101010:
4633 		return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4634 	case DRM_FORMAT_XRGB2101010:
4635 	case DRM_FORMAT_ARGB2101010:
4636 		return PLANE_CTL_FORMAT_XRGB_2101010;
4637 	case DRM_FORMAT_XBGR16161616F:
4638 	case DRM_FORMAT_ABGR16161616F:
4639 		return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4640 	case DRM_FORMAT_XRGB16161616F:
4641 	case DRM_FORMAT_ARGB16161616F:
4642 		return PLANE_CTL_FORMAT_XRGB_16161616F;
4643 	case DRM_FORMAT_XYUV8888:
4644 		return PLANE_CTL_FORMAT_XYUV;
4645 	case DRM_FORMAT_YUYV:
4646 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4647 	case DRM_FORMAT_YVYU:
4648 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4649 	case DRM_FORMAT_UYVY:
4650 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4651 	case DRM_FORMAT_VYUY:
4652 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4653 	case DRM_FORMAT_NV12:
4654 		return PLANE_CTL_FORMAT_NV12;
4655 	case DRM_FORMAT_P010:
4656 		return PLANE_CTL_FORMAT_P010;
4657 	case DRM_FORMAT_P012:
4658 		return PLANE_CTL_FORMAT_P012;
4659 	case DRM_FORMAT_P016:
4660 		return PLANE_CTL_FORMAT_P016;
4661 	case DRM_FORMAT_Y210:
4662 		return PLANE_CTL_FORMAT_Y210;
4663 	case DRM_FORMAT_Y212:
4664 		return PLANE_CTL_FORMAT_Y212;
4665 	case DRM_FORMAT_Y216:
4666 		return PLANE_CTL_FORMAT_Y216;
4667 	case DRM_FORMAT_XVYU2101010:
4668 		return PLANE_CTL_FORMAT_Y410;
4669 	case DRM_FORMAT_XVYU12_16161616:
4670 		return PLANE_CTL_FORMAT_Y412;
4671 	case DRM_FORMAT_XVYU16161616:
4672 		return PLANE_CTL_FORMAT_Y416;
4673 	default:
4674 		MISSING_CASE(pixel_format);
4675 	}
4676 
4677 	return 0;
4678 }
4679 
skl_plane_ctl_alpha(const struct intel_plane_state * plane_state)4680 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4681 {
4682 	if (!plane_state->hw.fb->format->has_alpha)
4683 		return PLANE_CTL_ALPHA_DISABLE;
4684 
4685 	switch (plane_state->hw.pixel_blend_mode) {
4686 	case DRM_MODE_BLEND_PIXEL_NONE:
4687 		return PLANE_CTL_ALPHA_DISABLE;
4688 	case DRM_MODE_BLEND_PREMULTI:
4689 		return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4690 	case DRM_MODE_BLEND_COVERAGE:
4691 		return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4692 	default:
4693 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4694 		return PLANE_CTL_ALPHA_DISABLE;
4695 	}
4696 }
4697 
glk_plane_color_ctl_alpha(const struct intel_plane_state * plane_state)4698 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4699 {
4700 	if (!plane_state->hw.fb->format->has_alpha)
4701 		return PLANE_COLOR_ALPHA_DISABLE;
4702 
4703 	switch (plane_state->hw.pixel_blend_mode) {
4704 	case DRM_MODE_BLEND_PIXEL_NONE:
4705 		return PLANE_COLOR_ALPHA_DISABLE;
4706 	case DRM_MODE_BLEND_PREMULTI:
4707 		return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4708 	case DRM_MODE_BLEND_COVERAGE:
4709 		return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4710 	default:
4711 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4712 		return PLANE_COLOR_ALPHA_DISABLE;
4713 	}
4714 }
4715 
skl_plane_ctl_tiling(u64 fb_modifier)4716 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4717 {
4718 	switch (fb_modifier) {
4719 	case DRM_FORMAT_MOD_LINEAR:
4720 		break;
4721 	case I915_FORMAT_MOD_X_TILED:
4722 		return PLANE_CTL_TILED_X;
4723 	case I915_FORMAT_MOD_Y_TILED:
4724 		return PLANE_CTL_TILED_Y;
4725 	case I915_FORMAT_MOD_Y_TILED_CCS:
4726 		return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4727 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
4728 		return PLANE_CTL_TILED_Y |
4729 		       PLANE_CTL_RENDER_DECOMPRESSION_ENABLE |
4730 		       PLANE_CTL_CLEAR_COLOR_DISABLE;
4731 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
4732 		return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE;
4733 	case I915_FORMAT_MOD_Yf_TILED:
4734 		return PLANE_CTL_TILED_YF;
4735 	case I915_FORMAT_MOD_Yf_TILED_CCS:
4736 		return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4737 	default:
4738 		MISSING_CASE(fb_modifier);
4739 	}
4740 
4741 	return 0;
4742 }
4743 
skl_plane_ctl_rotate(unsigned int rotate)4744 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4745 {
4746 	switch (rotate) {
4747 	case DRM_MODE_ROTATE_0:
4748 		break;
4749 	/*
4750 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4751 	 * while i915 HW rotation is clockwise, thats why this swapping.
4752 	 */
4753 	case DRM_MODE_ROTATE_90:
4754 		return PLANE_CTL_ROTATE_270;
4755 	case DRM_MODE_ROTATE_180:
4756 		return PLANE_CTL_ROTATE_180;
4757 	case DRM_MODE_ROTATE_270:
4758 		return PLANE_CTL_ROTATE_90;
4759 	default:
4760 		MISSING_CASE(rotate);
4761 	}
4762 
4763 	return 0;
4764 }
4765 
cnl_plane_ctl_flip(unsigned int reflect)4766 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4767 {
4768 	switch (reflect) {
4769 	case 0:
4770 		break;
4771 	case DRM_MODE_REFLECT_X:
4772 		return PLANE_CTL_FLIP_HORIZONTAL;
4773 	case DRM_MODE_REFLECT_Y:
4774 	default:
4775 		MISSING_CASE(reflect);
4776 	}
4777 
4778 	return 0;
4779 }
4780 
skl_plane_ctl_crtc(const struct intel_crtc_state * crtc_state)4781 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4782 {
4783 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4784 	u32 plane_ctl = 0;
4785 
4786 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4787 		return plane_ctl;
4788 
4789 	if (crtc_state->gamma_enable)
4790 		plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4791 
4792 	if (crtc_state->csc_enable)
4793 		plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4794 
4795 	return plane_ctl;
4796 }
4797 
skl_plane_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4798 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4799 		  const struct intel_plane_state *plane_state)
4800 {
4801 	struct drm_i915_private *dev_priv =
4802 		to_i915(plane_state->uapi.plane->dev);
4803 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4804 	unsigned int rotation = plane_state->hw.rotation;
4805 	const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4806 	u32 plane_ctl;
4807 
4808 	plane_ctl = PLANE_CTL_ENABLE;
4809 
4810 	if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4811 		plane_ctl |= skl_plane_ctl_alpha(plane_state);
4812 		plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4813 
4814 		if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4815 			plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4816 
4817 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4818 			plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4819 	}
4820 
4821 	plane_ctl |= skl_plane_ctl_format(fb->format->format);
4822 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4823 	plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4824 
4825 	if (INTEL_GEN(dev_priv) >= 10)
4826 		plane_ctl |= cnl_plane_ctl_flip(rotation &
4827 						DRM_MODE_REFLECT_MASK);
4828 
4829 	if (key->flags & I915_SET_COLORKEY_DESTINATION)
4830 		plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4831 	else if (key->flags & I915_SET_COLORKEY_SOURCE)
4832 		plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4833 
4834 	return plane_ctl;
4835 }
4836 
glk_plane_color_ctl_crtc(const struct intel_crtc_state * crtc_state)4837 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4838 {
4839 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4840 	u32 plane_color_ctl = 0;
4841 
4842 	if (INTEL_GEN(dev_priv) >= 11)
4843 		return plane_color_ctl;
4844 
4845 	if (crtc_state->gamma_enable)
4846 		plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4847 
4848 	if (crtc_state->csc_enable)
4849 		plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4850 
4851 	return plane_color_ctl;
4852 }
4853 
glk_plane_color_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4854 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4855 			const struct intel_plane_state *plane_state)
4856 {
4857 	struct drm_i915_private *dev_priv =
4858 		to_i915(plane_state->uapi.plane->dev);
4859 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4860 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4861 	u32 plane_color_ctl = 0;
4862 
4863 	plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4864 	plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4865 
4866 	if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4867 		switch (plane_state->hw.color_encoding) {
4868 		case DRM_COLOR_YCBCR_BT709:
4869 			plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4870 			break;
4871 		case DRM_COLOR_YCBCR_BT2020:
4872 			plane_color_ctl |=
4873 				PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020;
4874 			break;
4875 		default:
4876 			plane_color_ctl |=
4877 				PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601;
4878 		}
4879 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4880 			plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4881 	} else if (fb->format->is_yuv) {
4882 		plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4883 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4884 			plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4885 	}
4886 
4887 	return plane_color_ctl;
4888 }
4889 
4890 static int
__intel_display_resume(struct drm_device * dev,struct drm_atomic_state * state,struct drm_modeset_acquire_ctx * ctx)4891 __intel_display_resume(struct drm_device *dev,
4892 		       struct drm_atomic_state *state,
4893 		       struct drm_modeset_acquire_ctx *ctx)
4894 {
4895 	struct drm_crtc_state *crtc_state;
4896 	struct drm_crtc *crtc;
4897 	int i, ret;
4898 
4899 	intel_modeset_setup_hw_state(dev, ctx);
4900 	intel_vga_redisable(to_i915(dev));
4901 
4902 	if (!state)
4903 		return 0;
4904 
4905 	/*
4906 	 * We've duplicated the state, pointers to the old state are invalid.
4907 	 *
4908 	 * Don't attempt to use the old state until we commit the duplicated state.
4909 	 */
4910 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4911 		/*
4912 		 * Force recalculation even if we restore
4913 		 * current state. With fast modeset this may not result
4914 		 * in a modeset when the state is compatible.
4915 		 */
4916 		crtc_state->mode_changed = true;
4917 	}
4918 
4919 	/* ignore any reset values/BIOS leftovers in the WM registers */
4920 	if (!HAS_GMCH(to_i915(dev)))
4921 		to_intel_atomic_state(state)->skip_intermediate_wm = true;
4922 
4923 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4924 
4925 	drm_WARN_ON(dev, ret == -EDEADLK);
4926 	return ret;
4927 }
4928 
gpu_reset_clobbers_display(struct drm_i915_private * dev_priv)4929 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4930 {
4931 	return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4932 		intel_has_gpu_reset(&dev_priv->gt));
4933 }
4934 
intel_prepare_reset(struct drm_i915_private * dev_priv)4935 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4936 {
4937 	struct drm_device *dev = &dev_priv->drm;
4938 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4939 	struct drm_atomic_state *state;
4940 	int ret;
4941 
4942 	/* reset doesn't touch the display */
4943 	if (!dev_priv->params.force_reset_modeset_test &&
4944 	    !gpu_reset_clobbers_display(dev_priv))
4945 		return;
4946 
4947 	/* We have a modeset vs reset deadlock, defensively unbreak it. */
4948 	set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4949 	smp_mb__after_atomic();
4950 	wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4951 
4952 	if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4953 		drm_dbg_kms(&dev_priv->drm,
4954 			    "Modeset potentially stuck, unbreaking through wedging\n");
4955 		intel_gt_set_wedged(&dev_priv->gt);
4956 	}
4957 
4958 	/*
4959 	 * Need mode_config.mutex so that we don't
4960 	 * trample ongoing ->detect() and whatnot.
4961 	 */
4962 	mutex_lock(&dev->mode_config.mutex);
4963 	drm_modeset_acquire_init(ctx, 0);
4964 	while (1) {
4965 		ret = drm_modeset_lock_all_ctx(dev, ctx);
4966 		if (ret != -EDEADLK)
4967 			break;
4968 
4969 		drm_modeset_backoff(ctx);
4970 	}
4971 	/*
4972 	 * Disabling the crtcs gracefully seems nicer. Also the
4973 	 * g33 docs say we should at least disable all the planes.
4974 	 */
4975 	state = drm_atomic_helper_duplicate_state(dev, ctx);
4976 	if (IS_ERR(state)) {
4977 		ret = PTR_ERR(state);
4978 		drm_err(&dev_priv->drm, "Duplicating state failed with %i\n",
4979 			ret);
4980 		return;
4981 	}
4982 
4983 	ret = drm_atomic_helper_disable_all(dev, ctx);
4984 	if (ret) {
4985 		drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
4986 			ret);
4987 		drm_atomic_state_put(state);
4988 		return;
4989 	}
4990 
4991 	dev_priv->modeset_restore_state = state;
4992 	state->acquire_ctx = ctx;
4993 }
4994 
intel_finish_reset(struct drm_i915_private * dev_priv)4995 void intel_finish_reset(struct drm_i915_private *dev_priv)
4996 {
4997 	struct drm_device *dev = &dev_priv->drm;
4998 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4999 	struct drm_atomic_state *state;
5000 	int ret;
5001 
5002 	/* reset doesn't touch the display */
5003 	if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
5004 		return;
5005 
5006 	state = fetch_and_zero(&dev_priv->modeset_restore_state);
5007 	if (!state)
5008 		goto unlock;
5009 
5010 	/* reset doesn't touch the display */
5011 	if (!gpu_reset_clobbers_display(dev_priv)) {
5012 		/* for testing only restore the display */
5013 		ret = __intel_display_resume(dev, state, ctx);
5014 		if (ret)
5015 			drm_err(&dev_priv->drm,
5016 				"Restoring old state failed with %i\n", ret);
5017 	} else {
5018 		/*
5019 		 * The display has been reset as well,
5020 		 * so need a full re-initialization.
5021 		 */
5022 		intel_pps_unlock_regs_wa(dev_priv);
5023 		intel_modeset_init_hw(dev_priv);
5024 		intel_init_clock_gating(dev_priv);
5025 
5026 		spin_lock_irq(&dev_priv->irq_lock);
5027 		if (dev_priv->display.hpd_irq_setup)
5028 			dev_priv->display.hpd_irq_setup(dev_priv);
5029 		spin_unlock_irq(&dev_priv->irq_lock);
5030 
5031 		ret = __intel_display_resume(dev, state, ctx);
5032 		if (ret)
5033 			drm_err(&dev_priv->drm,
5034 				"Restoring old state failed with %i\n", ret);
5035 
5036 		intel_hpd_init(dev_priv);
5037 	}
5038 
5039 	drm_atomic_state_put(state);
5040 unlock:
5041 	drm_modeset_drop_locks(ctx);
5042 	drm_modeset_acquire_fini(ctx);
5043 	mutex_unlock(&dev->mode_config.mutex);
5044 
5045 	clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
5046 }
5047 
icl_set_pipe_chicken(struct intel_crtc * crtc)5048 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
5049 {
5050 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5051 	enum pipe pipe = crtc->pipe;
5052 	u32 tmp;
5053 
5054 	tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe));
5055 
5056 	/*
5057 	 * Display WA #1153: icl
5058 	 * enable hardware to bypass the alpha math
5059 	 * and rounding for per-pixel values 00 and 0xff
5060 	 */
5061 	tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
5062 	/*
5063 	 * Display WA # 1605353570: icl
5064 	 * Set the pixel rounding bit to 1 for allowing
5065 	 * passthrough of Frame buffer pixels unmodified
5066 	 * across pipe
5067 	 */
5068 	tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
5069 	intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp);
5070 }
5071 
intel_fdi_normal_train(struct intel_crtc * crtc)5072 static void intel_fdi_normal_train(struct intel_crtc *crtc)
5073 {
5074 	struct drm_device *dev = crtc->base.dev;
5075 	struct drm_i915_private *dev_priv = to_i915(dev);
5076 	enum pipe pipe = crtc->pipe;
5077 	i915_reg_t reg;
5078 	u32 temp;
5079 
5080 	/* enable normal train */
5081 	reg = FDI_TX_CTL(pipe);
5082 	temp = intel_de_read(dev_priv, reg);
5083 	if (IS_IVYBRIDGE(dev_priv)) {
5084 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5085 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
5086 	} else {
5087 		temp &= ~FDI_LINK_TRAIN_NONE;
5088 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
5089 	}
5090 	intel_de_write(dev_priv, reg, temp);
5091 
5092 	reg = FDI_RX_CTL(pipe);
5093 	temp = intel_de_read(dev_priv, reg);
5094 	if (HAS_PCH_CPT(dev_priv)) {
5095 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5096 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
5097 	} else {
5098 		temp &= ~FDI_LINK_TRAIN_NONE;
5099 		temp |= FDI_LINK_TRAIN_NONE;
5100 	}
5101 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
5102 
5103 	/* wait one idle pattern time */
5104 	intel_de_posting_read(dev_priv, reg);
5105 	udelay(1000);
5106 
5107 	/* IVB wants error correction enabled */
5108 	if (IS_IVYBRIDGE(dev_priv))
5109 		intel_de_write(dev_priv, reg,
5110 		               intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE);
5111 }
5112 
5113 /* The FDI link training functions for ILK/Ibexpeak. */
ilk_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)5114 static void ilk_fdi_link_train(struct intel_crtc *crtc,
5115 			       const struct intel_crtc_state *crtc_state)
5116 {
5117 	struct drm_device *dev = crtc->base.dev;
5118 	struct drm_i915_private *dev_priv = to_i915(dev);
5119 	enum pipe pipe = crtc->pipe;
5120 	i915_reg_t reg;
5121 	u32 temp, tries;
5122 
5123 	/* FDI needs bits from pipe first */
5124 	assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder);
5125 
5126 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5127 	   for train result */
5128 	reg = FDI_RX_IMR(pipe);
5129 	temp = intel_de_read(dev_priv, reg);
5130 	temp &= ~FDI_RX_SYMBOL_LOCK;
5131 	temp &= ~FDI_RX_BIT_LOCK;
5132 	intel_de_write(dev_priv, reg, temp);
5133 	intel_de_read(dev_priv, reg);
5134 	udelay(150);
5135 
5136 	/* enable CPU FDI TX and PCH FDI RX */
5137 	reg = FDI_TX_CTL(pipe);
5138 	temp = intel_de_read(dev_priv, reg);
5139 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
5140 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5141 	temp &= ~FDI_LINK_TRAIN_NONE;
5142 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5143 	intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5144 
5145 	reg = FDI_RX_CTL(pipe);
5146 	temp = intel_de_read(dev_priv, reg);
5147 	temp &= ~FDI_LINK_TRAIN_NONE;
5148 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5149 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5150 
5151 	intel_de_posting_read(dev_priv, reg);
5152 	udelay(150);
5153 
5154 	/* Ironlake workaround, enable clock pointer after FDI enable*/
5155 	intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5156 		       FDI_RX_PHASE_SYNC_POINTER_OVR);
5157 	intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5158 		       FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN);
5159 
5160 	reg = FDI_RX_IIR(pipe);
5161 	for (tries = 0; tries < 5; tries++) {
5162 		temp = intel_de_read(dev_priv, reg);
5163 		drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5164 
5165 		if ((temp & FDI_RX_BIT_LOCK)) {
5166 			drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n");
5167 			intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK);
5168 			break;
5169 		}
5170 	}
5171 	if (tries == 5)
5172 		drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5173 
5174 	/* Train 2 */
5175 	reg = FDI_TX_CTL(pipe);
5176 	temp = intel_de_read(dev_priv, reg);
5177 	temp &= ~FDI_LINK_TRAIN_NONE;
5178 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5179 	intel_de_write(dev_priv, reg, temp);
5180 
5181 	reg = FDI_RX_CTL(pipe);
5182 	temp = intel_de_read(dev_priv, reg);
5183 	temp &= ~FDI_LINK_TRAIN_NONE;
5184 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5185 	intel_de_write(dev_priv, reg, temp);
5186 
5187 	intel_de_posting_read(dev_priv, reg);
5188 	udelay(150);
5189 
5190 	reg = FDI_RX_IIR(pipe);
5191 	for (tries = 0; tries < 5; tries++) {
5192 		temp = intel_de_read(dev_priv, reg);
5193 		drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5194 
5195 		if (temp & FDI_RX_SYMBOL_LOCK) {
5196 			intel_de_write(dev_priv, reg,
5197 				       temp | FDI_RX_SYMBOL_LOCK);
5198 			drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n");
5199 			break;
5200 		}
5201 	}
5202 	if (tries == 5)
5203 		drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5204 
5205 	drm_dbg_kms(&dev_priv->drm, "FDI train done\n");
5206 
5207 }
5208 
5209 static const int snb_b_fdi_train_param[] = {
5210 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
5211 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
5212 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
5213 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
5214 };
5215 
5216 /* The FDI link training functions for SNB/Cougarpoint. */
gen6_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)5217 static void gen6_fdi_link_train(struct intel_crtc *crtc,
5218 				const struct intel_crtc_state *crtc_state)
5219 {
5220 	struct drm_device *dev = crtc->base.dev;
5221 	struct drm_i915_private *dev_priv = to_i915(dev);
5222 	enum pipe pipe = crtc->pipe;
5223 	i915_reg_t reg;
5224 	u32 temp, i, retry;
5225 
5226 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5227 	   for train result */
5228 	reg = FDI_RX_IMR(pipe);
5229 	temp = intel_de_read(dev_priv, reg);
5230 	temp &= ~FDI_RX_SYMBOL_LOCK;
5231 	temp &= ~FDI_RX_BIT_LOCK;
5232 	intel_de_write(dev_priv, reg, temp);
5233 
5234 	intel_de_posting_read(dev_priv, reg);
5235 	udelay(150);
5236 
5237 	/* enable CPU FDI TX and PCH FDI RX */
5238 	reg = FDI_TX_CTL(pipe);
5239 	temp = intel_de_read(dev_priv, reg);
5240 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
5241 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5242 	temp &= ~FDI_LINK_TRAIN_NONE;
5243 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5244 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5245 	/* SNB-B */
5246 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5247 	intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5248 
5249 	intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5250 		       FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5251 
5252 	reg = FDI_RX_CTL(pipe);
5253 	temp = intel_de_read(dev_priv, reg);
5254 	if (HAS_PCH_CPT(dev_priv)) {
5255 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5256 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5257 	} else {
5258 		temp &= ~FDI_LINK_TRAIN_NONE;
5259 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5260 	}
5261 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5262 
5263 	intel_de_posting_read(dev_priv, reg);
5264 	udelay(150);
5265 
5266 	for (i = 0; i < 4; i++) {
5267 		reg = FDI_TX_CTL(pipe);
5268 		temp = intel_de_read(dev_priv, reg);
5269 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5270 		temp |= snb_b_fdi_train_param[i];
5271 		intel_de_write(dev_priv, reg, temp);
5272 
5273 		intel_de_posting_read(dev_priv, reg);
5274 		udelay(500);
5275 
5276 		for (retry = 0; retry < 5; retry++) {
5277 			reg = FDI_RX_IIR(pipe);
5278 			temp = intel_de_read(dev_priv, reg);
5279 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5280 			if (temp & FDI_RX_BIT_LOCK) {
5281 				intel_de_write(dev_priv, reg,
5282 					       temp | FDI_RX_BIT_LOCK);
5283 				drm_dbg_kms(&dev_priv->drm,
5284 					    "FDI train 1 done.\n");
5285 				break;
5286 			}
5287 			udelay(50);
5288 		}
5289 		if (retry < 5)
5290 			break;
5291 	}
5292 	if (i == 4)
5293 		drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5294 
5295 	/* Train 2 */
5296 	reg = FDI_TX_CTL(pipe);
5297 	temp = intel_de_read(dev_priv, reg);
5298 	temp &= ~FDI_LINK_TRAIN_NONE;
5299 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5300 	if (IS_GEN(dev_priv, 6)) {
5301 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5302 		/* SNB-B */
5303 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5304 	}
5305 	intel_de_write(dev_priv, reg, temp);
5306 
5307 	reg = FDI_RX_CTL(pipe);
5308 	temp = intel_de_read(dev_priv, reg);
5309 	if (HAS_PCH_CPT(dev_priv)) {
5310 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5311 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5312 	} else {
5313 		temp &= ~FDI_LINK_TRAIN_NONE;
5314 		temp |= FDI_LINK_TRAIN_PATTERN_2;
5315 	}
5316 	intel_de_write(dev_priv, reg, temp);
5317 
5318 	intel_de_posting_read(dev_priv, reg);
5319 	udelay(150);
5320 
5321 	for (i = 0; i < 4; i++) {
5322 		reg = FDI_TX_CTL(pipe);
5323 		temp = intel_de_read(dev_priv, reg);
5324 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5325 		temp |= snb_b_fdi_train_param[i];
5326 		intel_de_write(dev_priv, reg, temp);
5327 
5328 		intel_de_posting_read(dev_priv, reg);
5329 		udelay(500);
5330 
5331 		for (retry = 0; retry < 5; retry++) {
5332 			reg = FDI_RX_IIR(pipe);
5333 			temp = intel_de_read(dev_priv, reg);
5334 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5335 			if (temp & FDI_RX_SYMBOL_LOCK) {
5336 				intel_de_write(dev_priv, reg,
5337 					       temp | FDI_RX_SYMBOL_LOCK);
5338 				drm_dbg_kms(&dev_priv->drm,
5339 					    "FDI train 2 done.\n");
5340 				break;
5341 			}
5342 			udelay(50);
5343 		}
5344 		if (retry < 5)
5345 			break;
5346 	}
5347 	if (i == 4)
5348 		drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5349 
5350 	drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5351 }
5352 
5353 /* Manual link training for Ivy Bridge A0 parts */
ivb_manual_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)5354 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
5355 				      const struct intel_crtc_state *crtc_state)
5356 {
5357 	struct drm_device *dev = crtc->base.dev;
5358 	struct drm_i915_private *dev_priv = to_i915(dev);
5359 	enum pipe pipe = crtc->pipe;
5360 	i915_reg_t reg;
5361 	u32 temp, i, j;
5362 
5363 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5364 	   for train result */
5365 	reg = FDI_RX_IMR(pipe);
5366 	temp = intel_de_read(dev_priv, reg);
5367 	temp &= ~FDI_RX_SYMBOL_LOCK;
5368 	temp &= ~FDI_RX_BIT_LOCK;
5369 	intel_de_write(dev_priv, reg, temp);
5370 
5371 	intel_de_posting_read(dev_priv, reg);
5372 	udelay(150);
5373 
5374 	drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n",
5375 		    intel_de_read(dev_priv, FDI_RX_IIR(pipe)));
5376 
5377 	/* Try each vswing and preemphasis setting twice before moving on */
5378 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
5379 		/* disable first in case we need to retry */
5380 		reg = FDI_TX_CTL(pipe);
5381 		temp = intel_de_read(dev_priv, reg);
5382 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
5383 		temp &= ~FDI_TX_ENABLE;
5384 		intel_de_write(dev_priv, reg, temp);
5385 
5386 		reg = FDI_RX_CTL(pipe);
5387 		temp = intel_de_read(dev_priv, reg);
5388 		temp &= ~FDI_LINK_TRAIN_AUTO;
5389 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5390 		temp &= ~FDI_RX_ENABLE;
5391 		intel_de_write(dev_priv, reg, temp);
5392 
5393 		/* enable CPU FDI TX and PCH FDI RX */
5394 		reg = FDI_TX_CTL(pipe);
5395 		temp = intel_de_read(dev_priv, reg);
5396 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
5397 		temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5398 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
5399 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5400 		temp |= snb_b_fdi_train_param[j/2];
5401 		temp |= FDI_COMPOSITE_SYNC;
5402 		intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5403 
5404 		intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5405 			       FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5406 
5407 		reg = FDI_RX_CTL(pipe);
5408 		temp = intel_de_read(dev_priv, reg);
5409 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5410 		temp |= FDI_COMPOSITE_SYNC;
5411 		intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5412 
5413 		intel_de_posting_read(dev_priv, reg);
5414 		udelay(1); /* should be 0.5us */
5415 
5416 		for (i = 0; i < 4; i++) {
5417 			reg = FDI_RX_IIR(pipe);
5418 			temp = intel_de_read(dev_priv, reg);
5419 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5420 
5421 			if (temp & FDI_RX_BIT_LOCK ||
5422 			    (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) {
5423 				intel_de_write(dev_priv, reg,
5424 					       temp | FDI_RX_BIT_LOCK);
5425 				drm_dbg_kms(&dev_priv->drm,
5426 					    "FDI train 1 done, level %i.\n",
5427 					    i);
5428 				break;
5429 			}
5430 			udelay(1); /* should be 0.5us */
5431 		}
5432 		if (i == 4) {
5433 			drm_dbg_kms(&dev_priv->drm,
5434 				    "FDI train 1 fail on vswing %d\n", j / 2);
5435 			continue;
5436 		}
5437 
5438 		/* Train 2 */
5439 		reg = FDI_TX_CTL(pipe);
5440 		temp = intel_de_read(dev_priv, reg);
5441 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5442 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
5443 		intel_de_write(dev_priv, reg, temp);
5444 
5445 		reg = FDI_RX_CTL(pipe);
5446 		temp = intel_de_read(dev_priv, reg);
5447 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5448 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5449 		intel_de_write(dev_priv, reg, temp);
5450 
5451 		intel_de_posting_read(dev_priv, reg);
5452 		udelay(2); /* should be 1.5us */
5453 
5454 		for (i = 0; i < 4; i++) {
5455 			reg = FDI_RX_IIR(pipe);
5456 			temp = intel_de_read(dev_priv, reg);
5457 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5458 
5459 			if (temp & FDI_RX_SYMBOL_LOCK ||
5460 			    (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) {
5461 				intel_de_write(dev_priv, reg,
5462 					       temp | FDI_RX_SYMBOL_LOCK);
5463 				drm_dbg_kms(&dev_priv->drm,
5464 					    "FDI train 2 done, level %i.\n",
5465 					    i);
5466 				goto train_done;
5467 			}
5468 			udelay(2); /* should be 1.5us */
5469 		}
5470 		if (i == 4)
5471 			drm_dbg_kms(&dev_priv->drm,
5472 				    "FDI train 2 fail on vswing %d\n", j / 2);
5473 	}
5474 
5475 train_done:
5476 	drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5477 }
5478 
ilk_fdi_pll_enable(const struct intel_crtc_state * crtc_state)5479 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
5480 {
5481 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
5482 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5483 	enum pipe pipe = intel_crtc->pipe;
5484 	i915_reg_t reg;
5485 	u32 temp;
5486 
5487 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5488 	reg = FDI_RX_CTL(pipe);
5489 	temp = intel_de_read(dev_priv, reg);
5490 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
5491 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5492 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5493 	intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE);
5494 
5495 	intel_de_posting_read(dev_priv, reg);
5496 	udelay(200);
5497 
5498 	/* Switch from Rawclk to PCDclk */
5499 	temp = intel_de_read(dev_priv, reg);
5500 	intel_de_write(dev_priv, reg, temp | FDI_PCDCLK);
5501 
5502 	intel_de_posting_read(dev_priv, reg);
5503 	udelay(200);
5504 
5505 	/* Enable CPU FDI TX PLL, always on for Ironlake */
5506 	reg = FDI_TX_CTL(pipe);
5507 	temp = intel_de_read(dev_priv, reg);
5508 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5509 		intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE);
5510 
5511 		intel_de_posting_read(dev_priv, reg);
5512 		udelay(100);
5513 	}
5514 }
5515 
ilk_fdi_pll_disable(struct intel_crtc * intel_crtc)5516 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc)
5517 {
5518 	struct drm_device *dev = intel_crtc->base.dev;
5519 	struct drm_i915_private *dev_priv = to_i915(dev);
5520 	enum pipe pipe = intel_crtc->pipe;
5521 	i915_reg_t reg;
5522 	u32 temp;
5523 
5524 	/* Switch from PCDclk to Rawclk */
5525 	reg = FDI_RX_CTL(pipe);
5526 	temp = intel_de_read(dev_priv, reg);
5527 	intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK);
5528 
5529 	/* Disable CPU FDI TX PLL */
5530 	reg = FDI_TX_CTL(pipe);
5531 	temp = intel_de_read(dev_priv, reg);
5532 	intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE);
5533 
5534 	intel_de_posting_read(dev_priv, reg);
5535 	udelay(100);
5536 
5537 	reg = FDI_RX_CTL(pipe);
5538 	temp = intel_de_read(dev_priv, reg);
5539 	intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE);
5540 
5541 	/* Wait for the clocks to turn off. */
5542 	intel_de_posting_read(dev_priv, reg);
5543 	udelay(100);
5544 }
5545 
ilk_fdi_disable(struct intel_crtc * crtc)5546 static void ilk_fdi_disable(struct intel_crtc *crtc)
5547 {
5548 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5549 	enum pipe pipe = crtc->pipe;
5550 	i915_reg_t reg;
5551 	u32 temp;
5552 
5553 	/* disable CPU FDI tx and PCH FDI rx */
5554 	reg = FDI_TX_CTL(pipe);
5555 	temp = intel_de_read(dev_priv, reg);
5556 	intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE);
5557 	intel_de_posting_read(dev_priv, reg);
5558 
5559 	reg = FDI_RX_CTL(pipe);
5560 	temp = intel_de_read(dev_priv, reg);
5561 	temp &= ~(0x7 << 16);
5562 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5563 	intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE);
5564 
5565 	intel_de_posting_read(dev_priv, reg);
5566 	udelay(100);
5567 
5568 	/* Ironlake workaround, disable clock pointer after downing FDI */
5569 	if (HAS_PCH_IBX(dev_priv))
5570 		intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5571 			       FDI_RX_PHASE_SYNC_POINTER_OVR);
5572 
5573 	/* still set train pattern 1 */
5574 	reg = FDI_TX_CTL(pipe);
5575 	temp = intel_de_read(dev_priv, reg);
5576 	temp &= ~FDI_LINK_TRAIN_NONE;
5577 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5578 	intel_de_write(dev_priv, reg, temp);
5579 
5580 	reg = FDI_RX_CTL(pipe);
5581 	temp = intel_de_read(dev_priv, reg);
5582 	if (HAS_PCH_CPT(dev_priv)) {
5583 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5584 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5585 	} else {
5586 		temp &= ~FDI_LINK_TRAIN_NONE;
5587 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5588 	}
5589 	/* BPC in FDI rx is consistent with that in PIPECONF */
5590 	temp &= ~(0x07 << 16);
5591 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5592 	intel_de_write(dev_priv, reg, temp);
5593 
5594 	intel_de_posting_read(dev_priv, reg);
5595 	udelay(100);
5596 }
5597 
intel_has_pending_fb_unpin(struct drm_i915_private * dev_priv)5598 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5599 {
5600 	struct drm_crtc *crtc;
5601 	bool cleanup_done;
5602 
5603 	drm_for_each_crtc(crtc, &dev_priv->drm) {
5604 		struct drm_crtc_commit *commit;
5605 		spin_lock(&crtc->commit_lock);
5606 		commit = list_first_entry_or_null(&crtc->commit_list,
5607 						  struct drm_crtc_commit, commit_entry);
5608 		cleanup_done = commit ?
5609 			try_wait_for_completion(&commit->cleanup_done) : true;
5610 		spin_unlock(&crtc->commit_lock);
5611 
5612 		if (cleanup_done)
5613 			continue;
5614 
5615 		drm_crtc_wait_one_vblank(crtc);
5616 
5617 		return true;
5618 	}
5619 
5620 	return false;
5621 }
5622 
lpt_disable_iclkip(struct drm_i915_private * dev_priv)5623 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5624 {
5625 	u32 temp;
5626 
5627 	intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE);
5628 
5629 	mutex_lock(&dev_priv->sb_lock);
5630 
5631 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5632 	temp |= SBI_SSCCTL_DISABLE;
5633 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5634 
5635 	mutex_unlock(&dev_priv->sb_lock);
5636 }
5637 
5638 /* Program iCLKIP clock to the desired frequency */
lpt_program_iclkip(const struct intel_crtc_state * crtc_state)5639 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5640 {
5641 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5642 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5643 	int clock = crtc_state->hw.adjusted_mode.crtc_clock;
5644 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
5645 	u32 temp;
5646 
5647 	lpt_disable_iclkip(dev_priv);
5648 
5649 	/* The iCLK virtual clock root frequency is in MHz,
5650 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
5651 	 * divisors, it is necessary to divide one by another, so we
5652 	 * convert the virtual clock precision to KHz here for higher
5653 	 * precision.
5654 	 */
5655 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5656 		u32 iclk_virtual_root_freq = 172800 * 1000;
5657 		u32 iclk_pi_range = 64;
5658 		u32 desired_divisor;
5659 
5660 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5661 						    clock << auxdiv);
5662 		divsel = (desired_divisor / iclk_pi_range) - 2;
5663 		phaseinc = desired_divisor % iclk_pi_range;
5664 
5665 		/*
5666 		 * Near 20MHz is a corner case which is
5667 		 * out of range for the 7-bit divisor
5668 		 */
5669 		if (divsel <= 0x7f)
5670 			break;
5671 	}
5672 
5673 	/* This should not happen with any sane values */
5674 	drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5675 		    ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5676 	drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) &
5677 		    ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5678 
5679 	drm_dbg_kms(&dev_priv->drm,
5680 		    "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5681 		    clock, auxdiv, divsel, phasedir, phaseinc);
5682 
5683 	mutex_lock(&dev_priv->sb_lock);
5684 
5685 	/* Program SSCDIVINTPHASE6 */
5686 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5687 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5688 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5689 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5690 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5691 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5692 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5693 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5694 
5695 	/* Program SSCAUXDIV */
5696 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5697 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5698 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5699 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5700 
5701 	/* Enable modulator and associated divider */
5702 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5703 	temp &= ~SBI_SSCCTL_DISABLE;
5704 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5705 
5706 	mutex_unlock(&dev_priv->sb_lock);
5707 
5708 	/* Wait for initialization time */
5709 	udelay(24);
5710 
5711 	intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5712 }
5713 
lpt_get_iclkip(struct drm_i915_private * dev_priv)5714 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5715 {
5716 	u32 divsel, phaseinc, auxdiv;
5717 	u32 iclk_virtual_root_freq = 172800 * 1000;
5718 	u32 iclk_pi_range = 64;
5719 	u32 desired_divisor;
5720 	u32 temp;
5721 
5722 	if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5723 		return 0;
5724 
5725 	mutex_lock(&dev_priv->sb_lock);
5726 
5727 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5728 	if (temp & SBI_SSCCTL_DISABLE) {
5729 		mutex_unlock(&dev_priv->sb_lock);
5730 		return 0;
5731 	}
5732 
5733 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5734 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5735 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5736 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5737 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5738 
5739 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5740 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5741 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5742 
5743 	mutex_unlock(&dev_priv->sb_lock);
5744 
5745 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5746 
5747 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5748 				 desired_divisor << auxdiv);
5749 }
5750 
ilk_pch_transcoder_set_timings(const struct intel_crtc_state * crtc_state,enum pipe pch_transcoder)5751 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5752 					   enum pipe pch_transcoder)
5753 {
5754 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5755 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5756 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5757 
5758 	intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder),
5759 		       intel_de_read(dev_priv, HTOTAL(cpu_transcoder)));
5760 	intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder),
5761 		       intel_de_read(dev_priv, HBLANK(cpu_transcoder)));
5762 	intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder),
5763 		       intel_de_read(dev_priv, HSYNC(cpu_transcoder)));
5764 
5765 	intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder),
5766 		       intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
5767 	intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder),
5768 		       intel_de_read(dev_priv, VBLANK(cpu_transcoder)));
5769 	intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder),
5770 		       intel_de_read(dev_priv, VSYNC(cpu_transcoder)));
5771 	intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5772 		       intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder)));
5773 }
5774 
cpt_set_fdi_bc_bifurcation(struct drm_i915_private * dev_priv,bool enable)5775 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5776 {
5777 	u32 temp;
5778 
5779 	temp = intel_de_read(dev_priv, SOUTH_CHICKEN1);
5780 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5781 		return;
5782 
5783 	drm_WARN_ON(&dev_priv->drm,
5784 		    intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) &
5785 		    FDI_RX_ENABLE);
5786 	drm_WARN_ON(&dev_priv->drm,
5787 		    intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) &
5788 		    FDI_RX_ENABLE);
5789 
5790 	temp &= ~FDI_BC_BIFURCATION_SELECT;
5791 	if (enable)
5792 		temp |= FDI_BC_BIFURCATION_SELECT;
5793 
5794 	drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n",
5795 		    enable ? "en" : "dis");
5796 	intel_de_write(dev_priv, SOUTH_CHICKEN1, temp);
5797 	intel_de_posting_read(dev_priv, SOUTH_CHICKEN1);
5798 }
5799 
ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state * crtc_state)5800 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5801 {
5802 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5803 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5804 
5805 	switch (crtc->pipe) {
5806 	case PIPE_A:
5807 		break;
5808 	case PIPE_B:
5809 		if (crtc_state->fdi_lanes > 2)
5810 			cpt_set_fdi_bc_bifurcation(dev_priv, false);
5811 		else
5812 			cpt_set_fdi_bc_bifurcation(dev_priv, true);
5813 
5814 		break;
5815 	case PIPE_C:
5816 		cpt_set_fdi_bc_bifurcation(dev_priv, true);
5817 
5818 		break;
5819 	default:
5820 		BUG();
5821 	}
5822 }
5823 
5824 /*
5825  * Finds the encoder associated with the given CRTC. This can only be
5826  * used when we know that the CRTC isn't feeding multiple encoders!
5827  */
5828 static struct intel_encoder *
intel_get_crtc_new_encoder(const struct intel_atomic_state * state,const struct intel_crtc_state * crtc_state)5829 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5830 			   const struct intel_crtc_state *crtc_state)
5831 {
5832 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5833 	const struct drm_connector_state *connector_state;
5834 	const struct drm_connector *connector;
5835 	struct intel_encoder *encoder = NULL;
5836 	int num_encoders = 0;
5837 	int i;
5838 
5839 	for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5840 		if (connector_state->crtc != &crtc->base)
5841 			continue;
5842 
5843 		encoder = to_intel_encoder(connector_state->best_encoder);
5844 		num_encoders++;
5845 	}
5846 
5847 	drm_WARN(state->base.dev, num_encoders != 1,
5848 		 "%d encoders for pipe %c\n",
5849 		 num_encoders, pipe_name(crtc->pipe));
5850 
5851 	return encoder;
5852 }
5853 
5854 /*
5855  * Enable PCH resources required for PCH ports:
5856  *   - PCH PLLs
5857  *   - FDI training & RX/TX
5858  *   - update transcoder timings
5859  *   - DP transcoding bits
5860  *   - transcoder
5861  */
ilk_pch_enable(const struct intel_atomic_state * state,const struct intel_crtc_state * crtc_state)5862 static void ilk_pch_enable(const struct intel_atomic_state *state,
5863 			   const struct intel_crtc_state *crtc_state)
5864 {
5865 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5866 	struct drm_device *dev = crtc->base.dev;
5867 	struct drm_i915_private *dev_priv = to_i915(dev);
5868 	enum pipe pipe = crtc->pipe;
5869 	u32 temp;
5870 
5871 	assert_pch_transcoder_disabled(dev_priv, pipe);
5872 
5873 	if (IS_IVYBRIDGE(dev_priv))
5874 		ivb_update_fdi_bc_bifurcation(crtc_state);
5875 
5876 	/* Write the TU size bits before fdi link training, so that error
5877 	 * detection works. */
5878 	intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe),
5879 		       intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5880 
5881 	/* For PCH output, training FDI link */
5882 	dev_priv->display.fdi_link_train(crtc, crtc_state);
5883 
5884 	/* We need to program the right clock selection before writing the pixel
5885 	 * mutliplier into the DPLL. */
5886 	if (HAS_PCH_CPT(dev_priv)) {
5887 		u32 sel;
5888 
5889 		temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
5890 		temp |= TRANS_DPLL_ENABLE(pipe);
5891 		sel = TRANS_DPLLB_SEL(pipe);
5892 		if (crtc_state->shared_dpll ==
5893 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5894 			temp |= sel;
5895 		else
5896 			temp &= ~sel;
5897 		intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
5898 	}
5899 
5900 	/* XXX: pch pll's can be enabled any time before we enable the PCH
5901 	 * transcoder, and we actually should do this to not upset any PCH
5902 	 * transcoder that already use the clock when we share it.
5903 	 *
5904 	 * Note that enable_shared_dpll tries to do the right thing, but
5905 	 * get_shared_dpll unconditionally resets the pll - we need that to have
5906 	 * the right LVDS enable sequence. */
5907 	intel_enable_shared_dpll(crtc_state);
5908 
5909 	/* set transcoder timing, panel must allow it */
5910 	assert_panel_unlocked(dev_priv, pipe);
5911 	ilk_pch_transcoder_set_timings(crtc_state, pipe);
5912 
5913 	intel_fdi_normal_train(crtc);
5914 
5915 	/* For PCH DP, enable TRANS_DP_CTL */
5916 	if (HAS_PCH_CPT(dev_priv) &&
5917 	    intel_crtc_has_dp_encoder(crtc_state)) {
5918 		const struct drm_display_mode *adjusted_mode =
5919 			&crtc_state->hw.adjusted_mode;
5920 		u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5921 		i915_reg_t reg = TRANS_DP_CTL(pipe);
5922 		enum port port;
5923 
5924 		temp = intel_de_read(dev_priv, reg);
5925 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
5926 			  TRANS_DP_SYNC_MASK |
5927 			  TRANS_DP_BPC_MASK);
5928 		temp |= TRANS_DP_OUTPUT_ENABLE;
5929 		temp |= bpc << 9; /* same format but at 11:9 */
5930 
5931 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5932 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5933 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5934 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5935 
5936 		port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5937 		drm_WARN_ON(dev, port < PORT_B || port > PORT_D);
5938 		temp |= TRANS_DP_PORT_SEL(port);
5939 
5940 		intel_de_write(dev_priv, reg, temp);
5941 	}
5942 
5943 	ilk_enable_pch_transcoder(crtc_state);
5944 }
5945 
lpt_pch_enable(const struct intel_crtc_state * crtc_state)5946 void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
5947 {
5948 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5949 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5950 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5951 
5952 	assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5953 
5954 	lpt_program_iclkip(crtc_state);
5955 
5956 	/* Set transcoder timing. */
5957 	ilk_pch_transcoder_set_timings(crtc_state, PIPE_A);
5958 
5959 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5960 }
5961 
cpt_verify_modeset(struct drm_i915_private * dev_priv,enum pipe pipe)5962 static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
5963 			       enum pipe pipe)
5964 {
5965 	i915_reg_t dslreg = PIPEDSL(pipe);
5966 	u32 temp;
5967 
5968 	temp = intel_de_read(dev_priv, dslreg);
5969 	udelay(500);
5970 	if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) {
5971 		if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5))
5972 			drm_err(&dev_priv->drm,
5973 				"mode set failed: pipe %c stuck\n",
5974 				pipe_name(pipe));
5975 	}
5976 }
5977 
5978 /*
5979  * The hardware phase 0.0 refers to the center of the pixel.
5980  * We want to start from the top/left edge which is phase
5981  * -0.5. That matches how the hardware calculates the scaling
5982  * factors (from top-left of the first pixel to bottom-right
5983  * of the last pixel, as opposed to the pixel centers).
5984  *
5985  * For 4:2:0 subsampled chroma planes we obviously have to
5986  * adjust that so that the chroma sample position lands in
5987  * the right spot.
5988  *
5989  * Note that for packed YCbCr 4:2:2 formats there is no way to
5990  * control chroma siting. The hardware simply replicates the
5991  * chroma samples for both of the luma samples, and thus we don't
5992  * actually get the expected MPEG2 chroma siting convention :(
5993  * The same behaviour is observed on pre-SKL platforms as well.
5994  *
5995  * Theory behind the formula (note that we ignore sub-pixel
5996  * source coordinates):
5997  * s = source sample position
5998  * d = destination sample position
5999  *
6000  * Downscaling 4:1:
6001  * -0.5
6002  * | 0.0
6003  * | |     1.5 (initial phase)
6004  * | |     |
6005  * v v     v
6006  * | s | s | s | s |
6007  * |       d       |
6008  *
6009  * Upscaling 1:4:
6010  * -0.5
6011  * | -0.375 (initial phase)
6012  * | |     0.0
6013  * | |     |
6014  * v v     v
6015  * |       s       |
6016  * | d | d | d | d |
6017  */
skl_scaler_calc_phase(int sub,int scale,bool chroma_cosited)6018 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
6019 {
6020 	int phase = -0x8000;
6021 	u16 trip = 0;
6022 
6023 	if (chroma_cosited)
6024 		phase += (sub - 1) * 0x8000 / sub;
6025 
6026 	phase += scale / (2 * sub);
6027 
6028 	/*
6029 	 * Hardware initial phase limited to [-0.5:1.5].
6030 	 * Since the max hardware scale factor is 3.0, we
6031 	 * should never actually excdeed 1.0 here.
6032 	 */
6033 	WARN_ON(phase < -0x8000 || phase > 0x18000);
6034 
6035 	if (phase < 0)
6036 		phase = 0x10000 + phase;
6037 	else
6038 		trip = PS_PHASE_TRIP;
6039 
6040 	return ((phase >> 2) & PS_PHASE_MASK) | trip;
6041 }
6042 
6043 #define SKL_MIN_SRC_W 8
6044 #define SKL_MAX_SRC_W 4096
6045 #define SKL_MIN_SRC_H 8
6046 #define SKL_MAX_SRC_H 4096
6047 #define SKL_MIN_DST_W 8
6048 #define SKL_MAX_DST_W 4096
6049 #define SKL_MIN_DST_H 8
6050 #define SKL_MAX_DST_H 4096
6051 #define ICL_MAX_SRC_W 5120
6052 #define ICL_MAX_SRC_H 4096
6053 #define ICL_MAX_DST_W 5120
6054 #define ICL_MAX_DST_H 4096
6055 #define SKL_MIN_YUV_420_SRC_W 16
6056 #define SKL_MIN_YUV_420_SRC_H 16
6057 
6058 static int
skl_update_scaler(struct intel_crtc_state * crtc_state,bool force_detach,unsigned int scaler_user,int * scaler_id,int src_w,int src_h,int dst_w,int dst_h,const struct drm_format_info * format,u64 modifier,bool need_scaler)6059 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
6060 		  unsigned int scaler_user, int *scaler_id,
6061 		  int src_w, int src_h, int dst_w, int dst_h,
6062 		  const struct drm_format_info *format,
6063 		  u64 modifier, bool need_scaler)
6064 {
6065 	struct intel_crtc_scaler_state *scaler_state =
6066 		&crtc_state->scaler_state;
6067 	struct intel_crtc *intel_crtc =
6068 		to_intel_crtc(crtc_state->uapi.crtc);
6069 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6070 	const struct drm_display_mode *adjusted_mode =
6071 		&crtc_state->hw.adjusted_mode;
6072 
6073 	/*
6074 	 * Src coordinates are already rotated by 270 degrees for
6075 	 * the 90/270 degree plane rotation cases (to match the
6076 	 * GTT mapping), hence no need to account for rotation here.
6077 	 */
6078 	if (src_w != dst_w || src_h != dst_h)
6079 		need_scaler = true;
6080 
6081 	/*
6082 	 * Scaling/fitting not supported in IF-ID mode in GEN9+
6083 	 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
6084 	 * Once NV12 is enabled, handle it here while allocating scaler
6085 	 * for NV12.
6086 	 */
6087 	if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable &&
6088 	    need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6089 		drm_dbg_kms(&dev_priv->drm,
6090 			    "Pipe/Plane scaling not supported with IF-ID mode\n");
6091 		return -EINVAL;
6092 	}
6093 
6094 	/*
6095 	 * if plane is being disabled or scaler is no more required or force detach
6096 	 *  - free scaler binded to this plane/crtc
6097 	 *  - in order to do this, update crtc->scaler_usage
6098 	 *
6099 	 * Here scaler state in crtc_state is set free so that
6100 	 * scaler can be assigned to other user. Actual register
6101 	 * update to free the scaler is done in plane/panel-fit programming.
6102 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
6103 	 */
6104 	if (force_detach || !need_scaler) {
6105 		if (*scaler_id >= 0) {
6106 			scaler_state->scaler_users &= ~(1 << scaler_user);
6107 			scaler_state->scalers[*scaler_id].in_use = 0;
6108 
6109 			drm_dbg_kms(&dev_priv->drm,
6110 				    "scaler_user index %u.%u: "
6111 				    "Staged freeing scaler id %d scaler_users = 0x%x\n",
6112 				    intel_crtc->pipe, scaler_user, *scaler_id,
6113 				    scaler_state->scaler_users);
6114 			*scaler_id = -1;
6115 		}
6116 		return 0;
6117 	}
6118 
6119 	if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
6120 	    (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
6121 		drm_dbg_kms(&dev_priv->drm,
6122 			    "Planar YUV: src dimensions not met\n");
6123 		return -EINVAL;
6124 	}
6125 
6126 	/* range checks */
6127 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
6128 	    dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
6129 	    (INTEL_GEN(dev_priv) >= 11 &&
6130 	     (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
6131 	      dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
6132 	    (INTEL_GEN(dev_priv) < 11 &&
6133 	     (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
6134 	      dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H)))	{
6135 		drm_dbg_kms(&dev_priv->drm,
6136 			    "scaler_user index %u.%u: src %ux%u dst %ux%u "
6137 			    "size is out of scaler range\n",
6138 			    intel_crtc->pipe, scaler_user, src_w, src_h,
6139 			    dst_w, dst_h);
6140 		return -EINVAL;
6141 	}
6142 
6143 	/* mark this plane as a scaler user in crtc_state */
6144 	scaler_state->scaler_users |= (1 << scaler_user);
6145 	drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: "
6146 		    "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
6147 		    intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
6148 		    scaler_state->scaler_users);
6149 
6150 	return 0;
6151 }
6152 
skl_update_scaler_crtc(struct intel_crtc_state * crtc_state)6153 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state)
6154 {
6155 	const struct drm_display_mode *adjusted_mode =
6156 		&crtc_state->hw.adjusted_mode;
6157 	int width, height;
6158 
6159 	if (crtc_state->pch_pfit.enabled) {
6160 		width = drm_rect_width(&crtc_state->pch_pfit.dst);
6161 		height = drm_rect_height(&crtc_state->pch_pfit.dst);
6162 	} else {
6163 		width = adjusted_mode->crtc_hdisplay;
6164 		height = adjusted_mode->crtc_vdisplay;
6165 	}
6166 
6167 	return skl_update_scaler(crtc_state, !crtc_state->hw.active,
6168 				 SKL_CRTC_INDEX,
6169 				 &crtc_state->scaler_state.scaler_id,
6170 				 crtc_state->pipe_src_w, crtc_state->pipe_src_h,
6171 				 width, height, NULL, 0,
6172 				 crtc_state->pch_pfit.enabled);
6173 }
6174 
6175 /**
6176  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
6177  * @crtc_state: crtc's scaler state
6178  * @plane_state: atomic plane state to update
6179  *
6180  * Return
6181  *     0 - scaler_usage updated successfully
6182  *    error - requested scaling cannot be supported or other error condition
6183  */
skl_update_scaler_plane(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)6184 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
6185 				   struct intel_plane_state *plane_state)
6186 {
6187 	struct intel_plane *intel_plane =
6188 		to_intel_plane(plane_state->uapi.plane);
6189 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
6190 	struct drm_framebuffer *fb = plane_state->hw.fb;
6191 	int ret;
6192 	bool force_detach = !fb || !plane_state->uapi.visible;
6193 	bool need_scaler = false;
6194 
6195 	/* Pre-gen11 and SDR planes always need a scaler for planar formats. */
6196 	if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
6197 	    fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
6198 		need_scaler = true;
6199 
6200 	ret = skl_update_scaler(crtc_state, force_detach,
6201 				drm_plane_index(&intel_plane->base),
6202 				&plane_state->scaler_id,
6203 				drm_rect_width(&plane_state->uapi.src) >> 16,
6204 				drm_rect_height(&plane_state->uapi.src) >> 16,
6205 				drm_rect_width(&plane_state->uapi.dst),
6206 				drm_rect_height(&plane_state->uapi.dst),
6207 				fb ? fb->format : NULL,
6208 				fb ? fb->modifier : 0,
6209 				need_scaler);
6210 
6211 	if (ret || plane_state->scaler_id < 0)
6212 		return ret;
6213 
6214 	/* check colorkey */
6215 	if (plane_state->ckey.flags) {
6216 		drm_dbg_kms(&dev_priv->drm,
6217 			    "[PLANE:%d:%s] scaling with color key not allowed",
6218 			    intel_plane->base.base.id,
6219 			    intel_plane->base.name);
6220 		return -EINVAL;
6221 	}
6222 
6223 	/* Check src format */
6224 	switch (fb->format->format) {
6225 	case DRM_FORMAT_RGB565:
6226 	case DRM_FORMAT_XBGR8888:
6227 	case DRM_FORMAT_XRGB8888:
6228 	case DRM_FORMAT_ABGR8888:
6229 	case DRM_FORMAT_ARGB8888:
6230 	case DRM_FORMAT_XRGB2101010:
6231 	case DRM_FORMAT_XBGR2101010:
6232 	case DRM_FORMAT_ARGB2101010:
6233 	case DRM_FORMAT_ABGR2101010:
6234 	case DRM_FORMAT_YUYV:
6235 	case DRM_FORMAT_YVYU:
6236 	case DRM_FORMAT_UYVY:
6237 	case DRM_FORMAT_VYUY:
6238 	case DRM_FORMAT_NV12:
6239 	case DRM_FORMAT_XYUV8888:
6240 	case DRM_FORMAT_P010:
6241 	case DRM_FORMAT_P012:
6242 	case DRM_FORMAT_P016:
6243 	case DRM_FORMAT_Y210:
6244 	case DRM_FORMAT_Y212:
6245 	case DRM_FORMAT_Y216:
6246 	case DRM_FORMAT_XVYU2101010:
6247 	case DRM_FORMAT_XVYU12_16161616:
6248 	case DRM_FORMAT_XVYU16161616:
6249 		break;
6250 	case DRM_FORMAT_XBGR16161616F:
6251 	case DRM_FORMAT_ABGR16161616F:
6252 	case DRM_FORMAT_XRGB16161616F:
6253 	case DRM_FORMAT_ARGB16161616F:
6254 		if (INTEL_GEN(dev_priv) >= 11)
6255 			break;
6256 		fallthrough;
6257 	default:
6258 		drm_dbg_kms(&dev_priv->drm,
6259 			    "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
6260 			    intel_plane->base.base.id, intel_plane->base.name,
6261 			    fb->base.id, fb->format->format);
6262 		return -EINVAL;
6263 	}
6264 
6265 	return 0;
6266 }
6267 
skl_scaler_disable(const struct intel_crtc_state * old_crtc_state)6268 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
6269 {
6270 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6271 	int i;
6272 
6273 	for (i = 0; i < crtc->num_scalers; i++)
6274 		skl_detach_scaler(crtc, i);
6275 }
6276 
skl_pfit_enable(const struct intel_crtc_state * crtc_state)6277 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
6278 {
6279 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6280 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6281 	const struct intel_crtc_scaler_state *scaler_state =
6282 		&crtc_state->scaler_state;
6283 	struct drm_rect src = {
6284 		.x2 = crtc_state->pipe_src_w << 16,
6285 		.y2 = crtc_state->pipe_src_h << 16,
6286 	};
6287 	const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6288 	u16 uv_rgb_hphase, uv_rgb_vphase;
6289 	enum pipe pipe = crtc->pipe;
6290 	int width = drm_rect_width(dst);
6291 	int height = drm_rect_height(dst);
6292 	int x = dst->x1;
6293 	int y = dst->y1;
6294 	int hscale, vscale;
6295 	unsigned long irqflags;
6296 	int id;
6297 
6298 	if (!crtc_state->pch_pfit.enabled)
6299 		return;
6300 
6301 	if (drm_WARN_ON(&dev_priv->drm,
6302 			crtc_state->scaler_state.scaler_id < 0))
6303 		return;
6304 
6305 	hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX);
6306 	vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX);
6307 
6308 	uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
6309 	uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
6310 
6311 	id = scaler_state->scaler_id;
6312 
6313 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6314 
6315 	intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
6316 			  PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
6317 	intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id),
6318 			  PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
6319 	intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id),
6320 			  PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
6321 	intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id),
6322 			  x << 16 | y);
6323 	intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id),
6324 			  width << 16 | height);
6325 
6326 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6327 }
6328 
ilk_pfit_enable(const struct intel_crtc_state * crtc_state)6329 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
6330 {
6331 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6332 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6333 	const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6334 	enum pipe pipe = crtc->pipe;
6335 	int width = drm_rect_width(dst);
6336 	int height = drm_rect_height(dst);
6337 	int x = dst->x1;
6338 	int y = dst->y1;
6339 
6340 	if (!crtc_state->pch_pfit.enabled)
6341 		return;
6342 
6343 	/* Force use of hard-coded filter coefficients
6344 	 * as some pre-programmed values are broken,
6345 	 * e.g. x201.
6346 	 */
6347 	if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
6348 		intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6349 			       PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe));
6350 	else
6351 		intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6352 			       PF_FILTER_MED_3x3);
6353 	intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y);
6354 	intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height);
6355 }
6356 
hsw_enable_ips(const struct intel_crtc_state * crtc_state)6357 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
6358 {
6359 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6360 	struct drm_device *dev = crtc->base.dev;
6361 	struct drm_i915_private *dev_priv = to_i915(dev);
6362 
6363 	if (!crtc_state->ips_enabled)
6364 		return;
6365 
6366 	/*
6367 	 * We can only enable IPS after we enable a plane and wait for a vblank
6368 	 * This function is called from post_plane_update, which is run after
6369 	 * a vblank wait.
6370 	 */
6371 	drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
6372 
6373 	if (IS_BROADWELL(dev_priv)) {
6374 		drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
6375 							 IPS_ENABLE | IPS_PCODE_CONTROL));
6376 		/* Quoting Art Runyan: "its not safe to expect any particular
6377 		 * value in IPS_CTL bit 31 after enabling IPS through the
6378 		 * mailbox." Moreover, the mailbox may return a bogus state,
6379 		 * so we need to just enable it and continue on.
6380 		 */
6381 	} else {
6382 		intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE);
6383 		/* The bit only becomes 1 in the next vblank, so this wait here
6384 		 * is essentially intel_wait_for_vblank. If we don't have this
6385 		 * and don't wait for vblanks until the end of crtc_enable, then
6386 		 * the HW state readout code will complain that the expected
6387 		 * IPS_CTL value is not the one we read. */
6388 		if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
6389 			drm_err(&dev_priv->drm,
6390 				"Timed out waiting for IPS enable\n");
6391 	}
6392 }
6393 
hsw_disable_ips(const struct intel_crtc_state * crtc_state)6394 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
6395 {
6396 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6397 	struct drm_device *dev = crtc->base.dev;
6398 	struct drm_i915_private *dev_priv = to_i915(dev);
6399 
6400 	if (!crtc_state->ips_enabled)
6401 		return;
6402 
6403 	if (IS_BROADWELL(dev_priv)) {
6404 		drm_WARN_ON(dev,
6405 			    sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
6406 		/*
6407 		 * Wait for PCODE to finish disabling IPS. The BSpec specified
6408 		 * 42ms timeout value leads to occasional timeouts so use 100ms
6409 		 * instead.
