1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_damage_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fourcc.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_rect.h>
45
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dp_mst.h"
50 #include "display/intel_dpll_mgr.h"
51 #include "display/intel_dsi.h"
52 #include "display/intel_dvo.h"
53 #include "display/intel_gmbus.h"
54 #include "display/intel_hdmi.h"
55 #include "display/intel_lvds.h"
56 #include "display/intel_sdvo.h"
57 #include "display/intel_tv.h"
58 #include "display/intel_vdsc.h"
59
60 #include "gt/intel_rps.h"
61
62 #include "i915_drv.h"
63 #include "i915_trace.h"
64 #include "intel_acpi.h"
65 #include "intel_atomic.h"
66 #include "intel_atomic_plane.h"
67 #include "intel_bw.h"
68 #include "intel_cdclk.h"
69 #include "intel_color.h"
70 #include "intel_csr.h"
71 #include "intel_display_types.h"
72 #include "intel_dp_link_training.h"
73 #include "intel_fbc.h"
74 #include "intel_fbdev.h"
75 #include "intel_fifo_underrun.h"
76 #include "intel_frontbuffer.h"
77 #include "intel_hdcp.h"
78 #include "intel_hotplug.h"
79 #include "intel_overlay.h"
80 #include "intel_pipe_crc.h"
81 #include "intel_pm.h"
82 #include "intel_psr.h"
83 #include "intel_quirks.h"
84 #include "intel_sideband.h"
85 #include "intel_sprite.h"
86 #include "intel_tc.h"
87 #include "intel_vga.h"
88
89 /* Primary plane formats for gen <= 3 */
90 static const u32 i8xx_primary_formats[] = {
91 DRM_FORMAT_C8,
92 DRM_FORMAT_XRGB1555,
93 DRM_FORMAT_RGB565,
94 DRM_FORMAT_XRGB8888,
95 };
96
97 /* Primary plane formats for ivb (no fp16 due to hw issue) */
98 static const u32 ivb_primary_formats[] = {
99 DRM_FORMAT_C8,
100 DRM_FORMAT_RGB565,
101 DRM_FORMAT_XRGB8888,
102 DRM_FORMAT_XBGR8888,
103 DRM_FORMAT_XRGB2101010,
104 DRM_FORMAT_XBGR2101010,
105 };
106
107 /* Primary plane formats for gen >= 4, except ivb */
108 static const u32 i965_primary_formats[] = {
109 DRM_FORMAT_C8,
110 DRM_FORMAT_RGB565,
111 DRM_FORMAT_XRGB8888,
112 DRM_FORMAT_XBGR8888,
113 DRM_FORMAT_XRGB2101010,
114 DRM_FORMAT_XBGR2101010,
115 DRM_FORMAT_XBGR16161616F,
116 };
117
118 /* Primary plane formats for vlv/chv */
119 static const u32 vlv_primary_formats[] = {
120 DRM_FORMAT_C8,
121 DRM_FORMAT_RGB565,
122 DRM_FORMAT_XRGB8888,
123 DRM_FORMAT_XBGR8888,
124 DRM_FORMAT_ARGB8888,
125 DRM_FORMAT_ABGR8888,
126 DRM_FORMAT_XRGB2101010,
127 DRM_FORMAT_XBGR2101010,
128 DRM_FORMAT_ARGB2101010,
129 DRM_FORMAT_ABGR2101010,
130 DRM_FORMAT_XBGR16161616F,
131 };
132
133 static const u64 i9xx_format_modifiers[] = {
134 I915_FORMAT_MOD_X_TILED,
135 DRM_FORMAT_MOD_LINEAR,
136 DRM_FORMAT_MOD_INVALID
137 };
138
139 /* Cursor formats */
140 static const u32 intel_cursor_formats[] = {
141 DRM_FORMAT_ARGB8888,
142 };
143
144 static const u64 cursor_format_modifiers[] = {
145 DRM_FORMAT_MOD_LINEAR,
146 DRM_FORMAT_MOD_INVALID
147 };
148
149 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
150 struct intel_crtc_state *pipe_config);
151 static void ilk_pch_clock_get(struct intel_crtc *crtc,
152 struct intel_crtc_state *pipe_config);
153
154 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
155 struct drm_i915_gem_object *obj,
156 struct drm_mode_fb_cmd2 *mode_cmd);
157 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
158 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
159 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
160 const struct intel_link_m_n *m_n,
161 const struct intel_link_m_n *m2_n2);
162 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
163 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state);
164 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state);
165 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
166 static void vlv_prepare_pll(struct intel_crtc *crtc,
167 const struct intel_crtc_state *pipe_config);
168 static void chv_prepare_pll(struct intel_crtc *crtc,
169 const struct intel_crtc_state *pipe_config);
170 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state);
171 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state);
172 static void intel_modeset_setup_hw_state(struct drm_device *dev,
173 struct drm_modeset_acquire_ctx *ctx);
174 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc);
175
176 struct intel_limit {
177 struct {
178 int min, max;
179 } dot, vco, n, m, m1, m2, p, p1;
180
181 struct {
182 int dot_limit;
183 int p2_slow, p2_fast;
184 } p2;
185 };
186
187 /* returns HPLL frequency in kHz */
vlv_get_hpll_vco(struct drm_i915_private * dev_priv)188 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
189 {
190 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
191
192 /* Obtain SKU information */
193 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
194 CCK_FUSE_HPLL_FREQ_MASK;
195
196 return vco_freq[hpll_freq] * 1000;
197 }
198
vlv_get_cck_clock(struct drm_i915_private * dev_priv,const char * name,u32 reg,int ref_freq)199 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
200 const char *name, u32 reg, int ref_freq)
201 {
202 u32 val;
203 int divider;
204
205 val = vlv_cck_read(dev_priv, reg);
206 divider = val & CCK_FREQUENCY_VALUES;
207
208 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) !=
209 (divider << CCK_FREQUENCY_STATUS_SHIFT),
210 "%s change in progress\n", name);
211
212 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
213 }
214
vlv_get_cck_clock_hpll(struct drm_i915_private * dev_priv,const char * name,u32 reg)215 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
216 const char *name, u32 reg)
217 {
218 int hpll;
219
220 vlv_cck_get(dev_priv);
221
222 if (dev_priv->hpll_freq == 0)
223 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
224
225 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
226
227 vlv_cck_put(dev_priv);
228
229 return hpll;
230 }
231
intel_update_czclk(struct drm_i915_private * dev_priv)232 static void intel_update_czclk(struct drm_i915_private *dev_priv)
233 {
234 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
235 return;
236
237 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
238 CCK_CZ_CLOCK_CONTROL);
239
240 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n",
241 dev_priv->czclk_freq);
242 }
243
244 /* units of 100MHz */
intel_fdi_link_freq(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)245 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
246 const struct intel_crtc_state *pipe_config)
247 {
248 if (HAS_DDI(dev_priv))
249 return pipe_config->port_clock; /* SPLL */
250 else
251 return dev_priv->fdi_pll_freq;
252 }
253
254 static const struct intel_limit intel_limits_i8xx_dac = {
255 .dot = { .min = 25000, .max = 350000 },
256 .vco = { .min = 908000, .max = 1512000 },
257 .n = { .min = 2, .max = 16 },
258 .m = { .min = 96, .max = 140 },
259 .m1 = { .min = 18, .max = 26 },
260 .m2 = { .min = 6, .max = 16 },
261 .p = { .min = 4, .max = 128 },
262 .p1 = { .min = 2, .max = 33 },
263 .p2 = { .dot_limit = 165000,
264 .p2_slow = 4, .p2_fast = 2 },
265 };
266
267 static const struct intel_limit intel_limits_i8xx_dvo = {
268 .dot = { .min = 25000, .max = 350000 },
269 .vco = { .min = 908000, .max = 1512000 },
270 .n = { .min = 2, .max = 16 },
271 .m = { .min = 96, .max = 140 },
272 .m1 = { .min = 18, .max = 26 },
273 .m2 = { .min = 6, .max = 16 },
274 .p = { .min = 4, .max = 128 },
275 .p1 = { .min = 2, .max = 33 },
276 .p2 = { .dot_limit = 165000,
277 .p2_slow = 4, .p2_fast = 4 },
278 };
279
280 static const struct intel_limit intel_limits_i8xx_lvds = {
281 .dot = { .min = 25000, .max = 350000 },
282 .vco = { .min = 908000, .max = 1512000 },
283 .n = { .min = 2, .max = 16 },
284 .m = { .min = 96, .max = 140 },
285 .m1 = { .min = 18, .max = 26 },
286 .m2 = { .min = 6, .max = 16 },
287 .p = { .min = 4, .max = 128 },
288 .p1 = { .min = 1, .max = 6 },
289 .p2 = { .dot_limit = 165000,
290 .p2_slow = 14, .p2_fast = 7 },
291 };
292
293 static const struct intel_limit intel_limits_i9xx_sdvo = {
294 .dot = { .min = 20000, .max = 400000 },
295 .vco = { .min = 1400000, .max = 2800000 },
296 .n = { .min = 1, .max = 6 },
297 .m = { .min = 70, .max = 120 },
298 .m1 = { .min = 8, .max = 18 },
299 .m2 = { .min = 3, .max = 7 },
300 .p = { .min = 5, .max = 80 },
301 .p1 = { .min = 1, .max = 8 },
302 .p2 = { .dot_limit = 200000,
303 .p2_slow = 10, .p2_fast = 5 },
304 };
305
306 static const struct intel_limit intel_limits_i9xx_lvds = {
307 .dot = { .min = 20000, .max = 400000 },
308 .vco = { .min = 1400000, .max = 2800000 },
309 .n = { .min = 1, .max = 6 },
310 .m = { .min = 70, .max = 120 },
311 .m1 = { .min = 8, .max = 18 },
312 .m2 = { .min = 3, .max = 7 },
313 .p = { .min = 7, .max = 98 },
314 .p1 = { .min = 1, .max = 8 },
315 .p2 = { .dot_limit = 112000,
316 .p2_slow = 14, .p2_fast = 7 },
317 };
318
319
320 static const struct intel_limit intel_limits_g4x_sdvo = {
321 .dot = { .min = 25000, .max = 270000 },
322 .vco = { .min = 1750000, .max = 3500000},
323 .n = { .min = 1, .max = 4 },
324 .m = { .min = 104, .max = 138 },
325 .m1 = { .min = 17, .max = 23 },
326 .m2 = { .min = 5, .max = 11 },
327 .p = { .min = 10, .max = 30 },
328 .p1 = { .min = 1, .max = 3},
329 .p2 = { .dot_limit = 270000,
330 .p2_slow = 10,
331 .p2_fast = 10
332 },
333 };
334
335 static const struct intel_limit intel_limits_g4x_hdmi = {
336 .dot = { .min = 22000, .max = 400000 },
337 .vco = { .min = 1750000, .max = 3500000},
338 .n = { .min = 1, .max = 4 },
339 .m = { .min = 104, .max = 138 },
340 .m1 = { .min = 16, .max = 23 },
341 .m2 = { .min = 5, .max = 11 },
342 .p = { .min = 5, .max = 80 },
343 .p1 = { .min = 1, .max = 8},
344 .p2 = { .dot_limit = 165000,
345 .p2_slow = 10, .p2_fast = 5 },
346 };
347
348 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
349 .dot = { .min = 20000, .max = 115000 },
350 .vco = { .min = 1750000, .max = 3500000 },
351 .n = { .min = 1, .max = 3 },
352 .m = { .min = 104, .max = 138 },
353 .m1 = { .min = 17, .max = 23 },
354 .m2 = { .min = 5, .max = 11 },
355 .p = { .min = 28, .max = 112 },
356 .p1 = { .min = 2, .max = 8 },
357 .p2 = { .dot_limit = 0,
358 .p2_slow = 14, .p2_fast = 14
359 },
360 };
361
362 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
363 .dot = { .min = 80000, .max = 224000 },
364 .vco = { .min = 1750000, .max = 3500000 },
365 .n = { .min = 1, .max = 3 },
366 .m = { .min = 104, .max = 138 },
367 .m1 = { .min = 17, .max = 23 },
368 .m2 = { .min = 5, .max = 11 },
369 .p = { .min = 14, .max = 42 },
370 .p1 = { .min = 2, .max = 6 },
371 .p2 = { .dot_limit = 0,
372 .p2_slow = 7, .p2_fast = 7
373 },
374 };
375
376 static const struct intel_limit pnv_limits_sdvo = {
377 .dot = { .min = 20000, .max = 400000},
378 .vco = { .min = 1700000, .max = 3500000 },
379 /* Pineview's Ncounter is a ring counter */
380 .n = { .min = 3, .max = 6 },
381 .m = { .min = 2, .max = 256 },
382 /* Pineview only has one combined m divider, which we treat as m2. */
383 .m1 = { .min = 0, .max = 0 },
384 .m2 = { .min = 0, .max = 254 },
385 .p = { .min = 5, .max = 80 },
386 .p1 = { .min = 1, .max = 8 },
387 .p2 = { .dot_limit = 200000,
388 .p2_slow = 10, .p2_fast = 5 },
389 };
390
391 static const struct intel_limit pnv_limits_lvds = {
392 .dot = { .min = 20000, .max = 400000 },
393 .vco = { .min = 1700000, .max = 3500000 },
394 .n = { .min = 3, .max = 6 },
395 .m = { .min = 2, .max = 256 },
396 .m1 = { .min = 0, .max = 0 },
397 .m2 = { .min = 0, .max = 254 },
398 .p = { .min = 7, .max = 112 },
399 .p1 = { .min = 1, .max = 8 },
400 .p2 = { .dot_limit = 112000,
401 .p2_slow = 14, .p2_fast = 14 },
402 };
403
404 /* Ironlake / Sandybridge
405 *
406 * We calculate clock using (register_value + 2) for N/M1/M2, so here
407 * the range value for them is (actual_value - 2).
408 */
409 static const struct intel_limit ilk_limits_dac = {
410 .dot = { .min = 25000, .max = 350000 },
411 .vco = { .min = 1760000, .max = 3510000 },
412 .n = { .min = 1, .max = 5 },
413 .m = { .min = 79, .max = 127 },
414 .m1 = { .min = 12, .max = 22 },
415 .m2 = { .min = 5, .max = 9 },
416 .p = { .min = 5, .max = 80 },
417 .p1 = { .min = 1, .max = 8 },
418 .p2 = { .dot_limit = 225000,
419 .p2_slow = 10, .p2_fast = 5 },
420 };
421
422 static const struct intel_limit ilk_limits_single_lvds = {
423 .dot = { .min = 25000, .max = 350000 },
424 .vco = { .min = 1760000, .max = 3510000 },
425 .n = { .min = 1, .max = 3 },
426 .m = { .min = 79, .max = 118 },
427 .m1 = { .min = 12, .max = 22 },
428 .m2 = { .min = 5, .max = 9 },
429 .p = { .min = 28, .max = 112 },
430 .p1 = { .min = 2, .max = 8 },
431 .p2 = { .dot_limit = 225000,
432 .p2_slow = 14, .p2_fast = 14 },
433 };
434
435 static const struct intel_limit ilk_limits_dual_lvds = {
436 .dot = { .min = 25000, .max = 350000 },
437 .vco = { .min = 1760000, .max = 3510000 },
438 .n = { .min = 1, .max = 3 },
439 .m = { .min = 79, .max = 127 },
440 .m1 = { .min = 12, .max = 22 },
441 .m2 = { .min = 5, .max = 9 },
442 .p = { .min = 14, .max = 56 },
443 .p1 = { .min = 2, .max = 8 },
444 .p2 = { .dot_limit = 225000,
445 .p2_slow = 7, .p2_fast = 7 },
446 };
447
448 /* LVDS 100mhz refclk limits. */
449 static const struct intel_limit ilk_limits_single_lvds_100m = {
450 .dot = { .min = 25000, .max = 350000 },
451 .vco = { .min = 1760000, .max = 3510000 },
452 .n = { .min = 1, .max = 2 },
453 .m = { .min = 79, .max = 126 },
454 .m1 = { .min = 12, .max = 22 },
455 .m2 = { .min = 5, .max = 9 },
456 .p = { .min = 28, .max = 112 },
457 .p1 = { .min = 2, .max = 8 },
458 .p2 = { .dot_limit = 225000,
459 .p2_slow = 14, .p2_fast = 14 },
460 };
461
462 static const struct intel_limit ilk_limits_dual_lvds_100m = {
463 .dot = { .min = 25000, .max = 350000 },
464 .vco = { .min = 1760000, .max = 3510000 },
465 .n = { .min = 1, .max = 3 },
466 .m = { .min = 79, .max = 126 },
467 .m1 = { .min = 12, .max = 22 },
468 .m2 = { .min = 5, .max = 9 },
469 .p = { .min = 14, .max = 42 },
470 .p1 = { .min = 2, .max = 6 },
471 .p2 = { .dot_limit = 225000,
472 .p2_slow = 7, .p2_fast = 7 },
473 };
474
475 static const struct intel_limit intel_limits_vlv = {
476 /*
477 * These are the data rate limits (measured in fast clocks)
478 * since those are the strictest limits we have. The fast
479 * clock and actual rate limits are more relaxed, so checking
480 * them would make no difference.
481 */
482 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
483 .vco = { .min = 4000000, .max = 6000000 },
484 .n = { .min = 1, .max = 7 },
485 .m1 = { .min = 2, .max = 3 },
486 .m2 = { .min = 11, .max = 156 },
487 .p1 = { .min = 2, .max = 3 },
488 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
489 };
490
491 static const struct intel_limit intel_limits_chv = {
492 /*
493 * These are the data rate limits (measured in fast clocks)
494 * since those are the strictest limits we have. The fast
495 * clock and actual rate limits are more relaxed, so checking
496 * them would make no difference.
497 */
498 .dot = { .min = 25000 * 5, .max = 540000 * 5},
499 .vco = { .min = 4800000, .max = 6480000 },
500 .n = { .min = 1, .max = 1 },
501 .m1 = { .min = 2, .max = 2 },
502 .m2 = { .min = 24 << 22, .max = 175 << 22 },
503 .p1 = { .min = 2, .max = 4 },
504 .p2 = { .p2_slow = 1, .p2_fast = 14 },
505 };
506
507 static const struct intel_limit intel_limits_bxt = {
508 /* FIXME: find real dot limits */
509 .dot = { .min = 0, .max = INT_MAX },
510 .vco = { .min = 4800000, .max = 6700000 },
511 .n = { .min = 1, .max = 1 },
512 .m1 = { .min = 2, .max = 2 },
513 /* FIXME: find real m2 limits */
514 .m2 = { .min = 2 << 22, .max = 255 << 22 },
515 .p1 = { .min = 2, .max = 4 },
516 .p2 = { .p2_slow = 1, .p2_fast = 20 },
517 };
518
519 /* WA Display #0827: Gen9:all */
520 static void
skl_wa_827(struct drm_i915_private * dev_priv,enum pipe pipe,bool enable)521 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
522 {
523 if (enable)
524 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
525 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS);
526 else
527 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
528 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
529 }
530
531 /* Wa_2006604312:icl,ehl */
532 static void
icl_wa_scalerclkgating(struct drm_i915_private * dev_priv,enum pipe pipe,bool enable)533 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
534 bool enable)
535 {
536 if (enable)
537 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
538 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
539 else
540 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
541 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
542 }
543
544 static bool
needs_modeset(const struct intel_crtc_state * state)545 needs_modeset(const struct intel_crtc_state *state)
546 {
547 return drm_atomic_crtc_needs_modeset(&state->uapi);
548 }
549
550 static bool
is_trans_port_sync_slave(const struct intel_crtc_state * crtc_state)551 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
552 {
553 return crtc_state->master_transcoder != INVALID_TRANSCODER;
554 }
555
556 static bool
is_trans_port_sync_master(const struct intel_crtc_state * crtc_state)557 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
558 {
559 return crtc_state->sync_mode_slaves_mask != 0;
560 }
561
562 bool
is_trans_port_sync_mode(const struct intel_crtc_state * crtc_state)563 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
564 {
565 return is_trans_port_sync_master(crtc_state) ||
566 is_trans_port_sync_slave(crtc_state);
567 }
568
569 /*
570 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
571 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
572 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
573 * The helpers' return value is the rate of the clock that is fed to the
574 * display engine's pipe which can be the above fast dot clock rate or a
575 * divided-down version of it.
576 */
577 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)578 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
579 {
580 clock->m = clock->m2 + 2;
581 clock->p = clock->p1 * clock->p2;
582 if (WARN_ON(clock->n == 0 || clock->p == 0))
583 return 0;
584 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
585 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
586
587 return clock->dot;
588 }
589
i9xx_dpll_compute_m(struct dpll * dpll)590 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
591 {
592 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
593 }
594
i9xx_calc_dpll_params(int refclk,struct dpll * clock)595 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
596 {
597 clock->m = i9xx_dpll_compute_m(clock);
598 clock->p = clock->p1 * clock->p2;
599 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
600 return 0;
601 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
602 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
603
604 return clock->dot;
605 }
606
vlv_calc_dpll_params(int refclk,struct dpll * clock)607 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
608 {
609 clock->m = clock->m1 * clock->m2;
610 clock->p = clock->p1 * clock->p2;
611 if (WARN_ON(clock->n == 0 || clock->p == 0))
612 return 0;
613 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
614 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
615
616 return clock->dot / 5;
617 }
618
chv_calc_dpll_params(int refclk,struct dpll * clock)619 int chv_calc_dpll_params(int refclk, struct dpll *clock)
620 {
621 clock->m = clock->m1 * clock->m2;
622 clock->p = clock->p1 * clock->p2;
623 if (WARN_ON(clock->n == 0 || clock->p == 0))
624 return 0;
625 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
626 clock->n << 22);
627 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
628
629 return clock->dot / 5;
630 }
631
632 /*
633 * Returns whether the given set of divisors are valid for a given refclk with
634 * the given connectors.
635 */
intel_pll_is_valid(struct drm_i915_private * dev_priv,const struct intel_limit * limit,const struct dpll * clock)636 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
637 const struct intel_limit *limit,
638 const struct dpll *clock)
639 {
640 if (clock->n < limit->n.min || limit->n.max < clock->n)
641 return false;
642 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
643 return false;
644 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
645 return false;
646 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
647 return false;
648
649 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
650 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
651 if (clock->m1 <= clock->m2)
652 return false;
653
654 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
655 !IS_GEN9_LP(dev_priv)) {
656 if (clock->p < limit->p.min || limit->p.max < clock->p)
657 return false;
658 if (clock->m < limit->m.min || limit->m.max < clock->m)
659 return false;
660 }
661
662 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
663 return false;
664 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
665 * connector, etc., rather than just a single range.
666 */
667 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
668 return false;
669
670 return true;
671 }
672
673 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)674 i9xx_select_p2_div(const struct intel_limit *limit,
675 const struct intel_crtc_state *crtc_state,
676 int target)
677 {
678 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
679
680 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
681 /*
682 * For LVDS just rely on its current settings for dual-channel.
683 * We haven't figured out how to reliably set up different
684 * single/dual channel state, if we even can.
685 */
686 if (intel_is_dual_link_lvds(dev_priv))
687 return limit->p2.p2_fast;
688 else
689 return limit->p2.p2_slow;
690 } else {
691 if (target < limit->p2.dot_limit)
692 return limit->p2.p2_slow;
693 else
694 return limit->p2.p2_fast;
695 }
696 }
697
698 /*
699 * Returns a set of divisors for the desired target clock with the given
700 * refclk, or FALSE. The returned values represent the clock equation:
701 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
702 *
703 * Target and reference clocks are specified in kHz.
704 *
705 * If match_clock is provided, then best_clock P divider must match the P
706 * divider from @match_clock used for LVDS downclocking.
707 */
708 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)709 i9xx_find_best_dpll(const struct intel_limit *limit,
710 struct intel_crtc_state *crtc_state,
711 int target, int refclk, struct dpll *match_clock,
712 struct dpll *best_clock)
713 {
714 struct drm_device *dev = crtc_state->uapi.crtc->dev;
715 struct dpll clock;
716 int err = target;
717
718 memset(best_clock, 0, sizeof(*best_clock));
719
720 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
721
722 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
723 clock.m1++) {
724 for (clock.m2 = limit->m2.min;
725 clock.m2 <= limit->m2.max; clock.m2++) {
726 if (clock.m2 >= clock.m1)
727 break;
728 for (clock.n = limit->n.min;
729 clock.n <= limit->n.max; clock.n++) {
730 for (clock.p1 = limit->p1.min;
731 clock.p1 <= limit->p1.max; clock.p1++) {
732 int this_err;
733
734 i9xx_calc_dpll_params(refclk, &clock);
735 if (!intel_pll_is_valid(to_i915(dev),
736 limit,
737 &clock))
738 continue;
739 if (match_clock &&
740 clock.p != match_clock->p)
741 continue;
742
743 this_err = abs(clock.dot - target);
744 if (this_err < err) {
745 *best_clock = clock;
746 err = this_err;
747 }
748 }
749 }
750 }
751 }
752
753 return (err != target);
754 }
755
756 /*
757 * Returns a set of divisors for the desired target clock with the given
758 * refclk, or FALSE. The returned values represent the clock equation:
759 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
760 *
761 * Target and reference clocks are specified in kHz.
762 *
763 * If match_clock is provided, then best_clock P divider must match the P
764 * divider from @match_clock used for LVDS downclocking.
765 */
766 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)767 pnv_find_best_dpll(const struct intel_limit *limit,
768 struct intel_crtc_state *crtc_state,
769 int target, int refclk, struct dpll *match_clock,
770 struct dpll *best_clock)
771 {
772 struct drm_device *dev = crtc_state->uapi.crtc->dev;
773 struct dpll clock;
774 int err = target;
775
776 memset(best_clock, 0, sizeof(*best_clock));
777
778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781 clock.m1++) {
782 for (clock.m2 = limit->m2.min;
783 clock.m2 <= limit->m2.max; clock.m2++) {
784 for (clock.n = limit->n.min;
785 clock.n <= limit->n.max; clock.n++) {
786 for (clock.p1 = limit->p1.min;
787 clock.p1 <= limit->p1.max; clock.p1++) {
788 int this_err;
789
790 pnv_calc_dpll_params(refclk, &clock);
791 if (!intel_pll_is_valid(to_i915(dev),
792 limit,
793 &clock))
794 continue;
795 if (match_clock &&
796 clock.p != match_clock->p)
797 continue;
798
799 this_err = abs(clock.dot - target);
800 if (this_err < err) {
801 *best_clock = clock;
802 err = this_err;
803 }
804 }
805 }
806 }
807 }
808
809 return (err != target);
810 }
811
812 /*
813 * Returns a set of divisors for the desired target clock with the given
814 * refclk, or FALSE. The returned values represent the clock equation:
815 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
816 *
817 * Target and reference clocks are specified in kHz.
818 *
819 * If match_clock is provided, then best_clock P divider must match the P
820 * divider from @match_clock used for LVDS downclocking.
821 */
822 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)823 g4x_find_best_dpll(const struct intel_limit *limit,
824 struct intel_crtc_state *crtc_state,
825 int target, int refclk, struct dpll *match_clock,
826 struct dpll *best_clock)
827 {
828 struct drm_device *dev = crtc_state->uapi.crtc->dev;
829 struct dpll clock;
830 int max_n;
831 bool found = false;
832 /* approximately equals target * 0.00585 */
833 int err_most = (target >> 8) + (target >> 9);
834
835 memset(best_clock, 0, sizeof(*best_clock));
836
837 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
838
839 max_n = limit->n.max;
840 /* based on hardware requirement, prefer smaller n to precision */
841 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
842 /* based on hardware requirement, prefere larger m1,m2 */
843 for (clock.m1 = limit->m1.max;
844 clock.m1 >= limit->m1.min; clock.m1--) {
845 for (clock.m2 = limit->m2.max;
846 clock.m2 >= limit->m2.min; clock.m2--) {
847 for (clock.p1 = limit->p1.max;
848 clock.p1 >= limit->p1.min; clock.p1--) {
849 int this_err;
850
851 i9xx_calc_dpll_params(refclk, &clock);
852 if (!intel_pll_is_valid(to_i915(dev),
853 limit,
854 &clock))
855 continue;
856
857 this_err = abs(clock.dot - target);
858 if (this_err < err_most) {
859 *best_clock = clock;
860 err_most = this_err;
861 max_n = clock.n;
862 found = true;
863 }
864 }
865 }
866 }
867 }
868 return found;
869 }
870
871 /*
872 * Check if the calculated PLL configuration is more optimal compared to the
873 * best configuration and error found so far. Return the calculated error.
874 */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)875 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
876 const struct dpll *calculated_clock,
877 const struct dpll *best_clock,
878 unsigned int best_error_ppm,
879 unsigned int *error_ppm)
880 {
881 /*
882 * For CHV ignore the error and consider only the P value.
883 * Prefer a bigger P value based on HW requirements.
884 */
885 if (IS_CHERRYVIEW(to_i915(dev))) {
886 *error_ppm = 0;
887
888 return calculated_clock->p > best_clock->p;
889 }
890
891 if (drm_WARN_ON_ONCE(dev, !target_freq))
892 return false;
893
894 *error_ppm = div_u64(1000000ULL *
895 abs(target_freq - calculated_clock->dot),
896 target_freq);
897 /*
898 * Prefer a better P value over a better (smaller) error if the error
899 * is small. Ensure this preference for future configurations too by
900 * setting the error to 0.
901 */
902 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
903 *error_ppm = 0;
904
905 return true;
906 }
907
908 return *error_ppm + 10 < best_error_ppm;
909 }
910
911 /*
912 * Returns a set of divisors for the desired target clock with the given
913 * refclk, or FALSE. The returned values represent the clock equation:
914 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
915 */
916 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)917 vlv_find_best_dpll(const struct intel_limit *limit,
918 struct intel_crtc_state *crtc_state,
919 int target, int refclk, struct dpll *match_clock,
920 struct dpll *best_clock)
921 {
922 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
923 struct drm_device *dev = crtc->base.dev;
924 struct dpll clock;
925 unsigned int bestppm = 1000000;
926 /* min update 19.2 MHz */
927 int max_n = min(limit->n.max, refclk / 19200);
928 bool found = false;
929
930 target *= 5; /* fast clock */
931
932 memset(best_clock, 0, sizeof(*best_clock));
933
934 /* based on hardware requirement, prefer smaller n to precision */
935 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
936 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
937 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
938 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939 clock.p = clock.p1 * clock.p2;
940 /* based on hardware requirement, prefer bigger m1,m2 values */
941 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
942 unsigned int ppm;
943
944 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
945 refclk * clock.m1);
946
947 vlv_calc_dpll_params(refclk, &clock);
948
949 if (!intel_pll_is_valid(to_i915(dev),
950 limit,
951 &clock))
952 continue;
953
954 if (!vlv_PLL_is_optimal(dev, target,
955 &clock,
956 best_clock,
957 bestppm, &ppm))
958 continue;
959
960 *best_clock = clock;
961 bestppm = ppm;
962 found = true;
963 }
964 }
965 }
966 }
967
968 return found;
969 }
970
971 /*
972 * Returns a set of divisors for the desired target clock with the given
973 * refclk, or FALSE. The returned values represent the clock equation:
974 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
975 */
976 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)977 chv_find_best_dpll(const struct intel_limit *limit,
978 struct intel_crtc_state *crtc_state,
979 int target, int refclk, struct dpll *match_clock,
980 struct dpll *best_clock)
981 {
982 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
983 struct drm_device *dev = crtc->base.dev;
984 unsigned int best_error_ppm;
985 struct dpll clock;
986 u64 m2;
987 int found = false;
988
989 memset(best_clock, 0, sizeof(*best_clock));
990 best_error_ppm = 1000000;
991
992 /*
993 * Based on hardware doc, the n always set to 1, and m1 always
994 * set to 2. If requires to support 200Mhz refclk, we need to
995 * revisit this because n may not 1 anymore.
996 */
997 clock.n = 1, clock.m1 = 2;
998 target *= 5; /* fast clock */
999
1000 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1001 for (clock.p2 = limit->p2.p2_fast;
1002 clock.p2 >= limit->p2.p2_slow;
1003 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1004 unsigned int error_ppm;
1005
1006 clock.p = clock.p1 * clock.p2;
1007
1008 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
1009 refclk * clock.m1);
1010
1011 if (m2 > INT_MAX/clock.m1)
1012 continue;
1013
1014 clock.m2 = m2;
1015
1016 chv_calc_dpll_params(refclk, &clock);
1017
1018 if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
1019 continue;
1020
1021 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1022 best_error_ppm, &error_ppm))
1023 continue;
1024
1025 *best_clock = clock;
1026 best_error_ppm = error_ppm;
1027 found = true;
1028 }
1029 }
1030
1031 return found;
1032 }
1033
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,struct dpll * best_clock)1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1035 struct dpll *best_clock)
1036 {
1037 int refclk = 100000;
1038 const struct intel_limit *limit = &intel_limits_bxt;
1039
1040 return chv_find_best_dpll(limit, crtc_state,
1041 crtc_state->port_clock, refclk,
1042 NULL, best_clock);
1043 }
1044
pipe_scanline_is_moving(struct drm_i915_private * dev_priv,enum pipe pipe)1045 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1046 enum pipe pipe)
1047 {
1048 i915_reg_t reg = PIPEDSL(pipe);
1049 u32 line1, line2;
1050 u32 line_mask;
1051
1052 if (IS_GEN(dev_priv, 2))
1053 line_mask = DSL_LINEMASK_GEN2;
1054 else
1055 line_mask = DSL_LINEMASK_GEN3;
1056
1057 line1 = intel_de_read(dev_priv, reg) & line_mask;
1058 msleep(5);
1059 line2 = intel_de_read(dev_priv, reg) & line_mask;
1060
1061 return line1 != line2;
1062 }
1063
wait_for_pipe_scanline_moving(struct intel_crtc * crtc,bool state)1064 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1065 {
1066 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1067 enum pipe pipe = crtc->pipe;
1068
1069 /* Wait for the display line to settle/start moving */
1070 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1071 drm_err(&dev_priv->drm,
1072 "pipe %c scanline %s wait timed out\n",
1073 pipe_name(pipe), onoff(state));
1074 }
1075
intel_wait_for_pipe_scanline_stopped(struct intel_crtc * crtc)1076 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1077 {
1078 wait_for_pipe_scanline_moving(crtc, false);
1079 }
1080
intel_wait_for_pipe_scanline_moving(struct intel_crtc * crtc)1081 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1082 {
1083 wait_for_pipe_scanline_moving(crtc, true);
1084 }
1085
1086 static void
intel_wait_for_pipe_off(const struct intel_crtc_state * old_crtc_state)1087 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1088 {
1089 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1090 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1091
1092 if (INTEL_GEN(dev_priv) >= 4) {
1093 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1094 i915_reg_t reg = PIPECONF(cpu_transcoder);
1095
1096 /* Wait for the Pipe State to go off */
1097 if (intel_de_wait_for_clear(dev_priv, reg,
1098 I965_PIPECONF_ACTIVE, 100))
1099 drm_WARN(&dev_priv->drm, 1,
1100 "pipe_off wait timed out\n");
1101 } else {
1102 intel_wait_for_pipe_scanline_stopped(crtc);
1103 }
1104 }
1105
1106 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1107 void assert_pll(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
1109 {
1110 u32 val;
1111 bool cur_state;
1112
1113 val = intel_de_read(dev_priv, DPLL(pipe));
1114 cur_state = !!(val & DPLL_VCO_ENABLE);
1115 I915_STATE_WARN(cur_state != state,
1116 "PLL state assertion failure (expected %s, current %s)\n",
1117 onoff(state), onoff(cur_state));
1118 }
1119
1120 /* XXX: the dsi pll is shared between MIPI DSI ports */
assert_dsi_pll(struct drm_i915_private * dev_priv,bool state)1121 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1122 {
1123 u32 val;
1124 bool cur_state;
1125
1126 vlv_cck_get(dev_priv);
1127 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1128 vlv_cck_put(dev_priv);
1129
1130 cur_state = val & DSI_PLL_VCO_EN;
1131 I915_STATE_WARN(cur_state != state,
1132 "DSI PLL state assertion failure (expected %s, current %s)\n",
1133 onoff(state), onoff(cur_state));
1134 }
1135
assert_fdi_tx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1136 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1137 enum pipe pipe, bool state)
1138 {
1139 bool cur_state;
1140
1141 if (HAS_DDI(dev_priv)) {
1142 /*
1143 * DDI does not have a specific FDI_TX register.
1144 *
1145 * FDI is never fed from EDP transcoder
1146 * so pipe->transcoder cast is fine here.
1147 */
1148 enum transcoder cpu_transcoder = (enum transcoder)pipe;
1149 u32 val = intel_de_read(dev_priv,
1150 TRANS_DDI_FUNC_CTL(cpu_transcoder));
1151 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1152 } else {
1153 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1154 cur_state = !!(val & FDI_TX_ENABLE);
1155 }
1156 I915_STATE_WARN(cur_state != state,
1157 "FDI TX state assertion failure (expected %s, current %s)\n",
1158 onoff(state), onoff(cur_state));
1159 }
1160 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1161 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1162
assert_fdi_rx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1163 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1164 enum pipe pipe, bool state)
1165 {
1166 u32 val;
1167 bool cur_state;
1168
1169 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1170 cur_state = !!(val & FDI_RX_ENABLE);
1171 I915_STATE_WARN(cur_state != state,
1172 "FDI RX state assertion failure (expected %s, current %s)\n",
1173 onoff(state), onoff(cur_state));
1174 }
1175 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1176 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1177
assert_fdi_tx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)1178 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1179 enum pipe pipe)
1180 {
1181 u32 val;
1182
1183 /* ILK FDI PLL is always enabled */
1184 if (IS_GEN(dev_priv, 5))
1185 return;
1186
1187 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1188 if (HAS_DDI(dev_priv))
1189 return;
1190
1191 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1192 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1193 }
1194
assert_fdi_rx_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1195 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1196 enum pipe pipe, bool state)
1197 {
1198 u32 val;
1199 bool cur_state;
1200
1201 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1202 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1203 I915_STATE_WARN(cur_state != state,
1204 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1205 onoff(state), onoff(cur_state));
1206 }
1207
assert_panel_unlocked(struct drm_i915_private * dev_priv,enum pipe pipe)1208 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1209 {
1210 i915_reg_t pp_reg;
1211 u32 val;
1212 enum pipe panel_pipe = INVALID_PIPE;
1213 bool locked = true;
1214
1215 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv)))
1216 return;
1217
1218 if (HAS_PCH_SPLIT(dev_priv)) {
1219 u32 port_sel;
1220
1221 pp_reg = PP_CONTROL(0);
1222 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1223
1224 switch (port_sel) {
1225 case PANEL_PORT_SELECT_LVDS:
1226 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1227 break;
1228 case PANEL_PORT_SELECT_DPA:
1229 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1230 break;
1231 case PANEL_PORT_SELECT_DPC:
1232 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1233 break;
1234 case PANEL_PORT_SELECT_DPD:
1235 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1236 break;
1237 default:
1238 MISSING_CASE(port_sel);
1239 break;
1240 }
1241 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1242 /* presumably write lock depends on pipe, not port select */
1243 pp_reg = PP_CONTROL(pipe);
1244 panel_pipe = pipe;
1245 } else {
1246 u32 port_sel;
1247
1248 pp_reg = PP_CONTROL(0);
1249 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1250
1251 drm_WARN_ON(&dev_priv->drm,
1252 port_sel != PANEL_PORT_SELECT_LVDS);
1253 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1254 }
1255
1256 val = intel_de_read(dev_priv, pp_reg);
1257 if (!(val & PANEL_POWER_ON) ||
1258 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1259 locked = false;
1260
1261 I915_STATE_WARN(panel_pipe == pipe && locked,
1262 "panel assertion failure, pipe %c regs locked\n",
1263 pipe_name(pipe));
1264 }
1265
assert_pipe(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder,bool state)1266 void assert_pipe(struct drm_i915_private *dev_priv,
1267 enum transcoder cpu_transcoder, bool state)
1268 {
1269 bool cur_state;
1270 enum intel_display_power_domain power_domain;
1271 intel_wakeref_t wakeref;
1272
1273 /* we keep both pipes enabled on 830 */
1274 if (IS_I830(dev_priv))
1275 state = true;
1276
1277 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1278 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1279 if (wakeref) {
1280 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1281 cur_state = !!(val & PIPECONF_ENABLE);
1282
1283 intel_display_power_put(dev_priv, power_domain, wakeref);
1284 } else {
1285 cur_state = false;
1286 }
1287
1288 I915_STATE_WARN(cur_state != state,
1289 "transcoder %s assertion failure (expected %s, current %s)\n",
1290 transcoder_name(cpu_transcoder),
1291 onoff(state), onoff(cur_state));
1292 }
1293
assert_plane(struct intel_plane * plane,bool state)1294 static void assert_plane(struct intel_plane *plane, bool state)
1295 {
1296 enum pipe pipe;
1297 bool cur_state;
1298
1299 cur_state = plane->get_hw_state(plane, &pipe);
1300
1301 I915_STATE_WARN(cur_state != state,
1302 "%s assertion failure (expected %s, current %s)\n",
1303 plane->base.name, onoff(state), onoff(cur_state));
1304 }
1305
1306 #define assert_plane_enabled(p) assert_plane(p, true)
1307 #define assert_plane_disabled(p) assert_plane(p, false)
1308
assert_planes_disabled(struct intel_crtc * crtc)1309 static void assert_planes_disabled(struct intel_crtc *crtc)
1310 {
1311 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1312 struct intel_plane *plane;
1313
1314 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1315 assert_plane_disabled(plane);
1316 }
1317
assert_vblank_disabled(struct drm_crtc * crtc)1318 static void assert_vblank_disabled(struct drm_crtc *crtc)
1319 {
1320 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1321 drm_crtc_vblank_put(crtc);
1322 }
1323
assert_pch_transcoder_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1324 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe)
1326 {
1327 u32 val;
1328 bool enabled;
1329
1330 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe));
1331 enabled = !!(val & TRANS_ENABLE);
1332 I915_STATE_WARN(enabled,
1333 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1334 pipe_name(pipe));
1335 }
1336
assert_pch_dp_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,enum port port,i915_reg_t dp_reg)1337 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1338 enum pipe pipe, enum port port,
1339 i915_reg_t dp_reg)
1340 {
1341 enum pipe port_pipe;
1342 bool state;
1343
1344 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1345
1346 I915_STATE_WARN(state && port_pipe == pipe,
1347 "PCH DP %c enabled on transcoder %c, should be disabled\n",
1348 port_name(port), pipe_name(pipe));
1349
1350 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1351 "IBX PCH DP %c still using transcoder B\n",
1352 port_name(port));
1353 }
1354
assert_pch_hdmi_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,enum port port,i915_reg_t hdmi_reg)1355 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1356 enum pipe pipe, enum port port,
1357 i915_reg_t hdmi_reg)
1358 {
1359 enum pipe port_pipe;
1360 bool state;
1361
1362 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1363
1364 I915_STATE_WARN(state && port_pipe == pipe,
1365 "PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1366 port_name(port), pipe_name(pipe));
1367
1368 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1369 "IBX PCH HDMI %c still using transcoder B\n",
1370 port_name(port));
1371 }
1372
assert_pch_ports_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1373 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1374 enum pipe pipe)
1375 {
1376 enum pipe port_pipe;
1377
1378 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1379 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1380 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1381
1382 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1383 port_pipe == pipe,
1384 "PCH VGA enabled on transcoder %c, should be disabled\n",
1385 pipe_name(pipe));
1386
1387 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1388 port_pipe == pipe,
1389 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1390 pipe_name(pipe));
1391
1392 /* PCH SDVOB multiplex with HDMIB */
1393 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1394 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1395 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1396 }
1397
_vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1398 static void _vlv_enable_pll(struct intel_crtc *crtc,
1399 const struct intel_crtc_state *pipe_config)
1400 {
1401 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1402 enum pipe pipe = crtc->pipe;
1403
1404 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1405 intel_de_posting_read(dev_priv, DPLL(pipe));
1406 udelay(150);
1407
1408 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1409 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1410 }
1411
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1412 static void vlv_enable_pll(struct intel_crtc *crtc,
1413 const struct intel_crtc_state *pipe_config)
1414 {
1415 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1416 enum pipe pipe = crtc->pipe;
1417
1418 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1419
1420 /* PLL is protected by panel, make sure we can write it */
1421 assert_panel_unlocked(dev_priv, pipe);
1422
1423 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1424 _vlv_enable_pll(crtc, pipe_config);
1425
1426 intel_de_write(dev_priv, DPLL_MD(pipe),
1427 pipe_config->dpll_hw_state.dpll_md);
1428 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1429 }
1430
1431
_chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1432 static void _chv_enable_pll(struct intel_crtc *crtc,
1433 const struct intel_crtc_state *pipe_config)
1434 {
1435 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1436 enum pipe pipe = crtc->pipe;
1437 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1438 u32 tmp;
1439
1440 vlv_dpio_get(dev_priv);
1441
1442 /* Enable back the 10bit clock to display controller */
1443 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1444 tmp |= DPIO_DCLKP_EN;
1445 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1446
1447 vlv_dpio_put(dev_priv);
1448
1449 /*
1450 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1451 */
1452 udelay(1);
1453
1454 /* Enable PLL */
1455 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1456
1457 /* Check PLL is locked */
1458 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1459 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1460 }
1461
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1462 static void chv_enable_pll(struct intel_crtc *crtc,
1463 const struct intel_crtc_state *pipe_config)
1464 {
1465 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1466 enum pipe pipe = crtc->pipe;
1467
1468 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1469
1470 /* PLL is protected by panel, make sure we can write it */
1471 assert_panel_unlocked(dev_priv, pipe);
1472
1473 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1474 _chv_enable_pll(crtc, pipe_config);
1475
1476 if (pipe != PIPE_A) {
1477 /*
1478 * WaPixelRepeatModeFixForC0:chv
1479 *
1480 * DPLLCMD is AWOL. Use chicken bits to propagate
1481 * the value from DPLLBMD to either pipe B or C.
1482 */
1483 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1484 intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1485 pipe_config->dpll_hw_state.dpll_md);
1486 intel_de_write(dev_priv, CBR4_VLV, 0);
1487 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1488
1489 /*
1490 * DPLLB VGA mode also seems to cause problems.
1491 * We should always have it disabled.
1492 */
1493 drm_WARN_ON(&dev_priv->drm,
1494 (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1495 DPLL_VGA_MODE_DIS) == 0);
1496 } else {
1497 intel_de_write(dev_priv, DPLL_MD(pipe),
1498 pipe_config->dpll_hw_state.dpll_md);
1499 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1500 }
1501 }
1502
i9xx_has_pps(struct drm_i915_private * dev_priv)1503 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1504 {
1505 if (IS_I830(dev_priv))
1506 return false;
1507
1508 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1509 }
1510
i9xx_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)1511 static void i9xx_enable_pll(struct intel_crtc *crtc,
1512 const struct intel_crtc_state *crtc_state)
1513 {
1514 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515 i915_reg_t reg = DPLL(crtc->pipe);
1516 u32 dpll = crtc_state->dpll_hw_state.dpll;
1517 int i;
1518
1519 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1520
1521 /* PLL is protected by panel, make sure we can write it */
1522 if (i9xx_has_pps(dev_priv))
1523 assert_panel_unlocked(dev_priv, crtc->pipe);
1524
1525 /*
1526 * Apparently we need to have VGA mode enabled prior to changing
1527 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1528 * dividers, even though the register value does change.
1529 */
1530 intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS);
1531 intel_de_write(dev_priv, reg, dpll);
1532
1533 /* Wait for the clocks to stabilize. */
1534 intel_de_posting_read(dev_priv, reg);
1535 udelay(150);
1536
1537 if (INTEL_GEN(dev_priv) >= 4) {
1538 intel_de_write(dev_priv, DPLL_MD(crtc->pipe),
1539 crtc_state->dpll_hw_state.dpll_md);
1540 } else {
1541 /* The pixel multiplier can only be updated once the
1542 * DPLL is enabled and the clocks are stable.
1543 *
1544 * So write it again.
1545 */
1546 intel_de_write(dev_priv, reg, dpll);
1547 }
1548
1549 /* We do this three times for luck */
1550 for (i = 0; i < 3; i++) {
1551 intel_de_write(dev_priv, reg, dpll);
1552 intel_de_posting_read(dev_priv, reg);
1553 udelay(150); /* wait for warmup */
1554 }
1555 }
1556
i9xx_disable_pll(const struct intel_crtc_state * crtc_state)1557 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1558 {
1559 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 enum pipe pipe = crtc->pipe;
1562
1563 /* Don't disable pipe or pipe PLLs if needed */
1564 if (IS_I830(dev_priv))
1565 return;
1566
1567 /* Make sure the pipe isn't still relying on us */
1568 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1569
1570 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1571 intel_de_posting_read(dev_priv, DPLL(pipe));
1572 }
1573
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1574 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1575 {
1576 u32 val;
1577
1578 /* Make sure the pipe isn't still relying on us */
1579 assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1580
1581 val = DPLL_INTEGRATED_REF_CLK_VLV |
1582 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1583 if (pipe != PIPE_A)
1584 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1585
1586 intel_de_write(dev_priv, DPLL(pipe), val);
1587 intel_de_posting_read(dev_priv, DPLL(pipe));
1588 }
1589
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1590 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1591 {
1592 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1593 u32 val;
1594
1595 /* Make sure the pipe isn't still relying on us */
1596 assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1597
1598 val = DPLL_SSC_REF_CLK_CHV |
1599 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1600 if (pipe != PIPE_A)
1601 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1602
1603 intel_de_write(dev_priv, DPLL(pipe), val);
1604 intel_de_posting_read(dev_priv, DPLL(pipe));
1605
1606 vlv_dpio_get(dev_priv);
1607
1608 /* Disable 10bit clock to display controller */
1609 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1610 val &= ~DPIO_DCLKP_EN;
1611 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1612
1613 vlv_dpio_put(dev_priv);
1614 }
1615
vlv_wait_port_ready(struct drm_i915_private * dev_priv,struct intel_digital_port * dig_port,unsigned int expected_mask)1616 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1617 struct intel_digital_port *dig_port,
1618 unsigned int expected_mask)
1619 {
1620 u32 port_mask;
1621 i915_reg_t dpll_reg;
1622
1623 switch (dig_port->base.port) {
1624 case PORT_B:
1625 port_mask = DPLL_PORTB_READY_MASK;
1626 dpll_reg = DPLL(0);
1627 break;
1628 case PORT_C:
1629 port_mask = DPLL_PORTC_READY_MASK;
1630 dpll_reg = DPLL(0);
1631 expected_mask <<= 4;
1632 break;
1633 case PORT_D:
1634 port_mask = DPLL_PORTD_READY_MASK;
1635 dpll_reg = DPIO_PHY_STATUS;
1636 break;
1637 default:
1638 BUG();
1639 }
1640
1641 if (intel_de_wait_for_register(dev_priv, dpll_reg,
1642 port_mask, expected_mask, 1000))
1643 drm_WARN(&dev_priv->drm, 1,
1644 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1645 dig_port->base.base.base.id, dig_port->base.base.name,
1646 intel_de_read(dev_priv, dpll_reg) & port_mask,
1647 expected_mask);
1648 }
1649
ilk_enable_pch_transcoder(const struct intel_crtc_state * crtc_state)1650 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1651 {
1652 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1653 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1654 enum pipe pipe = crtc->pipe;
1655 i915_reg_t reg;
1656 u32 val, pipeconf_val;
1657
1658 /* Make sure PCH DPLL is enabled */
1659 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1660
1661 /* FDI must be feeding us bits for PCH ports */
1662 assert_fdi_tx_enabled(dev_priv, pipe);
1663 assert_fdi_rx_enabled(dev_priv, pipe);
1664
1665 if (HAS_PCH_CPT(dev_priv)) {
1666 reg = TRANS_CHICKEN2(pipe);
1667 val = intel_de_read(dev_priv, reg);
1668 /*
1669 * Workaround: Set the timing override bit
1670 * before enabling the pch transcoder.
1671 */
1672 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1673 /* Configure frame start delay to match the CPU */
1674 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1675 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1676 intel_de_write(dev_priv, reg, val);
1677 }
1678
1679 reg = PCH_TRANSCONF(pipe);
1680 val = intel_de_read(dev_priv, reg);
1681 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe));
1682
1683 if (HAS_PCH_IBX(dev_priv)) {
1684 /* Configure frame start delay to match the CPU */
1685 val &= ~TRANS_FRAME_START_DELAY_MASK;
1686 val |= TRANS_FRAME_START_DELAY(0);
1687
1688 /*
1689 * Make the BPC in transcoder be consistent with
1690 * that in pipeconf reg. For HDMI we must use 8bpc
1691 * here for both 8bpc and 12bpc.
1692 */
1693 val &= ~PIPECONF_BPC_MASK;
1694 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1695 val |= PIPECONF_8BPC;
1696 else
1697 val |= pipeconf_val & PIPECONF_BPC_MASK;
1698 }
1699
1700 val &= ~TRANS_INTERLACE_MASK;
1701 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1702 if (HAS_PCH_IBX(dev_priv) &&
1703 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1704 val |= TRANS_LEGACY_INTERLACED_ILK;
1705 else
1706 val |= TRANS_INTERLACED;
1707 } else {
1708 val |= TRANS_PROGRESSIVE;
1709 }
1710
1711 intel_de_write(dev_priv, reg, val | TRANS_ENABLE);
1712 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1713 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n",
1714 pipe_name(pipe));
1715 }
1716
lpt_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)1717 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1718 enum transcoder cpu_transcoder)
1719 {
1720 u32 val, pipeconf_val;
1721
1722 /* FDI must be feeding us bits for PCH ports */
1723 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1724 assert_fdi_rx_enabled(dev_priv, PIPE_A);
1725
1726 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1727 /* Workaround: set timing override bit. */
1728 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1729 /* Configure frame start delay to match the CPU */
1730 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1731 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1732 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1733
1734 val = TRANS_ENABLE;
1735 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1736
1737 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1738 PIPECONF_INTERLACED_ILK)
1739 val |= TRANS_INTERLACED;
1740 else
1741 val |= TRANS_PROGRESSIVE;
1742
1743 intel_de_write(dev_priv, LPT_TRANSCONF, val);
1744 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1745 TRANS_STATE_ENABLE, 100))
1746 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n");
1747 }
1748
ilk_disable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1749 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750 enum pipe pipe)
1751 {
1752 i915_reg_t reg;
1753 u32 val;
1754
1755 /* FDI relies on the transcoder */
1756 assert_fdi_tx_disabled(dev_priv, pipe);
1757 assert_fdi_rx_disabled(dev_priv, pipe);
1758
1759 /* Ports must be off as well */
1760 assert_pch_ports_disabled(dev_priv, pipe);
1761
1762 reg = PCH_TRANSCONF(pipe);
1763 val = intel_de_read(dev_priv, reg);
1764 val &= ~TRANS_ENABLE;
1765 intel_de_write(dev_priv, reg, val);
1766 /* wait for PCH transcoder off, transcoder state */
1767 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1768 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n",
1769 pipe_name(pipe));
1770
1771 if (HAS_PCH_CPT(dev_priv)) {
1772 /* Workaround: Clear the timing override chicken bit again. */
1773 reg = TRANS_CHICKEN2(pipe);
1774 val = intel_de_read(dev_priv, reg);
1775 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1776 intel_de_write(dev_priv, reg, val);
1777 }
1778 }
1779
lpt_disable_pch_transcoder(struct drm_i915_private * dev_priv)1780 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1781 {
1782 u32 val;
1783
1784 val = intel_de_read(dev_priv, LPT_TRANSCONF);
1785 val &= ~TRANS_ENABLE;
1786 intel_de_write(dev_priv, LPT_TRANSCONF, val);
1787 /* wait for PCH transcoder off, transcoder state */
1788 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1789 TRANS_STATE_ENABLE, 50))
1790 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n");
1791
1792 /* Workaround: clear timing override bit. */
1793 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1794 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1795 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1796 }
1797
intel_crtc_pch_transcoder(struct intel_crtc * crtc)1798 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1799 {
1800 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1801
1802 if (HAS_PCH_LPT(dev_priv))
1803 return PIPE_A;
1804 else
1805 return crtc->pipe;
1806 }
1807
intel_crtc_max_vblank_count(const struct intel_crtc_state * crtc_state)1808 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1809 {
1810 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1811
1812 /*
1813 * On i965gm the hardware frame counter reads
1814 * zero when the TV encoder is enabled :(
1815 */
1816 if (IS_I965GM(dev_priv) &&
1817 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1818 return 0;
1819
1820 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1821 return 0xffffffff; /* full 32 bit counter */
1822 else if (INTEL_GEN(dev_priv) >= 3)
1823 return 0xffffff; /* only 24 bits of frame count */
1824 else
1825 return 0; /* Gen2 doesn't have a hardware frame counter */
1826 }
1827
intel_crtc_vblank_on(const struct intel_crtc_state * crtc_state)1828 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1829 {
1830 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1831
1832 assert_vblank_disabled(&crtc->base);
1833 drm_crtc_set_max_vblank_count(&crtc->base,
1834 intel_crtc_max_vblank_count(crtc_state));
1835 drm_crtc_vblank_on(&crtc->base);
1836 }
1837
intel_crtc_vblank_off(const struct intel_crtc_state * crtc_state)1838 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
1839 {
1840 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1841
1842 drm_crtc_vblank_off(&crtc->base);
1843 assert_vblank_disabled(&crtc->base);
1844 }
1845
intel_enable_pipe(const struct intel_crtc_state * new_crtc_state)1846 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1847 {
1848 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1849 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1850 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1851 enum pipe pipe = crtc->pipe;
1852 i915_reg_t reg;
1853 u32 val;
1854
1855 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe));
1856
1857 assert_planes_disabled(crtc);
1858
1859 /*
1860 * A pipe without a PLL won't actually be able to drive bits from
1861 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1862 * need the check.
1863 */
1864 if (HAS_GMCH(dev_priv)) {
1865 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1866 assert_dsi_pll_enabled(dev_priv);
1867 else
1868 assert_pll_enabled(dev_priv, pipe);
1869 } else {
1870 if (new_crtc_state->has_pch_encoder) {
1871 /* if driving the PCH, we need FDI enabled */
1872 assert_fdi_rx_pll_enabled(dev_priv,
1873 intel_crtc_pch_transcoder(crtc));
1874 assert_fdi_tx_pll_enabled(dev_priv,
1875 (enum pipe) cpu_transcoder);
1876 }
1877 /* FIXME: assert CPU port conditions for SNB+ */
1878 }
1879
1880 trace_intel_pipe_enable(crtc);
1881
1882 reg = PIPECONF(cpu_transcoder);
1883 val = intel_de_read(dev_priv, reg);
1884 if (val & PIPECONF_ENABLE) {
1885 /* we keep both pipes enabled on 830 */
1886 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv));
1887 return;
1888 }
1889
1890 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE);
1891 intel_de_posting_read(dev_priv, reg);
1892
1893 /*
1894 * Until the pipe starts PIPEDSL reads will return a stale value,
1895 * which causes an apparent vblank timestamp jump when PIPEDSL
1896 * resets to its proper value. That also messes up the frame count
1897 * when it's derived from the timestamps. So let's wait for the
1898 * pipe to start properly before we call drm_crtc_vblank_on()
1899 */
1900 if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1901 intel_wait_for_pipe_scanline_moving(crtc);
1902 }
1903
intel_disable_pipe(const struct intel_crtc_state * old_crtc_state)1904 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1905 {
1906 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1907 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1908 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1909 enum pipe pipe = crtc->pipe;
1910 i915_reg_t reg;
1911 u32 val;
1912
1913 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe));
1914
1915 /*
1916 * Make sure planes won't keep trying to pump pixels to us,
1917 * or we might hang the display.
1918 */
1919 assert_planes_disabled(crtc);
1920
1921 trace_intel_pipe_disable(crtc);
1922
1923 reg = PIPECONF(cpu_transcoder);
1924 val = intel_de_read(dev_priv, reg);
1925 if ((val & PIPECONF_ENABLE) == 0)
1926 return;
1927
1928 /*
1929 * Double wide has implications for planes
1930 * so best keep it disabled when not needed.
1931 */
1932 if (old_crtc_state->double_wide)
1933 val &= ~PIPECONF_DOUBLE_WIDE;
1934
1935 /* Don't disable pipe or pipe PLLs if needed */
1936 if (!IS_I830(dev_priv))
1937 val &= ~PIPECONF_ENABLE;
1938
1939 intel_de_write(dev_priv, reg, val);
1940 if ((val & PIPECONF_ENABLE) == 0)
1941 intel_wait_for_pipe_off(old_crtc_state);
1942 }
1943
intel_tile_size(const struct drm_i915_private * dev_priv)1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1945 {
1946 return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1947 }
1948
is_ccs_plane(const struct drm_framebuffer * fb,int plane)1949 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane)
1950 {
1951 if (!is_ccs_modifier(fb->modifier))
1952 return false;
1953
1954 return plane >= fb->format->num_planes / 2;
1955 }
1956
is_gen12_ccs_modifier(u64 modifier)1957 static bool is_gen12_ccs_modifier(u64 modifier)
1958 {
1959 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
1960 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
1961
1962 }
1963
is_gen12_ccs_plane(const struct drm_framebuffer * fb,int plane)1964 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane)
1965 {
1966 return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane);
1967 }
1968
is_aux_plane(const struct drm_framebuffer * fb,int plane)1969 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane)
1970 {
1971 if (is_ccs_modifier(fb->modifier))
1972 return is_ccs_plane(fb, plane);
1973
1974 return plane == 1;
1975 }
1976
main_to_ccs_plane(const struct drm_framebuffer * fb,int main_plane)1977 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane)
1978 {
1979 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1980 (main_plane && main_plane >= fb->format->num_planes / 2));
1981
1982 return fb->format->num_planes / 2 + main_plane;
1983 }
1984
ccs_to_main_plane(const struct drm_framebuffer * fb,int ccs_plane)1985 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane)
1986 {
1987 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1988 ccs_plane < fb->format->num_planes / 2);
1989
1990 return ccs_plane - fb->format->num_planes / 2;
1991 }
1992
1993 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */
intel_main_to_aux_plane(const struct drm_framebuffer * fb,int main_plane)1994 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane)
1995 {
1996 if (is_ccs_modifier(fb->modifier))
1997 return main_to_ccs_plane(fb, main_plane);
1998
1999 return 1;
2000 }
2001
2002 bool
intel_format_info_is_yuv_semiplanar(const struct drm_format_info * info,uint64_t modifier)2003 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info,
2004 uint64_t modifier)
2005 {
2006 return info->is_yuv &&
2007 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2);
2008 }
2009
is_semiplanar_uv_plane(const struct drm_framebuffer * fb,int color_plane)2010 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb,
2011 int color_plane)
2012 {
2013 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
2014 color_plane == 1;
2015 }
2016
2017 static unsigned int
intel_tile_width_bytes(const struct drm_framebuffer * fb,int color_plane)2018 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
2019 {
2020 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2021 unsigned int cpp = fb->format->cpp[color_plane];
2022
2023 switch (fb->modifier) {
2024 case DRM_FORMAT_MOD_LINEAR:
2025 return intel_tile_size(dev_priv);
2026 case I915_FORMAT_MOD_X_TILED:
2027 if (IS_GEN(dev_priv, 2))
2028 return 128;
2029 else
2030 return 512;
2031 case I915_FORMAT_MOD_Y_TILED_CCS:
2032 if (is_ccs_plane(fb, color_plane))
2033 return 128;
2034 fallthrough;
2035 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2036 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2037 if (is_ccs_plane(fb, color_plane))
2038 return 64;
2039 fallthrough;
2040 case I915_FORMAT_MOD_Y_TILED:
2041 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
2042 return 128;
2043 else
2044 return 512;
2045 case I915_FORMAT_MOD_Yf_TILED_CCS:
2046 if (is_ccs_plane(fb, color_plane))
2047 return 128;
2048 fallthrough;
2049 case I915_FORMAT_MOD_Yf_TILED:
2050 switch (cpp) {
2051 case 1:
2052 return 64;
2053 case 2:
2054 case 4:
2055 return 128;
2056 case 8:
2057 case 16:
2058 return 256;
2059 default:
2060 MISSING_CASE(cpp);
2061 return cpp;
2062 }
2063 break;
2064 default:
2065 MISSING_CASE(fb->modifier);
2066 return cpp;
2067 }
2068 }
2069
2070 static unsigned int
intel_tile_height(const struct drm_framebuffer * fb,int color_plane)2071 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
2072 {
2073 if (is_gen12_ccs_plane(fb, color_plane))
2074 return 1;
2075
2076 return intel_tile_size(to_i915(fb->dev)) /
2077 intel_tile_width_bytes(fb, color_plane);
2078 }
2079
2080 /* Return the tile dimensions in pixel units */
intel_tile_dims(const struct drm_framebuffer * fb,int color_plane,unsigned int * tile_width,unsigned int * tile_height)2081 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
2082 unsigned int *tile_width,
2083 unsigned int *tile_height)
2084 {
2085 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
2086 unsigned int cpp = fb->format->cpp[color_plane];
2087
2088 *tile_width = tile_width_bytes / cpp;
2089 *tile_height = intel_tile_height(fb, color_plane);
2090 }
2091
intel_tile_row_size(const struct drm_framebuffer * fb,int color_plane)2092 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb,
2093 int color_plane)
2094 {
2095 unsigned int tile_width, tile_height;
2096
2097 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2098
2099 return fb->pitches[color_plane] * tile_height;
2100 }
2101
2102 unsigned int
intel_fb_align_height(const struct drm_framebuffer * fb,int color_plane,unsigned int height)2103 intel_fb_align_height(const struct drm_framebuffer *fb,
2104 int color_plane, unsigned int height)
2105 {
2106 unsigned int tile_height = intel_tile_height(fb, color_plane);
2107
2108 return ALIGN(height, tile_height);
2109 }
2110
intel_rotation_info_size(const struct intel_rotation_info * rot_info)2111 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2112 {
2113 unsigned int size = 0;
2114 int i;
2115
2116 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2117 size += rot_info->plane[i].width * rot_info->plane[i].height;
2118
2119 return size;
2120 }
2121
intel_remapped_info_size(const struct intel_remapped_info * rem_info)2122 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2123 {
2124 unsigned int size = 0;
2125 int i;
2126
2127 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2128 size += rem_info->plane[i].width * rem_info->plane[i].height;
2129
2130 return size;
2131 }
2132
2133 static void
intel_fill_fb_ggtt_view(struct i915_ggtt_view * view,const struct drm_framebuffer * fb,unsigned int rotation)2134 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2135 const struct drm_framebuffer *fb,
2136 unsigned int rotation)
2137 {
2138 view->type = I915_GGTT_VIEW_NORMAL;
2139 if (drm_rotation_90_or_270(rotation)) {
2140 view->type = I915_GGTT_VIEW_ROTATED;
2141 view->rotated = to_intel_framebuffer(fb)->rot_info;
2142 }
2143 }
2144
intel_cursor_alignment(const struct drm_i915_private * dev_priv)2145 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2146 {
2147 if (IS_I830(dev_priv))
2148 return 16 * 1024;
2149 else if (IS_I85X(dev_priv))
2150 return 256;
2151 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2152 return 32;
2153 else
2154 return 4 * 1024;
2155 }
2156
intel_linear_alignment(const struct drm_i915_private * dev_priv)2157 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2158 {
2159 if (INTEL_GEN(dev_priv) >= 9)
2160 return 256 * 1024;
2161 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2162 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2163 return 128 * 1024;
2164 else if (INTEL_GEN(dev_priv) >= 4)
2165 return 4 * 1024;
2166 else
2167 return 0;
2168 }
2169
intel_surf_alignment(const struct drm_framebuffer * fb,int color_plane)2170 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2171 int color_plane)
2172 {
2173 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2174
2175 /* AUX_DIST needs only 4K alignment */
2176 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) ||
2177 is_ccs_plane(fb, color_plane))
2178 return 4096;
2179
2180 switch (fb->modifier) {
2181 case DRM_FORMAT_MOD_LINEAR:
2182 return intel_linear_alignment(dev_priv);
2183 case I915_FORMAT_MOD_X_TILED:
2184 if (INTEL_GEN(dev_priv) >= 9)
2185 return 256 * 1024;
2186 return 0;
2187 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2188 if (is_semiplanar_uv_plane(fb, color_plane))
2189 return intel_tile_row_size(fb, color_plane);
2190 fallthrough;
2191 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2192 return 16 * 1024;
2193 case I915_FORMAT_MOD_Y_TILED_CCS:
2194 case I915_FORMAT_MOD_Yf_TILED_CCS:
2195 case I915_FORMAT_MOD_Y_TILED:
2196 if (INTEL_GEN(dev_priv) >= 12 &&
2197 is_semiplanar_uv_plane(fb, color_plane))
2198 return intel_tile_row_size(fb, color_plane);
2199 fallthrough;
2200 case I915_FORMAT_MOD_Yf_TILED:
2201 return 1 * 1024 * 1024;
2202 default:
2203 MISSING_CASE(fb->modifier);
2204 return 0;
2205 }
2206 }
2207
intel_plane_uses_fence(const struct intel_plane_state * plane_state)2208 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2209 {
2210 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2211 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2212
2213 return INTEL_GEN(dev_priv) < 4 ||
2214 (plane->has_fbc &&
2215 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2216 }
2217
2218 struct i915_vma *
intel_pin_and_fence_fb_obj(struct drm_framebuffer * fb,const struct i915_ggtt_view * view,bool uses_fence,unsigned long * out_flags)2219 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2220 const struct i915_ggtt_view *view,
2221 bool uses_fence,
2222 unsigned long *out_flags)
2223 {
2224 struct drm_device *dev = fb->dev;
2225 struct drm_i915_private *dev_priv = to_i915(dev);
2226 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2227 intel_wakeref_t wakeref;
2228 struct i915_vma *vma;
2229 unsigned int pinctl;
2230 u32 alignment;
2231
2232 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj)))
2233 return ERR_PTR(-EINVAL);
2234
2235 alignment = intel_surf_alignment(fb, 0);
2236 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment)))
2237 return ERR_PTR(-EINVAL);
2238
2239 /* Note that the w/a also requires 64 PTE of padding following the
2240 * bo. We currently fill all unused PTE with the shadow page and so
2241 * we should always have valid PTE following the scanout preventing
2242 * the VT-d warning.