6410 		 */
6411 		if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
6412 			drm_err(&dev_priv->drm,
6413 				"Timed out waiting for IPS disable\n");
6414 	} else {
6415 		intel_de_write(dev_priv, IPS_CTL, 0);
6416 		intel_de_posting_read(dev_priv, IPS_CTL);
6417 	}
6418 
6419 	/* We need to wait for a vblank before we can disable the plane. */
6420 	intel_wait_for_vblank(dev_priv, crtc->pipe);
6421 }
6422 
intel_crtc_dpms_overlay_disable(struct intel_crtc * intel_crtc)6423 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
6424 {
6425 	if (intel_crtc->overlay)
6426 		(void) intel_overlay_switch_off(intel_crtc->overlay);
6427 
6428 	/* Let userspace switch the overlay on again. In most cases userspace
6429 	 * has to recompute where to put it anyway.
6430 	 */
6431 }
6432 
hsw_pre_update_disable_ips(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6433 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
6434 				       const struct intel_crtc_state *new_crtc_state)
6435 {
6436 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6437 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6438 
6439 	if (!old_crtc_state->ips_enabled)
6440 		return false;
6441 
6442 	if (needs_modeset(new_crtc_state))
6443 		return true;
6444 
6445 	/*
6446 	 * Workaround : Do not read or write the pipe palette/gamma data while
6447 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6448 	 *
6449 	 * Disable IPS before we program the LUT.
6450 	 */
6451 	if (IS_HASWELL(dev_priv) &&
6452 	    (new_crtc_state->uapi.color_mgmt_changed ||
6453 	     new_crtc_state->update_pipe) &&
6454 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6455 		return true;
6456 
6457 	return !new_crtc_state->ips_enabled;
6458 }
6459 
hsw_post_update_enable_ips(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6460 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
6461 				       const struct intel_crtc_state *new_crtc_state)
6462 {
6463 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6464 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6465 
6466 	if (!new_crtc_state->ips_enabled)
6467 		return false;
6468 
6469 	if (needs_modeset(new_crtc_state))
6470 		return true;
6471 
6472 	/*
6473 	 * Workaround : Do not read or write the pipe palette/gamma data while
6474 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6475 	 *
6476 	 * Re-enable IPS after the LUT has been programmed.
6477 	 */
6478 	if (IS_HASWELL(dev_priv) &&
6479 	    (new_crtc_state->uapi.color_mgmt_changed ||
6480 	     new_crtc_state->update_pipe) &&
6481 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6482 		return true;
6483 
6484 	/*
6485 	 * We can't read out IPS on broadwell, assume the worst and
6486 	 * forcibly enable IPS on the first fastset.
6487 	 */
6488 	if (new_crtc_state->update_pipe && old_crtc_state->inherited)
6489 		return true;
6490 
6491 	return !old_crtc_state->ips_enabled;
6492 }
6493 
needs_nv12_wa(const struct intel_crtc_state * crtc_state)6494 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
6495 {
6496 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6497 
6498 	if (!crtc_state->nv12_planes)
6499 		return false;
6500 
6501 	/* WA Display #0827: Gen9:all */
6502 	if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
6503 		return true;
6504 
6505 	return false;
6506 }
6507 
needs_scalerclk_wa(const struct intel_crtc_state * crtc_state)6508 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
6509 {
6510 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6511 
6512 	/* Wa_2006604312:icl,ehl */
6513 	if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11))
6514 		return true;
6515 
6516 	return false;
6517 }
6518 
planes_enabling(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6519 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
6520 			    const struct intel_crtc_state *new_crtc_state)
6521 {
6522 	return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) &&
6523 		new_crtc_state->active_planes;
6524 }
6525 
planes_disabling(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6526 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
6527 			     const struct intel_crtc_state *new_crtc_state)
6528 {
6529 	return old_crtc_state->active_planes &&
6530 		(!new_crtc_state->active_planes || needs_modeset(new_crtc_state));
6531 }
6532 
intel_post_plane_update(struct intel_atomic_state * state,struct intel_crtc * crtc)6533 static void intel_post_plane_update(struct intel_atomic_state *state,
6534 				    struct intel_crtc *crtc)
6535 {
6536 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6537 	const struct intel_crtc_state *old_crtc_state =
6538 		intel_atomic_get_old_crtc_state(state, crtc);
6539 	const struct intel_crtc_state *new_crtc_state =
6540 		intel_atomic_get_new_crtc_state(state, crtc);
6541 	enum pipe pipe = crtc->pipe;
6542 
6543 	intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
6544 
6545 	if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
6546 		intel_update_watermarks(crtc);
6547 
6548 	if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state))
6549 		hsw_enable_ips(new_crtc_state);
6550 
6551 	intel_fbc_post_update(state, crtc);
6552 
6553 	if (needs_nv12_wa(old_crtc_state) &&
6554 	    !needs_nv12_wa(new_crtc_state))
6555 		skl_wa_827(dev_priv, pipe, false);
6556 
6557 	if (needs_scalerclk_wa(old_crtc_state) &&
6558 	    !needs_scalerclk_wa(new_crtc_state))
6559 		icl_wa_scalerclkgating(dev_priv, pipe, false);
6560 }
6561 
intel_pre_plane_update(struct intel_atomic_state * state,struct intel_crtc * crtc)6562 static void intel_pre_plane_update(struct intel_atomic_state *state,
6563 				   struct intel_crtc *crtc)
6564 {
6565 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6566 	const struct intel_crtc_state *old_crtc_state =
6567 		intel_atomic_get_old_crtc_state(state, crtc);
6568 	const struct intel_crtc_state *new_crtc_state =
6569 		intel_atomic_get_new_crtc_state(state, crtc);
6570 	enum pipe pipe = crtc->pipe;
6571 
6572 	if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state))
6573 		hsw_disable_ips(old_crtc_state);
6574 
6575 	if (intel_fbc_pre_update(state, crtc))
6576 		intel_wait_for_vblank(dev_priv, pipe);
6577 
6578 	/* Display WA 827 */
6579 	if (!needs_nv12_wa(old_crtc_state) &&
6580 	    needs_nv12_wa(new_crtc_state))
6581 		skl_wa_827(dev_priv, pipe, true);
6582 
6583 	/* Wa_2006604312:icl,ehl */
6584 	if (!needs_scalerclk_wa(old_crtc_state) &&
6585 	    needs_scalerclk_wa(new_crtc_state))
6586 		icl_wa_scalerclkgating(dev_priv, pipe, true);
6587 
6588 	/*
6589 	 * Vblank time updates from the shadow to live plane control register
6590 	 * are blocked if the memory self-refresh mode is active at that
6591 	 * moment. So to make sure the plane gets truly disabled, disable
6592 	 * first the self-refresh mode. The self-refresh enable bit in turn
6593 	 * will be checked/applied by the HW only at the next frame start
6594 	 * event which is after the vblank start event, so we need to have a
6595 	 * wait-for-vblank between disabling the plane and the pipe.
6596 	 */
6597 	if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
6598 	    new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6599 		intel_wait_for_vblank(dev_priv, pipe);
6600 
6601 	/*
6602 	 * IVB workaround: must disable low power watermarks for at least
6603 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
6604 	 * when scaling is disabled.
6605 	 *
6606 	 * WaCxSRDisabledForSpriteScaling:ivb
6607 	 */
6608 	if (old_crtc_state->hw.active &&
6609 	    new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
6610 		intel_wait_for_vblank(dev_priv, pipe);
6611 
6612 	/*
6613 	 * If we're doing a modeset we don't need to do any
6614 	 * pre-vblank watermark programming here.
6615 	 */
6616 	if (!needs_modeset(new_crtc_state)) {
6617 		/*
6618 		 * For platforms that support atomic watermarks, program the
6619 		 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
6620 		 * will be the intermediate values that are safe for both pre- and
6621 		 * post- vblank; when vblank happens, the 'active' values will be set
6622 		 * to the final 'target' values and we'll do this again to get the
6623 		 * optimal watermarks.  For gen9+ platforms, the values we program here
6624 		 * will be the final target values which will get automatically latched
6625 		 * at vblank time; no further programming will be necessary.
6626 		 *
6627 		 * If a platform hasn't been transitioned to atomic watermarks yet,
6628 		 * we'll continue to update watermarks the old way, if flags tell
6629 		 * us to.
6630 		 */
6631 		if (dev_priv->display.initial_watermarks)
6632 			dev_priv->display.initial_watermarks(state, crtc);
6633 		else if (new_crtc_state->update_wm_pre)
6634 			intel_update_watermarks(crtc);
6635 	}
6636 
6637 	/*
6638 	 * Gen2 reports pipe underruns whenever all planes are disabled.
6639 	 * So disable underrun reporting before all the planes get disabled.
6640 	 *
6641 	 * We do this after .initial_watermarks() so that we have a
6642 	 * chance of catching underruns with the intermediate watermarks
6643 	 * vs. the old plane configuration.
6644 	 */
6645 	if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state))
6646 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6647 }
6648 
intel_crtc_disable_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)6649 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6650 				      struct intel_crtc *crtc)
6651 {
6652 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6653 	const struct intel_crtc_state *new_crtc_state =
6654 		intel_atomic_get_new_crtc_state(state, crtc);
6655 	unsigned int update_mask = new_crtc_state->update_planes;
6656 	const struct intel_plane_state *old_plane_state;
6657 	struct intel_plane *plane;
6658 	unsigned fb_bits = 0;
6659 	int i;
6660 
6661 	intel_crtc_dpms_overlay_disable(crtc);
6662 
6663 	for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6664 		if (crtc->pipe != plane->pipe ||
6665 		    !(update_mask & BIT(plane->id)))
6666 			continue;
6667 
6668 		intel_disable_plane(plane, new_crtc_state);
6669 
6670 		if (old_plane_state->uapi.visible)
6671 			fb_bits |= plane->frontbuffer_bit;
6672 	}
6673 
6674 	intel_frontbuffer_flip(dev_priv, fb_bits);
6675 }
6676 
6677 /*
6678  * intel_connector_primary_encoder - get the primary encoder for a connector
6679  * @connector: connector for which to return the encoder
6680  *
6681  * Returns the primary encoder for a connector. There is a 1:1 mapping from
6682  * all connectors to their encoder, except for DP-MST connectors which have
6683  * both a virtual and a primary encoder. These DP-MST primary encoders can be
6684  * pointed to by as many DP-MST connectors as there are pipes.
6685  */
6686 static struct intel_encoder *
intel_connector_primary_encoder(struct intel_connector * connector)6687 intel_connector_primary_encoder(struct intel_connector *connector)
6688 {
6689 	struct intel_encoder *encoder;
6690 
6691 	if (connector->mst_port)
6692 		return &dp_to_dig_port(connector->mst_port)->base;
6693 
6694 	encoder = intel_attached_encoder(connector);
6695 	drm_WARN_ON(connector->base.dev, !encoder);
6696 
6697 	return encoder;
6698 }
6699 
intel_encoders_update_prepare(struct intel_atomic_state * state)6700 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6701 {
6702 	struct drm_connector_state *new_conn_state;
6703 	struct drm_connector *connector;
6704 	int i;
6705 
6706 	for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6707 					i) {
6708 		struct intel_connector *intel_connector;
6709 		struct intel_encoder *encoder;
6710 		struct intel_crtc *crtc;
6711 
6712 		if (!intel_connector_needs_modeset(state, connector))
6713 			continue;
6714 
6715 		intel_connector = to_intel_connector(connector);
6716 		encoder = intel_connector_primary_encoder(intel_connector);
6717 		if (!encoder->update_prepare)
6718 			continue;
6719 
6720 		crtc = new_conn_state->crtc ?
6721 			to_intel_crtc(new_conn_state->crtc) : NULL;
6722 		encoder->update_prepare(state, encoder, crtc);
6723 	}
6724 }
6725 
intel_encoders_update_complete(struct intel_atomic_state * state)6726 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6727 {
6728 	struct drm_connector_state *new_conn_state;
6729 	struct drm_connector *connector;
6730 	int i;
6731 
6732 	for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6733 					i) {
6734 		struct intel_connector *intel_connector;
6735 		struct intel_encoder *encoder;
6736 		struct intel_crtc *crtc;
6737 
6738 		if (!intel_connector_needs_modeset(state, connector))
6739 			continue;
6740 
6741 		intel_connector = to_intel_connector(connector);
6742 		encoder = intel_connector_primary_encoder(intel_connector);
6743 		if (!encoder->update_complete)
6744 			continue;
6745 
6746 		crtc = new_conn_state->crtc ?
6747 			to_intel_crtc(new_conn_state->crtc) : NULL;
6748 		encoder->update_complete(state, encoder, crtc);
6749 	}
6750 }
6751 
intel_encoders_pre_pll_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6752 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
6753 					  struct intel_crtc *crtc)
6754 {
6755 	const struct intel_crtc_state *crtc_state =
6756 		intel_atomic_get_new_crtc_state(state, crtc);
6757 	const struct drm_connector_state *conn_state;
6758 	struct drm_connector *conn;
6759 	int i;
6760 
6761 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6762 		struct intel_encoder *encoder =
6763 			to_intel_encoder(conn_state->best_encoder);
6764 
6765 		if (conn_state->crtc != &crtc->base)
6766 			continue;
6767 
6768 		if (encoder->pre_pll_enable)
6769 			encoder->pre_pll_enable(state, encoder,
6770 						crtc_state, conn_state);
6771 	}
6772 }
6773 
intel_encoders_pre_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6774 static void intel_encoders_pre_enable(struct intel_atomic_state *state,
6775 				      struct intel_crtc *crtc)
6776 {
6777 	const struct intel_crtc_state *crtc_state =
6778 		intel_atomic_get_new_crtc_state(state, crtc);
6779 	const struct drm_connector_state *conn_state;
6780 	struct drm_connector *conn;
6781 	int i;
6782 
6783 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6784 		struct intel_encoder *encoder =
6785 			to_intel_encoder(conn_state->best_encoder);
6786 
6787 		if (conn_state->crtc != &crtc->base)
6788 			continue;
6789 
6790 		if (encoder->pre_enable)
6791 			encoder->pre_enable(state, encoder,
6792 					    crtc_state, conn_state);
6793 	}
6794 }
6795 
intel_encoders_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6796 static void intel_encoders_enable(struct intel_atomic_state *state,
6797 				  struct intel_crtc *crtc)
6798 {
6799 	const struct intel_crtc_state *crtc_state =
6800 		intel_atomic_get_new_crtc_state(state, crtc);
6801 	const struct drm_connector_state *conn_state;
6802 	struct drm_connector *conn;
6803 	int i;
6804 
6805 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6806 		struct intel_encoder *encoder =
6807 			to_intel_encoder(conn_state->best_encoder);
6808 
6809 		if (conn_state->crtc != &crtc->base)
6810 			continue;
6811 
6812 		if (encoder->enable)
6813 			encoder->enable(state, encoder,
6814 					crtc_state, conn_state);
6815 		intel_opregion_notify_encoder(encoder, true);
6816 	}
6817 }
6818 
intel_encoders_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)6819 static void intel_encoders_disable(struct intel_atomic_state *state,
6820 				   struct intel_crtc *crtc)
6821 {
6822 	const struct intel_crtc_state *old_crtc_state =
6823 		intel_atomic_get_old_crtc_state(state, crtc);
6824 	const struct drm_connector_state *old_conn_state;
6825 	struct drm_connector *conn;
6826 	int i;
6827 
6828 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6829 		struct intel_encoder *encoder =
6830 			to_intel_encoder(old_conn_state->best_encoder);
6831 
6832 		if (old_conn_state->crtc != &crtc->base)
6833 			continue;
6834 
6835 		intel_opregion_notify_encoder(encoder, false);
6836 		if (encoder->disable)
6837 			encoder->disable(state, encoder,
6838 					 old_crtc_state, old_conn_state);
6839 	}
6840 }
6841 
intel_encoders_post_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)6842 static void intel_encoders_post_disable(struct intel_atomic_state *state,
6843 					struct intel_crtc *crtc)
6844 {
6845 	const struct intel_crtc_state *old_crtc_state =
6846 		intel_atomic_get_old_crtc_state(state, crtc);
6847 	const struct drm_connector_state *old_conn_state;
6848 	struct drm_connector *conn;
6849 	int i;
6850 
6851 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6852 		struct intel_encoder *encoder =
6853 			to_intel_encoder(old_conn_state->best_encoder);
6854 
6855 		if (old_conn_state->crtc != &crtc->base)
6856 			continue;
6857 
6858 		if (encoder->post_disable)
6859 			encoder->post_disable(state, encoder,
6860 					      old_crtc_state, old_conn_state);
6861 	}
6862 }
6863 
intel_encoders_post_pll_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)6864 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
6865 					    struct intel_crtc *crtc)
6866 {
6867 	const struct intel_crtc_state *old_crtc_state =
6868 		intel_atomic_get_old_crtc_state(state, crtc);
6869 	const struct drm_connector_state *old_conn_state;
6870 	struct drm_connector *conn;
6871 	int i;
6872 
6873 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6874 		struct intel_encoder *encoder =
6875 			to_intel_encoder(old_conn_state->best_encoder);
6876 
6877 		if (old_conn_state->crtc != &crtc->base)
6878 			continue;
6879 
6880 		if (encoder->post_pll_disable)
6881 			encoder->post_pll_disable(state, encoder,
6882 						  old_crtc_state, old_conn_state);
6883 	}
6884 }
6885 
intel_encoders_update_pipe(struct intel_atomic_state * state,struct intel_crtc * crtc)6886 static void intel_encoders_update_pipe(struct intel_atomic_state *state,
6887 				       struct intel_crtc *crtc)
6888 {
6889 	const struct intel_crtc_state *crtc_state =
6890 		intel_atomic_get_new_crtc_state(state, crtc);
6891 	const struct drm_connector_state *conn_state;
6892 	struct drm_connector *conn;
6893 	int i;
6894 
6895 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6896 		struct intel_encoder *encoder =
6897 			to_intel_encoder(conn_state->best_encoder);
6898 
6899 		if (conn_state->crtc != &crtc->base)
6900 			continue;
6901 
6902 		if (encoder->update_pipe)
6903 			encoder->update_pipe(state, encoder,
6904 					     crtc_state, conn_state);
6905 	}
6906 }
6907 
intel_disable_primary_plane(const struct intel_crtc_state * crtc_state)6908 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6909 {
6910 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6911 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6912 
6913 	plane->disable_plane(plane, crtc_state);
6914 }
6915 
ilk_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6916 static void ilk_crtc_enable(struct intel_atomic_state *state,
6917 			    struct intel_crtc *crtc)
6918 {
6919 	const struct intel_crtc_state *new_crtc_state =
6920 		intel_atomic_get_new_crtc_state(state, crtc);
6921 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6922 	enum pipe pipe = crtc->pipe;
6923 
6924 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
6925 		return;
6926 
6927 	/*
6928 	 * Sometimes spurious CPU pipe underruns happen during FDI
6929 	 * training, at least with VGA+HDMI cloning. Suppress them.
6930 	 *
6931 	 * On ILK we get an occasional spurious CPU pipe underruns
6932 	 * between eDP port A enable and vdd enable. Also PCH port
6933 	 * enable seems to result in the occasional CPU pipe underrun.
6934 	 *
6935 	 * Spurious PCH underruns also occur during PCH enabling.
6936 	 */
6937 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6938 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6939 
6940 	if (new_crtc_state->has_pch_encoder)
6941 		intel_prepare_shared_dpll(new_crtc_state);
6942 
6943 	if (intel_crtc_has_dp_encoder(new_crtc_state))
6944 		intel_dp_set_m_n(new_crtc_state, M1_N1);
6945 
6946 	intel_set_pipe_timings(new_crtc_state);
6947 	intel_set_pipe_src_size(new_crtc_state);
6948 
6949 	if (new_crtc_state->has_pch_encoder)
6950 		intel_cpu_transcoder_set_m_n(new_crtc_state,
6951 					     &new_crtc_state->fdi_m_n, NULL);
6952 
6953 	ilk_set_pipeconf(new_crtc_state);
6954 
6955 	crtc->active = true;
6956 
6957 	intel_encoders_pre_enable(state, crtc);
6958 
6959 	if (new_crtc_state->has_pch_encoder) {
6960 		/* Note: FDI PLL enabling _must_ be done before we enable the
6961 		 * cpu pipes, hence this is separate from all the other fdi/pch
6962 		 * enabling. */
6963 		ilk_fdi_pll_enable(new_crtc_state);
6964 	} else {
6965 		assert_fdi_tx_disabled(dev_priv, pipe);
6966 		assert_fdi_rx_disabled(dev_priv, pipe);
6967 	}
6968 
6969 	ilk_pfit_enable(new_crtc_state);
6970 
6971 	/*
6972 	 * On ILK+ LUT must be loaded before the pipe is running but with
6973 	 * clocks enabled
6974 	 */
6975 	intel_color_load_luts(new_crtc_state);
6976 	intel_color_commit(new_crtc_state);
6977 	/* update DSPCNTR to configure gamma for pipe bottom color */
6978 	intel_disable_primary_plane(new_crtc_state);
6979 
6980 	if (dev_priv->display.initial_watermarks)
6981 		dev_priv->display.initial_watermarks(state, crtc);
6982 	intel_enable_pipe(new_crtc_state);
6983 
6984 	if (new_crtc_state->has_pch_encoder)
6985 		ilk_pch_enable(state, new_crtc_state);
6986 
6987 	intel_crtc_vblank_on(new_crtc_state);
6988 
6989 	intel_encoders_enable(state, crtc);
6990 
6991 	if (HAS_PCH_CPT(dev_priv))
6992 		cpt_verify_modeset(dev_priv, pipe);
6993 
6994 	/*
6995 	 * Must wait for vblank to avoid spurious PCH FIFO underruns.
6996 	 * And a second vblank wait is needed at least on ILK with
6997 	 * some interlaced HDMI modes. Let's do the double wait always
6998 	 * in case there are more corner cases we don't know about.
6999 	 */
7000 	if (new_crtc_state->has_pch_encoder) {
7001 		intel_wait_for_vblank(dev_priv, pipe);
7002 		intel_wait_for_vblank(dev_priv, pipe);
7003 	}
7004 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7005 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7006 }
7007 
7008 /* IPS only exists on ULT machines and is tied to pipe A. */
hsw_crtc_supports_ips(struct intel_crtc * crtc)7009 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
7010 {
7011 	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
7012 }
7013 
glk_pipe_scaler_clock_gating_wa(struct drm_i915_private * dev_priv,enum pipe pipe,bool apply)7014 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
7015 					    enum pipe pipe, bool apply)
7016 {
7017 	u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe));
7018 	u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
7019 
7020 	if (apply)
7021 		val |= mask;
7022 	else
7023 		val &= ~mask;
7024 
7025 	intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val);
7026 }
7027 
icl_pipe_mbus_enable(struct intel_crtc * crtc)7028 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
7029 {
7030 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7031 	enum pipe pipe = crtc->pipe;
7032 	u32 val;
7033 
7034 	val = MBUS_DBOX_A_CREDIT(2);
7035 
7036 	if (INTEL_GEN(dev_priv) >= 12) {
7037 		val |= MBUS_DBOX_BW_CREDIT(2);
7038 		val |= MBUS_DBOX_B_CREDIT(12);
7039 	} else {
7040 		val |= MBUS_DBOX_BW_CREDIT(1);
7041 		val |= MBUS_DBOX_B_CREDIT(8);
7042 	}
7043 
7044 	intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val);
7045 }
7046 
hsw_set_linetime_wm(const struct intel_crtc_state * crtc_state)7047 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state)
7048 {
7049 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7050 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7051 
7052 	intel_de_write(dev_priv, WM_LINETIME(crtc->pipe),
7053 		       HSW_LINETIME(crtc_state->linetime) |
7054 		       HSW_IPS_LINETIME(crtc_state->ips_linetime));
7055 }
7056 
hsw_set_frame_start_delay(const struct intel_crtc_state * crtc_state)7057 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
7058 {
7059 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7060 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7061 	i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
7062 	u32 val;
7063 
7064 	val = intel_de_read(dev_priv, reg);
7065 	val &= ~HSW_FRAME_START_DELAY_MASK;
7066 	val |= HSW_FRAME_START_DELAY(0);
7067 	intel_de_write(dev_priv, reg, val);
7068 }
7069 
hsw_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)7070 static void hsw_crtc_enable(struct intel_atomic_state *state,
7071 			    struct intel_crtc *crtc)
7072 {
7073 	const struct intel_crtc_state *new_crtc_state =
7074 		intel_atomic_get_new_crtc_state(state, crtc);
7075 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7076 	enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
7077 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
7078 	bool psl_clkgate_wa;
7079 
7080 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7081 		return;
7082 
7083 	intel_encoders_pre_pll_enable(state, crtc);
7084 
7085 	if (new_crtc_state->shared_dpll)
7086 		intel_enable_shared_dpll(new_crtc_state);
7087 
7088 	intel_encoders_pre_enable(state, crtc);
7089 
7090 	if (!transcoder_is_dsi(cpu_transcoder))
7091 		intel_set_pipe_timings(new_crtc_state);
7092 
7093 	intel_set_pipe_src_size(new_crtc_state);
7094 
7095 	if (cpu_transcoder != TRANSCODER_EDP &&
7096 	    !transcoder_is_dsi(cpu_transcoder))
7097 		intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder),
7098 			       new_crtc_state->pixel_multiplier - 1);
7099 
7100 	if (new_crtc_state->has_pch_encoder)
7101 		intel_cpu_transcoder_set_m_n(new_crtc_state,
7102 					     &new_crtc_state->fdi_m_n, NULL);
7103 
7104 	if (!transcoder_is_dsi(cpu_transcoder)) {
7105 		hsw_set_frame_start_delay(new_crtc_state);
7106 		hsw_set_pipeconf(new_crtc_state);
7107 	}
7108 
7109 	if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
7110 		bdw_set_pipemisc(new_crtc_state);
7111 
7112 	crtc->active = true;
7113 
7114 	/* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
7115 	psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
7116 		new_crtc_state->pch_pfit.enabled;
7117 	if (psl_clkgate_wa)
7118 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
7119 
7120 	if (INTEL_GEN(dev_priv) >= 9)
7121 		skl_pfit_enable(new_crtc_state);
7122 	else
7123 		ilk_pfit_enable(new_crtc_state);
7124 
7125 	/*
7126 	 * On ILK+ LUT must be loaded before the pipe is running but with
7127 	 * clocks enabled
7128 	 */
7129 	intel_color_load_luts(new_crtc_state);
7130 	intel_color_commit(new_crtc_state);
7131 	/* update DSPCNTR to configure gamma/csc for pipe bottom color */
7132 	if (INTEL_GEN(dev_priv) < 9)
7133 		intel_disable_primary_plane(new_crtc_state);
7134 
7135 	hsw_set_linetime_wm(new_crtc_state);
7136 
7137 	if (INTEL_GEN(dev_priv) >= 11)
7138 		icl_set_pipe_chicken(crtc);
7139 
7140 	if (dev_priv->display.initial_watermarks)
7141 		dev_priv->display.initial_watermarks(state, crtc);
7142 
7143 	if (INTEL_GEN(dev_priv) >= 11)
7144 		icl_pipe_mbus_enable(crtc);
7145 
7146 	intel_encoders_enable(state, crtc);
7147 
7148 	if (psl_clkgate_wa) {
7149 		intel_wait_for_vblank(dev_priv, pipe);
7150 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
7151 	}
7152 
7153 	/* If we change the relative order between pipe/planes enabling, we need
7154 	 * to change the workaround. */
7155 	hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
7156 	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
7157 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7158 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7159 	}
7160 }
7161 
ilk_pfit_disable(const struct intel_crtc_state * old_crtc_state)7162 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7163 {
7164 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7165 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7166 	enum pipe pipe = crtc->pipe;
7167 
7168 	/* To avoid upsetting the power well on haswell only disable the pfit if
7169 	 * it's in use. The hw state code will make sure we get this right. */
7170 	if (!old_crtc_state->pch_pfit.enabled)
7171 		return;
7172 
7173 	intel_de_write(dev_priv, PF_CTL(pipe), 0);
7174 	intel_de_write(dev_priv, PF_WIN_POS(pipe), 0);
7175 	intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0);
7176 }
7177 
ilk_crtc_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)7178 static void ilk_crtc_disable(struct intel_atomic_state *state,
7179 			     struct intel_crtc *crtc)
7180 {
7181 	const struct intel_crtc_state *old_crtc_state =
7182 		intel_atomic_get_old_crtc_state(state, crtc);
7183 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7184 	enum pipe pipe = crtc->pipe;
7185 
7186 	/*
7187 	 * Sometimes spurious CPU pipe underruns happen when the
7188 	 * pipe is already disabled, but FDI RX/TX is still enabled.
7189 	 * Happens at least with VGA+HDMI cloning. Suppress them.
7190 	 */
7191 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7192 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
7193 
7194 	intel_encoders_disable(state, crtc);
7195 
7196 	intel_crtc_vblank_off(old_crtc_state);
7197 
7198 	intel_disable_pipe(old_crtc_state);
7199 
7200 	ilk_pfit_disable(old_crtc_state);
7201 
7202 	if (old_crtc_state->has_pch_encoder)
7203 		ilk_fdi_disable(crtc);
7204 
7205 	intel_encoders_post_disable(state, crtc);
7206 
7207 	if (old_crtc_state->has_pch_encoder) {
7208 		ilk_disable_pch_transcoder(dev_priv, pipe);
7209 
7210 		if (HAS_PCH_CPT(dev_priv)) {
7211 			i915_reg_t reg;
7212 			u32 temp;
7213 
7214 			/* disable TRANS_DP_CTL */
7215 			reg = TRANS_DP_CTL(pipe);
7216 			temp = intel_de_read(dev_priv, reg);
7217 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
7218 				  TRANS_DP_PORT_SEL_MASK);
7219 			temp |= TRANS_DP_PORT_SEL_NONE;
7220 			intel_de_write(dev_priv, reg, temp);
7221 
7222 			/* disable DPLL_SEL */
7223 			temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
7224 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
7225 			intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
7226 		}
7227 
7228 		ilk_fdi_pll_disable(crtc);
7229 	}
7230 
7231 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7232 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7233 }
7234 
hsw_crtc_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)7235 static void hsw_crtc_disable(struct intel_atomic_state *state,
7236 			     struct intel_crtc *crtc)
7237 {
7238 	/*
7239 	 * FIXME collapse everything to one hook.
7240 	 * Need care with mst->ddi interactions.
7241 	 */
7242 	intel_encoders_disable(state, crtc);
7243 	intel_encoders_post_disable(state, crtc);
7244 }
7245 
i9xx_pfit_enable(const struct intel_crtc_state * crtc_state)7246 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
7247 {
7248 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7249 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7250 
7251 	if (!crtc_state->gmch_pfit.control)
7252 		return;
7253 
7254 	/*
7255 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
7256 	 * according to register description and PRM.
7257 	 */
7258 	drm_WARN_ON(&dev_priv->drm,
7259 		    intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE);
7260 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
7261 
7262 	intel_de_write(dev_priv, PFIT_PGM_RATIOS,
7263 		       crtc_state->gmch_pfit.pgm_ratios);
7264 	intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control);
7265 
7266 	/* Border color in case we don't scale up to the full screen. Black by
7267 	 * default, change to something else for debugging. */
7268 	intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0);
7269 }
7270 
intel_phy_is_combo(struct drm_i915_private * dev_priv,enum phy phy)7271 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
7272 {
7273 	if (phy == PHY_NONE)
7274 		return false;
7275 	else if (IS_ROCKETLAKE(dev_priv))
7276 		return phy <= PHY_D;
7277 	else if (IS_ELKHARTLAKE(dev_priv))
7278 		return phy <= PHY_C;
7279 	else if (INTEL_GEN(dev_priv) >= 11)
7280 		return phy <= PHY_B;
7281 	else
7282 		return false;
7283 }
7284 
intel_phy_is_tc(struct drm_i915_private * dev_priv,enum phy phy)7285 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
7286 {
7287 	if (IS_ROCKETLAKE(dev_priv))
7288 		return false;
7289 	else if (INTEL_GEN(dev_priv) >= 12)
7290 		return phy >= PHY_D && phy <= PHY_I;
7291 	else if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
7292 		return phy >= PHY_C && phy <= PHY_F;
7293 	else
7294 		return false;
7295 }
7296 
intel_port_to_phy(struct drm_i915_private * i915,enum port port)7297 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
7298 {
7299 	if (IS_ROCKETLAKE(i915) && port >= PORT_D)
7300 		return (enum phy)port - 1;
7301 	else if (IS_ELKHARTLAKE(i915) && port == PORT_D)
7302 		return PHY_A;
7303 
7304 	return (enum phy)port;
7305 }
7306 
intel_port_to_tc(struct drm_i915_private * dev_priv,enum port port)7307 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
7308 {
7309 	if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
7310 		return PORT_TC_NONE;
7311 
7312 	if (INTEL_GEN(dev_priv) >= 12)
7313 		return port - PORT_D;
7314 
7315 	return port - PORT_C;
7316 }
7317 
intel_port_to_power_domain(enum port port)7318 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
7319 {
7320 	switch (port) {
7321 	case PORT_A:
7322 		return POWER_DOMAIN_PORT_DDI_A_LANES;
7323 	case PORT_B:
7324 		return POWER_DOMAIN_PORT_DDI_B_LANES;
7325 	case PORT_C:
7326 		return POWER_DOMAIN_PORT_DDI_C_LANES;
7327 	case PORT_D:
7328 		return POWER_DOMAIN_PORT_DDI_D_LANES;
7329 	case PORT_E:
7330 		return POWER_DOMAIN_PORT_DDI_E_LANES;
7331 	case PORT_F:
7332 		return POWER_DOMAIN_PORT_DDI_F_LANES;
7333 	case PORT_G:
7334 		return POWER_DOMAIN_PORT_DDI_G_LANES;
7335 	case PORT_H:
7336 		return POWER_DOMAIN_PORT_DDI_H_LANES;
7337 	case PORT_I:
7338 		return POWER_DOMAIN_PORT_DDI_I_LANES;
7339 	default:
7340 		MISSING_CASE(port);
7341 		return POWER_DOMAIN_PORT_OTHER;
7342 	}
7343 }
7344 
7345 enum intel_display_power_domain
intel_aux_power_domain(struct intel_digital_port * dig_port)7346 intel_aux_power_domain(struct intel_digital_port *dig_port)
7347 {
7348 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
7349 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
7350 
7351 	if (intel_phy_is_tc(dev_priv, phy) &&
7352 	    dig_port->tc_mode == TC_PORT_TBT_ALT) {
7353 		switch (dig_port->aux_ch) {
7354 		case AUX_CH_C:
7355 			return POWER_DOMAIN_AUX_C_TBT;
7356 		case AUX_CH_D:
7357 			return POWER_DOMAIN_AUX_D_TBT;
7358 		case AUX_CH_E:
7359 			return POWER_DOMAIN_AUX_E_TBT;
7360 		case AUX_CH_F:
7361 			return POWER_DOMAIN_AUX_F_TBT;
7362 		case AUX_CH_G:
7363 			return POWER_DOMAIN_AUX_G_TBT;
7364 		case AUX_CH_H:
7365 			return POWER_DOMAIN_AUX_H_TBT;
7366 		case AUX_CH_I:
7367 			return POWER_DOMAIN_AUX_I_TBT;
7368 		default:
7369 			MISSING_CASE(dig_port->aux_ch);
7370 			return POWER_DOMAIN_AUX_C_TBT;
7371 		}
7372 	}
7373 
7374 	return intel_legacy_aux_to_power_domain(dig_port->aux_ch);
7375 }
7376 
7377 /*
7378  * Converts aux_ch to power_domain without caring about TBT ports for that use
7379  * intel_aux_power_domain()
7380  */
7381 enum intel_display_power_domain
intel_legacy_aux_to_power_domain(enum aux_ch aux_ch)7382 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch)
7383 {
7384 	switch (aux_ch) {
7385 	case AUX_CH_A:
7386 		return POWER_DOMAIN_AUX_A;
7387 	case AUX_CH_B:
7388 		return POWER_DOMAIN_AUX_B;
7389 	case AUX_CH_C:
7390 		return POWER_DOMAIN_AUX_C;
7391 	case AUX_CH_D:
7392 		return POWER_DOMAIN_AUX_D;
7393 	case AUX_CH_E:
7394 		return POWER_DOMAIN_AUX_E;
7395 	case AUX_CH_F:
7396 		return POWER_DOMAIN_AUX_F;
7397 	case AUX_CH_G:
7398 		return POWER_DOMAIN_AUX_G;
7399 	case AUX_CH_H:
7400 		return POWER_DOMAIN_AUX_H;
7401 	case AUX_CH_I:
7402 		return POWER_DOMAIN_AUX_I;
7403 	default:
7404 		MISSING_CASE(aux_ch);
7405 		return POWER_DOMAIN_AUX_A;
7406 	}
7407 }
7408 
get_crtc_power_domains(struct intel_crtc_state * crtc_state)7409 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7410 {
7411 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7412 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7413 	struct drm_encoder *encoder;
7414 	enum pipe pipe = crtc->pipe;
7415 	u64 mask;
7416 	enum transcoder transcoder = crtc_state->cpu_transcoder;
7417 
7418 	if (!crtc_state->hw.active)
7419 		return 0;
7420 
7421 	mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
7422 	mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
7423 	if (crtc_state->pch_pfit.enabled ||
7424 	    crtc_state->pch_pfit.force_thru)
7425 		mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
7426 
7427 	drm_for_each_encoder_mask(encoder, &dev_priv->drm,
7428 				  crtc_state->uapi.encoder_mask) {
7429 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7430 
7431 		mask |= BIT_ULL(intel_encoder->power_domain);
7432 	}
7433 
7434 	if (HAS_DDI(dev_priv) && crtc_state->has_audio)
7435 		mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
7436 
7437 	if (crtc_state->shared_dpll)
7438 		mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
7439 
7440 	return mask;
7441 }
7442 
7443 static u64
modeset_get_crtc_power_domains(struct intel_crtc_state * crtc_state)7444 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7445 {
7446 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7447 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7448 	enum intel_display_power_domain domain;
7449 	u64 domains, new_domains, old_domains;
7450 
7451 	old_domains = crtc->enabled_power_domains;
7452 	crtc->enabled_power_domains = new_domains =
7453 		get_crtc_power_domains(crtc_state);
7454 
7455 	domains = new_domains & ~old_domains;
7456 
7457 	for_each_power_domain(domain, domains)
7458 		intel_display_power_get(dev_priv, domain);
7459 
7460 	return old_domains & ~new_domains;
7461 }
7462 
modeset_put_power_domains(struct drm_i915_private * dev_priv,u64 domains)7463 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
7464 				      u64 domains)
7465 {
7466 	enum intel_display_power_domain domain;
7467 
7468 	for_each_power_domain(domain, domains)
7469 		intel_display_power_put_unchecked(dev_priv, domain);
7470 }
7471 
valleyview_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)7472 static void valleyview_crtc_enable(struct intel_atomic_state *state,
7473 				   struct intel_crtc *crtc)
7474 {
7475 	const struct intel_crtc_state *new_crtc_state =
7476 		intel_atomic_get_new_crtc_state(state, crtc);
7477 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7478 	enum pipe pipe = crtc->pipe;
7479 
7480 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7481 		return;
7482 
7483 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7484 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7485 
7486 	intel_set_pipe_timings(new_crtc_state);
7487 	intel_set_pipe_src_size(new_crtc_state);
7488 
7489 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
7490 		intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY);
7491 		intel_de_write(dev_priv, CHV_CANVAS(pipe), 0);
7492 	}
7493 
7494 	i9xx_set_pipeconf(new_crtc_state);
7495 
7496 	crtc->active = true;
7497 
7498 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7499 
7500 	intel_encoders_pre_pll_enable(state, crtc);
7501 
7502 	if (IS_CHERRYVIEW(dev_priv)) {
7503 		chv_prepare_pll(crtc, new_crtc_state);
7504 		chv_enable_pll(crtc, new_crtc_state);
7505 	} else {
7506 		vlv_prepare_pll(crtc, new_crtc_state);
7507 		vlv_enable_pll(crtc, new_crtc_state);
7508 	}
7509 
7510 	intel_encoders_pre_enable(state, crtc);
7511 
7512 	i9xx_pfit_enable(new_crtc_state);
7513 
7514 	intel_color_load_luts(new_crtc_state);
7515 	intel_color_commit(new_crtc_state);
7516 	/* update DSPCNTR to configure gamma for pipe bottom color */
7517 	intel_disable_primary_plane(new_crtc_state);
7518 
7519 	dev_priv->display.initial_watermarks(state, crtc);
7520 	intel_enable_pipe(new_crtc_state);
7521 
7522 	intel_crtc_vblank_on(new_crtc_state);
7523 
7524 	intel_encoders_enable(state, crtc);
7525 }
7526 
i9xx_set_pll_dividers(const struct intel_crtc_state * crtc_state)7527 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7528 {
7529 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7530 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7531 
7532 	intel_de_write(dev_priv, FP0(crtc->pipe),
7533 		       crtc_state->dpll_hw_state.fp0);
7534 	intel_de_write(dev_priv, FP1(crtc->pipe),
7535 		       crtc_state->dpll_hw_state.fp1);
7536 }
7537 
i9xx_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)7538 static void i9xx_crtc_enable(struct intel_atomic_state *state,
7539 			     struct intel_crtc *crtc)
7540 {
7541 	const struct intel_crtc_state *new_crtc_state =
7542 		intel_atomic_get_new_crtc_state(state, crtc);
7543 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7544 	enum pipe pipe = crtc->pipe;
7545 
7546 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7547 		return;
7548 
7549 	i9xx_set_pll_dividers(new_crtc_state);
7550 
7551 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7552 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7553 
7554 	intel_set_pipe_timings(new_crtc_state);
7555 	intel_set_pipe_src_size(new_crtc_state);
7556 
7557 	i9xx_set_pipeconf(new_crtc_state);
7558 
7559 	crtc->active = true;
7560 
7561 	if (!IS_GEN(dev_priv, 2))
7562 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7563 
7564 	intel_encoders_pre_enable(state, crtc);
7565 
7566 	i9xx_enable_pll(crtc, new_crtc_state);
7567 
7568 	i9xx_pfit_enable(new_crtc_state);
7569 
7570 	intel_color_load_luts(new_crtc_state);
7571 	intel_color_commit(new_crtc_state);
7572 	/* update DSPCNTR to configure gamma for pipe bottom color */
7573 	intel_disable_primary_plane(new_crtc_state);
7574 
7575 	if (dev_priv->display.initial_watermarks)
7576 		dev_priv->display.initial_watermarks(state, crtc);
7577 	else
7578 		intel_update_watermarks(crtc);
7579 	intel_enable_pipe(new_crtc_state);
7580 
7581 	intel_crtc_vblank_on(new_crtc_state);
7582 
7583 	intel_encoders_enable(state, crtc);
7584 
7585 	/* prevents spurious underruns */
7586 	if (IS_GEN(dev_priv, 2))
7587 		intel_wait_for_vblank(dev_priv, pipe);
7588 }
7589 
i9xx_pfit_disable(const struct intel_crtc_state * old_crtc_state)7590 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7591 {
7592 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7593 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7594 
7595 	if (!old_crtc_state->gmch_pfit.control)
7596 		return;
7597 
7598 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
7599 
7600 	drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n",
7601 		    intel_de_read(dev_priv, PFIT_CONTROL));
7602 	intel_de_write(dev_priv, PFIT_CONTROL, 0);
7603 }
7604 
i9xx_crtc_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)7605 static void i9xx_crtc_disable(struct intel_atomic_state *state,
7606 			      struct intel_crtc *crtc)
7607 {
7608 	struct intel_crtc_state *old_crtc_state =
7609 		intel_atomic_get_old_crtc_state(state, crtc);
7610 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7611 	enum pipe pipe = crtc->pipe;
7612 
7613 	/*
7614 	 * On gen2 planes are double buffered but the pipe isn't, so we must
7615 	 * wait for planes to fully turn off before disabling the pipe.
7616 	 */
7617 	if (IS_GEN(dev_priv, 2))
7618 		intel_wait_for_vblank(dev_priv, pipe);
7619 
7620 	intel_encoders_disable(state, crtc);
7621 
7622 	intel_crtc_vblank_off(old_crtc_state);
7623 
7624 	intel_disable_pipe(old_crtc_state);
7625 
7626 	i9xx_pfit_disable(old_crtc_state);
7627 
7628 	intel_encoders_post_disable(state, crtc);
7629 
7630 	if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7631 		if (IS_CHERRYVIEW(dev_priv))
7632 			chv_disable_pll(dev_priv, pipe);
7633 		else if (IS_VALLEYVIEW(dev_priv))
7634 			vlv_disable_pll(dev_priv, pipe);
7635 		else
7636 			i9xx_disable_pll(old_crtc_state);
7637 	}
7638 
7639 	intel_encoders_post_pll_disable(state, crtc);
7640 
7641 	if (!IS_GEN(dev_priv, 2))
7642 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7643 
7644 	if (!dev_priv->display.initial_watermarks)
7645 		intel_update_watermarks(crtc);
7646 
7647 	/* clock the pipe down to 640x480@60 to potentially save power */
7648 	if (IS_I830(dev_priv))
7649 		i830_enable_pipe(dev_priv, pipe);
7650 }
7651 
intel_crtc_disable_noatomic(struct intel_crtc * crtc,struct drm_modeset_acquire_ctx * ctx)7652 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc,
7653 					struct drm_modeset_acquire_ctx *ctx)
7654 {
7655 	struct intel_encoder *encoder;
7656 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7657 	struct intel_bw_state *bw_state =
7658 		to_intel_bw_state(dev_priv->bw_obj.state);
7659 	struct intel_cdclk_state *cdclk_state =
7660 		to_intel_cdclk_state(dev_priv->cdclk.obj.state);
7661 	struct intel_dbuf_state *dbuf_state =
7662 		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
7663 	struct intel_crtc_state *crtc_state =
7664 		to_intel_crtc_state(crtc->base.state);
7665 	enum intel_display_power_domain domain;
7666 	struct intel_plane *plane;
7667 	struct drm_atomic_state *state;
7668 	struct intel_crtc_state *temp_crtc_state;
7669 	enum pipe pipe = crtc->pipe;
7670 	u64 domains;
7671 	int ret;
7672 
7673 	if (!crtc_state->hw.active)
7674 		return;
7675 
7676 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
7677 		const struct intel_plane_state *plane_state =
7678 			to_intel_plane_state(plane->base.state);
7679 
7680 		if (plane_state->uapi.visible)
7681 			intel_plane_disable_noatomic(crtc, plane);
7682 	}
7683 
7684 	state = drm_atomic_state_alloc(&dev_priv->drm);
7685 	if (!state) {
7686 		drm_dbg_kms(&dev_priv->drm,
7687 			    "failed to disable [CRTC:%d:%s], out of memory",
7688 			    crtc->base.base.id, crtc->base.name);
7689 		return;
7690 	}
7691 
7692 	state->acquire_ctx = ctx;
7693 
7694 	/* Everything's already locked, -EDEADLK can't happen. */
7695 	temp_crtc_state = intel_atomic_get_crtc_state(state, crtc);
7696 	ret = drm_atomic_add_affected_connectors(state, &crtc->base);
7697 
7698 	drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret);
7699 
7700 	dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc);
7701 
7702 	drm_atomic_state_put(state);
7703 
7704 	drm_dbg_kms(&dev_priv->drm,
7705 		    "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7706 		    crtc->base.base.id, crtc->base.name);
7707 
7708 	crtc->active = false;
7709 	crtc->base.enabled = false;
7710 
7711 	drm_WARN_ON(&dev_priv->drm,
7712 		    drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0);
7713 	crtc_state->uapi.active = false;
7714 	crtc_state->uapi.connector_mask = 0;
7715 	crtc_state->uapi.encoder_mask = 0;
7716 	intel_crtc_free_hw_state(crtc_state);
7717 	memset(&crtc_state->hw, 0, sizeof(crtc_state->hw));
7718 
7719 	for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder)
7720 		encoder->base.crtc = NULL;
7721 
7722 	intel_fbc_disable(crtc);
7723 	intel_update_watermarks(crtc);
7724 	intel_disable_shared_dpll(crtc_state);
7725 
7726 	domains = crtc->enabled_power_domains;
7727 	for_each_power_domain(domain, domains)
7728 		intel_display_power_put_unchecked(dev_priv, domain);
7729 	crtc->enabled_power_domains = 0;
7730 
7731 	dev_priv->active_pipes &= ~BIT(pipe);
7732 	cdclk_state->min_cdclk[pipe] = 0;
7733 	cdclk_state->min_voltage_level[pipe] = 0;
7734 	cdclk_state->active_pipes &= ~BIT(pipe);
7735 
7736 	dbuf_state->active_pipes &= ~BIT(pipe);
7737 
7738 	bw_state->data_rate[pipe] = 0;
7739 	bw_state->num_active_planes[pipe] = 0;
7740 }
7741 
7742 /*
7743  * turn all crtc's off, but do not adjust state
7744  * This has to be paired with a call to intel_modeset_setup_hw_state.
7745  */
intel_display_suspend(struct drm_device * dev)7746 int intel_display_suspend(struct drm_device *dev)
7747 {
7748 	struct drm_i915_private *dev_priv = to_i915(dev);
7749 	struct drm_atomic_state *state;
7750 	int ret;
7751 
7752 	state = drm_atomic_helper_suspend(dev);
7753 	ret = PTR_ERR_OR_ZERO(state);
7754 	if (ret)
7755 		drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
7756 			ret);
7757 	else
7758 		dev_priv->modeset_restore_state = state;
7759 	return ret;
7760 }
7761 
intel_encoder_destroy(struct drm_encoder * encoder)7762 void intel_encoder_destroy(struct drm_encoder *encoder)
7763 {
7764 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7765 
7766 	drm_encoder_cleanup(encoder);
7767 	kfree(intel_encoder);
7768 }
7769 
7770 /* Cross check the actual hw state with our own modeset state tracking (and it's
7771  * internal consistency). */
intel_connector_verify_state(struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)7772 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7773 					 struct drm_connector_state *conn_state)
7774 {
7775 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
7776 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
7777 
7778 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
7779 		    connector->base.base.id, connector->base.name);
7780 
7781 	if (connector->get_hw_state(connector)) {
7782 		struct intel_encoder *encoder = intel_attached_encoder(connector);
7783 
7784 		I915_STATE_WARN(!crtc_state,
7785 			 "connector enabled without attached crtc\n");
7786 
7787 		if (!crtc_state)
7788 			return;
7789 
7790 		I915_STATE_WARN(!crtc_state->hw.active,
7791 				"connector is active, but attached crtc isn't\n");
7792 
7793 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7794 			return;
7795 
7796 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7797 			"atomic encoder doesn't match attached encoder\n");
7798 
7799 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7800 			"attached encoder crtc differs from connector crtc\n");
7801 	} else {
7802 		I915_STATE_WARN(crtc_state && crtc_state->hw.active,
7803 				"attached crtc is active, but connector isn't\n");
7804 		I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7805 			"best encoder set without crtc!\n");
7806 	}
7807 }
7808 
pipe_required_fdi_lanes(struct intel_crtc_state * crtc_state)7809 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7810 {
7811 	if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
7812 		return crtc_state->fdi_lanes;
7813 
7814 	return 0;
7815 }
7816 
ilk_check_fdi_lanes(struct drm_device * dev,enum pipe pipe,struct intel_crtc_state * pipe_config)7817 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7818 			       struct intel_crtc_state *pipe_config)
7819 {
7820 	struct drm_i915_private *dev_priv = to_i915(dev);
7821 	struct drm_atomic_state *state = pipe_config->uapi.state;
7822 	struct intel_crtc *other_crtc;
7823 	struct intel_crtc_state *other_crtc_state;
7824 
7825 	drm_dbg_kms(&dev_priv->drm,
7826 		    "checking fdi config on pipe %c, lanes %i\n",
7827 		    pipe_name(pipe), pipe_config->fdi_lanes);
7828 	if (pipe_config->fdi_lanes > 4) {
7829 		drm_dbg_kms(&dev_priv->drm,
7830 			    "invalid fdi lane config on pipe %c: %i lanes\n",
7831 			    pipe_name(pipe), pipe_config->fdi_lanes);
7832 		return -EINVAL;
7833 	}
7834 
7835 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7836 		if (pipe_config->fdi_lanes > 2) {
7837 			drm_dbg_kms(&dev_priv->drm,
7838 				    "only 2 lanes on haswell, required: %i lanes\n",
7839 				    pipe_config->fdi_lanes);
7840 			return -EINVAL;
7841 		} else {
7842 			return 0;
7843 		}
7844 	}
7845 
7846 	if (INTEL_NUM_PIPES(dev_priv) == 2)
7847 		return 0;
7848 
7849 	/* Ivybridge 3 pipe is really complicated */
7850 	switch (pipe) {
7851 	case PIPE_A:
7852 		return 0;
7853 	case PIPE_B:
7854 		if (pipe_config->fdi_lanes <= 2)
7855 			return 0;
7856 
7857 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7858 		other_crtc_state =
7859 			intel_atomic_get_crtc_state(state, other_crtc);
7860 		if (IS_ERR(other_crtc_state))
7861 			return PTR_ERR(other_crtc_state);
7862 
7863 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7864 			drm_dbg_kms(&dev_priv->drm,
7865 				    "invalid shared fdi lane config on pipe %c: %i lanes\n",
7866 				    pipe_name(pipe), pipe_config->fdi_lanes);
7867 			return -EINVAL;
7868 		}
7869 		return 0;
7870 	case PIPE_C:
7871 		if (pipe_config->fdi_lanes > 2) {
7872 			drm_dbg_kms(&dev_priv->drm,
7873 				    "only 2 lanes on pipe %c: required %i lanes\n",
7874 				    pipe_name(pipe), pipe_config->fdi_lanes);
7875 			return -EINVAL;
7876 		}
7877 
7878 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7879 		other_crtc_state =
7880 			intel_atomic_get_crtc_state(state, other_crtc);
7881 		if (IS_ERR(other_crtc_state))
7882 			return PTR_ERR(other_crtc_state);
7883 
7884 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7885 			drm_dbg_kms(&dev_priv->drm,
7886 				    "fdi link B uses too many lanes to enable link C\n");
7887 			return -EINVAL;
7888 		}
7889 		return 0;
7890 	default:
7891 		BUG();
7892 	}
7893 }
7894 
7895 #define RETRY 1
ilk_fdi_compute_config(struct intel_crtc * intel_crtc,struct intel_crtc_state * pipe_config)7896 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc,
7897 				  struct intel_crtc_state *pipe_config)
7898 {
7899 	struct drm_device *dev = intel_crtc->base.dev;
7900 	struct drm_i915_private *i915 = to_i915(dev);
7901 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7902 	int lane, link_bw, fdi_dotclock, ret;
7903 	bool needs_recompute = false;
7904 
7905 retry:
7906 	/* FDI is a binary signal running at ~2.7GHz, encoding
7907 	 * each output octet as 10 bits. The actual frequency
7908 	 * is stored as a divider into a 100MHz clock, and the
7909 	 * mode pixel clock is stored in units of 1KHz.
7910 	 * Hence the bw of each lane in terms of the mode signal
7911 	 * is:
7912 	 */
7913 	link_bw = intel_fdi_link_freq(i915, pipe_config);
7914 
7915 	fdi_dotclock = adjusted_mode->crtc_clock;
7916 
7917 	lane = ilk_get_lanes_required(fdi_dotclock, link_bw,
7918 				      pipe_config->pipe_bpp);
7919 
7920 	pipe_config->fdi_lanes = lane;
7921 
7922 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7923 			       link_bw, &pipe_config->fdi_m_n, false, false);
7924 
7925 	ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7926 	if (ret == -EDEADLK)
7927 		return ret;
7928 
7929 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7930 		pipe_config->pipe_bpp -= 2*3;
7931 		drm_dbg_kms(&i915->drm,
7932 			    "fdi link bw constraint, reducing pipe bpp to %i\n",
7933 			    pipe_config->pipe_bpp);
7934 		needs_recompute = true;
7935 		pipe_config->bw_constrained = true;
7936 
7937 		goto retry;
7938 	}
7939 
7940 	if (needs_recompute)
7941 		return RETRY;
7942 
7943 	return ret;
7944 }
7945 
hsw_crtc_state_ips_capable(const struct intel_crtc_state * crtc_state)7946 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7947 {
7948 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7949 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7950 
7951 	/* IPS only exists on ULT machines and is tied to pipe A. */
7952 	if (!hsw_crtc_supports_ips(crtc))
7953 		return false;
7954 
7955 	if (!dev_priv->params.enable_ips)
7956 		return false;
7957 
7958 	if (crtc_state->pipe_bpp > 24)
7959 		return false;
7960 
7961 	/*
7962 	 * We compare against max which means we must take
7963 	 * the increased cdclk requirement into account when
7964 	 * calculating the new cdclk.
7965 	 *
7966 	 * Should measure whether using a lower cdclk w/o IPS
7967 	 */
7968 	if (IS_BROADWELL(dev_priv) &&
7969 	    crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7970 		return false;
7971 
7972 	return true;
7973 }
7974 
hsw_compute_ips_config(struct intel_crtc_state * crtc_state)7975 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7976 {
7977 	struct drm_i915_private *dev_priv =
7978 		to_i915(crtc_state->uapi.crtc->dev);
7979 	struct intel_atomic_state *state =
7980 		to_intel_atomic_state(crtc_state->uapi.state);
7981 
7982 	crtc_state->ips_enabled = false;
7983 
7984 	if (!hsw_crtc_state_ips_capable(crtc_state))
7985 		return 0;
7986 
7987 	/*
7988 	 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7989 	 * enabled and disabled dynamically based on package C states,
7990 	 * user space can't make reliable use of the CRCs, so let's just
7991 	 * completely disable it.
7992 	 */
7993 	if (crtc_state->crc_enabled)
7994 		return 0;
7995 
7996 	/* IPS should be fine as long as at least one plane is enabled. */
7997 	if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7998 		return 0;
7999 
8000 	if (IS_BROADWELL(dev_priv)) {
8001 		const struct intel_cdclk_state *cdclk_state;
8002 
8003 		cdclk_state = intel_atomic_get_cdclk_state(state);
8004 		if (IS_ERR(cdclk_state))
8005 			return PTR_ERR(cdclk_state);
8006 
8007 		/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
8008 		if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100)
8009 			return 0;
8010 	}
8011 
8012 	crtc_state->ips_enabled = true;
8013 
8014 	return 0;
8015 }
8016 
intel_crtc_supports_double_wide(const struct intel_crtc * crtc)8017 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
8018 {
8019 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8020 
8021 	/* GDG double wide on either pipe, otherwise pipe A only */
8022 	return INTEL_GEN(dev_priv) < 4 &&
8023 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
8024 }
8025 
ilk_pipe_pixel_rate(const struct intel_crtc_state * crtc_state)8026 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state)
8027 {
8028 	u32 pixel_rate = crtc_state->hw.adjusted_mode.crtc_clock;
8029 	unsigned int pipe_w, pipe_h, pfit_w, pfit_h;
8030 
8031 	/*
8032 	 * We only use IF-ID interlacing. If we ever use
8033 	 * PF-ID we'll need to adjust the pixel_rate here.
8034 	 */
8035 
8036 	if (!crtc_state->pch_pfit.enabled)
8037 		return pixel_rate;
8038 
8039 	pipe_w = crtc_state->pipe_src_w;
8040 	pipe_h = crtc_state->pipe_src_h;
8041 
8042 	pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst);
8043 	pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst);
8044 
8045 	if (pipe_w < pfit_w)
8046 		pipe_w = pfit_w;
8047 	if (pipe_h < pfit_h)
8048 		pipe_h = pfit_h;
8049 
8050 	if (drm_WARN_ON(crtc_state->uapi.crtc->dev,
8051 			!pfit_w || !pfit_h))
8052 		return pixel_rate;
8053 
8054 	return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
8055 		       pfit_w * pfit_h);
8056 }
8057 
intel_crtc_compute_pixel_rate(struct intel_crtc_state * crtc_state)8058 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
8059 {
8060 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8061 
8062 	if (HAS_GMCH(dev_priv))
8063 		/* FIXME calculate proper pipe pixel rate for GMCH pfit */
8064 		crtc_state->pixel_rate =
8065 			crtc_state->hw.adjusted_mode.crtc_clock;
8066 	else
8067 		crtc_state->pixel_rate =
8068 			ilk_pipe_pixel_rate(crtc_state);
8069 }
8070 
intel_crtc_compute_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8071 static int intel_crtc_compute_config(struct intel_crtc *crtc,
8072 				     struct intel_crtc_state *pipe_config)
8073 {
8074 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8075 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
8076 	int clock_limit = dev_priv->max_dotclk_freq;
8077 
8078 	if (INTEL_GEN(dev_priv) < 4) {
8079 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
8080 
8081 		/*
8082 		 * Enable double wide mode when the dot clock
8083 		 * is > 90% of the (display) core speed.
8084 		 */
8085 		if (intel_crtc_supports_double_wide(crtc) &&
8086 		    adjusted_mode->crtc_clock > clock_limit) {
8087 			clock_limit = dev_priv->max_dotclk_freq;
8088 			pipe_config->double_wide = true;
8089 		}
8090 	}
8091 
8092 	if (adjusted_mode->crtc_clock > clock_limit) {
8093 		drm_dbg_kms(&dev_priv->drm,
8094 			    "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
8095 			    adjusted_mode->crtc_clock, clock_limit,
8096 			    yesno(pipe_config->double_wide));
8097 		return -EINVAL;
8098 	}
8099 
8100 	if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
8101 	     pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
8102 	     pipe_config->hw.ctm) {
8103 		/*
8104 		 * There is only one pipe CSC unit per pipe, and we need that
8105 		 * for output conversion from RGB->YCBCR. So if CTM is already
8106 		 * applied we can't support YCBCR420 output.
8107 		 */
8108 		drm_dbg_kms(&dev_priv->drm,
8109 			    "YCBCR420 and CTM together are not possible\n");
8110 		return -EINVAL;
8111 	}
8112 
8113 	/*
8114 	 * Pipe horizontal size must be even in:
8115 	 * - DVO ganged mode
8116 	 * - LVDS dual channel mode
8117 	 * - Double wide pipe
8118 	 */
8119 	if (pipe_config->pipe_src_w & 1) {
8120 		if (pipe_config->double_wide) {
8121 			drm_dbg_kms(&dev_priv->drm,
8122 				    "Odd pipe source width not supported with double wide pipe\n");
8123 			return -EINVAL;
8124 		}
8125 
8126 		if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
8127 		    intel_is_dual_link_lvds(dev_priv)) {
8128 			drm_dbg_kms(&dev_priv->drm,
8129 				    "Odd pipe source width not supported with dual link LVDS\n");
8130 			return -EINVAL;
8131 		}
8132 	}
8133 
8134 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
8135 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
8136 	 */
8137 	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
8138 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
8139 		return -EINVAL;
8140 
8141 	intel_crtc_compute_pixel_rate(pipe_config);
8142 
8143 	if (pipe_config->has_pch_encoder)
8144 		return ilk_fdi_compute_config(crtc, pipe_config);
8145 
8146 	return 0;
8147 }
8148 
8149 static void
intel_reduce_m_n_ratio(u32 * num,u32 * den)8150 intel_reduce_m_n_ratio(u32 *num, u32 *den)
8151 {
8152 	while (*num > DATA_LINK_M_N_MASK ||
8153 	       *den > DATA_LINK_M_N_MASK) {
8154 		*num >>= 1;
8155 		*den >>= 1;
8156 	}
8157 }
8158 
compute_m_n(unsigned int m,unsigned int n,u32 * ret_m,u32 * ret_n,bool constant_n)8159 static void compute_m_n(unsigned int m, unsigned int n,
8160 			u32 *ret_m, u32 *ret_n,
8161 			bool constant_n)
8162 {
8163 	/*
8164 	 * Several DP dongles in particular seem to be fussy about
8165 	 * too large link M/N values. Give N value as 0x8000 that
8166 	 * should be acceptable by specific devices. 0x8000 is the
8167 	 * specified fixed N value for asynchronous clock mode,
8168 	 * which the devices expect also in synchronous clock mode.