2243 */
2244 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2245 alignment = 256 * 1024;
2246
2247 /*
2248 * Global gtt pte registers are special registers which actually forward
2249 * writes to a chunk of system memory. Which means that there is no risk
2250 * that the register values disappear as soon as we call
2251 * intel_runtime_pm_put(), so it is correct to wrap only the
2252 * pin/unpin/fence and not more.
2253 */
2254 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2255
2256 atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2257
2258 /*
2259 * Valleyview is definitely limited to scanning out the first
2260 * 512MiB. Lets presume this behaviour was inherited from the
2261 * g4x display engine and that all earlier gen are similarly
2262 * limited. Testing suggests that it is a little more
2263 * complicated than this. For example, Cherryview appears quite
2264 * happy to scanout from anywhere within its global aperture.
2265 */
2266 pinctl = 0;
2267 if (HAS_GMCH(dev_priv))
2268 pinctl |= PIN_MAPPABLE;
2269
2270 vma = i915_gem_object_pin_to_display_plane(obj,
2271 alignment, view, pinctl);
2272 if (IS_ERR(vma))
2273 goto err;
2274
2275 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2276 int ret;
2277
2278 /*
2279 * Install a fence for tiled scan-out. Pre-i965 always needs a
2280 * fence, whereas 965+ only requires a fence if using
2281 * framebuffer compression. For simplicity, we always, when
2282 * possible, install a fence as the cost is not that onerous.
2283 *
2284 * If we fail to fence the tiled scanout, then either the
2285 * modeset will reject the change (which is highly unlikely as
2286 * the affected systems, all but one, do not have unmappable
2287 * space) or we will not be able to enable full powersaving
2288 * techniques (also likely not to apply due to various limits
2289 * FBC and the like impose on the size of the buffer, which
2290 * presumably we violated anyway with this unmappable buffer).
2291 * Anyway, it is presumably better to stumble onwards with
2292 * something and try to run the system in a "less than optimal"
2293 * mode that matches the user configuration.
2294 */
2295 ret = i915_vma_pin_fence(vma);
2296 if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2297 i915_vma_unpin(vma);
2298 vma = ERR_PTR(ret);
2299 goto err;
2300 }
2301
2302 if (ret == 0 && vma->fence)
2303 *out_flags |= PLANE_HAS_FENCE;
2304 }
2305
2306 i915_vma_get(vma);
2307 err:
2308 atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2309 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2310 return vma;
2311 }
2312
intel_unpin_fb_vma(struct i915_vma * vma,unsigned long flags)2313 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2314 {
2315 if (flags & PLANE_HAS_FENCE)
2316 i915_vma_unpin_fence(vma);
2317 i915_vma_unpin(vma);
2318 i915_vma_put(vma);
2319 }
2320
intel_fb_pitch(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)2321 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2322 unsigned int rotation)
2323 {
2324 if (drm_rotation_90_or_270(rotation))
2325 return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2326 else
2327 return fb->pitches[color_plane];
2328 }
2329
2330 /*
2331 * Convert the x/y offsets into a linear offset.
2332 * Only valid with 0/180 degree rotation, which is fine since linear
2333 * offset is only used with linear buffers on pre-hsw and tiled buffers
2334 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2335 */
intel_fb_xy_to_linear(int x,int y,const struct intel_plane_state * state,int color_plane)2336 u32 intel_fb_xy_to_linear(int x, int y,
2337 const struct intel_plane_state *state,
2338 int color_plane)
2339 {
2340 const struct drm_framebuffer *fb = state->hw.fb;
2341 unsigned int cpp = fb->format->cpp[color_plane];
2342 unsigned int pitch = state->color_plane[color_plane].stride;
2343
2344 return y * pitch + x * cpp;
2345 }
2346
2347 /*
2348 * Add the x/y offsets derived from fb->offsets[] to the user
2349 * specified plane src x/y offsets. The resulting x/y offsets
2350 * specify the start of scanout from the beginning of the gtt mapping.
2351 */
intel_add_fb_offsets(int * x,int * y,const struct intel_plane_state * state,int color_plane)2352 void intel_add_fb_offsets(int *x, int *y,
2353 const struct intel_plane_state *state,
2354 int color_plane)
2355
2356 {
2357 *x += state->color_plane[color_plane].x;
2358 *y += state->color_plane[color_plane].y;
2359 }
2360
intel_adjust_tile_offset(int * x,int * y,unsigned int tile_width,unsigned int tile_height,unsigned int tile_size,unsigned int pitch_tiles,u32 old_offset,u32 new_offset)2361 static u32 intel_adjust_tile_offset(int *x, int *y,
2362 unsigned int tile_width,
2363 unsigned int tile_height,
2364 unsigned int tile_size,
2365 unsigned int pitch_tiles,
2366 u32 old_offset,
2367 u32 new_offset)
2368 {
2369 unsigned int pitch_pixels = pitch_tiles * tile_width;
2370 unsigned int tiles;
2371
2372 WARN_ON(old_offset & (tile_size - 1));
2373 WARN_ON(new_offset & (tile_size - 1));
2374 WARN_ON(new_offset > old_offset);
2375
2376 tiles = (old_offset - new_offset) / tile_size;
2377
2378 *y += tiles / pitch_tiles * tile_height;
2379 *x += tiles % pitch_tiles * tile_width;
2380
2381 /* minimize x in case it got needlessly big */
2382 *y += *x / pitch_pixels * tile_height;
2383 *x %= pitch_pixels;
2384
2385 return new_offset;
2386 }
2387
is_surface_linear(const struct drm_framebuffer * fb,int color_plane)2388 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane)
2389 {
2390 return fb->modifier == DRM_FORMAT_MOD_LINEAR ||
2391 is_gen12_ccs_plane(fb, color_plane);
2392 }
2393
intel_adjust_aligned_offset(int * x,int * y,const struct drm_framebuffer * fb,int color_plane,unsigned int rotation,unsigned int pitch,u32 old_offset,u32 new_offset)2394 static u32 intel_adjust_aligned_offset(int *x, int *y,
2395 const struct drm_framebuffer *fb,
2396 int color_plane,
2397 unsigned int rotation,
2398 unsigned int pitch,
2399 u32 old_offset, u32 new_offset)
2400 {
2401 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2402 unsigned int cpp = fb->format->cpp[color_plane];
2403
2404 drm_WARN_ON(&dev_priv->drm, new_offset > old_offset);
2405
2406 if (!is_surface_linear(fb, color_plane)) {
2407 unsigned int tile_size, tile_width, tile_height;
2408 unsigned int pitch_tiles;
2409
2410 tile_size = intel_tile_size(dev_priv);
2411 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2412
2413 if (drm_rotation_90_or_270(rotation)) {
2414 pitch_tiles = pitch / tile_height;
2415 swap(tile_width, tile_height);
2416 } else {
2417 pitch_tiles = pitch / (tile_width * cpp);
2418 }
2419
2420 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2421 tile_size, pitch_tiles,
2422 old_offset, new_offset);
2423 } else {
2424 old_offset += *y * pitch + *x * cpp;
2425
2426 *y = (old_offset - new_offset) / pitch;
2427 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2428 }
2429
2430 return new_offset;
2431 }
2432
2433 /*
2434 * Adjust the tile offset by moving the difference into
2435 * the x/y offsets.
2436 */
intel_plane_adjust_aligned_offset(int * x,int * y,const struct intel_plane_state * state,int color_plane,u32 old_offset,u32 new_offset)2437 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2438 const struct intel_plane_state *state,
2439 int color_plane,
2440 u32 old_offset, u32 new_offset)
2441 {
2442 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane,
2443 state->hw.rotation,
2444 state->color_plane[color_plane].stride,
2445 old_offset, new_offset);
2446 }
2447
2448 /*
2449 * Computes the aligned offset to the base tile and adjusts
2450 * x, y. bytes per pixel is assumed to be a power-of-two.
2451 *
2452 * In the 90/270 rotated case, x and y are assumed
2453 * to be already rotated to match the rotated GTT view, and
2454 * pitch is the tile_height aligned framebuffer height.
2455 *
2456 * This function is used when computing the derived information
2457 * under intel_framebuffer, so using any of that information
2458 * here is not allowed. Anything under drm_framebuffer can be
2459 * used. This is why the user has to pass in the pitch since it
2460 * is specified in the rotated orientation.
2461 */
intel_compute_aligned_offset(struct drm_i915_private * dev_priv,int * x,int * y,const struct drm_framebuffer * fb,int color_plane,unsigned int pitch,unsigned int rotation,u32 alignment)2462 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2463 int *x, int *y,
2464 const struct drm_framebuffer *fb,
2465 int color_plane,
2466 unsigned int pitch,
2467 unsigned int rotation,
2468 u32 alignment)
2469 {
2470 unsigned int cpp = fb->format->cpp[color_plane];
2471 u32 offset, offset_aligned;
2472
2473 if (!is_surface_linear(fb, color_plane)) {
2474 unsigned int tile_size, tile_width, tile_height;
2475 unsigned int tile_rows, tiles, pitch_tiles;
2476
2477 tile_size = intel_tile_size(dev_priv);
2478 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2479
2480 if (drm_rotation_90_or_270(rotation)) {
2481 pitch_tiles = pitch / tile_height;
2482 swap(tile_width, tile_height);
2483 } else {
2484 pitch_tiles = pitch / (tile_width * cpp);
2485 }
2486
2487 tile_rows = *y / tile_height;
2488 *y %= tile_height;
2489
2490 tiles = *x / tile_width;
2491 *x %= tile_width;
2492
2493 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2494
2495 offset_aligned = offset;
2496 if (alignment)
2497 offset_aligned = rounddown(offset_aligned, alignment);
2498
2499 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2500 tile_size, pitch_tiles,
2501 offset, offset_aligned);
2502 } else {
2503 offset = *y * pitch + *x * cpp;
2504 offset_aligned = offset;
2505 if (alignment) {
2506 offset_aligned = rounddown(offset_aligned, alignment);
2507 *y = (offset % alignment) / pitch;
2508 *x = ((offset % alignment) - *y * pitch) / cpp;
2509 } else {
2510 *y = *x = 0;
2511 }
2512 }
2513
2514 return offset_aligned;
2515 }
2516
intel_plane_compute_aligned_offset(int * x,int * y,const struct intel_plane_state * state,int color_plane)2517 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2518 const struct intel_plane_state *state,
2519 int color_plane)
2520 {
2521 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane);
2522 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2523 const struct drm_framebuffer *fb = state->hw.fb;
2524 unsigned int rotation = state->hw.rotation;
2525 int pitch = state->color_plane[color_plane].stride;
2526 u32 alignment;
2527
2528 if (intel_plane->id == PLANE_CURSOR)
2529 alignment = intel_cursor_alignment(dev_priv);
2530 else
2531 alignment = intel_surf_alignment(fb, color_plane);
2532
2533 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2534 pitch, rotation, alignment);
2535 }
2536
2537 /* Convert the fb->offset[] into x/y offsets */
intel_fb_offset_to_xy(int * x,int * y,const struct drm_framebuffer * fb,int color_plane)2538 static int intel_fb_offset_to_xy(int *x, int *y,
2539 const struct drm_framebuffer *fb,
2540 int color_plane)
2541 {
2542 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2543 unsigned int height;
2544 u32 alignment;
2545
2546 if (INTEL_GEN(dev_priv) >= 12 &&
2547 is_semiplanar_uv_plane(fb, color_plane))
2548 alignment = intel_tile_row_size(fb, color_plane);
2549 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR)
2550 alignment = intel_tile_size(dev_priv);
2551 else
2552 alignment = 0;
2553
2554 if (alignment != 0 && fb->offsets[color_plane] % alignment) {
2555 drm_dbg_kms(&dev_priv->drm,
2556 "Misaligned offset 0x%08x for color plane %d\n",
2557 fb->offsets[color_plane], color_plane);
2558 return -EINVAL;
2559 }
2560
2561 height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2562 height = ALIGN(height, intel_tile_height(fb, color_plane));
2563
2564 /* Catch potential overflows early */
2565 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2566 fb->offsets[color_plane])) {
2567 drm_dbg_kms(&dev_priv->drm,
2568 "Bad offset 0x%08x or pitch %d for color plane %d\n",
2569 fb->offsets[color_plane], fb->pitches[color_plane],
2570 color_plane);
2571 return -ERANGE;
2572 }
2573
2574 *x = 0;
2575 *y = 0;
2576
2577 intel_adjust_aligned_offset(x, y,
2578 fb, color_plane, DRM_MODE_ROTATE_0,
2579 fb->pitches[color_plane],
2580 fb->offsets[color_plane], 0);
2581
2582 return 0;
2583 }
2584
intel_fb_modifier_to_tiling(u64 fb_modifier)2585 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2586 {
2587 switch (fb_modifier) {
2588 case I915_FORMAT_MOD_X_TILED:
2589 return I915_TILING_X;
2590 case I915_FORMAT_MOD_Y_TILED:
2591 case I915_FORMAT_MOD_Y_TILED_CCS:
2592 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2593 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2594 return I915_TILING_Y;
2595 default:
2596 return I915_TILING_NONE;
2597 }
2598 }
2599
2600 /*
2601 * From the Sky Lake PRM:
2602 * "The Color Control Surface (CCS) contains the compression status of
2603 * the cache-line pairs. The compression state of the cache-line pair
2604 * is specified by 2 bits in the CCS. Each CCS cache-line represents
2605 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2606 * cache-line-pairs. CCS is always Y tiled."
2607 *
2608 * Since cache line pairs refers to horizontally adjacent cache lines,
2609 * each cache line in the CCS corresponds to an area of 32x16 cache
2610 * lines on the main surface. Since each pixel is 4 bytes, this gives
2611 * us a ratio of one byte in the CCS for each 8x16 pixels in the
2612 * main surface.
2613 */
2614 static const struct drm_format_info skl_ccs_formats[] = {
2615 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2616 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2617 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2618 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2619 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2620 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2621 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2622 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2623 };
2624
2625 /*
2626 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the
2627 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles
2628 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of
2629 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in
2630 * the main surface.
2631 */
2632 static const struct drm_format_info gen12_ccs_formats[] = {
2633 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2634 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2635 .hsub = 1, .vsub = 1, },
2636 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2637 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2638 .hsub = 1, .vsub = 1, },
2639 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2640 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2641 .hsub = 1, .vsub = 1, .has_alpha = true },
2642 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2643 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2644 .hsub = 1, .vsub = 1, .has_alpha = true },
2645 { .format = DRM_FORMAT_YUYV, .num_planes = 2,
2646 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2647 .hsub = 2, .vsub = 1, .is_yuv = true },
2648 { .format = DRM_FORMAT_YVYU, .num_planes = 2,
2649 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2650 .hsub = 2, .vsub = 1, .is_yuv = true },
2651 { .format = DRM_FORMAT_UYVY, .num_planes = 2,
2652 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2653 .hsub = 2, .vsub = 1, .is_yuv = true },
2654 { .format = DRM_FORMAT_VYUY, .num_planes = 2,
2655 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2656 .hsub = 2, .vsub = 1, .is_yuv = true },
2657 { .format = DRM_FORMAT_NV12, .num_planes = 4,
2658 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 },
2659 .hsub = 2, .vsub = 2, .is_yuv = true },
2660 { .format = DRM_FORMAT_P010, .num_planes = 4,
2661 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2662 .hsub = 2, .vsub = 2, .is_yuv = true },
2663 { .format = DRM_FORMAT_P012, .num_planes = 4,
2664 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2665 .hsub = 2, .vsub = 2, .is_yuv = true },
2666 { .format = DRM_FORMAT_P016, .num_planes = 4,
2667 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2668 .hsub = 2, .vsub = 2, .is_yuv = true },
2669 };
2670
2671 static const struct drm_format_info *
lookup_format_info(const struct drm_format_info formats[],int num_formats,u32 format)2672 lookup_format_info(const struct drm_format_info formats[],
2673 int num_formats, u32 format)
2674 {
2675 int i;
2676
2677 for (i = 0; i < num_formats; i++) {
2678 if (formats[i].format == format)
2679 return &formats[i];
2680 }
2681
2682 return NULL;
2683 }
2684
2685 static const struct drm_format_info *
intel_get_format_info(const struct drm_mode_fb_cmd2 * cmd)2686 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2687 {
2688 switch (cmd->modifier[0]) {
2689 case I915_FORMAT_MOD_Y_TILED_CCS:
2690 case I915_FORMAT_MOD_Yf_TILED_CCS:
2691 return lookup_format_info(skl_ccs_formats,
2692 ARRAY_SIZE(skl_ccs_formats),
2693 cmd->pixel_format);
2694 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2695 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2696 return lookup_format_info(gen12_ccs_formats,
2697 ARRAY_SIZE(gen12_ccs_formats),
2698 cmd->pixel_format);
2699 default:
2700 return NULL;
2701 }
2702 }
2703
is_ccs_modifier(u64 modifier)2704 bool is_ccs_modifier(u64 modifier)
2705 {
2706 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
2707 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
2708 modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2709 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2710 }
2711
gen12_ccs_aux_stride(struct drm_framebuffer * fb,int ccs_plane)2712 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane)
2713 {
2714 return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)],
2715 512) * 64;
2716 }
2717
intel_plane_fb_max_stride(struct drm_i915_private * dev_priv,u32 pixel_format,u64 modifier)2718 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2719 u32 pixel_format, u64 modifier)
2720 {
2721 struct intel_crtc *crtc;
2722 struct intel_plane *plane;
2723
2724 /*
2725 * We assume the primary plane for pipe A has
2726 * the highest stride limits of them all,
2727 * if in case pipe A is disabled, use the first pipe from pipe_mask.
2728 */
2729 crtc = intel_get_first_crtc(dev_priv);
2730 if (!crtc)
2731 return 0;
2732
2733 plane = to_intel_plane(crtc->base.primary);
2734
2735 return plane->max_stride(plane, pixel_format, modifier,
2736 DRM_MODE_ROTATE_0);
2737 }
2738
2739 static
intel_fb_max_stride(struct drm_i915_private * dev_priv,u32 pixel_format,u64 modifier)2740 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2741 u32 pixel_format, u64 modifier)
2742 {
2743 /*
2744 * Arbitrary limit for gen4+ chosen to match the
2745 * render engine max stride.
2746 *
2747 * The new CCS hash mode makes remapping impossible
2748 */
2749 if (!is_ccs_modifier(modifier)) {
2750 if (INTEL_GEN(dev_priv) >= 7)
2751 return 256*1024;
2752 else if (INTEL_GEN(dev_priv) >= 4)
2753 return 128*1024;
2754 }
2755
2756 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2757 }
2758
2759 static u32
intel_fb_stride_alignment(const struct drm_framebuffer * fb,int color_plane)2760 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2761 {
2762 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2763 u32 tile_width;
2764
2765 if (is_surface_linear(fb, color_plane)) {
2766 u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2767 fb->format->format,
2768 fb->modifier);
2769
2770 /*
2771 * To make remapping with linear generally feasible
2772 * we need the stride to be page aligned.
2773 */
2774 if (fb->pitches[color_plane] > max_stride &&
2775 !is_ccs_modifier(fb->modifier))
2776 return intel_tile_size(dev_priv);
2777 else
2778 return 64;
2779 }
2780
2781 tile_width = intel_tile_width_bytes(fb, color_plane);
2782 if (is_ccs_modifier(fb->modifier)) {
2783 /*
2784 * Display WA #0531: skl,bxt,kbl,glk
2785 *
2786 * Render decompression and plane width > 3840
2787 * combined with horizontal panning requires the
2788 * plane stride to be a multiple of 4. We'll just
2789 * require the entire fb to accommodate that to avoid
2790 * potential runtime errors at plane configuration time.
2791 */
2792 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840)
2793 tile_width *= 4;
2794 /*
2795 * The main surface pitch must be padded to a multiple of four
2796 * tile widths.
2797 */
2798 else if (INTEL_GEN(dev_priv) >= 12)
2799 tile_width *= 4;
2800 }
2801 return tile_width;
2802 }
2803
intel_plane_can_remap(const struct intel_plane_state * plane_state)2804 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2805 {
2806 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2807 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2808 const struct drm_framebuffer *fb = plane_state->hw.fb;
2809 int i;
2810
2811 /* We don't want to deal with remapping with cursors */
2812 if (plane->id == PLANE_CURSOR)
2813 return false;
2814
2815 /*
2816 * The display engine limits already match/exceed the
2817 * render engine limits, so not much point in remapping.
2818 * Would also need to deal with the fence POT alignment
2819 * and gen2 2KiB GTT tile size.
2820 */
2821 if (INTEL_GEN(dev_priv) < 4)
2822 return false;
2823
2824 /*
2825 * The new CCS hash mode isn't compatible with remapping as
2826 * the virtual address of the pages affects the compressed data.
2827 */
2828 if (is_ccs_modifier(fb->modifier))
2829 return false;
2830
2831 /* Linear needs a page aligned stride for remapping */
2832 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2833 unsigned int alignment = intel_tile_size(dev_priv) - 1;
2834
2835 for (i = 0; i < fb->format->num_planes; i++) {
2836 if (fb->pitches[i] & alignment)
2837 return false;
2838 }
2839 }
2840
2841 return true;
2842 }
2843
intel_plane_needs_remap(const struct intel_plane_state * plane_state)2844 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2845 {
2846 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2847 const struct drm_framebuffer *fb = plane_state->hw.fb;
2848 unsigned int rotation = plane_state->hw.rotation;
2849 u32 stride, max_stride;
2850
2851 /*
2852 * No remapping for invisible planes since we don't have
2853 * an actual source viewport to remap.
2854 */
2855 if (!plane_state->uapi.visible)
2856 return false;
2857
2858 if (!intel_plane_can_remap(plane_state))
2859 return false;
2860
2861 /*
2862 * FIXME: aux plane limits on gen9+ are
2863 * unclear in Bspec, for now no checking.
2864 */
2865 stride = intel_fb_pitch(fb, 0, rotation);
2866 max_stride = plane->max_stride(plane, fb->format->format,
2867 fb->modifier, rotation);
2868
2869 return stride > max_stride;
2870 }
2871
2872 static void
intel_fb_plane_get_subsampling(int * hsub,int * vsub,const struct drm_framebuffer * fb,int color_plane)2873 intel_fb_plane_get_subsampling(int *hsub, int *vsub,
2874 const struct drm_framebuffer *fb,
2875 int color_plane)
2876 {
2877 int main_plane;
2878
2879 if (color_plane == 0) {
2880 *hsub = 1;
2881 *vsub = 1;
2882
2883 return;
2884 }
2885
2886 /*
2887 * TODO: Deduct the subsampling from the char block for all CCS
2888 * formats and planes.
2889 */
2890 if (!is_gen12_ccs_plane(fb, color_plane)) {
2891 *hsub = fb->format->hsub;
2892 *vsub = fb->format->vsub;
2893
2894 return;
2895 }
2896
2897 main_plane = ccs_to_main_plane(fb, color_plane);
2898 *hsub = drm_format_info_block_width(fb->format, color_plane) /
2899 drm_format_info_block_width(fb->format, main_plane);
2900
2901 /*
2902 * The min stride check in the core framebuffer_check() function
2903 * assumes that format->hsub applies to every plane except for the
2904 * first plane. That's incorrect for the CCS AUX plane of the first
2905 * plane, but for the above check to pass we must define the block
2906 * width with that subsampling applied to it. Adjust the width here
2907 * accordingly, so we can calculate the actual subsampling factor.
2908 */
2909 if (main_plane == 0)
2910 *hsub *= fb->format->hsub;
2911
2912 *vsub = 32;
2913 }
2914 static int
intel_fb_check_ccs_xy(struct drm_framebuffer * fb,int ccs_plane,int x,int y)2915 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y)
2916 {
2917 struct drm_i915_private *i915 = to_i915(fb->dev);
2918 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2919 int main_plane;
2920 int hsub, vsub;
2921 int tile_width, tile_height;
2922 int ccs_x, ccs_y;
2923 int main_x, main_y;
2924
2925 if (!is_ccs_plane(fb, ccs_plane))
2926 return 0;
2927
2928 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height);
2929 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
2930
2931 tile_width *= hsub;
2932 tile_height *= vsub;
2933
2934 ccs_x = (x * hsub) % tile_width;
2935 ccs_y = (y * vsub) % tile_height;
2936
2937 main_plane = ccs_to_main_plane(fb, ccs_plane);
2938 main_x = intel_fb->normal[main_plane].x % tile_width;
2939 main_y = intel_fb->normal[main_plane].y % tile_height;
2940
2941 /*
2942 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2943 * x/y offsets must match between CCS and the main surface.
2944 */
2945 if (main_x != ccs_x || main_y != ccs_y) {
2946 drm_dbg_kms(&i915->drm,
2947 "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2948 main_x, main_y,
2949 ccs_x, ccs_y,
2950 intel_fb->normal[main_plane].x,
2951 intel_fb->normal[main_plane].y,
2952 x, y);
2953 return -EINVAL;
2954 }
2955
2956 return 0;
2957 }
2958
2959 static void
intel_fb_plane_dims(int * w,int * h,struct drm_framebuffer * fb,int color_plane)2960 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane)
2961 {
2962 int main_plane = is_ccs_plane(fb, color_plane) ?
2963 ccs_to_main_plane(fb, color_plane) : 0;
2964 int main_hsub, main_vsub;
2965 int hsub, vsub;
2966
2967 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane);
2968 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane);
2969 *w = fb->width / main_hsub / hsub;
2970 *h = fb->height / main_vsub / vsub;
2971 }
2972
2973 /*
2974 * Setup the rotated view for an FB plane and return the size the GTT mapping
2975 * requires for this view.
2976 */
2977 static u32
setup_fb_rotation(int plane,const struct intel_remapped_plane_info * plane_info,u32 gtt_offset_rotated,int x,int y,unsigned int width,unsigned int height,unsigned int tile_size,unsigned int tile_width,unsigned int tile_height,struct drm_framebuffer * fb)2978 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info,
2979 u32 gtt_offset_rotated, int x, int y,
2980 unsigned int width, unsigned int height,
2981 unsigned int tile_size,
2982 unsigned int tile_width, unsigned int tile_height,
2983 struct drm_framebuffer *fb)
2984 {
2985 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2986 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2987 unsigned int pitch_tiles;
2988 struct drm_rect r;
2989
2990 /* Y or Yf modifiers required for 90/270 rotation */
2991 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
2992 fb->modifier != I915_FORMAT_MOD_Yf_TILED)
2993 return 0;
2994
2995 if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane)))
2996 return 0;
2997
2998 rot_info->plane[plane] = *plane_info;
2999
3000 intel_fb->rotated[plane].pitch = plane_info->height * tile_height;
3001
3002 /* rotate the x/y offsets to match the GTT view */
3003 drm_rect_init(&r, x, y, width, height);
3004 drm_rect_rotate(&r,
3005 plane_info->width * tile_width,
3006 plane_info->height * tile_height,
3007 DRM_MODE_ROTATE_270);
3008 x = r.x1;
3009 y = r.y1;
3010
3011 /* rotate the tile dimensions to match the GTT view */
3012 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height;
3013 swap(tile_width, tile_height);
3014
3015 /*
3016 * We only keep the x/y offsets, so push all of the
3017 * gtt offset into the x/y offsets.
3018 */
3019 intel_adjust_tile_offset(&x, &y,
3020 tile_width, tile_height,
3021 tile_size, pitch_tiles,
3022 gtt_offset_rotated * tile_size, 0);
3023
3024 /*
3025 * First pixel of the framebuffer from
3026 * the start of the rotated gtt mapping.
3027 */
3028 intel_fb->rotated[plane].x = x;
3029 intel_fb->rotated[plane].y = y;
3030
3031 return plane_info->width * plane_info->height;
3032 }
3033
3034 static int
intel_fill_fb_info(struct drm_i915_private * dev_priv,struct drm_framebuffer * fb)3035 intel_fill_fb_info(struct drm_i915_private *dev_priv,
3036 struct drm_framebuffer *fb)
3037 {
3038 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3039 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3040 u32 gtt_offset_rotated = 0;
3041 unsigned int max_size = 0;
3042 int i, num_planes = fb->format->num_planes;
3043 unsigned int tile_size = intel_tile_size(dev_priv);
3044
3045 for (i = 0; i < num_planes; i++) {
3046 unsigned int width, height;
3047 unsigned int cpp, size;
3048 u32 offset;
3049 int x, y;
3050 int ret;
3051
3052 cpp = fb->format->cpp[i];
3053 intel_fb_plane_dims(&width, &height, fb, i);
3054
3055 ret = intel_fb_offset_to_xy(&x, &y, fb, i);
3056 if (ret) {
3057 drm_dbg_kms(&dev_priv->drm,
3058 "bad fb plane %d offset: 0x%x\n",
3059 i, fb->offsets[i]);
3060 return ret;
3061 }
3062
3063 ret = intel_fb_check_ccs_xy(fb, i, x, y);
3064 if (ret)
3065 return ret;
3066
3067 /*
3068 * The fence (if used) is aligned to the start of the object
3069 * so having the framebuffer wrap around across the edge of the
3070 * fenced region doesn't really work. We have no API to configure
3071 * the fence start offset within the object (nor could we probably
3072 * on gen2/3). So it's just easier if we just require that the
3073 * fb layout agrees with the fence layout. We already check that the
3074 * fb stride matches the fence stride elsewhere.
3075 */
3076 if (i == 0 && i915_gem_object_is_tiled(obj) &&
3077 (x + width) * cpp > fb->pitches[i]) {
3078 drm_dbg_kms(&dev_priv->drm,
3079 "bad fb plane %d offset: 0x%x\n",
3080 i, fb->offsets[i]);
3081 return -EINVAL;
3082 }
3083
3084 /*
3085 * First pixel of the framebuffer from
3086 * the start of the normal gtt mapping.
3087 */
3088 intel_fb->normal[i].x = x;
3089 intel_fb->normal[i].y = y;
3090
3091 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
3092 fb->pitches[i],
3093 DRM_MODE_ROTATE_0,
3094 tile_size);
3095 offset /= tile_size;
3096
3097 if (!is_surface_linear(fb, i)) {
3098 struct intel_remapped_plane_info plane_info;
3099 unsigned int tile_width, tile_height;
3100
3101 intel_tile_dims(fb, i, &tile_width, &tile_height);
3102
3103 plane_info.offset = offset;
3104 plane_info.stride = DIV_ROUND_UP(fb->pitches[i],
3105 tile_width * cpp);
3106 plane_info.width = DIV_ROUND_UP(x + width, tile_width);
3107 plane_info.height = DIV_ROUND_UP(y + height,
3108 tile_height);
3109
3110 /* how many tiles does this plane need */
3111 size = plane_info.stride * plane_info.height;
3112 /*
3113 * If the plane isn't horizontally tile aligned,
3114 * we need one more tile.
3115 */
3116 if (x != 0)
3117 size++;
3118
3119 gtt_offset_rotated +=
3120 setup_fb_rotation(i, &plane_info,
3121 gtt_offset_rotated,
3122 x, y, width, height,
3123 tile_size,
3124 tile_width, tile_height,
3125 fb);
3126 } else {
3127 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
3128 x * cpp, tile_size);
3129 }
3130
3131 /* how many tiles in total needed in the bo */
3132 max_size = max(max_size, offset + size);
3133 }
3134
3135 if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
3136 drm_dbg_kms(&dev_priv->drm,
3137 "fb too big for bo (need %llu bytes, have %zu bytes)\n",
3138 mul_u32_u32(max_size, tile_size), obj->base.size);
3139 return -EINVAL;
3140 }
3141
3142 return 0;
3143 }
3144
3145 static void
intel_plane_remap_gtt(struct intel_plane_state * plane_state)3146 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
3147 {
3148 struct drm_i915_private *dev_priv =
3149 to_i915(plane_state->uapi.plane->dev);
3150 struct drm_framebuffer *fb = plane_state->hw.fb;
3151 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3152 struct intel_rotation_info *info = &plane_state->view.rotated;
3153 unsigned int rotation = plane_state->hw.rotation;
3154 int i, num_planes = fb->format->num_planes;
3155 unsigned int tile_size = intel_tile_size(dev_priv);
3156 unsigned int src_x, src_y;
3157 unsigned int src_w, src_h;
3158 u32 gtt_offset = 0;
3159
3160 memset(&plane_state->view, 0, sizeof(plane_state->view));
3161 plane_state->view.type = drm_rotation_90_or_270(rotation) ?
3162 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
3163
3164 src_x = plane_state->uapi.src.x1 >> 16;
3165 src_y = plane_state->uapi.src.y1 >> 16;
3166 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
3167 src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
3168
3169 drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier));
3170
3171 /* Make src coordinates relative to the viewport */
3172 drm_rect_translate(&plane_state->uapi.src,
3173 -(src_x << 16), -(src_y << 16));
3174
3175 /* Rotate src coordinates to match rotated GTT view */
3176 if (drm_rotation_90_or_270(rotation))
3177 drm_rect_rotate(&plane_state->uapi.src,
3178 src_w << 16, src_h << 16,
3179 DRM_MODE_ROTATE_270);
3180
3181 for (i = 0; i < num_planes; i++) {
3182 unsigned int hsub = i ? fb->format->hsub : 1;
3183 unsigned int vsub = i ? fb->format->vsub : 1;
3184 unsigned int cpp = fb->format->cpp[i];
3185 unsigned int tile_width, tile_height;
3186 unsigned int width, height;
3187 unsigned int pitch_tiles;
3188 unsigned int x, y;
3189 u32 offset;
3190
3191 intel_tile_dims(fb, i, &tile_width, &tile_height);
3192
3193 x = src_x / hsub;
3194 y = src_y / vsub;
3195 width = src_w / hsub;
3196 height = src_h / vsub;
3197
3198 /*
3199 * First pixel of the src viewport from the
3200 * start of the normal gtt mapping.
3201 */
3202 x += intel_fb->normal[i].x;
3203 y += intel_fb->normal[i].y;
3204
3205 offset = intel_compute_aligned_offset(dev_priv, &x, &y,
3206 fb, i, fb->pitches[i],
3207 DRM_MODE_ROTATE_0, tile_size);
3208 offset /= tile_size;
3209
3210 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane));
3211 info->plane[i].offset = offset;
3212 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
3213 tile_width * cpp);
3214 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
3215 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
3216
3217 if (drm_rotation_90_or_270(rotation)) {
3218 struct drm_rect r;
3219
3220 /* rotate the x/y offsets to match the GTT view */
3221 drm_rect_init(&r, x, y, width, height);
3222 drm_rect_rotate(&r,
3223 info->plane[i].width * tile_width,
3224 info->plane[i].height * tile_height,
3225 DRM_MODE_ROTATE_270);
3226 x = r.x1;
3227 y = r.y1;
3228
3229 pitch_tiles = info->plane[i].height;
3230 plane_state->color_plane[i].stride = pitch_tiles * tile_height;
3231
3232 /* rotate the tile dimensions to match the GTT view */
3233 swap(tile_width, tile_height);
3234 } else {
3235 pitch_tiles = info->plane[i].width;
3236 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
3237 }
3238
3239 /*
3240 * We only keep the x/y offsets, so push all of the
3241 * gtt offset into the x/y offsets.