8169 	 */
8170 	if (constant_n)
8171 		*ret_n = DP_LINK_CONSTANT_N_VALUE;
8172 	else
8173 		*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
8174 
8175 	*ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
8176 	intel_reduce_m_n_ratio(ret_m, ret_n);
8177 }
8178 
8179 void
intel_link_compute_m_n(u16 bits_per_pixel,int nlanes,int pixel_clock,int link_clock,struct intel_link_m_n * m_n,bool constant_n,bool fec_enable)8180 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
8181 		       int pixel_clock, int link_clock,
8182 		       struct intel_link_m_n *m_n,
8183 		       bool constant_n, bool fec_enable)
8184 {
8185 	u32 data_clock = bits_per_pixel * pixel_clock;
8186 
8187 	if (fec_enable)
8188 		data_clock = intel_dp_mode_to_fec_clock(data_clock);
8189 
8190 	m_n->tu = 64;
8191 	compute_m_n(data_clock,
8192 		    link_clock * nlanes * 8,
8193 		    &m_n->gmch_m, &m_n->gmch_n,
8194 		    constant_n);
8195 
8196 	compute_m_n(pixel_clock, link_clock,
8197 		    &m_n->link_m, &m_n->link_n,
8198 		    constant_n);
8199 }
8200 
intel_panel_sanitize_ssc(struct drm_i915_private * dev_priv)8201 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
8202 {
8203 	/*
8204 	 * There may be no VBT; and if the BIOS enabled SSC we can
8205 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
8206 	 * BIOS isn't using it, don't assume it will work even if the VBT
8207 	 * indicates as much.
8208 	 */
8209 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
8210 		bool bios_lvds_use_ssc = intel_de_read(dev_priv,
8211 						       PCH_DREF_CONTROL) &
8212 			DREF_SSC1_ENABLE;
8213 
8214 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
8215 			drm_dbg_kms(&dev_priv->drm,
8216 				    "SSC %s by BIOS, overriding VBT which says %s\n",
8217 				    enableddisabled(bios_lvds_use_ssc),
8218 				    enableddisabled(dev_priv->vbt.lvds_use_ssc));
8219 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
8220 		}
8221 	}
8222 }
8223 
intel_panel_use_ssc(struct drm_i915_private * dev_priv)8224 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
8225 {
8226 	if (dev_priv->params.panel_use_ssc >= 0)
8227 		return dev_priv->params.panel_use_ssc != 0;
8228 	return dev_priv->vbt.lvds_use_ssc
8229 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
8230 }
8231 
pnv_dpll_compute_fp(struct dpll * dpll)8232 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
8233 {
8234 	return (1 << dpll->n) << 16 | dpll->m2;
8235 }
8236 
i9xx_dpll_compute_fp(struct dpll * dpll)8237 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
8238 {
8239 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
8240 }
8241 
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8242 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
8243 				     struct intel_crtc_state *crtc_state,
8244 				     struct dpll *reduced_clock)
8245 {
8246 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8247 	u32 fp, fp2 = 0;
8248 
8249 	if (IS_PINEVIEW(dev_priv)) {
8250 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
8251 		if (reduced_clock)
8252 			fp2 = pnv_dpll_compute_fp(reduced_clock);
8253 	} else {
8254 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8255 		if (reduced_clock)
8256 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
8257 	}
8258 
8259 	crtc_state->dpll_hw_state.fp0 = fp;
8260 
8261 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8262 	    reduced_clock) {
8263 		crtc_state->dpll_hw_state.fp1 = fp2;
8264 	} else {
8265 		crtc_state->dpll_hw_state.fp1 = fp;
8266 	}
8267 }
8268 
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)8269 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
8270 		pipe)
8271 {
8272 	u32 reg_val;
8273 
8274 	/*
8275 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
8276 	 * and set it to a reasonable value instead.
8277 	 */
8278 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8279 	reg_val &= 0xffffff00;
8280 	reg_val |= 0x00000030;
8281 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8282 
8283 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8284 	reg_val &= 0x00ffffff;
8285 	reg_val |= 0x8c000000;
8286 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8287 
8288 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8289 	reg_val &= 0xffffff00;
8290 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8291 
8292 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8293 	reg_val &= 0x00ffffff;
8294 	reg_val |= 0xb0000000;
8295 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8296 }
8297 
intel_pch_transcoder_set_m_n(const struct intel_crtc_state * crtc_state,const struct intel_link_m_n * m_n)8298 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8299 					 const struct intel_link_m_n *m_n)
8300 {
8301 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8302 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8303 	enum pipe pipe = crtc->pipe;
8304 
8305 	intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe),
8306 		       TU_SIZE(m_n->tu) | m_n->gmch_m);
8307 	intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
8308 	intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m);
8309 	intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n);
8310 }
8311 
transcoder_has_m2_n2(struct drm_i915_private * dev_priv,enum transcoder transcoder)8312 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
8313 				 enum transcoder transcoder)
8314 {
8315 	if (IS_HASWELL(dev_priv))
8316 		return transcoder == TRANSCODER_EDP;
8317 
8318 	/*
8319 	 * Strictly speaking some registers are available before
8320 	 * gen7, but we only support DRRS on gen7+
8321 	 */
8322 	return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
8323 }
8324 
intel_cpu_transcoder_set_m_n(const struct intel_crtc_state * crtc_state,const struct intel_link_m_n * m_n,const struct intel_link_m_n * m2_n2)8325 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8326 					 const struct intel_link_m_n *m_n,
8327 					 const struct intel_link_m_n *m2_n2)
8328 {
8329 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8330 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8331 	enum pipe pipe = crtc->pipe;
8332 	enum transcoder transcoder = crtc_state->cpu_transcoder;
8333 
8334 	if (INTEL_GEN(dev_priv) >= 5) {
8335 		intel_de_write(dev_priv, PIPE_DATA_M1(transcoder),
8336 			       TU_SIZE(m_n->tu) | m_n->gmch_m);
8337 		intel_de_write(dev_priv, PIPE_DATA_N1(transcoder),
8338 			       m_n->gmch_n);
8339 		intel_de_write(dev_priv, PIPE_LINK_M1(transcoder),
8340 			       m_n->link_m);
8341 		intel_de_write(dev_priv, PIPE_LINK_N1(transcoder),
8342 			       m_n->link_n);
8343 		/*
8344 		 *  M2_N2 registers are set only if DRRS is supported
8345 		 * (to make sure the registers are not unnecessarily accessed).
8346 		 */
8347 		if (m2_n2 && crtc_state->has_drrs &&
8348 		    transcoder_has_m2_n2(dev_priv, transcoder)) {
8349 			intel_de_write(dev_priv, PIPE_DATA_M2(transcoder),
8350 				       TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
8351 			intel_de_write(dev_priv, PIPE_DATA_N2(transcoder),
8352 				       m2_n2->gmch_n);
8353 			intel_de_write(dev_priv, PIPE_LINK_M2(transcoder),
8354 				       m2_n2->link_m);
8355 			intel_de_write(dev_priv, PIPE_LINK_N2(transcoder),
8356 				       m2_n2->link_n);
8357 		}
8358 	} else {
8359 		intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe),
8360 			       TU_SIZE(m_n->tu) | m_n->gmch_m);
8361 		intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
8362 		intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m);
8363 		intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n);
8364 	}
8365 }
8366 
intel_dp_set_m_n(const struct intel_crtc_state * crtc_state,enum link_m_n_set m_n)8367 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
8368 {
8369 	const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
8370 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
8371 
8372 	if (m_n == M1_N1) {
8373 		dp_m_n = &crtc_state->dp_m_n;
8374 		dp_m2_n2 = &crtc_state->dp_m2_n2;
8375 	} else if (m_n == M2_N2) {
8376 
8377 		/*
8378 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
8379 		 * needs to be programmed into M1_N1.
8380 		 */
8381 		dp_m_n = &crtc_state->dp_m2_n2;
8382 	} else {
8383 		drm_err(&i915->drm, "Unsupported divider value\n");
8384 		return;
8385 	}
8386 
8387 	if (crtc_state->has_pch_encoder)
8388 		intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
8389 	else
8390 		intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
8391 }
8392 
vlv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8393 static void vlv_compute_dpll(struct intel_crtc *crtc,
8394 			     struct intel_crtc_state *pipe_config)
8395 {
8396 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
8397 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8398 	if (crtc->pipe != PIPE_A)
8399 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8400 
8401 	/* DPLL not used with DSI, but still need the rest set up */
8402 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8403 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
8404 			DPLL_EXT_BUFFER_ENABLE_VLV;
8405 
8406 	pipe_config->dpll_hw_state.dpll_md =
8407 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8408 }
8409 
chv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8410 static void chv_compute_dpll(struct intel_crtc *crtc,
8411 			     struct intel_crtc_state *pipe_config)
8412 {
8413 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
8414 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8415 	if (crtc->pipe != PIPE_A)
8416 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8417 
8418 	/* DPLL not used with DSI, but still need the rest set up */
8419 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8420 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
8421 
8422 	pipe_config->dpll_hw_state.dpll_md =
8423 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8424 }
8425 
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)8426 static void vlv_prepare_pll(struct intel_crtc *crtc,
8427 			    const struct intel_crtc_state *pipe_config)
8428 {
8429 	struct drm_device *dev = crtc->base.dev;
8430 	struct drm_i915_private *dev_priv = to_i915(dev);
8431 	enum pipe pipe = crtc->pipe;
8432 	u32 mdiv;
8433 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
8434 	u32 coreclk, reg_val;
8435 
8436 	/* Enable Refclk */
8437 	intel_de_write(dev_priv, DPLL(pipe),
8438 		       pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
8439 
8440 	/* No need to actually set up the DPLL with DSI */
8441 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8442 		return;
8443 
8444 	vlv_dpio_get(dev_priv);
8445 
8446 	bestn = pipe_config->dpll.n;
8447 	bestm1 = pipe_config->dpll.m1;
8448 	bestm2 = pipe_config->dpll.m2;
8449 	bestp1 = pipe_config->dpll.p1;
8450 	bestp2 = pipe_config->dpll.p2;
8451 
8452 	/* See eDP HDMI DPIO driver vbios notes doc */
8453 
8454 	/* PLL B needs special handling */
8455 	if (pipe == PIPE_B)
8456 		vlv_pllb_recal_opamp(dev_priv, pipe);
8457 
8458 	/* Set up Tx target for periodic Rcomp update */
8459 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
8460 
8461 	/* Disable target IRef on PLL */
8462 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
8463 	reg_val &= 0x00ffffff;
8464 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
8465 
8466 	/* Disable fast lock */
8467 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
8468 
8469 	/* Set idtafcrecal before PLL is enabled */
8470 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
8471 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
8472 	mdiv |= ((bestn << DPIO_N_SHIFT));
8473 	mdiv |= (1 << DPIO_K_SHIFT);
8474 
8475 	/*
8476 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
8477 	 * but we don't support that).
8478 	 * Note: don't use the DAC post divider as it seems unstable.
8479 	 */
8480 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
8481 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8482 
8483 	mdiv |= DPIO_ENABLE_CALIBRATION;
8484 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8485 
8486 	/* Set HBR and RBR LPF coefficients */
8487 	if (pipe_config->port_clock == 162000 ||
8488 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
8489 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
8490 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8491 				 0x009f0003);
8492 	else
8493 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8494 				 0x00d0000f);
8495 
8496 	if (intel_crtc_has_dp_encoder(pipe_config)) {
8497 		/* Use SSC source */
8498 		if (pipe == PIPE_A)
8499 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8500 					 0x0df40000);
8501 		else
8502 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8503 					 0x0df70000);
8504 	} else { /* HDMI or VGA */
8505 		/* Use bend source */
8506 		if (pipe == PIPE_A)
8507 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8508 					 0x0df70000);
8509 		else
8510 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8511 					 0x0df40000);
8512 	}
8513 
8514 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
8515 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
8516 	if (intel_crtc_has_dp_encoder(pipe_config))
8517 		coreclk |= 0x01000000;
8518 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
8519 
8520 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
8521 
8522 	vlv_dpio_put(dev_priv);
8523 }
8524 
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)8525 static void chv_prepare_pll(struct intel_crtc *crtc,
8526 			    const struct intel_crtc_state *pipe_config)
8527 {
8528 	struct drm_device *dev = crtc->base.dev;
8529 	struct drm_i915_private *dev_priv = to_i915(dev);
8530 	enum pipe pipe = crtc->pipe;
8531 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8532 	u32 loopfilter, tribuf_calcntr;
8533 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8534 	u32 dpio_val;
8535 	int vco;
8536 
8537 	/* Enable Refclk and SSC */
8538 	intel_de_write(dev_priv, DPLL(pipe),
8539 		       pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8540 
8541 	/* No need to actually set up the DPLL with DSI */
8542 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8543 		return;
8544 
8545 	bestn = pipe_config->dpll.n;
8546 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8547 	bestm1 = pipe_config->dpll.m1;
8548 	bestm2 = pipe_config->dpll.m2 >> 22;
8549 	bestp1 = pipe_config->dpll.p1;
8550 	bestp2 = pipe_config->dpll.p2;
8551 	vco = pipe_config->dpll.vco;
8552 	dpio_val = 0;
8553 	loopfilter = 0;
8554 
8555 	vlv_dpio_get(dev_priv);
8556 
8557 	/* p1 and p2 divider */
8558 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8559 			5 << DPIO_CHV_S1_DIV_SHIFT |
8560 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8561 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8562 			1 << DPIO_CHV_K_DIV_SHIFT);
8563 
8564 	/* Feedback post-divider - m2 */
8565 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8566 
8567 	/* Feedback refclk divider - n and m1 */
8568 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8569 			DPIO_CHV_M1_DIV_BY_2 |
8570 			1 << DPIO_CHV_N_DIV_SHIFT);
8571 
8572 	/* M2 fraction division */
8573 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8574 
8575 	/* M2 fraction division enable */
8576 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8577 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8578 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8579 	if (bestm2_frac)
8580 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8581 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8582 
8583 	/* Program digital lock detect threshold */
8584 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8585 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8586 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8587 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8588 	if (!bestm2_frac)
8589 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8590 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8591 
8592 	/* Loop filter */
8593 	if (vco == 5400000) {
8594 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8595 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8596 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8597 		tribuf_calcntr = 0x9;
8598 	} else if (vco <= 6200000) {
8599 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8600 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8601 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8602 		tribuf_calcntr = 0x9;
8603 	} else if (vco <= 6480000) {
8604 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8605 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8606 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8607 		tribuf_calcntr = 0x8;
8608 	} else {
8609 		/* Not supported. Apply the same limits as in the max case */
8610 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8611 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8612 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8613 		tribuf_calcntr = 0;
8614 	}
8615 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8616 
8617 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8618 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8619 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8620 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8621 
8622 	/* AFC Recal */
8623 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8624 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8625 			DPIO_AFC_RECAL);
8626 
8627 	vlv_dpio_put(dev_priv);
8628 }
8629 
8630 /**
8631  * vlv_force_pll_on - forcibly enable just the PLL
8632  * @dev_priv: i915 private structure
8633  * @pipe: pipe PLL to enable
8634  * @dpll: PLL configuration
8635  *
8636  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8637  * in cases where we need the PLL enabled even when @pipe is not going to
8638  * be enabled.
8639  */
vlv_force_pll_on(struct drm_i915_private * dev_priv,enum pipe pipe,const struct dpll * dpll)8640 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8641 		     const struct dpll *dpll)
8642 {
8643 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8644 	struct intel_crtc_state *pipe_config;
8645 
8646 	pipe_config = intel_crtc_state_alloc(crtc);
8647 	if (!pipe_config)
8648 		return -ENOMEM;
8649 
8650 	pipe_config->cpu_transcoder = (enum transcoder)pipe;
8651 	pipe_config->pixel_multiplier = 1;
8652 	pipe_config->dpll = *dpll;
8653 
8654 	if (IS_CHERRYVIEW(dev_priv)) {
8655 		chv_compute_dpll(crtc, pipe_config);
8656 		chv_prepare_pll(crtc, pipe_config);
8657 		chv_enable_pll(crtc, pipe_config);
8658 	} else {
8659 		vlv_compute_dpll(crtc, pipe_config);
8660 		vlv_prepare_pll(crtc, pipe_config);
8661 		vlv_enable_pll(crtc, pipe_config);
8662 	}
8663 
8664 	kfree(pipe_config);
8665 
8666 	return 0;
8667 }
8668 
8669 /**
8670  * vlv_force_pll_off - forcibly disable just the PLL
8671  * @dev_priv: i915 private structure
8672  * @pipe: pipe PLL to disable
8673  *
8674  * Disable the PLL for @pipe. To be used in cases where we need
8675  * the PLL enabled even when @pipe is not going to be enabled.
8676  */
vlv_force_pll_off(struct drm_i915_private * dev_priv,enum pipe pipe)8677 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8678 {
8679 	if (IS_CHERRYVIEW(dev_priv))
8680 		chv_disable_pll(dev_priv, pipe);
8681 	else
8682 		vlv_disable_pll(dev_priv, pipe);
8683 }
8684 
i9xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8685 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8686 			      struct intel_crtc_state *crtc_state,
8687 			      struct dpll *reduced_clock)
8688 {
8689 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8690 	u32 dpll;
8691 	struct dpll *clock = &crtc_state->dpll;
8692 
8693 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8694 
8695 	dpll = DPLL_VGA_MODE_DIS;
8696 
8697 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8698 		dpll |= DPLLB_MODE_LVDS;
8699 	else
8700 		dpll |= DPLLB_MODE_DAC_SERIAL;
8701 
8702 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8703 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8704 		dpll |= (crtc_state->pixel_multiplier - 1)
8705 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
8706 	}
8707 
8708 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8709 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8710 		dpll |= DPLL_SDVO_HIGH_SPEED;
8711 
8712 	if (intel_crtc_has_dp_encoder(crtc_state))
8713 		dpll |= DPLL_SDVO_HIGH_SPEED;
8714 
8715 	/* compute bitmask from p1 value */
8716 	if (IS_PINEVIEW(dev_priv))
8717 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8718 	else {
8719 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8720 		if (IS_G4X(dev_priv) && reduced_clock)
8721 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8722 	}
8723 	switch (clock->p2) {
8724 	case 5:
8725 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8726 		break;
8727 	case 7:
8728 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8729 		break;
8730 	case 10:
8731 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8732 		break;
8733 	case 14:
8734 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8735 		break;
8736 	}
8737 	if (INTEL_GEN(dev_priv) >= 4)
8738 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8739 
8740 	if (crtc_state->sdvo_tv_clock)
8741 		dpll |= PLL_REF_INPUT_TVCLKINBC;
8742 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8743 		 intel_panel_use_ssc(dev_priv))
8744 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8745 	else
8746 		dpll |= PLL_REF_INPUT_DREFCLK;
8747 
8748 	dpll |= DPLL_VCO_ENABLE;
8749 	crtc_state->dpll_hw_state.dpll = dpll;
8750 
8751 	if (INTEL_GEN(dev_priv) >= 4) {
8752 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8753 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
8754 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
8755 	}
8756 }
8757 
i8xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8758 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8759 			      struct intel_crtc_state *crtc_state,
8760 			      struct dpll *reduced_clock)
8761 {
8762 	struct drm_device *dev = crtc->base.dev;
8763 	struct drm_i915_private *dev_priv = to_i915(dev);
8764 	u32 dpll;
8765 	struct dpll *clock = &crtc_state->dpll;
8766 
8767 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8768 
8769 	dpll = DPLL_VGA_MODE_DIS;
8770 
8771 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8772 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8773 	} else {
8774 		if (clock->p1 == 2)
8775 			dpll |= PLL_P1_DIVIDE_BY_TWO;
8776 		else
8777 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8778 		if (clock->p2 == 4)
8779 			dpll |= PLL_P2_DIVIDE_BY_4;
8780 	}
8781 
8782 	/*
8783 	 * Bspec:
8784 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
8785 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8786 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8787 	 *  Enable) must be set to “1” in both the DPLL A Control Register
8788 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8789 	 *
8790 	 * For simplicity We simply keep both bits always enabled in
8791 	 * both DPLLS. The spec says we should disable the DVO 2X clock
8792 	 * when not needed, but this seems to work fine in practice.
8793 	 */
8794 	if (IS_I830(dev_priv) ||
8795 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8796 		dpll |= DPLL_DVO_2X_MODE;
8797 
8798 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8799 	    intel_panel_use_ssc(dev_priv))
8800 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8801 	else
8802 		dpll |= PLL_REF_INPUT_DREFCLK;
8803 
8804 	dpll |= DPLL_VCO_ENABLE;
8805 	crtc_state->dpll_hw_state.dpll = dpll;
8806 }
8807 
intel_set_pipe_timings(const struct intel_crtc_state * crtc_state)8808 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8809 {
8810 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8811 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8812 	enum pipe pipe = crtc->pipe;
8813 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8814 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
8815 	u32 crtc_vtotal, crtc_vblank_end;
8816 	int vsyncshift = 0;
8817 
8818 	/* We need to be careful not to changed the adjusted mode, for otherwise
8819 	 * the hw state checker will get angry at the mismatch. */
8820 	crtc_vtotal = adjusted_mode->crtc_vtotal;
8821 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8822 
8823 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8824 		/* the chip adds 2 halflines automatically */
8825 		crtc_vtotal -= 1;
8826 		crtc_vblank_end -= 1;
8827 
8828 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8829 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8830 		else
8831 			vsyncshift = adjusted_mode->crtc_hsync_start -
8832 				adjusted_mode->crtc_htotal / 2;
8833 		if (vsyncshift < 0)
8834 			vsyncshift += adjusted_mode->crtc_htotal;
8835 	}
8836 
8837 	if (INTEL_GEN(dev_priv) > 3)
8838 		intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder),
8839 		               vsyncshift);
8840 
8841 	intel_de_write(dev_priv, HTOTAL(cpu_transcoder),
8842 		       (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16));
8843 	intel_de_write(dev_priv, HBLANK(cpu_transcoder),
8844 		       (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16));
8845 	intel_de_write(dev_priv, HSYNC(cpu_transcoder),
8846 		       (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16));
8847 
8848 	intel_de_write(dev_priv, VTOTAL(cpu_transcoder),
8849 		       (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16));
8850 	intel_de_write(dev_priv, VBLANK(cpu_transcoder),
8851 		       (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16));
8852 	intel_de_write(dev_priv, VSYNC(cpu_transcoder),
8853 		       (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16));
8854 
8855 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8856 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8857 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8858 	 * bits. */
8859 	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8860 	    (pipe == PIPE_B || pipe == PIPE_C))
8861 		intel_de_write(dev_priv, VTOTAL(pipe),
8862 		               intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
8863 
8864 }
8865 
intel_set_pipe_src_size(const struct intel_crtc_state * crtc_state)8866 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8867 {
8868 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8869 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8870 	enum pipe pipe = crtc->pipe;
8871 
8872 	/* pipesrc controls the size that is scaled from, which should
8873 	 * always be the user's requested size.
8874 	 */
8875 	intel_de_write(dev_priv, PIPESRC(pipe),
8876 		       ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1));
8877 }
8878 
intel_pipe_is_interlaced(const struct intel_crtc_state * crtc_state)8879 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8880 {
8881 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8882 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8883 
8884 	if (IS_GEN(dev_priv, 2))
8885 		return false;
8886 
8887 	if (INTEL_GEN(dev_priv) >= 9 ||
8888 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8889 		return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8890 	else
8891 		return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8892 }
8893 
intel_get_pipe_timings(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8894 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8895 				   struct intel_crtc_state *pipe_config)
8896 {
8897 	struct drm_device *dev = crtc->base.dev;
8898 	struct drm_i915_private *dev_priv = to_i915(dev);
8899 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8900 	u32 tmp;
8901 
8902 	tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder));
8903 	pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8904 	pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8905 
8906 	if (!transcoder_is_dsi(cpu_transcoder)) {
8907 		tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder));
8908 		pipe_config->hw.adjusted_mode.crtc_hblank_start =
8909 							(tmp & 0xffff) + 1;
8910 		pipe_config->hw.adjusted_mode.crtc_hblank_end =
8911 						((tmp >> 16) & 0xffff) + 1;
8912 	}
8913 	tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder));
8914 	pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8915 	pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8916 
8917 	tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder));
8918 	pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8919 	pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8920 
8921 	if (!transcoder_is_dsi(cpu_transcoder)) {
8922 		tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder));
8923 		pipe_config->hw.adjusted_mode.crtc_vblank_start =
8924 							(tmp & 0xffff) + 1;
8925 		pipe_config->hw.adjusted_mode.crtc_vblank_end =
8926 						((tmp >> 16) & 0xffff) + 1;
8927 	}
8928 	tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder));
8929 	pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8930 	pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8931 
8932 	if (intel_pipe_is_interlaced(pipe_config)) {
8933 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8934 		pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
8935 		pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
8936 	}
8937 }
8938 
intel_get_pipe_src_size(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8939 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8940 				    struct intel_crtc_state *pipe_config)
8941 {
8942 	struct drm_device *dev = crtc->base.dev;
8943 	struct drm_i915_private *dev_priv = to_i915(dev);
8944 	u32 tmp;
8945 
8946 	tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe));
8947 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8948 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8949 
8950 	pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h;
8951 	pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w;
8952 }
8953 
intel_mode_from_pipe_config(struct drm_display_mode * mode,struct intel_crtc_state * pipe_config)8954 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8955 				 struct intel_crtc_state *pipe_config)
8956 {
8957 	mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay;
8958 	mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal;
8959 	mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start;
8960 	mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end;
8961 
8962 	mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay;
8963 	mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal;
8964 	mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start;
8965 	mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end;
8966 
8967 	mode->flags = pipe_config->hw.adjusted_mode.flags;
8968 	mode->type = DRM_MODE_TYPE_DRIVER;
8969 
8970 	mode->clock = pipe_config->hw.adjusted_mode.crtc_clock;
8971 
8972 	drm_mode_set_name(mode);
8973 }
8974 
i9xx_set_pipeconf(const struct intel_crtc_state * crtc_state)8975 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8976 {
8977 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8978 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8979 	u32 pipeconf;
8980 
8981 	pipeconf = 0;
8982 
8983 	/* we keep both pipes enabled on 830 */
8984 	if (IS_I830(dev_priv))
8985 		pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8986 
8987 	if (crtc_state->double_wide)
8988 		pipeconf |= PIPECONF_DOUBLE_WIDE;
8989 
8990 	/* only g4x and later have fancy bpc/dither controls */
8991 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8992 	    IS_CHERRYVIEW(dev_priv)) {
8993 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
8994 		if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8995 			pipeconf |= PIPECONF_DITHER_EN |
8996 				    PIPECONF_DITHER_TYPE_SP;
8997 
8998 		switch (crtc_state->pipe_bpp) {
8999 		case 18:
9000 			pipeconf |= PIPECONF_6BPC;
9001 			break;
9002 		case 24:
9003 			pipeconf |= PIPECONF_8BPC;
9004 			break;
9005 		case 30:
9006 			pipeconf |= PIPECONF_10BPC;
9007 			break;
9008 		default:
9009 			/* Case prevented by intel_choose_pipe_bpp_dither. */
9010 			BUG();
9011 		}
9012 	}
9013 
9014 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
9015 		if (INTEL_GEN(dev_priv) < 4 ||
9016 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
9017 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
9018 		else
9019 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
9020 	} else {
9021 		pipeconf |= PIPECONF_PROGRESSIVE;
9022 	}
9023 
9024 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9025 	     crtc_state->limited_color_range)
9026 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9027 
9028 	pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9029 
9030 	pipeconf |= PIPECONF_FRAME_START_DELAY(0);
9031 
9032 	intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf);
9033 	intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe));
9034 }
9035 
i8xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9036 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
9037 				   struct intel_crtc_state *crtc_state)
9038 {
9039 	struct drm_device *dev = crtc->base.dev;
9040 	struct drm_i915_private *dev_priv = to_i915(dev);
9041 	const struct intel_limit *limit;
9042 	int refclk = 48000;
9043 
9044 	memset(&crtc_state->dpll_hw_state, 0,
9045 	       sizeof(crtc_state->dpll_hw_state));
9046 
9047 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9048 		if (intel_panel_use_ssc(dev_priv)) {
9049 			refclk = dev_priv->vbt.lvds_ssc_freq;
9050 			drm_dbg_kms(&dev_priv->drm,
9051 				    "using SSC reference clock of %d kHz\n",
9052 				    refclk);
9053 		}
9054 
9055 		limit = &intel_limits_i8xx_lvds;
9056 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
9057 		limit = &intel_limits_i8xx_dvo;
9058 	} else {
9059 		limit = &intel_limits_i8xx_dac;
9060 	}
9061 
9062 	if (!crtc_state->clock_set &&
9063 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9064 				 refclk, NULL, &crtc_state->dpll)) {
9065 		drm_err(&dev_priv->drm,
9066 			"Couldn't find PLL settings for mode!\n");
9067 		return -EINVAL;
9068 	}
9069 
9070 	i8xx_compute_dpll(crtc, crtc_state, NULL);
9071 
9072 	return 0;
9073 }
9074 
g4x_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9075 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
9076 				  struct intel_crtc_state *crtc_state)
9077 {
9078 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9079 	const struct intel_limit *limit;
9080 	int refclk = 96000;
9081 
9082 	memset(&crtc_state->dpll_hw_state, 0,
9083 	       sizeof(crtc_state->dpll_hw_state));
9084 
9085 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9086 		if (intel_panel_use_ssc(dev_priv)) {
9087 			refclk = dev_priv->vbt.lvds_ssc_freq;
9088 			drm_dbg_kms(&dev_priv->drm,
9089 				    "using SSC reference clock of %d kHz\n",
9090 				    refclk);
9091 		}
9092 
9093 		if (intel_is_dual_link_lvds(dev_priv))
9094 			limit = &intel_limits_g4x_dual_channel_lvds;
9095 		else
9096 			limit = &intel_limits_g4x_single_channel_lvds;
9097 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
9098 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
9099 		limit = &intel_limits_g4x_hdmi;
9100 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
9101 		limit = &intel_limits_g4x_sdvo;
9102 	} else {
9103 		/* The option is for other outputs */
9104 		limit = &intel_limits_i9xx_sdvo;
9105 	}
9106 
9107 	if (!crtc_state->clock_set &&
9108 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9109 				refclk, NULL, &crtc_state->dpll)) {
9110 		drm_err(&dev_priv->drm,
9111 			"Couldn't find PLL settings for mode!\n");
9112 		return -EINVAL;
9113 	}
9114 
9115 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9116 
9117 	return 0;
9118 }
9119 
pnv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9120 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
9121 				  struct intel_crtc_state *crtc_state)
9122 {
9123 	struct drm_device *dev = crtc->base.dev;
9124 	struct drm_i915_private *dev_priv = to_i915(dev);
9125 	const struct intel_limit *limit;
9126 	int refclk = 96000;
9127 
9128 	memset(&crtc_state->dpll_hw_state, 0,
9129 	       sizeof(crtc_state->dpll_hw_state));
9130 
9131 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9132 		if (intel_panel_use_ssc(dev_priv)) {
9133 			refclk = dev_priv->vbt.lvds_ssc_freq;
9134 			drm_dbg_kms(&dev_priv->drm,
9135 				    "using SSC reference clock of %d kHz\n",
9136 				    refclk);
9137 		}
9138 
9139 		limit = &pnv_limits_lvds;
9140 	} else {
9141 		limit = &pnv_limits_sdvo;
9142 	}
9143 
9144 	if (!crtc_state->clock_set &&
9145 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9146 				refclk, NULL, &crtc_state->dpll)) {
9147 		drm_err(&dev_priv->drm,
9148 			"Couldn't find PLL settings for mode!\n");
9149 		return -EINVAL;
9150 	}
9151 
9152 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9153 
9154 	return 0;
9155 }
9156 
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9157 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
9158 				   struct intel_crtc_state *crtc_state)
9159 {
9160 	struct drm_device *dev = crtc->base.dev;
9161 	struct drm_i915_private *dev_priv = to_i915(dev);
9162 	const struct intel_limit *limit;
9163 	int refclk = 96000;
9164 
9165 	memset(&crtc_state->dpll_hw_state, 0,
9166 	       sizeof(crtc_state->dpll_hw_state));
9167 
9168 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9169 		if (intel_panel_use_ssc(dev_priv)) {
9170 			refclk = dev_priv->vbt.lvds_ssc_freq;
9171 			drm_dbg_kms(&dev_priv->drm,
9172 				    "using SSC reference clock of %d kHz\n",
9173 				    refclk);
9174 		}
9175 
9176 		limit = &intel_limits_i9xx_lvds;
9177 	} else {
9178 		limit = &intel_limits_i9xx_sdvo;
9179 	}
9180 
9181 	if (!crtc_state->clock_set &&
9182 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9183 				 refclk, NULL, &crtc_state->dpll)) {
9184 		drm_err(&dev_priv->drm,
9185 			"Couldn't find PLL settings for mode!\n");
9186 		return -EINVAL;
9187 	}
9188 
9189 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9190 
9191 	return 0;
9192 }
9193 
chv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9194 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
9195 				  struct intel_crtc_state *crtc_state)
9196 {
9197 	int refclk = 100000;
9198 	const struct intel_limit *limit = &intel_limits_chv;
9199 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9200 
9201 	memset(&crtc_state->dpll_hw_state, 0,
9202 	       sizeof(crtc_state->dpll_hw_state));
9203 
9204 	if (!crtc_state->clock_set &&
9205 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9206 				refclk, NULL, &crtc_state->dpll)) {
9207 		drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
9208 		return -EINVAL;
9209 	}
9210 
9211 	chv_compute_dpll(crtc, crtc_state);
9212 
9213 	return 0;
9214 }
9215 
vlv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9216 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
9217 				  struct intel_crtc_state *crtc_state)
9218 {
9219 	int refclk = 100000;
9220 	const struct intel_limit *limit = &intel_limits_vlv;
9221 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9222 
9223 	memset(&crtc_state->dpll_hw_state, 0,
9224 	       sizeof(crtc_state->dpll_hw_state));
9225 
9226 	if (!crtc_state->clock_set &&
9227 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9228 				refclk, NULL, &crtc_state->dpll)) {
9229 		drm_err(&i915->drm,  "Couldn't find PLL settings for mode!\n");
9230 		return -EINVAL;
9231 	}
9232 
9233 	vlv_compute_dpll(crtc, crtc_state);
9234 
9235 	return 0;
9236 }
9237 
i9xx_has_pfit(struct drm_i915_private * dev_priv)9238 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
9239 {
9240 	if (IS_I830(dev_priv))
9241 		return false;
9242 
9243 	return INTEL_GEN(dev_priv) >= 4 ||
9244 		IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
9245 }
9246 
i9xx_get_pfit_config(struct intel_crtc_state * crtc_state)9247 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state)
9248 {
9249 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9250 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9251 	u32 tmp;
9252 
9253 	if (!i9xx_has_pfit(dev_priv))
9254 		return;
9255 
9256 	tmp = intel_de_read(dev_priv, PFIT_CONTROL);
9257 	if (!(tmp & PFIT_ENABLE))
9258 		return;
9259 
9260 	/* Check whether the pfit is attached to our pipe. */
9261 	if (INTEL_GEN(dev_priv) < 4) {
9262 		if (crtc->pipe != PIPE_B)
9263 			return;
9264 	} else {
9265 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
9266 			return;
9267 	}
9268 
9269 	crtc_state->gmch_pfit.control = tmp;
9270 	crtc_state->gmch_pfit.pgm_ratios =
9271 		intel_de_read(dev_priv, PFIT_PGM_RATIOS);
9272 }
9273 
vlv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9274 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
9275 			       struct intel_crtc_state *pipe_config)
9276 {
9277 	struct drm_device *dev = crtc->base.dev;
9278 	struct drm_i915_private *dev_priv = to_i915(dev);
9279 	enum pipe pipe = crtc->pipe;
9280 	struct dpll clock;
9281 	u32 mdiv;
9282 	int refclk = 100000;
9283 
9284 	/* In case of DSI, DPLL will not be used */
9285 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9286 		return;
9287 
9288 	vlv_dpio_get(dev_priv);
9289 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
9290 	vlv_dpio_put(dev_priv);
9291 
9292 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
9293 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
9294 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
9295 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
9296 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
9297 
9298 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
9299 }
9300 
9301 static void
i9xx_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9302 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
9303 			      struct intel_initial_plane_config *plane_config)
9304 {
9305 	struct drm_device *dev = crtc->base.dev;
9306 	struct drm_i915_private *dev_priv = to_i915(dev);
9307 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9308 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9309 	enum pipe pipe;
9310 	u32 val, base, offset;
9311 	int fourcc, pixel_format;
9312 	unsigned int aligned_height;
9313 	struct drm_framebuffer *fb;
9314 	struct intel_framebuffer *intel_fb;
9315 
9316 	if (!plane->get_hw_state(plane, &pipe))
9317 		return;
9318 
9319 	drm_WARN_ON(dev, pipe != crtc->pipe);
9320 
9321 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9322 	if (!intel_fb) {
9323 		drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
9324 		return;
9325 	}
9326 
9327 	fb = &intel_fb->base;
9328 
9329 	fb->dev = dev;
9330 
9331 	val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9332 
9333 	if (INTEL_GEN(dev_priv) >= 4) {
9334 		if (val & DISPPLANE_TILED) {
9335 			plane_config->tiling = I915_TILING_X;
9336 			fb->modifier = I915_FORMAT_MOD_X_TILED;
9337 		}
9338 
9339 		if (val & DISPPLANE_ROTATE_180)
9340 			plane_config->rotation = DRM_MODE_ROTATE_180;
9341 	}
9342 
9343 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
9344 	    val & DISPPLANE_MIRROR)
9345 		plane_config->rotation |= DRM_MODE_REFLECT_X;
9346 
9347 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9348 	fourcc = i9xx_format_to_fourcc(pixel_format);
9349 	fb->format = drm_format_info(fourcc);
9350 
9351 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9352 		offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane));
9353 		base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9354 	} else if (INTEL_GEN(dev_priv) >= 4) {
9355 		if (plane_config->tiling)
9356 			offset = intel_de_read(dev_priv,
9357 					       DSPTILEOFF(i9xx_plane));
9358 		else
9359 			offset = intel_de_read(dev_priv,
9360 					       DSPLINOFF(i9xx_plane));
9361 		base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9362 	} else {
9363 		base = intel_de_read(dev_priv, DSPADDR(i9xx_plane));
9364 	}
9365 	plane_config->base = base;
9366 
9367 	val = intel_de_read(dev_priv, PIPESRC(pipe));
9368 	fb->width = ((val >> 16) & 0xfff) + 1;
9369 	fb->height = ((val >> 0) & 0xfff) + 1;
9370 
9371 	val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane));
9372 	fb->pitches[0] = val & 0xffffffc0;
9373 
9374 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
9375 
9376 	plane_config->size = fb->pitches[0] * aligned_height;
9377 
9378 	drm_dbg_kms(&dev_priv->drm,
9379 		    "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9380 		    crtc->base.name, plane->base.name, fb->width, fb->height,
9381 		    fb->format->cpp[0] * 8, base, fb->pitches[0],
9382 		    plane_config->size);
9383 
9384 	plane_config->fb = intel_fb;
9385 }
9386 
chv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9387 static void chv_crtc_clock_get(struct intel_crtc *crtc,
9388 			       struct intel_crtc_state *pipe_config)
9389 {
9390 	struct drm_device *dev = crtc->base.dev;
9391 	struct drm_i915_private *dev_priv = to_i915(dev);
9392 	enum pipe pipe = crtc->pipe;
9393 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
9394 	struct dpll clock;
9395 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
9396 	int refclk = 100000;
9397 
9398 	/* In case of DSI, DPLL will not be used */
9399 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9400 		return;
9401 
9402 	vlv_dpio_get(dev_priv);
9403 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
9404 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
9405 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
9406 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
9407 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
9408 	vlv_dpio_put(dev_priv);
9409 
9410 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
9411 	clock.m2 = (pll_dw0 & 0xff) << 22;
9412 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
9413 		clock.m2 |= pll_dw2 & 0x3fffff;
9414 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
9415 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
9416 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
9417 
9418 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
9419 }
9420 
9421 static enum intel_output_format
bdw_get_pipemisc_output_format(struct intel_crtc * crtc)9422 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
9423 {
9424 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9425 	u32 tmp;
9426 
9427 	tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
9428 
9429 	if (tmp & PIPEMISC_YUV420_ENABLE) {
9430 		/* We support 4:2:0 in full blend mode only */
9431 		drm_WARN_ON(&dev_priv->drm,
9432 			    (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
9433 
9434 		return INTEL_OUTPUT_FORMAT_YCBCR420;
9435 	} else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
9436 		return INTEL_OUTPUT_FORMAT_YCBCR444;
9437 	} else {
9438 		return INTEL_OUTPUT_FORMAT_RGB;
9439 	}
9440 }
9441 
i9xx_get_pipe_color_config(struct intel_crtc_state * crtc_state)9442 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
9443 {
9444 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9445 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9446 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9447 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9448 	u32 tmp;
9449 
9450 	tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9451 
9452 	if (tmp & DISPPLANE_GAMMA_ENABLE)
9453 		crtc_state->gamma_enable = true;
9454 
9455 	if (!HAS_GMCH(dev_priv) &&
9456 	    tmp & DISPPLANE_PIPE_CSC_ENABLE)
9457 		crtc_state->csc_enable = true;
9458 }
9459 
i9xx_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9460 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
9461 				 struct intel_crtc_state *pipe_config)
9462 {
9463 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9464 	enum intel_display_power_domain power_domain;
9465 	intel_wakeref_t wakeref;
9466 	u32 tmp;
9467 	bool ret;
9468 
9469 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9470 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9471 	if (!wakeref)
9472 		return false;
9473 
9474 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9475 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9476 	pipe_config->shared_dpll = NULL;
9477 
9478 	ret = false;
9479 
9480 	tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
9481 	if (!(tmp & PIPECONF_ENABLE))
9482 		goto out;
9483 
9484 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9485 	    IS_CHERRYVIEW(dev_priv)) {
9486 		switch (tmp & PIPECONF_BPC_MASK) {
9487 		case PIPECONF_6BPC:
9488 			pipe_config->pipe_bpp = 18;
9489 			break;
9490 		case PIPECONF_8BPC:
9491 			pipe_config->pipe_bpp = 24;
9492 			break;
9493 		case PIPECONF_10BPC:
9494 			pipe_config->pipe_bpp = 30;
9495 			break;
9496 		default:
9497 			break;
9498 		}
9499 	}
9500 
9501 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9502 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
9503 		pipe_config->limited_color_range = true;
9504 
9505 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
9506 		PIPECONF_GAMMA_MODE_SHIFT;
9507 
9508 	if (IS_CHERRYVIEW(dev_priv))
9509 		pipe_config->cgm_mode = intel_de_read(dev_priv,
9510 						      CGM_PIPE_MODE(crtc->pipe));
9511 
9512 	i9xx_get_pipe_color_config(pipe_config);
9513 	intel_color_get_config(pipe_config);
9514 
9515 	if (INTEL_GEN(dev_priv) < 4)
9516 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
9517 
9518 	intel_get_pipe_timings(crtc, pipe_config);
9519 	intel_get_pipe_src_size(crtc, pipe_config);
9520 
9521 	i9xx_get_pfit_config(pipe_config);
9522 
9523 	if (INTEL_GEN(dev_priv) >= 4) {
9524 		/* No way to read it out on pipes B and C */
9525 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
9526 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
9527 		else
9528 			tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
9529 		pipe_config->pixel_multiplier =
9530 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
9531 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
9532 		pipe_config->dpll_hw_state.dpll_md = tmp;
9533 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
9534 		   IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
9535 		tmp = intel_de_read(dev_priv, DPLL(crtc->pipe));
9536 		pipe_config->pixel_multiplier =
9537 			((tmp & SDVO_MULTIPLIER_MASK)
9538 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
9539 	} else {
9540 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
9541 		 * port and will be fixed up in the encoder->get_config
9542 		 * function. */
9543 		pipe_config->pixel_multiplier = 1;
9544 	}
9545 	pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv,
9546 							DPLL(crtc->pipe));
9547 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
9548 		pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv,
9549 							       FP0(crtc->pipe));
9550 		pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv,
9551 							       FP1(crtc->pipe));
9552 	} else {
9553 		/* Mask out read-only status bits. */
9554 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
9555 						     DPLL_PORTC_READY_MASK |
9556 						     DPLL_PORTB_READY_MASK);
9557 	}
9558 
9559 	if (IS_CHERRYVIEW(dev_priv))
9560 		chv_crtc_clock_get(crtc, pipe_config);
9561 	else if (IS_VALLEYVIEW(dev_priv))
9562 		vlv_crtc_clock_get(crtc, pipe_config);
9563 	else
9564 		i9xx_crtc_clock_get(crtc, pipe_config);
9565 
9566 	/*
9567 	 * Normally the dotclock is filled in by the encoder .get_config()
9568 	 * but in case the pipe is enabled w/o any ports we need a sane
9569 	 * default.
9570 	 */
9571 	pipe_config->hw.adjusted_mode.crtc_clock =
9572 		pipe_config->port_clock / pipe_config->pixel_multiplier;
9573 
9574 	ret = true;
9575 
9576 out:
9577 	intel_display_power_put(dev_priv, power_domain, wakeref);
9578 
9579 	return ret;
9580 }
9581 
ilk_init_pch_refclk(struct drm_i915_private * dev_priv)9582 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv)
9583 {
9584 	struct intel_encoder *encoder;
9585 	int i;
9586 	u32 val, final;
9587 	bool has_lvds = false;
9588 	bool has_cpu_edp = false;
9589 	bool has_panel = false;
9590 	bool has_ck505 = false;
9591 	bool can_ssc = false;
9592 	bool using_ssc_source = false;
9593 
9594 	/* We need to take the global config into account */
9595 	for_each_intel_encoder(&dev_priv->drm, encoder) {
9596 		switch (encoder->type) {
9597 		case INTEL_OUTPUT_LVDS:
9598 			has_panel = true;
9599 			has_lvds = true;
9600 			break;
9601 		case INTEL_OUTPUT_EDP:
9602 			has_panel = true;
9603 			if (encoder->port == PORT_A)
9604 				has_cpu_edp = true;
9605 			break;
9606 		default:
9607 			break;
9608 		}
9609 	}
9610 
9611 	if (HAS_PCH_IBX(dev_priv)) {
9612 		has_ck505 = dev_priv->vbt.display_clock_mode;
9613 		can_ssc = has_ck505;
9614 	} else {
9615 		has_ck505 = false;
9616 		can_ssc = true;
9617 	}
9618 
9619 	/* Check if any DPLLs are using the SSC source */
9620 	for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) {
9621 		u32 temp = intel_de_read(dev_priv, PCH_DPLL(i));
9622 
9623 		if (!(temp & DPLL_VCO_ENABLE))
9624 			continue;
9625 
9626 		if ((temp & PLL_REF_INPUT_MASK) ==
9627 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9628 			using_ssc_source = true;
9629 			break;
9630 		}
9631 	}
9632 
9633 	drm_dbg_kms(&dev_priv->drm,
9634 		    "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9635 		    has_panel, has_lvds, has_ck505, using_ssc_source);
9636 
9637 	/* Ironlake: try to setup display ref clock before DPLL
9638 	 * enabling. This is only under driver's control after
9639 	 * PCH B stepping, previous chipset stepping should be
9640 	 * ignoring this setting.
9641 	 */
9642 	val = intel_de_read(dev_priv, PCH_DREF_CONTROL);
9643 
9644 	/* As we must carefully and slowly disable/enable each source in turn,
9645 	 * compute the final state we want first and check if we need to
9646 	 * make any changes at all.
9647 	 */
9648 	final = val;
9649 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
9650 	if (has_ck505)
9651 		final |= DREF_NONSPREAD_CK505_ENABLE;
9652 	else
9653 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
9654 
9655 	final &= ~DREF_SSC_SOURCE_MASK;
9656 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9657 	final &= ~DREF_SSC1_ENABLE;
9658 
9659 	if (has_panel) {
9660 		final |= DREF_SSC_SOURCE_ENABLE;
9661 
9662 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
9663 			final |= DREF_SSC1_ENABLE;
9664 
9665 		if (has_cpu_edp) {
9666 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
9667 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9668 			else
9669 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9670 		} else
9671 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9672 	} else if (using_ssc_source) {
9673 		final |= DREF_SSC_SOURCE_ENABLE;
9674 		final |= DREF_SSC1_ENABLE;
9675 	}
9676 
9677 	if (final == val)
9678 		return;
9679 
9680 	/* Always enable nonspread source */
9681 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
9682 
9683 	if (has_ck505)
9684 		val |= DREF_NONSPREAD_CK505_ENABLE;
9685 	else
9686 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
9687 
9688 	if (has_panel) {
9689 		val &= ~DREF_SSC_SOURCE_MASK;
9690 		val |= DREF_SSC_SOURCE_ENABLE;
9691 
9692 		/* SSC must be turned on before enabling the CPU output  */
9693 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9694 			drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n");
9695 			val |= DREF_SSC1_ENABLE;
9696 		} else
9697 			val &= ~DREF_SSC1_ENABLE;
9698 
9699 		/* Get SSC going before enabling the outputs */
9700 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9701 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9702 		udelay(200);
9703 
9704 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9705 
9706 		/* Enable CPU source on CPU attached eDP */
9707 		if (has_cpu_edp) {
9708 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9709 				drm_dbg_kms(&dev_priv->drm,
9710 					    "Using SSC on eDP\n");
9711 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9712 			} else
9713 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9714 		} else
9715 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9716 
9717 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9718 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9719 		udelay(200);
9720 	} else {
9721 		drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n");
9722 
9723 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9724 
9725 		/* Turn off CPU output */
9726 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9727 
9728 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9729 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9730 		udelay(200);
9731 
9732 		if (!using_ssc_source) {
9733 			drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n");
9734 
9735 			/* Turn off the SSC source */
9736 			val &= ~DREF_SSC_SOURCE_MASK;
9737 			val |= DREF_SSC_SOURCE_DISABLE;
9738 
9739 			/* Turn off SSC1 */
9740 			val &= ~DREF_SSC1_ENABLE;
9741 
9742 			intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9743 			intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9744 			udelay(200);
9745 		}
9746 	}
9747 
9748 	BUG_ON(val != final);
9749 }
9750 
lpt_reset_fdi_mphy(struct drm_i915_private * dev_priv)9751 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9752 {
9753 	u32 tmp;
9754 
9755 	tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9756 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9757 	intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9758 
9759 	if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9760 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9761 		drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n");
9762 
9763 	tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9764 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9765 	intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9766 
9767 	if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9768 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9769 		drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n");
9770 }
9771 
9772 /* WaMPhyProgramming:hsw */
lpt_program_fdi_mphy(struct drm_i915_private * dev_priv)9773 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9774 {
9775 	u32 tmp;
9776 
9777 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9778 	tmp &= ~(0xFF << 24);
9779 	tmp |= (0x12 << 24);
9780 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9781 
9782 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9783 	tmp |= (1 << 11);
9784 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9785 
9786 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9787 	tmp |= (1 << 11);
9788 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9789 
9790 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9791 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9792 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9793 
9794 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9795 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9796 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9797 
9798 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9799 	tmp &= ~(7 << 13);
9800 	tmp |= (5 << 13);
9801 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9802 
9803 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9804 	tmp &= ~(7 << 13);
9805 	tmp |= (5 << 13);
9806 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9807 
9808 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9809 	tmp &= ~0xFF;
9810 	tmp |= 0x1C;
9811 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9812 
9813 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9814 	tmp &= ~0xFF;
9815 	tmp |= 0x1C;
9816 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9817 
9818 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9819 	tmp &= ~(0xFF << 16);
9820 	tmp |= (0x1C << 16);
9821 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9822 
9823 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9824 	tmp &= ~(0xFF << 16);
9825 	tmp |= (0x1C << 16);
9826 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9827 
9828 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9829 	tmp |= (1 << 27);
9830 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9831 
9832 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9833 	tmp |= (1 << 27);
9834 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9835 
9836 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9837 	tmp &= ~(0xF << 28);
9838 	tmp |= (4 << 28);
9839 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9840 
9841 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9842 	tmp &= ~(0xF << 28);
9843 	tmp |= (4 << 28);
9844 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9845 }
9846 
9847 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9848  * Programming" based on the parameters passed:
9849  * - Sequence to enable CLKOUT_DP
9850  * - Sequence to enable CLKOUT_DP without spread
9851  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9852  */
lpt_enable_clkout_dp(struct drm_i915_private * dev_priv,bool with_spread,bool with_fdi)9853 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9854 				 bool with_spread, bool with_fdi)
9855 {
9856 	u32 reg, tmp;
9857 
9858 	if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread,
9859 		     "FDI requires downspread\n"))
9860 		with_spread = true;
9861 	if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) &&
9862 		     with_fdi, "LP PCH doesn't have FDI\n"))
9863 		with_fdi = false;
9864 
9865 	mutex_lock(&dev_priv->sb_lock);
9866 
9867 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9868 	tmp &= ~SBI_SSCCTL_DISABLE;
9869 	tmp |= SBI_SSCCTL_PATHALT;
9870 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9871 
9872 	udelay(24);
9873 
9874 	if (with_spread) {
9875 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9876 		tmp &= ~SBI_SSCCTL_PATHALT;
9877 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9878 
9879 		if (with_fdi) {
9880 			lpt_reset_fdi_mphy(dev_priv);
9881 			lpt_program_fdi_mphy(dev_priv);
9882 		}
9883 	}
9884 
9885 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9886 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9887 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9888 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9889 
9890 	mutex_unlock(&dev_priv->sb_lock);
9891 }
9892 
9893 /* Sequence to disable CLKOUT_DP */
lpt_disable_clkout_dp(struct drm_i915_private * dev_priv)9894 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9895 {
9896 	u32 reg, tmp;
9897 
9898 	mutex_lock(&dev_priv->sb_lock);
9899 
9900 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9901 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9902 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9903 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9904 
9905 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9906 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
9907 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
9908 			tmp |= SBI_SSCCTL_PATHALT;
9909 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9910 			udelay(32);
9911 		}
9912 		tmp |= SBI_SSCCTL_DISABLE;
9913 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9914 	}
9915 
9916 	mutex_unlock(&dev_priv->sb_lock);
9917 }
9918 
9919 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9920 
9921 static const u16 sscdivintphase[] = {
9922 	[BEND_IDX( 50)] = 0x3B23,
9923 	[BEND_IDX( 45)] = 0x3B23,
9924 	[BEND_IDX( 40)] = 0x3C23,
9925 	[BEND_IDX( 35)] = 0x3C23,
9926 	[BEND_IDX( 30)] = 0x3D23,
9927 	[BEND_IDX( 25)] = 0x3D23,
9928 	[BEND_IDX( 20)] = 0x3E23,
9929 	[BEND_IDX( 15)] = 0x3E23,
9930 	[BEND_IDX( 10)] = 0x3F23,
9931 	[BEND_IDX(  5)] = 0x3F23,
9932 	[BEND_IDX(  0)] = 0x0025,
9933 	[BEND_IDX( -5)] = 0x0025,
9934 	[BEND_IDX(-10)] = 0x0125,
9935 	[BEND_IDX(-15)] = 0x0125,
9936 	[BEND_IDX(-20)] = 0x0225,
9937 	[BEND_IDX(-25)] = 0x0225,
9938 	[BEND_IDX(-30)] = 0x0325,
9939 	[BEND_IDX(-35)] = 0x0325,
9940 	[BEND_IDX(-40)] = 0x0425,
9941 	[BEND_IDX(-45)] = 0x0425,
9942 	[BEND_IDX(-50)] = 0x0525,
9943 };
9944 
9945 /*
9946  * Bend CLKOUT_DP
9947  * steps -50 to 50 inclusive, in steps of 5
9948  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9949  * change in clock period = -(steps / 10) * 5.787 ps
9950  */
lpt_bend_clkout_dp(struct drm_i915_private * dev_priv,int steps)9951 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9952 {
9953 	u32 tmp;
9954 	int idx = BEND_IDX(steps);
9955 
9956 	if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0))
9957 		return;
9958 
9959 	if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase)))
9960 		return;
9961 
9962 	mutex_lock(&dev_priv->sb_lock);
9963 
9964 	if (steps % 10 != 0)
9965 		tmp = 0xAAAAAAAB;
9966 	else
9967 		tmp = 0x00000000;
9968 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9969 
9970 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9971 	tmp &= 0xffff0000;
9972 	tmp |= sscdivintphase[idx];
9973 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9974 
9975 	mutex_unlock(&dev_priv->sb_lock);
9976 }
9977 
9978 #undef BEND_IDX
9979 
spll_uses_pch_ssc(struct drm_i915_private * dev_priv)9980 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9981 {
9982 	u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
9983 	u32 ctl = intel_de_read(dev_priv, SPLL_CTL);
9984 
9985 	if ((ctl & SPLL_PLL_ENABLE) == 0)
9986 		return false;
9987 
9988 	if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9989 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9990 		return true;
9991 
9992 	if (IS_BROADWELL(dev_priv) &&
9993 	    (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9994 		return true;
9995 
9996 	return false;
9997 }
9998 
wrpll_uses_pch_ssc(struct drm_i915_private * dev_priv,enum intel_dpll_id id)9999 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
10000 			       enum intel_dpll_id id)
10001 {
10002 	u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
10003 	u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id));
10004 
10005 	if ((ctl & WRPLL_PLL_ENABLE) == 0)
10006 		return false;
10007 
10008 	if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
10009 		return true;
10010 
10011 	if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
10012 	    (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
10013 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
10014 		return true;
10015 
10016 	return false;
10017 }
10018 
lpt_init_pch_refclk(struct drm_i915_private * dev_priv)10019 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
10020 {
10021 	struct intel_encoder *encoder;
10022 	bool has_fdi = false;
10023 
10024 	for_each_intel_encoder(&dev_priv->drm, encoder) {
10025 		switch (encoder->type) {
10026 		case INTEL_OUTPUT_ANALOG:
10027 			has_fdi = true;
10028 			break;
10029 		default:
10030 			break;
10031 		}
10032 	}
10033 
10034 	/*
10035 	 * The BIOS may have decided to use the PCH SSC
10036 	 * reference so we must not disable it until the
10037 	 * relevant PLLs have stopped relying on it. We'll
10038 	 * just leave the PCH SSC reference enabled in case
10039 	 * any active PLL is using it. It will get disabled
10040 	 * after runtime suspend if we don't have FDI.
10041 	 *
10042 	 * TODO: Move the whole reference clock handling
10043 	 * to the modeset sequence proper so that we can
10044 	 * actually enable/disable/reconfigure these things
10045 	 * safely. To do that we need to introduce a real
10046 	 * clock hierarchy. That would also allow us to do
10047 	 * clock bending finally.
10048 	 */
10049 	dev_priv->pch_ssc_use = 0;
10050 
10051 	if (spll_uses_pch_ssc(dev_priv)) {
10052 		drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n");
10053 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
10054 	}
10055 
10056 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
10057 		drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n");
10058 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
10059 	}
10060 
10061 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
10062 		drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n");
10063 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
10064 	}
10065 
10066 	if (dev_priv->pch_ssc_use)
10067 		return;
10068 
10069 	if (has_fdi) {
10070 		lpt_bend_clkout_dp(dev_priv, 0);
10071 		lpt_enable_clkout_dp(dev_priv, true, true);
10072 	} else {
10073 		lpt_disable_clkout_dp(dev_priv);
10074 	}
10075 }
10076 
10077 /*
10078  * Initialize reference clocks when the driver loads
10079  */
intel_init_pch_refclk(struct drm_i915_private * dev_priv)10080 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
10081 {
10082 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
10083 		ilk_init_pch_refclk(dev_priv);
10084 	else if (HAS_PCH_LPT(dev_priv))
10085 		lpt_init_pch_refclk(dev_priv);
10086 }
10087 
ilk_set_pipeconf(const struct intel_crtc_state * crtc_state)10088 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
10089 {
10090 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10091 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10092 	enum pipe pipe = crtc->pipe;
10093 	u32 val;
10094 
10095 	val = 0;
10096 
10097 	switch (crtc_state->pipe_bpp) {
10098 	case 18:
10099 		val |= PIPECONF_6BPC;
10100 		break;
10101 	case 24:
10102 		val |= PIPECONF_8BPC;
10103 		break;
10104 	case 30:
10105 		val |= PIPECONF_10BPC;
10106 		break;
10107 	case 36:
10108 		val |= PIPECONF_12BPC;
10109 		break;
10110 	default:
10111 		/* Case prevented by intel_choose_pipe_bpp_dither. */
10112 		BUG();
10113 	}
10114 
10115 	if (crtc_state->dither)
10116 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10117 
10118 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10119 		val |= PIPECONF_INTERLACED_ILK;
10120 	else
10121 		val |= PIPECONF_PROGRESSIVE;
10122 
10123 	/*
10124 	 * This would end up with an odd purple hue over
10125 	 * the entire display. Make sure we don't do it.
10126 	 */
10127 	drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range &&
10128 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
10129 
10130 	if (crtc_state->limited_color_range &&
10131 	    !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
10132 		val |= PIPECONF_COLOR_RANGE_SELECT;
10133 
10134 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10135 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
10136 
10137 	val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
10138 
10139 	val |= PIPECONF_FRAME_START_DELAY(0);
10140 
10141 	intel_de_write(dev_priv, PIPECONF(pipe), val);
10142 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
10143 }
10144 
hsw_set_pipeconf(const struct intel_crtc_state * crtc_state)10145 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state)
10146 {
10147 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10148 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10149 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
10150 	u32 val = 0;
10151 
10152 	if (IS_HASWELL(dev_priv) && crtc_state->dither)
10153 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10154 
10155 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10156 		val |= PIPECONF_INTERLACED_ILK;
10157 	else
10158 		val |= PIPECONF_PROGRESSIVE;
10159 
10160 	if (IS_HASWELL(dev_priv) &&
10161 	    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10162 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
10163 
10164 	intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val);
10165 	intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder));
10166 }
10167 
bdw_set_pipemisc(const struct intel_crtc_state * crtc_state)10168 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
10169 {
10170 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10171 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10172 	u32 val = 0;
10173 
10174 	switch (crtc_state->pipe_bpp) {
10175 	case 18:
10176 		val |= PIPEMISC_DITHER_6_BPC;
10177 		break;
10178 	case 24:
10179 		val |= PIPEMISC_DITHER_8_BPC;
10180 		break;
10181 	case 30:
10182 		val |= PIPEMISC_DITHER_10_BPC;
10183 		break;
10184 	case 36:
10185 		val |= PIPEMISC_DITHER_12_BPC;
10186 		break;
10187 	default:
10188 		MISSING_CASE(crtc_state->pipe_bpp);
10189 		break;
10190 	}
10191 
10192 	if (crtc_state->dither)
10193 		val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
10194 
10195 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
10196 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
10197 		val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
10198 
10199 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
10200 		val |= PIPEMISC_YUV420_ENABLE |
10201 			PIPEMISC_YUV420_MODE_FULL_BLEND;
10202 
10203 	if (INTEL_GEN(dev_priv) >= 11 &&
10204 	    (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
10205 					   BIT(PLANE_CURSOR))) == 0)
10206 		val |= PIPEMISC_HDR_MODE_PRECISION;
10207 
10208 	if (INTEL_GEN(dev_priv) >= 12)
10209 		val |= PIPEMISC_PIXEL_ROUNDING_TRUNC;
10210 
10211 	intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val);
10212 }
10213 
bdw_get_pipemisc_bpp(struct intel_crtc * crtc)10214 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
10215 {
10216 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10217 	u32 tmp;
10218 
10219 	tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
10220 
10221 	switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
10222 	case PIPEMISC_DITHER_6_BPC:
10223 		return 18;
10224 	case PIPEMISC_DITHER_8_BPC:
10225 		return 24;
10226 	case PIPEMISC_DITHER_10_BPC:
10227 		return 30;
10228 	case PIPEMISC_DITHER_12_BPC:
10229 		return 36;
10230 	default:
10231 		MISSING_CASE(tmp);
10232 		return 0;
10233 	}
10234 }
10235 
ilk_get_lanes_required(int target_clock,int link_bw,int bpp)10236 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
10237 {
10238 	/*
10239 	 * Account for spread spectrum to avoid
10240 	 * oversubscribing the link. Max center spread
10241 	 * is 2.5%; use 5% for safety's sake.