3242 */
3243 intel_adjust_tile_offset(&x, &y,
3244 tile_width, tile_height,
3245 tile_size, pitch_tiles,
3246 gtt_offset * tile_size, 0);
3247
3248 gtt_offset += info->plane[i].width * info->plane[i].height;
3249
3250 plane_state->color_plane[i].offset = 0;
3251 plane_state->color_plane[i].x = x;
3252 plane_state->color_plane[i].y = y;
3253 }
3254 }
3255
3256 static int
intel_plane_compute_gtt(struct intel_plane_state * plane_state)3257 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
3258 {
3259 const struct intel_framebuffer *fb =
3260 to_intel_framebuffer(plane_state->hw.fb);
3261 unsigned int rotation = plane_state->hw.rotation;
3262 int i, num_planes;
3263
3264 if (!fb)
3265 return 0;
3266
3267 num_planes = fb->base.format->num_planes;
3268
3269 if (intel_plane_needs_remap(plane_state)) {
3270 intel_plane_remap_gtt(plane_state);
3271
3272 /*
3273 * Sometimes even remapping can't overcome
3274 * the stride limitations :( Can happen with
3275 * big plane sizes and suitably misaligned
3276 * offsets.
3277 */
3278 return intel_plane_check_stride(plane_state);
3279 }
3280
3281 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
3282
3283 for (i = 0; i < num_planes; i++) {
3284 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
3285 plane_state->color_plane[i].offset = 0;
3286
3287 if (drm_rotation_90_or_270(rotation)) {
3288 plane_state->color_plane[i].x = fb->rotated[i].x;
3289 plane_state->color_plane[i].y = fb->rotated[i].y;
3290 } else {
3291 plane_state->color_plane[i].x = fb->normal[i].x;
3292 plane_state->color_plane[i].y = fb->normal[i].y;
3293 }
3294 }
3295
3296 /* Rotate src coordinates to match rotated GTT view */
3297 if (drm_rotation_90_or_270(rotation))
3298 drm_rect_rotate(&plane_state->uapi.src,
3299 fb->base.width << 16, fb->base.height << 16,
3300 DRM_MODE_ROTATE_270);
3301
3302 return intel_plane_check_stride(plane_state);
3303 }
3304
i9xx_format_to_fourcc(int format)3305 static int i9xx_format_to_fourcc(int format)
3306 {
3307 switch (format) {
3308 case DISPPLANE_8BPP:
3309 return DRM_FORMAT_C8;
3310 case DISPPLANE_BGRA555:
3311 return DRM_FORMAT_ARGB1555;
3312 case DISPPLANE_BGRX555:
3313 return DRM_FORMAT_XRGB1555;
3314 case DISPPLANE_BGRX565:
3315 return DRM_FORMAT_RGB565;
3316 default:
3317 case DISPPLANE_BGRX888:
3318 return DRM_FORMAT_XRGB8888;
3319 case DISPPLANE_RGBX888:
3320 return DRM_FORMAT_XBGR8888;
3321 case DISPPLANE_BGRA888:
3322 return DRM_FORMAT_ARGB8888;
3323 case DISPPLANE_RGBA888:
3324 return DRM_FORMAT_ABGR8888;
3325 case DISPPLANE_BGRX101010:
3326 return DRM_FORMAT_XRGB2101010;
3327 case DISPPLANE_RGBX101010:
3328 return DRM_FORMAT_XBGR2101010;
3329 case DISPPLANE_BGRA101010:
3330 return DRM_FORMAT_ARGB2101010;
3331 case DISPPLANE_RGBA101010:
3332 return DRM_FORMAT_ABGR2101010;
3333 case DISPPLANE_RGBX161616:
3334 return DRM_FORMAT_XBGR16161616F;
3335 }
3336 }
3337
skl_format_to_fourcc(int format,bool rgb_order,bool alpha)3338 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
3339 {
3340 switch (format) {
3341 case PLANE_CTL_FORMAT_RGB_565:
3342 return DRM_FORMAT_RGB565;
3343 case PLANE_CTL_FORMAT_NV12:
3344 return DRM_FORMAT_NV12;
3345 case PLANE_CTL_FORMAT_XYUV:
3346 return DRM_FORMAT_XYUV8888;
3347 case PLANE_CTL_FORMAT_P010:
3348 return DRM_FORMAT_P010;
3349 case PLANE_CTL_FORMAT_P012:
3350 return DRM_FORMAT_P012;
3351 case PLANE_CTL_FORMAT_P016:
3352 return DRM_FORMAT_P016;
3353 case PLANE_CTL_FORMAT_Y210:
3354 return DRM_FORMAT_Y210;
3355 case PLANE_CTL_FORMAT_Y212:
3356 return DRM_FORMAT_Y212;
3357 case PLANE_CTL_FORMAT_Y216:
3358 return DRM_FORMAT_Y216;
3359 case PLANE_CTL_FORMAT_Y410:
3360 return DRM_FORMAT_XVYU2101010;
3361 case PLANE_CTL_FORMAT_Y412:
3362 return DRM_FORMAT_XVYU12_16161616;
3363 case PLANE_CTL_FORMAT_Y416:
3364 return DRM_FORMAT_XVYU16161616;
3365 default:
3366 case PLANE_CTL_FORMAT_XRGB_8888:
3367 if (rgb_order) {
3368 if (alpha)
3369 return DRM_FORMAT_ABGR8888;
3370 else
3371 return DRM_FORMAT_XBGR8888;
3372 } else {
3373 if (alpha)
3374 return DRM_FORMAT_ARGB8888;
3375 else
3376 return DRM_FORMAT_XRGB8888;
3377 }
3378 case PLANE_CTL_FORMAT_XRGB_2101010:
3379 if (rgb_order) {
3380 if (alpha)
3381 return DRM_FORMAT_ABGR2101010;
3382 else
3383 return DRM_FORMAT_XBGR2101010;
3384 } else {
3385 if (alpha)
3386 return DRM_FORMAT_ARGB2101010;
3387 else
3388 return DRM_FORMAT_XRGB2101010;
3389 }
3390 case PLANE_CTL_FORMAT_XRGB_16161616F:
3391 if (rgb_order) {
3392 if (alpha)
3393 return DRM_FORMAT_ABGR16161616F;
3394 else
3395 return DRM_FORMAT_XBGR16161616F;
3396 } else {
3397 if (alpha)
3398 return DRM_FORMAT_ARGB16161616F;
3399 else
3400 return DRM_FORMAT_XRGB16161616F;
3401 }
3402 }
3403 }
3404
3405 static struct i915_vma *
initial_plane_vma(struct drm_i915_private * i915,struct intel_initial_plane_config * plane_config)3406 initial_plane_vma(struct drm_i915_private *i915,
3407 struct intel_initial_plane_config *plane_config)
3408 {
3409 struct drm_i915_gem_object *obj;
3410 struct i915_vma *vma;
3411 u32 base, size;
3412
3413 if (plane_config->size == 0)
3414 return NULL;
3415
3416 base = round_down(plane_config->base,
3417 I915_GTT_MIN_ALIGNMENT);
3418 size = round_up(plane_config->base + plane_config->size,
3419 I915_GTT_MIN_ALIGNMENT);
3420 size -= base;
3421
3422 /*
3423 * If the FB is too big, just don't use it since fbdev is not very
3424 * important and we should probably use that space with FBC or other
3425 * features.
3426 */
3427 if (size * 2 > i915->stolen_usable_size)
3428 return NULL;
3429
3430 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size);
3431 if (IS_ERR(obj))
3432 return NULL;
3433
3434 /*
3435 * Mark it WT ahead of time to avoid changing the
3436 * cache_level during fbdev initialization. The
3437 * unbind there would get stuck waiting for rcu.
3438 */
3439 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ?
3440 I915_CACHE_WT : I915_CACHE_NONE);
3441
3442 switch (plane_config->tiling) {
3443 case I915_TILING_NONE:
3444 break;
3445 case I915_TILING_X:
3446 case I915_TILING_Y:
3447 obj->tiling_and_stride =
3448 plane_config->fb->base.pitches[0] |
3449 plane_config->tiling;
3450 break;
3451 default:
3452 MISSING_CASE(plane_config->tiling);
3453 goto err_obj;
3454 }
3455
3456 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
3457 if (IS_ERR(vma))
3458 goto err_obj;
3459
3460 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base))
3461 goto err_obj;
3462
3463 if (i915_gem_object_is_tiled(obj) &&
3464 !i915_vma_is_map_and_fenceable(vma))
3465 goto err_obj;
3466
3467 return vma;
3468
3469 err_obj:
3470 i915_gem_object_put(obj);
3471 return NULL;
3472 }
3473
3474 static bool
intel_alloc_initial_plane_obj(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)3475 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3476 struct intel_initial_plane_config *plane_config)
3477 {
3478 struct drm_device *dev = crtc->base.dev;
3479 struct drm_i915_private *dev_priv = to_i915(dev);
3480 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3481 struct drm_framebuffer *fb = &plane_config->fb->base;
3482 struct i915_vma *vma;
3483
3484 switch (fb->modifier) {
3485 case DRM_FORMAT_MOD_LINEAR:
3486 case I915_FORMAT_MOD_X_TILED:
3487 case I915_FORMAT_MOD_Y_TILED:
3488 break;
3489 default:
3490 drm_dbg(&dev_priv->drm,
3491 "Unsupported modifier for initial FB: 0x%llx\n",
3492 fb->modifier);
3493 return false;
3494 }
3495
3496 vma = initial_plane_vma(dev_priv, plane_config);
3497 if (!vma)
3498 return false;
3499
3500 mode_cmd.pixel_format = fb->format->format;
3501 mode_cmd.width = fb->width;
3502 mode_cmd.height = fb->height;
3503 mode_cmd.pitches[0] = fb->pitches[0];
3504 mode_cmd.modifier[0] = fb->modifier;
3505 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3506
3507 if (intel_framebuffer_init(to_intel_framebuffer(fb),
3508 vma->obj, &mode_cmd)) {
3509 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n");
3510 goto err_vma;
3511 }
3512
3513 plane_config->vma = vma;
3514 return true;
3515
3516 err_vma:
3517 i915_vma_put(vma);
3518 return false;
3519 }
3520
3521 static void
intel_set_plane_visible(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state,bool visible)3522 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3523 struct intel_plane_state *plane_state,
3524 bool visible)
3525 {
3526 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3527
3528 plane_state->uapi.visible = visible;
3529
3530 if (visible)
3531 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
3532 else
3533 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
3534 }
3535
fixup_active_planes(struct intel_crtc_state * crtc_state)3536 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3537 {
3538 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3539 struct drm_plane *plane;
3540
3541 /*
3542 * Active_planes aliases if multiple "primary" or cursor planes
3543 * have been used on the same (or wrong) pipe. plane_mask uses
3544 * unique ids, hence we can use that to reconstruct active_planes.
3545 */
3546 crtc_state->active_planes = 0;
3547
3548 drm_for_each_plane_mask(plane, &dev_priv->drm,
3549 crtc_state->uapi.plane_mask)
3550 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3551 }
3552
intel_plane_disable_noatomic(struct intel_crtc * crtc,struct intel_plane * plane)3553 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3554 struct intel_plane *plane)
3555 {
3556 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3557 struct intel_crtc_state *crtc_state =
3558 to_intel_crtc_state(crtc->base.state);
3559 struct intel_plane_state *plane_state =
3560 to_intel_plane_state(plane->base.state);
3561
3562 drm_dbg_kms(&dev_priv->drm,
3563 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3564 plane->base.base.id, plane->base.name,
3565 crtc->base.base.id, crtc->base.name);
3566
3567 intel_set_plane_visible(crtc_state, plane_state, false);
3568 fixup_active_planes(crtc_state);
3569 crtc_state->data_rate[plane->id] = 0;
3570 crtc_state->min_cdclk[plane->id] = 0;
3571
3572 if (plane->id == PLANE_PRIMARY)
3573 hsw_disable_ips(crtc_state);
3574
3575 /*
3576 * Vblank time updates from the shadow to live plane control register
3577 * are blocked if the memory self-refresh mode is active at that
3578 * moment. So to make sure the plane gets truly disabled, disable
3579 * first the self-refresh mode. The self-refresh enable bit in turn
3580 * will be checked/applied by the HW only at the next frame start
3581 * event which is after the vblank start event, so we need to have a
3582 * wait-for-vblank between disabling the plane and the pipe.
3583 */
3584 if (HAS_GMCH(dev_priv) &&
3585 intel_set_memory_cxsr(dev_priv, false))
3586 intel_wait_for_vblank(dev_priv, crtc->pipe);
3587
3588 /*
3589 * Gen2 reports pipe underruns whenever all planes are disabled.
3590 * So disable underrun reporting before all the planes get disabled.
3591 */
3592 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes)
3593 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3594
3595 intel_disable_plane(plane, crtc_state);
3596 }
3597
3598 static struct intel_frontbuffer *
to_intel_frontbuffer(struct drm_framebuffer * fb)3599 to_intel_frontbuffer(struct drm_framebuffer *fb)
3600 {
3601 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3602 }
3603
3604 static void
intel_find_initial_plane_obj(struct intel_crtc * intel_crtc,struct intel_initial_plane_config * plane_config)3605 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3606 struct intel_initial_plane_config *plane_config)
3607 {
3608 struct drm_device *dev = intel_crtc->base.dev;
3609 struct drm_i915_private *dev_priv = to_i915(dev);
3610 struct drm_crtc *c;
3611 struct drm_plane *primary = intel_crtc->base.primary;
3612 struct drm_plane_state *plane_state = primary->state;
3613 struct intel_plane *intel_plane = to_intel_plane(primary);
3614 struct intel_plane_state *intel_state =
3615 to_intel_plane_state(plane_state);
3616 struct drm_framebuffer *fb;
3617 struct i915_vma *vma;
3618
3619 if (!plane_config->fb)
3620 return;
3621
3622 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3623 fb = &plane_config->fb->base;
3624 vma = plane_config->vma;
3625 goto valid_fb;
3626 }
3627
3628 /*
3629 * Failed to alloc the obj, check to see if we should share
3630 * an fb with another CRTC instead
3631 */
3632 for_each_crtc(dev, c) {
3633 struct intel_plane_state *state;
3634
3635 if (c == &intel_crtc->base)
3636 continue;
3637
3638 if (!to_intel_crtc(c)->active)
3639 continue;
3640
3641 state = to_intel_plane_state(c->primary->state);
3642 if (!state->vma)
3643 continue;
3644
3645 if (intel_plane_ggtt_offset(state) == plane_config->base) {
3646 fb = state->hw.fb;
3647 vma = state->vma;
3648 goto valid_fb;
3649 }
3650 }
3651
3652 /*
3653 * We've failed to reconstruct the BIOS FB. Current display state
3654 * indicates that the primary plane is visible, but has a NULL FB,
3655 * which will lead to problems later if we don't fix it up. The
3656 * simplest solution is to just disable the primary plane now and
3657 * pretend the BIOS never had it enabled.
3658 */
3659 intel_plane_disable_noatomic(intel_crtc, intel_plane);
3660
3661 return;
3662
3663 valid_fb:
3664 intel_state->hw.rotation = plane_config->rotation;
3665 intel_fill_fb_ggtt_view(&intel_state->view, fb,
3666 intel_state->hw.rotation);
3667 intel_state->color_plane[0].stride =
3668 intel_fb_pitch(fb, 0, intel_state->hw.rotation);
3669
3670 __i915_vma_pin(vma);
3671 intel_state->vma = i915_vma_get(vma);
3672 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0)
3673 if (vma->fence)
3674 intel_state->flags |= PLANE_HAS_FENCE;
3675
3676 plane_state->src_x = 0;
3677 plane_state->src_y = 0;
3678 plane_state->src_w = fb->width << 16;
3679 plane_state->src_h = fb->height << 16;
3680
3681 plane_state->crtc_x = 0;
3682 plane_state->crtc_y = 0;
3683 plane_state->crtc_w = fb->width;
3684 plane_state->crtc_h = fb->height;
3685
3686 intel_state->uapi.src = drm_plane_state_src(plane_state);
3687 intel_state->uapi.dst = drm_plane_state_dest(plane_state);
3688
3689 if (plane_config->tiling)
3690 dev_priv->preserve_bios_swizzle = true;
3691
3692 plane_state->fb = fb;
3693 drm_framebuffer_get(fb);
3694
3695 plane_state->crtc = &intel_crtc->base;
3696 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state);
3697
3698 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3699
3700 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3701 &to_intel_frontbuffer(fb)->bits);
3702 }
3703
skl_max_plane_width(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)3704 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3705 int color_plane,
3706 unsigned int rotation)
3707 {
3708 int cpp = fb->format->cpp[color_plane];
3709
3710 switch (fb->modifier) {
3711 case DRM_FORMAT_MOD_LINEAR:
3712 case I915_FORMAT_MOD_X_TILED:
3713 /*
3714 * Validated limit is 4k, but has 5k should
3715 * work apart from the following features:
3716 * - Ytile (already limited to 4k)
3717 * - FP16 (already limited to 4k)
3718 * - render compression (already limited to 4k)
3719 * - KVMR sprite and cursor (don't care)
3720 * - horizontal panning (TODO verify this)
3721 * - pipe and plane scaling (TODO verify this)
3722 */
3723 if (cpp == 8)
3724 return 4096;
3725 else
3726 return 5120;
3727 case I915_FORMAT_MOD_Y_TILED_CCS:
3728 case I915_FORMAT_MOD_Yf_TILED_CCS:
3729 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
3730 /* FIXME AUX plane? */
3731 case I915_FORMAT_MOD_Y_TILED:
3732 case I915_FORMAT_MOD_Yf_TILED:
3733 if (cpp == 8)
3734 return 2048;
3735 else
3736 return 4096;
3737 default:
3738 MISSING_CASE(fb->modifier);
3739 return 2048;
3740 }
3741 }
3742
glk_max_plane_width(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)3743 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3744 int color_plane,
3745 unsigned int rotation)
3746 {
3747 int cpp = fb->format->cpp[color_plane];
3748
3749 switch (fb->modifier) {
3750 case DRM_FORMAT_MOD_LINEAR:
3751 case I915_FORMAT_MOD_X_TILED:
3752 if (cpp == 8)
3753 return 4096;
3754 else
3755 return 5120;
3756 case I915_FORMAT_MOD_Y_TILED_CCS:
3757 case I915_FORMAT_MOD_Yf_TILED_CCS:
3758 /* FIXME AUX plane? */
3759 case I915_FORMAT_MOD_Y_TILED:
3760 case I915_FORMAT_MOD_Yf_TILED:
3761 if (cpp == 8)
3762 return 2048;
3763 else
3764 return 5120;
3765 default:
3766 MISSING_CASE(fb->modifier);
3767 return 2048;
3768 }
3769 }
3770
icl_min_plane_width(const struct drm_framebuffer * fb)3771 static int icl_min_plane_width(const struct drm_framebuffer *fb)
3772 {
3773 /* Wa_14011264657, Wa_14011050563: gen11+ */
3774 switch (fb->format->format) {
3775 case DRM_FORMAT_C8:
3776 return 18;
3777 case DRM_FORMAT_RGB565:
3778 return 10;
3779 case DRM_FORMAT_XRGB8888:
3780 case DRM_FORMAT_XBGR8888:
3781 case DRM_FORMAT_ARGB8888:
3782 case DRM_FORMAT_ABGR8888:
3783 case DRM_FORMAT_XRGB2101010:
3784 case DRM_FORMAT_XBGR2101010:
3785 case DRM_FORMAT_ARGB2101010:
3786 case DRM_FORMAT_ABGR2101010:
3787 case DRM_FORMAT_XVYU2101010:
3788 case DRM_FORMAT_Y212:
3789 case DRM_FORMAT_Y216:
3790 return 6;
3791 case DRM_FORMAT_NV12:
3792 return 20;
3793 case DRM_FORMAT_P010:
3794 case DRM_FORMAT_P012:
3795 case DRM_FORMAT_P016:
3796 return 12;
3797 case DRM_FORMAT_XRGB16161616F:
3798 case DRM_FORMAT_XBGR16161616F:
3799 case DRM_FORMAT_ARGB16161616F:
3800 case DRM_FORMAT_ABGR16161616F:
3801 case DRM_FORMAT_XVYU12_16161616:
3802 case DRM_FORMAT_XVYU16161616:
3803 return 4;
3804 default:
3805 return 1;
3806 }
3807 }
3808
icl_max_plane_width(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)3809 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3810 int color_plane,
3811 unsigned int rotation)
3812 {
3813 return 5120;
3814 }
3815
skl_max_plane_height(void)3816 static int skl_max_plane_height(void)
3817 {
3818 return 4096;
3819 }
3820
icl_max_plane_height(void)3821 static int icl_max_plane_height(void)
3822 {
3823 return 4320;
3824 }
3825
3826 static bool
skl_check_main_ccs_coordinates(struct intel_plane_state * plane_state,int main_x,int main_y,u32 main_offset,int ccs_plane)3827 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3828 int main_x, int main_y, u32 main_offset,
3829 int ccs_plane)
3830 {
3831 const struct drm_framebuffer *fb = plane_state->hw.fb;
3832 int aux_x = plane_state->color_plane[ccs_plane].x;
3833 int aux_y = plane_state->color_plane[ccs_plane].y;
3834 u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3835 u32 alignment = intel_surf_alignment(fb, ccs_plane);
3836 int hsub;
3837 int vsub;
3838
3839 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3840 while (aux_offset >= main_offset && aux_y <= main_y) {
3841 int x, y;
3842
3843 if (aux_x == main_x && aux_y == main_y)
3844 break;
3845
3846 if (aux_offset == 0)
3847 break;
3848
3849 x = aux_x / hsub;
3850 y = aux_y / vsub;
3851 aux_offset = intel_plane_adjust_aligned_offset(&x, &y,
3852 plane_state,
3853 ccs_plane,
3854 aux_offset,
3855 aux_offset -
3856 alignment);
3857 aux_x = x * hsub + aux_x % hsub;
3858 aux_y = y * vsub + aux_y % vsub;
3859 }
3860
3861 if (aux_x != main_x || aux_y != main_y)
3862 return false;
3863
3864 plane_state->color_plane[ccs_plane].offset = aux_offset;
3865 plane_state->color_plane[ccs_plane].x = aux_x;
3866 plane_state->color_plane[ccs_plane].y = aux_y;
3867
3868 return true;
3869 }
3870
3871 unsigned int
intel_plane_fence_y_offset(const struct intel_plane_state * plane_state)3872 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state)
3873 {
3874 int x = 0, y = 0;
3875
3876 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3877 plane_state->color_plane[0].offset, 0);
3878
3879 return y;
3880 }
3881
skl_check_main_surface(struct intel_plane_state * plane_state)3882 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3883 {
3884 struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev);
3885 const struct drm_framebuffer *fb = plane_state->hw.fb;
3886 unsigned int rotation = plane_state->hw.rotation;
3887 int x = plane_state->uapi.src.x1 >> 16;
3888 int y = plane_state->uapi.src.y1 >> 16;
3889 int w = drm_rect_width(&plane_state->uapi.src) >> 16;
3890 int h = drm_rect_height(&plane_state->uapi.src) >> 16;
3891 int max_width, min_width, max_height;
3892 u32 alignment, offset;
3893 int aux_plane = intel_main_to_aux_plane(fb, 0);
3894 u32 aux_offset = plane_state->color_plane[aux_plane].offset;
3895
3896 if (INTEL_GEN(dev_priv) >= 11) {
3897 max_width = icl_max_plane_width(fb, 0, rotation);
3898 min_width = icl_min_plane_width(fb);
3899 } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
3900 max_width = glk_max_plane_width(fb, 0, rotation);
3901 min_width = 1;
3902 } else {
3903 max_width = skl_max_plane_width(fb, 0, rotation);
3904 min_width = 1;
3905 }
3906
3907 if (INTEL_GEN(dev_priv) >= 11)
3908 max_height = icl_max_plane_height();
3909 else
3910 max_height = skl_max_plane_height();
3911
3912 if (w > max_width || w < min_width || h > max_height) {
3913 drm_dbg_kms(&dev_priv->drm,
3914 "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n",
3915 w, h, min_width, max_width, max_height);
3916 return -EINVAL;
3917 }
3918
3919 intel_add_fb_offsets(&x, &y, plane_state, 0);
3920 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3921 alignment = intel_surf_alignment(fb, 0);
3922 if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment)))
3923 return -EINVAL;
3924
3925 /*
3926 * AUX surface offset is specified as the distance from the
3927 * main surface offset, and it must be non-negative. Make
3928 * sure that is what we will get.
3929 */
3930 if (offset > aux_offset)
3931 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3932 offset, aux_offset & ~(alignment - 1));
3933
3934 /*
3935 * When using an X-tiled surface, the plane blows up
3936 * if the x offset + width exceed the stride.
3937 *
3938 * TODO: linear and Y-tiled seem fine, Yf untested,
3939 */
3940 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3941 int cpp = fb->format->cpp[0];
3942
3943 while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3944 if (offset == 0) {
3945 drm_dbg_kms(&dev_priv->drm,
3946 "Unable to find suitable display surface offset due to X-tiling\n");
3947 return -EINVAL;
3948 }
3949
3950 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3951 offset, offset - alignment);
3952 }
3953 }
3954
3955 /*
3956 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3957 * they match with the main surface x/y offsets.
3958 */
3959 if (is_ccs_modifier(fb->modifier)) {
3960 while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3961 offset, aux_plane)) {
3962 if (offset == 0)
3963 break;
3964
3965 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3966 offset, offset - alignment);
3967 }
3968
3969 if (x != plane_state->color_plane[aux_plane].x ||
3970 y != plane_state->color_plane[aux_plane].y) {
3971 drm_dbg_kms(&dev_priv->drm,
3972 "Unable to find suitable display surface offset due to CCS\n");
3973 return -EINVAL;
3974 }
3975 }
3976
3977 plane_state->color_plane[0].offset = offset;
3978 plane_state->color_plane[0].x = x;
3979 plane_state->color_plane[0].y = y;
3980
3981 /*
3982 * Put the final coordinates back so that the src
3983 * coordinate checks will see the right values.
3984 */
3985 drm_rect_translate_to(&plane_state->uapi.src,
3986 x << 16, y << 16);
3987
3988 return 0;
3989 }
3990
skl_check_nv12_aux_surface(struct intel_plane_state * plane_state)3991 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3992 {
3993 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
3994 const struct drm_framebuffer *fb = plane_state->hw.fb;
3995 unsigned int rotation = plane_state->hw.rotation;
3996 int uv_plane = 1;
3997 int max_width = skl_max_plane_width(fb, uv_plane, rotation);
3998 int max_height = 4096;
3999 int x = plane_state->uapi.src.x1 >> 17;
4000 int y = plane_state->uapi.src.y1 >> 17;
4001 int w = drm_rect_width(&plane_state->uapi.src) >> 17;
4002 int h = drm_rect_height(&plane_state->uapi.src) >> 17;
4003 u32 offset;
4004
4005 intel_add_fb_offsets(&x, &y, plane_state, uv_plane);
4006 offset = intel_plane_compute_aligned_offset(&x, &y,
4007 plane_state, uv_plane);
4008
4009 /* FIXME not quite sure how/if these apply to the chroma plane */
4010 if (w > max_width || h > max_height) {
4011 drm_dbg_kms(&i915->drm,
4012 "CbCr source size %dx%d too big (limit %dx%d)\n",
4013 w, h, max_width, max_height);
4014 return -EINVAL;
4015 }
4016
4017 if (is_ccs_modifier(fb->modifier)) {
4018 int ccs_plane = main_to_ccs_plane(fb, uv_plane);
4019 int aux_offset = plane_state->color_plane[ccs_plane].offset;
4020 int alignment = intel_surf_alignment(fb, uv_plane);
4021
4022 if (offset > aux_offset)
4023 offset = intel_plane_adjust_aligned_offset(&x, &y,
4024 plane_state,
4025 uv_plane,
4026 offset,
4027 aux_offset & ~(alignment - 1));
4028
4029 while (!skl_check_main_ccs_coordinates(plane_state, x, y,
4030 offset, ccs_plane)) {
4031 if (offset == 0)
4032 break;
4033
4034 offset = intel_plane_adjust_aligned_offset(&x, &y,
4035 plane_state,
4036 uv_plane,
4037 offset, offset - alignment);
4038 }
4039
4040 if (x != plane_state->color_plane[ccs_plane].x ||
4041 y != plane_state->color_plane[ccs_plane].y) {
4042 drm_dbg_kms(&i915->drm,
4043 "Unable to find suitable display surface offset due to CCS\n");
4044 return -EINVAL;
4045 }
4046 }
4047
4048 plane_state->color_plane[uv_plane].offset = offset;
4049 plane_state->color_plane[uv_plane].x = x;
4050 plane_state->color_plane[uv_plane].y = y;
4051
4052 return 0;
4053 }
4054
skl_check_ccs_aux_surface(struct intel_plane_state * plane_state)4055 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
4056 {
4057 const struct drm_framebuffer *fb = plane_state->hw.fb;
4058 int src_x = plane_state->uapi.src.x1 >> 16;
4059 int src_y = plane_state->uapi.src.y1 >> 16;
4060 u32 offset;
4061 int ccs_plane;
4062
4063 for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) {
4064 int main_hsub, main_vsub;
4065 int hsub, vsub;
4066 int x, y;
4067
4068 if (!is_ccs_plane(fb, ccs_plane))
4069 continue;
4070
4071 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb,
4072 ccs_to_main_plane(fb, ccs_plane));
4073 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
4074
4075 hsub *= main_hsub;
4076 vsub *= main_vsub;
4077 x = src_x / hsub;
4078 y = src_y / vsub;
4079
4080 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane);
4081
4082 offset = intel_plane_compute_aligned_offset(&x, &y,
4083 plane_state,
4084 ccs_plane);
4085
4086 plane_state->color_plane[ccs_plane].offset = offset;
4087 plane_state->color_plane[ccs_plane].x = (x * hsub +
4088 src_x % hsub) /
4089 main_hsub;
4090 plane_state->color_plane[ccs_plane].y = (y * vsub +
4091 src_y % vsub) /
4092 main_vsub;
4093 }
4094
4095 return 0;
4096 }
4097
skl_check_plane_surface(struct intel_plane_state * plane_state)4098 int skl_check_plane_surface(struct intel_plane_state *plane_state)
4099 {
4100 const struct drm_framebuffer *fb = plane_state->hw.fb;
4101 int ret, i;
4102
4103 ret = intel_plane_compute_gtt(plane_state);
4104 if (ret)
4105 return ret;
4106
4107 if (!plane_state->uapi.visible)
4108 return 0;
4109
4110 /*
4111 * Handle the AUX surface first since the main surface setup depends on
4112 * it.
4113 */
4114 if (is_ccs_modifier(fb->modifier)) {
4115 ret = skl_check_ccs_aux_surface(plane_state);
4116 if (ret)
4117 return ret;
4118 }
4119
4120 if (intel_format_info_is_yuv_semiplanar(fb->format,
4121 fb->modifier)) {
4122 ret = skl_check_nv12_aux_surface(plane_state);
4123 if (ret)
4124 return ret;
4125 }
4126
4127 for (i = fb->format->num_planes; i < ARRAY_SIZE(plane_state->color_plane); i++) {
4128 plane_state->color_plane[i].offset = ~0xfff;
4129 plane_state->color_plane[i].x = 0;
4130 plane_state->color_plane[i].y = 0;
4131 }
4132
4133 ret = skl_check_main_surface(plane_state);
4134 if (ret)
4135 return ret;
4136
4137 return 0;
4138 }
4139
i9xx_plane_ratio(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,unsigned int * num,unsigned int * den)4140 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
4141 const struct intel_plane_state *plane_state,
4142 unsigned int *num, unsigned int *den)
4143 {
4144 const struct drm_framebuffer *fb = plane_state->hw.fb;
4145 unsigned int cpp = fb->format->cpp[0];
4146
4147 /*
4148 * g4x bspec says 64bpp pixel rate can't exceed 80%
4149 * of cdclk when the sprite plane is enabled on the
4150 * same pipe. ilk/snb bspec says 64bpp pixel rate is
4151 * never allowed to exceed 80% of cdclk. Let's just go
4152 * with the ilk/snb limit always.
4153 */
4154 if (cpp == 8) {
4155 *num = 10;
4156 *den = 8;
4157 } else {
4158 *num = 1;
4159 *den = 1;
4160 }
4161 }
4162
i9xx_plane_min_cdclk(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4163 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
4164 const struct intel_plane_state *plane_state)
4165 {
4166 unsigned int pixel_rate;
4167 unsigned int num, den;
4168
4169 /*
4170 * Note that crtc_state->pixel_rate accounts for both
4171 * horizontal and vertical panel fitter downscaling factors.
4172 * Pre-HSW bspec tells us to only consider the horizontal
4173 * downscaling factor here. We ignore that and just consider
4174 * both for simplicity.