10242 	 */
10243 	u32 bps = target_clock * bpp * 21 / 20;
10244 	return DIV_ROUND_UP(bps, link_bw * 8);
10245 }
10246 
ilk_needs_fb_cb_tune(struct dpll * dpll,int factor)10247 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
10248 {
10249 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
10250 }
10251 
ilk_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)10252 static void ilk_compute_dpll(struct intel_crtc *crtc,
10253 			     struct intel_crtc_state *crtc_state,
10254 			     struct dpll *reduced_clock)
10255 {
10256 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10257 	u32 dpll, fp, fp2;
10258 	int factor;
10259 
10260 	/* Enable autotuning of the PLL clock (if permissible) */
10261 	factor = 21;
10262 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10263 		if ((intel_panel_use_ssc(dev_priv) &&
10264 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
10265 		    (HAS_PCH_IBX(dev_priv) &&
10266 		     intel_is_dual_link_lvds(dev_priv)))
10267 			factor = 25;
10268 	} else if (crtc_state->sdvo_tv_clock) {
10269 		factor = 20;
10270 	}
10271 
10272 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
10273 
10274 	if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
10275 		fp |= FP_CB_TUNE;
10276 
10277 	if (reduced_clock) {
10278 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
10279 
10280 		if (reduced_clock->m < factor * reduced_clock->n)
10281 			fp2 |= FP_CB_TUNE;
10282 	} else {
10283 		fp2 = fp;
10284 	}
10285 
10286 	dpll = 0;
10287 
10288 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
10289 		dpll |= DPLLB_MODE_LVDS;
10290 	else
10291 		dpll |= DPLLB_MODE_DAC_SERIAL;
10292 
10293 	dpll |= (crtc_state->pixel_multiplier - 1)
10294 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
10295 
10296 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
10297 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
10298 		dpll |= DPLL_SDVO_HIGH_SPEED;
10299 
10300 	if (intel_crtc_has_dp_encoder(crtc_state))
10301 		dpll |= DPLL_SDVO_HIGH_SPEED;
10302 
10303 	/*
10304 	 * The high speed IO clock is only really required for
10305 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
10306 	 * possible to share the DPLL between CRT and HDMI. Enabling
10307 	 * the clock needlessly does no real harm, except use up a
10308 	 * bit of power potentially.
10309 	 *
10310 	 * We'll limit this to IVB with 3 pipes, since it has only two
10311 	 * DPLLs and so DPLL sharing is the only way to get three pipes
10312 	 * driving PCH ports at the same time. On SNB we could do this,
10313 	 * and potentially avoid enabling the second DPLL, but it's not
10314 	 * clear if it''s a win or loss power wise. No point in doing
10315 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
10316 	 */
10317 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
10318 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
10319 		dpll |= DPLL_SDVO_HIGH_SPEED;
10320 
10321 	/* compute bitmask from p1 value */
10322 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
10323 	/* also FPA1 */
10324 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
10325 
10326 	switch (crtc_state->dpll.p2) {
10327 	case 5:
10328 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
10329 		break;
10330 	case 7:
10331 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
10332 		break;
10333 	case 10:
10334 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
10335 		break;
10336 	case 14:
10337 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
10338 		break;
10339 	}
10340 
10341 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
10342 	    intel_panel_use_ssc(dev_priv))
10343 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
10344 	else
10345 		dpll |= PLL_REF_INPUT_DREFCLK;
10346 
10347 	dpll |= DPLL_VCO_ENABLE;
10348 
10349 	crtc_state->dpll_hw_state.dpll = dpll;
10350 	crtc_state->dpll_hw_state.fp0 = fp;
10351 	crtc_state->dpll_hw_state.fp1 = fp2;
10352 }
10353 
ilk_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)10354 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
10355 				  struct intel_crtc_state *crtc_state)
10356 {
10357 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10358 	struct intel_atomic_state *state =
10359 		to_intel_atomic_state(crtc_state->uapi.state);
10360 	const struct intel_limit *limit;
10361 	int refclk = 120000;
10362 
10363 	memset(&crtc_state->dpll_hw_state, 0,
10364 	       sizeof(crtc_state->dpll_hw_state));
10365 
10366 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
10367 	if (!crtc_state->has_pch_encoder)
10368 		return 0;
10369 
10370 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10371 		if (intel_panel_use_ssc(dev_priv)) {
10372 			drm_dbg_kms(&dev_priv->drm,
10373 				    "using SSC reference clock of %d kHz\n",
10374 				    dev_priv->vbt.lvds_ssc_freq);
10375 			refclk = dev_priv->vbt.lvds_ssc_freq;
10376 		}
10377 
10378 		if (intel_is_dual_link_lvds(dev_priv)) {
10379 			if (refclk == 100000)
10380 				limit = &ilk_limits_dual_lvds_100m;
10381 			else
10382 				limit = &ilk_limits_dual_lvds;
10383 		} else {
10384 			if (refclk == 100000)
10385 				limit = &ilk_limits_single_lvds_100m;
10386 			else
10387 				limit = &ilk_limits_single_lvds;
10388 		}
10389 	} else {
10390 		limit = &ilk_limits_dac;
10391 	}
10392 
10393 	if (!crtc_state->clock_set &&
10394 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
10395 				refclk, NULL, &crtc_state->dpll)) {
10396 		drm_err(&dev_priv->drm,
10397 			"Couldn't find PLL settings for mode!\n");
10398 		return -EINVAL;
10399 	}
10400 
10401 	ilk_compute_dpll(crtc, crtc_state, NULL);
10402 
10403 	if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
10404 		drm_dbg_kms(&dev_priv->drm,
10405 			    "failed to find PLL for pipe %c\n",
10406 			    pipe_name(crtc->pipe));
10407 		return -EINVAL;
10408 	}
10409 
10410 	return 0;
10411 }
10412 
intel_pch_transcoder_get_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)10413 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
10414 					 struct intel_link_m_n *m_n)
10415 {
10416 	struct drm_device *dev = crtc->base.dev;
10417 	struct drm_i915_private *dev_priv = to_i915(dev);
10418 	enum pipe pipe = crtc->pipe;
10419 
10420 	m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe));
10421 	m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe));
10422 	m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10423 		& ~TU_SIZE_MASK;
10424 	m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe));
10425 	m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10426 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10427 }
10428 
intel_cpu_transcoder_get_m_n(struct intel_crtc * crtc,enum transcoder transcoder,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)10429 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
10430 					 enum transcoder transcoder,
10431 					 struct intel_link_m_n *m_n,
10432 					 struct intel_link_m_n *m2_n2)
10433 {
10434 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10435 	enum pipe pipe = crtc->pipe;
10436 
10437 	if (INTEL_GEN(dev_priv) >= 5) {
10438 		m_n->link_m = intel_de_read(dev_priv,
10439 					    PIPE_LINK_M1(transcoder));
10440 		m_n->link_n = intel_de_read(dev_priv,
10441 					    PIPE_LINK_N1(transcoder));
10442 		m_n->gmch_m = intel_de_read(dev_priv,
10443 					    PIPE_DATA_M1(transcoder))
10444 			& ~TU_SIZE_MASK;
10445 		m_n->gmch_n = intel_de_read(dev_priv,
10446 					    PIPE_DATA_N1(transcoder));
10447 		m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder))
10448 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10449 
10450 		if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
10451 			m2_n2->link_m = intel_de_read(dev_priv,
10452 						      PIPE_LINK_M2(transcoder));
10453 			m2_n2->link_n =	intel_de_read(dev_priv,
10454 							     PIPE_LINK_N2(transcoder));
10455 			m2_n2->gmch_m =	intel_de_read(dev_priv,
10456 							     PIPE_DATA_M2(transcoder))
10457 					& ~TU_SIZE_MASK;
10458 			m2_n2->gmch_n =	intel_de_read(dev_priv,
10459 							     PIPE_DATA_N2(transcoder));
10460 			m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder))
10461 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10462 		}
10463 	} else {
10464 		m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe));
10465 		m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe));
10466 		m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10467 			& ~TU_SIZE_MASK;
10468 		m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe));
10469 		m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10470 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10471 	}
10472 }
10473 
intel_dp_get_m_n(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10474 void intel_dp_get_m_n(struct intel_crtc *crtc,
10475 		      struct intel_crtc_state *pipe_config)
10476 {
10477 	if (pipe_config->has_pch_encoder)
10478 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
10479 	else
10480 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10481 					     &pipe_config->dp_m_n,
10482 					     &pipe_config->dp_m2_n2);
10483 }
10484 
ilk_get_fdi_m_n_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10485 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc,
10486 				   struct intel_crtc_state *pipe_config)
10487 {
10488 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10489 				     &pipe_config->fdi_m_n, NULL);
10490 }
10491 
ilk_get_pfit_pos_size(struct intel_crtc_state * crtc_state,u32 pos,u32 size)10492 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state,
10493 				  u32 pos, u32 size)
10494 {
10495 	drm_rect_init(&crtc_state->pch_pfit.dst,
10496 		      pos >> 16, pos & 0xffff,
10497 		      size >> 16, size & 0xffff);
10498 }
10499 
skl_get_pfit_config(struct intel_crtc_state * crtc_state)10500 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state)
10501 {
10502 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10503 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10504 	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
10505 	int id = -1;
10506 	int i;
10507 
10508 	/* find scaler attached to this pipe */
10509 	for (i = 0; i < crtc->num_scalers; i++) {
10510 		u32 ctl, pos, size;
10511 
10512 		ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i));
10513 		if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN)
10514 			continue;
10515 
10516 		id = i;
10517 		crtc_state->pch_pfit.enabled = true;
10518 
10519 		pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i));
10520 		size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i));
10521 
10522 		ilk_get_pfit_pos_size(crtc_state, pos, size);
10523 
10524 		scaler_state->scalers[i].in_use = true;
10525 		break;
10526 	}
10527 
10528 	scaler_state->scaler_id = id;
10529 	if (id >= 0)
10530 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
10531 	else
10532 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
10533 }
10534 
10535 static void
skl_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)10536 skl_get_initial_plane_config(struct intel_crtc *crtc,
10537 			     struct intel_initial_plane_config *plane_config)
10538 {
10539 	struct drm_device *dev = crtc->base.dev;
10540 	struct drm_i915_private *dev_priv = to_i915(dev);
10541 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
10542 	enum plane_id plane_id = plane->id;
10543 	enum pipe pipe;
10544 	u32 val, base, offset, stride_mult, tiling, alpha;
10545 	int fourcc, pixel_format;
10546 	unsigned int aligned_height;
10547 	struct drm_framebuffer *fb;
10548 	struct intel_framebuffer *intel_fb;
10549 
10550 	if (!plane->get_hw_state(plane, &pipe))
10551 		return;
10552 
10553 	drm_WARN_ON(dev, pipe != crtc->pipe);
10554 
10555 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10556 	if (!intel_fb) {
10557 		drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
10558 		return;
10559 	}
10560 
10561 	fb = &intel_fb->base;
10562 
10563 	fb->dev = dev;
10564 
10565 	val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id));
10566 
10567 	if (INTEL_GEN(dev_priv) >= 11)
10568 		pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
10569 	else
10570 		pixel_format = val & PLANE_CTL_FORMAT_MASK;
10571 
10572 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
10573 		alpha = intel_de_read(dev_priv,
10574 				      PLANE_COLOR_CTL(pipe, plane_id));
10575 		alpha &= PLANE_COLOR_ALPHA_MASK;
10576 	} else {
10577 		alpha = val & PLANE_CTL_ALPHA_MASK;
10578 	}
10579 
10580 	fourcc = skl_format_to_fourcc(pixel_format,
10581 				      val & PLANE_CTL_ORDER_RGBX, alpha);
10582 	fb->format = drm_format_info(fourcc);
10583 
10584 	tiling = val & PLANE_CTL_TILED_MASK;
10585 	switch (tiling) {
10586 	case PLANE_CTL_TILED_LINEAR:
10587 		fb->modifier = DRM_FORMAT_MOD_LINEAR;
10588 		break;
10589 	case PLANE_CTL_TILED_X:
10590 		plane_config->tiling = I915_TILING_X;
10591 		fb->modifier = I915_FORMAT_MOD_X_TILED;
10592 		break;
10593 	case PLANE_CTL_TILED_Y:
10594 		plane_config->tiling = I915_TILING_Y;
10595 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10596 			fb->modifier = INTEL_GEN(dev_priv) >= 12 ?
10597 				I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS :
10598 				I915_FORMAT_MOD_Y_TILED_CCS;
10599 		else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE)
10600 			fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
10601 		else
10602 			fb->modifier = I915_FORMAT_MOD_Y_TILED;
10603 		break;
10604 	case PLANE_CTL_TILED_YF:
10605 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10606 			fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
10607 		else
10608 			fb->modifier = I915_FORMAT_MOD_Yf_TILED;
10609 		break;
10610 	default:
10611 		MISSING_CASE(tiling);
10612 		goto error;
10613 	}
10614 
10615 	/*
10616 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10617 	 * while i915 HW rotation is clockwise, thats why this swapping.
10618 	 */
10619 	switch (val & PLANE_CTL_ROTATE_MASK) {
10620 	case PLANE_CTL_ROTATE_0:
10621 		plane_config->rotation = DRM_MODE_ROTATE_0;
10622 		break;
10623 	case PLANE_CTL_ROTATE_90:
10624 		plane_config->rotation = DRM_MODE_ROTATE_270;
10625 		break;
10626 	case PLANE_CTL_ROTATE_180:
10627 		plane_config->rotation = DRM_MODE_ROTATE_180;
10628 		break;
10629 	case PLANE_CTL_ROTATE_270:
10630 		plane_config->rotation = DRM_MODE_ROTATE_90;
10631 		break;
10632 	}
10633 
10634 	if (INTEL_GEN(dev_priv) >= 10 &&
10635 	    val & PLANE_CTL_FLIP_HORIZONTAL)
10636 		plane_config->rotation |= DRM_MODE_REFLECT_X;
10637 
10638 	/* 90/270 degree rotation would require extra work */
10639 	if (drm_rotation_90_or_270(plane_config->rotation))
10640 		goto error;
10641 
10642 	base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10643 	plane_config->base = base;
10644 
10645 	offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id));
10646 
10647 	val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id));
10648 	fb->height = ((val >> 16) & 0xffff) + 1;
10649 	fb->width = ((val >> 0) & 0xffff) + 1;
10650 
10651 	val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id));
10652 	stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10653 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
10654 
10655 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
10656 
10657 	plane_config->size = fb->pitches[0] * aligned_height;
10658 
10659 	drm_dbg_kms(&dev_priv->drm,
10660 		    "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10661 		    crtc->base.name, plane->base.name, fb->width, fb->height,
10662 		    fb->format->cpp[0] * 8, base, fb->pitches[0],
10663 		    plane_config->size);
10664 
10665 	plane_config->fb = intel_fb;
10666 	return;
10667 
10668 error:
10669 	kfree(intel_fb);
10670 }
10671 
ilk_get_pfit_config(struct intel_crtc_state * crtc_state)10672 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state)
10673 {
10674 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10675 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10676 	u32 ctl, pos, size;
10677 
10678 	ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe));
10679 	if ((ctl & PF_ENABLE) == 0)
10680 		return;
10681 
10682 	crtc_state->pch_pfit.enabled = true;
10683 
10684 	pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe));
10685 	size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe));
10686 
10687 	ilk_get_pfit_pos_size(crtc_state, pos, size);
10688 
10689 	/*
10690 	 * We currently do not free assignements of panel fitters on
10691 	 * ivb/hsw (since we don't use the higher upscaling modes which
10692 	 * differentiates them) so just WARN about this case for now.
10693 	 */
10694 	drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) &&
10695 		    (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe));
10696 }
10697 
ilk_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10698 static bool ilk_get_pipe_config(struct intel_crtc *crtc,
10699 				struct intel_crtc_state *pipe_config)
10700 {
10701 	struct drm_device *dev = crtc->base.dev;
10702 	struct drm_i915_private *dev_priv = to_i915(dev);
10703 	enum intel_display_power_domain power_domain;
10704 	intel_wakeref_t wakeref;
10705 	u32 tmp;
10706 	bool ret;
10707 
10708 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10709 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10710 	if (!wakeref)
10711 		return false;
10712 
10713 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10714 	pipe_config->shared_dpll = NULL;
10715 
10716 	ret = false;
10717 	tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
10718 	if (!(tmp & PIPECONF_ENABLE))
10719 		goto out;
10720 
10721 	switch (tmp & PIPECONF_BPC_MASK) {
10722 	case PIPECONF_6BPC:
10723 		pipe_config->pipe_bpp = 18;
10724 		break;
10725 	case PIPECONF_8BPC:
10726 		pipe_config->pipe_bpp = 24;
10727 		break;
10728 	case PIPECONF_10BPC:
10729 		pipe_config->pipe_bpp = 30;
10730 		break;
10731 	case PIPECONF_12BPC:
10732 		pipe_config->pipe_bpp = 36;
10733 		break;
10734 	default:
10735 		break;
10736 	}
10737 
10738 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10739 		pipe_config->limited_color_range = true;
10740 
10741 	switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10742 	case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10743 	case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10744 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10745 		break;
10746 	default:
10747 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10748 		break;
10749 	}
10750 
10751 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10752 		PIPECONF_GAMMA_MODE_SHIFT;
10753 
10754 	pipe_config->csc_mode = intel_de_read(dev_priv,
10755 					      PIPE_CSC_MODE(crtc->pipe));
10756 
10757 	i9xx_get_pipe_color_config(pipe_config);
10758 	intel_color_get_config(pipe_config);
10759 
10760 	if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10761 		struct intel_shared_dpll *pll;
10762 		enum intel_dpll_id pll_id;
10763 
10764 		pipe_config->has_pch_encoder = true;
10765 
10766 		tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe));
10767 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10768 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10769 
10770 		ilk_get_fdi_m_n_config(crtc, pipe_config);
10771 
10772 		if (HAS_PCH_IBX(dev_priv)) {
10773 			/*
10774 			 * The pipe->pch transcoder and pch transcoder->pll
10775 			 * mapping is fixed.
10776 			 */
10777 			pll_id = (enum intel_dpll_id) crtc->pipe;
10778 		} else {
10779 			tmp = intel_de_read(dev_priv, PCH_DPLL_SEL);
10780 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10781 				pll_id = DPLL_ID_PCH_PLL_B;
10782 			else
10783 				pll_id= DPLL_ID_PCH_PLL_A;
10784 		}
10785 
10786 		pipe_config->shared_dpll =
10787 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
10788 		pll = pipe_config->shared_dpll;
10789 
10790 		drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll,
10791 						 &pipe_config->dpll_hw_state));
10792 
10793 		tmp = pipe_config->dpll_hw_state.dpll;
10794 		pipe_config->pixel_multiplier =
10795 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10796 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10797 
10798 		ilk_pch_clock_get(crtc, pipe_config);
10799 	} else {
10800 		pipe_config->pixel_multiplier = 1;
10801 	}
10802 
10803 	intel_get_pipe_timings(crtc, pipe_config);
10804 	intel_get_pipe_src_size(crtc, pipe_config);
10805 
10806 	ilk_get_pfit_config(pipe_config);
10807 
10808 	ret = true;
10809 
10810 out:
10811 	intel_display_power_put(dev_priv, power_domain, wakeref);
10812 
10813 	return ret;
10814 }
10815 
hsw_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)10816 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
10817 				  struct intel_crtc_state *crtc_state)
10818 {
10819 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10820 	struct intel_atomic_state *state =
10821 		to_intel_atomic_state(crtc_state->uapi.state);
10822 
10823 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10824 	    INTEL_GEN(dev_priv) >= 11) {
10825 		struct intel_encoder *encoder =
10826 			intel_get_crtc_new_encoder(state, crtc_state);
10827 
10828 		if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10829 			drm_dbg_kms(&dev_priv->drm,
10830 				    "failed to find PLL for pipe %c\n",
10831 				    pipe_name(crtc->pipe));
10832 			return -EINVAL;
10833 		}
10834 	}
10835 
10836 	return 0;
10837 }
10838 
cnl_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10839 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10840 			    struct intel_crtc_state *pipe_config)
10841 {
10842 	enum intel_dpll_id id;
10843 	u32 temp;
10844 
10845 	temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10846 	id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10847 
10848 	if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2))
10849 		return;
10850 
10851 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10852 }
10853 
icl_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10854 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10855 			    struct intel_crtc_state *pipe_config)
10856 {
10857 	enum phy phy = intel_port_to_phy(dev_priv, port);
10858 	enum icl_port_dpll_id port_dpll_id;
10859 	enum intel_dpll_id id;
10860 	u32 temp;
10861 
10862 	if (intel_phy_is_combo(dev_priv, phy)) {
10863 		u32 mask, shift;
10864 
10865 		if (IS_ROCKETLAKE(dev_priv)) {
10866 			mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10867 			shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10868 		} else {
10869 			mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10870 			shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10871 		}
10872 
10873 		temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask;
10874 		id = temp >> shift;
10875 		port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10876 	} else if (intel_phy_is_tc(dev_priv, phy)) {
10877 		u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10878 
10879 		if (clk_sel == DDI_CLK_SEL_MG) {
10880 			id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10881 								    port));
10882 			port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10883 		} else {
10884 			drm_WARN_ON(&dev_priv->drm,
10885 				    clk_sel < DDI_CLK_SEL_TBT_162);
10886 			id = DPLL_ID_ICL_TBTPLL;
10887 			port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10888 		}
10889 	} else {
10890 		drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port);
10891 		return;
10892 	}
10893 
10894 	pipe_config->icl_port_dplls[port_dpll_id].pll =
10895 		intel_get_shared_dpll_by_id(dev_priv, id);
10896 
10897 	icl_set_active_port_dpll(pipe_config, port_dpll_id);
10898 }
10899 
bxt_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10900 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10901 				enum port port,
10902 				struct intel_crtc_state *pipe_config)
10903 {
10904 	enum intel_dpll_id id;
10905 
10906 	switch (port) {
10907 	case PORT_A:
10908 		id = DPLL_ID_SKL_DPLL0;
10909 		break;
10910 	case PORT_B:
10911 		id = DPLL_ID_SKL_DPLL1;
10912 		break;
10913 	case PORT_C:
10914 		id = DPLL_ID_SKL_DPLL2;
10915 		break;
10916 	default:
10917 		drm_err(&dev_priv->drm, "Incorrect port type\n");
10918 		return;
10919 	}
10920 
10921 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10922 }
10923 
skl_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10924 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10925 			    struct intel_crtc_state *pipe_config)
10926 {
10927 	enum intel_dpll_id id;
10928 	u32 temp;
10929 
10930 	temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10931 	id = temp >> (port * 3 + 1);
10932 
10933 	if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3))
10934 		return;
10935 
10936 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10937 }
10938 
hsw_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10939 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10940 			    struct intel_crtc_state *pipe_config)
10941 {
10942 	enum intel_dpll_id id;
10943 	u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port));
10944 
10945 	switch (ddi_pll_sel) {
10946 	case PORT_CLK_SEL_WRPLL1:
10947 		id = DPLL_ID_WRPLL1;
10948 		break;
10949 	case PORT_CLK_SEL_WRPLL2:
10950 		id = DPLL_ID_WRPLL2;
10951 		break;
10952 	case PORT_CLK_SEL_SPLL:
10953 		id = DPLL_ID_SPLL;
10954 		break;
10955 	case PORT_CLK_SEL_LCPLL_810:
10956 		id = DPLL_ID_LCPLL_810;
10957 		break;
10958 	case PORT_CLK_SEL_LCPLL_1350:
10959 		id = DPLL_ID_LCPLL_1350;
10960 		break;
10961 	case PORT_CLK_SEL_LCPLL_2700:
10962 		id = DPLL_ID_LCPLL_2700;
10963 		break;
10964 	default:
10965 		MISSING_CASE(ddi_pll_sel);
10966 		fallthrough;
10967 	case PORT_CLK_SEL_NONE:
10968 		return;
10969 	}
10970 
10971 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10972 }
10973 
hsw_get_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,u64 * power_domain_mask,intel_wakeref_t * wakerefs)10974 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10975 				     struct intel_crtc_state *pipe_config,
10976 				     u64 *power_domain_mask,
10977 				     intel_wakeref_t *wakerefs)
10978 {
10979 	struct drm_device *dev = crtc->base.dev;
10980 	struct drm_i915_private *dev_priv = to_i915(dev);
10981 	enum intel_display_power_domain power_domain;
10982 	unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP);
10983 	unsigned long enabled_panel_transcoders = 0;
10984 	enum transcoder panel_transcoder;
10985 	intel_wakeref_t wf;
10986 	u32 tmp;
10987 
10988 	if (INTEL_GEN(dev_priv) >= 11)
10989 		panel_transcoder_mask |=
10990 			BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10991 
10992 	/*
10993 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
10994 	 * and DSI transcoders handled below.
10995 	 */
10996 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10997 
10998 	/*
10999 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
11000 	 * consistency and less surprising code; it's in always on power).
11001 	 */
11002 	for_each_cpu_transcoder_masked(dev_priv, panel_transcoder,
11003 				       panel_transcoder_mask) {
11004 		bool force_thru = false;
11005 		enum pipe trans_pipe;
11006 
11007 		tmp = intel_de_read(dev_priv,
11008 				    TRANS_DDI_FUNC_CTL(panel_transcoder));
11009 		if (!(tmp & TRANS_DDI_FUNC_ENABLE))
11010 			continue;
11011 
11012 		/*
11013 		 * Log all enabled ones, only use the first one.
11014 		 *
11015 		 * FIXME: This won't work for two separate DSI displays.
11016 		 */
11017 		enabled_panel_transcoders |= BIT(panel_transcoder);
11018 		if (enabled_panel_transcoders != BIT(panel_transcoder))
11019 			continue;
11020 
11021 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
11022 		default:
11023 			drm_WARN(dev, 1,
11024 				 "unknown pipe linked to transcoder %s\n",
11025 				 transcoder_name(panel_transcoder));
11026 			fallthrough;
11027 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
11028 			force_thru = true;
11029 			fallthrough;
11030 		case TRANS_DDI_EDP_INPUT_A_ON:
11031 			trans_pipe = PIPE_A;
11032 			break;
11033 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
11034 			trans_pipe = PIPE_B;
11035 			break;
11036 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
11037 			trans_pipe = PIPE_C;
11038 			break;
11039 		case TRANS_DDI_EDP_INPUT_D_ONOFF:
11040 			trans_pipe = PIPE_D;
11041 			break;
11042 		}
11043 
11044 		if (trans_pipe == crtc->pipe) {
11045 			pipe_config->cpu_transcoder = panel_transcoder;
11046 			pipe_config->pch_pfit.force_thru = force_thru;
11047 		}
11048 	}
11049 
11050 	/*
11051 	 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
11052 	 */
11053 	drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
11054 		    enabled_panel_transcoders != BIT(TRANSCODER_EDP));
11055 
11056 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
11057 	drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11058 
11059 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11060 	if (!wf)
11061 		return false;
11062 
11063 	wakerefs[power_domain] = wf;
11064 	*power_domain_mask |= BIT_ULL(power_domain);
11065 
11066 	tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder));
11067 
11068 	return tmp & PIPECONF_ENABLE;
11069 }
11070 
bxt_get_dsi_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,u64 * power_domain_mask,intel_wakeref_t * wakerefs)11071 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
11072 					 struct intel_crtc_state *pipe_config,
11073 					 u64 *power_domain_mask,
11074 					 intel_wakeref_t *wakerefs)
11075 {
11076 	struct drm_device *dev = crtc->base.dev;
11077 	struct drm_i915_private *dev_priv = to_i915(dev);
11078 	enum intel_display_power_domain power_domain;
11079 	enum transcoder cpu_transcoder;
11080 	intel_wakeref_t wf;
11081 	enum port port;
11082 	u32 tmp;
11083 
11084 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
11085 		if (port == PORT_A)
11086 			cpu_transcoder = TRANSCODER_DSI_A;
11087 		else
11088 			cpu_transcoder = TRANSCODER_DSI_C;
11089 
11090 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
11091 		drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11092 
11093 		wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11094 		if (!wf)
11095 			continue;
11096 
11097 		wakerefs[power_domain] = wf;
11098 		*power_domain_mask |= BIT_ULL(power_domain);
11099 
11100 		/*
11101 		 * The PLL needs to be enabled with a valid divider
11102 		 * configuration, otherwise accessing DSI registers will hang
11103 		 * the machine. See BSpec North Display Engine
11104 		 * registers/MIPI[BXT]. We can break out here early, since we
11105 		 * need the same DSI PLL to be enabled for both DSI ports.
11106 		 */
11107 		if (!bxt_dsi_pll_is_enabled(dev_priv))
11108 			break;
11109 
11110 		/* XXX: this works for video mode only */
11111 		tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port));
11112 		if (!(tmp & DPI_ENABLE))
11113 			continue;
11114 
11115 		tmp = intel_de_read(dev_priv, MIPI_CTRL(port));
11116 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
11117 			continue;
11118 
11119 		pipe_config->cpu_transcoder = cpu_transcoder;
11120 		break;
11121 	}
11122 
11123 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
11124 }
11125 
hsw_get_ddi_port_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11126 static void hsw_get_ddi_port_state(struct intel_crtc *crtc,
11127 				   struct intel_crtc_state *pipe_config)
11128 {
11129 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11130 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
11131 	struct intel_shared_dpll *pll;
11132 	enum port port;
11133 	u32 tmp;
11134 
11135 	if (transcoder_is_dsi(cpu_transcoder)) {
11136 		port = (cpu_transcoder == TRANSCODER_DSI_A) ?
11137 						PORT_A : PORT_B;
11138 	} else {
11139 		tmp = intel_de_read(dev_priv,
11140 				    TRANS_DDI_FUNC_CTL(cpu_transcoder));
11141 		if (INTEL_GEN(dev_priv) >= 12)
11142 			port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11143 		else
11144 			port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11145 	}
11146 
11147 	if (INTEL_GEN(dev_priv) >= 11)
11148 		icl_get_ddi_pll(dev_priv, port, pipe_config);
11149 	else if (IS_CANNONLAKE(dev_priv))
11150 		cnl_get_ddi_pll(dev_priv, port, pipe_config);
11151 	else if (IS_GEN9_BC(dev_priv))
11152 		skl_get_ddi_pll(dev_priv, port, pipe_config);
11153 	else if (IS_GEN9_LP(dev_priv))
11154 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
11155 	else
11156 		hsw_get_ddi_pll(dev_priv, port, pipe_config);
11157 
11158 	pll = pipe_config->shared_dpll;
11159 	if (pll) {
11160 		drm_WARN_ON(&dev_priv->drm,
11161 			    !pll->info->funcs->get_hw_state(dev_priv, pll,
11162 						&pipe_config->dpll_hw_state));
11163 	}
11164 
11165 	/*
11166 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
11167 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
11168 	 * the PCH transcoder is on.
11169 	 */
11170 	if (INTEL_GEN(dev_priv) < 9 &&
11171 	    (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) {
11172 		pipe_config->has_pch_encoder = true;
11173 
11174 		tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A));
11175 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
11176 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
11177 
11178 		ilk_get_fdi_m_n_config(crtc, pipe_config);
11179 	}
11180 }
11181 
hsw_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11182 static bool hsw_get_pipe_config(struct intel_crtc *crtc,
11183 				struct intel_crtc_state *pipe_config)
11184 {
11185 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11186 	intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
11187 	enum intel_display_power_domain power_domain;
11188 	u64 power_domain_mask;
11189 	bool active;
11190 	u32 tmp;
11191 
11192 	pipe_config->master_transcoder = INVALID_TRANSCODER;
11193 
11194 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
11195 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11196 	if (!wf)
11197 		return false;
11198 
11199 	wakerefs[power_domain] = wf;
11200 	power_domain_mask = BIT_ULL(power_domain);
11201 
11202 	pipe_config->shared_dpll = NULL;
11203 
11204 	active = hsw_get_transcoder_state(crtc, pipe_config,
11205 					  &power_domain_mask, wakerefs);
11206 
11207 	if (IS_GEN9_LP(dev_priv) &&
11208 	    bxt_get_dsi_transcoder_state(crtc, pipe_config,
11209 					 &power_domain_mask, wakerefs)) {
11210 		drm_WARN_ON(&dev_priv->drm, active);
11211 		active = true;
11212 	}
11213 
11214 	if (!active)
11215 		goto out;
11216 
11217 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
11218 	    INTEL_GEN(dev_priv) >= 11) {
11219 		hsw_get_ddi_port_state(crtc, pipe_config);
11220 		intel_get_pipe_timings(crtc, pipe_config);
11221 	}
11222 
11223 	intel_get_pipe_src_size(crtc, pipe_config);
11224 
11225 	if (IS_HASWELL(dev_priv)) {
11226 		u32 tmp = intel_de_read(dev_priv,
11227 					PIPECONF(pipe_config->cpu_transcoder));
11228 
11229 		if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
11230 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
11231 		else
11232 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
11233 	} else {
11234 		pipe_config->output_format =
11235 			bdw_get_pipemisc_output_format(crtc);
11236 
11237 		/*
11238 		 * Currently there is no interface defined to
11239 		 * check user preference between RGB/YCBCR444
11240 		 * or YCBCR420. So the only possible case for
11241 		 * YCBCR444 usage is driving YCBCR420 output
11242 		 * with LSPCON, when pipe is configured for
11243 		 * YCBCR444 output and LSPCON takes care of
11244 		 * downsampling it.
11245 		 */
11246 		pipe_config->lspcon_downsampling =
11247 			pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
11248 	}
11249 
11250 	pipe_config->gamma_mode = intel_de_read(dev_priv,
11251 						GAMMA_MODE(crtc->pipe));
11252 
11253 	pipe_config->csc_mode = intel_de_read(dev_priv,
11254 					      PIPE_CSC_MODE(crtc->pipe));
11255 
11256 	if (INTEL_GEN(dev_priv) >= 9) {
11257 		tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe));
11258 
11259 		if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
11260 			pipe_config->gamma_enable = true;
11261 
11262 		if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
11263 			pipe_config->csc_enable = true;
11264 	} else {
11265 		i9xx_get_pipe_color_config(pipe_config);
11266 	}
11267 
11268 	intel_color_get_config(pipe_config);
11269 
11270 	tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe));
11271 	pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp);
11272 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
11273 		pipe_config->ips_linetime =
11274 			REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp);
11275 
11276 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
11277 	drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain));
11278 
11279 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11280 	if (wf) {
11281 		wakerefs[power_domain] = wf;
11282 		power_domain_mask |= BIT_ULL(power_domain);
11283 
11284 		if (INTEL_GEN(dev_priv) >= 9)
11285 			skl_get_pfit_config(pipe_config);
11286 		else
11287 			ilk_get_pfit_config(pipe_config);
11288 	}
11289 
11290 	if (hsw_crtc_supports_ips(crtc)) {
11291 		if (IS_HASWELL(dev_priv))
11292 			pipe_config->ips_enabled = intel_de_read(dev_priv,
11293 								 IPS_CTL) & IPS_ENABLE;
11294 		else {
11295 			/*
11296 			 * We cannot readout IPS state on broadwell, set to
11297 			 * true so we can set it to a defined state on first
11298 			 * commit.
11299 			 */
11300 			pipe_config->ips_enabled = true;
11301 		}
11302 	}
11303 
11304 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
11305 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
11306 		pipe_config->pixel_multiplier =
11307 			intel_de_read(dev_priv,
11308 				      PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
11309 	} else {
11310 		pipe_config->pixel_multiplier = 1;
11311 	}
11312 
11313 out:
11314 	for_each_power_domain(power_domain, power_domain_mask)
11315 		intel_display_power_put(dev_priv,
11316 					power_domain, wakerefs[power_domain]);
11317 
11318 	return active;
11319 }
11320 
intel_cursor_base(const struct intel_plane_state * plane_state)11321 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
11322 {
11323 	struct drm_i915_private *dev_priv =
11324 		to_i915(plane_state->uapi.plane->dev);
11325 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11326 	const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11327 	u32 base;
11328 
11329 	if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
11330 		base = sg_dma_address(obj->mm.pages->sgl);
11331 	else
11332 		base = intel_plane_ggtt_offset(plane_state);
11333 
11334 	return base + plane_state->color_plane[0].offset;
11335 }
11336 
intel_cursor_position(const struct intel_plane_state * plane_state)11337 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
11338 {
11339 	int x = plane_state->uapi.dst.x1;
11340 	int y = plane_state->uapi.dst.y1;
11341 	u32 pos = 0;
11342 
11343 	if (x < 0) {
11344 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
11345 		x = -x;
11346 	}
11347 	pos |= x << CURSOR_X_SHIFT;
11348 
11349 	if (y < 0) {
11350 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
11351 		y = -y;
11352 	}
11353 	pos |= y << CURSOR_Y_SHIFT;
11354 
11355 	return pos;
11356 }
11357 
intel_cursor_size_ok(const struct intel_plane_state * plane_state)11358 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
11359 {
11360 	const struct drm_mode_config *config =
11361 		&plane_state->uapi.plane->dev->mode_config;
11362 	int width = drm_rect_width(&plane_state->uapi.dst);
11363 	int height = drm_rect_height(&plane_state->uapi.dst);
11364 
11365 	return width > 0 && width <= config->cursor_width &&
11366 		height > 0 && height <= config->cursor_height;
11367 }
11368 
intel_cursor_check_surface(struct intel_plane_state * plane_state)11369 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
11370 {
11371 	struct drm_i915_private *dev_priv =
11372 		to_i915(plane_state->uapi.plane->dev);
11373 	unsigned int rotation = plane_state->hw.rotation;
11374 	int src_x, src_y;
11375 	u32 offset;
11376 	int ret;
11377 
11378 	ret = intel_plane_compute_gtt(plane_state);
11379 	if (ret)
11380 		return ret;
11381 
11382 	if (!plane_state->uapi.visible)
11383 		return 0;
11384 
11385 	src_x = plane_state->uapi.src.x1 >> 16;
11386 	src_y = plane_state->uapi.src.y1 >> 16;
11387 
11388 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
11389 	offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
11390 						    plane_state, 0);
11391 
11392 	if (src_x != 0 || src_y != 0) {
11393 		drm_dbg_kms(&dev_priv->drm,
11394 			    "Arbitrary cursor panning not supported\n");
11395 		return -EINVAL;
11396 	}
11397 
11398 	/*
11399 	 * Put the final coordinates back so that the src
11400 	 * coordinate checks will see the right values.
11401 	 */
11402 	drm_rect_translate_to(&plane_state->uapi.src,
11403 			      src_x << 16, src_y << 16);
11404 
11405 	/* ILK+ do this automagically in hardware */
11406 	if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
11407 		const struct drm_framebuffer *fb = plane_state->hw.fb;
11408 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
11409 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
11410 
11411 		offset += (src_h * src_w - 1) * fb->format->cpp[0];
11412 	}
11413 
11414 	plane_state->color_plane[0].offset = offset;
11415 	plane_state->color_plane[0].x = src_x;
11416 	plane_state->color_plane[0].y = src_y;
11417 
11418 	return 0;
11419 }
11420 
intel_check_cursor(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)11421 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
11422 			      struct intel_plane_state *plane_state)
11423 {
11424 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11425 	struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11426 	int ret;
11427 
11428 	if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
11429 		drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n");
11430 		return -EINVAL;
11431 	}
11432 
11433 	ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
11434 						  &crtc_state->uapi,
11435 						  DRM_PLANE_HELPER_NO_SCALING,
11436 						  DRM_PLANE_HELPER_NO_SCALING,
11437 						  true, true);
11438 	if (ret)
11439 		return ret;
11440 
11441 	/* Use the unclipped src/dst rectangles, which we program to hw */
11442 	plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi);
11443 	plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi);
11444 
11445 	ret = intel_cursor_check_surface(plane_state);
11446 	if (ret)
11447 		return ret;
11448 
11449 	if (!plane_state->uapi.visible)
11450 		return 0;
11451 
11452 	ret = intel_plane_check_src_coordinates(plane_state);
11453 	if (ret)
11454 		return ret;
11455 
11456 	return 0;
11457 }
11458 
11459 static unsigned int
i845_cursor_max_stride(struct intel_plane * plane,u32 pixel_format,u64 modifier,unsigned int rotation)11460 i845_cursor_max_stride(struct intel_plane *plane,
11461 		       u32 pixel_format, u64 modifier,
11462 		       unsigned int rotation)
11463 {
11464 	return 2048;
11465 }
11466 
i845_cursor_ctl_crtc(const struct intel_crtc_state * crtc_state)11467 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11468 {
11469 	u32 cntl = 0;
11470 
11471 	if (crtc_state->gamma_enable)
11472 		cntl |= CURSOR_GAMMA_ENABLE;
11473 
11474 	return cntl;
11475 }
11476 
i845_cursor_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11477 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
11478 			   const struct intel_plane_state *plane_state)
11479 {
11480 	return CURSOR_ENABLE |
11481 		CURSOR_FORMAT_ARGB |
11482 		CURSOR_STRIDE(plane_state->color_plane[0].stride);
11483 }
11484 
i845_cursor_size_ok(const struct intel_plane_state * plane_state)11485 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
11486 {
11487 	int width = drm_rect_width(&plane_state->uapi.dst);
11488 
11489 	/*
11490 	 * 845g/865g are only limited by the width of their cursors,
11491 	 * the height is arbitrary up to the precision of the register.
11492 	 */
11493 	return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
11494 }
11495 
i845_check_cursor(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)11496 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
11497 			     struct intel_plane_state *plane_state)
11498 {
11499 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11500 	struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11501 	int ret;
11502 
11503 	ret = intel_check_cursor(crtc_state, plane_state);
11504 	if (ret)
11505 		return ret;
11506 
11507 	/* if we want to turn off the cursor ignore width and height */
11508 	if (!fb)
11509 		return 0;
11510 
11511 	/* Check for which cursor types we support */
11512 	if (!i845_cursor_size_ok(plane_state)) {
11513 		drm_dbg_kms(&i915->drm,
11514 			    "Cursor dimension %dx%d not supported\n",
11515 			    drm_rect_width(&plane_state->uapi.dst),
11516 			    drm_rect_height(&plane_state->uapi.dst));
11517 		return -EINVAL;
11518 	}
11519 
11520 	drm_WARN_ON(&i915->drm, plane_state->uapi.visible &&
11521 		    plane_state->color_plane[0].stride != fb->pitches[0]);
11522 
11523 	switch (fb->pitches[0]) {
11524 	case 256:
11525 	case 512:
11526 	case 1024:
11527 	case 2048:
11528 		break;
11529 	default:
11530 		 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n",
11531 			     fb->pitches[0]);
11532 		return -EINVAL;
11533 	}
11534 
11535 	plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
11536 
11537 	return 0;
11538 }
11539 
i845_update_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11540 static void i845_update_cursor(struct intel_plane *plane,
11541 			       const struct intel_crtc_state *crtc_state,
11542 			       const struct intel_plane_state *plane_state)
11543 {
11544 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11545 	u32 cntl = 0, base = 0, pos = 0, size = 0;
11546 	unsigned long irqflags;
11547 
11548 	if (plane_state && plane_state->uapi.visible) {
11549 		unsigned int width = drm_rect_width(&plane_state->uapi.dst);
11550 		unsigned int height = drm_rect_height(&plane_state->uapi.dst);
11551 
11552 		cntl = plane_state->ctl |
11553 			i845_cursor_ctl_crtc(crtc_state);
11554 
11555 		size = (height << 12) | width;
11556 
11557 		base = intel_cursor_base(plane_state);
11558 		pos = intel_cursor_position(plane_state);
11559 	}
11560 
11561 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11562 
11563 	/* On these chipsets we can only modify the base/size/stride
11564 	 * whilst the cursor is disabled.
11565 	 */
11566 	if (plane->cursor.base != base ||
11567 	    plane->cursor.size != size ||
11568 	    plane->cursor.cntl != cntl) {
11569 		intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0);
11570 		intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base);
11571 		intel_de_write_fw(dev_priv, CURSIZE, size);
11572 		intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11573 		intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl);
11574 
11575 		plane->cursor.base = base;
11576 		plane->cursor.size = size;
11577 		plane->cursor.cntl = cntl;
11578 	} else {
11579 		intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11580 	}
11581 
11582 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11583 }
11584 
i845_disable_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)11585 static void i845_disable_cursor(struct intel_plane *plane,
11586 				const struct intel_crtc_state *crtc_state)
11587 {
11588 	i845_update_cursor(plane, crtc_state, NULL);
11589 }
11590 
i845_cursor_get_hw_state(struct intel_plane * plane,enum pipe * pipe)11591 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
11592 				     enum pipe *pipe)
11593 {
11594 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11595 	enum intel_display_power_domain power_domain;
11596 	intel_wakeref_t wakeref;
11597 	bool ret;
11598 
11599 	power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11600 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11601 	if (!wakeref)
11602 		return false;
11603 
11604 	ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11605 
11606 	*pipe = PIPE_A;
11607 
11608 	intel_display_power_put(dev_priv, power_domain, wakeref);
11609 
11610 	return ret;
11611 }
11612 
11613 static unsigned int
i9xx_cursor_max_stride(struct intel_plane * plane,u32 pixel_format,u64 modifier,unsigned int rotation)11614 i9xx_cursor_max_stride(struct intel_plane *plane,
11615 		       u32 pixel_format, u64 modifier,
11616 		       unsigned int rotation)
11617 {
11618 	return plane->base.dev->mode_config.cursor_width * 4;
11619 }
11620 
i9xx_cursor_ctl_crtc(const struct intel_crtc_state * crtc_state)11621 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11622 {
11623 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11624 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11625 	u32 cntl = 0;
11626 
11627 	if (INTEL_GEN(dev_priv) >= 11)
11628 		return cntl;
11629 
11630 	if (crtc_state->gamma_enable)
11631 		cntl = MCURSOR_GAMMA_ENABLE;
11632 
11633 	if (crtc_state->csc_enable)
11634 		cntl |= MCURSOR_PIPE_CSC_ENABLE;
11635 
11636 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11637 		cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11638 
11639 	return cntl;
11640 }
11641 
i9xx_cursor_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11642 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11643 			   const struct intel_plane_state *plane_state)
11644 {
11645 	struct drm_i915_private *dev_priv =
11646 		to_i915(plane_state->uapi.plane->dev);
11647 	u32 cntl = 0;
11648 
11649 	if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11650 		cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11651 
11652 	switch (drm_rect_width(&plane_state->uapi.dst)) {
11653 	case 64:
11654 		cntl |= MCURSOR_MODE_64_ARGB_AX;
11655 		break;
11656 	case 128:
11657 		cntl |= MCURSOR_MODE_128_ARGB_AX;
11658 		break;
11659 	case 256:
11660 		cntl |= MCURSOR_MODE_256_ARGB_AX;
11661 		break;
11662 	default:
11663 		MISSING_CASE(drm_rect_width(&plane_state->uapi.dst));
11664 		return 0;
11665 	}
11666 
11667 	if (plane_state->hw.rotation & DRM_MODE_ROTATE_180)
11668 		cntl |= MCURSOR_ROTATE_180;
11669 
11670 	return cntl;
11671 }
11672 
i9xx_cursor_size_ok(const struct intel_plane_state * plane_state)11673 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11674 {
11675 	struct drm_i915_private *dev_priv =
11676 		to_i915(plane_state->uapi.plane->dev);
11677 	int width = drm_rect_width(&plane_state->uapi.dst);
11678 	int height = drm_rect_height(&plane_state->uapi.dst);
11679 
11680 	if (!intel_cursor_size_ok(plane_state))
11681 		return false;
11682 
11683 	/* Cursor width is limited to a few power-of-two sizes */
11684 	switch (width) {
11685 	case 256:
11686 	case 128:
11687 	case 64:
11688 		break;
11689 	default:
11690 		return false;
11691 	}
11692 
11693 	/*
11694 	 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11695 	 * height from 8 lines up to the cursor width, when the
11696 	 * cursor is not rotated. Everything else requires square
11697 	 * cursors.
11698 	 */
11699 	if (HAS_CUR_FBC(dev_priv) &&
11700 	    plane_state->hw.rotation & DRM_MODE_ROTATE_0) {
11701 		if (height < 8 || height > width)
11702 			return false;
11703 	} else {
11704 		if (height != width)
11705 			return false;
11706 	}
11707 
11708 	return true;
11709 }
11710 
i9xx_check_cursor(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)11711 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11712 			     struct intel_plane_state *plane_state)
11713 {
11714 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
11715 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11716 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11717 	enum pipe pipe = plane->pipe;
11718 	int ret;
11719 
11720 	ret = intel_check_cursor(crtc_state, plane_state);
11721 	if (ret)
11722 		return ret;
11723 
11724 	/* if we want to turn off the cursor ignore width and height */
11725 	if (!fb)
11726 		return 0;
11727 
11728 	/* Check for which cursor types we support */
11729 	if (!i9xx_cursor_size_ok(plane_state)) {
11730 		drm_dbg(&dev_priv->drm,
11731 			"Cursor dimension %dx%d not supported\n",
11732 			drm_rect_width(&plane_state->uapi.dst),
11733 			drm_rect_height(&plane_state->uapi.dst));
11734 		return -EINVAL;
11735 	}
11736 
11737 	drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible &&
11738 		    plane_state->color_plane[0].stride != fb->pitches[0]);
11739 
11740 	if (fb->pitches[0] !=
11741 	    drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) {
11742 		drm_dbg_kms(&dev_priv->drm,
11743 			    "Invalid cursor stride (%u) (cursor width %d)\n",
11744 			    fb->pitches[0],
11745 			    drm_rect_width(&plane_state->uapi.dst));
11746 		return -EINVAL;
11747 	}
11748 
11749 	/*
11750 	 * There's something wrong with the cursor on CHV pipe C.
11751 	 * If it straddles the left edge of the screen then
11752 	 * moving it away from the edge or disabling it often
11753 	 * results in a pipe underrun, and often that can lead to
11754 	 * dead pipe (constant underrun reported, and it scans
11755 	 * out just a solid color). To recover from that, the
11756 	 * display power well must be turned off and on again.
11757 	 * Refuse the put the cursor into that compromised position.
11758 	 */
11759 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11760 	    plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) {
11761 		drm_dbg_kms(&dev_priv->drm,
11762 			    "CHV cursor C not allowed to straddle the left screen edge\n");
11763 		return -EINVAL;
11764 	}
11765 
11766 	plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11767 
11768 	return 0;
11769 }
11770 
i9xx_update_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11771 static void i9xx_update_cursor(struct intel_plane *plane,
11772 			       const struct intel_crtc_state *crtc_state,
11773 			       const struct intel_plane_state *plane_state)
11774 {
11775 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11776 	enum pipe pipe = plane->pipe;
11777 	u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11778 	unsigned long irqflags;
11779 
11780 	if (plane_state && plane_state->uapi.visible) {
11781 		unsigned width = drm_rect_width(&plane_state->uapi.dst);
11782 		unsigned height = drm_rect_height(&plane_state->uapi.dst);
11783 
11784 		cntl = plane_state->ctl |
11785 			i9xx_cursor_ctl_crtc(crtc_state);
11786 
11787 		if (width != height)
11788 			fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11789 
11790 		base = intel_cursor_base(plane_state);
11791 		pos = intel_cursor_position(plane_state);
11792 	}
11793 
11794 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11795 
11796 	/*
11797 	 * On some platforms writing CURCNTR first will also
11798 	 * cause CURPOS to be armed by the CURBASE write.
11799 	 * Without the CURCNTR write the CURPOS write would
11800 	 * arm itself. Thus we always update CURCNTR before
11801 	 * CURPOS.
11802 	 *
11803 	 * On other platforms CURPOS always requires the
11804 	 * CURBASE write to arm the update. Additonally
11805 	 * a write to any of the cursor register will cancel
11806 	 * an already armed cursor update. Thus leaving out
11807 	 * the CURBASE write after CURPOS could lead to a
11808 	 * cursor that doesn't appear to move, or even change
11809 	 * shape. Thus we always write CURBASE.
11810 	 *
11811 	 * The other registers are armed by by the CURBASE write
11812 	 * except when the plane is getting enabled at which time
11813 	 * the CURCNTR write arms the update.
11814 	 */
11815 
11816 	if (INTEL_GEN(dev_priv) >= 9)
11817 		skl_write_cursor_wm(plane, crtc_state);
11818 
11819 	if (plane->cursor.base != base ||
11820 	    plane->cursor.size != fbc_ctl ||
11821 	    plane->cursor.cntl != cntl) {
11822 		if (HAS_CUR_FBC(dev_priv))
11823 			intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe),
11824 					  fbc_ctl);
11825 		intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl);
11826 		intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11827 		intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11828 
11829 		plane->cursor.base = base;
11830 		plane->cursor.size = fbc_ctl;
11831 		plane->cursor.cntl = cntl;
11832 	} else {
11833 		intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11834 		intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11835 	}
11836 
11837 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11838 }
11839 
i9xx_disable_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)11840 static void i9xx_disable_cursor(struct intel_plane *plane,
11841 				const struct intel_crtc_state *crtc_state)
11842 {
11843 	i9xx_update_cursor(plane, crtc_state, NULL);
11844 }
11845 
i9xx_cursor_get_hw_state(struct intel_plane * plane,enum pipe * pipe)11846 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11847 				     enum pipe *pipe)
11848 {
11849 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11850 	enum intel_display_power_domain power_domain;
11851 	intel_wakeref_t wakeref;
11852 	bool ret;
11853 	u32 val;
11854 
11855 	/*
11856 	 * Not 100% correct for planes that can move between pipes,
11857 	 * but that's only the case for gen2-3 which don't have any
11858 	 * display power wells.
11859 	 */
11860 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11861 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11862 	if (!wakeref)
11863 		return false;
11864 
11865 	val = intel_de_read(dev_priv, CURCNTR(plane->pipe));
11866 
11867 	ret = val & MCURSOR_MODE;
11868 
11869 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11870 		*pipe = plane->pipe;
11871 	else
11872 		*pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11873 			MCURSOR_PIPE_SELECT_SHIFT;
11874 
11875 	intel_display_power_put(dev_priv, power_domain, wakeref);
11876 
11877 	return ret;
11878 }
11879 
11880 /* VESA 640x480x72Hz mode to set on the pipe */
11881 static const struct drm_display_mode load_detect_mode = {
11882 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11883 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11884 };
11885 
11886 struct drm_framebuffer *
intel_framebuffer_create(struct drm_i915_gem_object * obj,struct drm_mode_fb_cmd2 * mode_cmd)11887 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11888 			 struct drm_mode_fb_cmd2 *mode_cmd)
11889 {
11890 	struct intel_framebuffer *intel_fb;
11891 	int ret;
11892 
11893 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11894 	if (!intel_fb)
11895 		return ERR_PTR(-ENOMEM);
11896 
11897 	ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11898 	if (ret)
11899 		goto err;
11900 
11901 	return &intel_fb->base;
11902 
11903 err:
11904 	kfree(intel_fb);
11905 	return ERR_PTR(ret);
11906 }
11907 
intel_modeset_disable_planes(struct drm_atomic_state * state,struct drm_crtc * crtc)11908 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11909 					struct drm_crtc *crtc)
11910 {
11911 	struct drm_plane *plane;
11912 	struct drm_plane_state *plane_state;
11913 	int ret, i;
11914 
11915 	ret = drm_atomic_add_affected_planes(state, crtc);
11916 	if (ret)
11917 		return ret;
11918 
11919 	for_each_new_plane_in_state(state, plane, plane_state, i) {
11920 		if (plane_state->crtc != crtc)
11921 			continue;
11922 
11923 		ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11924 		if (ret)
11925 			return ret;
11926 
11927 		drm_atomic_set_fb_for_plane(plane_state, NULL);
11928 	}
11929 
11930 	return 0;
11931 }
11932 
intel_get_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)11933 int intel_get_load_detect_pipe(struct drm_connector *connector,
11934 			       struct intel_load_detect_pipe *old,
11935 			       struct drm_modeset_acquire_ctx *ctx)
11936 {
11937 	struct intel_crtc *intel_crtc;
11938 	struct intel_encoder *intel_encoder =
11939 		intel_attached_encoder(to_intel_connector(connector));
11940 	struct drm_crtc *possible_crtc;
11941 	struct drm_encoder *encoder = &intel_encoder->base;
11942 	struct drm_crtc *crtc = NULL;
11943 	struct drm_device *dev = encoder->dev;
11944 	struct drm_i915_private *dev_priv = to_i915(dev);
11945 	struct drm_mode_config *config = &dev->mode_config;
11946 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
11947 	struct drm_connector_state *connector_state;
11948 	struct intel_crtc_state *crtc_state;
11949 	int ret, i = -1;
11950 
11951 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11952 		    connector->base.id, connector->name,
11953 		    encoder->base.id, encoder->name);
11954 
11955 	old->restore_state = NULL;
11956 
11957 	drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex));
11958 
11959 	/*
11960 	 * Algorithm gets a little messy:
11961 	 *
11962 	 *   - if the connector already has an assigned crtc, use it (but make
11963 	 *     sure it's on first)
11964 	 *
11965 	 *   - try to find the first unused crtc that can drive this connector,
11966 	 *     and use that if we find one
11967 	 */
11968 
11969 	/* See if we already have a CRTC for this connector */
11970 	if (connector->state->crtc) {
11971 		crtc = connector->state->crtc;
11972 
11973 		ret = drm_modeset_lock(&crtc->mutex, ctx);
11974 		if (ret)
11975 			goto fail;
11976 
11977 		/* Make sure the crtc and connector are running */
11978 		goto found;
11979 	}
11980 
11981 	/* Find an unused one (if possible) */
11982 	for_each_crtc(dev, possible_crtc) {
11983 		i++;
11984 		if (!(encoder->possible_crtcs & (1 << i)))
11985 			continue;
11986 
11987 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11988 		if (ret)
11989 			goto fail;
11990 
11991 		if (possible_crtc->state->enable) {
11992 			drm_modeset_unlock(&possible_crtc->mutex);
11993 			continue;
11994 		}
11995 
11996 		crtc = possible_crtc;
11997 		break;
11998 	}
11999 
12000 	/*
12001 	 * If we didn't find an unused CRTC, don't use any.
12002 	 */
12003 	if (!crtc) {
12004 		drm_dbg_kms(&dev_priv->drm,
12005 			    "no pipe available for load-detect\n");
12006 		ret = -ENODEV;
12007 		goto fail;
12008 	}
12009 
12010 found:
12011 	intel_crtc = to_intel_crtc(crtc);
12012 
12013 	state = drm_atomic_state_alloc(dev);
12014 	restore_state = drm_atomic_state_alloc(dev);
12015 	if (!state || !restore_state) {
12016 		ret = -ENOMEM;
12017 		goto fail;
12018 	}
12019 
12020 	state->acquire_ctx = ctx;
12021 	restore_state->acquire_ctx = ctx;
12022 
12023 	connector_state = drm_atomic_get_connector_state(state, connector);
12024 	if (IS_ERR(connector_state)) {
12025 		ret = PTR_ERR(connector_state);
12026 		goto fail;
12027 	}
12028 
12029 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
12030 	if (ret)
12031 		goto fail;
12032 
12033 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
12034 	if (IS_ERR(crtc_state)) {
12035 		ret = PTR_ERR(crtc_state);
12036 		goto fail;
12037 	}
12038 
12039 	crtc_state->uapi.active = true;
12040 
12041 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
12042 					   &load_detect_mode);
12043 	if (ret)
12044 		goto fail;
12045 
12046 	ret = intel_modeset_disable_planes(state, crtc);
12047 	if (ret)
12048 		goto fail;
12049 
12050 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
12051 	if (!ret)
12052 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
12053 	if (!ret)
12054 		ret = drm_atomic_add_affected_planes(restore_state, crtc);
12055 	if (ret) {
12056 		drm_dbg_kms(&dev_priv->drm,
12057 			    "Failed to create a copy of old state to restore: %i\n",
12058 			    ret);
12059 		goto fail;
12060 	}
12061 
12062 	ret = drm_atomic_commit(state);
12063 	if (ret) {
12064 		drm_dbg_kms(&dev_priv->drm,
12065 			    "failed to set mode on load-detect pipe\n");
12066 		goto fail;
12067 	}
12068 
12069 	old->restore_state = restore_state;
12070 	drm_atomic_state_put(state);
12071 
12072 	/* let the connector get through one full cycle before testing */
12073 	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
12074 	return true;
12075 
12076 fail:
12077 	if (state) {
12078 		drm_atomic_state_put(state);
12079 		state = NULL;
12080 	}
12081 	if (restore_state) {
12082 		drm_atomic_state_put(restore_state);
12083 		restore_state = NULL;
12084 	}
12085 
12086 	if (ret == -EDEADLK)
12087 		return ret;
12088 
12089 	return false;
12090 }
12091 
intel_release_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)12092 void intel_release_load_detect_pipe(struct drm_connector *connector,
12093 				    struct intel_load_detect_pipe *old,
12094 				    struct drm_modeset_acquire_ctx *ctx)
12095 {
12096 	struct intel_encoder *intel_encoder =
12097 		intel_attached_encoder(to_intel_connector(connector));
12098 	struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev);
12099 	struct drm_encoder *encoder = &intel_encoder->base;
12100 	struct drm_atomic_state *state = old->restore_state;
12101 	int ret;
12102 
12103 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
12104 		    connector->base.id, connector->name,
12105 		    encoder->base.id, encoder->name);
12106 
12107 	if (!state)
12108 		return;
12109 
12110 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
12111 	if (ret)
12112 		drm_dbg_kms(&i915->drm,
12113 			    "Couldn't release load detect pipe: %i\n", ret);
12114 	drm_atomic_state_put(state);
12115 }
12116 
i9xx_pll_refclk(struct drm_device * dev,const struct intel_crtc_state * pipe_config)12117 static int i9xx_pll_refclk(struct drm_device *dev,
12118 			   const struct intel_crtc_state *pipe_config)
12119 {
12120 	struct drm_i915_private *dev_priv = to_i915(dev);
12121 	u32 dpll = pipe_config->dpll_hw_state.dpll;
12122 
12123 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
12124 		return dev_priv->vbt.lvds_ssc_freq;
12125 	else if (HAS_PCH_SPLIT(dev_priv))
12126 		return 120000;
12127 	else if (!IS_GEN(dev_priv, 2))
12128 		return 96000;
12129 	else
12130 		return 48000;
12131 }
12132 
12133 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)12134 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
12135 				struct intel_crtc_state *pipe_config)
12136 {
12137 	struct drm_device *dev = crtc->base.dev;
12138 	struct drm_i915_private *dev_priv = to_i915(dev);
12139 	enum pipe pipe = crtc->pipe;
12140 	u32 dpll = pipe_config->dpll_hw_state.dpll;
12141 	u32 fp;
12142 	struct dpll clock;
12143 	int port_clock;
12144 	int refclk = i9xx_pll_refclk(dev, pipe_config);
12145 
12146 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
12147 		fp = pipe_config->dpll_hw_state.fp0;
12148 	else
12149 		fp = pipe_config->dpll_hw_state.fp1;
12150 
12151 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
12152 	if (IS_PINEVIEW(dev_priv)) {
12153 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
12154 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
12155 	} else {
12156 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
12157 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
12158 	}
12159 
12160 	if (!IS_GEN(dev_priv, 2)) {
12161 		if (IS_PINEVIEW(dev_priv))
12162 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
12163 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
12164 		else
12165 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
12166 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
12167 
12168 		switch (dpll & DPLL_MODE_MASK) {
12169 		case DPLLB_MODE_DAC_SERIAL:
12170 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
12171 				5 : 10;
12172 			break;
12173 		case DPLLB_MODE_LVDS:
12174 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
12175 				7 : 14;
12176 			break;
12177 		default:
12178 			drm_dbg_kms(&dev_priv->drm,
12179 				    "Unknown DPLL mode %08x in programmed "
12180 				    "mode\n", (int)(dpll & DPLL_MODE_MASK));
12181 			return;
12182 		}
12183 
12184 		if (IS_PINEVIEW(dev_priv))
12185 			port_clock = pnv_calc_dpll_params(refclk, &clock);
12186 		else
12187 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
12188 	} else {
12189 		u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv,
12190 								 LVDS);
12191 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
12192 
12193 		if (is_lvds) {
12194 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
12195 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
12196 
12197 			if (lvds & LVDS_CLKB_POWER_UP)
12198 				clock.p2 = 7;
12199 			else
12200 				clock.p2 = 14;
12201 		} else {
12202 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
12203 				clock.p1 = 2;
12204 			else {
12205 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
12206 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
12207 			}
12208 			if (dpll & PLL_P2_DIVIDE_BY_4)
12209 				clock.p2 = 4;
12210 			else
12211 				clock.p2 = 2;
12212 		}
12213 
12214 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
12215 	}
12216 
12217 	/*
12218 	 * This value includes pixel_multiplier. We will use
12219 	 * port_clock to compute adjusted_mode.crtc_clock in the
12220 	 * encoder's get_config() function.
12221 	 */
12222 	pipe_config->port_clock = port_clock;
12223 }
12224 
intel_dotclock_calculate(int link_freq,const struct intel_link_m_n * m_n)12225 int intel_dotclock_calculate(int link_freq,
12226 			     const struct intel_link_m_n *m_n)
12227 {
12228 	/*
12229 	 * The calculation for the data clock is:
12230 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
12231 	 * But we want to avoid losing precison if possible, so:
12232 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
12233 	 *
12234 	 * and the link clock is simpler:
12235 	 * link_clock = (m * link_clock) / n
12236 	 */
12237 
12238 	if (!m_n->link_n)
12239 		return 0;
12240 
12241 	return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
12242 }
12243 
ilk_pch_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)12244 static void ilk_pch_clock_get(struct intel_crtc *crtc,
12245 			      struct intel_crtc_state *pipe_config)
12246 {
12247 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12248 
12249 	/* read out port_clock from the DPLL */
12250 	i9xx_crtc_clock_get(crtc, pipe_config);
12251 
12252 	/*
12253 	 * In case there is an active pipe without active ports,
12254 	 * we may need some idea for the dotclock anyway.
12255 	 * Calculate one based on the FDI configuration.
12256 	 */
12257 	pipe_config->hw.adjusted_mode.crtc_clock =
12258 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12259 					 &pipe_config->fdi_m_n);
12260 }
12261 
intel_crtc_state_reset(struct intel_crtc_state * crtc_state,struct intel_crtc * crtc)12262 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
12263 				   struct intel_crtc *crtc)
12264 {
12265 	memset(crtc_state, 0, sizeof(*crtc_state));
12266 
12267 	__drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
12268 
12269 	crtc_state->cpu_transcoder = INVALID_TRANSCODER;
12270 	crtc_state->master_transcoder = INVALID_TRANSCODER;
12271 	crtc_state->hsw_workaround_pipe = INVALID_PIPE;
12272 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID;
12273 	crtc_state->scaler_state.scaler_id = -1;
12274 	crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
12275 }
12276 
intel_crtc_state_alloc(struct intel_crtc * crtc)12277 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
12278 {
12279 	struct intel_crtc_state *crtc_state;
12280 
12281 	crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
12282 
12283 	if (crtc_state)
12284 		intel_crtc_state_reset(crtc_state, crtc);
12285 
12286 	return crtc_state;
12287 }
12288 
12289 /* Returns the currently programmed mode of the given encoder. */
12290 struct drm_display_mode *
intel_encoder_current_mode(struct intel_encoder * encoder)12291 intel_encoder_current_mode(struct intel_encoder *encoder)
12292 {
12293 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
12294 	struct intel_crtc_state *crtc_state;
12295 	struct drm_display_mode *mode;
12296 	struct intel_crtc *crtc;
12297 	enum pipe pipe;
12298 
12299 	if (!encoder->get_hw_state(encoder, &pipe))
12300 		return NULL;
12301 
12302 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12303 
12304 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
12305 	if (!mode)
12306 		return NULL;
12307 
12308 	crtc_state = intel_crtc_state_alloc(crtc);
12309 	if (!crtc_state) {
12310 		kfree(mode);
12311 		return NULL;
12312 	}
12313 
12314 	if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
12315 		kfree(crtc_state);
12316 		kfree(mode);
12317 		return NULL;
12318 	}
12319 
12320 	encoder->get_config(encoder, crtc_state);
12321 
12322 	intel_mode_from_pipe_config(mode, crtc_state);
12323 
12324 	kfree(crtc_state);
12325 
12326 	return mode;
12327 }
12328 
intel_crtc_destroy(struct drm_crtc * crtc)12329 static void intel_crtc_destroy(struct drm_crtc *crtc)
12330 {
12331 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12332 
12333 	drm_crtc_cleanup(crtc);
12334 	kfree(intel_crtc);
12335 }
12336 
12337 /**
12338  * intel_wm_need_update - Check whether watermarks need updating
12339  * @cur: current plane state
12340  * @new: new plane state
12341  *
12342  * Check current plane state versus the new one to determine whether
12343  * watermarks need to be recalculated.
12344  *
12345  * Returns true or false.
12346  */
intel_wm_need_update(const struct intel_plane_state * cur,struct intel_plane_state * new)12347 static bool intel_wm_need_update(const struct intel_plane_state *cur,
12348 				 struct intel_plane_state *new)
12349 {
12350 	/* Update watermarks on tiling or size changes. */
12351 	if (new->uapi.visible != cur->uapi.visible)
12352 		return true;
12353 
12354 	if (!cur->hw.fb || !new->hw.fb)
12355 		return false;
12356 
12357 	if (cur->hw.fb->modifier != new->hw.fb->modifier ||
12358 	    cur->hw.rotation != new->hw.rotation ||
12359 	    drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) ||
12360 	    drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) ||
12361 	    drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) ||
12362 	    drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst))
12363 		return true;
12364 
12365 	return false;
12366 }
12367 
needs_scaling(const struct intel_plane_state * state)12368 static bool needs_scaling(const struct intel_plane_state *state)
12369 {
12370 	int src_w = drm_rect_width(&state->uapi.src) >> 16;
12371 	int src_h = drm_rect_height(&state->uapi.src) >> 16;
12372 	int dst_w = drm_rect_width(&state->uapi.dst);
12373 	int dst_h = drm_rect_height(&state->uapi.dst);
12374 
12375 	return (src_w != dst_w || src_h != dst_h);
12376 }
12377 
intel_plane_atomic_calc_changes(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * crtc_state,const struct intel_plane_state * old_plane_state,struct intel_plane_state * plane_state)12378 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
12379 				    struct intel_crtc_state *crtc_state,
12380 				    const struct intel_plane_state *old_plane_state,
12381 				    struct intel_plane_state *plane_state)
12382 {
12383 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12384 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12385 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12386 	bool mode_changed = needs_modeset(crtc_state);
12387 	bool was_crtc_enabled = old_crtc_state->hw.active;
12388 	bool is_crtc_enabled = crtc_state->hw.active;
12389 	bool turn_off, turn_on, visible, was_visible;
12390 	int ret;
12391 
12392 	if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
12393 		ret = skl_update_scaler_plane(crtc_state, plane_state);
12394 		if (ret)
12395 			return ret;
12396 	}
12397 
12398 	was_visible = old_plane_state->uapi.visible;
12399 	visible = plane_state->uapi.visible;
12400 
12401 	if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible))
12402 		was_visible = false;
12403 
12404 	/*
12405 	 * Visibility is calculated as if the crtc was on, but
12406 	 * after scaler setup everything depends on it being off
12407 	 * when the crtc isn't active.
12408 	 *
12409 	 * FIXME this is wrong for watermarks. Watermarks should also
12410 	 * be computed as if the pipe would be active. Perhaps move
12411 	 * per-plane wm computation to the .check_plane() hook, and
12412 	 * only combine the results from all planes in the current place?
12413 	 */
12414 	if (!is_crtc_enabled) {
12415 		intel_plane_set_invisible(crtc_state, plane_state);
12416 		visible = false;
12417 	}
12418 
12419 	if (!was_visible && !visible)
12420 		return 0;
12421 
12422 	turn_off = was_visible && (!visible || mode_changed);
12423 	turn_on = visible && (!was_visible || mode_changed);
12424 
12425 	drm_dbg_atomic(&dev_priv->drm,
12426 		       "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12427 		       crtc->base.base.id, crtc->base.name,
12428 		       plane->base.base.id, plane->base.name,
12429 		       was_visible, visible,
12430 		       turn_off, turn_on, mode_changed);
12431 
12432 	if (turn_on) {
12433 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12434 			crtc_state->update_wm_pre = true;
12435 
12436 		/* must disable cxsr around plane enable/disable */
12437 		if (plane->id != PLANE_CURSOR)
12438 			crtc_state->disable_cxsr = true;
12439 	} else if (turn_off) {
12440 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12441 			crtc_state->update_wm_post = true;
12442 
12443 		/* must disable cxsr around plane enable/disable */
12444 		if (plane->id != PLANE_CURSOR)
12445 			crtc_state->disable_cxsr = true;
12446 	} else if (intel_wm_need_update(old_plane_state, plane_state)) {
12447 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
12448 			/* FIXME bollocks */
12449 			crtc_state->update_wm_pre = true;
12450 			crtc_state->update_wm_post = true;
12451 		}
12452 	}
12453 
12454 	if (visible || was_visible)
12455 		crtc_state->fb_bits |= plane->frontbuffer_bit;
12456 
12457 	/*
12458 	 * ILK/SNB DVSACNTR/Sprite Enable
12459 	 * IVB SPR_CTL/Sprite Enable
12460 	 * "When in Self Refresh Big FIFO mode, a write to enable the
12461 	 *  plane will be internally buffered and delayed while Big FIFO
12462 	 *  mode is exiting."
12463 	 *
12464 	 * Which means that enabling the sprite can take an extra frame
12465 	 * when we start in big FIFO mode (LP1+). Thus we need to drop
12466 	 * down to LP0 and wait for vblank in order to make sure the
12467 	 * sprite gets enabled on the next vblank after the register write.
12468 	 * Doing otherwise would risk enabling the sprite one frame after
12469 	 * we've already signalled flip completion. We can resume LP1+
12470 	 * once the sprite has been enabled.
12471 	 *
12472 	 *
12473 	 * WaCxSRDisabledForSpriteScaling:ivb
12474 	 * IVB SPR_SCALE/Scaling Enable
12475 	 * "Low Power watermarks must be disabled for at least one
12476 	 *  frame before enabling sprite scaling, and kept disabled
12477 	 *  until sprite scaling is disabled."
12478 	 *
12479 	 * ILK/SNB DVSASCALE/Scaling Enable
12480 	 * "When in Self Refresh Big FIFO mode, scaling enable will be
12481 	 *  masked off while Big FIFO mode is exiting."
12482 	 *
12483 	 * Despite the w/a only being listed for IVB we assume that
12484 	 * the ILK/SNB note has similar ramifications, hence we apply
12485 	 * the w/a on all three platforms.
12486 	 *
12487 	 * With experimental results seems this is needed also for primary
12488 	 * plane, not only sprite plane.
12489 	 */
12490 	if (plane->id != PLANE_CURSOR &&
12491 	    (IS_GEN_RANGE(dev_priv, 5, 6) ||
12492 	     IS_IVYBRIDGE(dev_priv)) &&
12493 	    (turn_on || (!needs_scaling(old_plane_state) &&
12494 			 needs_scaling(plane_state))))
12495 		crtc_state->disable_lp_wm = true;
12496 
12497 	return 0;
12498 }
12499 
encoders_cloneable(const struct intel_encoder * a,const struct intel_encoder * b)12500 static bool encoders_cloneable(const struct intel_encoder *a,
12501 			       const struct intel_encoder *b)
12502 {
12503 	/* masks could be asymmetric, so check both ways */
12504 	return a == b || (a->cloneable & (1 << b->type) &&
12505 			  b->cloneable & (1 << a->type));
12506 }
12507 
check_single_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder)12508 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12509 					 struct intel_crtc *crtc,
12510 					 struct intel_encoder *encoder)
12511 {
12512 	struct intel_encoder *source_encoder;
12513 	struct drm_connector *connector;
12514 	struct drm_connector_state *connector_state;
12515 	int i;
12516 
12517 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12518 		if (connector_state->crtc != &crtc->base)
12519 			continue;
12520 
12521 		source_encoder =
12522 			to_intel_encoder(connector_state->best_encoder);
12523 		if (!encoders_cloneable(encoder, source_encoder))
12524 			return false;
12525 	}
12526 
12527 	return true;
12528 }
12529 
icl_add_linked_planes(struct intel_atomic_state * state)12530 static int icl_add_linked_planes(struct intel_atomic_state *state)
12531 {
12532 	struct intel_plane *plane, *linked;
12533 	struct intel_plane_state *plane_state, *linked_plane_state;
12534 	int i;
12535 
12536 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12537 		linked = plane_state->planar_linked_plane;
12538 
12539 		if (!linked)
12540 			continue;
12541 
12542 		linked_plane_state = intel_atomic_get_plane_state(state, linked);
12543 		if (IS_ERR(linked_plane_state))
12544 			return PTR_ERR(linked_plane_state);
12545 
12546 		drm_WARN_ON(state->base.dev,
12547 			    linked_plane_state->planar_linked_plane != plane);
12548 		drm_WARN_ON(state->base.dev,
12549 			    linked_plane_state->planar_slave == plane_state->planar_slave);
12550 	}
12551 
12552 	return 0;
12553 }
12554 
icl_check_nv12_planes(struct intel_crtc_state * crtc_state)12555 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
12556 {
12557 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12558 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12559 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12560 	struct intel_plane *plane, *linked;
12561 	struct intel_plane_state *plane_state;
12562 	int i;
12563 
12564 	if (INTEL_GEN(dev_priv) < 11)
12565 		return 0;
12566 
12567 	/*
12568 	 * Destroy all old plane links and make the slave plane invisible
12569 	 * in the crtc_state->active_planes mask.
12570 	 */
12571 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12572 		if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
12573 			continue;
12574 
12575 		plane_state->planar_linked_plane = NULL;
12576 		if (plane_state->planar_slave && !plane_state->uapi.visible) {
12577 			crtc_state->active_planes &= ~BIT(plane->id);
12578 			crtc_state->update_planes |= BIT(plane->id);
12579 		}
12580 
12581 		plane_state->planar_slave = false;
12582 	}
12583 
12584 	if (!crtc_state->nv12_planes)
12585 		return 0;
12586 
12587 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12588 		struct intel_plane_state *linked_state = NULL;
12589 
12590 		if (plane->pipe != crtc->pipe ||
12591 		    !(crtc_state->nv12_planes & BIT(plane->id)))
12592 			continue;
12593 
12594 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
12595 			if (!icl_is_nv12_y_plane(dev_priv, linked->id))
12596 				continue;
12597 
12598 			if (crtc_state->active_planes & BIT(linked->id))
12599 				continue;
12600 
12601 			linked_state = intel_atomic_get_plane_state(state, linked);
12602 			if (IS_ERR(linked_state))
12603 				return PTR_ERR(linked_state);
12604 
12605 			break;
12606 		}
12607 
12608 		if (!linked_state) {
12609 			drm_dbg_kms(&dev_priv->drm,
12610 				    "Need %d free Y planes for planar YUV\n",
12611 				    hweight8(crtc_state->nv12_planes));
12612 
12613 			return -EINVAL;
12614 		}
12615 
12616 		plane_state->planar_linked_plane = linked;
12617 
12618 		linked_state->planar_slave = true;
12619 		linked_state->planar_linked_plane = plane;
12620 		crtc_state->active_planes |= BIT(linked->id);
12621 		crtc_state->update_planes |= BIT(linked->id);
12622 		drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n",
12623 			    linked->base.name, plane->base.name);
12624 
12625 		/* Copy parameters to slave plane */
12626 		linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
12627 		linked_state->color_ctl = plane_state->color_ctl;
12628 		linked_state->view = plane_state->view;
12629 		memcpy(linked_state->color_plane, plane_state->color_plane,
12630 		       sizeof(linked_state->color_plane));
12631 
12632 		intel_plane_copy_uapi_to_hw_state(linked_state, plane_state);
12633 		linked_state->uapi.src = plane_state->uapi.src;
12634 		linked_state->uapi.dst = plane_state->uapi.dst;
12635 
12636 		if (icl_is_hdr_plane(dev_priv, plane->id)) {
12637 			if (linked->id == PLANE_SPRITE5)
12638 				plane_state->cus_ctl |= PLANE_CUS_PLANE_7;
12639 			else if (linked->id == PLANE_SPRITE4)
12640 				plane_state->cus_ctl |= PLANE_CUS_PLANE_6;
12641 			else if (linked->id == PLANE_SPRITE3)
12642 				plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL;
12643 			else if (linked->id == PLANE_SPRITE2)
12644 				plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL;
12645 			else
12646 				MISSING_CASE(linked->id);
12647 		}
12648 	}
12649 
12650 	return 0;
12651 }
12652 
c8_planes_changed(const struct intel_crtc_state * new_crtc_state)12653 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
12654 {
12655 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
12656 	struct intel_atomic_state *state =
12657 		to_intel_atomic_state(new_crtc_state->uapi.state);
12658 	const struct intel_crtc_state *old_crtc_state =
12659 		intel_atomic_get_old_crtc_state(state, crtc);
12660 
12661 	return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12662 }
12663 
hsw_linetime_wm(const struct intel_crtc_state * crtc_state)12664 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state)
12665 {
12666 	const struct drm_display_mode *adjusted_mode =
12667 		&crtc_state->hw.adjusted_mode;
12668 	int linetime_wm;
12669 
12670 	if (!crtc_state->hw.enable)
12671 		return 0;
12672 
12673 	linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12674 					adjusted_mode->crtc_clock);
12675 
12676 	return min(linetime_wm, 0x1ff);
12677 }
12678 
hsw_ips_linetime_wm(const struct intel_crtc_state * crtc_state,const struct intel_cdclk_state * cdclk_state)12679 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state,
12680 			       const struct intel_cdclk_state *cdclk_state)
12681 {
12682 	const struct drm_display_mode *adjusted_mode =
12683 		&crtc_state->hw.adjusted_mode;
12684 	int linetime_wm;
12685 
12686 	if (!crtc_state->hw.enable)
12687 		return 0;
12688 
12689 	linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12690 					cdclk_state->logical.cdclk);
12691 
12692 	return min(linetime_wm, 0x1ff);
12693 }
12694 
skl_linetime_wm(const struct intel_crtc_state * crtc_state)12695 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state)
12696 {
12697 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12698 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12699 	const struct drm_display_mode *adjusted_mode =
12700 		&crtc_state->hw.adjusted_mode;
12701 	int linetime_wm;
12702 
12703 	if (!crtc_state->hw.enable)
12704 		return 0;
12705 
12706 	linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8,
12707 				   crtc_state->pixel_rate);
12708 
12709 	/* Display WA #1135: BXT:ALL GLK:ALL */
12710 	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
12711 		linetime_wm /= 2;
12712 
12713 	return min(linetime_wm, 0x1ff);
12714 }
12715 
hsw_compute_linetime_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)12716 static int hsw_compute_linetime_wm(struct intel_atomic_state *state,
12717 				   struct intel_crtc *crtc)
12718 {
12719 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12720 	struct intel_crtc_state *crtc_state =
12721 		intel_atomic_get_new_crtc_state(state, crtc);
12722 	const struct intel_cdclk_state *cdclk_state;
12723 
12724 	if (INTEL_GEN(dev_priv) >= 9)
12725 		crtc_state->linetime = skl_linetime_wm(crtc_state);
12726 	else
12727 		crtc_state->linetime = hsw_linetime_wm(crtc_state);
12728 
12729 	if (!hsw_crtc_supports_ips(crtc))
12730 		return 0;
12731 
12732 	cdclk_state = intel_atomic_get_cdclk_state(state);
12733 	if (IS_ERR(cdclk_state))
12734 		return PTR_ERR(cdclk_state);
12735 
12736 	crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state,
12737 						       cdclk_state);
12738 
12739 	return 0;
12740 }
12741 
intel_crtc_atomic_check(struct intel_atomic_state * state,struct intel_crtc * crtc)12742 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12743 				   struct intel_crtc *crtc)
12744 {
12745 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12746 	struct intel_crtc_state *crtc_state =
12747 		intel_atomic_get_new_crtc_state(state, crtc);
12748 	bool mode_changed = needs_modeset(crtc_state);
12749 	int ret;
12750 
12751 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12752 	    mode_changed && !crtc_state->hw.active)
12753 		crtc_state->update_wm_post = true;
12754 
12755 	if (mode_changed && crtc_state->hw.enable &&
12756 	    dev_priv->display.crtc_compute_clock &&
12757 	    !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) {
12758 		ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12759 		if (ret)
12760 			return ret;
12761 	}
12762 
12763 	/*
12764 	 * May need to update pipe gamma enable bits
12765 	 * when C8 planes are getting enabled/disabled.
12766 	 */
12767 	if (c8_planes_changed(crtc_state))
12768 		crtc_state->uapi.color_mgmt_changed = true;
12769 
12770 	if (mode_changed || crtc_state->update_pipe ||
12771 	    crtc_state->uapi.color_mgmt_changed) {
12772 		ret = intel_color_check(crtc_state);
12773 		if (ret)
12774 			return ret;
12775 	}
12776 
12777 	if (dev_priv->display.compute_pipe_wm) {
12778 		ret = dev_priv->display.compute_pipe_wm(crtc_state);
12779 		if (ret) {
12780 			drm_dbg_kms(&dev_priv->drm,
12781 				    "Target pipe watermarks are invalid\n");
12782 			return ret;
12783 		}
12784 	}
12785 
12786 	if (dev_priv->display.compute_intermediate_wm) {
12787 		if (drm_WARN_ON(&dev_priv->drm,
12788 				!dev_priv->display.compute_pipe_wm))
12789 			return 0;
12790 
12791 		/*
12792 		 * Calculate 'intermediate' watermarks that satisfy both the
12793 		 * old state and the new state.  We can program these
12794 		 * immediately.
12795 		 */
12796 		ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12797 		if (ret) {
12798 			drm_dbg_kms(&dev_priv->drm,
12799 				    "No valid intermediate pipe watermarks are possible\n");
12800 			return ret;
12801 		}
12802 	}
12803 
12804 	if (INTEL_GEN(dev_priv) >= 9) {
12805 		if (mode_changed || crtc_state->update_pipe) {
12806 			ret = skl_update_scaler_crtc(crtc_state);
12807 			if (ret)
12808 				return ret;
12809 		}
12810 
12811 		ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state);
12812 		if (ret)
12813 			return ret;
12814 	}
12815 
12816 	if (HAS_IPS(dev_priv)) {
12817 		ret = hsw_compute_ips_config(crtc_state);
12818 		if (ret)
12819 			return ret;
12820 	}
12821 
12822 	if (INTEL_GEN(dev_priv) >= 9 ||
12823 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
12824 		ret = hsw_compute_linetime_wm(state, crtc);
12825 		if (ret)
12826 			return ret;
12827 
12828 	}
12829 
12830 	if (!mode_changed)
12831 		intel_psr2_sel_fetch_update(state, crtc);
12832 
12833 	return 0;
12834 }
12835 
intel_modeset_update_connector_atomic_state(struct drm_device * dev)12836 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12837 {
12838 	struct intel_connector *connector;
12839 	struct drm_connector_list_iter conn_iter;
12840 
12841 	drm_connector_list_iter_begin(dev, &conn_iter);
12842 	for_each_intel_connector_iter(connector, &conn_iter) {
12843 		if (connector->base.state->crtc)
12844 			drm_connector_put(&connector->base);
12845 
12846 		if (connector->base.encoder) {
12847 			connector->base.state->best_encoder =
12848 				connector->base.encoder;
12849 			connector->base.state->crtc =
12850 				connector->base.encoder->crtc;
12851 
12852 			drm_connector_get(&connector->base);
12853 		} else {
12854 			connector->base.state->best_encoder = NULL;
12855 			connector->base.state->crtc = NULL;
12856 		}
12857 	}
12858 	drm_connector_list_iter_end(&conn_iter);
12859 }
12860 
12861 static int
compute_sink_pipe_bpp(const struct drm_connector_state * conn_state,struct intel_crtc_state * pipe_config)12862 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12863 		      struct intel_crtc_state *pipe_config)
12864 {
12865 	struct drm_connector *connector = conn_state->connector;
12866 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12867 	const struct drm_display_info *info = &connector->display_info;
12868 	int bpp;
12869 
12870 	switch (conn_state->max_bpc) {
12871 	case 6 ... 7:
12872 		bpp = 6 * 3;
12873 		break;
12874 	case 8 ... 9:
12875 		bpp = 8 * 3;
12876 		break;
12877 	case 10 ... 11:
12878 		bpp = 10 * 3;
12879 		break;
12880 	case 12 ... 16:
12881 		bpp = 12 * 3;
12882 		break;
12883 	default:
12884 		MISSING_CASE(conn_state->max_bpc);
12885 		return -EINVAL;
12886 	}
12887 
12888 	if (bpp < pipe_config->pipe_bpp) {
12889 		drm_dbg_kms(&i915->drm,
12890 			    "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12891 			    "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12892 			    connector->base.id, connector->name,
12893 			    bpp, 3 * info->bpc,
12894 			    3 * conn_state->max_requested_bpc,
12895 			    pipe_config->pipe_bpp);
12896 
12897 		pipe_config->pipe_bpp = bpp;
12898 	}
12899 
12900 	return 0;
12901 }
12902 
12903 static int
compute_baseline_pipe_bpp(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)12904 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12905 			  struct intel_crtc_state *pipe_config)
12906 {
12907 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12908 	struct drm_atomic_state *state = pipe_config->uapi.state;
12909 	struct drm_connector *connector;
12910 	struct drm_connector_state *connector_state;
12911 	int bpp, i;
12912 
12913 	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12914 	    IS_CHERRYVIEW(dev_priv)))
12915 		bpp = 10*3;
12916 	else if (INTEL_GEN(dev_priv) >= 5)
12917 		bpp = 12*3;
12918 	else
12919 		bpp = 8*3;
12920 
12921 	pipe_config->pipe_bpp = bpp;
12922 
12923 	/* Clamp display bpp to connector max bpp */
12924 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12925 		int ret;
12926 
12927 		if (connector_state->crtc != &crtc->base)
12928 			continue;
12929 
12930 		ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12931 		if (ret)
12932 			return ret;
12933 	}
12934 
12935 	return 0;
12936 }
12937 
intel_dump_crtc_timings(struct drm_i915_private * i915,const struct drm_display_mode * mode)12938 static void intel_dump_crtc_timings(struct drm_i915_private *i915,
12939 				    const struct drm_display_mode *mode)
12940 {
12941 	drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, "
12942 		    "type: 0x%x flags: 0x%x\n",
12943 		    mode->crtc_clock,
12944 		    mode->crtc_hdisplay, mode->crtc_hsync_start,
12945 		    mode->crtc_hsync_end, mode->crtc_htotal,
12946 		    mode->crtc_vdisplay, mode->crtc_vsync_start,
12947 		    mode->crtc_vsync_end, mode->crtc_vtotal,
12948 		    mode->type, mode->flags);
12949 }
12950 
12951 static void
intel_dump_m_n_config(const struct intel_crtc_state * pipe_config,const char * id,unsigned int lane_count,const struct intel_link_m_n * m_n)12952 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12953 		      const char *id, unsigned int lane_count,
12954 		      const struct intel_link_m_n *m_n)
12955 {
12956 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12957 
12958 	drm_dbg_kms(&i915->drm,
12959 		    "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12960 		    id, lane_count,
12961 		    m_n->gmch_m, m_n->gmch_n,
12962 		    m_n->link_m, m_n->link_n, m_n->tu);
12963 }
12964 
12965 static void
intel_dump_infoframe(struct drm_i915_private * dev_priv,const union hdmi_infoframe * frame)12966 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12967 		     const union hdmi_infoframe *frame)
12968 {
12969 	if (!drm_debug_enabled(DRM_UT_KMS))
12970 		return;
12971 
12972 	hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12973 }
12974 
12975 static void
intel_dump_dp_vsc_sdp(struct drm_i915_private * dev_priv,const struct drm_dp_vsc_sdp * vsc)12976 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv,
12977 		      const struct drm_dp_vsc_sdp *vsc)
12978 {
12979 	if (!drm_debug_enabled(DRM_UT_KMS))
12980 		return;
12981 
12982 	drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc);
12983 }
12984 
12985 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12986 
12987 static const char * const output_type_str[] = {
12988 	OUTPUT_TYPE(UNUSED),
12989 	OUTPUT_TYPE(ANALOG),
12990 	OUTPUT_TYPE(DVO),
12991 	OUTPUT_TYPE(SDVO),
12992 	OUTPUT_TYPE(LVDS),
12993 	OUTPUT_TYPE(TVOUT),
12994 	OUTPUT_TYPE(HDMI),
12995 	OUTPUT_TYPE(DP),
12996 	OUTPUT_TYPE(EDP),
12997 	OUTPUT_TYPE(DSI),
12998 	OUTPUT_TYPE(DDI),
12999 	OUTPUT_TYPE(DP_MST),
13000 };
13001 
13002 #undef OUTPUT_TYPE
13003 
snprintf_output_types(char * buf,size_t len,unsigned int output_types)13004 static void snprintf_output_types(char *buf, size_t len,
13005 				  unsigned int output_types)
13006 {
13007 	char *str = buf;
13008 	int i;
13009 
13010 	str[0] = '\0';
13011 
13012 	for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
13013 		int r;
13014 
13015 		if ((output_types & BIT(i)) == 0)
13016 			continue;
13017 
13018 		r = snprintf(str, len, "%s%s",
13019 			     str != buf ? "," : "", output_type_str[i]);
13020 		if (r >= len)
13021 			break;
13022 		str += r;
13023 		len -= r;
13024 
13025 		output_types &= ~BIT(i);
13026 	}
13027 
13028 	WARN_ON_ONCE(output_types != 0);
13029 }
13030 
13031 static const char * const output_format_str[] = {
13032 	[INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
13033 	[INTEL_OUTPUT_FORMAT_RGB] = "RGB",
13034 	[INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
13035 	[INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
13036 };
13037 
output_formats(enum intel_output_format format)13038 static const char *output_formats(enum intel_output_format format)
13039 {
13040 	if (format >= ARRAY_SIZE(output_format_str))
13041 		format = INTEL_OUTPUT_FORMAT_INVALID;
13042 	return output_format_str[format];
13043 }
13044 
intel_dump_plane_state(const struct intel_plane_state * plane_state)13045 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
13046 {
13047 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
13048 	struct drm_i915_private *i915 = to_i915(plane->base.dev);
13049 	const struct drm_framebuffer *fb = plane_state->hw.fb;
13050 	struct drm_format_name_buf format_name;
13051 
13052 	if (!fb) {
13053 		drm_dbg_kms(&i915->drm,
13054 			    "[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
13055 			    plane->base.base.id, plane->base.name,
13056 			    yesno(plane_state->uapi.visible));
13057 		return;
13058 	}
13059 
13060 	drm_dbg_kms(&i915->drm,
13061 		    "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
13062 		    plane->base.base.id, plane->base.name,
13063 		    fb->base.id, fb->width, fb->height,
13064 		    drm_get_format_name(fb->format->format, &format_name),
13065 		    yesno(plane_state->uapi.visible));
13066 	drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n",
13067 		    plane_state->hw.rotation, plane_state->scaler_id);
13068 	if (plane_state->uapi.visible)
13069 		drm_dbg_kms(&i915->drm,
13070 			    "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
13071 			    DRM_RECT_FP_ARG(&plane_state->uapi.src),
13072 			    DRM_RECT_ARG(&plane_state->uapi.dst));
13073 }
13074 
intel_dump_pipe_config(const struct intel_crtc_state * pipe_config,struct intel_atomic_state * state,const char * context)13075 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
13076 				   struct intel_atomic_state *state,
13077 				   const char *context)
13078 {
13079 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13080 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13081 	const struct intel_plane_state *plane_state;
13082 	struct intel_plane *plane;
13083 	char buf[64];
13084 	int i;
13085 
13086 	drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n",
13087 		    crtc->base.base.id, crtc->base.name,
13088 		    yesno(pipe_config->hw.enable), context);
13089 
13090 	if (!pipe_config->hw.enable)
13091 		goto dump_planes;
13092 
13093 	snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
13094 	drm_dbg_kms(&dev_priv->drm,
13095 		    "active: %s, output_types: %s (0x%x), output format: %s\n",
13096 		    yesno(pipe_config->hw.active),
13097 		    buf, pipe_config->output_types,
13098 		    output_formats(pipe_config->output_format));
13099 
13100 	drm_dbg_kms(&dev_priv->drm,
13101 		    "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
13102 		    transcoder_name(pipe_config->cpu_transcoder),
13103 		    pipe_config->pipe_bpp, pipe_config->dither);
13104 
13105 	drm_dbg_kms(&dev_priv->drm,
13106 		    "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n",
13107 		    transcoder_name(pipe_config->master_transcoder),
13108 		    pipe_config->sync_mode_slaves_mask);
13109 
13110 	if (pipe_config->has_pch_encoder)
13111 		intel_dump_m_n_config(pipe_config, "fdi",
13112 				      pipe_config->fdi_lanes,
13113 				      &pipe_config->fdi_m_n);
13114 
13115 	if (intel_crtc_has_dp_encoder(pipe_config)) {
13116 		intel_dump_m_n_config(pipe_config, "dp m_n",
13117 				pipe_config->lane_count, &pipe_config->dp_m_n);
13118 		if (pipe_config->has_drrs)
13119 			intel_dump_m_n_config(pipe_config, "dp m2_n2",
13120 					      pipe_config->lane_count,
13121 					      &pipe_config->dp_m2_n2);
13122 	}
13123 
13124 	drm_dbg_kms(&dev_priv->drm,
13125 		    "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
13126 		    pipe_config->has_audio, pipe_config->has_infoframe,
13127 		    pipe_config->infoframes.enable);
13128 
13129 	if (pipe_config->infoframes.enable &
13130 	    intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
13131 		drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n",
13132 			    pipe_config->infoframes.gcp);
13133 	if (pipe_config->infoframes.enable &
13134 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
13135 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
13136 	if (pipe_config->infoframes.enable &
13137 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
13138 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
13139 	if (pipe_config->infoframes.enable &
13140 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
13141 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
13142 	if (pipe_config->infoframes.enable &
13143 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM))
13144 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13145 	if (pipe_config->infoframes.enable &
13146 	    intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA))
13147 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13148 	if (pipe_config->infoframes.enable &
13149 	    intel_hdmi_infoframe_enable(DP_SDP_VSC))
13150 		intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc);
13151 
13152 	drm_dbg_kms(&dev_priv->drm, "requested mode:\n");
13153 	drm_mode_debug_printmodeline(&pipe_config->hw.mode);
13154 	drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n");
13155 	drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode);
13156 	intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode);
13157 	drm_dbg_kms(&dev_priv->drm,
13158 		    "port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
13159 		    pipe_config->port_clock,
13160 		    pipe_config->pipe_src_w, pipe_config->pipe_src_h,
13161 		    pipe_config->pixel_rate);
13162 
13163 	drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n",
13164 		    pipe_config->linetime, pipe_config->ips_linetime);
13165 
13166 	if (INTEL_GEN(dev_priv) >= 9)
13167 		drm_dbg_kms(&dev_priv->drm,
13168 			    "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
13169 			    crtc->num_scalers,
13170 			    pipe_config->scaler_state.scaler_users,
13171 			    pipe_config->scaler_state.scaler_id);
13172 
13173 	if (HAS_GMCH(dev_priv))
13174 		drm_dbg_kms(&dev_priv->drm,
13175 			    "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
13176 			    pipe_config->gmch_pfit.control,
13177 			    pipe_config->gmch_pfit.pgm_ratios,
13178 			    pipe_config->gmch_pfit.lvds_border_bits);
13179 	else
13180 		drm_dbg_kms(&dev_priv->drm,
13181 			    "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n",
13182 			    DRM_RECT_ARG(&pipe_config->pch_pfit.dst),
13183 			    enableddisabled(pipe_config->pch_pfit.enabled),
13184 			    yesno(pipe_config->pch_pfit.force_thru));
13185 
13186 	drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n",
13187 		    pipe_config->ips_enabled, pipe_config->double_wide);
13188 
13189 	intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
13190 
13191 	if (IS_CHERRYVIEW(dev_priv))
13192 		drm_dbg_kms(&dev_priv->drm,
13193 			    "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13194 			    pipe_config->cgm_mode, pipe_config->gamma_mode,
13195 			    pipe_config->gamma_enable, pipe_config->csc_enable);
13196 	else
13197 		drm_dbg_kms(&dev_priv->drm,
13198 			    "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13199 			    pipe_config->csc_mode, pipe_config->gamma_mode,
13200 			    pipe_config->gamma_enable, pipe_config->csc_enable);
13201 
13202 	drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n",
13203 		    transcoder_name(pipe_config->mst_master_transcoder));
13204 
13205 dump_planes:
13206 	if (!state)
13207 		return;
13208 
13209 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
13210 		if (plane->pipe == crtc->pipe)
13211 			intel_dump_plane_state(plane_state);
13212 	}
13213 }
13214 
check_digital_port_conflicts(struct intel_atomic_state * state)13215 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
13216 {
13217 	struct drm_device *dev = state->base.dev;
13218 	struct drm_connector *connector;
13219 	struct drm_connector_list_iter conn_iter;
13220 	unsigned int used_ports = 0;
13221 	unsigned int used_mst_ports = 0;
13222 	bool ret = true;
13223 
13224 	/*
13225 	 * We're going to peek into connector->state,
13226 	 * hence connection_mutex must be held.
13227 	 */
13228 	drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
13229 
13230 	/*
13231 	 * Walk the connector list instead of the encoder
13232 	 * list to detect the problem on ddi platforms
13233 	 * where there's just one encoder per digital port.
13234 	 */
13235 	drm_connector_list_iter_begin(dev, &conn_iter);
13236 	drm_for_each_connector_iter(connector, &conn_iter) {
13237 		struct drm_connector_state *connector_state;
13238 		struct intel_encoder *encoder;
13239 
13240 		connector_state =
13241 			drm_atomic_get_new_connector_state(&state->base,
13242 							   connector);
13243 		if (!connector_state)
13244 			connector_state = connector->state;
13245 
13246 		if (!connector_state->best_encoder)
13247 			continue;
13248 
13249 		encoder = to_intel_encoder(connector_state->best_encoder);
13250 
13251 		drm_WARN_ON(dev, !connector_state->crtc);
13252 
13253 		switch (encoder->type) {
13254 		case INTEL_OUTPUT_DDI:
13255 			if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev))))
13256 				break;
13257 			fallthrough;
13258 		case INTEL_OUTPUT_DP:
13259 		case INTEL_OUTPUT_HDMI:
13260 		case INTEL_OUTPUT_EDP:
13261 			/* the same port mustn't appear more than once */
13262 			if (used_ports & BIT(encoder->port))
13263 				ret = false;
13264 
13265 			used_ports |= BIT(encoder->port);
13266 			break;
13267 		case INTEL_OUTPUT_DP_MST:
13268 			used_mst_ports |=
13269 				1 << encoder->port;
13270 			break;
13271 		default:
13272 			break;
13273 		}
13274 	}
13275 	drm_connector_list_iter_end(&conn_iter);
13276 
13277 	/* can't mix MST and SST/HDMI on the same port */
13278 	if (used_ports & used_mst_ports)
13279 		return false;
13280 
13281 	return ret;
13282 }
13283 
13284 static void
intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state * crtc_state)13285 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state)
13286 {
13287 	intel_crtc_copy_color_blobs(crtc_state);
13288 }
13289 
13290 static void
intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state * crtc_state)13291 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state)
13292 {
13293 	crtc_state->hw.enable = crtc_state->uapi.enable;
13294 	crtc_state->hw.active = crtc_state->uapi.active;
13295 	crtc_state->hw.mode = crtc_state->uapi.mode;
13296 	crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode;
13297 	intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state);
13298 }
13299 
intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state * crtc_state)13300 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state)
13301 {
13302 	crtc_state->uapi.enable = crtc_state->hw.enable;
13303 	crtc_state->uapi.active = crtc_state->hw.active;
13304 	drm_WARN_ON(crtc_state->uapi.crtc->dev,
13305 		    drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0);
13306 
13307 	crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode;
13308 
13309 	/* copy color blobs to uapi */
13310 	drm_property_replace_blob(&crtc_state->uapi.degamma_lut,
13311 				  crtc_state->hw.degamma_lut);
13312 	drm_property_replace_blob(&crtc_state->uapi.gamma_lut,
13313 				  crtc_state->hw.gamma_lut);
13314 	drm_property_replace_blob(&crtc_state->uapi.ctm,
13315 				  crtc_state->hw.ctm);
13316 }
13317 
13318 static int
intel_crtc_prepare_cleared_state(struct intel_crtc_state * crtc_state)13319 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state)
13320 {
13321 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13322 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13323 	struct intel_crtc_state *saved_state;
13324 
13325 	saved_state = intel_crtc_state_alloc(crtc);
13326 	if (!saved_state)
13327 		return -ENOMEM;
13328 
13329 	/* free the old crtc_state->hw members */
13330 	intel_crtc_free_hw_state(crtc_state);
13331 
13332 	/* FIXME: before the switch to atomic started, a new pipe_config was
13333 	 * kzalloc'd. Code that depends on any field being zero should be
13334 	 * fixed, so that the crtc_state can be safely duplicated. For now,
13335 	 * only fields that are know to not cause problems are preserved. */
13336 
13337 	saved_state->uapi = crtc_state->uapi;
13338 	saved_state->inherited = crtc_state->inherited;
13339 	saved_state->scaler_state = crtc_state->scaler_state;
13340 	saved_state->shared_dpll = crtc_state->shared_dpll;
13341 	saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
13342 	memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
13343 	       sizeof(saved_state->icl_port_dplls));
13344 	saved_state->crc_enabled = crtc_state->crc_enabled;
13345 	if (IS_G4X(dev_priv) ||
13346 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13347 		saved_state->wm = crtc_state->wm;
13348 
13349 	memcpy(crtc_state, saved_state, sizeof(*crtc_state));
13350 	kfree(saved_state);
13351 
13352 	intel_crtc_copy_uapi_to_hw_state(crtc_state);
13353 
13354 	return 0;
13355 }
13356 
13357 static int
intel_modeset_pipe_config(struct intel_crtc_state * pipe_config)13358 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
13359 {
13360 	struct drm_crtc *crtc = pipe_config->uapi.crtc;
13361 	struct drm_atomic_state *state = pipe_config->uapi.state;
13362 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
13363 	struct drm_connector *connector;
13364 	struct drm_connector_state *connector_state;
13365 	int base_bpp, ret, i;
13366 	bool retry = true;
13367 
13368 	pipe_config->cpu_transcoder =
13369 		(enum transcoder) to_intel_crtc(crtc)->pipe;
13370 
13371 	/*
13372 	 * Sanitize sync polarity flags based on requested ones. If neither
13373 	 * positive or negative polarity is requested, treat this as meaning
13374 	 * negative polarity.
13375 	 */
13376 	if (!(pipe_config->hw.adjusted_mode.flags &
13377 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13378 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13379 
13380 	if (!(pipe_config->hw.adjusted_mode.flags &
13381 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13382 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13383 
13384 	ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13385 					pipe_config);
13386 	if (ret)
13387 		return ret;
13388 
13389 	base_bpp = pipe_config->pipe_bpp;
13390 
13391 	/*
13392 	 * Determine the real pipe dimensions. Note that stereo modes can
13393 	 * increase the actual pipe size due to the frame doubling and
13394 	 * insertion of additional space for blanks between the frame. This
13395 	 * is stored in the crtc timings. We use the requested mode to do this
13396 	 * computation to clearly distinguish it from the adjusted mode, which
13397 	 * can be changed by the connectors in the below retry loop.
13398 	 */
13399 	drm_mode_get_hv_timing(&pipe_config->hw.mode,
13400 			       &pipe_config->pipe_src_w,
13401 			       &pipe_config->pipe_src_h);
13402 
13403 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13404 		struct intel_encoder *encoder =
13405 			to_intel_encoder(connector_state->best_encoder);
13406 
13407 		if (connector_state->crtc != crtc)
13408 			continue;
13409 
13410 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13411 			drm_dbg_kms(&i915->drm,
13412 				    "rejecting invalid cloning configuration\n");
13413 			return -EINVAL;
13414 		}
13415 
13416 		/*
13417 		 * Determine output_types before calling the .compute_config()
13418 		 * hooks so that the hooks can use this information safely.
13419 		 */
13420 		if (encoder->compute_output_type)
13421 			pipe_config->output_types |=
13422 				BIT(encoder->compute_output_type(encoder, pipe_config,
13423 								 connector_state));
13424 		else
13425 			pipe_config->output_types |= BIT(encoder->type);
13426 	}
13427 
13428 encoder_retry:
13429 	/* Ensure the port clock defaults are reset when retrying. */
13430 	pipe_config->port_clock = 0;
13431 	pipe_config->pixel_multiplier = 1;
13432 
13433 	/* Fill in default crtc timings, allow encoders to overwrite them. */
13434 	drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode,
13435 			      CRTC_STEREO_DOUBLE);
13436 
13437 	/* Pass our mode to the connectors and the CRTC to give them a chance to
13438 	 * adjust it according to limitations or connector properties, and also
13439 	 * a chance to reject the mode entirely.
13440 	 */
13441 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13442 		struct intel_encoder *encoder =
13443 			to_intel_encoder(connector_state->best_encoder);
13444 
13445 		if (connector_state->crtc != crtc)
13446 			continue;
13447 
13448 		ret = encoder->compute_config(encoder, pipe_config,
13449 					      connector_state);
13450 		if (ret < 0) {
13451 			if (ret != -EDEADLK)
13452 				drm_dbg_kms(&i915->drm,
13453 					    "Encoder config failure: %d\n",
13454 					    ret);
13455 			return ret;
13456 		}
13457 	}
13458 
13459 	/* Set default port clock if not overwritten by the encoder. Needs to be
13460 	 * done afterwards in case the encoder adjusts the mode. */
13461 	if (!pipe_config->port_clock)
13462 		pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock
13463 			* pipe_config->pixel_multiplier;
13464 
13465 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13466 	if (ret == -EDEADLK)
13467 		return ret;
13468 	if (ret < 0) {
13469 		drm_dbg_kms(&i915->drm, "CRTC fixup failed\n");
13470 		return ret;
13471 	}
13472 
13473 	if (ret == RETRY) {
13474 		if (drm_WARN(&i915->drm, !retry,
13475 			     "loop in pipe configuration computation\n"))
13476 			return -EINVAL;
13477 
13478 		drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n");
13479 		retry = false;
13480 		goto encoder_retry;
13481 	}
13482 
13483 	/* Dithering seems to not pass-through bits correctly when it should, so
13484 	 * only enable it on 6bpc panels and when its not a compliance
13485 	 * test requesting 6bpc video pattern.
13486 	 */
13487 	pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
13488 		!pipe_config->dither_force_disable;
13489 	drm_dbg_kms(&i915->drm,
13490 		    "hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13491 		    base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13492 
13493 	return 0;
13494 }
13495 
13496 static int
intel_modeset_pipe_config_late(struct intel_crtc_state * crtc_state)13497 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state)
13498 {
13499 	struct intel_atomic_state *state =
13500 		to_intel_atomic_state(crtc_state->uapi.state);
13501 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13502 	struct drm_connector_state *conn_state;
13503 	struct drm_connector *connector;
13504 	int i;
13505 
13506 	for_each_new_connector_in_state(&state->base, connector,
13507 					conn_state, i) {
13508 		struct intel_encoder *encoder =
13509 			to_intel_encoder(conn_state->best_encoder);
13510 		int ret;
13511 
13512 		if (conn_state->crtc != &crtc->base ||
13513 		    !encoder->compute_config_late)
13514 			continue;
13515 
13516 		ret = encoder->compute_config_late(encoder, crtc_state,
13517 						   conn_state);
13518 		if (ret)
13519 			return ret;
13520 	}
13521 
13522 	return 0;
13523 }
13524 
intel_fuzzy_clock_check(int clock1,int clock2)13525 bool intel_fuzzy_clock_check(int clock1, int clock2)
13526 {
13527 	int diff;
13528 
13529 	if (clock1 == clock2)
13530 		return true;
13531 
13532 	if (!clock1 || !clock2)
13533 		return false;
13534 
13535 	diff = abs(clock1 - clock2);
13536 
13537 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13538 		return true;
13539 
13540 	return false;
13541 }
13542 
13543 static bool
intel_compare_m_n(unsigned int m,unsigned int n,unsigned int m2,unsigned int n2,bool exact)13544 intel_compare_m_n(unsigned int m, unsigned int n,
13545 		  unsigned int m2, unsigned int n2,
13546 		  bool exact)
13547 {
13548 	if (m == m2 && n == n2)
13549 		return true;
13550 
13551 	if (exact || !m || !n || !m2 || !n2)
13552 		return false;
13553 
13554 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13555 
13556 	if (n > n2) {
13557 		while (n > n2) {
13558 			m2 <<= 1;
13559 			n2 <<= 1;
13560 		}
13561 	} else if (n < n2) {
13562 		while (n < n2) {
13563 			m <<= 1;
13564 			n <<= 1;
13565 		}
13566 	}
13567 
13568 	if (n != n2)
13569 		return false;
13570 
13571 	return intel_fuzzy_clock_check(m, m2);
13572 }
13573 
13574 static bool
intel_compare_link_m_n(const struct intel_link_m_n * m_n,const struct intel_link_m_n * m2_n2,bool exact)13575 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13576 		       const struct intel_link_m_n *m2_n2,
13577 		       bool exact)
13578 {
13579 	return m_n->tu == m2_n2->tu &&
13580 		intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13581 				  m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
13582 		intel_compare_m_n(m_n->link_m, m_n->link_n,
13583 				  m2_n2->link_m, m2_n2->link_n, exact);
13584 }
13585 
13586 static bool
intel_compare_infoframe(const union hdmi_infoframe * a,const union hdmi_infoframe * b)13587 intel_compare_infoframe(const union hdmi_infoframe *a,
13588 			const union hdmi_infoframe *b)
13589 {
13590 	return memcmp(a, b, sizeof(*a)) == 0;
13591 }
13592 
13593 static bool
intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp * a,const struct drm_dp_vsc_sdp * b)13594 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a,
13595 			 const struct drm_dp_vsc_sdp *b)
13596 {
13597 	return memcmp(a, b, sizeof(*a)) == 0;
13598 }
13599 
13600 static void
pipe_config_infoframe_mismatch(struct drm_i915_private * dev_priv,bool fastset,const char * name,const union hdmi_infoframe * a,const union hdmi_infoframe * b)13601 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
13602 			       bool fastset, const char *name,
13603 			       const union hdmi_infoframe *a,
13604 			       const union hdmi_infoframe *b)
13605 {
13606 	if (fastset) {
13607 		if (!drm_debug_enabled(DRM_UT_KMS))
13608 			return;
13609 
13610 		drm_dbg_kms(&dev_priv->drm,
13611 			    "fastset mismatch in %s infoframe\n", name);
13612 		drm_dbg_kms(&dev_priv->drm, "expected:\n");
13613 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
13614 		drm_dbg_kms(&dev_priv->drm, "found:\n");
13615 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
13616 	} else {
13617 		drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name);
13618 		drm_err(&dev_priv->drm, "expected:\n");
13619 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
13620 		drm_err(&dev_priv->drm, "found:\n");
13621 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
13622 	}
13623 }
13624 
13625 static void
pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private * dev_priv,bool fastset,const char * name,const struct drm_dp_vsc_sdp * a,const struct drm_dp_vsc_sdp * b)13626 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv,
13627 				bool fastset, const char *name,
13628 				const struct drm_dp_vsc_sdp *a,
13629 				const struct drm_dp_vsc_sdp *b)
13630 {
13631 	if (fastset) {
13632 		if (!drm_debug_enabled(DRM_UT_KMS))
13633 			return;
13634 
13635 		drm_dbg_kms(&dev_priv->drm,
13636 			    "fastset mismatch in %s dp sdp\n", name);
13637 		drm_dbg_kms(&dev_priv->drm, "expected:\n");
13638 		drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a);
13639 		drm_dbg_kms(&dev_priv->drm, "found:\n");
13640 		drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b);
13641 	} else {
13642 		drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name);
13643 		drm_err(&dev_priv->drm, "expected:\n");
13644 		drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a);
13645 		drm_err(&dev_priv->drm, "found:\n");
13646 		drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b);
13647 	}
13648 }
13649 
13650 static void __printf(4, 5)
pipe_config_mismatch(bool fastset,const struct intel_crtc * crtc,const char * name,const char * format,...)13651 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
13652 		     const char *name, const char *format, ...)
13653 {
13654 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
13655 	struct va_format vaf;
13656 	va_list args;
13657 
13658 	va_start(args, format);
13659 	vaf.fmt = format;
13660 	vaf.va = &args;
13661 
13662 	if (fastset)
13663 		drm_dbg_kms(&i915->drm,
13664 			    "[CRTC:%d:%s] fastset mismatch in %s %pV\n",
13665 			    crtc->base.base.id, crtc->base.name, name, &vaf);
13666 	else
13667 		drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n",
13668 			crtc->base.base.id, crtc->base.name, name, &vaf);
13669 
13670 	va_end(args);
13671 }
13672 
fastboot_enabled(struct drm_i915_private * dev_priv)13673 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
13674 {
13675 	if (dev_priv->params.fastboot != -1)
13676 		return dev_priv->params.fastboot;
13677 
13678 	/* Enable fastboot by default on Skylake and newer */
13679 	if (INTEL_GEN(dev_priv) >= 9)
13680 		return true;
13681 
13682 	/* Enable fastboot by default on VLV and CHV */
13683 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13684 		return true;
13685 
13686 	/* Disabled by default on all others */
13687 	return false;
13688 }
13689 
13690 static bool
intel_pipe_config_compare(const struct intel_crtc_state * current_config,const struct intel_crtc_state * pipe_config,bool fastset)13691 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
13692 			  const struct intel_crtc_state *pipe_config,
13693 			  bool fastset)
13694 {
13695 	struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
13696 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13697 	bool ret = true;
13698 	u32 bp_gamma = 0;
13699 	bool fixup_inherited = fastset &&
13700 		current_config->inherited && !pipe_config->inherited;
13701 
13702 	if (fixup_inherited && !fastboot_enabled(dev_priv)) {
13703 		drm_dbg_kms(&dev_priv->drm,
13704 			    "initial modeset and fastboot not set\n");
13705 		ret = false;
13706 	}
13707 
13708 #define PIPE_CONF_CHECK_X(name) do { \
13709 	if (current_config->name != pipe_config->name) { \
13710 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13711 				     "(expected 0x%08x, found 0x%08x)", \
13712 				     current_config->name, \
13713 				     pipe_config->name); \
13714 		ret = false; \
13715 	} \
13716 } while (0)
13717 
13718 #define PIPE_CONF_CHECK_I(name) do { \
13719 	if (current_config->name != pipe_config->name) { \
13720 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13721 				     "(expected %i, found %i)", \
13722 				     current_config->name, \
13723 				     pipe_config->name); \
13724 		ret = false; \
13725 	} \
13726 } while (0)
13727 
13728 #define PIPE_CONF_CHECK_BOOL(name) do { \
13729 	if (current_config->name != pipe_config->name) { \
13730 		pipe_config_mismatch(fastset, crtc,  __stringify(name), \
13731 				     "(expected %s, found %s)", \
13732 				     yesno(current_config->name), \
13733 				     yesno(pipe_config->name)); \
13734 		ret = false; \
13735 	} \
13736 } while (0)
13737 
13738 /*
13739  * Checks state where we only read out the enabling, but not the entire
13740  * state itself (like full infoframes or ELD for audio). These states
13741  * require a full modeset on bootup to fix up.
13742  */
13743 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
13744 	if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
13745 		PIPE_CONF_CHECK_BOOL(name); \
13746 	} else { \
13747 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13748 				     "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
13749 				     yesno(current_config->name), \
13750 				     yesno(pipe_config->name)); \
13751 		ret = false; \
13752 	} \
13753 } while (0)
13754 
13755 #define PIPE_CONF_CHECK_P(name) do { \
13756 	if (current_config->name != pipe_config->name) { \
13757 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13758 				     "(expected %p, found %p)", \
13759 				     current_config->name, \
13760 				     pipe_config->name); \
13761 		ret = false; \
13762 	} \
13763 } while (0)
13764 
13765 #define PIPE_CONF_CHECK_M_N(name) do { \
13766 	if (!intel_compare_link_m_n(&current_config->name, \
13767 				    &pipe_config->name,\
13768 				    !fastset)) { \
13769 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13770 				     "(expected tu %i gmch %i/%i link %i/%i, " \
13771 				     "found tu %i, gmch %i/%i link %i/%i)", \
13772 				     current_config->name.tu, \
13773 				     current_config->name.gmch_m, \
13774 				     current_config->name.gmch_n, \
13775 				     current_config->name.link_m, \
13776 				     current_config->name.link_n, \
13777 				     pipe_config->name.tu, \
13778 				     pipe_config->name.gmch_m, \
13779 				     pipe_config->name.gmch_n, \
13780 				     pipe_config->name.link_m, \
13781 				     pipe_config->name.link_n); \
13782 		ret = false; \
13783 	} \
13784 } while (0)
13785 
13786 /* This is required for BDW+ where there is only one set of registers for
13787  * switching between high and low RR.
13788  * This macro can be used whenever a comparison has to be made between one
13789  * hw state and multiple sw state variables.
13790  */
13791 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
13792 	if (!intel_compare_link_m_n(&current_config->name, \
13793 				    &pipe_config->name, !fastset) && \
13794 	    !intel_compare_link_m_n(&current_config->alt_name, \
13795 				    &pipe_config->name, !fastset)) { \
13796 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13797 				     "(expected tu %i gmch %i/%i link %i/%i, " \
13798 				     "or tu %i gmch %i/%i link %i/%i, " \
13799 				     "found tu %i, gmch %i/%i link %i/%i)", \
13800 				     current_config->name.tu, \
13801 				     current_config->name.gmch_m, \
13802 				     current_config->name.gmch_n, \
13803 				     current_config->name.link_m, \
13804 				     current_config->name.link_n, \
13805 				     current_config->alt_name.tu, \
13806 				     current_config->alt_name.gmch_m, \
13807 				     current_config->alt_name.gmch_n, \
13808 				     current_config->alt_name.link_m, \
13809 				     current_config->alt_name.link_n, \
13810 				     pipe_config->name.tu, \
13811 				     pipe_config->name.gmch_m, \
13812 				     pipe_config->name.gmch_n, \
13813 				     pipe_config->name.link_m, \
13814 				     pipe_config->name.link_n); \
13815 		ret = false; \
13816 	} \
13817 } while (0)
13818 
13819 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13820 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
13821 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13822 				     "(%x) (expected %i, found %i)", \
13823 				     (mask), \
13824 				     current_config->name & (mask), \
13825 				     pipe_config->name & (mask)); \
13826 		ret = false; \
13827 	} \
13828 } while (0)
13829 
13830 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13831 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13832 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13833 				     "(expected %i, found %i)", \
13834 				     current_config->name, \
13835 				     pipe_config->name); \
13836 		ret = false; \
13837 	} \
13838 } while (0)
13839 
13840 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13841 	if (!intel_compare_infoframe(&current_config->infoframes.name, \
13842 				     &pipe_config->infoframes.name)) { \
13843 		pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13844 					       &current_config->infoframes.name, \
13845 					       &pipe_config->infoframes.name); \
13846 		ret = false; \
13847 	} \
13848 } while (0)
13849 
13850 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \
13851 	if (!current_config->has_psr && !pipe_config->has_psr && \
13852 	    !intel_compare_dp_vsc_sdp(&current_config->infoframes.name, \
13853 				      &pipe_config->infoframes.name)) { \
13854 		pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \
13855 						&current_config->infoframes.name, \
13856 						&pipe_config->infoframes.name); \
13857 		ret = false; \
13858 	} \
13859 } while (0)
13860 
13861 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13862 	if (current_config->name1 != pipe_config->name1) { \
13863 		pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13864 				"(expected %i, found %i, won't compare lut values)", \
13865 				current_config->name1, \
13866 				pipe_config->name1); \
13867 		ret = false;\
13868 	} else { \
13869 		if (!intel_color_lut_equal(current_config->name2, \
13870 					pipe_config->name2, pipe_config->name1, \
13871 					bit_precision)) { \
13872 			pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13873 					"hw_state doesn't match sw_state"); \
13874 			ret = false; \
13875 		} \
13876 	} \
13877 } while (0)
13878 
13879 #define PIPE_CONF_QUIRK(quirk) \
13880 	((current_config->quirks | pipe_config->quirks) & (quirk))
13881 
13882 	PIPE_CONF_CHECK_I(cpu_transcoder);
13883 
13884 	PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13885 	PIPE_CONF_CHECK_I(fdi_lanes);
13886 	PIPE_CONF_CHECK_M_N(fdi_m_n);
13887 
13888 	PIPE_CONF_CHECK_I(lane_count);
13889 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13890 
13891 	if (INTEL_GEN(dev_priv) < 8) {
13892 		PIPE_CONF_CHECK_M_N(dp_m_n);
13893 
13894 		if (current_config->has_drrs)
13895 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
13896 	} else
13897 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13898 
13899 	PIPE_CONF_CHECK_X(output_types);
13900 
13901 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay);
13902 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal);
13903 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start);
13904 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end);
13905 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start);
13906 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end);
13907 
13908 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay);
13909 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal);
13910 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start);
13911 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end);
13912 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start);
13913 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end);
13914 
13915 	PIPE_CONF_CHECK_I(pixel_multiplier);
13916 	PIPE_CONF_CHECK_I(output_format);
13917 	PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13918 	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13919 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13920 		PIPE_CONF_CHECK_BOOL(limited_color_range);
13921 
13922 	PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13923 	PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13924 	PIPE_CONF_CHECK_BOOL(has_infoframe);
13925 	PIPE_CONF_CHECK_BOOL(fec_enable);
13926 
13927 	PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13928 
13929 	PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13930 			      DRM_MODE_FLAG_INTERLACE);
13931 
13932 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13933 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13934 				      DRM_MODE_FLAG_PHSYNC);
13935 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13936 				      DRM_MODE_FLAG_NHSYNC);
13937 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13938 				      DRM_MODE_FLAG_PVSYNC);
13939 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13940 				      DRM_MODE_FLAG_NVSYNC);
13941 	}
13942 
13943 	PIPE_CONF_CHECK_X(gmch_pfit.control);
13944 	/* pfit ratios are autocomputed by the hw on gen4+ */
13945 	if (INTEL_GEN(dev_priv) < 4)
13946 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13947 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13948 
13949 	/*
13950 	 * Changing the EDP transcoder input mux
13951 	 * (A_ONOFF vs. A_ON) requires a full modeset.