4175 */
4176 pixel_rate = crtc_state->pixel_rate;
4177
4178 i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
4179
4180 /* two pixels per clock with double wide pipe */
4181 if (crtc_state->double_wide)
4182 den *= 2;
4183
4184 return DIV_ROUND_UP(pixel_rate * num, den);
4185 }
4186
4187 unsigned int
i9xx_plane_max_stride(struct intel_plane * plane,u32 pixel_format,u64 modifier,unsigned int rotation)4188 i9xx_plane_max_stride(struct intel_plane *plane,
4189 u32 pixel_format, u64 modifier,
4190 unsigned int rotation)
4191 {
4192 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4193
4194 if (!HAS_GMCH(dev_priv)) {
4195 return 32*1024;
4196 } else if (INTEL_GEN(dev_priv) >= 4) {
4197 if (modifier == I915_FORMAT_MOD_X_TILED)
4198 return 16*1024;
4199 else
4200 return 32*1024;
4201 } else if (INTEL_GEN(dev_priv) >= 3) {
4202 if (modifier == I915_FORMAT_MOD_X_TILED)
4203 return 8*1024;
4204 else
4205 return 16*1024;
4206 } else {
4207 if (plane->i9xx_plane == PLANE_C)
4208 return 4*1024;
4209 else
4210 return 8*1024;
4211 }
4212 }
4213
i9xx_plane_ctl_crtc(const struct intel_crtc_state * crtc_state)4214 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4215 {
4216 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4217 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4218 u32 dspcntr = 0;
4219
4220 if (crtc_state->gamma_enable)
4221 dspcntr |= DISPPLANE_GAMMA_ENABLE;
4222
4223 if (crtc_state->csc_enable)
4224 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
4225
4226 if (INTEL_GEN(dev_priv) < 5)
4227 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
4228
4229 return dspcntr;
4230 }
4231
i9xx_plane_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4232 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
4233 const struct intel_plane_state *plane_state)
4234 {
4235 struct drm_i915_private *dev_priv =
4236 to_i915(plane_state->uapi.plane->dev);
4237 const struct drm_framebuffer *fb = plane_state->hw.fb;
4238 unsigned int rotation = plane_state->hw.rotation;
4239 u32 dspcntr;
4240
4241 dspcntr = DISPLAY_PLANE_ENABLE;
4242
4243 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
4244 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
4245 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
4246
4247 switch (fb->format->format) {
4248 case DRM_FORMAT_C8:
4249 dspcntr |= DISPPLANE_8BPP;
4250 break;
4251 case DRM_FORMAT_XRGB1555:
4252 dspcntr |= DISPPLANE_BGRX555;
4253 break;
4254 case DRM_FORMAT_ARGB1555:
4255 dspcntr |= DISPPLANE_BGRA555;
4256 break;
4257 case DRM_FORMAT_RGB565:
4258 dspcntr |= DISPPLANE_BGRX565;
4259 break;
4260 case DRM_FORMAT_XRGB8888:
4261 dspcntr |= DISPPLANE_BGRX888;
4262 break;
4263 case DRM_FORMAT_XBGR8888:
4264 dspcntr |= DISPPLANE_RGBX888;
4265 break;
4266 case DRM_FORMAT_ARGB8888:
4267 dspcntr |= DISPPLANE_BGRA888;
4268 break;
4269 case DRM_FORMAT_ABGR8888:
4270 dspcntr |= DISPPLANE_RGBA888;
4271 break;
4272 case DRM_FORMAT_XRGB2101010:
4273 dspcntr |= DISPPLANE_BGRX101010;
4274 break;
4275 case DRM_FORMAT_XBGR2101010:
4276 dspcntr |= DISPPLANE_RGBX101010;
4277 break;
4278 case DRM_FORMAT_ARGB2101010:
4279 dspcntr |= DISPPLANE_BGRA101010;
4280 break;
4281 case DRM_FORMAT_ABGR2101010:
4282 dspcntr |= DISPPLANE_RGBA101010;
4283 break;
4284 case DRM_FORMAT_XBGR16161616F:
4285 dspcntr |= DISPPLANE_RGBX161616;
4286 break;
4287 default:
4288 MISSING_CASE(fb->format->format);
4289 return 0;
4290 }
4291
4292 if (INTEL_GEN(dev_priv) >= 4 &&
4293 fb->modifier == I915_FORMAT_MOD_X_TILED)
4294 dspcntr |= DISPPLANE_TILED;
4295
4296 if (rotation & DRM_MODE_ROTATE_180)
4297 dspcntr |= DISPPLANE_ROTATE_180;
4298
4299 if (rotation & DRM_MODE_REFLECT_X)
4300 dspcntr |= DISPPLANE_MIRROR;
4301
4302 return dspcntr;
4303 }
4304
i9xx_check_plane_surface(struct intel_plane_state * plane_state)4305 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
4306 {
4307 struct drm_i915_private *dev_priv =
4308 to_i915(plane_state->uapi.plane->dev);
4309 const struct drm_framebuffer *fb = plane_state->hw.fb;
4310 int src_x, src_y, src_w;
4311 u32 offset;
4312 int ret;
4313
4314 ret = intel_plane_compute_gtt(plane_state);
4315 if (ret)
4316 return ret;
4317
4318 if (!plane_state->uapi.visible)
4319 return 0;
4320
4321 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4322 src_x = plane_state->uapi.src.x1 >> 16;
4323 src_y = plane_state->uapi.src.y1 >> 16;
4324
4325 /* Undocumented hardware limit on i965/g4x/vlv/chv */
4326 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
4327 return -EINVAL;
4328
4329 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
4330
4331 if (INTEL_GEN(dev_priv) >= 4)
4332 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
4333 plane_state, 0);
4334 else
4335 offset = 0;
4336
4337 /*
4338 * Put the final coordinates back so that the src
4339 * coordinate checks will see the right values.
4340 */
4341 drm_rect_translate_to(&plane_state->uapi.src,
4342 src_x << 16, src_y << 16);
4343
4344 /* HSW/BDW do this automagically in hardware */
4345 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
4346 unsigned int rotation = plane_state->hw.rotation;
4347 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4348 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4349
4350 if (rotation & DRM_MODE_ROTATE_180) {
4351 src_x += src_w - 1;
4352 src_y += src_h - 1;
4353 } else if (rotation & DRM_MODE_REFLECT_X) {
4354 src_x += src_w - 1;
4355 }
4356 }
4357
4358 plane_state->color_plane[0].offset = offset;
4359 plane_state->color_plane[0].x = src_x;
4360 plane_state->color_plane[0].y = src_y;
4361
4362 return 0;
4363 }
4364
i9xx_plane_has_windowing(struct intel_plane * plane)4365 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
4366 {
4367 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4368 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4369
4370 if (IS_CHERRYVIEW(dev_priv))
4371 return i9xx_plane == PLANE_B;
4372 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4373 return false;
4374 else if (IS_GEN(dev_priv, 4))
4375 return i9xx_plane == PLANE_C;
4376 else
4377 return i9xx_plane == PLANE_B ||
4378 i9xx_plane == PLANE_C;
4379 }
4380
4381 static int
i9xx_plane_check(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)4382 i9xx_plane_check(struct intel_crtc_state *crtc_state,
4383 struct intel_plane_state *plane_state)
4384 {
4385 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4386 int ret;
4387
4388 ret = chv_plane_check_rotation(plane_state);
4389 if (ret)
4390 return ret;
4391
4392 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
4393 &crtc_state->uapi,
4394 DRM_PLANE_HELPER_NO_SCALING,
4395 DRM_PLANE_HELPER_NO_SCALING,
4396 i9xx_plane_has_windowing(plane),
4397 true);
4398 if (ret)
4399 return ret;
4400
4401 ret = i9xx_check_plane_surface(plane_state);
4402 if (ret)
4403 return ret;
4404
4405 if (!plane_state->uapi.visible)
4406 return 0;
4407
4408 ret = intel_plane_check_src_coordinates(plane_state);
4409 if (ret)
4410 return ret;
4411
4412 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
4413
4414 return 0;
4415 }
4416
i9xx_update_plane(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4417 static void i9xx_update_plane(struct intel_plane *plane,
4418 const struct intel_crtc_state *crtc_state,
4419 const struct intel_plane_state *plane_state)
4420 {
4421 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4422 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4423 u32 linear_offset;
4424 int x = plane_state->color_plane[0].x;
4425 int y = plane_state->color_plane[0].y;
4426 int crtc_x = plane_state->uapi.dst.x1;
4427 int crtc_y = plane_state->uapi.dst.y1;
4428 int crtc_w = drm_rect_width(&plane_state->uapi.dst);
4429 int crtc_h = drm_rect_height(&plane_state->uapi.dst);
4430 unsigned long irqflags;
4431 u32 dspaddr_offset;
4432 u32 dspcntr;
4433
4434 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
4435
4436 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
4437
4438 if (INTEL_GEN(dev_priv) >= 4)
4439 dspaddr_offset = plane_state->color_plane[0].offset;
4440 else
4441 dspaddr_offset = linear_offset;
4442
4443 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4444
4445 intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane),
4446 plane_state->color_plane[0].stride);
4447
4448 if (INTEL_GEN(dev_priv) < 4) {
4449 /*
4450 * PLANE_A doesn't actually have a full window
4451 * generator but let's assume we still need to
4452 * program whatever is there.
4453 */
4454 intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane),
4455 (crtc_y << 16) | crtc_x);
4456 intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane),
4457 ((crtc_h - 1) << 16) | (crtc_w - 1));
4458 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
4459 intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane),
4460 (crtc_y << 16) | crtc_x);
4461 intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane),
4462 ((crtc_h - 1) << 16) | (crtc_w - 1));
4463 intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0);
4464 }
4465
4466 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
4467 intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane),
4468 (y << 16) | x);
4469 } else if (INTEL_GEN(dev_priv) >= 4) {
4470 intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane),
4471 linear_offset);
4472 intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane),
4473 (y << 16) | x);
4474 }
4475
4476 /*
4477 * The control register self-arms if the plane was previously
4478 * disabled. Try to make the plane enable atomic by writing
4479 * the control register just before the surface register.
4480 */
4481 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4482 if (INTEL_GEN(dev_priv) >= 4)
4483 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane),
4484 intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4485 else
4486 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane),
4487 intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4488
4489 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4490 }
4491
i9xx_disable_plane(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)4492 static void i9xx_disable_plane(struct intel_plane *plane,
4493 const struct intel_crtc_state *crtc_state)
4494 {
4495 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4496 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4497 unsigned long irqflags;
4498 u32 dspcntr;
4499
4500 /*
4501 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
4502 * enable on ilk+ affect the pipe bottom color as
4503 * well, so we must configure them even if the plane
4504 * is disabled.
4505 *
4506 * On pre-g4x there is no way to gamma correct the
4507 * pipe bottom color but we'll keep on doing this
4508 * anyway so that the crtc state readout works correctly.
4509 */
4510 dspcntr = i9xx_plane_ctl_crtc(crtc_state);
4511
4512 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4513
4514 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4515 if (INTEL_GEN(dev_priv) >= 4)
4516 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0);
4517 else
4518 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0);
4519
4520 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4521 }
4522
i9xx_plane_get_hw_state(struct intel_plane * plane,enum pipe * pipe)4523 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
4524 enum pipe *pipe)
4525 {
4526 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4527 enum intel_display_power_domain power_domain;
4528 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4529 intel_wakeref_t wakeref;
4530 bool ret;
4531 u32 val;
4532
4533 /*
4534 * Not 100% correct for planes that can move between pipes,
4535 * but that's only the case for gen2-4 which don't have any
4536 * display power wells.
4537 */
4538 power_domain = POWER_DOMAIN_PIPE(plane->pipe);
4539 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4540 if (!wakeref)
4541 return false;
4542
4543 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
4544
4545 ret = val & DISPLAY_PLANE_ENABLE;
4546
4547 if (INTEL_GEN(dev_priv) >= 5)
4548 *pipe = plane->pipe;
4549 else
4550 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
4551 DISPPLANE_SEL_PIPE_SHIFT;
4552
4553 intel_display_power_put(dev_priv, power_domain, wakeref);
4554
4555 return ret;
4556 }
4557
skl_detach_scaler(struct intel_crtc * intel_crtc,int id)4558 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4559 {
4560 struct drm_device *dev = intel_crtc->base.dev;
4561 struct drm_i915_private *dev_priv = to_i915(dev);
4562 unsigned long irqflags;
4563
4564 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4565
4566 intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4567 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4568 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4569
4570 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4571 }
4572
4573 /*
4574 * This function detaches (aka. unbinds) unused scalers in hardware
4575 */
skl_detach_scalers(const struct intel_crtc_state * crtc_state)4576 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4577 {
4578 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
4579 const struct intel_crtc_scaler_state *scaler_state =
4580 &crtc_state->scaler_state;
4581 int i;
4582
4583 /* loop through and disable scalers that aren't in use */
4584 for (i = 0; i < intel_crtc->num_scalers; i++) {
4585 if (!scaler_state->scalers[i].in_use)
4586 skl_detach_scaler(intel_crtc, i);
4587 }
4588 }
4589
skl_plane_stride_mult(const struct drm_framebuffer * fb,int color_plane,unsigned int rotation)4590 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4591 int color_plane, unsigned int rotation)
4592 {
4593 /*
4594 * The stride is either expressed as a multiple of 64 bytes chunks for
4595 * linear buffers or in number of tiles for tiled buffers.
4596 */
4597 if (is_surface_linear(fb, color_plane))
4598 return 64;
4599 else if (drm_rotation_90_or_270(rotation))
4600 return intel_tile_height(fb, color_plane);
4601 else
4602 return intel_tile_width_bytes(fb, color_plane);
4603 }
4604
skl_plane_stride(const struct intel_plane_state * plane_state,int color_plane)4605 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4606 int color_plane)
4607 {
4608 const struct drm_framebuffer *fb = plane_state->hw.fb;
4609 unsigned int rotation = plane_state->hw.rotation;
4610 u32 stride = plane_state->color_plane[color_plane].stride;
4611
4612 if (color_plane >= fb->format->num_planes)
4613 return 0;
4614
4615 return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4616 }
4617
skl_plane_ctl_format(u32 pixel_format)4618 static u32 skl_plane_ctl_format(u32 pixel_format)
4619 {
4620 switch (pixel_format) {
4621 case DRM_FORMAT_C8:
4622 return PLANE_CTL_FORMAT_INDEXED;
4623 case DRM_FORMAT_RGB565:
4624 return PLANE_CTL_FORMAT_RGB_565;
4625 case DRM_FORMAT_XBGR8888:
4626 case DRM_FORMAT_ABGR8888:
4627 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4628 case DRM_FORMAT_XRGB8888:
4629 case DRM_FORMAT_ARGB8888:
4630 return PLANE_CTL_FORMAT_XRGB_8888;
4631 case DRM_FORMAT_XBGR2101010:
4632 case DRM_FORMAT_ABGR2101010:
4633 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4634 case DRM_FORMAT_XRGB2101010:
4635 case DRM_FORMAT_ARGB2101010:
4636 return PLANE_CTL_FORMAT_XRGB_2101010;
4637 case DRM_FORMAT_XBGR16161616F:
4638 case DRM_FORMAT_ABGR16161616F:
4639 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4640 case DRM_FORMAT_XRGB16161616F:
4641 case DRM_FORMAT_ARGB16161616F:
4642 return PLANE_CTL_FORMAT_XRGB_16161616F;
4643 case DRM_FORMAT_XYUV8888:
4644 return PLANE_CTL_FORMAT_XYUV;
4645 case DRM_FORMAT_YUYV:
4646 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4647 case DRM_FORMAT_YVYU:
4648 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4649 case DRM_FORMAT_UYVY:
4650 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4651 case DRM_FORMAT_VYUY:
4652 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4653 case DRM_FORMAT_NV12:
4654 return PLANE_CTL_FORMAT_NV12;
4655 case DRM_FORMAT_P010:
4656 return PLANE_CTL_FORMAT_P010;
4657 case DRM_FORMAT_P012:
4658 return PLANE_CTL_FORMAT_P012;
4659 case DRM_FORMAT_P016:
4660 return PLANE_CTL_FORMAT_P016;
4661 case DRM_FORMAT_Y210:
4662 return PLANE_CTL_FORMAT_Y210;
4663 case DRM_FORMAT_Y212:
4664 return PLANE_CTL_FORMAT_Y212;
4665 case DRM_FORMAT_Y216:
4666 return PLANE_CTL_FORMAT_Y216;
4667 case DRM_FORMAT_XVYU2101010:
4668 return PLANE_CTL_FORMAT_Y410;
4669 case DRM_FORMAT_XVYU12_16161616:
4670 return PLANE_CTL_FORMAT_Y412;
4671 case DRM_FORMAT_XVYU16161616:
4672 return PLANE_CTL_FORMAT_Y416;
4673 default:
4674 MISSING_CASE(pixel_format);
4675 }
4676
4677 return 0;
4678 }
4679
skl_plane_ctl_alpha(const struct intel_plane_state * plane_state)4680 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4681 {
4682 if (!plane_state->hw.fb->format->has_alpha)
4683 return PLANE_CTL_ALPHA_DISABLE;
4684
4685 switch (plane_state->hw.pixel_blend_mode) {
4686 case DRM_MODE_BLEND_PIXEL_NONE:
4687 return PLANE_CTL_ALPHA_DISABLE;
4688 case DRM_MODE_BLEND_PREMULTI:
4689 return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4690 case DRM_MODE_BLEND_COVERAGE:
4691 return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4692 default:
4693 MISSING_CASE(plane_state->hw.pixel_blend_mode);
4694 return PLANE_CTL_ALPHA_DISABLE;
4695 }
4696 }
4697
glk_plane_color_ctl_alpha(const struct intel_plane_state * plane_state)4698 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4699 {
4700 if (!plane_state->hw.fb->format->has_alpha)
4701 return PLANE_COLOR_ALPHA_DISABLE;
4702
4703 switch (plane_state->hw.pixel_blend_mode) {
4704 case DRM_MODE_BLEND_PIXEL_NONE:
4705 return PLANE_COLOR_ALPHA_DISABLE;
4706 case DRM_MODE_BLEND_PREMULTI:
4707 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4708 case DRM_MODE_BLEND_COVERAGE:
4709 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4710 default:
4711 MISSING_CASE(plane_state->hw.pixel_blend_mode);
4712 return PLANE_COLOR_ALPHA_DISABLE;
4713 }
4714 }
4715
skl_plane_ctl_tiling(u64 fb_modifier)4716 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4717 {
4718 switch (fb_modifier) {
4719 case DRM_FORMAT_MOD_LINEAR:
4720 break;
4721 case I915_FORMAT_MOD_X_TILED:
4722 return PLANE_CTL_TILED_X;
4723 case I915_FORMAT_MOD_Y_TILED:
4724 return PLANE_CTL_TILED_Y;
4725 case I915_FORMAT_MOD_Y_TILED_CCS:
4726 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4727 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
4728 return PLANE_CTL_TILED_Y |
4729 PLANE_CTL_RENDER_DECOMPRESSION_ENABLE |
4730 PLANE_CTL_CLEAR_COLOR_DISABLE;
4731 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
4732 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE;
4733 case I915_FORMAT_MOD_Yf_TILED:
4734 return PLANE_CTL_TILED_YF;
4735 case I915_FORMAT_MOD_Yf_TILED_CCS:
4736 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4737 default:
4738 MISSING_CASE(fb_modifier);
4739 }
4740
4741 return 0;
4742 }
4743
skl_plane_ctl_rotate(unsigned int rotate)4744 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4745 {
4746 switch (rotate) {
4747 case DRM_MODE_ROTATE_0:
4748 break;
4749 /*
4750 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4751 * while i915 HW rotation is clockwise, thats why this swapping.
4752 */
4753 case DRM_MODE_ROTATE_90:
4754 return PLANE_CTL_ROTATE_270;
4755 case DRM_MODE_ROTATE_180:
4756 return PLANE_CTL_ROTATE_180;
4757 case DRM_MODE_ROTATE_270:
4758 return PLANE_CTL_ROTATE_90;
4759 default:
4760 MISSING_CASE(rotate);
4761 }
4762
4763 return 0;
4764 }
4765
cnl_plane_ctl_flip(unsigned int reflect)4766 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4767 {
4768 switch (reflect) {
4769 case 0:
4770 break;
4771 case DRM_MODE_REFLECT_X:
4772 return PLANE_CTL_FLIP_HORIZONTAL;
4773 case DRM_MODE_REFLECT_Y:
4774 default:
4775 MISSING_CASE(reflect);
4776 }
4777
4778 return 0;
4779 }
4780
skl_plane_ctl_crtc(const struct intel_crtc_state * crtc_state)4781 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4782 {
4783 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4784 u32 plane_ctl = 0;
4785
4786 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4787 return plane_ctl;
4788
4789 if (crtc_state->gamma_enable)
4790 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4791
4792 if (crtc_state->csc_enable)
4793 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4794
4795 return plane_ctl;
4796 }
4797
skl_plane_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4798 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4799 const struct intel_plane_state *plane_state)
4800 {
4801 struct drm_i915_private *dev_priv =
4802 to_i915(plane_state->uapi.plane->dev);
4803 const struct drm_framebuffer *fb = plane_state->hw.fb;
4804 unsigned int rotation = plane_state->hw.rotation;
4805 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4806 u32 plane_ctl;
4807
4808 plane_ctl = PLANE_CTL_ENABLE;
4809
4810 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4811 plane_ctl |= skl_plane_ctl_alpha(plane_state);
4812 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4813
4814 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4815 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4816
4817 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4818 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4819 }
4820
4821 plane_ctl |= skl_plane_ctl_format(fb->format->format);
4822 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4823 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4824
4825 if (INTEL_GEN(dev_priv) >= 10)
4826 plane_ctl |= cnl_plane_ctl_flip(rotation &
4827 DRM_MODE_REFLECT_MASK);
4828
4829 if (key->flags & I915_SET_COLORKEY_DESTINATION)
4830 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4831 else if (key->flags & I915_SET_COLORKEY_SOURCE)
4832 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4833
4834 return plane_ctl;
4835 }
4836
glk_plane_color_ctl_crtc(const struct intel_crtc_state * crtc_state)4837 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4838 {
4839 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4840 u32 plane_color_ctl = 0;
4841
4842 if (INTEL_GEN(dev_priv) >= 11)
4843 return plane_color_ctl;
4844
4845 if (crtc_state->gamma_enable)
4846 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4847
4848 if (crtc_state->csc_enable)
4849 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4850
4851 return plane_color_ctl;
4852 }
4853
glk_plane_color_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4854 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4855 const struct intel_plane_state *plane_state)
4856 {
4857 struct drm_i915_private *dev_priv =
4858 to_i915(plane_state->uapi.plane->dev);
4859 const struct drm_framebuffer *fb = plane_state->hw.fb;
4860 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4861 u32 plane_color_ctl = 0;
4862
4863 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4864 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4865
4866 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4867 switch (plane_state->hw.color_encoding) {
4868 case DRM_COLOR_YCBCR_BT709:
4869 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4870 break;
4871 case DRM_COLOR_YCBCR_BT2020:
4872 plane_color_ctl |=
4873 PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020;
4874 break;
4875 default:
4876 plane_color_ctl |=
4877 PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601;
4878 }
4879 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4880 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4881 } else if (fb->format->is_yuv) {
4882 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4883 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4884 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4885 }
4886
4887 return plane_color_ctl;
4888 }
4889
4890 static int
__intel_display_resume(struct drm_device * dev,struct drm_atomic_state * state,struct drm_modeset_acquire_ctx * ctx)4891 __intel_display_resume(struct drm_device *dev,
4892 struct drm_atomic_state *state,
4893 struct drm_modeset_acquire_ctx *ctx)
4894 {
4895 struct drm_crtc_state *crtc_state;
4896 struct drm_crtc *crtc;
4897 int i, ret;
4898
4899 intel_modeset_setup_hw_state(dev, ctx);
4900 intel_vga_redisable(to_i915(dev));
4901
4902 if (!state)
4903 return 0;
4904
4905 /*
4906 * We've duplicated the state, pointers to the old state are invalid.
4907 *
4908 * Don't attempt to use the old state until we commit the duplicated state.
4909 */
4910 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4911 /*
4912 * Force recalculation even if we restore
4913 * current state. With fast modeset this may not result
4914 * in a modeset when the state is compatible.
4915 */
4916 crtc_state->mode_changed = true;
4917 }
4918
4919 /* ignore any reset values/BIOS leftovers in the WM registers */
4920 if (!HAS_GMCH(to_i915(dev)))
4921 to_intel_atomic_state(state)->skip_intermediate_wm = true;
4922
4923 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4924
4925 drm_WARN_ON(dev, ret == -EDEADLK);
4926 return ret;
4927 }
4928
gpu_reset_clobbers_display(struct drm_i915_private * dev_priv)4929 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4930 {
4931 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4932 intel_has_gpu_reset(&dev_priv->gt));
4933 }
4934
intel_prepare_reset(struct drm_i915_private * dev_priv)4935 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4936 {
4937 struct drm_device *dev = &dev_priv->drm;
4938 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4939 struct drm_atomic_state *state;
4940 int ret;
4941
4942 /* reset doesn't touch the display */
4943 if (!dev_priv->params.force_reset_modeset_test &&
4944 !gpu_reset_clobbers_display(dev_priv))
4945 return;
4946
4947 /* We have a modeset vs reset deadlock, defensively unbreak it. */
4948 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4949 smp_mb__after_atomic();
4950 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4951
4952 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4953 drm_dbg_kms(&dev_priv->drm,
4954 "Modeset potentially stuck, unbreaking through wedging\n");
4955 intel_gt_set_wedged(&dev_priv->gt);
4956 }
4957
4958 /*
4959 * Need mode_config.mutex so that we don't
4960 * trample ongoing ->detect() and whatnot.
4961 */
4962 mutex_lock(&dev->mode_config.mutex);
4963 drm_modeset_acquire_init(ctx, 0);
4964 while (1) {
4965 ret = drm_modeset_lock_all_ctx(dev, ctx);
4966 if (ret != -EDEADLK)
4967 break;
4968
4969 drm_modeset_backoff(ctx);
4970 }
4971 /*
4972 * Disabling the crtcs gracefully seems nicer. Also the
4973 * g33 docs say we should at least disable all the planes.
4974 */
4975 state = drm_atomic_helper_duplicate_state(dev, ctx);
4976 if (IS_ERR(state)) {
4977 ret = PTR_ERR(state);
4978 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n",
4979 ret);
4980 return;
4981 }
4982
4983 ret = drm_atomic_helper_disable_all(dev, ctx);
4984 if (ret) {
4985 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
4986 ret);
4987 drm_atomic_state_put(state);
4988 return;
4989 }
4990
4991 dev_priv->modeset_restore_state = state;
4992 state->acquire_ctx = ctx;
4993 }
4994
intel_finish_reset(struct drm_i915_private * dev_priv)4995 void intel_finish_reset(struct drm_i915_private *dev_priv)
4996 {
4997 struct drm_device *dev = &dev_priv->drm;
4998 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4999 struct drm_atomic_state *state;
5000 int ret;
5001
5002 /* reset doesn't touch the display */
5003 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
5004 return;
5005
5006 state = fetch_and_zero(&dev_priv->modeset_restore_state);
5007 if (!state)
5008 goto unlock;
5009
5010 /* reset doesn't touch the display */
5011 if (!gpu_reset_clobbers_display(dev_priv)) {
5012 /* for testing only restore the display */
5013 ret = __intel_display_resume(dev, state, ctx);
5014 if (ret)
5015 drm_err(&dev_priv->drm,
5016 "Restoring old state failed with %i\n", ret);
5017 } else {
5018 /*
5019 * The display has been reset as well,
5020 * so need a full re-initialization.