13952 	 */
13953 	PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13954 
13955 	if (!fastset) {
13956 		PIPE_CONF_CHECK_I(pipe_src_w);
13957 		PIPE_CONF_CHECK_I(pipe_src_h);
13958 
13959 		PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13960 		if (current_config->pch_pfit.enabled) {
13961 			PIPE_CONF_CHECK_I(pch_pfit.dst.x1);
13962 			PIPE_CONF_CHECK_I(pch_pfit.dst.y1);
13963 			PIPE_CONF_CHECK_I(pch_pfit.dst.x2);
13964 			PIPE_CONF_CHECK_I(pch_pfit.dst.y2);
13965 		}
13966 
13967 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13968 		PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13969 
13970 		PIPE_CONF_CHECK_X(gamma_mode);
13971 		if (IS_CHERRYVIEW(dev_priv))
13972 			PIPE_CONF_CHECK_X(cgm_mode);
13973 		else
13974 			PIPE_CONF_CHECK_X(csc_mode);
13975 		PIPE_CONF_CHECK_BOOL(gamma_enable);
13976 		PIPE_CONF_CHECK_BOOL(csc_enable);
13977 
13978 		PIPE_CONF_CHECK_I(linetime);
13979 		PIPE_CONF_CHECK_I(ips_linetime);
13980 
13981 		bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13982 		if (bp_gamma)
13983 			PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
13984 	}
13985 
13986 	PIPE_CONF_CHECK_BOOL(double_wide);
13987 
13988 	PIPE_CONF_CHECK_P(shared_dpll);
13989 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13990 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13991 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13992 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13993 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13994 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13995 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13996 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13997 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13998 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13999 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
14000 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
14001 	PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
14002 	PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
14003 	PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
14004 	PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
14005 	PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
14006 	PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
14007 	PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
14008 	PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
14009 	PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
14010 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
14011 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
14012 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
14013 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
14014 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
14015 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
14016 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
14017 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
14018 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
14019 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
14020 
14021 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
14022 	PIPE_CONF_CHECK_X(dsi_pll.div);
14023 
14024 	if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
14025 		PIPE_CONF_CHECK_I(pipe_bpp);
14026 
14027 	PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock);
14028 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
14029 
14030 	PIPE_CONF_CHECK_I(min_voltage_level);
14031 
14032 	PIPE_CONF_CHECK_X(infoframes.enable);
14033 	PIPE_CONF_CHECK_X(infoframes.gcp);
14034 	PIPE_CONF_CHECK_INFOFRAME(avi);
14035 	PIPE_CONF_CHECK_INFOFRAME(spd);
14036 	PIPE_CONF_CHECK_INFOFRAME(hdmi);
14037 	PIPE_CONF_CHECK_INFOFRAME(drm);
14038 	PIPE_CONF_CHECK_DP_VSC_SDP(vsc);
14039 
14040 	PIPE_CONF_CHECK_X(sync_mode_slaves_mask);
14041 	PIPE_CONF_CHECK_I(master_transcoder);
14042 
14043 	PIPE_CONF_CHECK_I(dsc.compression_enable);
14044 	PIPE_CONF_CHECK_I(dsc.dsc_split);
14045 	PIPE_CONF_CHECK_I(dsc.compressed_bpp);
14046 
14047 	PIPE_CONF_CHECK_I(mst_master_transcoder);
14048 
14049 #undef PIPE_CONF_CHECK_X
14050 #undef PIPE_CONF_CHECK_I
14051 #undef PIPE_CONF_CHECK_BOOL
14052 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
14053 #undef PIPE_CONF_CHECK_P
14054 #undef PIPE_CONF_CHECK_FLAGS
14055 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
14056 #undef PIPE_CONF_CHECK_COLOR_LUT
14057 #undef PIPE_CONF_QUIRK
14058 
14059 	return ret;
14060 }
14061 
intel_pipe_config_sanity_check(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)14062 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
14063 					   const struct intel_crtc_state *pipe_config)
14064 {
14065 	if (pipe_config->has_pch_encoder) {
14066 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
14067 							    &pipe_config->fdi_m_n);
14068 		int dotclock = pipe_config->hw.adjusted_mode.crtc_clock;
14069 
14070 		/*
14071 		 * FDI already provided one idea for the dotclock.
14072 		 * Yell if the encoder disagrees.
14073 		 */
14074 		drm_WARN(&dev_priv->drm,
14075 			 !intel_fuzzy_clock_check(fdi_dotclock, dotclock),
14076 			 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
14077 			 fdi_dotclock, dotclock);
14078 	}
14079 }
14080 
verify_wm_state(struct intel_crtc * crtc,struct intel_crtc_state * new_crtc_state)14081 static void verify_wm_state(struct intel_crtc *crtc,
14082 			    struct intel_crtc_state *new_crtc_state)
14083 {
14084 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14085 	struct skl_hw_state {
14086 		struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
14087 		struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
14088 		struct skl_pipe_wm wm;
14089 	} *hw;
14090 	struct skl_pipe_wm *sw_wm;
14091 	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
14092 	u8 hw_enabled_slices;
14093 	const enum pipe pipe = crtc->pipe;
14094 	int plane, level, max_level = ilk_wm_max_level(dev_priv);
14095 
14096 	if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active)
14097 		return;
14098 
14099 	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
14100 	if (!hw)
14101 		return;
14102 
14103 	skl_pipe_wm_get_hw_state(crtc, &hw->wm);
14104 	sw_wm = &new_crtc_state->wm.skl.optimal;
14105 
14106 	skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
14107 
14108 	hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv);
14109 
14110 	if (INTEL_GEN(dev_priv) >= 11 &&
14111 	    hw_enabled_slices != dev_priv->dbuf.enabled_slices)
14112 		drm_err(&dev_priv->drm,
14113 			"mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
14114 			dev_priv->dbuf.enabled_slices,
14115 			hw_enabled_slices);
14116 
14117 	/* planes */
14118 	for_each_universal_plane(dev_priv, pipe, plane) {
14119 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14120 
14121 		hw_plane_wm = &hw->wm.planes[plane];
14122 		sw_plane_wm = &sw_wm->planes[plane];
14123 
14124 		/* Watermarks */
14125 		for (level = 0; level <= max_level; level++) {
14126 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14127 						&sw_plane_wm->wm[level]) ||
14128 			    (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14129 							       &sw_plane_wm->sagv_wm0)))
14130 				continue;
14131 
14132 			drm_err(&dev_priv->drm,
14133 				"mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14134 				pipe_name(pipe), plane + 1, level,
14135 				sw_plane_wm->wm[level].plane_en,
14136 				sw_plane_wm->wm[level].plane_res_b,
14137 				sw_plane_wm->wm[level].plane_res_l,
14138 				hw_plane_wm->wm[level].plane_en,
14139 				hw_plane_wm->wm[level].plane_res_b,
14140 				hw_plane_wm->wm[level].plane_res_l);
14141 		}
14142 
14143 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14144 					 &sw_plane_wm->trans_wm)) {
14145 			drm_err(&dev_priv->drm,
14146 				"mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14147 				pipe_name(pipe), plane + 1,
14148 				sw_plane_wm->trans_wm.plane_en,
14149 				sw_plane_wm->trans_wm.plane_res_b,
14150 				sw_plane_wm->trans_wm.plane_res_l,
14151 				hw_plane_wm->trans_wm.plane_en,
14152 				hw_plane_wm->trans_wm.plane_res_b,
14153 				hw_plane_wm->trans_wm.plane_res_l);
14154 		}
14155 
14156 		/* DDB */
14157 		hw_ddb_entry = &hw->ddb_y[plane];
14158 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
14159 
14160 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14161 			drm_err(&dev_priv->drm,
14162 				"mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
14163 				pipe_name(pipe), plane + 1,
14164 				sw_ddb_entry->start, sw_ddb_entry->end,
14165 				hw_ddb_entry->start, hw_ddb_entry->end);
14166 		}
14167 	}
14168 
14169 	/*
14170 	 * cursor
14171 	 * If the cursor plane isn't active, we may not have updated it's ddb
14172 	 * allocation. In that case since the ddb allocation will be updated
14173 	 * once the plane becomes visible, we can skip this check
14174 	 */
14175 	if (1) {
14176 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14177 
14178 		hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
14179 		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
14180 
14181 		/* Watermarks */
14182 		for (level = 0; level <= max_level; level++) {
14183 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14184 						&sw_plane_wm->wm[level]) ||
14185 			    (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14186 							       &sw_plane_wm->sagv_wm0)))
14187 				continue;
14188 
14189 			drm_err(&dev_priv->drm,
14190 				"mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14191 				pipe_name(pipe), level,
14192 				sw_plane_wm->wm[level].plane_en,
14193 				sw_plane_wm->wm[level].plane_res_b,
14194 				sw_plane_wm->wm[level].plane_res_l,
14195 				hw_plane_wm->wm[level].plane_en,
14196 				hw_plane_wm->wm[level].plane_res_b,
14197 				hw_plane_wm->wm[level].plane_res_l);
14198 		}
14199 
14200 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14201 					 &sw_plane_wm->trans_wm)) {
14202 			drm_err(&dev_priv->drm,
14203 				"mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14204 				pipe_name(pipe),
14205 				sw_plane_wm->trans_wm.plane_en,
14206 				sw_plane_wm->trans_wm.plane_res_b,
14207 				sw_plane_wm->trans_wm.plane_res_l,
14208 				hw_plane_wm->trans_wm.plane_en,
14209 				hw_plane_wm->trans_wm.plane_res_b,
14210 				hw_plane_wm->trans_wm.plane_res_l);
14211 		}
14212 
14213 		/* DDB */
14214 		hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
14215 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
14216 
14217 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14218 			drm_err(&dev_priv->drm,
14219 				"mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
14220 				pipe_name(pipe),
14221 				sw_ddb_entry->start, sw_ddb_entry->end,
14222 				hw_ddb_entry->start, hw_ddb_entry->end);
14223 		}
14224 	}
14225 
14226 	kfree(hw);
14227 }
14228 
14229 static void
verify_connector_state(struct intel_atomic_state * state,struct intel_crtc * crtc)14230 verify_connector_state(struct intel_atomic_state *state,
14231 		       struct intel_crtc *crtc)
14232 {
14233 	struct drm_connector *connector;
14234 	struct drm_connector_state *new_conn_state;
14235 	int i;
14236 
14237 	for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
14238 		struct drm_encoder *encoder = connector->encoder;
14239 		struct intel_crtc_state *crtc_state = NULL;
14240 
14241 		if (new_conn_state->crtc != &crtc->base)
14242 			continue;
14243 
14244 		if (crtc)
14245 			crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
14246 
14247 		intel_connector_verify_state(crtc_state, new_conn_state);
14248 
14249 		I915_STATE_WARN(new_conn_state->best_encoder != encoder,
14250 		     "connector's atomic encoder doesn't match legacy encoder\n");
14251 	}
14252 }
14253 
14254 static void
verify_encoder_state(struct drm_i915_private * dev_priv,struct intel_atomic_state * state)14255 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
14256 {
14257 	struct intel_encoder *encoder;
14258 	struct drm_connector *connector;
14259 	struct drm_connector_state *old_conn_state, *new_conn_state;
14260 	int i;
14261 
14262 	for_each_intel_encoder(&dev_priv->drm, encoder) {
14263 		bool enabled = false, found = false;
14264 		enum pipe pipe;
14265 
14266 		drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n",
14267 			    encoder->base.base.id,
14268 			    encoder->base.name);
14269 
14270 		for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
14271 						   new_conn_state, i) {
14272 			if (old_conn_state->best_encoder == &encoder->base)
14273 				found = true;
14274 
14275 			if (new_conn_state->best_encoder != &encoder->base)
14276 				continue;
14277 			found = enabled = true;
14278 
14279 			I915_STATE_WARN(new_conn_state->crtc !=
14280 					encoder->base.crtc,
14281 			     "connector's crtc doesn't match encoder crtc\n");
14282 		}
14283 
14284 		if (!found)
14285 			continue;
14286 
14287 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
14288 		     "encoder's enabled state mismatch "
14289 		     "(expected %i, found %i)\n",
14290 		     !!encoder->base.crtc, enabled);
14291 
14292 		if (!encoder->base.crtc) {
14293 			bool active;
14294 
14295 			active = encoder->get_hw_state(encoder, &pipe);
14296 			I915_STATE_WARN(active,
14297 			     "encoder detached but still enabled on pipe %c.\n",
14298 			     pipe_name(pipe));
14299 		}
14300 	}
14301 }
14302 
14303 static void
verify_crtc_state(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14304 verify_crtc_state(struct intel_crtc *crtc,
14305 		  struct intel_crtc_state *old_crtc_state,
14306 		  struct intel_crtc_state *new_crtc_state)
14307 {
14308 	struct drm_device *dev = crtc->base.dev;
14309 	struct drm_i915_private *dev_priv = to_i915(dev);
14310 	struct intel_encoder *encoder;
14311 	struct intel_crtc_state *pipe_config = old_crtc_state;
14312 	struct drm_atomic_state *state = old_crtc_state->uapi.state;
14313 
14314 	__drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi);
14315 	intel_crtc_free_hw_state(old_crtc_state);
14316 	intel_crtc_state_reset(old_crtc_state, crtc);
14317 	old_crtc_state->uapi.state = state;
14318 
14319 	drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id,
14320 		    crtc->base.name);
14321 
14322 	pipe_config->hw.enable = new_crtc_state->hw.enable;
14323 
14324 	pipe_config->hw.active =
14325 		dev_priv->display.get_pipe_config(crtc, pipe_config);
14326 
14327 	/* we keep both pipes enabled on 830 */
14328 	if (IS_I830(dev_priv) && pipe_config->hw.active)
14329 		pipe_config->hw.active = new_crtc_state->hw.active;
14330 
14331 	I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active,
14332 			"crtc active state doesn't match with hw state "
14333 			"(expected %i, found %i)\n",
14334 			new_crtc_state->hw.active, pipe_config->hw.active);
14335 
14336 	I915_STATE_WARN(crtc->active != new_crtc_state->hw.active,
14337 			"transitional active state does not match atomic hw state "
14338 			"(expected %i, found %i)\n",
14339 			new_crtc_state->hw.active, crtc->active);
14340 
14341 	for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14342 		enum pipe pipe;
14343 		bool active;
14344 
14345 		active = encoder->get_hw_state(encoder, &pipe);
14346 		I915_STATE_WARN(active != new_crtc_state->hw.active,
14347 				"[ENCODER:%i] active %i with crtc active %i\n",
14348 				encoder->base.base.id, active,
14349 				new_crtc_state->hw.active);
14350 
14351 		I915_STATE_WARN(active && crtc->pipe != pipe,
14352 				"Encoder connected to wrong pipe %c\n",
14353 				pipe_name(pipe));
14354 
14355 		if (active)
14356 			encoder->get_config(encoder, pipe_config);
14357 	}
14358 
14359 	intel_crtc_compute_pixel_rate(pipe_config);
14360 
14361 	if (!new_crtc_state->hw.active)
14362 		return;
14363 
14364 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
14365 
14366 	if (!intel_pipe_config_compare(new_crtc_state,
14367 				       pipe_config, false)) {
14368 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
14369 		intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
14370 		intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
14371 	}
14372 }
14373 
14374 static void
intel_verify_planes(struct intel_atomic_state * state)14375 intel_verify_planes(struct intel_atomic_state *state)
14376 {
14377 	struct intel_plane *plane;
14378 	const struct intel_plane_state *plane_state;
14379 	int i;
14380 
14381 	for_each_new_intel_plane_in_state(state, plane,
14382 					  plane_state, i)
14383 		assert_plane(plane, plane_state->planar_slave ||
14384 			     plane_state->uapi.visible);
14385 }
14386 
14387 static void
verify_single_dpll_state(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,struct intel_crtc * crtc,struct intel_crtc_state * new_crtc_state)14388 verify_single_dpll_state(struct drm_i915_private *dev_priv,
14389 			 struct intel_shared_dpll *pll,
14390 			 struct intel_crtc *crtc,
14391 			 struct intel_crtc_state *new_crtc_state)
14392 {
14393 	struct intel_dpll_hw_state dpll_hw_state;
14394 	unsigned int crtc_mask;
14395 	bool active;
14396 
14397 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
14398 
14399 	drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name);
14400 
14401 	active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
14402 
14403 	if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
14404 		I915_STATE_WARN(!pll->on && pll->active_mask,
14405 		     "pll in active use but not on in sw tracking\n");
14406 		I915_STATE_WARN(pll->on && !pll->active_mask,
14407 		     "pll is on but not used by any active crtc\n");
14408 		I915_STATE_WARN(pll->on != active,
14409 		     "pll on state mismatch (expected %i, found %i)\n",
14410 		     pll->on, active);
14411 	}
14412 
14413 	if (!crtc) {
14414 		I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
14415 				"more active pll users than references: %x vs %x\n",
14416 				pll->active_mask, pll->state.crtc_mask);
14417 
14418 		return;
14419 	}
14420 
14421 	crtc_mask = drm_crtc_mask(&crtc->base);
14422 
14423 	if (new_crtc_state->hw.active)
14424 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
14425 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
14426 				pipe_name(crtc->pipe), pll->active_mask);
14427 	else
14428 		I915_STATE_WARN(pll->active_mask & crtc_mask,
14429 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
14430 				pipe_name(crtc->pipe), pll->active_mask);
14431 
14432 	I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
14433 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
14434 			crtc_mask, pll->state.crtc_mask);
14435 
14436 	I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
14437 					  &dpll_hw_state,
14438 					  sizeof(dpll_hw_state)),
14439 			"pll hw state mismatch\n");
14440 }
14441 
14442 static void
verify_shared_dpll_state(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14443 verify_shared_dpll_state(struct intel_crtc *crtc,
14444 			 struct intel_crtc_state *old_crtc_state,
14445 			 struct intel_crtc_state *new_crtc_state)
14446 {
14447 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14448 
14449 	if (new_crtc_state->shared_dpll)
14450 		verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
14451 
14452 	if (old_crtc_state->shared_dpll &&
14453 	    old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
14454 		unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
14455 		struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
14456 
14457 		I915_STATE_WARN(pll->active_mask & crtc_mask,
14458 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
14459 				pipe_name(crtc->pipe));
14460 		I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
14461 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
14462 				pipe_name(crtc->pipe));
14463 	}
14464 }
14465 
14466 static void
intel_modeset_verify_crtc(struct intel_crtc * crtc,struct intel_atomic_state * state,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14467 intel_modeset_verify_crtc(struct intel_crtc *crtc,
14468 			  struct intel_atomic_state *state,
14469 			  struct intel_crtc_state *old_crtc_state,
14470 			  struct intel_crtc_state *new_crtc_state)
14471 {
14472 	if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
14473 		return;
14474 
14475 	verify_wm_state(crtc, new_crtc_state);
14476 	verify_connector_state(state, crtc);
14477 	verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
14478 	verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
14479 }
14480 
14481 static void
verify_disabled_dpll_state(struct drm_i915_private * dev_priv)14482 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
14483 {
14484 	int i;
14485 
14486 	for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++)
14487 		verify_single_dpll_state(dev_priv,
14488 					 &dev_priv->dpll.shared_dplls[i],
14489 					 NULL, NULL);
14490 }
14491 
14492 static void
intel_modeset_verify_disabled(struct drm_i915_private * dev_priv,struct intel_atomic_state * state)14493 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
14494 			      struct intel_atomic_state *state)
14495 {
14496 	verify_encoder_state(dev_priv, state);
14497 	verify_connector_state(state, NULL);
14498 	verify_disabled_dpll_state(dev_priv);
14499 }
14500 
14501 static void
intel_crtc_update_active_timings(const struct intel_crtc_state * crtc_state)14502 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
14503 {
14504 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
14505 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14506 	const struct drm_display_mode *adjusted_mode =
14507 		&crtc_state->hw.adjusted_mode;
14508 
14509 	drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
14510 
14511 	crtc->mode_flags = crtc_state->mode_flags;
14512 
14513 	/*
14514 	 * The scanline counter increments at the leading edge of hsync.
14515 	 *
14516 	 * On most platforms it starts counting from vtotal-1 on the
14517 	 * first active line. That means the scanline counter value is
14518 	 * always one less than what we would expect. Ie. just after
14519 	 * start of vblank, which also occurs at start of hsync (on the
14520 	 * last active line), the scanline counter will read vblank_start-1.
14521 	 *
14522 	 * On gen2 the scanline counter starts counting from 1 instead
14523 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
14524 	 * to keep the value positive), instead of adding one.
14525 	 *
14526 	 * On HSW+ the behaviour of the scanline counter depends on the output
14527 	 * type. For DP ports it behaves like most other platforms, but on HDMI
14528 	 * there's an extra 1 line difference. So we need to add two instead of
14529 	 * one to the value.
14530 	 *
14531 	 * On VLV/CHV DSI the scanline counter would appear to increment
14532 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
14533 	 * that means we can't tell whether we're in vblank or not while
14534 	 * we're on that particular line. We must still set scanline_offset
14535 	 * to 1 so that the vblank timestamps come out correct when we query
14536 	 * the scanline counter from within the vblank interrupt handler.
14537 	 * However if queried just before the start of vblank we'll get an
14538 	 * answer that's slightly in the future.
14539 	 */
14540 	if (IS_GEN(dev_priv, 2)) {
14541 		int vtotal;
14542 
14543 		vtotal = adjusted_mode->crtc_vtotal;
14544 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
14545 			vtotal /= 2;
14546 
14547 		crtc->scanline_offset = vtotal - 1;
14548 	} else if (HAS_DDI(dev_priv) &&
14549 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
14550 		crtc->scanline_offset = 2;
14551 	} else {
14552 		crtc->scanline_offset = 1;
14553 	}
14554 }
14555 
intel_modeset_clear_plls(struct intel_atomic_state * state)14556 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
14557 {
14558 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14559 	struct intel_crtc_state *new_crtc_state;
14560 	struct intel_crtc *crtc;
14561 	int i;
14562 
14563 	if (!dev_priv->display.crtc_compute_clock)
14564 		return;
14565 
14566 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14567 		if (!needs_modeset(new_crtc_state))
14568 			continue;
14569 
14570 		intel_release_shared_dplls(state, crtc);
14571 	}
14572 }
14573 
14574 /*
14575  * This implements the workaround described in the "notes" section of the mode
14576  * set sequence documentation. When going from no pipes or single pipe to
14577  * multiple pipes, and planes are enabled after the pipe, we need to wait at
14578  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
14579  */
hsw_mode_set_planes_workaround(struct intel_atomic_state * state)14580 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
14581 {
14582 	struct intel_crtc_state *crtc_state;
14583 	struct intel_crtc *crtc;
14584 	struct intel_crtc_state *first_crtc_state = NULL;
14585 	struct intel_crtc_state *other_crtc_state = NULL;
14586 	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
14587 	int i;
14588 
14589 	/* look at all crtc's that are going to be enabled in during modeset */
14590 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14591 		if (!crtc_state->hw.active ||
14592 		    !needs_modeset(crtc_state))
14593 			continue;
14594 
14595 		if (first_crtc_state) {
14596 			other_crtc_state = crtc_state;
14597 			break;
14598 		} else {
14599 			first_crtc_state = crtc_state;
14600 			first_pipe = crtc->pipe;
14601 		}
14602 	}
14603 
14604 	/* No workaround needed? */
14605 	if (!first_crtc_state)
14606 		return 0;
14607 
14608 	/* w/a possibly needed, check how many crtc's are already enabled. */
14609 	for_each_intel_crtc(state->base.dev, crtc) {
14610 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
14611 		if (IS_ERR(crtc_state))
14612 			return PTR_ERR(crtc_state);
14613 
14614 		crtc_state->hsw_workaround_pipe = INVALID_PIPE;
14615 
14616 		if (!crtc_state->hw.active ||
14617 		    needs_modeset(crtc_state))
14618 			continue;
14619 
14620 		/* 2 or more enabled crtcs means no need for w/a */
14621 		if (enabled_pipe != INVALID_PIPE)
14622 			return 0;
14623 
14624 		enabled_pipe = crtc->pipe;
14625 	}
14626 
14627 	if (enabled_pipe != INVALID_PIPE)
14628 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
14629 	else if (other_crtc_state)
14630 		other_crtc_state->hsw_workaround_pipe = first_pipe;
14631 
14632 	return 0;
14633 }
14634 
intel_calc_active_pipes(struct intel_atomic_state * state,u8 active_pipes)14635 u8 intel_calc_active_pipes(struct intel_atomic_state *state,
14636 			   u8 active_pipes)
14637 {
14638 	const struct intel_crtc_state *crtc_state;
14639 	struct intel_crtc *crtc;
14640 	int i;
14641 
14642 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14643 		if (crtc_state->hw.active)
14644 			active_pipes |= BIT(crtc->pipe);
14645 		else
14646 			active_pipes &= ~BIT(crtc->pipe);
14647 	}
14648 
14649 	return active_pipes;
14650 }
14651 
intel_modeset_checks(struct intel_atomic_state * state)14652 static int intel_modeset_checks(struct intel_atomic_state *state)
14653 {
14654 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14655 
14656 	state->modeset = true;
14657 
14658 	if (IS_HASWELL(dev_priv))
14659 		return hsw_mode_set_planes_workaround(state);
14660 
14661 	return 0;
14662 }
14663 
14664 /*
14665  * Handle calculation of various watermark data at the end of the atomic check
14666  * phase.  The code here should be run after the per-crtc and per-plane 'check'
14667  * handlers to ensure that all derived state has been updated.
14668  */
calc_watermark_data(struct intel_atomic_state * state)14669 static int calc_watermark_data(struct intel_atomic_state *state)
14670 {
14671 	struct drm_device *dev = state->base.dev;
14672 	struct drm_i915_private *dev_priv = to_i915(dev);
14673 
14674 	/* Is there platform-specific watermark information to calculate? */
14675 	if (dev_priv->display.compute_global_watermarks)
14676 		return dev_priv->display.compute_global_watermarks(state);
14677 
14678 	return 0;
14679 }
14680 
intel_crtc_check_fastset(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14681 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
14682 				     struct intel_crtc_state *new_crtc_state)
14683 {
14684 	if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
14685 		return;
14686 
14687 	new_crtc_state->uapi.mode_changed = false;
14688 	new_crtc_state->update_pipe = true;
14689 }
14690 
intel_crtc_copy_fastset(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14691 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state,
14692 				    struct intel_crtc_state *new_crtc_state)
14693 {
14694 	/*
14695 	 * If we're not doing the full modeset we want to
14696 	 * keep the current M/N values as they may be
14697 	 * sufficiently different to the computed values
14698 	 * to cause problems.
14699 	 *
14700 	 * FIXME: should really copy more fuzzy state here
14701 	 */
14702 	new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
14703 	new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
14704 	new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
14705 	new_crtc_state->has_drrs = old_crtc_state->has_drrs;
14706 }
14707 
intel_crtc_add_planes_to_state(struct intel_atomic_state * state,struct intel_crtc * crtc,u8 plane_ids_mask)14708 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
14709 					  struct intel_crtc *crtc,
14710 					  u8 plane_ids_mask)
14711 {
14712 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14713 	struct intel_plane *plane;
14714 
14715 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14716 		struct intel_plane_state *plane_state;
14717 
14718 		if ((plane_ids_mask & BIT(plane->id)) == 0)
14719 			continue;
14720 
14721 		plane_state = intel_atomic_get_plane_state(state, plane);
14722 		if (IS_ERR(plane_state))
14723 			return PTR_ERR(plane_state);
14724 	}
14725 
14726 	return 0;
14727 }
14728 
active_planes_affects_min_cdclk(struct drm_i915_private * dev_priv)14729 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
14730 {
14731 	/* See {hsw,vlv,ivb}_plane_ratio() */
14732 	return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
14733 		IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
14734 		IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11);
14735 }
14736 
intel_atomic_check_planes(struct intel_atomic_state * state)14737 static int intel_atomic_check_planes(struct intel_atomic_state *state)
14738 {
14739 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14740 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14741 	struct intel_plane_state *plane_state;
14742 	struct intel_plane *plane;
14743 	struct intel_crtc *crtc;
14744 	int i, ret;
14745 
14746 	ret = icl_add_linked_planes(state);
14747 	if (ret)
14748 		return ret;
14749 
14750 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14751 		ret = intel_plane_atomic_check(state, plane);
14752 		if (ret) {
14753 			drm_dbg_atomic(&dev_priv->drm,
14754 				       "[PLANE:%d:%s] atomic driver check failed\n",
14755 				       plane->base.base.id, plane->base.name);
14756 			return ret;
14757 		}
14758 	}
14759 
14760 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14761 					    new_crtc_state, i) {
14762 		u8 old_active_planes, new_active_planes;
14763 
14764 		ret = icl_check_nv12_planes(new_crtc_state);
14765 		if (ret)
14766 			return ret;
14767 
14768 		/*
14769 		 * On some platforms the number of active planes affects
14770 		 * the planes' minimum cdclk calculation. Add such planes
14771 		 * to the state before we compute the minimum cdclk.
14772 		 */
14773 		if (!active_planes_affects_min_cdclk(dev_priv))
14774 			continue;
14775 
14776 		old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14777 		new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14778 
14779 		/*
14780 		 * Not only the number of planes, but if the plane configuration had
14781 		 * changed might already mean we need to recompute min CDCLK,
14782 		 * because different planes might consume different amount of Dbuf bandwidth
14783 		 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor
14784 		 */
14785 		if (old_active_planes == new_active_planes)
14786 			continue;
14787 
14788 		ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
14789 		if (ret)
14790 			return ret;
14791 	}
14792 
14793 	return 0;
14794 }
14795 
intel_atomic_check_cdclk(struct intel_atomic_state * state,bool * need_cdclk_calc)14796 static int intel_atomic_check_cdclk(struct intel_atomic_state *state,
14797 				    bool *need_cdclk_calc)
14798 {
14799 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14800 	const struct intel_cdclk_state *old_cdclk_state;
14801 	const struct intel_cdclk_state *new_cdclk_state;
14802 	struct intel_plane_state *plane_state;
14803 	struct intel_bw_state *new_bw_state;
14804 	struct intel_plane *plane;
14805 	int min_cdclk = 0;
14806 	enum pipe pipe;
14807 	int ret;
14808 	int i;
14809 	/*
14810 	 * active_planes bitmask has been updated, and potentially
14811 	 * affected planes are part of the state. We can now
14812 	 * compute the minimum cdclk for each plane.
14813 	 */
14814 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14815 		ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
14816 		if (ret)
14817 			return ret;
14818 	}
14819 
14820 	old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
14821 	new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
14822 
14823 	if (new_cdclk_state &&
14824 	    old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
14825 		*need_cdclk_calc = true;
14826 
14827 	ret = dev_priv->display.bw_calc_min_cdclk(state);
14828 	if (ret)
14829 		return ret;
14830 
14831 	new_bw_state = intel_atomic_get_new_bw_state(state);
14832 
14833 	if (!new_cdclk_state || !new_bw_state)
14834 		return 0;
14835 
14836 	for_each_pipe(dev_priv, pipe) {
14837 		min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk);
14838 
14839 		/*
14840 		 * Currently do this change only if we need to increase
14841 		 */
14842 		if (new_bw_state->min_cdclk > min_cdclk)
14843 			*need_cdclk_calc = true;
14844 	}
14845 
14846 	return 0;
14847 }
14848 
intel_atomic_check_crtcs(struct intel_atomic_state * state)14849 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
14850 {
14851 	struct intel_crtc_state *crtc_state;
14852 	struct intel_crtc *crtc;
14853 	int i;
14854 
14855 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14856 		int ret = intel_crtc_atomic_check(state, crtc);
14857 		struct drm_i915_private *i915 = to_i915(crtc->base.dev);
14858 		if (ret) {
14859 			drm_dbg_atomic(&i915->drm,
14860 				       "[CRTC:%d:%s] atomic driver check failed\n",
14861 				       crtc->base.base.id, crtc->base.name);
14862 			return ret;
14863 		}
14864 	}
14865 
14866 	return 0;
14867 }
14868 
intel_cpu_transcoders_need_modeset(struct intel_atomic_state * state,u8 transcoders)14869 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
14870 					       u8 transcoders)
14871 {
14872 	const struct intel_crtc_state *new_crtc_state;
14873 	struct intel_crtc *crtc;
14874 	int i;
14875 
14876 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14877 		if (new_crtc_state->hw.enable &&
14878 		    transcoders & BIT(new_crtc_state->cpu_transcoder) &&
14879 		    needs_modeset(new_crtc_state))
14880 			return true;
14881 	}
14882 
14883 	return false;
14884 }
14885 
14886 /**
14887  * intel_atomic_check - validate state object
14888  * @dev: drm device
14889  * @_state: state to validate
14890  */
intel_atomic_check(struct drm_device * dev,struct drm_atomic_state * _state)14891 static int intel_atomic_check(struct drm_device *dev,
14892 			      struct drm_atomic_state *_state)
14893 {
14894 	struct drm_i915_private *dev_priv = to_i915(dev);
14895 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
14896 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14897 	struct intel_crtc *crtc;
14898 	int ret, i;
14899 	bool any_ms = false;
14900 
14901 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14902 					    new_crtc_state, i) {
14903 		if (new_crtc_state->inherited != old_crtc_state->inherited)
14904 			new_crtc_state->uapi.mode_changed = true;
14905 	}
14906 
14907 	ret = drm_atomic_helper_check_modeset(dev, &state->base);
14908 	if (ret)
14909 		goto fail;
14910 
14911 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14912 					    new_crtc_state, i) {
14913 		if (!needs_modeset(new_crtc_state)) {
14914 			/* Light copy */
14915 			intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state);
14916 
14917 			continue;
14918 		}
14919 
14920 		ret = intel_crtc_prepare_cleared_state(new_crtc_state);
14921 		if (ret)
14922 			goto fail;
14923 
14924 		if (!new_crtc_state->hw.enable)
14925 			continue;
14926 
14927 		ret = intel_modeset_pipe_config(new_crtc_state);
14928 		if (ret)
14929 			goto fail;
14930 	}
14931 
14932 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14933 					    new_crtc_state, i) {
14934 		if (!needs_modeset(new_crtc_state))
14935 			continue;
14936 
14937 		ret = intel_modeset_pipe_config_late(new_crtc_state);
14938 		if (ret)
14939 			goto fail;
14940 
14941 		intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14942 	}
14943 
14944 	/**
14945 	 * Check if fastset is allowed by external dependencies like other
14946 	 * pipes and transcoders.
14947 	 *
14948 	 * Right now it only forces a fullmodeset when the MST master
14949 	 * transcoder did not changed but the pipe of the master transcoder
14950 	 * needs a fullmodeset so all slaves also needs to do a fullmodeset or
14951 	 * in case of port synced crtcs, if one of the synced crtcs
14952 	 * needs a full modeset, all other synced crtcs should be
14953 	 * forced a full modeset.
14954 	 */
14955 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14956 		if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state))
14957 			continue;
14958 
14959 		if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
14960 			enum transcoder master = new_crtc_state->mst_master_transcoder;
14961 
14962 			if (intel_cpu_transcoders_need_modeset(state, BIT(master))) {
14963 				new_crtc_state->uapi.mode_changed = true;
14964 				new_crtc_state->update_pipe = false;
14965 			}
14966 		}
14967 
14968 		if (is_trans_port_sync_mode(new_crtc_state)) {
14969 			u8 trans = new_crtc_state->sync_mode_slaves_mask;
14970 
14971 			if (new_crtc_state->master_transcoder != INVALID_TRANSCODER)
14972 				trans |= BIT(new_crtc_state->master_transcoder);
14973 
14974 			if (intel_cpu_transcoders_need_modeset(state, trans)) {
14975 				new_crtc_state->uapi.mode_changed = true;
14976 				new_crtc_state->update_pipe = false;
14977 			}
14978 		}
14979 	}
14980 
14981 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14982 					    new_crtc_state, i) {
14983 		if (needs_modeset(new_crtc_state)) {
14984 			any_ms = true;
14985 			continue;
14986 		}
14987 
14988 		if (!new_crtc_state->update_pipe)
14989 			continue;
14990 
14991 		intel_crtc_copy_fastset(old_crtc_state, new_crtc_state);
14992 	}
14993 
14994 	if (any_ms && !check_digital_port_conflicts(state)) {
14995 		drm_dbg_kms(&dev_priv->drm,
14996 			    "rejecting conflicting digital port configuration\n");
14997 		ret = -EINVAL;
14998 		goto fail;
14999 	}
15000 
15001 	ret = drm_dp_mst_atomic_check(&state->base);
15002 	if (ret)
15003 		goto fail;
15004 
15005 	ret = intel_atomic_check_planes(state);
15006 	if (ret)
15007 		goto fail;
15008 
15009 	/*
15010 	 * distrust_bios_wm will force a full dbuf recomputation
15011 	 * but the hardware state will only get updated accordingly
15012 	 * if state->modeset==true. Hence distrust_bios_wm==true &&
15013 	 * state->modeset==false is an invalid combination which
15014 	 * would cause the hardware and software dbuf state to get
15015 	 * out of sync. We must prevent that.
15016 	 *
15017 	 * FIXME clean up this mess and introduce better
15018 	 * state tracking for dbuf.
15019 	 */
15020 	if (dev_priv->wm.distrust_bios_wm)
15021 		any_ms = true;
15022 
15023 	intel_fbc_choose_crtc(dev_priv, state);
15024 	ret = calc_watermark_data(state);
15025 	if (ret)
15026 		goto fail;
15027 
15028 	ret = intel_bw_atomic_check(state);
15029 	if (ret)
15030 		goto fail;
15031 
15032 	ret = intel_atomic_check_cdclk(state, &any_ms);
15033 	if (ret)
15034 		goto fail;
15035 
15036 	if (any_ms) {
15037 		ret = intel_modeset_checks(state);
15038 		if (ret)
15039 			goto fail;
15040 
15041 		ret = intel_modeset_calc_cdclk(state);
15042 		if (ret)
15043 			return ret;
15044 
15045 		intel_modeset_clear_plls(state);
15046 	}
15047 
15048 	ret = intel_atomic_check_crtcs(state);
15049 	if (ret)
15050 		goto fail;
15051 
15052 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15053 					    new_crtc_state, i) {
15054 		if (!needs_modeset(new_crtc_state) &&
15055 		    !new_crtc_state->update_pipe)
15056 			continue;
15057 
15058 		intel_dump_pipe_config(new_crtc_state, state,
15059 				       needs_modeset(new_crtc_state) ?
15060 				       "[modeset]" : "[fastset]");
15061 	}
15062 
15063 	return 0;
15064 
15065  fail:
15066 	if (ret == -EDEADLK)
15067 		return ret;
15068 
15069 	/*
15070 	 * FIXME would probably be nice to know which crtc specifically
15071 	 * caused the failure, in cases where we can pinpoint it.
15072 	 */
15073 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15074 					    new_crtc_state, i)
15075 		intel_dump_pipe_config(new_crtc_state, state, "[failed]");
15076 
15077 	return ret;
15078 }
15079 
intel_atomic_prepare_commit(struct intel_atomic_state * state)15080 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
15081 {
15082 	struct intel_crtc_state *crtc_state;
15083 	struct intel_crtc *crtc;
15084 	int i, ret;
15085 
15086 	ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base);
15087 	if (ret < 0)
15088 		return ret;
15089 
15090 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15091 		bool mode_changed = needs_modeset(crtc_state);
15092 
15093 		if (mode_changed || crtc_state->update_pipe ||
15094 		    crtc_state->uapi.color_mgmt_changed) {
15095 			intel_dsb_prepare(crtc_state);
15096 		}
15097 	}
15098 
15099 	return 0;
15100 }
15101 
intel_crtc_get_vblank_counter(struct intel_crtc * crtc)15102 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
15103 {
15104 	struct drm_device *dev = crtc->base.dev;
15105 	struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
15106 
15107 	if (!vblank->max_vblank_count)
15108 		return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
15109 
15110 	return crtc->base.funcs->get_vblank_counter(&crtc->base);
15111 }
15112 
intel_crtc_arm_fifo_underrun(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)15113 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
15114 				  struct intel_crtc_state *crtc_state)
15115 {
15116 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15117 
15118 	if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes)
15119 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15120 
15121 	if (crtc_state->has_pch_encoder) {
15122 		enum pipe pch_transcoder =
15123 			intel_crtc_pch_transcoder(crtc);
15124 
15125 		intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
15126 	}
15127 }
15128 
intel_pipe_fastset(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)15129 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
15130 			       const struct intel_crtc_state *new_crtc_state)
15131 {
15132 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
15133 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15134 
15135 	/*
15136 	 * Update pipe size and adjust fitter if needed: the reason for this is
15137 	 * that in compute_mode_changes we check the native mode (not the pfit
15138 	 * mode) to see if we can flip rather than do a full mode set. In the
15139 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
15140 	 * pfit state, we'll end up with a big fb scanned out into the wrong
15141 	 * sized surface.
15142 	 */
15143 	intel_set_pipe_src_size(new_crtc_state);
15144 
15145 	/* on skylake this is done by detaching scalers */
15146 	if (INTEL_GEN(dev_priv) >= 9) {
15147 		skl_detach_scalers(new_crtc_state);
15148 
15149 		if (new_crtc_state->pch_pfit.enabled)
15150 			skl_pfit_enable(new_crtc_state);
15151 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15152 		if (new_crtc_state->pch_pfit.enabled)
15153 			ilk_pfit_enable(new_crtc_state);
15154 		else if (old_crtc_state->pch_pfit.enabled)
15155 			ilk_pfit_disable(old_crtc_state);
15156 	}
15157 
15158 	/*
15159 	 * The register is supposedly single buffered so perhaps
15160 	 * not 100% correct to do this here. But SKL+ calculate
15161 	 * this based on the adjust pixel rate so pfit changes do
15162 	 * affect it and so it must be updated for fastsets.
15163 	 * HSW/BDW only really need this here for fastboot, after
15164 	 * that the value should not change without a full modeset.
15165 	 */
15166 	if (INTEL_GEN(dev_priv) >= 9 ||
15167 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15168 		hsw_set_linetime_wm(new_crtc_state);
15169 
15170 	if (INTEL_GEN(dev_priv) >= 11)
15171 		icl_set_pipe_chicken(crtc);
15172 }
15173 
commit_pipe_config(struct intel_atomic_state * state,struct intel_crtc * crtc)15174 static void commit_pipe_config(struct intel_atomic_state *state,
15175 			       struct intel_crtc *crtc)
15176 {
15177 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15178 	const struct intel_crtc_state *old_crtc_state =
15179 		intel_atomic_get_old_crtc_state(state, crtc);
15180 	const struct intel_crtc_state *new_crtc_state =
15181 		intel_atomic_get_new_crtc_state(state, crtc);
15182 	bool modeset = needs_modeset(new_crtc_state);
15183 
15184 	/*
15185 	 * During modesets pipe configuration was programmed as the
15186 	 * CRTC was enabled.
15187 	 */
15188 	if (!modeset) {
15189 		if (new_crtc_state->uapi.color_mgmt_changed ||
15190 		    new_crtc_state->update_pipe)
15191 			intel_color_commit(new_crtc_state);
15192 
15193 		if (INTEL_GEN(dev_priv) >= 9)
15194 			skl_detach_scalers(new_crtc_state);
15195 
15196 		if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15197 			bdw_set_pipemisc(new_crtc_state);
15198 
15199 		if (new_crtc_state->update_pipe)
15200 			intel_pipe_fastset(old_crtc_state, new_crtc_state);
15201 
15202 		intel_psr2_program_trans_man_trk_ctl(new_crtc_state);
15203 	}
15204 
15205 	if (dev_priv->display.atomic_update_watermarks)
15206 		dev_priv->display.atomic_update_watermarks(state, crtc);
15207 }
15208 
intel_enable_crtc(struct intel_atomic_state * state,struct intel_crtc * crtc)15209 static void intel_enable_crtc(struct intel_atomic_state *state,
15210 			      struct intel_crtc *crtc)
15211 {
15212 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15213 	const struct intel_crtc_state *new_crtc_state =
15214 		intel_atomic_get_new_crtc_state(state, crtc);
15215 
15216 	if (!needs_modeset(new_crtc_state))
15217 		return;
15218 
15219 	intel_crtc_update_active_timings(new_crtc_state);
15220 
15221 	dev_priv->display.crtc_enable(state, crtc);
15222 
15223 	/* vblanks work again, re-enable pipe CRC. */
15224 	intel_crtc_enable_pipe_crc(crtc);
15225 }
15226 
intel_update_crtc(struct intel_atomic_state * state,struct intel_crtc * crtc)15227 static void intel_update_crtc(struct intel_atomic_state *state,
15228 			      struct intel_crtc *crtc)
15229 {
15230 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15231 	const struct intel_crtc_state *old_crtc_state =
15232 		intel_atomic_get_old_crtc_state(state, crtc);
15233 	struct intel_crtc_state *new_crtc_state =
15234 		intel_atomic_get_new_crtc_state(state, crtc);
15235 	bool modeset = needs_modeset(new_crtc_state);
15236 
15237 	if (!modeset) {
15238 		if (new_crtc_state->preload_luts &&
15239 		    (new_crtc_state->uapi.color_mgmt_changed ||
15240 		     new_crtc_state->update_pipe))
15241 			intel_color_load_luts(new_crtc_state);
15242 
15243 		intel_pre_plane_update(state, crtc);
15244 
15245 		if (new_crtc_state->update_pipe)
15246 			intel_encoders_update_pipe(state, crtc);
15247 	}
15248 
15249 	if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
15250 		intel_fbc_disable(crtc);
15251 	else
15252 		intel_fbc_enable(state, crtc);
15253 
15254 	/* Perform vblank evasion around commit operation */
15255 	intel_pipe_update_start(new_crtc_state);
15256 
15257 	commit_pipe_config(state, crtc);
15258 
15259 	if (INTEL_GEN(dev_priv) >= 9)
15260 		skl_update_planes_on_crtc(state, crtc);
15261 	else
15262 		i9xx_update_planes_on_crtc(state, crtc);
15263 
15264 	intel_pipe_update_end(new_crtc_state);
15265 
15266 	/*
15267 	 * We usually enable FIFO underrun interrupts as part of the
15268 	 * CRTC enable sequence during modesets.  But when we inherit a
15269 	 * valid pipe configuration from the BIOS we need to take care
15270 	 * of enabling them on the CRTC's first fastset.
15271 	 */
15272 	if (new_crtc_state->update_pipe && !modeset &&
15273 	    old_crtc_state->inherited)
15274 		intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
15275 }
15276 
15277 
intel_old_crtc_state_disables(struct intel_atomic_state * state,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state,struct intel_crtc * crtc)15278 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
15279 					  struct intel_crtc_state *old_crtc_state,
15280 					  struct intel_crtc_state *new_crtc_state,
15281 					  struct intel_crtc *crtc)
15282 {
15283 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15284 
15285 	intel_crtc_disable_planes(state, crtc);
15286 
15287 	/*
15288 	 * We need to disable pipe CRC before disabling the pipe,
15289 	 * or we race against vblank off.
15290 	 */
15291 	intel_crtc_disable_pipe_crc(crtc);
15292 
15293 	dev_priv->display.crtc_disable(state, crtc);
15294 	crtc->active = false;
15295 	intel_fbc_disable(crtc);
15296 	intel_disable_shared_dpll(old_crtc_state);
15297 
15298 	/* FIXME unify this for all platforms */
15299 	if (!new_crtc_state->hw.active &&
15300 	    !HAS_GMCH(dev_priv) &&
15301 	    dev_priv->display.initial_watermarks)
15302 		dev_priv->display.initial_watermarks(state, crtc);
15303 }
15304 
intel_commit_modeset_disables(struct intel_atomic_state * state)15305 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
15306 {
15307 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15308 	struct intel_crtc *crtc;
15309 	u32 handled = 0;
15310 	int i;
15311 
15312 	/* Only disable port sync and MST slaves */
15313 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15314 					    new_crtc_state, i) {
15315 		if (!needs_modeset(new_crtc_state))
15316 			continue;
15317 
15318 		if (!old_crtc_state->hw.active)
15319 			continue;
15320 
15321 		/* In case of Transcoder port Sync master slave CRTCs can be
15322 		 * assigned in any order and we need to make sure that
15323 		 * slave CRTCs are disabled first and then master CRTC since
15324 		 * Slave vblanks are masked till Master Vblanks.
15325 		 */
15326 		if (!is_trans_port_sync_slave(old_crtc_state) &&
15327 		    !intel_dp_mst_is_slave_trans(old_crtc_state))
15328 			continue;
15329 
15330 		intel_pre_plane_update(state, crtc);
15331 		intel_old_crtc_state_disables(state, old_crtc_state,
15332 					      new_crtc_state, crtc);
15333 		handled |= BIT(crtc->pipe);
15334 	}
15335 
15336 	/* Disable everything else left on */
15337 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15338 					    new_crtc_state, i) {
15339 		if (!needs_modeset(new_crtc_state) ||
15340 		    (handled & BIT(crtc->pipe)))
15341 			continue;
15342 
15343 		intel_pre_plane_update(state, crtc);
15344 		if (old_crtc_state->hw.active)
15345 			intel_old_crtc_state_disables(state, old_crtc_state,
15346 						      new_crtc_state, crtc);
15347 	}
15348 }
15349 
intel_commit_modeset_enables(struct intel_atomic_state * state)15350 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
15351 {
15352 	struct intel_crtc_state *new_crtc_state;
15353 	struct intel_crtc *crtc;
15354 	int i;
15355 
15356 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15357 		if (!new_crtc_state->hw.active)
15358 			continue;
15359 
15360 		intel_enable_crtc(state, crtc);
15361 		intel_update_crtc(state, crtc);
15362 	}
15363 }
15364 
skl_commit_modeset_enables(struct intel_atomic_state * state)15365 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
15366 {
15367 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15368 	struct intel_crtc *crtc;
15369 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15370 	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
15371 	u8 update_pipes = 0, modeset_pipes = 0;
15372 	int i;
15373 
15374 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15375 		enum pipe pipe = crtc->pipe;
15376 
15377 		if (!new_crtc_state->hw.active)
15378 			continue;
15379 
15380 		/* ignore allocations for crtc's that have been turned off. */
15381 		if (!needs_modeset(new_crtc_state)) {
15382 			entries[pipe] = old_crtc_state->wm.skl.ddb;
15383 			update_pipes |= BIT(pipe);
15384 		} else {
15385 			modeset_pipes |= BIT(pipe);
15386 		}
15387 	}
15388 
15389 	/*
15390 	 * Whenever the number of active pipes changes, we need to make sure we
15391 	 * update the pipes in the right order so that their ddb allocations
15392 	 * never overlap with each other between CRTC updates. Otherwise we'll
15393 	 * cause pipe underruns and other bad stuff.
15394 	 *
15395 	 * So first lets enable all pipes that do not need a fullmodeset as
15396 	 * those don't have any external dependency.
15397 	 */
15398 	while (update_pipes) {
15399 		for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15400 						    new_crtc_state, i) {
15401 			enum pipe pipe = crtc->pipe;
15402 
15403 			if ((update_pipes & BIT(pipe)) == 0)
15404 				continue;
15405 
15406 			if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15407 							entries, I915_MAX_PIPES, pipe))
15408 				continue;
15409 
15410 			entries[pipe] = new_crtc_state->wm.skl.ddb;
15411 			update_pipes &= ~BIT(pipe);
15412 
15413 			intel_update_crtc(state, crtc);
15414 
15415 			/*
15416 			 * If this is an already active pipe, it's DDB changed,
15417 			 * and this isn't the last pipe that needs updating
15418 			 * then we need to wait for a vblank to pass for the
15419 			 * new ddb allocation to take effect.
15420 			 */
15421 			if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
15422 						 &old_crtc_state->wm.skl.ddb) &&
15423 			    (update_pipes | modeset_pipes))
15424 				intel_wait_for_vblank(dev_priv, pipe);
15425 		}
15426 	}
15427 
15428 	update_pipes = modeset_pipes;
15429 
15430 	/*
15431 	 * Enable all pipes that needs a modeset and do not depends on other
15432 	 * pipes
15433 	 */
15434 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15435 		enum pipe pipe = crtc->pipe;
15436 
15437 		if ((modeset_pipes & BIT(pipe)) == 0)
15438 			continue;
15439 
15440 		if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
15441 		    is_trans_port_sync_master(new_crtc_state))
15442 			continue;
15443 
15444 		modeset_pipes &= ~BIT(pipe);
15445 
15446 		intel_enable_crtc(state, crtc);
15447 	}
15448 
15449 	/*
15450 	 * Then we enable all remaining pipes that depend on other
15451 	 * pipes: MST slaves and port sync masters.
15452 	 */
15453 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15454 		enum pipe pipe = crtc->pipe;
15455 
15456 		if ((modeset_pipes & BIT(pipe)) == 0)
15457 			continue;
15458 
15459 		modeset_pipes &= ~BIT(pipe);
15460 
15461 		intel_enable_crtc(state, crtc);
15462 	}
15463 
15464 	/*
15465 	 * Finally we do the plane updates/etc. for all pipes that got enabled.
15466 	 */
15467 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15468 		enum pipe pipe = crtc->pipe;
15469 
15470 		if ((update_pipes & BIT(pipe)) == 0)
15471 			continue;
15472 
15473 		drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15474 									entries, I915_MAX_PIPES, pipe));
15475 
15476 		entries[pipe] = new_crtc_state->wm.skl.ddb;
15477 		update_pipes &= ~BIT(pipe);
15478 
15479 		intel_update_crtc(state, crtc);
15480 	}
15481 
15482 	drm_WARN_ON(&dev_priv->drm, modeset_pipes);
15483 	drm_WARN_ON(&dev_priv->drm, update_pipes);
15484 }
15485 
intel_atomic_helper_free_state(struct drm_i915_private * dev_priv)15486 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
15487 {
15488 	struct intel_atomic_state *state, *next;
15489 	struct llist_node *freed;
15490 
15491 	freed = llist_del_all(&dev_priv->atomic_helper.free_list);
15492 	llist_for_each_entry_safe(state, next, freed, freed)
15493 		drm_atomic_state_put(&state->base);
15494 }
15495 
intel_atomic_helper_free_state_worker(struct work_struct * work)15496 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
15497 {
15498 	struct drm_i915_private *dev_priv =
15499 		container_of(work, typeof(*dev_priv), atomic_helper.free_work);
15500 
15501 	intel_atomic_helper_free_state(dev_priv);
15502 }
15503 
intel_atomic_commit_fence_wait(struct intel_atomic_state * intel_state)15504 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
15505 {
15506 	struct wait_queue_entry wait_fence, wait_reset;
15507 	struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
15508 
15509 	init_wait_entry(&wait_fence, 0);
15510 	init_wait_entry(&wait_reset, 0);
15511 	for (;;) {
15512 		prepare_to_wait(&intel_state->commit_ready.wait,
15513 				&wait_fence, TASK_UNINTERRUPTIBLE);
15514 		prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15515 					      I915_RESET_MODESET),
15516 				&wait_reset, TASK_UNINTERRUPTIBLE);
15517 
15518 
15519 		if (i915_sw_fence_done(&intel_state->commit_ready) ||
15520 		    test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
15521 			break;
15522 
15523 		schedule();
15524 	}
15525 	finish_wait(&intel_state->commit_ready.wait, &wait_fence);
15526 	finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15527 				  I915_RESET_MODESET),
15528 		    &wait_reset);
15529 }
15530 
intel_cleanup_dsbs(struct intel_atomic_state * state)15531 static void intel_cleanup_dsbs(struct intel_atomic_state *state)
15532 {
15533 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15534 	struct intel_crtc *crtc;
15535 	int i;
15536 
15537 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15538 					    new_crtc_state, i)
15539 		intel_dsb_cleanup(old_crtc_state);
15540 }
15541 
intel_atomic_cleanup_work(struct work_struct * work)15542 static void intel_atomic_cleanup_work(struct work_struct *work)
15543 {
15544 	struct intel_atomic_state *state =
15545 		container_of(work, struct intel_atomic_state, base.commit_work);
15546 	struct drm_i915_private *i915 = to_i915(state->base.dev);
15547 
15548 	intel_cleanup_dsbs(state);
15549 	drm_atomic_helper_cleanup_planes(&i915->drm, &state->base);
15550 	drm_atomic_helper_commit_cleanup_done(&state->base);
15551 	drm_atomic_state_put(&state->base);
15552 
15553 	intel_atomic_helper_free_state(i915);
15554 }
15555 
intel_atomic_commit_tail(struct intel_atomic_state * state)15556 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
15557 {
15558 	struct drm_device *dev = state->base.dev;
15559 	struct drm_i915_private *dev_priv = to_i915(dev);
15560 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15561 	struct intel_crtc *crtc;
15562 	u64 put_domains[I915_MAX_PIPES] = {};
15563 	intel_wakeref_t wakeref = 0;
15564 	int i;
15565 
15566 	intel_atomic_commit_fence_wait(state);
15567 
15568 	drm_atomic_helper_wait_for_dependencies(&state->base);
15569 
15570 	if (state->modeset)
15571 		wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
15572 
15573 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15574 					    new_crtc_state, i) {
15575 		if (needs_modeset(new_crtc_state) ||
15576 		    new_crtc_state->update_pipe) {
15577 
15578 			put_domains[crtc->pipe] =
15579 				modeset_get_crtc_power_domains(new_crtc_state);
15580 		}
15581 	}
15582 
15583 	intel_commit_modeset_disables(state);
15584 
15585 	/* FIXME: Eventually get rid of our crtc->config pointer */
15586 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15587 		crtc->config = new_crtc_state;
15588 
15589 	if (state->modeset) {
15590 		drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
15591 
15592 		intel_set_cdclk_pre_plane_update(state);
15593 
15594 		intel_modeset_verify_disabled(dev_priv, state);
15595 	}
15596 
15597 	intel_sagv_pre_plane_update(state);
15598 
15599 	/* Complete the events for pipes that have now been disabled */
15600 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15601 		bool modeset = needs_modeset(new_crtc_state);
15602 
15603 		/* Complete events for now disable pipes here. */
15604 		if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
15605 			spin_lock_irq(&dev->event_lock);
15606 			drm_crtc_send_vblank_event(&crtc->base,
15607 						   new_crtc_state->uapi.event);
15608 			spin_unlock_irq(&dev->event_lock);
15609 
15610 			new_crtc_state->uapi.event = NULL;
15611 		}
15612 	}
15613 
15614 	if (state->modeset)
15615 		intel_encoders_update_prepare(state);
15616 
15617 	intel_dbuf_pre_plane_update(state);
15618 
15619 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
15620 	dev_priv->display.commit_modeset_enables(state);
15621 
15622 	if (state->modeset) {
15623 		intel_encoders_update_complete(state);
15624 
15625 		intel_set_cdclk_post_plane_update(state);
15626 	}
15627 
15628 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
15629 	 * already, but still need the state for the delayed optimization. To
15630 	 * fix this:
15631 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
15632 	 * - schedule that vblank worker _before_ calling hw_done
15633 	 * - at the start of commit_tail, cancel it _synchrously
15634 	 * - switch over to the vblank wait helper in the core after that since
15635 	 *   we don't need out special handling any more.
15636 	 */
15637 	drm_atomic_helper_wait_for_flip_done(dev, &state->base);
15638 
15639 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15640 		if (new_crtc_state->hw.active &&
15641 		    !needs_modeset(new_crtc_state) &&
15642 		    !new_crtc_state->preload_luts &&
15643 		    (new_crtc_state->uapi.color_mgmt_changed ||
15644 		     new_crtc_state->update_pipe))
15645 			intel_color_load_luts(new_crtc_state);
15646 	}
15647 
15648 	/*
15649 	 * Now that the vblank has passed, we can go ahead and program the
15650 	 * optimal watermarks on platforms that need two-step watermark
15651 	 * programming.
15652 	 *
15653 	 * TODO: Move this (and other cleanup) to an async worker eventually.
15654 	 */
15655 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15656 					    new_crtc_state, i) {
15657 		/*
15658 		 * Gen2 reports pipe underruns whenever all planes are disabled.
15659 		 * So re-enable underrun reporting after some planes get enabled.
15660 		 *
15661 		 * We do this before .optimize_watermarks() so that we have a
15662 		 * chance of catching underruns with the intermediate watermarks
15663 		 * vs. the new plane configuration.
15664 		 */
15665 		if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state))
15666 			intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15667 
15668 		if (dev_priv->display.optimize_watermarks)
15669 			dev_priv->display.optimize_watermarks(state, crtc);
15670 	}
15671 
15672 	intel_dbuf_post_plane_update(state);
15673 
15674 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15675 		intel_post_plane_update(state, crtc);
15676 
15677 		if (put_domains[i])
15678 			modeset_put_power_domains(dev_priv, put_domains[i]);
15679 
15680 		intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
15681 
15682 		/*
15683 		 * DSB cleanup is done in cleanup_work aligning with framebuffer
15684 		 * cleanup. So copy and reset the dsb structure to sync with
15685 		 * commit_done and later do dsb cleanup in cleanup_work.
15686 		 */
15687 		old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb);
15688 	}
15689 
15690 	/* Underruns don't always raise interrupts, so check manually */
15691 	intel_check_cpu_fifo_underruns(dev_priv);
15692 	intel_check_pch_fifo_underruns(dev_priv);
15693 
15694 	if (state->modeset)
15695 		intel_verify_planes(state);
15696 
15697 	intel_sagv_post_plane_update(state);
15698 
15699 	drm_atomic_helper_commit_hw_done(&state->base);
15700 
15701 	if (state->modeset) {
15702 		/* As one of the primary mmio accessors, KMS has a high
15703 		 * likelihood of triggering bugs in unclaimed access. After we
15704 		 * finish modesetting, see if an error has been flagged, and if
15705 		 * so enable debugging for the next modeset - and hope we catch
15706 		 * the culprit.
15707 		 */
15708 		intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
15709 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
15710 	}
15711 	intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15712 
15713 	/*
15714 	 * Defer the cleanup of the old state to a separate worker to not
15715 	 * impede the current task (userspace for blocking modesets) that
15716 	 * are executed inline. For out-of-line asynchronous modesets/flips,
15717 	 * deferring to a new worker seems overkill, but we would place a
15718 	 * schedule point (cond_resched()) here anyway to keep latencies
15719 	 * down.