5021 */
5022 intel_pps_unlock_regs_wa(dev_priv);
5023 intel_modeset_init_hw(dev_priv);
5024 intel_init_clock_gating(dev_priv);
5025
5026 spin_lock_irq(&dev_priv->irq_lock);
5027 if (dev_priv->display.hpd_irq_setup)
5028 dev_priv->display.hpd_irq_setup(dev_priv);
5029 spin_unlock_irq(&dev_priv->irq_lock);
5030
5031 ret = __intel_display_resume(dev, state, ctx);
5032 if (ret)
5033 drm_err(&dev_priv->drm,
5034 "Restoring old state failed with %i\n", ret);
5035
5036 intel_hpd_init(dev_priv);
5037 }
5038
5039 drm_atomic_state_put(state);
5040 unlock:
5041 drm_modeset_drop_locks(ctx);
5042 drm_modeset_acquire_fini(ctx);
5043 mutex_unlock(&dev->mode_config.mutex);
5044
5045 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
5046 }
5047
icl_set_pipe_chicken(struct intel_crtc * crtc)5048 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
5049 {
5050 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5051 enum pipe pipe = crtc->pipe;
5052 u32 tmp;
5053
5054 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe));
5055
5056 /*
5057 * Display WA #1153: icl
5058 * enable hardware to bypass the alpha math
5059 * and rounding for per-pixel values 00 and 0xff
5060 */
5061 tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
5062 /*
5063 * Display WA # 1605353570: icl
5064 * Set the pixel rounding bit to 1 for allowing
5065 * passthrough of Frame buffer pixels unmodified
5066 * across pipe
5067 */
5068 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
5069 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp);
5070 }
5071
intel_fdi_normal_train(struct intel_crtc * crtc)5072 static void intel_fdi_normal_train(struct intel_crtc *crtc)
5073 {
5074 struct drm_device *dev = crtc->base.dev;
5075 struct drm_i915_private *dev_priv = to_i915(dev);
5076 enum pipe pipe = crtc->pipe;
5077 i915_reg_t reg;
5078 u32 temp;
5079
5080 /* enable normal train */
5081 reg = FDI_TX_CTL(pipe);
5082 temp = intel_de_read(dev_priv, reg);
5083 if (IS_IVYBRIDGE(dev_priv)) {
5084 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5085 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
5086 } else {
5087 temp &= ~FDI_LINK_TRAIN_NONE;
5088 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
5089 }
5090 intel_de_write(dev_priv, reg, temp);
5091
5092 reg = FDI_RX_CTL(pipe);
5093 temp = intel_de_read(dev_priv, reg);
5094 if (HAS_PCH_CPT(dev_priv)) {
5095 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5096 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
5097 } else {
5098 temp &= ~FDI_LINK_TRAIN_NONE;
5099 temp |= FDI_LINK_TRAIN_NONE;
5100 }
5101 intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
5102
5103 /* wait one idle pattern time */
5104 intel_de_posting_read(dev_priv, reg);
5105 udelay(1000);
5106
5107 /* IVB wants error correction enabled */
5108 if (IS_IVYBRIDGE(dev_priv))
5109 intel_de_write(dev_priv, reg,
5110 intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE);
5111 }
5112
5113 /* The FDI link training functions for ILK/Ibexpeak. */
ilk_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)5114 static void ilk_fdi_link_train(struct intel_crtc *crtc,
5115 const struct intel_crtc_state *crtc_state)
5116 {
5117 struct drm_device *dev = crtc->base.dev;
5118 struct drm_i915_private *dev_priv = to_i915(dev);
5119 enum pipe pipe = crtc->pipe;
5120 i915_reg_t reg;
5121 u32 temp, tries;
5122
5123 /* FDI needs bits from pipe first */
5124 assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder);
5125
5126 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5127 for train result */
5128 reg = FDI_RX_IMR(pipe);
5129 temp = intel_de_read(dev_priv, reg);
5130 temp &= ~FDI_RX_SYMBOL_LOCK;
5131 temp &= ~FDI_RX_BIT_LOCK;
5132 intel_de_write(dev_priv, reg, temp);
5133 intel_de_read(dev_priv, reg);
5134 udelay(150);
5135
5136 /* enable CPU FDI TX and PCH FDI RX */
5137 reg = FDI_TX_CTL(pipe);
5138 temp = intel_de_read(dev_priv, reg);
5139 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5140 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5141 temp &= ~FDI_LINK_TRAIN_NONE;
5142 temp |= FDI_LINK_TRAIN_PATTERN_1;
5143 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5144
5145 reg = FDI_RX_CTL(pipe);
5146 temp = intel_de_read(dev_priv, reg);
5147 temp &= ~FDI_LINK_TRAIN_NONE;
5148 temp |= FDI_LINK_TRAIN_PATTERN_1;
5149 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5150
5151 intel_de_posting_read(dev_priv, reg);
5152 udelay(150);
5153
5154 /* Ironlake workaround, enable clock pointer after FDI enable*/
5155 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5156 FDI_RX_PHASE_SYNC_POINTER_OVR);
5157 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5158 FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN);
5159
5160 reg = FDI_RX_IIR(pipe);
5161 for (tries = 0; tries < 5; tries++) {
5162 temp = intel_de_read(dev_priv, reg);
5163 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5164
5165 if ((temp & FDI_RX_BIT_LOCK)) {
5166 drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n");
5167 intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK);
5168 break;
5169 }
5170 }
5171 if (tries == 5)
5172 drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5173
5174 /* Train 2 */
5175 reg = FDI_TX_CTL(pipe);
5176 temp = intel_de_read(dev_priv, reg);
5177 temp &= ~FDI_LINK_TRAIN_NONE;
5178 temp |= FDI_LINK_TRAIN_PATTERN_2;
5179 intel_de_write(dev_priv, reg, temp);
5180
5181 reg = FDI_RX_CTL(pipe);
5182 temp = intel_de_read(dev_priv, reg);
5183 temp &= ~FDI_LINK_TRAIN_NONE;
5184 temp |= FDI_LINK_TRAIN_PATTERN_2;
5185 intel_de_write(dev_priv, reg, temp);
5186
5187 intel_de_posting_read(dev_priv, reg);
5188 udelay(150);
5189
5190 reg = FDI_RX_IIR(pipe);
5191 for (tries = 0; tries < 5; tries++) {
5192 temp = intel_de_read(dev_priv, reg);
5193 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5194
5195 if (temp & FDI_RX_SYMBOL_LOCK) {
5196 intel_de_write(dev_priv, reg,
5197 temp | FDI_RX_SYMBOL_LOCK);
5198 drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n");
5199 break;
5200 }
5201 }
5202 if (tries == 5)
5203 drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5204
5205 drm_dbg_kms(&dev_priv->drm, "FDI train done\n");
5206
5207 }
5208
5209 static const int snb_b_fdi_train_param[] = {
5210 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
5211 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
5212 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
5213 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
5214 };
5215
5216 /* The FDI link training functions for SNB/Cougarpoint. */
gen6_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)5217 static void gen6_fdi_link_train(struct intel_crtc *crtc,
5218 const struct intel_crtc_state *crtc_state)
5219 {
5220 struct drm_device *dev = crtc->base.dev;
5221 struct drm_i915_private *dev_priv = to_i915(dev);
5222 enum pipe pipe = crtc->pipe;
5223 i915_reg_t reg;
5224 u32 temp, i, retry;
5225
5226 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5227 for train result */
5228 reg = FDI_RX_IMR(pipe);
5229 temp = intel_de_read(dev_priv, reg);
5230 temp &= ~FDI_RX_SYMBOL_LOCK;
5231 temp &= ~FDI_RX_BIT_LOCK;
5232 intel_de_write(dev_priv, reg, temp);
5233
5234 intel_de_posting_read(dev_priv, reg);
5235 udelay(150);
5236
5237 /* enable CPU FDI TX and PCH FDI RX */
5238 reg = FDI_TX_CTL(pipe);
5239 temp = intel_de_read(dev_priv, reg);
5240 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5241 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5242 temp &= ~FDI_LINK_TRAIN_NONE;
5243 temp |= FDI_LINK_TRAIN_PATTERN_1;
5244 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5245 /* SNB-B */
5246 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5247 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5248
5249 intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5250 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5251
5252 reg = FDI_RX_CTL(pipe);
5253 temp = intel_de_read(dev_priv, reg);
5254 if (HAS_PCH_CPT(dev_priv)) {
5255 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5256 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5257 } else {
5258 temp &= ~FDI_LINK_TRAIN_NONE;
5259 temp |= FDI_LINK_TRAIN_PATTERN_1;
5260 }
5261 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5262
5263 intel_de_posting_read(dev_priv, reg);
5264 udelay(150);
5265
5266 for (i = 0; i < 4; i++) {
5267 reg = FDI_TX_CTL(pipe);
5268 temp = intel_de_read(dev_priv, reg);
5269 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5270 temp |= snb_b_fdi_train_param[i];
5271 intel_de_write(dev_priv, reg, temp);
5272
5273 intel_de_posting_read(dev_priv, reg);
5274 udelay(500);
5275
5276 for (retry = 0; retry < 5; retry++) {
5277 reg = FDI_RX_IIR(pipe);
5278 temp = intel_de_read(dev_priv, reg);
5279 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5280 if (temp & FDI_RX_BIT_LOCK) {
5281 intel_de_write(dev_priv, reg,
5282 temp | FDI_RX_BIT_LOCK);
5283 drm_dbg_kms(&dev_priv->drm,
5284 "FDI train 1 done.\n");
5285 break;
5286 }
5287 udelay(50);
5288 }
5289 if (retry < 5)
5290 break;
5291 }
5292 if (i == 4)
5293 drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5294
5295 /* Train 2 */
5296 reg = FDI_TX_CTL(pipe);
5297 temp = intel_de_read(dev_priv, reg);
5298 temp &= ~FDI_LINK_TRAIN_NONE;
5299 temp |= FDI_LINK_TRAIN_PATTERN_2;
5300 if (IS_GEN(dev_priv, 6)) {
5301 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5302 /* SNB-B */
5303 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5304 }
5305 intel_de_write(dev_priv, reg, temp);
5306
5307 reg = FDI_RX_CTL(pipe);
5308 temp = intel_de_read(dev_priv, reg);
5309 if (HAS_PCH_CPT(dev_priv)) {
5310 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5311 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5312 } else {
5313 temp &= ~FDI_LINK_TRAIN_NONE;
5314 temp |= FDI_LINK_TRAIN_PATTERN_2;
5315 }
5316 intel_de_write(dev_priv, reg, temp);
5317
5318 intel_de_posting_read(dev_priv, reg);
5319 udelay(150);
5320
5321 for (i = 0; i < 4; i++) {
5322 reg = FDI_TX_CTL(pipe);
5323 temp = intel_de_read(dev_priv, reg);
5324 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5325 temp |= snb_b_fdi_train_param[i];
5326 intel_de_write(dev_priv, reg, temp);
5327
5328 intel_de_posting_read(dev_priv, reg);
5329 udelay(500);
5330
5331 for (retry = 0; retry < 5; retry++) {
5332 reg = FDI_RX_IIR(pipe);
5333 temp = intel_de_read(dev_priv, reg);
5334 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5335 if (temp & FDI_RX_SYMBOL_LOCK) {
5336 intel_de_write(dev_priv, reg,
5337 temp | FDI_RX_SYMBOL_LOCK);
5338 drm_dbg_kms(&dev_priv->drm,
5339 "FDI train 2 done.\n");
5340 break;
5341 }
5342 udelay(50);
5343 }
5344 if (retry < 5)
5345 break;
5346 }
5347 if (i == 4)
5348 drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5349
5350 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5351 }
5352
5353 /* Manual link training for Ivy Bridge A0 parts */
ivb_manual_fdi_link_train(struct intel_crtc * crtc,const struct intel_crtc_state * crtc_state)5354 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
5355 const struct intel_crtc_state *crtc_state)
5356 {
5357 struct drm_device *dev = crtc->base.dev;
5358 struct drm_i915_private *dev_priv = to_i915(dev);
5359 enum pipe pipe = crtc->pipe;
5360 i915_reg_t reg;
5361 u32 temp, i, j;
5362
5363 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5364 for train result */
5365 reg = FDI_RX_IMR(pipe);
5366 temp = intel_de_read(dev_priv, reg);
5367 temp &= ~FDI_RX_SYMBOL_LOCK;
5368 temp &= ~FDI_RX_BIT_LOCK;
5369 intel_de_write(dev_priv, reg, temp);
5370
5371 intel_de_posting_read(dev_priv, reg);
5372 udelay(150);
5373
5374 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n",
5375 intel_de_read(dev_priv, FDI_RX_IIR(pipe)));
5376
5377 /* Try each vswing and preemphasis setting twice before moving on */
5378 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
5379 /* disable first in case we need to retry */
5380 reg = FDI_TX_CTL(pipe);
5381 temp = intel_de_read(dev_priv, reg);
5382 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
5383 temp &= ~FDI_TX_ENABLE;
5384 intel_de_write(dev_priv, reg, temp);
5385
5386 reg = FDI_RX_CTL(pipe);
5387 temp = intel_de_read(dev_priv, reg);
5388 temp &= ~FDI_LINK_TRAIN_AUTO;
5389 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5390 temp &= ~FDI_RX_ENABLE;
5391 intel_de_write(dev_priv, reg, temp);
5392
5393 /* enable CPU FDI TX and PCH FDI RX */
5394 reg = FDI_TX_CTL(pipe);
5395 temp = intel_de_read(dev_priv, reg);
5396 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5397 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5398 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
5399 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5400 temp |= snb_b_fdi_train_param[j/2];
5401 temp |= FDI_COMPOSITE_SYNC;
5402 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5403
5404 intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5405 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5406
5407 reg = FDI_RX_CTL(pipe);
5408 temp = intel_de_read(dev_priv, reg);
5409 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5410 temp |= FDI_COMPOSITE_SYNC;
5411 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5412
5413 intel_de_posting_read(dev_priv, reg);
5414 udelay(1); /* should be 0.5us */
5415
5416 for (i = 0; i < 4; i++) {
5417 reg = FDI_RX_IIR(pipe);
5418 temp = intel_de_read(dev_priv, reg);
5419 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5420
5421 if (temp & FDI_RX_BIT_LOCK ||
5422 (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) {
5423 intel_de_write(dev_priv, reg,
5424 temp | FDI_RX_BIT_LOCK);
5425 drm_dbg_kms(&dev_priv->drm,
5426 "FDI train 1 done, level %i.\n",
5427 i);
5428 break;
5429 }
5430 udelay(1); /* should be 0.5us */
5431 }
5432 if (i == 4) {
5433 drm_dbg_kms(&dev_priv->drm,
5434 "FDI train 1 fail on vswing %d\n", j / 2);
5435 continue;
5436 }
5437
5438 /* Train 2 */
5439 reg = FDI_TX_CTL(pipe);
5440 temp = intel_de_read(dev_priv, reg);
5441 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5442 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
5443 intel_de_write(dev_priv, reg, temp);
5444
5445 reg = FDI_RX_CTL(pipe);
5446 temp = intel_de_read(dev_priv, reg);
5447 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5448 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5449 intel_de_write(dev_priv, reg, temp);
5450
5451 intel_de_posting_read(dev_priv, reg);
5452 udelay(2); /* should be 1.5us */
5453
5454 for (i = 0; i < 4; i++) {
5455 reg = FDI_RX_IIR(pipe);
5456 temp = intel_de_read(dev_priv, reg);
5457 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5458
5459 if (temp & FDI_RX_SYMBOL_LOCK ||
5460 (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) {
5461 intel_de_write(dev_priv, reg,
5462 temp | FDI_RX_SYMBOL_LOCK);
5463 drm_dbg_kms(&dev_priv->drm,
5464 "FDI train 2 done, level %i.\n",
5465 i);
5466 goto train_done;
5467 }
5468 udelay(2); /* should be 1.5us */
5469 }
5470 if (i == 4)
5471 drm_dbg_kms(&dev_priv->drm,
5472 "FDI train 2 fail on vswing %d\n", j / 2);
5473 }
5474
5475 train_done:
5476 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5477 }
5478
ilk_fdi_pll_enable(const struct intel_crtc_state * crtc_state)5479 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
5480 {
5481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
5482 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5483 enum pipe pipe = intel_crtc->pipe;
5484 i915_reg_t reg;
5485 u32 temp;
5486
5487 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5488 reg = FDI_RX_CTL(pipe);
5489 temp = intel_de_read(dev_priv, reg);
5490 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
5491 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5492 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5493 intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE);
5494
5495 intel_de_posting_read(dev_priv, reg);
5496 udelay(200);
5497
5498 /* Switch from Rawclk to PCDclk */
5499 temp = intel_de_read(dev_priv, reg);
5500 intel_de_write(dev_priv, reg, temp | FDI_PCDCLK);
5501
5502 intel_de_posting_read(dev_priv, reg);
5503 udelay(200);
5504
5505 /* Enable CPU FDI TX PLL, always on for Ironlake */
5506 reg = FDI_TX_CTL(pipe);
5507 temp = intel_de_read(dev_priv, reg);
5508 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5509 intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE);
5510
5511 intel_de_posting_read(dev_priv, reg);
5512 udelay(100);
5513 }
5514 }
5515
ilk_fdi_pll_disable(struct intel_crtc * intel_crtc)5516 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc)
5517 {
5518 struct drm_device *dev = intel_crtc->base.dev;
5519 struct drm_i915_private *dev_priv = to_i915(dev);
5520 enum pipe pipe = intel_crtc->pipe;
5521 i915_reg_t reg;
5522 u32 temp;
5523
5524 /* Switch from PCDclk to Rawclk */
5525 reg = FDI_RX_CTL(pipe);
5526 temp = intel_de_read(dev_priv, reg);
5527 intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK);
5528
5529 /* Disable CPU FDI TX PLL */
5530 reg = FDI_TX_CTL(pipe);
5531 temp = intel_de_read(dev_priv, reg);
5532 intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE);
5533
5534 intel_de_posting_read(dev_priv, reg);
5535 udelay(100);
5536
5537 reg = FDI_RX_CTL(pipe);
5538 temp = intel_de_read(dev_priv, reg);
5539 intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE);
5540
5541 /* Wait for the clocks to turn off. */
5542 intel_de_posting_read(dev_priv, reg);
5543 udelay(100);
5544 }
5545
ilk_fdi_disable(struct intel_crtc * crtc)5546 static void ilk_fdi_disable(struct intel_crtc *crtc)
5547 {
5548 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5549 enum pipe pipe = crtc->pipe;
5550 i915_reg_t reg;
5551 u32 temp;
5552
5553 /* disable CPU FDI tx and PCH FDI rx */
5554 reg = FDI_TX_CTL(pipe);
5555 temp = intel_de_read(dev_priv, reg);
5556 intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE);
5557 intel_de_posting_read(dev_priv, reg);
5558
5559 reg = FDI_RX_CTL(pipe);
5560 temp = intel_de_read(dev_priv, reg);
5561 temp &= ~(0x7 << 16);
5562 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5563 intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE);
5564
5565 intel_de_posting_read(dev_priv, reg);
5566 udelay(100);
5567
5568 /* Ironlake workaround, disable clock pointer after downing FDI */
5569 if (HAS_PCH_IBX(dev_priv))
5570 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5571 FDI_RX_PHASE_SYNC_POINTER_OVR);
5572
5573 /* still set train pattern 1 */
5574 reg = FDI_TX_CTL(pipe);
5575 temp = intel_de_read(dev_priv, reg);
5576 temp &= ~FDI_LINK_TRAIN_NONE;
5577 temp |= FDI_LINK_TRAIN_PATTERN_1;
5578 intel_de_write(dev_priv, reg, temp);
5579
5580 reg = FDI_RX_CTL(pipe);
5581 temp = intel_de_read(dev_priv, reg);
5582 if (HAS_PCH_CPT(dev_priv)) {
5583 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5584 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5585 } else {
5586 temp &= ~FDI_LINK_TRAIN_NONE;
5587 temp |= FDI_LINK_TRAIN_PATTERN_1;
5588 }
5589 /* BPC in FDI rx is consistent with that in PIPECONF */
5590 temp &= ~(0x07 << 16);
5591 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5592 intel_de_write(dev_priv, reg, temp);
5593
5594 intel_de_posting_read(dev_priv, reg);
5595 udelay(100);
5596 }
5597
intel_has_pending_fb_unpin(struct drm_i915_private * dev_priv)5598 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5599 {
5600 struct drm_crtc *crtc;
5601 bool cleanup_done;
5602
5603 drm_for_each_crtc(crtc, &dev_priv->drm) {
5604 struct drm_crtc_commit *commit;
5605 spin_lock(&crtc->commit_lock);
5606 commit = list_first_entry_or_null(&crtc->commit_list,
5607 struct drm_crtc_commit, commit_entry);
5608 cleanup_done = commit ?
5609 try_wait_for_completion(&commit->cleanup_done) : true;
5610 spin_unlock(&crtc->commit_lock);
5611
5612 if (cleanup_done)
5613 continue;
5614
5615 drm_crtc_wait_one_vblank(crtc);
5616
5617 return true;
5618 }
5619
5620 return false;
5621 }
5622
lpt_disable_iclkip(struct drm_i915_private * dev_priv)5623 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5624 {
5625 u32 temp;
5626
5627 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE);
5628
5629 mutex_lock(&dev_priv->sb_lock);
5630
5631 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5632 temp |= SBI_SSCCTL_DISABLE;
5633 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5634
5635 mutex_unlock(&dev_priv->sb_lock);
5636 }
5637
5638 /* Program iCLKIP clock to the desired frequency */
lpt_program_iclkip(const struct intel_crtc_state * crtc_state)5639 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5640 {
5641 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5642 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5643 int clock = crtc_state->hw.adjusted_mode.crtc_clock;
5644 u32 divsel, phaseinc, auxdiv, phasedir = 0;
5645 u32 temp;
5646
5647 lpt_disable_iclkip(dev_priv);
5648
5649 /* The iCLK virtual clock root frequency is in MHz,
5650 * but the adjusted_mode->crtc_clock in in KHz. To get the
5651 * divisors, it is necessary to divide one by another, so we
5652 * convert the virtual clock precision to KHz here for higher
5653 * precision.
5654 */
5655 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5656 u32 iclk_virtual_root_freq = 172800 * 1000;
5657 u32 iclk_pi_range = 64;
5658 u32 desired_divisor;
5659
5660 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5661 clock << auxdiv);
5662 divsel = (desired_divisor / iclk_pi_range) - 2;
5663 phaseinc = desired_divisor % iclk_pi_range;
5664
5665 /*
5666 * Near 20MHz is a corner case which is
5667 * out of range for the 7-bit divisor
5668 */
5669 if (divsel <= 0x7f)
5670 break;
5671 }
5672
5673 /* This should not happen with any sane values */
5674 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5675 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5676 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) &
5677 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5678
5679 drm_dbg_kms(&dev_priv->drm,
5680 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5681 clock, auxdiv, divsel, phasedir, phaseinc);
5682
5683 mutex_lock(&dev_priv->sb_lock);
5684
5685 /* Program SSCDIVINTPHASE6 */
5686 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5687 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5688 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5689 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5690 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5691 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5692 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5693 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5694
5695 /* Program SSCAUXDIV */
5696 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5697 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5698 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5699 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5700
5701 /* Enable modulator and associated divider */
5702 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5703 temp &= ~SBI_SSCCTL_DISABLE;
5704 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5705
5706 mutex_unlock(&dev_priv->sb_lock);
5707
5708 /* Wait for initialization time */
5709 udelay(24);
5710
5711 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5712 }
5713
lpt_get_iclkip(struct drm_i915_private * dev_priv)5714 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5715 {
5716 u32 divsel, phaseinc, auxdiv;
5717 u32 iclk_virtual_root_freq = 172800 * 1000;
5718 u32 iclk_pi_range = 64;
5719 u32 desired_divisor;
5720 u32 temp;
5721
5722 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5723 return 0;
5724
5725 mutex_lock(&dev_priv->sb_lock);
5726
5727 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5728 if (temp & SBI_SSCCTL_DISABLE) {
5729 mutex_unlock(&dev_priv->sb_lock);
5730 return 0;
5731 }
5732
5733 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5734 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5735 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5736 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5737 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5738
5739 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5740 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5741 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5742
5743 mutex_unlock(&dev_priv->sb_lock);
5744
5745 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5746
5747 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5748 desired_divisor << auxdiv);
5749 }
5750
ilk_pch_transcoder_set_timings(const struct intel_crtc_state * crtc_state,enum pipe pch_transcoder)5751 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5752 enum pipe pch_transcoder)
5753 {
5754 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5755 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5756 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5757
5758 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder),
5759 intel_de_read(dev_priv, HTOTAL(cpu_transcoder)));
5760 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder),
5761 intel_de_read(dev_priv, HBLANK(cpu_transcoder)));
5762 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder),
5763 intel_de_read(dev_priv, HSYNC(cpu_transcoder)));
5764
5765 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder),
5766 intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
5767 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder),
5768 intel_de_read(dev_priv, VBLANK(cpu_transcoder)));
5769 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder),
5770 intel_de_read(dev_priv, VSYNC(cpu_transcoder)));
5771 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5772 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder)));
5773 }
5774
cpt_set_fdi_bc_bifurcation(struct drm_i915_private * dev_priv,bool enable)5775 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5776 {
5777 u32 temp;
5778
5779 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1);
5780 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5781 return;
5782
5783 drm_WARN_ON(&dev_priv->drm,
5784 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) &
5785 FDI_RX_ENABLE);
5786 drm_WARN_ON(&dev_priv->drm,
5787 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) &
5788 FDI_RX_ENABLE);
5789
5790 temp &= ~FDI_BC_BIFURCATION_SELECT;
5791 if (enable)
5792 temp |= FDI_BC_BIFURCATION_SELECT;
5793
5794 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n",
5795 enable ? "en" : "dis");
5796 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp);
5797 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1);
5798 }
5799
ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state * crtc_state)5800 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5801 {
5802 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5803 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5804
5805 switch (crtc->pipe) {
5806 case PIPE_A:
5807 break;
5808 case PIPE_B:
5809 if (crtc_state->fdi_lanes > 2)
5810 cpt_set_fdi_bc_bifurcation(dev_priv, false);
5811 else
5812 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5813
5814 break;
5815 case PIPE_C:
5816 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5817
5818 break;
5819 default:
5820 BUG();
5821 }
5822 }
5823
5824 /*
5825 * Finds the encoder associated with the given CRTC. This can only be
5826 * used when we know that the CRTC isn't feeding multiple encoders!
5827 */
5828 static struct intel_encoder *
intel_get_crtc_new_encoder(const struct intel_atomic_state * state,const struct intel_crtc_state * crtc_state)5829 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5830 const struct intel_crtc_state *crtc_state)
5831 {
5832 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5833 const struct drm_connector_state *connector_state;
5834 const struct drm_connector *connector;
5835 struct intel_encoder *encoder = NULL;
5836 int num_encoders = 0;
5837 int i;
5838
5839 for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5840 if (connector_state->crtc != &crtc->base)
5841 continue;
5842
5843 encoder = to_intel_encoder(connector_state->best_encoder);
5844 num_encoders++;
5845 }
5846
5847 drm_WARN(state->base.dev, num_encoders != 1,
5848 "%d encoders for pipe %c\n",
5849 num_encoders, pipe_name(crtc->pipe));
5850
5851 return encoder;
5852 }
5853
5854 /*
5855 * Enable PCH resources required for PCH ports:
5856 * - PCH PLLs
5857 * - FDI training & RX/TX
5858 * - update transcoder timings
5859 * - DP transcoding bits
5860 * - transcoder
5861 */
ilk_pch_enable(const struct intel_atomic_state * state,const struct intel_crtc_state * crtc_state)5862 static void ilk_pch_enable(const struct intel_atomic_state *state,
5863 const struct intel_crtc_state *crtc_state)
5864 {
5865 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5866 struct drm_device *dev = crtc->base.dev;
5867 struct drm_i915_private *dev_priv = to_i915(dev);
5868 enum pipe pipe = crtc->pipe;
5869 u32 temp;
5870
5871 assert_pch_transcoder_disabled(dev_priv, pipe);
5872
5873 if (IS_IVYBRIDGE(dev_priv))
5874 ivb_update_fdi_bc_bifurcation(crtc_state);
5875
5876 /* Write the TU size bits before fdi link training, so that error
5877 * detection works. */
5878 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe),
5879 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5880
5881 /* For PCH output, training FDI link */
5882 dev_priv->display.fdi_link_train(crtc, crtc_state);
5883
5884 /* We need to program the right clock selection before writing the pixel
5885 * mutliplier into the DPLL. */
5886 if (HAS_PCH_CPT(dev_priv)) {
5887 u32 sel;
5888
5889 temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
5890 temp |= TRANS_DPLL_ENABLE(pipe);
5891 sel = TRANS_DPLLB_SEL(pipe);
5892 if (crtc_state->shared_dpll ==
5893 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5894 temp |= sel;
5895 else
5896 temp &= ~sel;
5897 intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
5898 }
5899
5900 /* XXX: pch pll's can be enabled any time before we enable the PCH
5901 * transcoder, and we actually should do this to not upset any PCH
5902 * transcoder that already use the clock when we share it.
5903 *
5904 * Note that enable_shared_dpll tries to do the right thing, but
5905 * get_shared_dpll unconditionally resets the pll - we need that to have
5906 * the right LVDS enable sequence. */
5907 intel_enable_shared_dpll(crtc_state);
5908
5909 /* set transcoder timing, panel must allow it */
5910 assert_panel_unlocked(dev_priv, pipe);
5911 ilk_pch_transcoder_set_timings(crtc_state, pipe);
5912
5913 intel_fdi_normal_train(crtc);
5914
5915 /* For PCH DP, enable TRANS_DP_CTL */
5916 if (HAS_PCH_CPT(dev_priv) &&
5917 intel_crtc_has_dp_encoder(crtc_state)) {
5918 const struct drm_display_mode *adjusted_mode =
5919 &crtc_state->hw.adjusted_mode;
5920 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5921 i915_reg_t reg = TRANS_DP_CTL(pipe);
5922 enum port port;
5923
5924 temp = intel_de_read(dev_priv, reg);
5925 temp &= ~(TRANS_DP_PORT_SEL_MASK |
5926 TRANS_DP_SYNC_MASK |
5927 TRANS_DP_BPC_MASK);
5928 temp |= TRANS_DP_OUTPUT_ENABLE;
5929 temp |= bpc << 9; /* same format but at 11:9 */
5930
5931 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5932 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5933 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5934 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5935
5936 port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5937 drm_WARN_ON(dev, port < PORT_B || port > PORT_D);
5938 temp |= TRANS_DP_PORT_SEL(port);
5939
5940 intel_de_write(dev_priv, reg, temp);
5941 }
5942
5943 ilk_enable_pch_transcoder(crtc_state);
5944 }
5945
lpt_pch_enable(const struct intel_crtc_state * crtc_state)5946 void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
5947 {
5948 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5949 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5950 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5951
5952 assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5953
5954 lpt_program_iclkip(crtc_state);
5955
5956 /* Set transcoder timing. */
5957 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A);
5958
5959 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5960 }
5961
cpt_verify_modeset(struct drm_i915_private * dev_priv,enum pipe pipe)5962 static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
5963 enum pipe pipe)
5964 {
5965 i915_reg_t dslreg = PIPEDSL(pipe);
5966 u32 temp;
5967
5968 temp = intel_de_read(dev_priv, dslreg);
5969 udelay(500);
5970 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) {
5971 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5))
5972 drm_err(&dev_priv->drm,
5973 "mode set failed: pipe %c stuck\n",
5974 pipe_name(pipe));
5975 }
5976 }
5977
5978 /*
5979 * The hardware phase 0.0 refers to the center of the pixel.
5980 * We want to start from the top/left edge which is phase
5981 * -0.5. That matches how the hardware calculates the scaling
5982 * factors (from top-left of the first pixel to bottom-right
5983 * of the last pixel, as opposed to the pixel centers).
5984 *
5985 * For 4:2:0 subsampled chroma planes we obviously have to
5986 * adjust that so that the chroma sample position lands in
5987 * the right spot.
5988 *
5989 * Note that for packed YCbCr 4:2:2 formats there is no way to
5990 * control chroma siting. The hardware simply replicates the
5991 * chroma samples for both of the luma samples, and thus we don't
5992 * actually get the expected MPEG2 chroma siting convention :(
5993 * The same behaviour is observed on pre-SKL platforms as well.
5994 *
5995 * Theory behind the formula (note that we ignore sub-pixel
5996 * source coordinates):
5997 * s = source sample position
5998 * d = destination sample position
5999 *
6000 * Downscaling 4:1:
6001 * -0.5
6002 * | 0.0
6003 * | | 1.5 (initial phase)
6004 * | | |
6005 * v v v
6006 * | s | s | s | s |
6007 * | d |
6008 *
6009 * Upscaling 1:4:
6010 * -0.5
6011 * | -0.375 (initial phase)
6012 * | | 0.0
6013 * | | |
6014 * v v v
6015 * | s |
6016 * | d | d | d | d |
6017 */
skl_scaler_calc_phase(int sub,int scale,bool chroma_cosited)6018 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
6019 {
6020 int phase = -0x8000;
6021 u16 trip = 0;
6022
6023 if (chroma_cosited)
6024 phase += (sub - 1) * 0x8000 / sub;
6025
6026 phase += scale / (2 * sub);
6027
6028 /*
6029 * Hardware initial phase limited to [-0.5:1.5].
6030 * Since the max hardware scale factor is 3.0, we
6031 * should never actually excdeed 1.0 here.
6032 */
6033 WARN_ON(phase < -0x8000 || phase > 0x18000);
6034
6035 if (phase < 0)
6036 phase = 0x10000 + phase;
6037 else
6038 trip = PS_PHASE_TRIP;
6039
6040 return ((phase >> 2) & PS_PHASE_MASK) | trip;
6041 }
6042
6043 #define SKL_MIN_SRC_W 8
6044 #define SKL_MAX_SRC_W 4096
6045 #define SKL_MIN_SRC_H 8
6046 #define SKL_MAX_SRC_H 4096
6047 #define SKL_MIN_DST_W 8
6048 #define SKL_MAX_DST_W 4096
6049 #define SKL_MIN_DST_H 8
6050 #define SKL_MAX_DST_H 4096
6051 #define ICL_MAX_SRC_W 5120
6052 #define ICL_MAX_SRC_H 4096
6053 #define ICL_MAX_DST_W 5120
6054 #define ICL_MAX_DST_H 4096
6055 #define SKL_MIN_YUV_420_SRC_W 16
6056 #define SKL_MIN_YUV_420_SRC_H 16
6057
6058 static int
skl_update_scaler(struct intel_crtc_state * crtc_state,bool force_detach,unsigned int scaler_user,int * scaler_id,int src_w,int src_h,int dst_w,int dst_h,const struct drm_format_info * format,u64 modifier,bool need_scaler)6059 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
6060 unsigned int scaler_user, int *scaler_id,
6061 int src_w, int src_h, int dst_w, int dst_h,
6062 const struct drm_format_info *format,
6063 u64 modifier, bool need_scaler)
6064 {
6065 struct intel_crtc_scaler_state *scaler_state =
6066 &crtc_state->scaler_state;
6067 struct intel_crtc *intel_crtc =
6068 to_intel_crtc(crtc_state->uapi.crtc);
6069 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6070 const struct drm_display_mode *adjusted_mode =
6071 &crtc_state->hw.adjusted_mode;
6072
6073 /*
6074 * Src coordinates are already rotated by 270 degrees for
6075 * the 90/270 degree plane rotation cases (to match the
6076 * GTT mapping), hence no need to account for rotation here.
6077 */
6078 if (src_w != dst_w || src_h != dst_h)
6079 need_scaler = true;
6080
6081 /*
6082 * Scaling/fitting not supported in IF-ID mode in GEN9+
6083 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
6084 * Once NV12 is enabled, handle it here while allocating scaler
6085 * for NV12.
6086 */
6087 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable &&
6088 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6089 drm_dbg_kms(&dev_priv->drm,
6090 "Pipe/Plane scaling not supported with IF-ID mode\n");
6091 return -EINVAL;
6092 }
6093
6094 /*
6095 * if plane is being disabled or scaler is no more required or force detach
6096 * - free scaler binded to this plane/crtc
6097 * - in order to do this, update crtc->scaler_usage
6098 *
6099 * Here scaler state in crtc_state is set free so that
6100 * scaler can be assigned to other user. Actual register
6101 * update to free the scaler is done in plane/panel-fit programming.
6102 * For this purpose crtc/plane_state->scaler_id isn't reset here.
6103 */
6104 if (force_detach || !need_scaler) {
6105 if (*scaler_id >= 0) {
6106 scaler_state->scaler_users &= ~(1 << scaler_user);
6107 scaler_state->scalers[*scaler_id].in_use = 0;
6108
6109 drm_dbg_kms(&dev_priv->drm,
6110 "scaler_user index %u.%u: "
6111 "Staged freeing scaler id %d scaler_users = 0x%x\n",
6112 intel_crtc->pipe, scaler_user, *scaler_id,
6113 scaler_state->scaler_users);
6114 *scaler_id = -1;
6115 }
6116 return 0;
6117 }
6118
6119 if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
6120 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
6121 drm_dbg_kms(&dev_priv->drm,
6122 "Planar YUV: src dimensions not met\n");
6123 return -EINVAL;
6124 }
6125
6126 /* range checks */
6127 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
6128 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
6129 (INTEL_GEN(dev_priv) >= 11 &&
6130 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
6131 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
6132 (INTEL_GEN(dev_priv) < 11 &&
6133 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
6134 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) {
6135 drm_dbg_kms(&dev_priv->drm,
6136 "scaler_user index %u.%u: src %ux%u dst %ux%u "
6137 "size is out of scaler range\n",
6138 intel_crtc->pipe, scaler_user, src_w, src_h,
6139 dst_w, dst_h);
6140 return -EINVAL;
6141 }
6142
6143 /* mark this plane as a scaler user in crtc_state */
6144 scaler_state->scaler_users |= (1 << scaler_user);
6145 drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: "
6146 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
6147 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
6148 scaler_state->scaler_users);
6149
6150 return 0;
6151 }
6152
skl_update_scaler_crtc(struct intel_crtc_state * crtc_state)6153 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state)
6154 {
6155 const struct drm_display_mode *adjusted_mode =
6156 &crtc_state->hw.adjusted_mode;
6157 int width, height;
6158
6159 if (crtc_state->pch_pfit.enabled) {
6160 width = drm_rect_width(&crtc_state->pch_pfit.dst);
6161 height = drm_rect_height(&crtc_state->pch_pfit.dst);
6162 } else {
6163 width = adjusted_mode->crtc_hdisplay;
6164 height = adjusted_mode->crtc_vdisplay;
6165 }
6166
6167 return skl_update_scaler(crtc_state, !crtc_state->hw.active,
6168 SKL_CRTC_INDEX,
6169 &crtc_state->scaler_state.scaler_id,
6170 crtc_state->pipe_src_w, crtc_state->pipe_src_h,
6171 width, height, NULL, 0,
6172 crtc_state->pch_pfit.enabled);
6173 }
6174
6175 /**
6176 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
6177 * @crtc_state: crtc's scaler state
6178 * @plane_state: atomic plane state to update
6179 *
6180 * Return
6181 * 0 - scaler_usage updated successfully
6182 * error - requested scaling cannot be supported or other error condition
6183 */
skl_update_scaler_plane(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)6184 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
6185 struct intel_plane_state *plane_state)
6186 {
6187 struct intel_plane *intel_plane =
6188 to_intel_plane(plane_state->uapi.plane);
6189 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
6190 struct drm_framebuffer *fb = plane_state->hw.fb;
6191 int ret;
6192 bool force_detach = !fb || !plane_state->uapi.visible;
6193 bool need_scaler = false;
6194
6195 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */
6196 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
6197 fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
6198 need_scaler = true;
6199
6200 ret = skl_update_scaler(crtc_state, force_detach,
6201 drm_plane_index(&intel_plane->base),
6202 &plane_state->scaler_id,
6203 drm_rect_width(&plane_state->uapi.src) >> 16,
6204 drm_rect_height(&plane_state->uapi.src) >> 16,
6205 drm_rect_width(&plane_state->uapi.dst),
6206 drm_rect_height(&plane_state->uapi.dst),
6207 fb ? fb->format : NULL,
6208 fb ? fb->modifier : 0,
6209 need_scaler);
6210
6211 if (ret || plane_state->scaler_id < 0)
6212 return ret;
6213
6214 /* check colorkey */
6215 if (plane_state->ckey.flags) {
6216 drm_dbg_kms(&dev_priv->drm,
6217 "[PLANE:%d:%s] scaling with color key not allowed",
6218 intel_plane->base.base.id,
6219 intel_plane->base.name);
6220 return -EINVAL;
6221 }
6222
6223 /* Check src format */
6224 switch (fb->format->format) {
6225 case DRM_FORMAT_RGB565:
6226 case DRM_FORMAT_XBGR8888:
6227 case DRM_FORMAT_XRGB8888:
6228 case DRM_FORMAT_ABGR8888:
6229 case DRM_FORMAT_ARGB8888:
6230 case DRM_FORMAT_XRGB2101010:
6231 case DRM_FORMAT_XBGR2101010:
6232 case DRM_FORMAT_ARGB2101010:
6233 case DRM_FORMAT_ABGR2101010:
6234 case DRM_FORMAT_YUYV:
6235 case DRM_FORMAT_YVYU:
6236 case DRM_FORMAT_UYVY:
6237 case DRM_FORMAT_VYUY:
6238 case DRM_FORMAT_NV12:
6239 case DRM_FORMAT_XYUV8888:
6240 case DRM_FORMAT_P010:
6241 case DRM_FORMAT_P012:
6242 case DRM_FORMAT_P016:
6243 case DRM_FORMAT_Y210:
6244 case DRM_FORMAT_Y212:
6245 case DRM_FORMAT_Y216:
6246 case DRM_FORMAT_XVYU2101010:
6247 case DRM_FORMAT_XVYU12_16161616:
6248 case DRM_FORMAT_XVYU16161616:
6249 break;
6250 case DRM_FORMAT_XBGR16161616F:
6251 case DRM_FORMAT_ABGR16161616F:
6252 case DRM_FORMAT_XRGB16161616F:
6253 case DRM_FORMAT_ARGB16161616F:
6254 if (INTEL_GEN(dev_priv) >= 11)
6255 break;
6256 fallthrough;
6257 default:
6258 drm_dbg_kms(&dev_priv->drm,
6259 "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
6260 intel_plane->base.base.id, intel_plane->base.name,
6261 fb->base.id, fb->format->format);
6262 return -EINVAL;
6263 }
6264
6265 return 0;
6266 }
6267
skl_scaler_disable(const struct intel_crtc_state * old_crtc_state)6268 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
6269 {
6270 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6271 int i;
6272
6273 for (i = 0; i < crtc->num_scalers; i++)
6274 skl_detach_scaler(crtc, i);
6275 }
6276
skl_pfit_enable(const struct intel_crtc_state * crtc_state)6277 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
6278 {
6279 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6280 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6281 const struct intel_crtc_scaler_state *scaler_state =
6282 &crtc_state->scaler_state;
6283 struct drm_rect src = {
6284 .x2 = crtc_state->pipe_src_w << 16,
6285 .y2 = crtc_state->pipe_src_h << 16,
6286 };
6287 const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6288 u16 uv_rgb_hphase, uv_rgb_vphase;
6289 enum pipe pipe = crtc->pipe;
6290 int width = drm_rect_width(dst);
6291 int height = drm_rect_height(dst);
6292 int x = dst->x1;
6293 int y = dst->y1;
6294 int hscale, vscale;
6295 unsigned long irqflags;
6296 int id;
6297
6298 if (!crtc_state->pch_pfit.enabled)
6299 return;
6300
6301 if (drm_WARN_ON(&dev_priv->drm,
6302 crtc_state->scaler_state.scaler_id < 0))
6303 return;
6304
6305 hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX);
6306 vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX);
6307
6308 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
6309 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
6310
6311 id = scaler_state->scaler_id;
6312
6313 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6314
6315 intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
6316 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
6317 intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id),
6318 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
6319 intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id),
6320 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
6321 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id),
6322 x << 16 | y);
6323 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id),
6324 width << 16 | height);
6325
6326 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6327 }
6328
ilk_pfit_enable(const struct intel_crtc_state * crtc_state)6329 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
6330 {
6331 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6332 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6333 const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6334 enum pipe pipe = crtc->pipe;
6335 int width = drm_rect_width(dst);
6336 int height = drm_rect_height(dst);
6337 int x = dst->x1;
6338 int y = dst->y1;
6339
6340 if (!crtc_state->pch_pfit.enabled)
6341 return;
6342
6343 /* Force use of hard-coded filter coefficients
6344 * as some pre-programmed values are broken,
6345 * e.g. x201.
6346 */
6347 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
6348 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6349 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe));
6350 else
6351 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6352 PF_FILTER_MED_3x3);
6353 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y);
6354 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height);
6355 }
6356
hsw_enable_ips(const struct intel_crtc_state * crtc_state)6357 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
6358 {
6359 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6360 struct drm_device *dev = crtc->base.dev;
6361 struct drm_i915_private *dev_priv = to_i915(dev);
6362
6363 if (!crtc_state->ips_enabled)
6364 return;
6365
6366 /*
6367 * We can only enable IPS after we enable a plane and wait for a vblank
6368 * This function is called from post_plane_update, which is run after
6369 * a vblank wait.
6370 */
6371 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
6372
6373 if (IS_BROADWELL(dev_priv)) {
6374 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
6375 IPS_ENABLE | IPS_PCODE_CONTROL));
6376 /* Quoting Art Runyan: "its not safe to expect any particular
6377 * value in IPS_CTL bit 31 after enabling IPS through the
6378 * mailbox." Moreover, the mailbox may return a bogus state,
6379 * so we need to just enable it and continue on.
6380 */
6381 } else {
6382 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE);
6383 /* The bit only becomes 1 in the next vblank, so this wait here
6384 * is essentially intel_wait_for_vblank. If we don't have this
6385 * and don't wait for vblanks until the end of crtc_enable, then
6386 * the HW state readout code will complain that the expected
6387 * IPS_CTL value is not the one we read. */
6388 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
6389 drm_err(&dev_priv->drm,
6390 "Timed out waiting for IPS enable\n");
6391 }
6392 }
6393
hsw_disable_ips(const struct intel_crtc_state * crtc_state)6394 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
6395 {
6396 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6397 struct drm_device *dev = crtc->base.dev;
6398 struct drm_i915_private *dev_priv = to_i915(dev);
6399
6400 if (!crtc_state->ips_enabled)
6401 return;
6402
6403 if (IS_BROADWELL(dev_priv)) {
6404 drm_WARN_ON(dev,
6405 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
6406 /*
6407 * Wait for PCODE to finish disabling IPS. The BSpec specified
6408 * 42ms timeout value leads to occasional timeouts so use 100ms
6409 * instead.
6410 */
6411 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
6412 drm_err(&dev_priv->drm,
6413 "Timed out waiting for IPS disable\n");
6414 } else {
6415 intel_de_write(dev_priv, IPS_CTL, 0);
6416 intel_de_posting_read(dev_priv, IPS_CTL);
6417 }
6418
6419 /* We need to wait for a vblank before we can disable the plane. */
6420 intel_wait_for_vblank(dev_priv, crtc->pipe);
6421 }
6422
intel_crtc_dpms_overlay_disable(struct intel_crtc * intel_crtc)6423 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
6424 {
6425 if (intel_crtc->overlay)
6426 (void) intel_overlay_switch_off(intel_crtc->overlay);
6427
6428 /* Let userspace switch the overlay on again. In most cases userspace
6429 * has to recompute where to put it anyway.
6430 */
6431 }
6432
hsw_pre_update_disable_ips(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6433 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
6434 const struct intel_crtc_state *new_crtc_state)
6435 {
6436 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6437 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6438
6439 if (!old_crtc_state->ips_enabled)
6440 return false;
6441
6442 if (needs_modeset(new_crtc_state))
6443 return true;
6444
6445 /*
6446 * Workaround : Do not read or write the pipe palette/gamma data while
6447 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6448 *
6449 * Disable IPS before we program the LUT.
6450 */
6451 if (IS_HASWELL(dev_priv) &&
6452 (new_crtc_state->uapi.color_mgmt_changed ||
6453 new_crtc_state->update_pipe) &&
6454 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6455 return true;
6456
6457 return !new_crtc_state->ips_enabled;
6458 }
6459
hsw_post_update_enable_ips(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6460 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
6461 const struct intel_crtc_state *new_crtc_state)
6462 {
6463 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6464 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6465
6466 if (!new_crtc_state->ips_enabled)
6467 return false;
6468
6469 if (needs_modeset(new_crtc_state))
6470 return true;
6471
6472 /*
6473 * Workaround : Do not read or write the pipe palette/gamma data while
6474 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6475 *
6476 * Re-enable IPS after the LUT has been programmed.
6477 */
6478 if (IS_HASWELL(dev_priv) &&
6479 (new_crtc_state->uapi.color_mgmt_changed ||
6480 new_crtc_state->update_pipe) &&
6481 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6482 return true;
6483
6484 /*
6485 * We can't read out IPS on broadwell, assume the worst and
6486 * forcibly enable IPS on the first fastset.
6487 */
6488 if (new_crtc_state->update_pipe && old_crtc_state->inherited)
6489 return true;
6490
6491 return !old_crtc_state->ips_enabled;
6492 }
6493
needs_nv12_wa(const struct intel_crtc_state * crtc_state)6494 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
6495 {
6496 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6497
6498 if (!crtc_state->nv12_planes)
6499 return false;
6500
6501 /* WA Display #0827: Gen9:all */
6502 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
6503 return true;
6504
6505 return false;
6506 }
6507
needs_scalerclk_wa(const struct intel_crtc_state * crtc_state)6508 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
6509 {
6510 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6511
6512 /* Wa_2006604312:icl,ehl */
6513 if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11))
6514 return true;
6515
6516 return false;
6517 }
6518
planes_enabling(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6519 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
6520 const struct intel_crtc_state *new_crtc_state)
6521 {
6522 return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) &&
6523 new_crtc_state->active_planes;
6524 }
6525
planes_disabling(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)6526 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
6527 const struct intel_crtc_state *new_crtc_state)
6528 {
6529 return old_crtc_state->active_planes &&
6530 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state));
6531 }
6532
intel_post_plane_update(struct intel_atomic_state * state,struct intel_crtc * crtc)6533 static void intel_post_plane_update(struct intel_atomic_state *state,
6534 struct intel_crtc *crtc)
6535 {
6536 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6537 const struct intel_crtc_state *old_crtc_state =
6538 intel_atomic_get_old_crtc_state(state, crtc);
6539 const struct intel_crtc_state *new_crtc_state =
6540 intel_atomic_get_new_crtc_state(state, crtc);
6541 enum pipe pipe = crtc->pipe;
6542
6543 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
6544
6545 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
6546 intel_update_watermarks(crtc);
6547
6548 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state))
6549 hsw_enable_ips(new_crtc_state);
6550
6551 intel_fbc_post_update(state, crtc);
6552
6553 if (needs_nv12_wa(old_crtc_state) &&
6554 !needs_nv12_wa(new_crtc_state))
6555 skl_wa_827(dev_priv, pipe, false);
6556
6557 if (needs_scalerclk_wa(old_crtc_state) &&
6558 !needs_scalerclk_wa(new_crtc_state))
6559 icl_wa_scalerclkgating(dev_priv, pipe, false);
6560 }
6561
intel_pre_plane_update(struct intel_atomic_state * state,struct intel_crtc * crtc)6562 static void intel_pre_plane_update(struct intel_atomic_state *state,
6563 struct intel_crtc *crtc)
6564 {
6565 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6566 const struct intel_crtc_state *old_crtc_state =
6567 intel_atomic_get_old_crtc_state(state, crtc);
6568 const struct intel_crtc_state *new_crtc_state =
6569 intel_atomic_get_new_crtc_state(state, crtc);
6570 enum pipe pipe = crtc->pipe;
6571
6572 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state))
6573 hsw_disable_ips(old_crtc_state);
6574
6575 if (intel_fbc_pre_update(state, crtc))
6576 intel_wait_for_vblank(dev_priv, pipe);
6577
6578 /* Display WA 827 */
6579 if (!needs_nv12_wa(old_crtc_state) &&
6580 needs_nv12_wa(new_crtc_state))
6581 skl_wa_827(dev_priv, pipe, true);
6582
6583 /* Wa_2006604312:icl,ehl */
6584 if (!needs_scalerclk_wa(old_crtc_state) &&
6585 needs_scalerclk_wa(new_crtc_state))
6586 icl_wa_scalerclkgating(dev_priv, pipe, true);
6587
6588 /*
6589 * Vblank time updates from the shadow to live plane control register
6590 * are blocked if the memory self-refresh mode is active at that
6591 * moment. So to make sure the plane gets truly disabled, disable
6592 * first the self-refresh mode. The self-refresh enable bit in turn
6593 * will be checked/applied by the HW only at the next frame start
6594 * event which is after the vblank start event, so we need to have a
6595 * wait-for-vblank between disabling the plane and the pipe.
6596 */
6597 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
6598 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6599 intel_wait_for_vblank(dev_priv, pipe);
6600
6601 /*
6602 * IVB workaround: must disable low power watermarks for at least
6603 * one frame before enabling scaling. LP watermarks can be re-enabled
6604 * when scaling is disabled.
6605 *
6606 * WaCxSRDisabledForSpriteScaling:ivb
6607 */
6608 if (old_crtc_state->hw.active &&
6609 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
6610 intel_wait_for_vblank(dev_priv, pipe);
6611
6612 /*
6613 * If we're doing a modeset we don't need to do any
6614 * pre-vblank watermark programming here.
6615 */
6616 if (!needs_modeset(new_crtc_state)) {
6617 /*
6618 * For platforms that support atomic watermarks, program the
6619 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
6620 * will be the intermediate values that are safe for both pre- and
6621 * post- vblank; when vblank happens, the 'active' values will be set
6622 * to the final 'target' values and we'll do this again to get the
6623 * optimal watermarks. For gen9+ platforms, the values we program here
6624 * will be the final target values which will get automatically latched
6625 * at vblank time; no further programming will be necessary.
6626 *
6627 * If a platform hasn't been transitioned to atomic watermarks yet,
6628 * we'll continue to update watermarks the old way, if flags tell
6629 * us to.
6630 */
6631 if (dev_priv->display.initial_watermarks)
6632 dev_priv->display.initial_watermarks(state, crtc);
6633 else if (new_crtc_state->update_wm_pre)
6634 intel_update_watermarks(crtc);
6635 }
6636
6637 /*
6638 * Gen2 reports pipe underruns whenever all planes are disabled.
6639 * So disable underrun reporting before all the planes get disabled.
6640 *
6641 * We do this after .initial_watermarks() so that we have a
6642 * chance of catching underruns with the intermediate watermarks
6643 * vs. the old plane configuration.
6644 */
6645 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state))
6646 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6647 }
6648
intel_crtc_disable_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)6649 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6650 struct intel_crtc *crtc)
6651 {
6652 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6653 const struct intel_crtc_state *new_crtc_state =
6654 intel_atomic_get_new_crtc_state(state, crtc);
6655 unsigned int update_mask = new_crtc_state->update_planes;
6656 const struct intel_plane_state *old_plane_state;
6657 struct intel_plane *plane;
6658 unsigned fb_bits = 0;
6659 int i;
6660
6661 intel_crtc_dpms_overlay_disable(crtc);
6662
6663 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6664 if (crtc->pipe != plane->pipe ||
6665 !(update_mask & BIT(plane->id)))
6666 continue;
6667
6668 intel_disable_plane(plane, new_crtc_state);
6669
6670 if (old_plane_state->uapi.visible)
6671 fb_bits |= plane->frontbuffer_bit;
6672 }
6673
6674 intel_frontbuffer_flip(dev_priv, fb_bits);
6675 }
6676
6677 /*
6678 * intel_connector_primary_encoder - get the primary encoder for a connector
6679 * @connector: connector for which to return the encoder
6680 *
6681 * Returns the primary encoder for a connector. There is a 1:1 mapping from
6682 * all connectors to their encoder, except for DP-MST connectors which have
6683 * both a virtual and a primary encoder. These DP-MST primary encoders can be
6684 * pointed to by as many DP-MST connectors as there are pipes.
6685 */
6686 static struct intel_encoder *
intel_connector_primary_encoder(struct intel_connector * connector)6687 intel_connector_primary_encoder(struct intel_connector *connector)
6688 {
6689 struct intel_encoder *encoder;
6690
6691 if (connector->mst_port)
6692 return &dp_to_dig_port(connector->mst_port)->base;
6693
6694 encoder = intel_attached_encoder(connector);
6695 drm_WARN_ON(connector->base.dev, !encoder);
6696
6697 return encoder;
6698 }
6699
intel_encoders_update_prepare(struct intel_atomic_state * state)6700 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6701 {
6702 struct drm_connector_state *new_conn_state;
6703 struct drm_connector *connector;
6704 int i;
6705
6706 for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6707 i) {
6708 struct intel_connector *intel_connector;
6709 struct intel_encoder *encoder;
6710 struct intel_crtc *crtc;
6711
6712 if (!intel_connector_needs_modeset(state, connector))
6713 continue;
6714
6715 intel_connector = to_intel_connector(connector);
6716 encoder = intel_connector_primary_encoder(intel_connector);
6717 if (!encoder->update_prepare)
6718 continue;
6719
6720 crtc = new_conn_state->crtc ?
6721 to_intel_crtc(new_conn_state->crtc) : NULL;
6722 encoder->update_prepare(state, encoder, crtc);
6723 }
6724 }
6725
intel_encoders_update_complete(struct intel_atomic_state * state)6726 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6727 {
6728 struct drm_connector_state *new_conn_state;
6729 struct drm_connector *connector;
6730 int i;
6731
6732 for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6733 i) {
6734 struct intel_connector *intel_connector;
6735 struct intel_encoder *encoder;
6736 struct intel_crtc *crtc;
6737
6738 if (!intel_connector_needs_modeset(state, connector))
6739 continue;
6740
6741 intel_connector = to_intel_connector(connector);
6742 encoder = intel_connector_primary_encoder(intel_connector);
6743 if (!encoder->update_complete)
6744 continue;
6745
6746 crtc = new_conn_state->crtc ?
6747 to_intel_crtc(new_conn_state->crtc) : NULL;
6748 encoder->update_complete(state, encoder, crtc);
6749 }
6750 }
6751
intel_encoders_pre_pll_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6752 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
6753 struct intel_crtc *crtc)
6754 {
6755 const struct intel_crtc_state *crtc_state =
6756 intel_atomic_get_new_crtc_state(state, crtc);
6757 const struct drm_connector_state *conn_state;
6758 struct drm_connector *conn;
6759 int i;
6760
6761 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6762 struct intel_encoder *encoder =
6763 to_intel_encoder(conn_state->best_encoder);
6764
6765 if (conn_state->crtc != &crtc->base)
6766 continue;
6767
6768 if (encoder->pre_pll_enable)
6769 encoder->pre_pll_enable(state, encoder,
6770 crtc_state, conn_state);
6771 }
6772 }
6773
intel_encoders_pre_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6774 static void intel_encoders_pre_enable(struct intel_atomic_state *state,
6775 struct intel_crtc *crtc)
6776 {
6777 const struct intel_crtc_state *crtc_state =
6778 intel_atomic_get_new_crtc_state(state, crtc);
6779 const struct drm_connector_state *conn_state;
6780 struct drm_connector *conn;
6781 int i;
6782
6783 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6784 struct intel_encoder *encoder =
6785 to_intel_encoder(conn_state->best_encoder);
6786
6787 if (conn_state->crtc != &crtc->base)
6788 continue;
6789
6790 if (encoder->pre_enable)
6791 encoder->pre_enable(state, encoder,
6792 crtc_state, conn_state);
6793 }
6794 }
6795
intel_encoders_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6796 static void intel_encoders_enable(struct intel_atomic_state *state,
6797 struct intel_crtc *crtc)
6798 {
6799 const struct intel_crtc_state *crtc_state =
6800 intel_atomic_get_new_crtc_state(state, crtc);
6801 const struct drm_connector_state *conn_state;
6802 struct drm_connector *conn;
6803 int i;
6804
6805 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6806 struct intel_encoder *encoder =
6807 to_intel_encoder(conn_state->best_encoder);
6808
6809 if (conn_state->crtc != &crtc->base)
6810 continue;
6811
6812 if (encoder->enable)
6813 encoder->enable(state, encoder,
6814 crtc_state, conn_state);
6815 intel_opregion_notify_encoder(encoder, true);
6816 }
6817 }
6818
intel_encoders_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)6819 static void intel_encoders_disable(struct intel_atomic_state *state,
6820 struct intel_crtc *crtc)
6821 {
6822 const struct intel_crtc_state *old_crtc_state =
6823 intel_atomic_get_old_crtc_state(state, crtc);
6824 const struct drm_connector_state *old_conn_state;
6825 struct drm_connector *conn;
6826 int i;
6827
6828 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6829 struct intel_encoder *encoder =
6830 to_intel_encoder(old_conn_state->best_encoder);
6831
6832 if (old_conn_state->crtc != &crtc->base)
6833 continue;
6834
6835 intel_opregion_notify_encoder(encoder, false);
6836 if (encoder->disable)
6837 encoder->disable(state, encoder,
6838 old_crtc_state, old_conn_state);
6839 }
6840 }
6841
intel_encoders_post_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)6842 static void intel_encoders_post_disable(struct intel_atomic_state *state,
6843 struct intel_crtc *crtc)
6844 {
6845 const struct intel_crtc_state *old_crtc_state =
6846 intel_atomic_get_old_crtc_state(state, crtc);
6847 const struct drm_connector_state *old_conn_state;
6848 struct drm_connector *conn;
6849 int i;
6850
6851 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6852 struct intel_encoder *encoder =
6853 to_intel_encoder(old_conn_state->best_encoder);
6854
6855 if (old_conn_state->crtc != &crtc->base)
6856 continue;
6857
6858 if (encoder->post_disable)
6859 encoder->post_disable(state, encoder,
6860 old_crtc_state, old_conn_state);
6861 }
6862 }
6863
intel_encoders_post_pll_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)6864 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
6865 struct intel_crtc *crtc)
6866 {
6867 const struct intel_crtc_state *old_crtc_state =
6868 intel_atomic_get_old_crtc_state(state, crtc);
6869 const struct drm_connector_state *old_conn_state;
6870 struct drm_connector *conn;
6871 int i;
6872
6873 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6874 struct intel_encoder *encoder =
6875 to_intel_encoder(old_conn_state->best_encoder);
6876
6877 if (old_conn_state->crtc != &crtc->base)
6878 continue;
6879
6880 if (encoder->post_pll_disable)
6881 encoder->post_pll_disable(state, encoder,
6882 old_crtc_state, old_conn_state);
6883 }
6884 }
6885
intel_encoders_update_pipe(struct intel_atomic_state * state,struct intel_crtc * crtc)6886 static void intel_encoders_update_pipe(struct intel_atomic_state *state,
6887 struct intel_crtc *crtc)
6888 {
6889 const struct intel_crtc_state *crtc_state =
6890 intel_atomic_get_new_crtc_state(state, crtc);
6891 const struct drm_connector_state *conn_state;
6892 struct drm_connector *conn;
6893 int i;
6894
6895 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6896 struct intel_encoder *encoder =
6897 to_intel_encoder(conn_state->best_encoder);
6898
6899 if (conn_state->crtc != &crtc->base)
6900 continue;
6901
6902 if (encoder->update_pipe)
6903 encoder->update_pipe(state, encoder,
6904 crtc_state, conn_state);
6905 }
6906 }
6907
intel_disable_primary_plane(const struct intel_crtc_state * crtc_state)6908 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6909 {
6910 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6911 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6912
6913 plane->disable_plane(plane, crtc_state);
6914 }
6915
ilk_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)6916 static void ilk_crtc_enable(struct intel_atomic_state *state,
6917 struct intel_crtc *crtc)
6918 {
6919 const struct intel_crtc_state *new_crtc_state =
6920 intel_atomic_get_new_crtc_state(state, crtc);
6921 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6922 enum pipe pipe = crtc->pipe;
6923
6924 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
6925 return;
6926
6927 /*
6928 * Sometimes spurious CPU pipe underruns happen during FDI
6929 * training, at least with VGA+HDMI cloning. Suppress them.
6930 *
6931 * On ILK we get an occasional spurious CPU pipe underruns
6932 * between eDP port A enable and vdd enable. Also PCH port
6933 * enable seems to result in the occasional CPU pipe underrun.
6934 *
6935 * Spurious PCH underruns also occur during PCH enabling.
6936 */
6937 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6938 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6939
6940 if (new_crtc_state->has_pch_encoder)
6941 intel_prepare_shared_dpll(new_crtc_state);
6942
6943 if (intel_crtc_has_dp_encoder(new_crtc_state))
6944 intel_dp_set_m_n(new_crtc_state, M1_N1);
6945
6946 intel_set_pipe_timings(new_crtc_state);
6947 intel_set_pipe_src_size(new_crtc_state);
6948
6949 if (new_crtc_state->has_pch_encoder)
6950 intel_cpu_transcoder_set_m_n(new_crtc_state,
6951 &new_crtc_state->fdi_m_n, NULL);
6952
6953 ilk_set_pipeconf(new_crtc_state);
6954
6955 crtc->active = true;
6956
6957 intel_encoders_pre_enable(state, crtc);
6958
6959 if (new_crtc_state->has_pch_encoder) {
6960 /* Note: FDI PLL enabling _must_ be done before we enable the
6961 * cpu pipes, hence this is separate from all the other fdi/pch
6962 * enabling. */
6963 ilk_fdi_pll_enable(new_crtc_state);
6964 } else {
6965 assert_fdi_tx_disabled(dev_priv, pipe);
6966 assert_fdi_rx_disabled(dev_priv, pipe);
6967 }
6968
6969 ilk_pfit_enable(new_crtc_state);
6970
6971 /*
6972 * On ILK+ LUT must be loaded before the pipe is running but with
6973 * clocks enabled
6974 */
6975 intel_color_load_luts(new_crtc_state);
6976 intel_color_commit(new_crtc_state);
6977 /* update DSPCNTR to configure gamma for pipe bottom color */
6978 intel_disable_primary_plane(new_crtc_state);
6979
6980 if (dev_priv->display.initial_watermarks)
6981 dev_priv->display.initial_watermarks(state, crtc);
6982 intel_enable_pipe(new_crtc_state);
6983
6984 if (new_crtc_state->has_pch_encoder)
6985 ilk_pch_enable(state, new_crtc_state);
6986
6987 intel_crtc_vblank_on(new_crtc_state);
6988
6989 intel_encoders_enable(state, crtc);
6990
6991 if (HAS_PCH_CPT(dev_priv))
6992 cpt_verify_modeset(dev_priv, pipe);
6993
6994 /*
6995 * Must wait for vblank to avoid spurious PCH FIFO underruns.
6996 * And a second vblank wait is needed at least on ILK with
6997 * some interlaced HDMI modes. Let's do the double wait always
6998 * in case there are more corner cases we don't know about.
6999 */
7000 if (new_crtc_state->has_pch_encoder) {
7001 intel_wait_for_vblank(dev_priv, pipe);
7002 intel_wait_for_vblank(dev_priv, pipe);
7003 }
7004 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7005 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7006 }
7007
7008 /* IPS only exists on ULT machines and is tied to pipe A. */
hsw_crtc_supports_ips(struct intel_crtc * crtc)7009 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
7010 {
7011 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
7012 }
7013
glk_pipe_scaler_clock_gating_wa(struct drm_i915_private * dev_priv,enum pipe pipe,bool apply)7014 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
7015 enum pipe pipe, bool apply)
7016 {
7017 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe));
7018 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
7019
7020 if (apply)
7021 val |= mask;
7022 else
7023 val &= ~mask;
7024
7025 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val);
7026 }
7027
icl_pipe_mbus_enable(struct intel_crtc * crtc)7028 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
7029 {
7030 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7031 enum pipe pipe = crtc->pipe;
7032 u32 val;
7033
7034 val = MBUS_DBOX_A_CREDIT(2);
7035
7036 if (INTEL_GEN(dev_priv) >= 12) {
7037 val |= MBUS_DBOX_BW_CREDIT(2);
7038 val |= MBUS_DBOX_B_CREDIT(12);
7039 } else {
7040 val |= MBUS_DBOX_BW_CREDIT(1);
7041 val |= MBUS_DBOX_B_CREDIT(8);
7042 }
7043
7044 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val);
7045 }
7046
hsw_set_linetime_wm(const struct intel_crtc_state * crtc_state)7047 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state)
7048 {
7049 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7050 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7051
7052 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe),
7053 HSW_LINETIME(crtc_state->linetime) |
7054 HSW_IPS_LINETIME(crtc_state->ips_linetime));
7055 }
7056
hsw_set_frame_start_delay(const struct intel_crtc_state * crtc_state)7057 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
7058 {
7059 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7060 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7061 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
7062 u32 val;
7063
7064 val = intel_de_read(dev_priv, reg);
7065 val &= ~HSW_FRAME_START_DELAY_MASK;
7066 val |= HSW_FRAME_START_DELAY(0);
7067 intel_de_write(dev_priv, reg, val);
7068 }
7069
hsw_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)7070 static void hsw_crtc_enable(struct intel_atomic_state *state,
7071 struct intel_crtc *crtc)
7072 {
7073 const struct intel_crtc_state *new_crtc_state =
7074 intel_atomic_get_new_crtc_state(state, crtc);
7075 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7076 enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
7077 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
7078 bool psl_clkgate_wa;
7079
7080 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7081 return;
7082
7083 intel_encoders_pre_pll_enable(state, crtc);
7084
7085 if (new_crtc_state->shared_dpll)
7086 intel_enable_shared_dpll(new_crtc_state);
7087
7088 intel_encoders_pre_enable(state, crtc);
7089
7090 if (!transcoder_is_dsi(cpu_transcoder))
7091 intel_set_pipe_timings(new_crtc_state);
7092
7093 intel_set_pipe_src_size(new_crtc_state);
7094
7095 if (cpu_transcoder != TRANSCODER_EDP &&
7096 !transcoder_is_dsi(cpu_transcoder))
7097 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder),
7098 new_crtc_state->pixel_multiplier - 1);
7099
7100 if (new_crtc_state->has_pch_encoder)
7101 intel_cpu_transcoder_set_m_n(new_crtc_state,
7102 &new_crtc_state->fdi_m_n, NULL);
7103
7104 if (!transcoder_is_dsi(cpu_transcoder)) {
7105 hsw_set_frame_start_delay(new_crtc_state);
7106 hsw_set_pipeconf(new_crtc_state);
7107 }
7108
7109 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
7110 bdw_set_pipemisc(new_crtc_state);
7111
7112 crtc->active = true;
7113
7114 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
7115 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
7116 new_crtc_state->pch_pfit.enabled;
7117 if (psl_clkgate_wa)
7118 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
7119
7120 if (INTEL_GEN(dev_priv) >= 9)
7121 skl_pfit_enable(new_crtc_state);
7122 else
7123 ilk_pfit_enable(new_crtc_state);
7124
7125 /*
7126 * On ILK+ LUT must be loaded before the pipe is running but with
7127 * clocks enabled
7128 */
7129 intel_color_load_luts(new_crtc_state);
7130 intel_color_commit(new_crtc_state);
7131 /* update DSPCNTR to configure gamma/csc for pipe bottom color */
7132 if (INTEL_GEN(dev_priv) < 9)
7133 intel_disable_primary_plane(new_crtc_state);
7134
7135 hsw_set_linetime_wm(new_crtc_state);
7136
7137 if (INTEL_GEN(dev_priv) >= 11)
7138 icl_set_pipe_chicken(crtc);
7139
7140 if (dev_priv->display.initial_watermarks)
7141 dev_priv->display.initial_watermarks(state, crtc);
7142
7143 if (INTEL_GEN(dev_priv) >= 11)
7144 icl_pipe_mbus_enable(crtc);
7145
7146 intel_encoders_enable(state, crtc);
7147
7148 if (psl_clkgate_wa) {
7149 intel_wait_for_vblank(dev_priv, pipe);
7150 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
7151 }
7152
7153 /* If we change the relative order between pipe/planes enabling, we need
7154 * to change the workaround. */
7155 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
7156 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
7157 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7158 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7159 }
7160 }
7161
ilk_pfit_disable(const struct intel_crtc_state * old_crtc_state)7162 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7163 {
7164 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7165 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7166 enum pipe pipe = crtc->pipe;
7167
7168 /* To avoid upsetting the power well on haswell only disable the pfit if
7169 * it's in use. The hw state code will make sure we get this right. */
7170 if (!old_crtc_state->pch_pfit.enabled)
7171 return;
7172
7173 intel_de_write(dev_priv, PF_CTL(pipe), 0);
7174 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0);
7175 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0);
7176 }
7177
ilk_crtc_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)7178 static void ilk_crtc_disable(struct intel_atomic_state *state,
7179 struct intel_crtc *crtc)
7180 {
7181 const struct intel_crtc_state *old_crtc_state =
7182 intel_atomic_get_old_crtc_state(state, crtc);
7183 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7184 enum pipe pipe = crtc->pipe;
7185
7186 /*
7187 * Sometimes spurious CPU pipe underruns happen when the
7188 * pipe is already disabled, but FDI RX/TX is still enabled.
7189 * Happens at least with VGA+HDMI cloning. Suppress them.
7190 */
7191 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7192 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
7193
7194 intel_encoders_disable(state, crtc);
7195
7196 intel_crtc_vblank_off(old_crtc_state);
7197
7198 intel_disable_pipe(old_crtc_state);
7199
7200 ilk_pfit_disable(old_crtc_state);
7201
7202 if (old_crtc_state->has_pch_encoder)
7203 ilk_fdi_disable(crtc);
7204
7205 intel_encoders_post_disable(state, crtc);
7206
7207 if (old_crtc_state->has_pch_encoder) {
7208 ilk_disable_pch_transcoder(dev_priv, pipe);
7209
7210 if (HAS_PCH_CPT(dev_priv)) {
7211 i915_reg_t reg;
7212 u32 temp;
7213
7214 /* disable TRANS_DP_CTL */
7215 reg = TRANS_DP_CTL(pipe);
7216 temp = intel_de_read(dev_priv, reg);
7217 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
7218 TRANS_DP_PORT_SEL_MASK);
7219 temp |= TRANS_DP_PORT_SEL_NONE;
7220 intel_de_write(dev_priv, reg, temp);
7221
7222 /* disable DPLL_SEL */
7223 temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
7224 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
7225 intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
7226 }
7227
7228 ilk_fdi_pll_disable(crtc);
7229 }
7230
7231 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7232 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7233 }
7234
hsw_crtc_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)7235 static void hsw_crtc_disable(struct intel_atomic_state *state,
7236 struct intel_crtc *crtc)
7237 {
7238 /*
7239 * FIXME collapse everything to one hook.
7240 * Need care with mst->ddi interactions.
7241 */
7242 intel_encoders_disable(state, crtc);
7243 intel_encoders_post_disable(state, crtc);
7244 }
7245
i9xx_pfit_enable(const struct intel_crtc_state * crtc_state)7246 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
7247 {
7248 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7249 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7250
7251 if (!crtc_state->gmch_pfit.control)
7252 return;
7253
7254 /*
7255 * The panel fitter should only be adjusted whilst the pipe is disabled,
7256 * according to register description and PRM.