15720 	 */
15721 	INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
15722 	queue_work(system_highpri_wq, &state->base.commit_work);
15723 }
15724 
intel_atomic_commit_work(struct work_struct * work)15725 static void intel_atomic_commit_work(struct work_struct *work)
15726 {
15727 	struct intel_atomic_state *state =
15728 		container_of(work, struct intel_atomic_state, base.commit_work);
15729 
15730 	intel_atomic_commit_tail(state);
15731 }
15732 
15733 static int __i915_sw_fence_call
intel_atomic_commit_ready(struct i915_sw_fence * fence,enum i915_sw_fence_notify notify)15734 intel_atomic_commit_ready(struct i915_sw_fence *fence,
15735 			  enum i915_sw_fence_notify notify)
15736 {
15737 	struct intel_atomic_state *state =
15738 		container_of(fence, struct intel_atomic_state, commit_ready);
15739 
15740 	switch (notify) {
15741 	case FENCE_COMPLETE:
15742 		/* we do blocking waits in the worker, nothing to do here */
15743 		break;
15744 	case FENCE_FREE:
15745 		{
15746 			struct intel_atomic_helper *helper =
15747 				&to_i915(state->base.dev)->atomic_helper;
15748 
15749 			if (llist_add(&state->freed, &helper->free_list))
15750 				schedule_work(&helper->free_work);
15751 			break;
15752 		}
15753 	}
15754 
15755 	return NOTIFY_DONE;
15756 }
15757 
intel_atomic_track_fbs(struct intel_atomic_state * state)15758 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
15759 {
15760 	struct intel_plane_state *old_plane_state, *new_plane_state;
15761 	struct intel_plane *plane;
15762 	int i;
15763 
15764 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
15765 					     new_plane_state, i)
15766 		intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
15767 					to_intel_frontbuffer(new_plane_state->hw.fb),
15768 					plane->frontbuffer_bit);
15769 }
15770 
intel_atomic_commit(struct drm_device * dev,struct drm_atomic_state * _state,bool nonblock)15771 static int intel_atomic_commit(struct drm_device *dev,
15772 			       struct drm_atomic_state *_state,
15773 			       bool nonblock)
15774 {
15775 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
15776 	struct drm_i915_private *dev_priv = to_i915(dev);
15777 	int ret = 0;
15778 
15779 	state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
15780 
15781 	drm_atomic_state_get(&state->base);
15782 	i915_sw_fence_init(&state->commit_ready,
15783 			   intel_atomic_commit_ready);
15784 
15785 	/*
15786 	 * The intel_legacy_cursor_update() fast path takes care
15787 	 * of avoiding the vblank waits for simple cursor
15788 	 * movement and flips. For cursor on/off and size changes,
15789 	 * we want to perform the vblank waits so that watermark
15790 	 * updates happen during the correct frames. Gen9+ have
15791 	 * double buffered watermarks and so shouldn't need this.
15792 	 *
15793 	 * Unset state->legacy_cursor_update before the call to
15794 	 * drm_atomic_helper_setup_commit() because otherwise
15795 	 * drm_atomic_helper_wait_for_flip_done() is a noop and
15796 	 * we get FIFO underruns because we didn't wait
15797 	 * for vblank.
15798 	 *
15799 	 * FIXME doing watermarks and fb cleanup from a vblank worker
15800 	 * (assuming we had any) would solve these problems.
15801 	 */
15802 	if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
15803 		struct intel_crtc_state *new_crtc_state;
15804 		struct intel_crtc *crtc;
15805 		int i;
15806 
15807 		for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15808 			if (new_crtc_state->wm.need_postvbl_update ||
15809 			    new_crtc_state->update_wm_post)
15810 				state->base.legacy_cursor_update = false;
15811 	}
15812 
15813 	ret = intel_atomic_prepare_commit(state);
15814 	if (ret) {
15815 		drm_dbg_atomic(&dev_priv->drm,
15816 			       "Preparing state failed with %i\n", ret);
15817 		i915_sw_fence_commit(&state->commit_ready);
15818 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15819 		return ret;
15820 	}
15821 
15822 	ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
15823 	if (!ret)
15824 		ret = drm_atomic_helper_swap_state(&state->base, true);
15825 	if (!ret)
15826 		intel_atomic_swap_global_state(state);
15827 
15828 	if (ret) {
15829 		struct intel_crtc_state *new_crtc_state;
15830 		struct intel_crtc *crtc;
15831 		int i;
15832 
15833 		i915_sw_fence_commit(&state->commit_ready);
15834 
15835 		for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15836 			intel_dsb_cleanup(new_crtc_state);
15837 
15838 		drm_atomic_helper_cleanup_planes(dev, &state->base);
15839 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15840 		return ret;
15841 	}
15842 	dev_priv->wm.distrust_bios_wm = false;
15843 	intel_shared_dpll_swap_state(state);
15844 	intel_atomic_track_fbs(state);
15845 
15846 	drm_atomic_state_get(&state->base);
15847 	INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
15848 
15849 	i915_sw_fence_commit(&state->commit_ready);
15850 	if (nonblock && state->modeset) {
15851 		queue_work(dev_priv->modeset_wq, &state->base.commit_work);
15852 	} else if (nonblock) {
15853 		queue_work(dev_priv->flip_wq, &state->base.commit_work);
15854 	} else {
15855 		if (state->modeset)
15856 			flush_workqueue(dev_priv->modeset_wq);
15857 		intel_atomic_commit_tail(state);
15858 	}
15859 
15860 	return 0;
15861 }
15862 
15863 struct wait_rps_boost {
15864 	struct wait_queue_entry wait;
15865 
15866 	struct drm_crtc *crtc;
15867 	struct i915_request *request;
15868 };
15869 
do_rps_boost(struct wait_queue_entry * _wait,unsigned mode,int sync,void * key)15870 static int do_rps_boost(struct wait_queue_entry *_wait,
15871 			unsigned mode, int sync, void *key)
15872 {
15873 	struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
15874 	struct i915_request *rq = wait->request;
15875 
15876 	/*
15877 	 * If we missed the vblank, but the request is already running it
15878 	 * is reasonable to assume that it will complete before the next
15879 	 * vblank without our intervention, so leave RPS alone.
15880 	 */
15881 	if (!i915_request_started(rq))
15882 		intel_rps_boost(rq);
15883 	i915_request_put(rq);
15884 
15885 	drm_crtc_vblank_put(wait->crtc);
15886 
15887 	list_del(&wait->wait.entry);
15888 	kfree(wait);
15889 	return 1;
15890 }
15891 
add_rps_boost_after_vblank(struct drm_crtc * crtc,struct dma_fence * fence)15892 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
15893 				       struct dma_fence *fence)
15894 {
15895 	struct wait_rps_boost *wait;
15896 
15897 	if (!dma_fence_is_i915(fence))
15898 		return;
15899 
15900 	if (INTEL_GEN(to_i915(crtc->dev)) < 6)
15901 		return;
15902 
15903 	if (drm_crtc_vblank_get(crtc))
15904 		return;
15905 
15906 	wait = kmalloc(sizeof(*wait), GFP_KERNEL);
15907 	if (!wait) {
15908 		drm_crtc_vblank_put(crtc);
15909 		return;
15910 	}
15911 
15912 	wait->request = to_request(dma_fence_get(fence));
15913 	wait->crtc = crtc;
15914 
15915 	wait->wait.func = do_rps_boost;
15916 	wait->wait.flags = 0;
15917 
15918 	add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
15919 }
15920 
intel_plane_pin_fb(struct intel_plane_state * plane_state)15921 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
15922 {
15923 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
15924 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15925 	struct drm_framebuffer *fb = plane_state->hw.fb;
15926 	struct i915_vma *vma;
15927 
15928 	if (plane->id == PLANE_CURSOR &&
15929 	    INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
15930 		struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15931 		const int align = intel_cursor_alignment(dev_priv);
15932 		int err;
15933 
15934 		err = i915_gem_object_attach_phys(obj, align);
15935 		if (err)
15936 			return err;
15937 	}
15938 
15939 	vma = intel_pin_and_fence_fb_obj(fb,
15940 					 &plane_state->view,
15941 					 intel_plane_uses_fence(plane_state),
15942 					 &plane_state->flags);
15943 	if (IS_ERR(vma))
15944 		return PTR_ERR(vma);
15945 
15946 	plane_state->vma = vma;
15947 
15948 	return 0;
15949 }
15950 
intel_plane_unpin_fb(struct intel_plane_state * old_plane_state)15951 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15952 {
15953 	struct i915_vma *vma;
15954 
15955 	vma = fetch_and_zero(&old_plane_state->vma);
15956 	if (vma)
15957 		intel_unpin_fb_vma(vma, old_plane_state->flags);
15958 }
15959 
fb_obj_bump_render_priority(struct drm_i915_gem_object * obj)15960 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15961 {
15962 	struct i915_sched_attr attr = {
15963 		.priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15964 	};
15965 
15966 	i915_gem_object_wait_priority(obj, 0, &attr);
15967 }
15968 
15969 /**
15970  * intel_prepare_plane_fb - Prepare fb for usage on plane
15971  * @_plane: drm plane to prepare for
15972  * @_new_plane_state: the plane state being prepared
15973  *
15974  * Prepares a framebuffer for usage on a display plane.  Generally this
15975  * involves pinning the underlying object and updating the frontbuffer tracking
15976  * bits.  Some older platforms need special physical address handling for
15977  * cursor planes.
15978  *
15979  * Returns 0 on success, negative error code on failure.
15980  */
15981 int
intel_prepare_plane_fb(struct drm_plane * _plane,struct drm_plane_state * _new_plane_state)15982 intel_prepare_plane_fb(struct drm_plane *_plane,
15983 		       struct drm_plane_state *_new_plane_state)
15984 {
15985 	struct intel_plane *plane = to_intel_plane(_plane);
15986 	struct intel_plane_state *new_plane_state =
15987 		to_intel_plane_state(_new_plane_state);
15988 	struct intel_atomic_state *state =
15989 		to_intel_atomic_state(new_plane_state->uapi.state);
15990 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15991 	const struct intel_plane_state *old_plane_state =
15992 		intel_atomic_get_old_plane_state(state, plane);
15993 	struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb);
15994 	struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb);
15995 	int ret;
15996 
15997 	if (old_obj) {
15998 		const struct intel_crtc_state *crtc_state =
15999 			intel_atomic_get_new_crtc_state(state,
16000 							to_intel_crtc(old_plane_state->hw.crtc));
16001 
16002 		/* Big Hammer, we also need to ensure that any pending
16003 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
16004 		 * current scanout is retired before unpinning the old
16005 		 * framebuffer. Note that we rely on userspace rendering
16006 		 * into the buffer attached to the pipe they are waiting
16007 		 * on. If not, userspace generates a GPU hang with IPEHR
16008 		 * point to the MI_WAIT_FOR_EVENT.
16009 		 *
16010 		 * This should only fail upon a hung GPU, in which case we
16011 		 * can safely continue.
16012 		 */
16013 		if (needs_modeset(crtc_state)) {
16014 			ret = i915_sw_fence_await_reservation(&state->commit_ready,
16015 							      old_obj->base.resv, NULL,
16016 							      false, 0,
16017 							      GFP_KERNEL);
16018 			if (ret < 0)
16019 				return ret;
16020 		}
16021 	}
16022 
16023 	if (new_plane_state->uapi.fence) { /* explicit fencing */
16024 		ret = i915_sw_fence_await_dma_fence(&state->commit_ready,
16025 						    new_plane_state->uapi.fence,
16026 						    i915_fence_timeout(dev_priv),
16027 						    GFP_KERNEL);
16028 		if (ret < 0)
16029 			return ret;
16030 	}
16031 
16032 	if (!obj)
16033 		return 0;
16034 
16035 	ret = i915_gem_object_pin_pages(obj);
16036 	if (ret)
16037 		return ret;
16038 
16039 	ret = intel_plane_pin_fb(new_plane_state);
16040 
16041 	i915_gem_object_unpin_pages(obj);
16042 	if (ret)
16043 		return ret;
16044 
16045 	fb_obj_bump_render_priority(obj);
16046 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB);
16047 
16048 	if (!new_plane_state->uapi.fence) { /* implicit fencing */
16049 		struct dma_fence *fence;
16050 
16051 		ret = i915_sw_fence_await_reservation(&state->commit_ready,
16052 						      obj->base.resv, NULL,
16053 						      false,
16054 						      i915_fence_timeout(dev_priv),
16055 						      GFP_KERNEL);
16056 		if (ret < 0)
16057 			goto unpin_fb;
16058 
16059 		fence = dma_resv_get_excl_rcu(obj->base.resv);
16060 		if (fence) {
16061 			add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16062 						   fence);
16063 			dma_fence_put(fence);
16064 		}
16065 	} else {
16066 		add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16067 					   new_plane_state->uapi.fence);
16068 	}
16069 
16070 	/*
16071 	 * We declare pageflips to be interactive and so merit a small bias
16072 	 * towards upclocking to deliver the frame on time. By only changing
16073 	 * the RPS thresholds to sample more regularly and aim for higher
16074 	 * clocks we can hopefully deliver low power workloads (like kodi)
16075 	 * that are not quite steady state without resorting to forcing
16076 	 * maximum clocks following a vblank miss (see do_rps_boost()).
16077 	 */
16078 	if (!state->rps_interactive) {
16079 		intel_rps_mark_interactive(&dev_priv->gt.rps, true);
16080 		state->rps_interactive = true;
16081 	}
16082 
16083 	return 0;
16084 
16085 unpin_fb:
16086 	intel_plane_unpin_fb(new_plane_state);
16087 
16088 	return ret;
16089 }
16090 
16091 /**
16092  * intel_cleanup_plane_fb - Cleans up an fb after plane use
16093  * @plane: drm plane to clean up for
16094  * @_old_plane_state: the state from the previous modeset
16095  *
16096  * Cleans up a framebuffer that has just been removed from a plane.
16097  */
16098 void
intel_cleanup_plane_fb(struct drm_plane * plane,struct drm_plane_state * _old_plane_state)16099 intel_cleanup_plane_fb(struct drm_plane *plane,
16100 		       struct drm_plane_state *_old_plane_state)
16101 {
16102 	struct intel_plane_state *old_plane_state =
16103 		to_intel_plane_state(_old_plane_state);
16104 	struct intel_atomic_state *state =
16105 		to_intel_atomic_state(old_plane_state->uapi.state);
16106 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
16107 	struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb);
16108 
16109 	if (!obj)
16110 		return;
16111 
16112 	if (state->rps_interactive) {
16113 		intel_rps_mark_interactive(&dev_priv->gt.rps, false);
16114 		state->rps_interactive = false;
16115 	}
16116 
16117 	/* Should only be called after a successful intel_prepare_plane_fb()! */
16118 	intel_plane_unpin_fb(old_plane_state);
16119 }
16120 
16121 /**
16122  * intel_plane_destroy - destroy a plane
16123  * @plane: plane to destroy
16124  *
16125  * Common destruction function for all types of planes (primary, cursor,
16126  * sprite).
16127  */
intel_plane_destroy(struct drm_plane * plane)16128 void intel_plane_destroy(struct drm_plane *plane)
16129 {
16130 	drm_plane_cleanup(plane);
16131 	kfree(to_intel_plane(plane));
16132 }
16133 
i8xx_plane_format_mod_supported(struct drm_plane * _plane,u32 format,u64 modifier)16134 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
16135 					    u32 format, u64 modifier)
16136 {
16137 	switch (modifier) {
16138 	case DRM_FORMAT_MOD_LINEAR:
16139 	case I915_FORMAT_MOD_X_TILED:
16140 		break;
16141 	default:
16142 		return false;
16143 	}
16144 
16145 	switch (format) {
16146 	case DRM_FORMAT_C8:
16147 	case DRM_FORMAT_RGB565:
16148 	case DRM_FORMAT_XRGB1555:
16149 	case DRM_FORMAT_XRGB8888:
16150 		return modifier == DRM_FORMAT_MOD_LINEAR ||
16151 			modifier == I915_FORMAT_MOD_X_TILED;
16152 	default:
16153 		return false;
16154 	}
16155 }
16156 
i965_plane_format_mod_supported(struct drm_plane * _plane,u32 format,u64 modifier)16157 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
16158 					    u32 format, u64 modifier)
16159 {
16160 	switch (modifier) {
16161 	case DRM_FORMAT_MOD_LINEAR:
16162 	case I915_FORMAT_MOD_X_TILED:
16163 		break;
16164 	default:
16165 		return false;
16166 	}
16167 
16168 	switch (format) {
16169 	case DRM_FORMAT_C8:
16170 	case DRM_FORMAT_RGB565:
16171 	case DRM_FORMAT_XRGB8888:
16172 	case DRM_FORMAT_XBGR8888:
16173 	case DRM_FORMAT_ARGB8888:
16174 	case DRM_FORMAT_ABGR8888:
16175 	case DRM_FORMAT_XRGB2101010:
16176 	case DRM_FORMAT_XBGR2101010:
16177 	case DRM_FORMAT_ARGB2101010:
16178 	case DRM_FORMAT_ABGR2101010:
16179 	case DRM_FORMAT_XBGR16161616F:
16180 		return modifier == DRM_FORMAT_MOD_LINEAR ||
16181 			modifier == I915_FORMAT_MOD_X_TILED;
16182 	default:
16183 		return false;
16184 	}
16185 }
16186 
intel_cursor_format_mod_supported(struct drm_plane * _plane,u32 format,u64 modifier)16187 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
16188 					      u32 format, u64 modifier)
16189 {
16190 	return modifier == DRM_FORMAT_MOD_LINEAR &&
16191 		format == DRM_FORMAT_ARGB8888;
16192 }
16193 
16194 static const struct drm_plane_funcs i965_plane_funcs = {
16195 	.update_plane = drm_atomic_helper_update_plane,
16196 	.disable_plane = drm_atomic_helper_disable_plane,
16197 	.destroy = intel_plane_destroy,
16198 	.atomic_duplicate_state = intel_plane_duplicate_state,
16199 	.atomic_destroy_state = intel_plane_destroy_state,
16200 	.format_mod_supported = i965_plane_format_mod_supported,
16201 };
16202 
16203 static const struct drm_plane_funcs i8xx_plane_funcs = {
16204 	.update_plane = drm_atomic_helper_update_plane,
16205 	.disable_plane = drm_atomic_helper_disable_plane,
16206 	.destroy = intel_plane_destroy,
16207 	.atomic_duplicate_state = intel_plane_duplicate_state,
16208 	.atomic_destroy_state = intel_plane_destroy_state,
16209 	.format_mod_supported = i8xx_plane_format_mod_supported,
16210 };
16211 
16212 static int
intel_legacy_cursor_update(struct drm_plane * _plane,struct drm_crtc * _crtc,struct drm_framebuffer * fb,int crtc_x,int crtc_y,unsigned int crtc_w,unsigned int crtc_h,u32 src_x,u32 src_y,u32 src_w,u32 src_h,struct drm_modeset_acquire_ctx * ctx)16213 intel_legacy_cursor_update(struct drm_plane *_plane,
16214 			   struct drm_crtc *_crtc,
16215 			   struct drm_framebuffer *fb,
16216 			   int crtc_x, int crtc_y,
16217 			   unsigned int crtc_w, unsigned int crtc_h,
16218 			   u32 src_x, u32 src_y,
16219 			   u32 src_w, u32 src_h,
16220 			   struct drm_modeset_acquire_ctx *ctx)
16221 {
16222 	struct intel_plane *plane = to_intel_plane(_plane);
16223 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
16224 	struct intel_plane_state *old_plane_state =
16225 		to_intel_plane_state(plane->base.state);
16226 	struct intel_plane_state *new_plane_state;
16227 	struct intel_crtc_state *crtc_state =
16228 		to_intel_crtc_state(crtc->base.state);
16229 	struct intel_crtc_state *new_crtc_state;
16230 	int ret;
16231 
16232 	/*
16233 	 * When crtc is inactive or there is a modeset pending,
16234 	 * wait for it to complete in the slowpath
16235 	 */
16236 	if (!crtc_state->hw.active || needs_modeset(crtc_state) ||
16237 	    crtc_state->update_pipe)
16238 		goto slow;
16239 
16240 	/*
16241 	 * Don't do an async update if there is an outstanding commit modifying
16242 	 * the plane.  This prevents our async update's changes from getting
16243 	 * overridden by a previous synchronous update's state.
16244 	 */
16245 	if (old_plane_state->uapi.commit &&
16246 	    !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done))
16247 		goto slow;
16248 
16249 	/*
16250 	 * If any parameters change that may affect watermarks,
16251 	 * take the slowpath. Only changing fb or position should be
16252 	 * in the fastpath.
16253 	 */
16254 	if (old_plane_state->uapi.crtc != &crtc->base ||
16255 	    old_plane_state->uapi.src_w != src_w ||
16256 	    old_plane_state->uapi.src_h != src_h ||
16257 	    old_plane_state->uapi.crtc_w != crtc_w ||
16258 	    old_plane_state->uapi.crtc_h != crtc_h ||
16259 	    !old_plane_state->uapi.fb != !fb)
16260 		goto slow;
16261 
16262 	new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
16263 	if (!new_plane_state)
16264 		return -ENOMEM;
16265 
16266 	new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
16267 	if (!new_crtc_state) {
16268 		ret = -ENOMEM;
16269 		goto out_free;
16270 	}
16271 
16272 	drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb);
16273 
16274 	new_plane_state->uapi.src_x = src_x;
16275 	new_plane_state->uapi.src_y = src_y;
16276 	new_plane_state->uapi.src_w = src_w;
16277 	new_plane_state->uapi.src_h = src_h;
16278 	new_plane_state->uapi.crtc_x = crtc_x;
16279 	new_plane_state->uapi.crtc_y = crtc_y;
16280 	new_plane_state->uapi.crtc_w = crtc_w;
16281 	new_plane_state->uapi.crtc_h = crtc_h;
16282 
16283 	intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state);
16284 
16285 	ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
16286 						  old_plane_state, new_plane_state);
16287 	if (ret)
16288 		goto out_free;
16289 
16290 	ret = intel_plane_pin_fb(new_plane_state);
16291 	if (ret)
16292 		goto out_free;
16293 
16294 	intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb),
16295 				ORIGIN_FLIP);
16296 	intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
16297 				to_intel_frontbuffer(new_plane_state->hw.fb),
16298 				plane->frontbuffer_bit);
16299 
16300 	/* Swap plane state */
16301 	plane->base.state = &new_plane_state->uapi;
16302 
16303 	/*
16304 	 * We cannot swap crtc_state as it may be in use by an atomic commit or
16305 	 * page flip that's running simultaneously. If we swap crtc_state and
16306 	 * destroy the old state, we will cause a use-after-free there.
16307 	 *
16308 	 * Only update active_planes, which is needed for our internal
16309 	 * bookkeeping. Either value will do the right thing when updating
16310 	 * planes atomically. If the cursor was part of the atomic update then
16311 	 * we would have taken the slowpath.
16312 	 */
16313 	crtc_state->active_planes = new_crtc_state->active_planes;
16314 
16315 	if (new_plane_state->uapi.visible)
16316 		intel_update_plane(plane, crtc_state, new_plane_state);
16317 	else
16318 		intel_disable_plane(plane, crtc_state);
16319 
16320 	intel_plane_unpin_fb(old_plane_state);
16321 
16322 out_free:
16323 	if (new_crtc_state)
16324 		intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi);
16325 	if (ret)
16326 		intel_plane_destroy_state(&plane->base, &new_plane_state->uapi);
16327 	else
16328 		intel_plane_destroy_state(&plane->base, &old_plane_state->uapi);
16329 	return ret;
16330 
16331 slow:
16332 	return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
16333 					      crtc_x, crtc_y, crtc_w, crtc_h,
16334 					      src_x, src_y, src_w, src_h, ctx);
16335 }
16336 
16337 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
16338 	.update_plane = intel_legacy_cursor_update,
16339 	.disable_plane = drm_atomic_helper_disable_plane,
16340 	.destroy = intel_plane_destroy,
16341 	.atomic_duplicate_state = intel_plane_duplicate_state,
16342 	.atomic_destroy_state = intel_plane_destroy_state,
16343 	.format_mod_supported = intel_cursor_format_mod_supported,
16344 };
16345 
i9xx_plane_has_fbc(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)16346 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
16347 			       enum i9xx_plane_id i9xx_plane)
16348 {
16349 	if (!HAS_FBC(dev_priv))
16350 		return false;
16351 
16352 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16353 		return i9xx_plane == PLANE_A; /* tied to pipe A */
16354 	else if (IS_IVYBRIDGE(dev_priv))
16355 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
16356 			i9xx_plane == PLANE_C;
16357 	else if (INTEL_GEN(dev_priv) >= 4)
16358 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
16359 	else
16360 		return i9xx_plane == PLANE_A;
16361 }
16362 
16363 static struct intel_plane *
intel_primary_plane_create(struct drm_i915_private * dev_priv,enum pipe pipe)16364 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
16365 {
16366 	struct intel_plane *plane;
16367 	const struct drm_plane_funcs *plane_funcs;
16368 	unsigned int supported_rotations;
16369 	const u32 *formats;
16370 	int num_formats;
16371 	int ret, zpos;
16372 
16373 	if (INTEL_GEN(dev_priv) >= 9)
16374 		return skl_universal_plane_create(dev_priv, pipe,
16375 						  PLANE_PRIMARY);
16376 
16377 	plane = intel_plane_alloc();
16378 	if (IS_ERR(plane))
16379 		return plane;
16380 
16381 	plane->pipe = pipe;
16382 	/*
16383 	 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
16384 	 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
16385 	 */
16386 	if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 &&
16387 	    INTEL_NUM_PIPES(dev_priv) == 2)
16388 		plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
16389 	else
16390 		plane->i9xx_plane = (enum i9xx_plane_id) pipe;
16391 	plane->id = PLANE_PRIMARY;
16392 	plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
16393 
16394 	plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
16395 	if (plane->has_fbc) {
16396 		struct intel_fbc *fbc = &dev_priv->fbc;
16397 
16398 		fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
16399 	}
16400 
16401 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16402 		formats = vlv_primary_formats;
16403 		num_formats = ARRAY_SIZE(vlv_primary_formats);
16404 	} else if (INTEL_GEN(dev_priv) >= 4) {
16405 		/*
16406 		 * WaFP16GammaEnabling:ivb
16407 		 * "Workaround : When using the 64-bit format, the plane
16408 		 *  output on each color channel has one quarter amplitude.
16409 		 *  It can be brought up to full amplitude by using pipe
16410 		 *  gamma correction or pipe color space conversion to
16411 		 *  multiply the plane output by four."
16412 		 *
16413 		 * There is no dedicated plane gamma for the primary plane,
16414 		 * and using the pipe gamma/csc could conflict with other
16415 		 * planes, so we choose not to expose fp16 on IVB primary
16416 		 * planes. HSW primary planes no longer have this problem.
16417 		 */
16418 		if (IS_IVYBRIDGE(dev_priv)) {
16419 			formats = ivb_primary_formats;
16420 			num_formats = ARRAY_SIZE(ivb_primary_formats);
16421 		} else {
16422 			formats = i965_primary_formats;
16423 			num_formats = ARRAY_SIZE(i965_primary_formats);
16424 		}
16425 	} else {
16426 		formats = i8xx_primary_formats;
16427 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
16428 	}
16429 
16430 	if (INTEL_GEN(dev_priv) >= 4)
16431 		plane_funcs = &i965_plane_funcs;
16432 	else
16433 		plane_funcs = &i8xx_plane_funcs;
16434 
16435 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16436 		plane->min_cdclk = vlv_plane_min_cdclk;
16437 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16438 		plane->min_cdclk = hsw_plane_min_cdclk;
16439 	else if (IS_IVYBRIDGE(dev_priv))
16440 		plane->min_cdclk = ivb_plane_min_cdclk;
16441 	else
16442 		plane->min_cdclk = i9xx_plane_min_cdclk;
16443 
16444 	plane->max_stride = i9xx_plane_max_stride;
16445 	plane->update_plane = i9xx_update_plane;
16446 	plane->disable_plane = i9xx_disable_plane;
16447 	plane->get_hw_state = i9xx_plane_get_hw_state;
16448 	plane->check_plane = i9xx_plane_check;
16449 
16450 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
16451 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16452 					       0, plane_funcs,
16453 					       formats, num_formats,
16454 					       i9xx_format_modifiers,
16455 					       DRM_PLANE_TYPE_PRIMARY,
16456 					       "primary %c", pipe_name(pipe));
16457 	else
16458 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16459 					       0, plane_funcs,
16460 					       formats, num_formats,
16461 					       i9xx_format_modifiers,
16462 					       DRM_PLANE_TYPE_PRIMARY,
16463 					       "plane %c",
16464 					       plane_name(plane->i9xx_plane));
16465 	if (ret)
16466 		goto fail;
16467 
16468 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
16469 		supported_rotations =
16470 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
16471 			DRM_MODE_REFLECT_X;
16472 	} else if (INTEL_GEN(dev_priv) >= 4) {
16473 		supported_rotations =
16474 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
16475 	} else {
16476 		supported_rotations = DRM_MODE_ROTATE_0;
16477 	}
16478 
16479 	if (INTEL_GEN(dev_priv) >= 4)
16480 		drm_plane_create_rotation_property(&plane->base,
16481 						   DRM_MODE_ROTATE_0,
16482 						   supported_rotations);
16483 
16484 	zpos = 0;
16485 	drm_plane_create_zpos_immutable_property(&plane->base, zpos);
16486 
16487 	drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
16488 
16489 	return plane;
16490 
16491 fail:
16492 	intel_plane_free(plane);
16493 
16494 	return ERR_PTR(ret);
16495 }
16496 
16497 static struct intel_plane *
intel_cursor_plane_create(struct drm_i915_private * dev_priv,enum pipe pipe)16498 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
16499 			  enum pipe pipe)
16500 {
16501 	struct intel_plane *cursor;
16502 	int ret, zpos;
16503 
16504 	cursor = intel_plane_alloc();
16505 	if (IS_ERR(cursor))
16506 		return cursor;
16507 
16508 	cursor->pipe = pipe;
16509 	cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
16510 	cursor->id = PLANE_CURSOR;
16511 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
16512 
16513 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16514 		cursor->max_stride = i845_cursor_max_stride;
16515 		cursor->update_plane = i845_update_cursor;
16516 		cursor->disable_plane = i845_disable_cursor;
16517 		cursor->get_hw_state = i845_cursor_get_hw_state;
16518 		cursor->check_plane = i845_check_cursor;
16519 	} else {
16520 		cursor->max_stride = i9xx_cursor_max_stride;
16521 		cursor->update_plane = i9xx_update_cursor;
16522 		cursor->disable_plane = i9xx_disable_cursor;
16523 		cursor->get_hw_state = i9xx_cursor_get_hw_state;
16524 		cursor->check_plane = i9xx_check_cursor;
16525 	}
16526 
16527 	cursor->cursor.base = ~0;
16528 	cursor->cursor.cntl = ~0;
16529 
16530 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
16531 		cursor->cursor.size = ~0;
16532 
16533 	ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
16534 				       0, &intel_cursor_plane_funcs,
16535 				       intel_cursor_formats,
16536 				       ARRAY_SIZE(intel_cursor_formats),
16537 				       cursor_format_modifiers,
16538 				       DRM_PLANE_TYPE_CURSOR,
16539 				       "cursor %c", pipe_name(pipe));
16540 	if (ret)
16541 		goto fail;
16542 
16543 	if (INTEL_GEN(dev_priv) >= 4)
16544 		drm_plane_create_rotation_property(&cursor->base,
16545 						   DRM_MODE_ROTATE_0,
16546 						   DRM_MODE_ROTATE_0 |
16547 						   DRM_MODE_ROTATE_180);
16548 
16549 	zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
16550 	drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
16551 
16552 	if (INTEL_GEN(dev_priv) >= 12)
16553 		drm_plane_enable_fb_damage_clips(&cursor->base);
16554 
16555 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
16556 
16557 	return cursor;
16558 
16559 fail:
16560 	intel_plane_free(cursor);
16561 
16562 	return ERR_PTR(ret);
16563 }
16564 
16565 #define INTEL_CRTC_FUNCS \
16566 	.gamma_set = drm_atomic_helper_legacy_gamma_set, \
16567 	.set_config = drm_atomic_helper_set_config, \
16568 	.destroy = intel_crtc_destroy, \
16569 	.page_flip = drm_atomic_helper_page_flip, \
16570 	.atomic_duplicate_state = intel_crtc_duplicate_state, \
16571 	.atomic_destroy_state = intel_crtc_destroy_state, \
16572 	.set_crc_source = intel_crtc_set_crc_source, \
16573 	.verify_crc_source = intel_crtc_verify_crc_source, \
16574 	.get_crc_sources = intel_crtc_get_crc_sources
16575 
16576 static const struct drm_crtc_funcs bdw_crtc_funcs = {
16577 	INTEL_CRTC_FUNCS,
16578 
16579 	.get_vblank_counter = g4x_get_vblank_counter,
16580 	.enable_vblank = bdw_enable_vblank,
16581 	.disable_vblank = bdw_disable_vblank,
16582 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16583 };
16584 
16585 static const struct drm_crtc_funcs ilk_crtc_funcs = {
16586 	INTEL_CRTC_FUNCS,
16587 
16588 	.get_vblank_counter = g4x_get_vblank_counter,
16589 	.enable_vblank = ilk_enable_vblank,
16590 	.disable_vblank = ilk_disable_vblank,
16591 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16592 };
16593 
16594 static const struct drm_crtc_funcs g4x_crtc_funcs = {
16595 	INTEL_CRTC_FUNCS,
16596 
16597 	.get_vblank_counter = g4x_get_vblank_counter,
16598 	.enable_vblank = i965_enable_vblank,
16599 	.disable_vblank = i965_disable_vblank,
16600 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16601 };
16602 
16603 static const struct drm_crtc_funcs i965_crtc_funcs = {
16604 	INTEL_CRTC_FUNCS,
16605 
16606 	.get_vblank_counter = i915_get_vblank_counter,
16607 	.enable_vblank = i965_enable_vblank,
16608 	.disable_vblank = i965_disable_vblank,
16609 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16610 };
16611 
16612 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
16613 	INTEL_CRTC_FUNCS,
16614 
16615 	.get_vblank_counter = i915_get_vblank_counter,
16616 	.enable_vblank = i915gm_enable_vblank,
16617 	.disable_vblank = i915gm_disable_vblank,
16618 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16619 };
16620 
16621 static const struct drm_crtc_funcs i915_crtc_funcs = {
16622 	INTEL_CRTC_FUNCS,
16623 
16624 	.get_vblank_counter = i915_get_vblank_counter,
16625 	.enable_vblank = i8xx_enable_vblank,
16626 	.disable_vblank = i8xx_disable_vblank,
16627 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16628 };
16629 
16630 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
16631 	INTEL_CRTC_FUNCS,
16632 
16633 	/* no hw vblank counter */
16634 	.enable_vblank = i8xx_enable_vblank,
16635 	.disable_vblank = i8xx_disable_vblank,
16636 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16637 };
16638 
intel_crtc_alloc(void)16639 static struct intel_crtc *intel_crtc_alloc(void)
16640 {
16641 	struct intel_crtc_state *crtc_state;
16642 	struct intel_crtc *crtc;
16643 
16644 	crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
16645 	if (!crtc)
16646 		return ERR_PTR(-ENOMEM);
16647 
16648 	crtc_state = intel_crtc_state_alloc(crtc);
16649 	if (!crtc_state) {
16650 		kfree(crtc);
16651 		return ERR_PTR(-ENOMEM);
16652 	}
16653 
16654 	crtc->base.state = &crtc_state->uapi;
16655 	crtc->config = crtc_state;
16656 
16657 	return crtc;
16658 }
16659 
intel_crtc_free(struct intel_crtc * crtc)16660 static void intel_crtc_free(struct intel_crtc *crtc)
16661 {
16662 	intel_crtc_destroy_state(&crtc->base, crtc->base.state);
16663 	kfree(crtc);
16664 }
16665 
intel_plane_possible_crtcs_init(struct drm_i915_private * dev_priv)16666 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv)
16667 {
16668 	struct intel_plane *plane;
16669 
16670 	for_each_intel_plane(&dev_priv->drm, plane) {
16671 		struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
16672 								  plane->pipe);
16673 
16674 		plane->base.possible_crtcs = drm_crtc_mask(&crtc->base);
16675 	}
16676 }
16677 
intel_crtc_init(struct drm_i915_private * dev_priv,enum pipe pipe)16678 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
16679 {
16680 	struct intel_plane *primary, *cursor;
16681 	const struct drm_crtc_funcs *funcs;
16682 	struct intel_crtc *crtc;
16683 	int sprite, ret;
16684 
16685 	crtc = intel_crtc_alloc();
16686 	if (IS_ERR(crtc))
16687 		return PTR_ERR(crtc);
16688 
16689 	crtc->pipe = pipe;
16690 	crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
16691 
16692 	primary = intel_primary_plane_create(dev_priv, pipe);
16693 	if (IS_ERR(primary)) {
16694 		ret = PTR_ERR(primary);
16695 		goto fail;
16696 	}
16697 	crtc->plane_ids_mask |= BIT(primary->id);
16698 
16699 	for_each_sprite(dev_priv, pipe, sprite) {
16700 		struct intel_plane *plane;
16701 
16702 		plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
16703 		if (IS_ERR(plane)) {
16704 			ret = PTR_ERR(plane);
16705 			goto fail;
16706 		}
16707 		crtc->plane_ids_mask |= BIT(plane->id);
16708 	}
16709 
16710 	cursor = intel_cursor_plane_create(dev_priv, pipe);
16711 	if (IS_ERR(cursor)) {
16712 		ret = PTR_ERR(cursor);
16713 		goto fail;
16714 	}
16715 	crtc->plane_ids_mask |= BIT(cursor->id);
16716 
16717 	if (HAS_GMCH(dev_priv)) {
16718 		if (IS_CHERRYVIEW(dev_priv) ||
16719 		    IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
16720 			funcs = &g4x_crtc_funcs;
16721 		else if (IS_GEN(dev_priv, 4))
16722 			funcs = &i965_crtc_funcs;
16723 		else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
16724 			funcs = &i915gm_crtc_funcs;
16725 		else if (IS_GEN(dev_priv, 3))
16726 			funcs = &i915_crtc_funcs;
16727 		else
16728 			funcs = &i8xx_crtc_funcs;
16729 	} else {
16730 		if (INTEL_GEN(dev_priv) >= 8)
16731 			funcs = &bdw_crtc_funcs;
16732 		else
16733 			funcs = &ilk_crtc_funcs;
16734 	}
16735 
16736 	ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
16737 					&primary->base, &cursor->base,
16738 					funcs, "pipe %c", pipe_name(pipe));
16739 	if (ret)
16740 		goto fail;
16741 
16742 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
16743 	       dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
16744 	dev_priv->pipe_to_crtc_mapping[pipe] = crtc;
16745 
16746 	if (INTEL_GEN(dev_priv) < 9) {
16747 		enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
16748 
16749 		BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
16750 		       dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
16751 		dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc;
16752 	}
16753 
16754 	intel_color_init(crtc);
16755 
16756 	intel_crtc_crc_init(crtc);
16757 
16758 	drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
16759 
16760 	return 0;
16761 
16762 fail:
16763 	intel_crtc_free(crtc);
16764 
16765 	return ret;
16766 }
16767 
intel_get_pipe_from_crtc_id_ioctl(struct drm_device * dev,void * data,struct drm_file * file)16768 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
16769 				      struct drm_file *file)
16770 {
16771 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
16772 	struct drm_crtc *drmmode_crtc;
16773 	struct intel_crtc *crtc;
16774 
16775 	drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
16776 	if (!drmmode_crtc)
16777 		return -ENOENT;
16778 
16779 	crtc = to_intel_crtc(drmmode_crtc);
16780 	pipe_from_crtc_id->pipe = crtc->pipe;
16781 
16782 	return 0;
16783 }
16784 
intel_encoder_possible_clones(struct intel_encoder * encoder)16785 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
16786 {
16787 	struct drm_device *dev = encoder->base.dev;
16788 	struct intel_encoder *source_encoder;
16789 	u32 possible_clones = 0;
16790 
16791 	for_each_intel_encoder(dev, source_encoder) {
16792 		if (encoders_cloneable(encoder, source_encoder))
16793 			possible_clones |= drm_encoder_mask(&source_encoder->base);
16794 	}
16795 
16796 	return possible_clones;
16797 }
16798 
intel_encoder_possible_crtcs(struct intel_encoder * encoder)16799 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
16800 {
16801 	struct drm_device *dev = encoder->base.dev;
16802 	struct intel_crtc *crtc;
16803 	u32 possible_crtcs = 0;
16804 
16805 	for_each_intel_crtc(dev, crtc) {
16806 		if (encoder->pipe_mask & BIT(crtc->pipe))
16807 			possible_crtcs |= drm_crtc_mask(&crtc->base);
16808 	}
16809 
16810 	return possible_crtcs;
16811 }
16812 
ilk_has_edp_a(struct drm_i915_private * dev_priv)16813 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
16814 {
16815 	if (!IS_MOBILE(dev_priv))
16816 		return false;
16817 
16818 	if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0)
16819 		return false;
16820 
16821 	if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE))
16822 		return false;
16823 
16824 	return true;
16825 }
16826 
intel_ddi_crt_present(struct drm_i915_private * dev_priv)16827 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
16828 {
16829 	if (INTEL_GEN(dev_priv) >= 9)
16830 		return false;
16831 
16832 	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
16833 		return false;
16834 
16835 	if (HAS_PCH_LPT_H(dev_priv) &&
16836 	    intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
16837 		return false;
16838 
16839 	/* DDI E can't be used if DDI A requires 4 lanes */
16840 	if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
16841 		return false;
16842 
16843 	if (!dev_priv->vbt.int_crt_support)
16844 		return false;
16845 
16846 	return true;
16847 }
16848 
intel_pps_unlock_regs_wa(struct drm_i915_private * dev_priv)16849 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
16850 {
16851 	int pps_num;
16852 	int pps_idx;
16853 
16854 	if (HAS_DDI(dev_priv))
16855 		return;
16856 	/*
16857 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
16858 	 * everywhere where registers can be write protected.
16859 	 */
16860 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16861 		pps_num = 2;
16862 	else
16863 		pps_num = 1;
16864 
16865 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
16866 		u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx));
16867 
16868 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
16869 		intel_de_write(dev_priv, PP_CONTROL(pps_idx), val);
16870 	}
16871 }
16872 
intel_pps_init(struct drm_i915_private * dev_priv)16873 static void intel_pps_init(struct drm_i915_private *dev_priv)
16874 {
16875 	if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
16876 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
16877 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16878 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
16879 	else
16880 		dev_priv->pps_mmio_base = PPS_BASE;
16881 
16882 	intel_pps_unlock_regs_wa(dev_priv);
16883 }
16884 
intel_setup_outputs(struct drm_i915_private * dev_priv)16885 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
16886 {
16887 	struct intel_encoder *encoder;
16888 	bool dpd_is_edp = false;
16889 
16890 	intel_pps_init(dev_priv);
16891 
16892 	if (!HAS_DISPLAY(dev_priv))
16893 		return;
16894 
16895 	if (IS_ROCKETLAKE(dev_priv)) {
16896 		intel_ddi_init(dev_priv, PORT_A);
16897 		intel_ddi_init(dev_priv, PORT_B);
16898 		intel_ddi_init(dev_priv, PORT_D);	/* DDI TC1 */
16899 		intel_ddi_init(dev_priv, PORT_E);	/* DDI TC2 */
16900 	} else if (INTEL_GEN(dev_priv) >= 12) {
16901 		intel_ddi_init(dev_priv, PORT_A);
16902 		intel_ddi_init(dev_priv, PORT_B);
16903 		intel_ddi_init(dev_priv, PORT_D);
16904 		intel_ddi_init(dev_priv, PORT_E);
16905 		intel_ddi_init(dev_priv, PORT_F);
16906 		intel_ddi_init(dev_priv, PORT_G);
16907 		intel_ddi_init(dev_priv, PORT_H);
16908 		intel_ddi_init(dev_priv, PORT_I);
16909 		icl_dsi_init(dev_priv);
16910 	} else if (IS_ELKHARTLAKE(dev_priv)) {
16911 		intel_ddi_init(dev_priv, PORT_A);
16912 		intel_ddi_init(dev_priv, PORT_B);
16913 		intel_ddi_init(dev_priv, PORT_C);
16914 		intel_ddi_init(dev_priv, PORT_D);
16915 		icl_dsi_init(dev_priv);
16916 	} else if (IS_GEN(dev_priv, 11)) {
16917 		intel_ddi_init(dev_priv, PORT_A);
16918 		intel_ddi_init(dev_priv, PORT_B);
16919 		intel_ddi_init(dev_priv, PORT_C);
16920 		intel_ddi_init(dev_priv, PORT_D);
16921 		intel_ddi_init(dev_priv, PORT_E);
16922 		/*
16923 		 * On some ICL SKUs port F is not present. No strap bits for
16924 		 * this, so rely on VBT.
16925 		 * Work around broken VBTs on SKUs known to have no port F.
16926 		 */
16927 		if (IS_ICL_WITH_PORT_F(dev_priv) &&
16928 		    intel_bios_is_port_present(dev_priv, PORT_F))
16929 			intel_ddi_init(dev_priv, PORT_F);
16930 
16931 		icl_dsi_init(dev_priv);
16932 	} else if (IS_GEN9_LP(dev_priv)) {
16933 		/*
16934 		 * FIXME: Broxton doesn't support port detection via the
16935 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
16936 		 * detect the ports.
16937 		 */
16938 		intel_ddi_init(dev_priv, PORT_A);
16939 		intel_ddi_init(dev_priv, PORT_B);
16940 		intel_ddi_init(dev_priv, PORT_C);
16941 
16942 		vlv_dsi_init(dev_priv);
16943 	} else if (HAS_DDI(dev_priv)) {
16944 		int found;
16945 
16946 		if (intel_ddi_crt_present(dev_priv))
16947 			intel_crt_init(dev_priv);
16948 
16949 		/*
16950 		 * Haswell uses DDI functions to detect digital outputs.
16951 		 * On SKL pre-D0 the strap isn't connected, so we assume
16952 		 * it's there.
16953 		 */
16954 		found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
16955 		/* WaIgnoreDDIAStrap: skl */
16956 		if (found || IS_GEN9_BC(dev_priv))
16957 			intel_ddi_init(dev_priv, PORT_A);
16958 
16959 		/* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16960 		 * register */
16961 		found = intel_de_read(dev_priv, SFUSE_STRAP);
16962 
16963 		if (found & SFUSE_STRAP_DDIB_DETECTED)
16964 			intel_ddi_init(dev_priv, PORT_B);
16965 		if (found & SFUSE_STRAP_DDIC_DETECTED)
16966 			intel_ddi_init(dev_priv, PORT_C);
16967 		if (found & SFUSE_STRAP_DDID_DETECTED)
16968 			intel_ddi_init(dev_priv, PORT_D);
16969 		if (found & SFUSE_STRAP_DDIF_DETECTED)
16970 			intel_ddi_init(dev_priv, PORT_F);
16971 		/*
16972 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16973 		 */
16974 		if (IS_GEN9_BC(dev_priv) &&
16975 		    intel_bios_is_port_present(dev_priv, PORT_E))
16976 			intel_ddi_init(dev_priv, PORT_E);
16977 
16978 	} else if (HAS_PCH_SPLIT(dev_priv)) {
16979 		int found;
16980 
16981 		/*
16982 		 * intel_edp_init_connector() depends on this completing first,
16983 		 * to prevent the registration of both eDP and LVDS and the
16984 		 * incorrect sharing of the PPS.
16985 		 */
16986 		intel_lvds_init(dev_priv);
16987 		intel_crt_init(dev_priv);
16988 
16989 		dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16990 
16991 		if (ilk_has_edp_a(dev_priv))
16992 			intel_dp_init(dev_priv, DP_A, PORT_A);
16993 
16994 		if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) {
16995 			/* PCH SDVOB multiplex with HDMIB */
16996 			found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16997 			if (!found)
16998 				intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16999 			if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED))
17000 				intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
17001 		}
17002 
17003 		if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED)
17004 			intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
17005 
17006 		if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED)
17007 			intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
17008 
17009 		if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED)
17010 			intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
17011 
17012 		if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED)
17013 			intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
17014 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17015 		bool has_edp, has_port;
17016 
17017 		if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
17018 			intel_crt_init(dev_priv);
17019 
17020 		/*
17021 		 * The DP_DETECTED bit is the latched state of the DDC
17022 		 * SDA pin at boot. However since eDP doesn't require DDC
17023 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
17024 		 * eDP ports may have been muxed to an alternate function.
17025 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
17026 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
17027 		 * detect eDP ports.
17028 		 *
17029 		 * Sadly the straps seem to be missing sometimes even for HDMI
17030 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
17031 		 * and VBT for the presence of the port. Additionally we can't
17032 		 * trust the port type the VBT declares as we've seen at least
17033 		 * HDMI ports that the VBT claim are DP or eDP.
17034 		 */
17035 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
17036 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
17037 		if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port)
17038 			has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
17039 		if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
17040 			intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
17041 
17042 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
17043 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
17044 		if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port)
17045 			has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
17046 		if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
17047 			intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
17048 
17049 		if (IS_CHERRYVIEW(dev_priv)) {
17050 			/*
17051 			 * eDP not supported on port D,
17052 			 * so no need to worry about it
17053 			 */
17054 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
17055 			if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port)
17056 				intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
17057 			if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port)
17058 				intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
17059 		}
17060 
17061 		vlv_dsi_init(dev_priv);
17062 	} else if (IS_PINEVIEW(dev_priv)) {
17063 		intel_lvds_init(dev_priv);
17064 		intel_crt_init(dev_priv);
17065 	} else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
17066 		bool found = false;
17067 
17068 		if (IS_MOBILE(dev_priv))
17069 			intel_lvds_init(dev_priv);
17070 
17071 		intel_crt_init(dev_priv);
17072 
17073 		if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17074 			drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n");
17075 			found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
17076 			if (!found && IS_G4X(dev_priv)) {
17077 				drm_dbg_kms(&dev_priv->drm,
17078 					    "probing HDMI on SDVOB\n");
17079 				intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
17080 			}
17081 
17082 			if (!found && IS_G4X(dev_priv))
17083 				intel_dp_init(dev_priv, DP_B, PORT_B);
17084 		}
17085 
17086 		/* Before G4X SDVOC doesn't have its own detect register */
17087 
17088 		if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17089 			drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n");
17090 			found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
17091 		}
17092 
17093 		if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) {
17094 
17095 			if (IS_G4X(dev_priv)) {
17096 				drm_dbg_kms(&dev_priv->drm,
17097 					    "probing HDMI on SDVOC\n");
17098 				intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
17099 			}
17100 			if (IS_G4X(dev_priv))
17101 				intel_dp_init(dev_priv, DP_C, PORT_C);
17102 		}
17103 
17104 		if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED))
17105 			intel_dp_init(dev_priv, DP_D, PORT_D);
17106 
17107 		if (SUPPORTS_TV(dev_priv))
17108 			intel_tv_init(dev_priv);
17109 	} else if (IS_GEN(dev_priv, 2)) {
17110 		if (IS_I85X(dev_priv))
17111 			intel_lvds_init(dev_priv);
17112 
17113 		intel_crt_init(dev_priv);
17114 		intel_dvo_init(dev_priv);
17115 	}
17116 
17117 	intel_psr_init(dev_priv);
17118 
17119 	for_each_intel_encoder(&dev_priv->drm, encoder) {
17120 		encoder->base.possible_crtcs =
17121 			intel_encoder_possible_crtcs(encoder);
17122 		encoder->base.possible_clones =
17123 			intel_encoder_possible_clones(encoder);
17124 	}
17125 
17126 	intel_init_pch_refclk(dev_priv);
17127 
17128 	drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
17129 }
17130 
intel_user_framebuffer_destroy(struct drm_framebuffer * fb)17131 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
17132 {
17133 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
17134 
17135 	drm_framebuffer_cleanup(fb);
17136 	intel_frontbuffer_put(intel_fb->frontbuffer);
17137 
17138 	kfree(intel_fb);
17139 }
17140 
intel_user_framebuffer_create_handle(struct drm_framebuffer * fb,struct drm_file * file,unsigned int * handle)17141 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
17142 						struct drm_file *file,
17143 						unsigned int *handle)
17144 {
17145 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17146 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
17147 
17148 	if (obj->userptr.mm) {
17149 		drm_dbg(&i915->drm,
17150 			"attempting to use a userptr for a framebuffer, denied\n");
17151 		return -EINVAL;
17152 	}
17153 
17154 	return drm_gem_handle_create(file, &obj->base, handle);
17155 }
17156 
intel_user_framebuffer_dirty(struct drm_framebuffer * fb,struct drm_file * file,unsigned flags,unsigned color,struct drm_clip_rect * clips,unsigned num_clips)17157 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
17158 					struct drm_file *file,
17159 					unsigned flags, unsigned color,
17160 					struct drm_clip_rect *clips,
17161 					unsigned num_clips)
17162 {
17163 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17164 
17165 	i915_gem_object_flush_if_display(obj);
17166 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
17167 
17168 	return 0;
17169 }
17170 
17171 static const struct drm_framebuffer_funcs intel_fb_funcs = {
17172 	.destroy = intel_user_framebuffer_destroy,
17173 	.create_handle = intel_user_framebuffer_create_handle,
17174 	.dirty = intel_user_framebuffer_dirty,
17175 };
17176 
intel_framebuffer_init(struct intel_framebuffer * intel_fb,struct drm_i915_gem_object * obj,struct drm_mode_fb_cmd2 * mode_cmd)17177 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
17178 				  struct drm_i915_gem_object *obj,
17179 				  struct drm_mode_fb_cmd2 *mode_cmd)
17180 {
17181 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
17182 	struct drm_framebuffer *fb = &intel_fb->base;
17183 	u32 max_stride;
17184 	unsigned int tiling, stride;
17185 	int ret = -EINVAL;
17186 	int i;
17187 
17188 	intel_fb->frontbuffer = intel_frontbuffer_get(obj);
17189 	if (!intel_fb->frontbuffer)
17190 		return -ENOMEM;
17191 
17192 	i915_gem_object_lock(obj, NULL);
17193 	tiling = i915_gem_object_get_tiling(obj);
17194 	stride = i915_gem_object_get_stride(obj);
17195 	i915_gem_object_unlock(obj);
17196 
17197 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
17198 		/*
17199 		 * If there's a fence, enforce that
17200 		 * the fb modifier and tiling mode match.
17201 		 */
17202 		if (tiling != I915_TILING_NONE &&
17203 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17204 			drm_dbg_kms(&dev_priv->drm,
17205 				    "tiling_mode doesn't match fb modifier\n");
17206 			goto err;
17207 		}
17208 	} else {
17209 		if (tiling == I915_TILING_X) {
17210 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
17211 		} else if (tiling == I915_TILING_Y) {
17212 			drm_dbg_kms(&dev_priv->drm,
17213 				    "No Y tiling for legacy addfb\n");
17214 			goto err;
17215 		}
17216 	}
17217 
17218 	if (!drm_any_plane_has_format(&dev_priv->drm,
17219 				      mode_cmd->pixel_format,
17220 				      mode_cmd->modifier[0])) {
17221 		struct drm_format_name_buf format_name;
17222 
17223 		drm_dbg_kms(&dev_priv->drm,
17224 			    "unsupported pixel format %s / modifier 0x%llx\n",
17225 			    drm_get_format_name(mode_cmd->pixel_format,
17226 						&format_name),
17227 			    mode_cmd->modifier[0]);
17228 		goto err;
17229 	}
17230 
17231 	/*
17232 	 * gen2/3 display engine uses the fence if present,
17233 	 * so the tiling mode must match the fb modifier exactly.
17234 	 */
17235 	if (INTEL_GEN(dev_priv) < 4 &&
17236 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17237 		drm_dbg_kms(&dev_priv->drm,
17238 			    "tiling_mode must match fb modifier exactly on gen2/3\n");
17239 		goto err;
17240 	}
17241 
17242 	max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
17243 					 mode_cmd->modifier[0]);
17244 	if (mode_cmd->pitches[0] > max_stride) {
17245 		drm_dbg_kms(&dev_priv->drm,
17246 			    "%s pitch (%u) must be at most %d\n",
17247 			    mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
17248 			    "tiled" : "linear",
17249 			    mode_cmd->pitches[0], max_stride);
17250 		goto err;
17251 	}
17252 
17253 	/*
17254 	 * If there's a fence, enforce that
17255 	 * the fb pitch and fence stride match.
17256 	 */
17257 	if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
17258 		drm_dbg_kms(&dev_priv->drm,
17259 			    "pitch (%d) must match tiling stride (%d)\n",
17260 			    mode_cmd->pitches[0], stride);
17261 		goto err;
17262 	}
17263 
17264 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
17265 	if (mode_cmd->offsets[0] != 0) {
17266 		drm_dbg_kms(&dev_priv->drm,
17267 			    "plane 0 offset (0x%08x) must be 0\n",
17268 			    mode_cmd->offsets[0]);
17269 		goto err;
17270 	}
17271 
17272 	drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
17273 
17274 	for (i = 0; i < fb->format->num_planes; i++) {
17275 		u32 stride_alignment;
17276 
17277 		if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
17278 			drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n",
17279 				    i);
17280 			goto err;
17281 		}
17282 
17283 		stride_alignment = intel_fb_stride_alignment(fb, i);
17284 		if (fb->pitches[i] & (stride_alignment - 1)) {
17285 			drm_dbg_kms(&dev_priv->drm,
17286 				    "plane %d pitch (%d) must be at least %u byte aligned\n",
17287 				    i, fb->pitches[i], stride_alignment);
17288 			goto err;
17289 		}
17290 
17291 		if (is_gen12_ccs_plane(fb, i)) {
17292 			int ccs_aux_stride = gen12_ccs_aux_stride(fb, i);
17293 
17294 			if (fb->pitches[i] != ccs_aux_stride) {
17295 				drm_dbg_kms(&dev_priv->drm,
17296 					    "ccs aux plane %d pitch (%d) must be %d\n",
17297 					    i,
17298 					    fb->pitches[i], ccs_aux_stride);
17299 				goto err;
17300 			}
17301 		}
17302 
17303 		fb->obj[i] = &obj->base;
17304 	}
17305 
17306 	ret = intel_fill_fb_info(dev_priv, fb);
17307 	if (ret)
17308 		goto err;
17309 
17310 	ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
17311 	if (ret) {
17312 		drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret);
17313 		goto err;
17314 	}
17315 
17316 	return 0;
17317 
17318 err:
17319 	intel_frontbuffer_put(intel_fb->frontbuffer);
17320 	return ret;
17321 }
17322 
17323 static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device * dev,struct drm_file * filp,const struct drm_mode_fb_cmd2 * user_mode_cmd)17324 intel_user_framebuffer_create(struct drm_device *dev,
17325 			      struct drm_file *filp,
17326 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
17327 {
17328 	struct drm_framebuffer *fb;
17329 	struct drm_i915_gem_object *obj;
17330 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
17331 
17332 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
17333 	if (!obj)
17334 		return ERR_PTR(-ENOENT);
17335 
17336 	fb = intel_framebuffer_create(obj, &mode_cmd);
17337 	i915_gem_object_put(obj);
17338 
17339 	return fb;
17340 }
17341 
17342 static enum drm_mode_status
intel_mode_valid(struct drm_device * dev,const struct drm_display_mode * mode)17343 intel_mode_valid(struct drm_device *dev,
17344 		 const struct drm_display_mode *mode)
17345 {
17346 	struct drm_i915_private *dev_priv = to_i915(dev);
17347 	int hdisplay_max, htotal_max;
17348 	int vdisplay_max, vtotal_max;
17349 
17350 	/*
17351 	 * Can't reject DBLSCAN here because Xorg ddxen can add piles
17352 	 * of DBLSCAN modes to the output's mode list when they detect
17353 	 * the scaling mode property on the connector. And they don't
17354 	 * ask the kernel to validate those modes in any way until
17355 	 * modeset time at which point the client gets a protocol error.
17356 	 * So in order to not upset those clients we silently ignore the
17357 	 * DBLSCAN flag on such connectors. For other connectors we will
17358 	 * reject modes with the DBLSCAN flag in encoder->compute_config().
17359 	 * And we always reject DBLSCAN modes in connector->mode_valid()
17360 	 * as we never want such modes on the connector's mode list.
17361 	 */
17362 
17363 	if (mode->vscan > 1)
17364 		return MODE_NO_VSCAN;
17365 
17366 	if (mode->flags & DRM_MODE_FLAG_HSKEW)
17367 		return MODE_H_ILLEGAL;
17368 
17369 	if (mode->flags & (DRM_MODE_FLAG_CSYNC |
17370 			   DRM_MODE_FLAG_NCSYNC |
17371 			   DRM_MODE_FLAG_PCSYNC))
17372 		return MODE_HSYNC;
17373 
17374 	if (mode->flags & (DRM_MODE_FLAG_BCAST |
17375 			   DRM_MODE_FLAG_PIXMUX |
17376 			   DRM_MODE_FLAG_CLKDIV2))
17377 		return MODE_BAD;
17378 
17379 	/* Transcoder timing limits */
17380 	if (INTEL_GEN(dev_priv) >= 11) {
17381 		hdisplay_max = 16384;
17382 		vdisplay_max = 8192;
17383 		htotal_max = 16384;
17384 		vtotal_max = 8192;
17385 	} else if (INTEL_GEN(dev_priv) >= 9 ||
17386 		   IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17387 		hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
17388 		vdisplay_max = 4096;
17389 		htotal_max = 8192;
17390 		vtotal_max = 8192;
17391 	} else if (INTEL_GEN(dev_priv) >= 3) {
17392 		hdisplay_max = 4096;
17393 		vdisplay_max = 4096;
17394 		htotal_max = 8192;
17395 		vtotal_max = 8192;
17396 	} else {
17397 		hdisplay_max = 2048;
17398 		vdisplay_max = 2048;
17399 		htotal_max = 4096;
17400 		vtotal_max = 4096;
17401 	}
17402 
17403 	if (mode->hdisplay > hdisplay_max ||
17404 	    mode->hsync_start > htotal_max ||
17405 	    mode->hsync_end > htotal_max ||
17406 	    mode->htotal > htotal_max)
17407 		return MODE_H_ILLEGAL;
17408 
17409 	if (mode->vdisplay > vdisplay_max ||
17410 	    mode->vsync_start > vtotal_max ||
17411 	    mode->vsync_end > vtotal_max ||
17412 	    mode->vtotal > vtotal_max)
17413 		return MODE_V_ILLEGAL;
17414 
17415 	if (INTEL_GEN(dev_priv) >= 5) {
17416 		if (mode->hdisplay < 64 ||
17417 		    mode->htotal - mode->hdisplay < 32)
17418 			return MODE_H_ILLEGAL;
17419 
17420 		if (mode->vtotal - mode->vdisplay < 5)
17421 			return MODE_V_ILLEGAL;
17422 	} else {
17423 		if (mode->htotal - mode->hdisplay < 32)
17424 			return MODE_H_ILLEGAL;
17425 
17426 		if (mode->vtotal - mode->vdisplay < 3)
17427 			return MODE_V_ILLEGAL;
17428 	}
17429 
17430 	return MODE_OK;
17431 }
17432 
17433 enum drm_mode_status
intel_mode_valid_max_plane_size(struct drm_i915_private * dev_priv,const struct drm_display_mode * mode)17434 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
17435 				const struct drm_display_mode *mode)
17436 {
17437 	int plane_width_max, plane_height_max;
17438 
17439 	/*
17440 	 * intel_mode_valid() should be
17441 	 * sufficient on older platforms.
17442 	 */
17443 	if (INTEL_GEN(dev_priv) < 9)
17444 		return MODE_OK;
17445 
17446 	/*
17447 	 * Most people will probably want a fullscreen
17448 	 * plane so let's not advertize modes that are
17449 	 * too big for that.
17450 	 */
17451 	if (INTEL_GEN(dev_priv) >= 11) {
17452 		plane_width_max = 5120;
17453 		plane_height_max = 4320;
17454 	} else {
17455 		plane_width_max = 5120;
17456 		plane_height_max = 4096;
17457 	}
17458 
17459 	if (mode->hdisplay > plane_width_max)
17460 		return MODE_H_ILLEGAL;
17461 
17462 	if (mode->vdisplay > plane_height_max)
17463 		return MODE_V_ILLEGAL;
17464 
17465 	return MODE_OK;
17466 }
17467 
17468 static const struct drm_mode_config_funcs intel_mode_funcs = {
17469 	.fb_create = intel_user_framebuffer_create,
17470 	.get_format_info = intel_get_format_info,
17471 	.output_poll_changed = intel_fbdev_output_poll_changed,
17472 	.mode_valid = intel_mode_valid,
17473 	.atomic_check = intel_atomic_check,
17474 	.atomic_commit = intel_atomic_commit,
17475 	.atomic_state_alloc = intel_atomic_state_alloc,
17476 	.atomic_state_clear = intel_atomic_state_clear,
17477 	.atomic_state_free = intel_atomic_state_free,
17478 };
17479 
17480 /**
17481  * intel_init_display_hooks - initialize the display modesetting hooks
17482  * @dev_priv: device private
17483  */
intel_init_display_hooks(struct drm_i915_private * dev_priv)17484 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
17485 {
17486 	intel_init_cdclk_hooks(dev_priv);
17487 
17488 	if (INTEL_GEN(dev_priv) >= 9) {
17489 		dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17490 		dev_priv->display.get_initial_plane_config =
17491 			skl_get_initial_plane_config;
17492 		dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
17493 		dev_priv->display.crtc_enable = hsw_crtc_enable;
17494 		dev_priv->display.crtc_disable = hsw_crtc_disable;
17495 	} else if (HAS_DDI(dev_priv)) {
17496 		dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17497 		dev_priv->display.get_initial_plane_config =
17498 			i9xx_get_initial_plane_config;
17499 		dev_priv->display.crtc_compute_clock =
17500 			hsw_crtc_compute_clock;
17501 		dev_priv->display.crtc_enable = hsw_crtc_enable;
17502 		dev_priv->display.crtc_disable = hsw_crtc_disable;
17503 	} else if (HAS_PCH_SPLIT(dev_priv)) {
17504 		dev_priv->display.get_pipe_config = ilk_get_pipe_config;
17505 		dev_priv->display.get_initial_plane_config =
17506 			i9xx_get_initial_plane_config;
17507 		dev_priv->display.crtc_compute_clock =
17508 			ilk_crtc_compute_clock;
17509 		dev_priv->display.crtc_enable = ilk_crtc_enable;
17510 		dev_priv->display.crtc_disable = ilk_crtc_disable;
17511 	} else if (IS_CHERRYVIEW(dev_priv)) {
17512 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17513 		dev_priv->display.get_initial_plane_config =
17514 			i9xx_get_initial_plane_config;
17515 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
17516 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
17517 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17518 	} else if (IS_VALLEYVIEW(dev_priv)) {
17519 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17520 		dev_priv->display.get_initial_plane_config =
17521 			i9xx_get_initial_plane_config;
17522 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
17523 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
17524 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17525 	} else if (IS_G4X(dev_priv)) {
17526 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17527 		dev_priv->display.get_initial_plane_config =
17528 			i9xx_get_initial_plane_config;
17529 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
17530 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17531 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17532 	} else if (IS_PINEVIEW(dev_priv)) {
17533 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17534 		dev_priv->display.get_initial_plane_config =
17535 			i9xx_get_initial_plane_config;
17536 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
17537 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17538 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17539 	} else if (!IS_GEN(dev_priv, 2)) {
17540 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17541 		dev_priv->display.get_initial_plane_config =
17542 			i9xx_get_initial_plane_config;
17543 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
17544 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17545 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17546 	} else {
17547 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17548 		dev_priv->display.get_initial_plane_config =
17549 			i9xx_get_initial_plane_config;
17550 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
17551 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17552 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17553 	}
17554 
17555 	if (IS_GEN(dev_priv, 5)) {
17556 		dev_priv->display.fdi_link_train = ilk_fdi_link_train;
17557 	} else if (IS_GEN(dev_priv, 6)) {
17558 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
17559 	} else if (IS_IVYBRIDGE(dev_priv)) {
17560 		/* FIXME: detect B0+ stepping and use auto training */
17561 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
17562 	}
17563 
17564 	if (INTEL_GEN(dev_priv) >= 9)
17565 		dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
17566 	else
17567 		dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
17568 
17569 }
17570 
intel_modeset_init_hw(struct drm_i915_private * i915)17571 void intel_modeset_init_hw(struct drm_i915_private *i915)
17572 {
17573 	struct intel_cdclk_state *cdclk_state =
17574 		to_intel_cdclk_state(i915->cdclk.obj.state);
17575 	struct intel_dbuf_state *dbuf_state =
17576 		to_intel_dbuf_state(i915->dbuf.obj.state);
17577 
17578 	intel_update_cdclk(i915);
17579 	intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK");
17580 	cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw;
17581 
17582 	dbuf_state->enabled_slices = i915->dbuf.enabled_slices;
17583 }
17584 
sanitize_watermarks_add_affected(struct drm_atomic_state * state)17585 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state)
17586 {
17587 	struct drm_plane *plane;
17588 	struct intel_crtc *crtc;
17589 
17590 	for_each_intel_crtc(state->dev, crtc) {
17591 		struct intel_crtc_state *crtc_state;
17592 
17593 		crtc_state = intel_atomic_get_crtc_state(state, crtc);
17594 		if (IS_ERR(crtc_state))
17595 			return PTR_ERR(crtc_state);
17596 
17597 		if (crtc_state->hw.active) {
17598 			/*
17599 			 * Preserve the inherited flag to avoid
17600 			 * taking the full modeset path.
17601 			 */
17602 			crtc_state->inherited = true;
17603 		}
17604 	}
17605 
17606 	drm_for_each_plane(plane, state->dev) {
17607 		struct drm_plane_state *plane_state;
17608 
17609 		plane_state = drm_atomic_get_plane_state(state, plane);
17610 		if (IS_ERR(plane_state))
17611 			return PTR_ERR(plane_state);
17612 	}
17613 
17614 	return 0;
17615 }
17616 
17617 /*
17618  * Calculate what we think the watermarks should be for the state we've read
17619  * out of the hardware and then immediately program those watermarks so that
17620  * we ensure the hardware settings match our internal state.
17621  *
17622  * We can calculate what we think WM's should be by creating a duplicate of the
17623  * current state (which was constructed during hardware readout) and running it
17624  * through the atomic check code to calculate new watermark values in the
17625  * state object.
17626  */
sanitize_watermarks(struct drm_i915_private * dev_priv)17627 static void sanitize_watermarks(struct drm_i915_private *dev_priv)
17628 {
17629 	struct drm_atomic_state *state;
17630 	struct intel_atomic_state *intel_state;
17631 	struct intel_crtc *crtc;
17632 	struct intel_crtc_state *crtc_state;
17633 	struct drm_modeset_acquire_ctx ctx;
17634 	int ret;
17635 	int i;
17636 
17637 	/* Only supported on platforms that use atomic watermark design */
17638 	if (!dev_priv->display.optimize_watermarks)
17639 		return;
17640 
17641 	state = drm_atomic_state_alloc(&dev_priv->drm);
17642 	if (drm_WARN_ON(&dev_priv->drm, !state))
17643 		return;
17644 
17645 	intel_state = to_intel_atomic_state(state);
17646 
17647 	drm_modeset_acquire_init(&ctx, 0);
17648 
17649 retry:
17650 	state->acquire_ctx = &ctx;
17651 
17652 	/*
17653 	 * Hardware readout is the only time we don't want to calculate
17654 	 * intermediate watermarks (since we don't trust the current
17655 	 * watermarks).
17656 	 */
17657 	if (!HAS_GMCH(dev_priv))
17658 		intel_state->skip_intermediate_wm = true;
17659 
17660 	ret = sanitize_watermarks_add_affected(state);
17661 	if (ret)
17662 		goto fail;
17663 
17664 	ret = intel_atomic_check(&dev_priv->drm, state);
17665 	if (ret)
17666 		goto fail;
17667 
17668 	/* Write calculated watermark values back */
17669 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
17670 		crtc_state->wm.need_postvbl_update = true;
17671 		dev_priv->display.optimize_watermarks(intel_state, crtc);
17672 
17673 		to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
17674 	}
17675 
17676 fail:
17677 	if (ret == -EDEADLK) {
17678 		drm_atomic_state_clear(state);
17679 		drm_modeset_backoff(&ctx);
17680 		goto retry;
17681 	}
17682 
17683 	/*
17684 	 * If we fail here, it means that the hardware appears to be
17685 	 * programmed in a way that shouldn't be possible, given our
17686 	 * understanding of watermark requirements.  This might mean a
17687 	 * mistake in the hardware readout code or a mistake in the
17688 	 * watermark calculations for a given platform.  Raise a WARN
17689 	 * so that this is noticeable.
17690 	 *
17691 	 * If this actually happens, we'll have to just leave the
17692 	 * BIOS-programmed watermarks untouched and hope for the best.
17693 	 */
17694 	drm_WARN(&dev_priv->drm, ret,
17695 		 "Could not determine valid watermarks for inherited state\n");
17696 
17697 	drm_atomic_state_put(state);
17698 
17699 	drm_modeset_drop_locks(&ctx);
17700 	drm_modeset_acquire_fini(&ctx);
17701 }
17702 
intel_update_fdi_pll_freq(struct drm_i915_private * dev_priv)17703 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
17704 {
17705 	if (IS_GEN(dev_priv, 5)) {
17706 		u32 fdi_pll_clk =
17707 			intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
17708 
17709 		dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
17710 	} else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
17711 		dev_priv->fdi_pll_freq = 270000;
17712 	} else {
17713 		return;
17714 	}
17715 
17716 	drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
17717 }
17718 
intel_initial_commit(struct drm_device * dev)17719 static int intel_initial_commit(struct drm_device *dev)
17720 {
17721 	struct drm_atomic_state *state = NULL;
17722 	struct drm_modeset_acquire_ctx ctx;
17723 	struct intel_crtc *crtc;
17724 	int ret = 0;
17725 
17726 	state = drm_atomic_state_alloc(dev);
17727 	if (!state)
17728 		return -ENOMEM;
17729 
17730 	drm_modeset_acquire_init(&ctx, 0);
17731 
17732 retry:
17733 	state->acquire_ctx = &ctx;
17734 
17735 	for_each_intel_crtc(dev, crtc) {
17736 		struct intel_crtc_state *crtc_state =
17737 			intel_atomic_get_crtc_state(state, crtc);
17738 
17739 		if (IS_ERR(crtc_state)) {
17740 			ret = PTR_ERR(crtc_state);
17741 			goto out;
17742 		}
17743 
17744 		if (crtc_state->hw.active) {
17745 			/*
17746 			 * We've not yet detected sink capabilities
17747 			 * (audio,infoframes,etc.) and thus we don't want to
17748 			 * force a full state recomputation yet. We want that to
17749 			 * happen only for the first real commit from userspace.
17750 			 * So preserve the inherited flag for the time being.
17751 			 */
17752 			crtc_state->inherited = true;
17753 
17754 			ret = drm_atomic_add_affected_planes(state, &crtc->base);
17755 			if (ret)
17756 				goto out;
17757 
17758 			/*
17759 			 * FIXME hack to force a LUT update to avoid the
17760 			 * plane update forcing the pipe gamma on without
17761 			 * having a proper LUT loaded. Remove once we
17762 			 * have readout for pipe gamma enable.
17763 			 */
17764 			crtc_state->uapi.color_mgmt_changed = true;
17765 
17766 			/*
17767 			 * FIXME hack to force full modeset when DSC is being
17768 			 * used.
17769 			 *
17770 			 * As long as we do not have full state readout and
17771 			 * config comparison of crtc_state->dsc, we have no way
17772 			 * to ensure reliable fastset. Remove once we have
17773 			 * readout for DSC.
17774 			 */
17775 			if (crtc_state->dsc.compression_enable) {
17776 				ret = drm_atomic_add_affected_connectors(state,
17777 									 &crtc->base);
17778 				if (ret)
17779 					goto out;
17780 				crtc_state->uapi.mode_changed = true;
17781 				drm_dbg_kms(dev, "Force full modeset for DSC\n");
17782 			}
17783 		}
17784 	}
17785 
17786 	ret = drm_atomic_commit(state);
17787 
17788 out:
17789 	if (ret == -EDEADLK) {
17790 		drm_atomic_state_clear(state);
17791 		drm_modeset_backoff(&ctx);
17792 		goto retry;
17793 	}
17794 
17795 	drm_atomic_state_put(state);
17796 
17797 	drm_modeset_drop_locks(&ctx);
17798 	drm_modeset_acquire_fini(&ctx);
17799 
17800 	return ret;
17801 }
17802 
intel_mode_config_init(struct drm_i915_private * i915)17803 static void intel_mode_config_init(struct drm_i915_private *i915)
17804 {
17805 	struct drm_mode_config *mode_config = &i915->drm.mode_config;
17806 
17807 	drm_mode_config_init(&i915->drm);
17808 	INIT_LIST_HEAD(&i915->global_obj_list);
17809 
17810 	mode_config->min_width = 0;
17811 	mode_config->min_height = 0;
17812 
17813 	mode_config->preferred_depth = 24;
17814 	mode_config->prefer_shadow = 1;
17815 
17816 	mode_config->allow_fb_modifiers = true;
17817 
17818 	mode_config->funcs = &intel_mode_funcs;
17819 
17820 	/*
17821 	 * Maximum framebuffer dimensions, chosen to match
17822 	 * the maximum render engine surface size on gen4+.
17823 	 */
17824 	if (INTEL_GEN(i915) >= 7) {
17825 		mode_config->max_width = 16384;
17826 		mode_config->max_height = 16384;
17827 	} else if (INTEL_GEN(i915) >= 4) {
17828 		mode_config->max_width = 8192;
17829 		mode_config->max_height = 8192;
17830 	} else if (IS_GEN(i915, 3)) {
17831 		mode_config->max_width = 4096;
17832 		mode_config->max_height = 4096;
17833 	} else {
17834 		mode_config->max_width = 2048;
17835 		mode_config->max_height = 2048;
17836 	}
17837 
17838 	if (IS_I845G(i915) || IS_I865G(i915)) {
17839 		mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
17840 		mode_config->cursor_height = 1023;
17841 	} else if (IS_I830(i915) || IS_I85X(i915) ||
17842 		   IS_I915G(i915) || IS_I915GM(i915)) {
17843 		mode_config->cursor_width = 64;
17844 		mode_config->cursor_height = 64;
17845 	} else {
17846 		mode_config->cursor_width = 256;
17847 		mode_config->cursor_height = 256;
17848 	}
17849 }
17850 
intel_mode_config_cleanup(struct drm_i915_private * i915)17851 static void intel_mode_config_cleanup(struct drm_i915_private *i915)
17852 {
17853 	intel_atomic_global_obj_cleanup(i915);
17854 	drm_mode_config_cleanup(&i915->drm);
17855 }
17856 
plane_config_fini(struct intel_initial_plane_config * plane_config)17857 static void plane_config_fini(struct intel_initial_plane_config *plane_config)
17858 {
17859 	if (plane_config->fb) {
17860 		struct drm_framebuffer *fb = &plane_config->fb->base;
17861 
17862 		/* We may only have the stub and not a full framebuffer */
17863 		if (drm_framebuffer_read_refcount(fb))
17864 			drm_framebuffer_put(fb);
17865 		else
17866 			kfree(fb);
17867 	}
17868 
17869 	if (plane_config->vma)
17870 		i915_vma_put(plane_config->vma);
17871 }
17872 
17873 /* part #1: call before irq install */
intel_modeset_init_noirq(struct drm_i915_private * i915)17874 int intel_modeset_init_noirq(struct drm_i915_private *i915)
17875 {
17876 	int ret;
17877 
17878 	if (i915_inject_probe_failure(i915))
17879 		return -ENODEV;
17880 
17881 	if (HAS_DISPLAY(i915)) {
17882 		ret = drm_vblank_init(&i915->drm,
17883 				      INTEL_NUM_PIPES(i915));
17884 		if (ret)
17885 			return ret;
17886 	}
17887 
17888 	intel_bios_init(i915);
17889 
17890 	ret = intel_vga_register(i915);
17891 	if (ret)
17892 		goto cleanup_bios;
17893 
17894 	/* FIXME: completely on the wrong abstraction layer */
17895 	intel_power_domains_init_hw(i915, false);
17896 
17897 	intel_csr_ucode_init(i915);
17898 
17899 	i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
17900 	i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
17901 					WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
17902 
17903 	intel_mode_config_init(i915);
17904 
17905 	ret = intel_cdclk_init(i915);
17906 	if (ret)
17907 		goto cleanup_vga_client_pw_domain_csr;
17908 
17909 	ret = intel_dbuf_init(i915);
17910 	if (ret)
17911 		goto cleanup_vga_client_pw_domain_csr;
17912 
17913 	ret = intel_bw_init(i915);
17914 	if (ret)
17915 		goto cleanup_vga_client_pw_domain_csr;
17916 
17917 	init_llist_head(&i915->atomic_helper.free_list);
17918 	INIT_WORK(&i915->atomic_helper.free_work,
17919 		  intel_atomic_helper_free_state_worker);
17920 
17921 	intel_init_quirks(i915);
17922 
17923 	intel_fbc_init(i915);
17924 
17925 	return 0;
17926 
17927 cleanup_vga_client_pw_domain_csr:
17928 	intel_csr_ucode_fini(i915);
17929 	intel_power_domains_driver_remove(i915);
17930 	intel_vga_unregister(i915);
17931 cleanup_bios:
17932 	intel_bios_driver_remove(i915);
17933 
17934 	return ret;
17935 }
17936 
17937 /* part #2: call after irq install, but before gem init */
intel_modeset_init_nogem(struct drm_i915_private * i915)17938 int intel_modeset_init_nogem(struct drm_i915_private *i915)
17939 {
17940 	struct drm_device *dev = &i915->drm;
17941 	enum pipe pipe;
17942 	struct intel_crtc *crtc;
17943 	int ret;
17944 
17945 	intel_init_pm(i915);
17946 
17947 	intel_panel_sanitize_ssc(i915);
17948 
17949 	intel_gmbus_setup(i915);
17950 
17951 	drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n",
17952 		    INTEL_NUM_PIPES(i915),
17953 		    INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
17954 
17955 	if (HAS_DISPLAY(i915)) {
17956 		for_each_pipe(i915, pipe) {
17957 			ret = intel_crtc_init(i915, pipe);
17958 			if (ret) {
17959 				intel_mode_config_cleanup(i915);
17960 				return ret;
17961 			}
17962 		}
17963 	}
17964 
17965 	intel_plane_possible_crtcs_init(i915);
17966 	intel_shared_dpll_init(dev);
17967 	intel_update_fdi_pll_freq(i915);
17968 
17969 	intel_update_czclk(i915);
17970 	intel_modeset_init_hw(i915);
17971 
17972 	intel_hdcp_component_init(i915);
17973 
17974 	if (i915->max_cdclk_freq == 0)
17975 		intel_update_max_cdclk(i915);
17976 
17977 	/*
17978 	 * If the platform has HTI, we need to find out whether it has reserved
17979 	 * any display resources before we create our display outputs.
17980 	 */
17981 	if (INTEL_INFO(i915)->display.has_hti)
17982 		i915->hti_state = intel_de_read(i915, HDPORT_STATE);
17983 
17984 	/* Just disable it once at startup */
17985 	intel_vga_disable(i915);
17986 	intel_setup_outputs(i915);
17987 
17988 	drm_modeset_lock_all(dev);
17989 	intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
17990 	drm_modeset_unlock_all(dev);
17991 
17992 	for_each_intel_crtc(dev, crtc) {
17993 		struct intel_initial_plane_config plane_config = {};
17994 
17995 		if (!crtc->active)
17996 			continue;
17997 
17998 		/*
17999 		 * Note that reserving the BIOS fb up front prevents us
18000 		 * from stuffing other stolen allocations like the ring
18001 		 * on top.  This prevents some ugliness at boot time, and
18002 		 * can even allow for smooth boot transitions if the BIOS
18003 		 * fb is large enough for the active pipe configuration.
18004 		 */
18005 		i915->display.get_initial_plane_config(crtc, &plane_config);
18006 
18007 		/*
18008 		 * If the fb is shared between multiple heads, we'll
18009 		 * just get the first one.
18010 		 */
18011 		intel_find_initial_plane_obj(crtc, &plane_config);
18012 
18013 		plane_config_fini(&plane_config);
18014 	}
18015 
18016 	/*
18017 	 * Make sure hardware watermarks really match the state we read out.
18018 	 * Note that we need to do this after reconstructing the BIOS fb's
18019 	 * since the watermark calculation done here will use pstate->fb.
18020 	 */
18021 	if (!HAS_GMCH(i915))
18022 		sanitize_watermarks(i915);
18023 
18024 	return 0;
18025 }
18026 
18027 /* part #3: call after gem init */
intel_modeset_init(struct drm_i915_private * i915)18028 int intel_modeset_init(struct drm_i915_private *i915)
18029 {
18030 	int ret;
18031 
18032 	if (!HAS_DISPLAY(i915))
18033 		return 0;
18034 
18035 	/*
18036 	 * Force all active planes to recompute their states. So that on
18037 	 * mode_setcrtc after probe, all the intel_plane_state variables
18038 	 * are already calculated and there is no assert_plane warnings
18039 	 * during bootup.
18040 	 */
18041 	ret = intel_initial_commit(&i915->drm);
18042 	if (ret)
18043 		drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret);
18044 
18045 	intel_overlay_setup(i915);
18046 
18047 	ret = intel_fbdev_init(&i915->drm);
18048 	if (ret)
18049 		return ret;
18050 
18051 	/* Only enable hotplug handling once the fbdev is fully set up. */
18052 	intel_hpd_init(i915);
18053 
18054 	intel_init_ipc(i915);
18055 
18056 	intel_psr_set_force_mode_changed(i915->psr.dp);
18057 
18058 	return 0;
18059 }
18060 
i830_enable_pipe(struct drm_i915_private * dev_priv,enum pipe pipe)18061 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18062 {
18063 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18064 	/* 640x480@60Hz, ~25175 kHz */
18065 	struct dpll clock = {
18066 		.m1 = 18,
18067 		.m2 = 7,
18068 		.p1 = 13,
18069 		.p2 = 4,
18070 		.n = 2,
18071 	};
18072 	u32 dpll, fp;
18073 	int i;
18074 
18075 	drm_WARN_ON(&dev_priv->drm,
18076 		    i9xx_calc_dpll_params(48000, &clock) != 25154);
18077 
18078 	drm_dbg_kms(&dev_priv->drm,
18079 		    "enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
18080 		    pipe_name(pipe), clock.vco, clock.dot);
18081 
18082 	fp = i9xx_dpll_compute_fp(&clock);
18083 	dpll = DPLL_DVO_2X_MODE |
18084 		DPLL_VGA_MODE_DIS |
18085 		((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
18086 		PLL_P2_DIVIDE_BY_4 |
18087 		PLL_REF_INPUT_DREFCLK |
18088 		DPLL_VCO_ENABLE;
18089 
18090 	intel_de_write(dev_priv, FP0(pipe), fp);
18091 	intel_de_write(dev_priv, FP1(pipe), fp);
18092 
18093 	intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
18094 	intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
18095 	intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
18096 	intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
18097 	intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
18098 	intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
18099 	intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
18100 
18101 	/*
18102 	 * Apparently we need to have VGA mode enabled prior to changing
18103 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
18104 	 * dividers, even though the register value does change.
18105 	 */
18106 	intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
18107 	intel_de_write(dev_priv, DPLL(pipe), dpll);
18108 
18109 	/* Wait for the clocks to stabilize. */
18110 	intel_de_posting_read(dev_priv, DPLL(pipe));
18111 	udelay(150);
18112 
18113 	/* The pixel multiplier can only be updated once the
18114 	 * DPLL is enabled and the clocks are stable.
18115 	 *
18116 	 * So write it again.
18117 	 */
18118 	intel_de_write(dev_priv, DPLL(pipe), dpll);
18119 
18120 	/* We do this three times for luck */
18121 	for (i = 0; i < 3 ; i++) {
18122 		intel_de_write(dev_priv, DPLL(pipe), dpll);
18123 		intel_de_posting_read(dev_priv, DPLL(pipe));
18124 		udelay(150); /* wait for warmup */
18125 	}
18126 
18127 	intel_de_write(dev_priv, PIPECONF(pipe),
18128 		       PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
18129 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
18130 
18131 	intel_wait_for_pipe_scanline_moving(crtc);
18132 }
18133 
i830_disable_pipe(struct drm_i915_private * dev_priv,enum pipe pipe)18134 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18135 {
18136 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18137 
18138 	drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n",
18139 		    pipe_name(pipe));
18140 
18141 	drm_WARN_ON(&dev_priv->drm,
18142 		    intel_de_read(dev_priv, DSPCNTR(PLANE_A)) &
18143 		    DISPLAY_PLANE_ENABLE);
18144 	drm_WARN_ON(&dev_priv->drm,
18145 		    intel_de_read(dev_priv, DSPCNTR(PLANE_B)) &
18146 		    DISPLAY_PLANE_ENABLE);
18147 	drm_WARN_ON(&dev_priv->drm,
18148 		    intel_de_read(dev_priv, DSPCNTR(PLANE_C)) &
18149 		    DISPLAY_PLANE_ENABLE);
18150 	drm_WARN_ON(&dev_priv->drm,
18151 		    intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE);
18152 	drm_WARN_ON(&dev_priv->drm,
18153 		    intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE);
18154 
18155 	intel_de_write(dev_priv, PIPECONF(pipe), 0);
18156 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
18157 
18158 	intel_wait_for_pipe_scanline_stopped(crtc);
18159 
18160 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
18161 	intel_de_posting_read(dev_priv, DPLL(pipe));
18162 }
18163 
18164 static void
intel_sanitize_plane_mapping(struct drm_i915_private * dev_priv)18165 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
18166 {
18167 	struct intel_crtc *crtc;
18168 
18169 	if (INTEL_GEN(dev_priv) >= 4)
18170 		return;
18171 
18172 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18173 		struct intel_plane *plane =
18174 			to_intel_plane(crtc->base.primary);
18175 		struct intel_crtc *plane_crtc;
18176 		enum pipe pipe;
18177 
18178 		if (!plane->get_hw_state(plane, &pipe))
18179 			continue;
18180 
18181 		if (pipe == crtc->pipe)
18182 			continue;
18183 
18184 		drm_dbg_kms(&dev_priv->drm,
18185 			    "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
18186 			    plane->base.base.id, plane->base.name);
18187 
18188 		plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18189 		intel_plane_disable_noatomic(plane_crtc, plane);
18190 	}
18191 }
18192 
intel_crtc_has_encoders(struct intel_crtc * crtc)18193 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
18194 {
18195 	struct drm_device *dev = crtc->base.dev;
18196 	struct intel_encoder *encoder;
18197 
18198 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
18199 		return true;
18200 
18201 	return false;
18202 }
18203 
intel_encoder_find_connector(struct intel_encoder * encoder)18204 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
18205 {
18206 	struct drm_device *dev = encoder->base.dev;
18207 	struct intel_connector *connector;
18208 
18209 	for_each_connector_on_encoder(dev, &encoder->base, connector)
18210 		return connector;
18211 
18212 	return NULL;
18213 }
18214 
has_pch_trancoder(struct drm_i915_private * dev_priv,enum pipe pch_transcoder)18215 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
18216 			      enum pipe pch_transcoder)
18217 {
18218 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
18219 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
18220 }
18221 
intel_sanitize_frame_start_delay(const struct intel_crtc_state * crtc_state)18222 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state)
18223 {
18224 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
18225 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
18226 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
18227 
18228 	if (INTEL_GEN(dev_priv) >= 9 ||
18229 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
18230 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
18231 		u32 val;
18232 
18233 		if (transcoder_is_dsi(cpu_transcoder))
18234 			return;
18235 
18236 		val = intel_de_read(dev_priv, reg);
18237 		val &= ~HSW_FRAME_START_DELAY_MASK;
18238 		val |= HSW_FRAME_START_DELAY(0);
18239 		intel_de_write(dev_priv, reg, val);
18240 	} else {
18241 		i915_reg_t reg = PIPECONF(cpu_transcoder);
18242 		u32 val;
18243 
18244 		val = intel_de_read(dev_priv, reg);
18245 		val &= ~PIPECONF_FRAME_START_DELAY_MASK;
18246 		val |= PIPECONF_FRAME_START_DELAY(0);
18247 		intel_de_write(dev_priv, reg, val);
18248 	}
18249 
18250 	if (!crtc_state->has_pch_encoder)
18251 		return;
18252 
18253 	if (HAS_PCH_IBX(dev_priv)) {
18254 		i915_reg_t reg = PCH_TRANSCONF(crtc->pipe);
18255 		u32 val;
18256 
18257 		val = intel_de_read(dev_priv, reg);
18258 		val &= ~TRANS_FRAME_START_DELAY_MASK;
18259 		val |= TRANS_FRAME_START_DELAY(0);
18260 		intel_de_write(dev_priv, reg, val);
18261 	} else {
18262 		enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc);
18263 		i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder);
18264 		u32 val;
18265 
18266 		val = intel_de_read(dev_priv, reg);
18267 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
18268 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
18269 		intel_de_write(dev_priv, reg, val);
18270 	}
18271 }
18272 
intel_sanitize_crtc(struct intel_crtc * crtc,struct drm_modeset_acquire_ctx * ctx)18273 static void intel_sanitize_crtc(struct intel_crtc *crtc,
18274 				struct drm_modeset_acquire_ctx *ctx)
18275 {
18276 	struct drm_device *dev = crtc->base.dev;
18277 	struct drm_i915_private *dev_priv = to_i915(dev);
18278 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
18279 
18280 	if (crtc_state->hw.active) {
18281 		struct intel_plane *plane;
18282 
18283 		/* Clear any frame start delays used for debugging left by the BIOS */
18284 		intel_sanitize_frame_start_delay(crtc_state);
18285 
18286 		/* Disable everything but the primary plane */
18287 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
18288 			const struct intel_plane_state *plane_state =
18289 				to_intel_plane_state(plane->base.state);
18290 
18291 			if (plane_state->uapi.visible &&
18292 			    plane->base.type != DRM_PLANE_TYPE_PRIMARY)
18293 				intel_plane_disable_noatomic(crtc, plane);
18294 		}
18295 
18296 		/*
18297 		 * Disable any background color set by the BIOS, but enable the
18298 		 * gamma and CSC to match how we program our planes.
18299 		 */
18300 		if (INTEL_GEN(dev_priv) >= 9)
18301 			intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe),
18302 				       SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE);
18303 	}
18304 
18305 	/* Adjust the state of the output pipe according to whether we
18306 	 * have active connectors/encoders. */
18307 	if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc))
18308 		intel_crtc_disable_noatomic(crtc, ctx);
18309 
18310 	if (crtc_state->hw.active || HAS_GMCH(dev_priv)) {
18311 		/*
18312 		 * We start out with underrun reporting disabled to avoid races.
18313 		 * For correct bookkeeping mark this on active crtcs.
18314 		 *
18315 		 * Also on gmch platforms we dont have any hardware bits to
18316 		 * disable the underrun reporting. Which means we need to start
18317 		 * out with underrun reporting disabled also on inactive pipes,
18318 		 * since otherwise we'll complain about the garbage we read when
18319 		 * e.g. coming up after runtime pm.
18320 		 *
18321 		 * No protection against concurrent access is required - at
18322 		 * worst a fifo underrun happens which also sets this to false.
18323 		 */
18324 		crtc->cpu_fifo_underrun_disabled = true;
18325 		/*
18326 		 * We track the PCH trancoder underrun reporting state
18327 		 * within the crtc. With crtc for pipe A housing the underrun
18328 		 * reporting state for PCH transcoder A, crtc for pipe B housing
18329 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
18330 		 * and marking underrun reporting as disabled for the non-existing
18331 		 * PCH transcoders B and C would prevent enabling the south
18332 		 * error interrupt (see cpt_can_enable_serr_int()).
18333 		 */
18334 		if (has_pch_trancoder(dev_priv, crtc->pipe))
18335 			crtc->pch_fifo_underrun_disabled = true;
18336 	}
18337 }
18338 
has_bogus_dpll_config(const struct intel_crtc_state * crtc_state)18339 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
18340 {
18341 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
18342 
18343 	/*
18344 	 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
18345 	 * the hardware when a high res displays plugged in. DPLL P
18346 	 * divider is zero, and the pipe timings are bonkers. We'll
18347 	 * try to disable everything in that case.
18348 	 *
18349 	 * FIXME would be nice to be able to sanitize this state
18350 	 * without several WARNs, but for now let's take the easy
18351 	 * road.
18352 	 */
18353 	return IS_GEN(dev_priv, 6) &&
18354 		crtc_state->hw.active &&
18355 		crtc_state->shared_dpll &&
18356 		crtc_state->port_clock == 0;
18357 }
18358 
intel_sanitize_encoder(struct intel_encoder * encoder)18359 static void intel_sanitize_encoder(struct intel_encoder *encoder)
18360 {
18361 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
18362 	struct intel_connector *connector;
18363 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
18364 	struct intel_crtc_state *crtc_state = crtc ?
18365 		to_intel_crtc_state(crtc->base.state) : NULL;
18366 
18367 	/* We need to check both for a crtc link (meaning that the
18368 	 * encoder is active and trying to read from a pipe) and the
18369 	 * pipe itself being active. */
18370 	bool has_active_crtc = crtc_state &&
18371 		crtc_state->hw.active;
18372 
18373 	if (crtc_state && has_bogus_dpll_config(crtc_state)) {
18374 		drm_dbg_kms(&dev_priv->drm,
18375 			    "BIOS has misprogrammed the hardware. Disabling pipe %c\n",
18376 			    pipe_name(crtc->pipe));
18377 		has_active_crtc = false;
18378 	}
18379 
18380 	connector = intel_encoder_find_connector(encoder);
18381 	if (connector && !has_active_crtc) {
18382 		drm_dbg_kms(&dev_priv->drm,
18383 			    "[ENCODER:%d:%s] has active connectors but no active pipe!\n",
18384 			    encoder->base.base.id,
18385 			    encoder->base.name);
18386 
18387 		/* Connector is active, but has no active pipe. This is
18388 		 * fallout from our resume register restoring. Disable
18389 		 * the encoder manually again. */
18390 		if (crtc_state) {
18391 			struct drm_encoder *best_encoder;
18392 
18393 			drm_dbg_kms(&dev_priv->drm,
18394 				    "[ENCODER:%d:%s] manually disabled\n",
18395 				    encoder->base.base.id,
18396 				    encoder->base.name);
18397 
18398 			/* avoid oopsing in case the hooks consult best_encoder */
18399 			best_encoder = connector->base.state->best_encoder;
18400 			connector->base.state->best_encoder = &encoder->base;
18401 
18402 			/* FIXME NULL atomic state passed! */
18403 			if (encoder->disable)
18404 				encoder->disable(NULL, encoder, crtc_state,
18405 						 connector->base.state);
18406 			if (encoder->post_disable)
18407 				encoder->post_disable(NULL, encoder, crtc_state,
18408 						      connector->base.state);
18409 
18410 			connector->base.state->best_encoder = best_encoder;
18411 		}
18412 		encoder->base.crtc = NULL;
18413 
18414 		/* Inconsistent output/port/pipe state happens presumably due to
18415 		 * a bug in one of the get_hw_state functions. Or someplace else
18416 		 * in our code, like the register restore mess on resume. Clamp
18417 		 * things to off as a safer default. */
18418 
18419 		connector->base.dpms = DRM_MODE_DPMS_OFF;
18420 		connector->base.encoder = NULL;
18421 	}
18422 
18423 	/* notify opregion of the sanitized encoder state */
18424 	intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
18425 
18426 	if (INTEL_GEN(dev_priv) >= 11)
18427 		icl_sanitize_encoder_pll_mapping(encoder);
18428 }
18429 
18430 /* FIXME read out full plane state for all planes */
readout_plane_state(struct drm_i915_private * dev_priv)18431 static void readout_plane_state(struct drm_i915_private *dev_priv)
18432 {
18433 	struct intel_plane *plane;
18434 	struct intel_crtc *crtc;
18435 
18436 	for_each_intel_plane(&dev_priv->drm, plane) {
18437 		struct intel_plane_state *plane_state =
18438 			to_intel_plane_state(plane->base.state);
18439 		struct intel_crtc_state *crtc_state;
18440 		enum pipe pipe = PIPE_A;
18441 		bool visible;
18442 
18443 		visible = plane->get_hw_state(plane, &pipe);
18444 
18445 		crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18446 		crtc_state = to_intel_crtc_state(crtc->base.state);
18447 
18448 		intel_set_plane_visible(crtc_state, plane_state, visible);
18449 
18450 		drm_dbg_kms(&dev_priv->drm,
18451 			    "[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
18452 			    plane->base.base.id, plane->base.name,
18453 			    enableddisabled(visible), pipe_name(pipe));
18454 	}
18455 
18456 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18457 		struct intel_crtc_state *crtc_state =
18458 			to_intel_crtc_state(crtc->base.state);
18459 
18460 		fixup_active_planes(crtc_state);
18461 	}
18462 }
18463 
intel_modeset_readout_hw_state(struct drm_device * dev)18464 static void intel_modeset_readout_hw_state(struct drm_device *dev)
18465 {
18466 	struct drm_i915_private *dev_priv = to_i915(dev);
18467 	struct intel_cdclk_state *cdclk_state =
18468 		to_intel_cdclk_state(dev_priv->cdclk.obj.state);
18469 	struct intel_dbuf_state *dbuf_state =
18470 		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
18471 	enum pipe pipe;
18472 	struct intel_crtc *crtc;
18473 	struct intel_encoder *encoder;
18474 	struct intel_connector *connector;
18475 	struct drm_connector_list_iter conn_iter;
18476 	u8 active_pipes = 0;
18477 
18478 	for_each_intel_crtc(dev, crtc) {
18479 		struct intel_crtc_state *crtc_state =
18480 			to_intel_crtc_state(crtc->base.state);
18481 
18482 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi);
18483 		intel_crtc_free_hw_state(crtc_state);
18484 		intel_crtc_state_reset(crtc_state, crtc);
18485 
18486 		crtc_state->hw.active = crtc_state->hw.enable =
18487 			dev_priv->display.get_pipe_config(crtc, crtc_state);
18488 
18489 		crtc->base.enabled = crtc_state->hw.enable;
18490 		crtc->active = crtc_state->hw.active;
18491 
18492 		if (crtc_state->hw.active)
18493 			active_pipes |= BIT(crtc->pipe);
18494 
18495 		drm_dbg_kms(&dev_priv->drm,
18496 			    "[CRTC:%d:%s] hw state readout: %s\n",
18497 			    crtc->base.base.id, crtc->base.name,
18498 			    enableddisabled(crtc_state->hw.active));
18499 	}
18500 
18501 	dev_priv->active_pipes = cdclk_state->active_pipes =
18502 		dbuf_state->active_pipes = active_pipes;
18503 
18504 	readout_plane_state(dev_priv);
18505 
18506 	intel_dpll_readout_hw_state(dev_priv);
18507 
18508 	for_each_intel_encoder(dev, encoder) {
18509 		pipe = 0;
18510 
18511 		if (encoder->get_hw_state(encoder, &pipe)) {
18512 			struct intel_crtc_state *crtc_state;
18513 
18514 			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18515 			crtc_state = to_intel_crtc_state(crtc->base.state);
18516 
18517 			encoder->base.crtc = &crtc->base;
18518 			encoder->get_config(encoder, crtc_state);
18519 		} else {
18520 			encoder->base.crtc = NULL;
18521 		}
18522 
18523 		drm_dbg_kms(&dev_priv->drm,
18524 			    "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
18525 			    encoder->base.base.id, encoder->base.name,
18526 			    enableddisabled(encoder->base.crtc),
18527 			    pipe_name(pipe));
18528 	}
18529 
18530 	drm_connector_list_iter_begin(dev, &conn_iter);
18531 	for_each_intel_connector_iter(connector, &conn_iter) {
18532 		if (connector->get_hw_state(connector)) {
18533 			struct intel_crtc_state *crtc_state;
18534 			struct intel_crtc *crtc;
18535 
18536 			connector->base.dpms = DRM_MODE_DPMS_ON;
18537 
18538 			encoder = intel_attached_encoder(connector);
18539 			connector->base.encoder = &encoder->base;
18540 
18541 			crtc = to_intel_crtc(encoder->base.crtc);
18542 			crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
18543 
18544 			if (crtc_state && crtc_state->hw.active) {
18545 				/*
18546 				 * This has to be done during hardware readout
18547 				 * because anything calling .crtc_disable may
18548 				 * rely on the connector_mask being accurate.
18549 				 */
18550 				crtc_state->uapi.connector_mask |=
18551 					drm_connector_mask(&connector->base);
18552 				crtc_state->uapi.encoder_mask |=
18553 					drm_encoder_mask(&encoder->base);
18554 			}
18555 		} else {
18556 			connector->base.dpms = DRM_MODE_DPMS_OFF;
18557 			connector->base.encoder = NULL;
18558 		}
18559 		drm_dbg_kms(&dev_priv->drm,
18560 			    "[CONNECTOR:%d:%s] hw state readout: %s\n",
18561 			    connector->base.base.id, connector->base.name,
18562 			    enableddisabled(connector->base.encoder));
18563 	}
18564 	drm_connector_list_iter_end(&conn_iter);
18565 
18566 	for_each_intel_crtc(dev, crtc) {
18567 		struct intel_bw_state *bw_state =
18568 			to_intel_bw_state(dev_priv->bw_obj.state);
18569 		struct intel_crtc_state *crtc_state =
18570 			to_intel_crtc_state(crtc->base.state);
18571 		struct intel_plane *plane;
18572 		int min_cdclk = 0;
18573 
18574 		if (crtc_state->hw.active) {
18575 			struct drm_display_mode *mode = &crtc_state->hw.mode;
18576 
18577 			intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode,
18578 						    crtc_state);
18579 
18580 			*mode = crtc_state->hw.adjusted_mode;
18581 			mode->hdisplay = crtc_state->pipe_src_w;
18582 			mode->vdisplay = crtc_state->pipe_src_h;
18583 
18584 			/*
18585 			 * The initial mode needs to be set in order to keep
18586 			 * the atomic core happy. It wants a valid mode if the
18587 			 * crtc's enabled, so we do the above call.
18588 			 *
18589 			 * But we don't set all the derived state fully, hence
18590 			 * set a flag to indicate that a full recalculation is
18591 			 * needed on the next commit.
18592 			 */
18593 			crtc_state->inherited = true;
18594 
18595 			intel_crtc_compute_pixel_rate(crtc_state);
18596 
18597 			intel_crtc_update_active_timings(crtc_state);
18598 
18599 			intel_crtc_copy_hw_to_uapi_state(crtc_state);
18600 		}
18601 
18602 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
18603 			const struct intel_plane_state *plane_state =
18604 				to_intel_plane_state(plane->base.state);
18605 
18606 			/*
18607 			 * FIXME don't have the fb yet, so can't
18608 			 * use intel_plane_data_rate() :(
18609 			 */
18610 			if (plane_state->uapi.visible)
18611 				crtc_state->data_rate[plane->id] =
18612 					4 * crtc_state->pixel_rate;
18613 			/*
18614 			 * FIXME don't have the fb yet, so can't
18615 			 * use plane->min_cdclk() :(
18616 			 */
18617 			if (plane_state->uapi.visible && plane->min_cdclk) {
18618 				if (crtc_state->double_wide ||
18619 				    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
18620 					crtc_state->min_cdclk[plane->id] =
18621 						DIV_ROUND_UP(crtc_state->pixel_rate, 2);
18622 				else
18623 					crtc_state->min_cdclk[plane->id] =
18624 						crtc_state->pixel_rate;
18625 			}
18626 			drm_dbg_kms(&dev_priv->drm,
18627 				    "[PLANE:%d:%s] min_cdclk %d kHz\n",
18628 				    plane->base.base.id, plane->base.name,
18629 				    crtc_state->min_cdclk[plane->id]);
18630 		}
18631 
18632 		if (crtc_state->hw.active) {
18633 			min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
18634 			if (drm_WARN_ON(dev, min_cdclk < 0))
18635 				min_cdclk = 0;
18636 		}
18637 
18638 		cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
18639 		cdclk_state->min_voltage_level[crtc->pipe] =
18640 			crtc_state->min_voltage_level;
18641 
18642 		intel_bw_crtc_update(bw_state, crtc_state);
18643 
18644 		intel_pipe_config_sanity_check(dev_priv, crtc_state);
18645 	}
18646 }
18647 
18648 static void
get_encoder_power_domains(struct drm_i915_private * dev_priv)18649 get_encoder_power_domains(struct drm_i915_private *dev_priv)
18650 {
18651 	struct intel_encoder *encoder;
18652 
18653 	for_each_intel_encoder(&dev_priv->drm, encoder) {
18654 		struct intel_crtc_state *crtc_state;
18655 
18656 		if (!encoder->get_power_domains)
18657 			continue;
18658 
18659 		/*
18660 		 * MST-primary and inactive encoders don't have a crtc state
18661 		 * and neither of these require any power domain references.
18662 		 */
18663 		if (!encoder->base.crtc)
18664 			continue;
18665 
18666 		crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
18667 		encoder->get_power_domains(encoder, crtc_state);
18668 	}
18669 }
18670 
intel_early_display_was(struct drm_i915_private * dev_priv)18671 static void intel_early_display_was(struct drm_i915_private *dev_priv)
18672 {
18673 	/*
18674 	 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl
18675 	 * Also known as Wa_14010480278.
18676 	 */
18677 	if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv))
18678 		intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0,
18679 			       intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS);
18680 
18681 	if (IS_HASWELL(dev_priv)) {
18682 		/*
18683 		 * WaRsPkgCStateDisplayPMReq:hsw
18684 		 * System hang if this isn't done before disabling all planes!
18685 		 */
18686 		intel_de_write(dev_priv, CHICKEN_PAR1_1,
18687 			       intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
18688 	}
18689 }
18690 
ibx_sanitize_pch_hdmi_port(struct drm_i915_private * dev_priv,enum port port,i915_reg_t hdmi_reg)18691 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
18692 				       enum port port, i915_reg_t hdmi_reg)
18693 {
18694 	u32 val = intel_de_read(dev_priv, hdmi_reg);
18695 
18696 	if (val & SDVO_ENABLE ||
18697 	    (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
18698 		return;
18699 
18700 	drm_dbg_kms(&dev_priv->drm,
18701 		    "Sanitizing transcoder select for HDMI %c\n",
18702 		    port_name(port));
18703 
18704 	val &= ~SDVO_PIPE_SEL_MASK;
18705 	val |= SDVO_PIPE_SEL(PIPE_A);
18706 
18707 	intel_de_write(dev_priv, hdmi_reg, val);
18708 }
18709 
ibx_sanitize_pch_dp_port(struct drm_i915_private * dev_priv,enum port port,i915_reg_t dp_reg)18710 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
18711 				     enum port port, i915_reg_t dp_reg)
18712 {
18713 	u32 val = intel_de_read(dev_priv, dp_reg);
18714 
18715 	if (val & DP_PORT_EN ||
18716 	    (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
18717 		return;
18718 
18719 	drm_dbg_kms(&dev_priv->drm,
18720 		    "Sanitizing transcoder select for DP %c\n",
18721 		    port_name(port));
18722 
18723 	val &= ~DP_PIPE_SEL_MASK;
18724 	val |= DP_PIPE_SEL(PIPE_A);
18725 
18726 	intel_de_write(dev_priv, dp_reg, val);
18727 }
18728 
ibx_sanitize_pch_ports(struct drm_i915_private * dev_priv)18729 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
18730 {
18731 	/*
18732 	 * The BIOS may select transcoder B on some of the PCH
18733 	 * ports even it doesn't enable the port. This would trip
18734 	 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
18735 	 * Sanitize the transcoder select bits to prevent that. We
18736 	 * assume that the BIOS never actually enabled the port,
18737 	 * because if it did we'd actually have to toggle the port
18738 	 * on and back off to make the transcoder A select stick
18739 	 * (see. intel_dp_link_down(), intel_disable_hdmi(),
18740 	 * intel_disable_sdvo()).
18741 	 */
18742 	ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
18743 	ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
18744 	ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
18745 
18746 	/* PCH SDVOB multiplex with HDMIB */
18747 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
18748 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
18749 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
18750 }
18751 
18752 /* Scan out the current hw modeset state,
18753  * and sanitizes it to the current state
18754  */
18755 static void
intel_modeset_setup_hw_state(struct drm_device * dev,struct drm_modeset_acquire_ctx * ctx)18756 intel_modeset_setup_hw_state(struct drm_device *dev,
18757 			     struct drm_modeset_acquire_ctx *ctx)
18758 {
18759 	struct drm_i915_private *dev_priv = to_i915(dev);
18760 	struct intel_encoder *encoder;
18761 	struct intel_crtc *crtc;
18762 	intel_wakeref_t wakeref;
18763 
18764 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
18765 
18766 	intel_early_display_was(dev_priv);
18767 	intel_modeset_readout_hw_state(dev);
18768 
18769 	/* HW state is read out, now we need to sanitize this mess. */
18770 
18771 	/* Sanitize the TypeC port mode upfront, encoders depend on this */
18772 	for_each_intel_encoder(dev, encoder) {
18773 		enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
18774 
18775 		/* We need to sanitize only the MST primary port. */
18776 		if (encoder->type != INTEL_OUTPUT_DP_MST &&
18777 		    intel_phy_is_tc(dev_priv, phy))
18778 			intel_tc_port_sanitize(enc_to_dig_port(encoder));
18779 	}
18780 
18781 	get_encoder_power_domains(dev_priv);
18782 
18783 	if (HAS_PCH_IBX(dev_priv))
18784 		ibx_sanitize_pch_ports(dev_priv);
18785 
18786 	/*
18787 	 * intel_sanitize_plane_mapping() may need to do vblank
18788 	 * waits, so we need vblank interrupts restored beforehand.
18789 	 */
18790 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18791 		struct intel_crtc_state *crtc_state =
18792 			to_intel_crtc_state(crtc->base.state);
18793 
18794 		drm_crtc_vblank_reset(&crtc->base);
18795 
18796 		if (crtc_state->hw.active)
18797 			intel_crtc_vblank_on(crtc_state);
18798 	}
18799 
18800 	intel_sanitize_plane_mapping(dev_priv);
18801 
18802 	for_each_intel_encoder(dev, encoder)
18803 		intel_sanitize_encoder(encoder);
18804 
18805 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18806 		struct intel_crtc_state *crtc_state =
18807 			to_intel_crtc_state(crtc->base.state);
18808 
18809 		intel_sanitize_crtc(crtc, ctx);
18810 		intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
18811 	}
18812 
18813 	intel_modeset_update_connector_atomic_state(dev);
18814 
18815 	intel_dpll_sanitize_state(dev_priv);
18816 
18817 	if (IS_G4X(dev_priv)) {
18818 		g4x_wm_get_hw_state(dev_priv);
18819 		g4x_wm_sanitize(dev_priv);
18820 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
18821 		vlv_wm_get_hw_state(dev_priv);
18822 		vlv_wm_sanitize(dev_priv);
18823 	} else if (INTEL_GEN(dev_priv) >= 9) {
18824 		skl_wm_get_hw_state(dev_priv);
18825 	} else if (HAS_PCH_SPLIT(dev_priv)) {
18826 		ilk_wm_get_hw_state(dev_priv);
18827 	}
18828 
18829 	for_each_intel_crtc(dev, crtc) {
18830 		struct intel_crtc_state *crtc_state =
18831 			to_intel_crtc_state(crtc->base.state);
18832 		u64 put_domains;
18833 
18834 		put_domains = modeset_get_crtc_power_domains(crtc_state);
18835 		if (drm_WARN_ON(dev, put_domains))
18836 			modeset_put_power_domains(dev_priv, put_domains);
18837 	}
18838 
18839 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
18840 }
18841 
intel_display_resume(struct drm_device * dev)18842 void intel_display_resume(struct drm_device *dev)
18843 {
18844 	struct drm_i915_private *dev_priv = to_i915(dev);
18845 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
18846 	struct drm_modeset_acquire_ctx ctx;
18847 	int ret;
18848 
18849 	dev_priv->modeset_restore_state = NULL;
18850 	if (state)
18851 		state->acquire_ctx = &ctx;
18852 
18853 	drm_modeset_acquire_init(&ctx, 0);
18854 
18855 	while (1) {
18856 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
18857 		if (ret != -EDEADLK)
18858 			break;
18859 
18860 		drm_modeset_backoff(&ctx);
18861 	}
18862 
18863 	if (!ret)
18864 		ret = __intel_display_resume(dev, state, &ctx);
18865 
18866 	intel_enable_ipc(dev_priv);
18867 	drm_modeset_drop_locks(&ctx);
18868 	drm_modeset_acquire_fini(&ctx);
18869 
18870 	if (ret)
18871 		drm_err(&dev_priv->drm,
18872 			"Restoring old state failed with %i\n", ret);
18873 	if (state)
18874 		drm_atomic_state_put(state);
18875 }
18876 
intel_hpd_poll_fini(struct drm_i915_private * i915)18877 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
18878 {
18879 	struct intel_connector *connector;
18880 	struct drm_connector_list_iter conn_iter;
18881 
18882 	/* Kill all the work that may have been queued by hpd. */
18883 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
18884 	for_each_intel_connector_iter(connector, &conn_iter) {
18885 		if (connector->modeset_retry_work.func)
18886 			cancel_work_sync(&connector->modeset_retry_work);
18887 		if (connector->hdcp.shim) {
18888 			cancel_delayed_work_sync(&connector->hdcp.check_work);
18889 			cancel_work_sync(&connector->hdcp.prop_work);
18890 		}
18891 	}
18892 	drm_connector_list_iter_end(&conn_iter);
18893 }
18894 
18895 /* part #1: call before irq uninstall */
intel_modeset_driver_remove(struct drm_i915_private * i915)18896 void intel_modeset_driver_remove(struct drm_i915_private *i915)
18897 {
18898 	flush_workqueue(i915->flip_wq);
18899 	flush_workqueue(i915->modeset_wq);
18900 
18901 	flush_work(&i915->atomic_helper.free_work);
18902 	drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list));
18903 }
18904 
18905 /* part #2: call after irq uninstall */
intel_modeset_driver_remove_noirq(struct drm_i915_private * i915)18906 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915)
18907 {
18908 	/*
18909 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
18910 	 * poll handlers. Hence disable polling after hpd handling is shut down.
18911 	 */
18912 	intel_hpd_poll_fini(i915);
18913 
18914 	/*
18915 	 * MST topology needs to be suspended so we don't have any calls to
18916 	 * fbdev after it's finalized. MST will be destroyed later as part of
18917 	 * drm_mode_config_cleanup()
18918 	 */
18919 	intel_dp_mst_suspend(i915);
18920 
18921 	/* poll work can call into fbdev, hence clean that up afterwards */
18922 	intel_fbdev_fini(i915);
18923 
18924 	intel_unregister_dsm_handler();
18925 
18926 	intel_fbc_global_disable(i915);
18927 
18928 	/* flush any delayed tasks or pending work */
18929 	flush_scheduled_work();
18930 
18931 	intel_hdcp_component_fini(i915);
18932 
18933 	intel_mode_config_cleanup(i915);
18934 
18935 	intel_overlay_cleanup(i915);
18936 
18937 	intel_gmbus_teardown(i915);
18938 
18939 	destroy_workqueue(i915->flip_wq);
18940 	destroy_workqueue(i915->modeset_wq);
18941 
18942 	intel_fbc_cleanup_cfb(i915);
18943 }
18944 
18945 /* part #3: call after gem init */
intel_modeset_driver_remove_nogem(struct drm_i915_private * i915)18946 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915)
18947 {
18948 	intel_csr_ucode_fini(i915);
18949 
18950 	intel_power_domains_driver_remove(i915);
18951 
18952 	intel_vga_unregister(i915);
18953 
18954 	intel_bios_driver_remove(i915);
18955 }
18956 
18957 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
18958 
18959 struct intel_display_error_state {
18960 
18961 	u32 power_well_driver;
18962 
18963 	struct intel_cursor_error_state {
18964 		u32 control;
18965 		u32 position;
18966 		u32 base;
18967 		u32 size;
18968 	} cursor[I915_MAX_PIPES];
18969 
18970 	struct intel_pipe_error_state {
18971 		bool power_domain_on;
18972 		u32 source;
18973 		u32 stat;
18974 	} pipe[I915_MAX_PIPES];
18975 
18976 	struct intel_plane_error_state {
18977 		u32 control;
18978 		u32 stride;
18979 		u32 size;
18980 		u32 pos;
18981 		u32 addr;
18982 		u32 surface;
18983 		u32 tile_offset;
18984 	} plane[I915_MAX_PIPES];
18985 
18986 	struct intel_transcoder_error_state {
18987 		bool available;
18988 		bool power_domain_on;
18989 		enum transcoder cpu_transcoder;
18990 
18991 		u32 conf;
18992 
18993 		u32 htotal;
18994 		u32 hblank;
18995 		u32 hsync;
18996 		u32 vtotal;
18997 		u32 vblank;
18998 		u32 vsync;
18999 	} transcoder[5];
19000 };
19001 
19002 struct intel_display_error_state *
intel_display_capture_error_state(struct drm_i915_private * dev_priv)19003 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
19004 {
19005 	struct intel_display_error_state *error;
19006 	int transcoders[] = {
19007 		TRANSCODER_A,
19008 		TRANSCODER_B,
19009 		TRANSCODER_C,
19010 		TRANSCODER_D,
19011 		TRANSCODER_EDP,
19012 	};
19013 	int i;
19014 
19015 	BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
19016 
19017 	if (!HAS_DISPLAY(dev_priv))
19018 		return NULL;
19019 
19020 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
19021 	if (error == NULL)
19022 		return NULL;
19023 
19024 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19025 		error->power_well_driver = intel_de_read(dev_priv,
19026 							 HSW_PWR_WELL_CTL2);
19027 
19028 	for_each_pipe(dev_priv, i) {
19029 		error->pipe[i].power_domain_on =
19030 			__intel_display_power_is_enabled(dev_priv,
19031 							 POWER_DOMAIN_PIPE(i));
19032 		if (!error->pipe[i].power_domain_on)
19033 			continue;
19034 
19035 		error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i));
19036 		error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i));
19037 		error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i));
19038 
19039 		error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i));
19040 		error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i));
19041 		if (INTEL_GEN(dev_priv) <= 3) {
19042 			error->plane[i].size = intel_de_read(dev_priv,
19043 							     DSPSIZE(i));
19044 			error->plane[i].pos = intel_de_read(dev_priv,
19045 							    DSPPOS(i));
19046 		}
19047 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19048 			error->plane[i].addr = intel_de_read(dev_priv,
19049 							     DSPADDR(i));
19050 		if (INTEL_GEN(dev_priv) >= 4) {
19051 			error->plane[i].surface = intel_de_read(dev_priv,
19052 								DSPSURF(i));
19053 			error->plane[i].tile_offset = intel_de_read(dev_priv,
19054 								    DSPTILEOFF(i));
19055 		}
19056 
19057 		error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i));
19058 
19059 		if (HAS_GMCH(dev_priv))
19060 			error->pipe[i].stat = intel_de_read(dev_priv,
19061 							    PIPESTAT(i));
19062 	}
19063 
19064 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19065 		enum transcoder cpu_transcoder = transcoders[i];
19066 
19067 		if (!HAS_TRANSCODER(dev_priv, cpu_transcoder))
19068 			continue;
19069 
19070 		error->transcoder[i].available = true;
19071 		error->transcoder[i].power_domain_on =
19072 			__intel_display_power_is_enabled(dev_priv,
19073 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
19074 		if (!error->transcoder[i].power_domain_on)
19075 			continue;
19076 
19077 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
19078 
19079 		error->transcoder[i].conf = intel_de_read(dev_priv,
19080 							  PIPECONF(cpu_transcoder));
19081 		error->transcoder[i].htotal = intel_de_read(dev_priv,
19082 							    HTOTAL(cpu_transcoder));
19083 		error->transcoder[i].hblank = intel_de_read(dev_priv,
19084 							    HBLANK(cpu_transcoder));
19085 		error->transcoder[i].hsync = intel_de_read(dev_priv,
19086 							   HSYNC(cpu_transcoder));
19087 		error->transcoder[i].vtotal = intel_de_read(dev_priv,
19088 							    VTOTAL(cpu_transcoder));
19089 		error->transcoder[i].vblank = intel_de_read(dev_priv,
19090 							    VBLANK(cpu_transcoder));
19091 		error->transcoder[i].vsync = intel_de_read(dev_priv,
19092 							   VSYNC(cpu_transcoder));
19093 	}
19094 
19095 	return error;
19096 }
19097 
19098 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
19099 
19100 void
intel_display_print_error_state(struct drm_i915_error_state_buf * m,struct intel_display_error_state * error)19101 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
19102 				struct intel_display_error_state *error)
19103 {
19104 	struct drm_i915_private *dev_priv = m->i915;
19105 	int i;
19106 
19107 	if (!error)
19108 		return;
19109 
19110 	err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
19111 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19112 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
19113 			   error->power_well_driver);
19114 	for_each_pipe(dev_priv, i) {
19115 		err_printf(m, "Pipe [%d]:\n", i);
19116 		err_printf(m, "  Power: %s\n",
19117 			   onoff(error->pipe[i].power_domain_on));
19118 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
19119 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
19120 
19121 		err_printf(m, "Plane [%d]:\n", i);
19122 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
19123 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
19124 		if (INTEL_GEN(dev_priv) <= 3) {
19125 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
19126 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
19127 		}
19128 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19129 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
19130 		if (INTEL_GEN(dev_priv) >= 4) {
19131 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
19132 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
19133 		}
19134 
19135 		err_printf(m, "Cursor [%d]:\n", i);
19136 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
19137 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
19138 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
19139 	}
19140 
19141 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19142 		if (!error->transcoder[i].available)
19143 			continue;
19144 
19145 		err_printf(m, "CPU transcoder: %s\n",
19146 			   transcoder_name(error->transcoder[i].cpu_transcoder));
19147 		err_printf(m, "  Power: %s\n",
19148 			   onoff(error->transcoder[i].power_domain_on));
19149 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
19150 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
19151 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
19152 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
19153 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
19154 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
19155 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
19156 	}
19157 }
19158 
19159 #endif
19160