7257 */
7258 drm_WARN_ON(&dev_priv->drm,
7259 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE);
7260 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
7261
7262 intel_de_write(dev_priv, PFIT_PGM_RATIOS,
7263 crtc_state->gmch_pfit.pgm_ratios);
7264 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control);
7265
7266 /* Border color in case we don't scale up to the full screen. Black by
7267 * default, change to something else for debugging. */
7268 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0);
7269 }
7270
intel_phy_is_combo(struct drm_i915_private * dev_priv,enum phy phy)7271 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
7272 {
7273 if (phy == PHY_NONE)
7274 return false;
7275 else if (IS_ROCKETLAKE(dev_priv))
7276 return phy <= PHY_D;
7277 else if (IS_ELKHARTLAKE(dev_priv))
7278 return phy <= PHY_C;
7279 else if (INTEL_GEN(dev_priv) >= 11)
7280 return phy <= PHY_B;
7281 else
7282 return false;
7283 }
7284
intel_phy_is_tc(struct drm_i915_private * dev_priv,enum phy phy)7285 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
7286 {
7287 if (IS_ROCKETLAKE(dev_priv))
7288 return false;
7289 else if (INTEL_GEN(dev_priv) >= 12)
7290 return phy >= PHY_D && phy <= PHY_I;
7291 else if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
7292 return phy >= PHY_C && phy <= PHY_F;
7293 else
7294 return false;
7295 }
7296
intel_port_to_phy(struct drm_i915_private * i915,enum port port)7297 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
7298 {
7299 if (IS_ROCKETLAKE(i915) && port >= PORT_D)
7300 return (enum phy)port - 1;
7301 else if (IS_ELKHARTLAKE(i915) && port == PORT_D)
7302 return PHY_A;
7303
7304 return (enum phy)port;
7305 }
7306
intel_port_to_tc(struct drm_i915_private * dev_priv,enum port port)7307 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
7308 {
7309 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
7310 return PORT_TC_NONE;
7311
7312 if (INTEL_GEN(dev_priv) >= 12)
7313 return port - PORT_D;
7314
7315 return port - PORT_C;
7316 }
7317
intel_port_to_power_domain(enum port port)7318 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
7319 {
7320 switch (port) {
7321 case PORT_A:
7322 return POWER_DOMAIN_PORT_DDI_A_LANES;
7323 case PORT_B:
7324 return POWER_DOMAIN_PORT_DDI_B_LANES;
7325 case PORT_C:
7326 return POWER_DOMAIN_PORT_DDI_C_LANES;
7327 case PORT_D:
7328 return POWER_DOMAIN_PORT_DDI_D_LANES;
7329 case PORT_E:
7330 return POWER_DOMAIN_PORT_DDI_E_LANES;
7331 case PORT_F:
7332 return POWER_DOMAIN_PORT_DDI_F_LANES;
7333 case PORT_G:
7334 return POWER_DOMAIN_PORT_DDI_G_LANES;
7335 case PORT_H:
7336 return POWER_DOMAIN_PORT_DDI_H_LANES;
7337 case PORT_I:
7338 return POWER_DOMAIN_PORT_DDI_I_LANES;
7339 default:
7340 MISSING_CASE(port);
7341 return POWER_DOMAIN_PORT_OTHER;
7342 }
7343 }
7344
7345 enum intel_display_power_domain
intel_aux_power_domain(struct intel_digital_port * dig_port)7346 intel_aux_power_domain(struct intel_digital_port *dig_port)
7347 {
7348 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
7349 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
7350
7351 if (intel_phy_is_tc(dev_priv, phy) &&
7352 dig_port->tc_mode == TC_PORT_TBT_ALT) {
7353 switch (dig_port->aux_ch) {
7354 case AUX_CH_C:
7355 return POWER_DOMAIN_AUX_C_TBT;
7356 case AUX_CH_D:
7357 return POWER_DOMAIN_AUX_D_TBT;
7358 case AUX_CH_E:
7359 return POWER_DOMAIN_AUX_E_TBT;
7360 case AUX_CH_F:
7361 return POWER_DOMAIN_AUX_F_TBT;
7362 case AUX_CH_G:
7363 return POWER_DOMAIN_AUX_G_TBT;
7364 case AUX_CH_H:
7365 return POWER_DOMAIN_AUX_H_TBT;
7366 case AUX_CH_I:
7367 return POWER_DOMAIN_AUX_I_TBT;
7368 default:
7369 MISSING_CASE(dig_port->aux_ch);
7370 return POWER_DOMAIN_AUX_C_TBT;
7371 }
7372 }
7373
7374 return intel_legacy_aux_to_power_domain(dig_port->aux_ch);
7375 }
7376
7377 /*
7378 * Converts aux_ch to power_domain without caring about TBT ports for that use
7379 * intel_aux_power_domain()
7380 */
7381 enum intel_display_power_domain
intel_legacy_aux_to_power_domain(enum aux_ch aux_ch)7382 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch)
7383 {
7384 switch (aux_ch) {
7385 case AUX_CH_A:
7386 return POWER_DOMAIN_AUX_A;
7387 case AUX_CH_B:
7388 return POWER_DOMAIN_AUX_B;
7389 case AUX_CH_C:
7390 return POWER_DOMAIN_AUX_C;
7391 case AUX_CH_D:
7392 return POWER_DOMAIN_AUX_D;
7393 case AUX_CH_E:
7394 return POWER_DOMAIN_AUX_E;
7395 case AUX_CH_F:
7396 return POWER_DOMAIN_AUX_F;
7397 case AUX_CH_G:
7398 return POWER_DOMAIN_AUX_G;
7399 case AUX_CH_H:
7400 return POWER_DOMAIN_AUX_H;
7401 case AUX_CH_I:
7402 return POWER_DOMAIN_AUX_I;
7403 default:
7404 MISSING_CASE(aux_ch);
7405 return POWER_DOMAIN_AUX_A;
7406 }
7407 }
7408
get_crtc_power_domains(struct intel_crtc_state * crtc_state)7409 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7410 {
7411 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7412 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7413 struct drm_encoder *encoder;
7414 enum pipe pipe = crtc->pipe;
7415 u64 mask;
7416 enum transcoder transcoder = crtc_state->cpu_transcoder;
7417
7418 if (!crtc_state->hw.active)
7419 return 0;
7420
7421 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
7422 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
7423 if (crtc_state->pch_pfit.enabled ||
7424 crtc_state->pch_pfit.force_thru)
7425 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
7426
7427 drm_for_each_encoder_mask(encoder, &dev_priv->drm,
7428 crtc_state->uapi.encoder_mask) {
7429 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7430
7431 mask |= BIT_ULL(intel_encoder->power_domain);
7432 }
7433
7434 if (HAS_DDI(dev_priv) && crtc_state->has_audio)
7435 mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
7436
7437 if (crtc_state->shared_dpll)
7438 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
7439
7440 return mask;
7441 }
7442
7443 static u64
modeset_get_crtc_power_domains(struct intel_crtc_state * crtc_state)7444 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7445 {
7446 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7447 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7448 enum intel_display_power_domain domain;
7449 u64 domains, new_domains, old_domains;
7450
7451 old_domains = crtc->enabled_power_domains;
7452 crtc->enabled_power_domains = new_domains =
7453 get_crtc_power_domains(crtc_state);
7454
7455 domains = new_domains & ~old_domains;
7456
7457 for_each_power_domain(domain, domains)
7458 intel_display_power_get(dev_priv, domain);
7459
7460 return old_domains & ~new_domains;
7461 }
7462
modeset_put_power_domains(struct drm_i915_private * dev_priv,u64 domains)7463 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
7464 u64 domains)
7465 {
7466 enum intel_display_power_domain domain;
7467
7468 for_each_power_domain(domain, domains)
7469 intel_display_power_put_unchecked(dev_priv, domain);
7470 }
7471
valleyview_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)7472 static void valleyview_crtc_enable(struct intel_atomic_state *state,
7473 struct intel_crtc *crtc)
7474 {
7475 const struct intel_crtc_state *new_crtc_state =
7476 intel_atomic_get_new_crtc_state(state, crtc);
7477 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7478 enum pipe pipe = crtc->pipe;
7479
7480 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7481 return;
7482
7483 if (intel_crtc_has_dp_encoder(new_crtc_state))
7484 intel_dp_set_m_n(new_crtc_state, M1_N1);
7485
7486 intel_set_pipe_timings(new_crtc_state);
7487 intel_set_pipe_src_size(new_crtc_state);
7488
7489 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
7490 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY);
7491 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0);
7492 }
7493
7494 i9xx_set_pipeconf(new_crtc_state);
7495
7496 crtc->active = true;
7497
7498 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7499
7500 intel_encoders_pre_pll_enable(state, crtc);
7501
7502 if (IS_CHERRYVIEW(dev_priv)) {
7503 chv_prepare_pll(crtc, new_crtc_state);
7504 chv_enable_pll(crtc, new_crtc_state);
7505 } else {
7506 vlv_prepare_pll(crtc, new_crtc_state);
7507 vlv_enable_pll(crtc, new_crtc_state);
7508 }
7509
7510 intel_encoders_pre_enable(state, crtc);
7511
7512 i9xx_pfit_enable(new_crtc_state);
7513
7514 intel_color_load_luts(new_crtc_state);
7515 intel_color_commit(new_crtc_state);
7516 /* update DSPCNTR to configure gamma for pipe bottom color */
7517 intel_disable_primary_plane(new_crtc_state);
7518
7519 dev_priv->display.initial_watermarks(state, crtc);
7520 intel_enable_pipe(new_crtc_state);
7521
7522 intel_crtc_vblank_on(new_crtc_state);
7523
7524 intel_encoders_enable(state, crtc);
7525 }
7526
i9xx_set_pll_dividers(const struct intel_crtc_state * crtc_state)7527 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7528 {
7529 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7530 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7531
7532 intel_de_write(dev_priv, FP0(crtc->pipe),
7533 crtc_state->dpll_hw_state.fp0);
7534 intel_de_write(dev_priv, FP1(crtc->pipe),
7535 crtc_state->dpll_hw_state.fp1);
7536 }
7537
i9xx_crtc_enable(struct intel_atomic_state * state,struct intel_crtc * crtc)7538 static void i9xx_crtc_enable(struct intel_atomic_state *state,
7539 struct intel_crtc *crtc)
7540 {
7541 const struct intel_crtc_state *new_crtc_state =
7542 intel_atomic_get_new_crtc_state(state, crtc);
7543 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7544 enum pipe pipe = crtc->pipe;
7545
7546 if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7547 return;
7548
7549 i9xx_set_pll_dividers(new_crtc_state);
7550
7551 if (intel_crtc_has_dp_encoder(new_crtc_state))
7552 intel_dp_set_m_n(new_crtc_state, M1_N1);
7553
7554 intel_set_pipe_timings(new_crtc_state);
7555 intel_set_pipe_src_size(new_crtc_state);
7556
7557 i9xx_set_pipeconf(new_crtc_state);
7558
7559 crtc->active = true;
7560
7561 if (!IS_GEN(dev_priv, 2))
7562 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7563
7564 intel_encoders_pre_enable(state, crtc);
7565
7566 i9xx_enable_pll(crtc, new_crtc_state);
7567
7568 i9xx_pfit_enable(new_crtc_state);
7569
7570 intel_color_load_luts(new_crtc_state);
7571 intel_color_commit(new_crtc_state);
7572 /* update DSPCNTR to configure gamma for pipe bottom color */
7573 intel_disable_primary_plane(new_crtc_state);
7574
7575 if (dev_priv->display.initial_watermarks)
7576 dev_priv->display.initial_watermarks(state, crtc);
7577 else
7578 intel_update_watermarks(crtc);
7579 intel_enable_pipe(new_crtc_state);
7580
7581 intel_crtc_vblank_on(new_crtc_state);
7582
7583 intel_encoders_enable(state, crtc);
7584
7585 /* prevents spurious underruns */
7586 if (IS_GEN(dev_priv, 2))
7587 intel_wait_for_vblank(dev_priv, pipe);
7588 }
7589
i9xx_pfit_disable(const struct intel_crtc_state * old_crtc_state)7590 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7591 {
7592 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7593 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7594
7595 if (!old_crtc_state->gmch_pfit.control)
7596 return;
7597
7598 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
7599
7600 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n",
7601 intel_de_read(dev_priv, PFIT_CONTROL));
7602 intel_de_write(dev_priv, PFIT_CONTROL, 0);
7603 }
7604
i9xx_crtc_disable(struct intel_atomic_state * state,struct intel_crtc * crtc)7605 static void i9xx_crtc_disable(struct intel_atomic_state *state,
7606 struct intel_crtc *crtc)
7607 {
7608 struct intel_crtc_state *old_crtc_state =
7609 intel_atomic_get_old_crtc_state(state, crtc);
7610 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7611 enum pipe pipe = crtc->pipe;
7612
7613 /*
7614 * On gen2 planes are double buffered but the pipe isn't, so we must
7615 * wait for planes to fully turn off before disabling the pipe.
7616 */
7617 if (IS_GEN(dev_priv, 2))
7618 intel_wait_for_vblank(dev_priv, pipe);
7619
7620 intel_encoders_disable(state, crtc);
7621
7622 intel_crtc_vblank_off(old_crtc_state);
7623
7624 intel_disable_pipe(old_crtc_state);
7625
7626 i9xx_pfit_disable(old_crtc_state);
7627
7628 intel_encoders_post_disable(state, crtc);
7629
7630 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7631 if (IS_CHERRYVIEW(dev_priv))
7632 chv_disable_pll(dev_priv, pipe);
7633 else if (IS_VALLEYVIEW(dev_priv))
7634 vlv_disable_pll(dev_priv, pipe);
7635 else
7636 i9xx_disable_pll(old_crtc_state);
7637 }
7638
7639 intel_encoders_post_pll_disable(state, crtc);
7640
7641 if (!IS_GEN(dev_priv, 2))
7642 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7643
7644 if (!dev_priv->display.initial_watermarks)
7645 intel_update_watermarks(crtc);
7646
7647 /* clock the pipe down to 640x480@60 to potentially save power */
7648 if (IS_I830(dev_priv))
7649 i830_enable_pipe(dev_priv, pipe);
7650 }
7651
intel_crtc_disable_noatomic(struct intel_crtc * crtc,struct drm_modeset_acquire_ctx * ctx)7652 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc,
7653 struct drm_modeset_acquire_ctx *ctx)
7654 {
7655 struct intel_encoder *encoder;
7656 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7657 struct intel_bw_state *bw_state =
7658 to_intel_bw_state(dev_priv->bw_obj.state);
7659 struct intel_cdclk_state *cdclk_state =
7660 to_intel_cdclk_state(dev_priv->cdclk.obj.state);
7661 struct intel_dbuf_state *dbuf_state =
7662 to_intel_dbuf_state(dev_priv->dbuf.obj.state);
7663 struct intel_crtc_state *crtc_state =
7664 to_intel_crtc_state(crtc->base.state);
7665 enum intel_display_power_domain domain;
7666 struct intel_plane *plane;
7667 struct drm_atomic_state *state;
7668 struct intel_crtc_state *temp_crtc_state;
7669 enum pipe pipe = crtc->pipe;
7670 u64 domains;
7671 int ret;
7672
7673 if (!crtc_state->hw.active)
7674 return;
7675
7676 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
7677 const struct intel_plane_state *plane_state =
7678 to_intel_plane_state(plane->base.state);
7679
7680 if (plane_state->uapi.visible)
7681 intel_plane_disable_noatomic(crtc, plane);
7682 }
7683
7684 state = drm_atomic_state_alloc(&dev_priv->drm);
7685 if (!state) {
7686 drm_dbg_kms(&dev_priv->drm,
7687 "failed to disable [CRTC:%d:%s], out of memory",
7688 crtc->base.base.id, crtc->base.name);
7689 return;
7690 }
7691
7692 state->acquire_ctx = ctx;
7693
7694 /* Everything's already locked, -EDEADLK can't happen. */
7695 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc);
7696 ret = drm_atomic_add_affected_connectors(state, &crtc->base);
7697
7698 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret);
7699
7700 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc);
7701
7702 drm_atomic_state_put(state);
7703
7704 drm_dbg_kms(&dev_priv->drm,
7705 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7706 crtc->base.base.id, crtc->base.name);
7707
7708 crtc->active = false;
7709 crtc->base.enabled = false;
7710
7711 drm_WARN_ON(&dev_priv->drm,
7712 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0);
7713 crtc_state->uapi.active = false;
7714 crtc_state->uapi.connector_mask = 0;
7715 crtc_state->uapi.encoder_mask = 0;
7716 intel_crtc_free_hw_state(crtc_state);
7717 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw));
7718
7719 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder)
7720 encoder->base.crtc = NULL;
7721
7722 intel_fbc_disable(crtc);
7723 intel_update_watermarks(crtc);
7724 intel_disable_shared_dpll(crtc_state);
7725
7726 domains = crtc->enabled_power_domains;
7727 for_each_power_domain(domain, domains)
7728 intel_display_power_put_unchecked(dev_priv, domain);
7729 crtc->enabled_power_domains = 0;
7730
7731 dev_priv->active_pipes &= ~BIT(pipe);
7732 cdclk_state->min_cdclk[pipe] = 0;
7733 cdclk_state->min_voltage_level[pipe] = 0;
7734 cdclk_state->active_pipes &= ~BIT(pipe);
7735
7736 dbuf_state->active_pipes &= ~BIT(pipe);
7737
7738 bw_state->data_rate[pipe] = 0;
7739 bw_state->num_active_planes[pipe] = 0;
7740 }
7741
7742 /*
7743 * turn all crtc's off, but do not adjust state
7744 * This has to be paired with a call to intel_modeset_setup_hw_state.
7745 */
intel_display_suspend(struct drm_device * dev)7746 int intel_display_suspend(struct drm_device *dev)
7747 {
7748 struct drm_i915_private *dev_priv = to_i915(dev);
7749 struct drm_atomic_state *state;
7750 int ret;
7751
7752 state = drm_atomic_helper_suspend(dev);
7753 ret = PTR_ERR_OR_ZERO(state);
7754 if (ret)
7755 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
7756 ret);
7757 else
7758 dev_priv->modeset_restore_state = state;
7759 return ret;
7760 }
7761
intel_encoder_destroy(struct drm_encoder * encoder)7762 void intel_encoder_destroy(struct drm_encoder *encoder)
7763 {
7764 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7765
7766 drm_encoder_cleanup(encoder);
7767 kfree(intel_encoder);
7768 }
7769
7770 /* Cross check the actual hw state with our own modeset state tracking (and it's
7771 * internal consistency). */
intel_connector_verify_state(struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)7772 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7773 struct drm_connector_state *conn_state)
7774 {
7775 struct intel_connector *connector = to_intel_connector(conn_state->connector);
7776 struct drm_i915_private *i915 = to_i915(connector->base.dev);
7777
7778 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
7779 connector->base.base.id, connector->base.name);
7780
7781 if (connector->get_hw_state(connector)) {
7782 struct intel_encoder *encoder = intel_attached_encoder(connector);
7783
7784 I915_STATE_WARN(!crtc_state,
7785 "connector enabled without attached crtc\n");
7786
7787 if (!crtc_state)
7788 return;
7789
7790 I915_STATE_WARN(!crtc_state->hw.active,
7791 "connector is active, but attached crtc isn't\n");
7792
7793 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7794 return;
7795
7796 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7797 "atomic encoder doesn't match attached encoder\n");
7798
7799 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7800 "attached encoder crtc differs from connector crtc\n");
7801 } else {
7802 I915_STATE_WARN(crtc_state && crtc_state->hw.active,
7803 "attached crtc is active, but connector isn't\n");
7804 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7805 "best encoder set without crtc!\n");
7806 }
7807 }
7808
pipe_required_fdi_lanes(struct intel_crtc_state * crtc_state)7809 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7810 {
7811 if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
7812 return crtc_state->fdi_lanes;
7813
7814 return 0;
7815 }
7816
ilk_check_fdi_lanes(struct drm_device * dev,enum pipe pipe,struct intel_crtc_state * pipe_config)7817 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7818 struct intel_crtc_state *pipe_config)
7819 {
7820 struct drm_i915_private *dev_priv = to_i915(dev);
7821 struct drm_atomic_state *state = pipe_config->uapi.state;
7822 struct intel_crtc *other_crtc;
7823 struct intel_crtc_state *other_crtc_state;
7824
7825 drm_dbg_kms(&dev_priv->drm,
7826 "checking fdi config on pipe %c, lanes %i\n",
7827 pipe_name(pipe), pipe_config->fdi_lanes);
7828 if (pipe_config->fdi_lanes > 4) {
7829 drm_dbg_kms(&dev_priv->drm,
7830 "invalid fdi lane config on pipe %c: %i lanes\n",
7831 pipe_name(pipe), pipe_config->fdi_lanes);
7832 return -EINVAL;
7833 }
7834
7835 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7836 if (pipe_config->fdi_lanes > 2) {
7837 drm_dbg_kms(&dev_priv->drm,
7838 "only 2 lanes on haswell, required: %i lanes\n",
7839 pipe_config->fdi_lanes);
7840 return -EINVAL;
7841 } else {
7842 return 0;
7843 }
7844 }
7845
7846 if (INTEL_NUM_PIPES(dev_priv) == 2)
7847 return 0;
7848
7849 /* Ivybridge 3 pipe is really complicated */
7850 switch (pipe) {
7851 case PIPE_A:
7852 return 0;
7853 case PIPE_B:
7854 if (pipe_config->fdi_lanes <= 2)
7855 return 0;
7856
7857 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7858 other_crtc_state =
7859 intel_atomic_get_crtc_state(state, other_crtc);
7860 if (IS_ERR(other_crtc_state))
7861 return PTR_ERR(other_crtc_state);
7862
7863 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7864 drm_dbg_kms(&dev_priv->drm,
7865 "invalid shared fdi lane config on pipe %c: %i lanes\n",
7866 pipe_name(pipe), pipe_config->fdi_lanes);
7867 return -EINVAL;
7868 }
7869 return 0;
7870 case PIPE_C:
7871 if (pipe_config->fdi_lanes > 2) {
7872 drm_dbg_kms(&dev_priv->drm,
7873 "only 2 lanes on pipe %c: required %i lanes\n",
7874 pipe_name(pipe), pipe_config->fdi_lanes);
7875 return -EINVAL;
7876 }
7877
7878 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7879 other_crtc_state =
7880 intel_atomic_get_crtc_state(state, other_crtc);
7881 if (IS_ERR(other_crtc_state))
7882 return PTR_ERR(other_crtc_state);
7883
7884 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7885 drm_dbg_kms(&dev_priv->drm,
7886 "fdi link B uses too many lanes to enable link C\n");
7887 return -EINVAL;
7888 }
7889 return 0;
7890 default:
7891 BUG();
7892 }
7893 }
7894
7895 #define RETRY 1
ilk_fdi_compute_config(struct intel_crtc * intel_crtc,struct intel_crtc_state * pipe_config)7896 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc,
7897 struct intel_crtc_state *pipe_config)
7898 {
7899 struct drm_device *dev = intel_crtc->base.dev;
7900 struct drm_i915_private *i915 = to_i915(dev);
7901 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7902 int lane, link_bw, fdi_dotclock, ret;
7903 bool needs_recompute = false;
7904
7905 retry:
7906 /* FDI is a binary signal running at ~2.7GHz, encoding
7907 * each output octet as 10 bits. The actual frequency
7908 * is stored as a divider into a 100MHz clock, and the
7909 * mode pixel clock is stored in units of 1KHz.
7910 * Hence the bw of each lane in terms of the mode signal
7911 * is:
7912 */
7913 link_bw = intel_fdi_link_freq(i915, pipe_config);
7914
7915 fdi_dotclock = adjusted_mode->crtc_clock;
7916
7917 lane = ilk_get_lanes_required(fdi_dotclock, link_bw,
7918 pipe_config->pipe_bpp);
7919
7920 pipe_config->fdi_lanes = lane;
7921
7922 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7923 link_bw, &pipe_config->fdi_m_n, false, false);
7924
7925 ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7926 if (ret == -EDEADLK)
7927 return ret;
7928
7929 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7930 pipe_config->pipe_bpp -= 2*3;
7931 drm_dbg_kms(&i915->drm,
7932 "fdi link bw constraint, reducing pipe bpp to %i\n",
7933 pipe_config->pipe_bpp);
7934 needs_recompute = true;
7935 pipe_config->bw_constrained = true;
7936
7937 goto retry;
7938 }
7939
7940 if (needs_recompute)
7941 return RETRY;
7942
7943 return ret;
7944 }
7945
hsw_crtc_state_ips_capable(const struct intel_crtc_state * crtc_state)7946 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7947 {
7948 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7949 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7950
7951 /* IPS only exists on ULT machines and is tied to pipe A. */
7952 if (!hsw_crtc_supports_ips(crtc))
7953 return false;
7954
7955 if (!dev_priv->params.enable_ips)
7956 return false;
7957
7958 if (crtc_state->pipe_bpp > 24)
7959 return false;
7960
7961 /*
7962 * We compare against max which means we must take
7963 * the increased cdclk requirement into account when
7964 * calculating the new cdclk.
7965 *
7966 * Should measure whether using a lower cdclk w/o IPS
7967 */
7968 if (IS_BROADWELL(dev_priv) &&
7969 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7970 return false;
7971
7972 return true;
7973 }
7974
hsw_compute_ips_config(struct intel_crtc_state * crtc_state)7975 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7976 {
7977 struct drm_i915_private *dev_priv =
7978 to_i915(crtc_state->uapi.crtc->dev);
7979 struct intel_atomic_state *state =
7980 to_intel_atomic_state(crtc_state->uapi.state);
7981
7982 crtc_state->ips_enabled = false;
7983
7984 if (!hsw_crtc_state_ips_capable(crtc_state))
7985 return 0;
7986
7987 /*
7988 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7989 * enabled and disabled dynamically based on package C states,
7990 * user space can't make reliable use of the CRCs, so let's just
7991 * completely disable it.
7992 */
7993 if (crtc_state->crc_enabled)
7994 return 0;
7995
7996 /* IPS should be fine as long as at least one plane is enabled. */
7997 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7998 return 0;
7999
8000 if (IS_BROADWELL(dev_priv)) {
8001 const struct intel_cdclk_state *cdclk_state;
8002
8003 cdclk_state = intel_atomic_get_cdclk_state(state);
8004 if (IS_ERR(cdclk_state))
8005 return PTR_ERR(cdclk_state);
8006
8007 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
8008 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100)
8009 return 0;
8010 }
8011
8012 crtc_state->ips_enabled = true;
8013
8014 return 0;
8015 }
8016
intel_crtc_supports_double_wide(const struct intel_crtc * crtc)8017 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
8018 {
8019 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8020
8021 /* GDG double wide on either pipe, otherwise pipe A only */
8022 return INTEL_GEN(dev_priv) < 4 &&
8023 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
8024 }
8025
ilk_pipe_pixel_rate(const struct intel_crtc_state * crtc_state)8026 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state)
8027 {
8028 u32 pixel_rate = crtc_state->hw.adjusted_mode.crtc_clock;
8029 unsigned int pipe_w, pipe_h, pfit_w, pfit_h;
8030
8031 /*
8032 * We only use IF-ID interlacing. If we ever use
8033 * PF-ID we'll need to adjust the pixel_rate here.
8034 */
8035
8036 if (!crtc_state->pch_pfit.enabled)
8037 return pixel_rate;
8038
8039 pipe_w = crtc_state->pipe_src_w;
8040 pipe_h = crtc_state->pipe_src_h;
8041
8042 pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst);
8043 pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst);
8044
8045 if (pipe_w < pfit_w)
8046 pipe_w = pfit_w;
8047 if (pipe_h < pfit_h)
8048 pipe_h = pfit_h;
8049
8050 if (drm_WARN_ON(crtc_state->uapi.crtc->dev,
8051 !pfit_w || !pfit_h))
8052 return pixel_rate;
8053
8054 return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
8055 pfit_w * pfit_h);
8056 }
8057
intel_crtc_compute_pixel_rate(struct intel_crtc_state * crtc_state)8058 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
8059 {
8060 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8061
8062 if (HAS_GMCH(dev_priv))
8063 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
8064 crtc_state->pixel_rate =
8065 crtc_state->hw.adjusted_mode.crtc_clock;
8066 else
8067 crtc_state->pixel_rate =
8068 ilk_pipe_pixel_rate(crtc_state);
8069 }
8070
intel_crtc_compute_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8071 static int intel_crtc_compute_config(struct intel_crtc *crtc,
8072 struct intel_crtc_state *pipe_config)
8073 {
8074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8075 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
8076 int clock_limit = dev_priv->max_dotclk_freq;
8077
8078 if (INTEL_GEN(dev_priv) < 4) {
8079 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
8080
8081 /*
8082 * Enable double wide mode when the dot clock
8083 * is > 90% of the (display) core speed.
8084 */
8085 if (intel_crtc_supports_double_wide(crtc) &&
8086 adjusted_mode->crtc_clock > clock_limit) {
8087 clock_limit = dev_priv->max_dotclk_freq;
8088 pipe_config->double_wide = true;
8089 }
8090 }
8091
8092 if (adjusted_mode->crtc_clock > clock_limit) {
8093 drm_dbg_kms(&dev_priv->drm,
8094 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
8095 adjusted_mode->crtc_clock, clock_limit,
8096 yesno(pipe_config->double_wide));
8097 return -EINVAL;
8098 }
8099
8100 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
8101 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
8102 pipe_config->hw.ctm) {
8103 /*
8104 * There is only one pipe CSC unit per pipe, and we need that
8105 * for output conversion from RGB->YCBCR. So if CTM is already
8106 * applied we can't support YCBCR420 output.
8107 */
8108 drm_dbg_kms(&dev_priv->drm,
8109 "YCBCR420 and CTM together are not possible\n");
8110 return -EINVAL;
8111 }
8112
8113 /*
8114 * Pipe horizontal size must be even in:
8115 * - DVO ganged mode
8116 * - LVDS dual channel mode
8117 * - Double wide pipe
8118 */
8119 if (pipe_config->pipe_src_w & 1) {
8120 if (pipe_config->double_wide) {
8121 drm_dbg_kms(&dev_priv->drm,
8122 "Odd pipe source width not supported with double wide pipe\n");
8123 return -EINVAL;
8124 }
8125
8126 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
8127 intel_is_dual_link_lvds(dev_priv)) {
8128 drm_dbg_kms(&dev_priv->drm,
8129 "Odd pipe source width not supported with dual link LVDS\n");
8130 return -EINVAL;
8131 }
8132 }
8133
8134 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
8135 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
8136 */
8137 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
8138 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
8139 return -EINVAL;
8140
8141 intel_crtc_compute_pixel_rate(pipe_config);
8142
8143 if (pipe_config->has_pch_encoder)
8144 return ilk_fdi_compute_config(crtc, pipe_config);
8145
8146 return 0;
8147 }
8148
8149 static void
intel_reduce_m_n_ratio(u32 * num,u32 * den)8150 intel_reduce_m_n_ratio(u32 *num, u32 *den)
8151 {
8152 while (*num > DATA_LINK_M_N_MASK ||
8153 *den > DATA_LINK_M_N_MASK) {
8154 *num >>= 1;
8155 *den >>= 1;
8156 }
8157 }
8158
compute_m_n(unsigned int m,unsigned int n,u32 * ret_m,u32 * ret_n,bool constant_n)8159 static void compute_m_n(unsigned int m, unsigned int n,
8160 u32 *ret_m, u32 *ret_n,
8161 bool constant_n)
8162 {
8163 /*
8164 * Several DP dongles in particular seem to be fussy about
8165 * too large link M/N values. Give N value as 0x8000 that
8166 * should be acceptable by specific devices. 0x8000 is the
8167 * specified fixed N value for asynchronous clock mode,
8168 * which the devices expect also in synchronous clock mode.
8169 */
8170 if (constant_n)
8171 *ret_n = DP_LINK_CONSTANT_N_VALUE;
8172 else
8173 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
8174
8175 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
8176 intel_reduce_m_n_ratio(ret_m, ret_n);
8177 }
8178
8179 void
intel_link_compute_m_n(u16 bits_per_pixel,int nlanes,int pixel_clock,int link_clock,struct intel_link_m_n * m_n,bool constant_n,bool fec_enable)8180 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
8181 int pixel_clock, int link_clock,
8182 struct intel_link_m_n *m_n,
8183 bool constant_n, bool fec_enable)
8184 {
8185 u32 data_clock = bits_per_pixel * pixel_clock;
8186
8187 if (fec_enable)
8188 data_clock = intel_dp_mode_to_fec_clock(data_clock);
8189
8190 m_n->tu = 64;
8191 compute_m_n(data_clock,
8192 link_clock * nlanes * 8,
8193 &m_n->gmch_m, &m_n->gmch_n,
8194 constant_n);
8195
8196 compute_m_n(pixel_clock, link_clock,
8197 &m_n->link_m, &m_n->link_n,
8198 constant_n);
8199 }
8200
intel_panel_sanitize_ssc(struct drm_i915_private * dev_priv)8201 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
8202 {
8203 /*
8204 * There may be no VBT; and if the BIOS enabled SSC we can
8205 * just keep using it to avoid unnecessary flicker. Whereas if the
8206 * BIOS isn't using it, don't assume it will work even if the VBT
8207 * indicates as much.
8208 */
8209 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
8210 bool bios_lvds_use_ssc = intel_de_read(dev_priv,
8211 PCH_DREF_CONTROL) &
8212 DREF_SSC1_ENABLE;
8213
8214 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
8215 drm_dbg_kms(&dev_priv->drm,
8216 "SSC %s by BIOS, overriding VBT which says %s\n",
8217 enableddisabled(bios_lvds_use_ssc),
8218 enableddisabled(dev_priv->vbt.lvds_use_ssc));
8219 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
8220 }
8221 }
8222 }
8223
intel_panel_use_ssc(struct drm_i915_private * dev_priv)8224 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
8225 {
8226 if (dev_priv->params.panel_use_ssc >= 0)
8227 return dev_priv->params.panel_use_ssc != 0;
8228 return dev_priv->vbt.lvds_use_ssc
8229 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
8230 }
8231
pnv_dpll_compute_fp(struct dpll * dpll)8232 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
8233 {
8234 return (1 << dpll->n) << 16 | dpll->m2;
8235 }
8236
i9xx_dpll_compute_fp(struct dpll * dpll)8237 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
8238 {
8239 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
8240 }
8241
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8242 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
8243 struct intel_crtc_state *crtc_state,
8244 struct dpll *reduced_clock)
8245 {
8246 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8247 u32 fp, fp2 = 0;
8248
8249 if (IS_PINEVIEW(dev_priv)) {
8250 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
8251 if (reduced_clock)
8252 fp2 = pnv_dpll_compute_fp(reduced_clock);
8253 } else {
8254 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8255 if (reduced_clock)
8256 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8257 }
8258
8259 crtc_state->dpll_hw_state.fp0 = fp;
8260
8261 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8262 reduced_clock) {
8263 crtc_state->dpll_hw_state.fp1 = fp2;
8264 } else {
8265 crtc_state->dpll_hw_state.fp1 = fp;
8266 }
8267 }
8268
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)8269 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
8270 pipe)
8271 {
8272 u32 reg_val;
8273
8274 /*
8275 * PLLB opamp always calibrates to max value of 0x3f, force enable it
8276 * and set it to a reasonable value instead.
8277 */
8278 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8279 reg_val &= 0xffffff00;
8280 reg_val |= 0x00000030;
8281 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8282
8283 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8284 reg_val &= 0x00ffffff;
8285 reg_val |= 0x8c000000;
8286 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8287
8288 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8289 reg_val &= 0xffffff00;
8290 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8291
8292 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8293 reg_val &= 0x00ffffff;
8294 reg_val |= 0xb0000000;
8295 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8296 }
8297
intel_pch_transcoder_set_m_n(const struct intel_crtc_state * crtc_state,const struct intel_link_m_n * m_n)8298 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8299 const struct intel_link_m_n *m_n)
8300 {
8301 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8302 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8303 enum pipe pipe = crtc->pipe;
8304
8305 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe),
8306 TU_SIZE(m_n->tu) | m_n->gmch_m);
8307 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
8308 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m);
8309 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n);
8310 }
8311
transcoder_has_m2_n2(struct drm_i915_private * dev_priv,enum transcoder transcoder)8312 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
8313 enum transcoder transcoder)
8314 {
8315 if (IS_HASWELL(dev_priv))
8316 return transcoder == TRANSCODER_EDP;
8317
8318 /*
8319 * Strictly speaking some registers are available before
8320 * gen7, but we only support DRRS on gen7+
8321 */
8322 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
8323 }
8324
intel_cpu_transcoder_set_m_n(const struct intel_crtc_state * crtc_state,const struct intel_link_m_n * m_n,const struct intel_link_m_n * m2_n2)8325 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8326 const struct intel_link_m_n *m_n,
8327 const struct intel_link_m_n *m2_n2)
8328 {
8329 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8330 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8331 enum pipe pipe = crtc->pipe;
8332 enum transcoder transcoder = crtc_state->cpu_transcoder;
8333
8334 if (INTEL_GEN(dev_priv) >= 5) {
8335 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder),
8336 TU_SIZE(m_n->tu) | m_n->gmch_m);
8337 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder),
8338 m_n->gmch_n);
8339 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder),
8340 m_n->link_m);
8341 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder),
8342 m_n->link_n);
8343 /*
8344 * M2_N2 registers are set only if DRRS is supported
8345 * (to make sure the registers are not unnecessarily accessed).
8346 */
8347 if (m2_n2 && crtc_state->has_drrs &&
8348 transcoder_has_m2_n2(dev_priv, transcoder)) {
8349 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder),
8350 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
8351 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder),
8352 m2_n2->gmch_n);
8353 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder),
8354 m2_n2->link_m);
8355 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder),
8356 m2_n2->link_n);
8357 }
8358 } else {
8359 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe),
8360 TU_SIZE(m_n->tu) | m_n->gmch_m);
8361 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
8362 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m);
8363 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n);
8364 }
8365 }
8366
intel_dp_set_m_n(const struct intel_crtc_state * crtc_state,enum link_m_n_set m_n)8367 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
8368 {
8369 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
8370 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
8371
8372 if (m_n == M1_N1) {
8373 dp_m_n = &crtc_state->dp_m_n;
8374 dp_m2_n2 = &crtc_state->dp_m2_n2;
8375 } else if (m_n == M2_N2) {
8376
8377 /*
8378 * M2_N2 registers are not supported. Hence m2_n2 divider value
8379 * needs to be programmed into M1_N1.
8380 */
8381 dp_m_n = &crtc_state->dp_m2_n2;
8382 } else {
8383 drm_err(&i915->drm, "Unsupported divider value\n");
8384 return;
8385 }
8386
8387 if (crtc_state->has_pch_encoder)
8388 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
8389 else
8390 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
8391 }
8392
vlv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8393 static void vlv_compute_dpll(struct intel_crtc *crtc,
8394 struct intel_crtc_state *pipe_config)
8395 {
8396 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
8397 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8398 if (crtc->pipe != PIPE_A)
8399 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8400
8401 /* DPLL not used with DSI, but still need the rest set up */
8402 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8403 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
8404 DPLL_EXT_BUFFER_ENABLE_VLV;
8405
8406 pipe_config->dpll_hw_state.dpll_md =
8407 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8408 }
8409
chv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8410 static void chv_compute_dpll(struct intel_crtc *crtc,
8411 struct intel_crtc_state *pipe_config)
8412 {
8413 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
8414 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8415 if (crtc->pipe != PIPE_A)
8416 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8417
8418 /* DPLL not used with DSI, but still need the rest set up */
8419 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8420 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
8421
8422 pipe_config->dpll_hw_state.dpll_md =
8423 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8424 }
8425
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)8426 static void vlv_prepare_pll(struct intel_crtc *crtc,
8427 const struct intel_crtc_state *pipe_config)
8428 {
8429 struct drm_device *dev = crtc->base.dev;
8430 struct drm_i915_private *dev_priv = to_i915(dev);
8431 enum pipe pipe = crtc->pipe;
8432 u32 mdiv;
8433 u32 bestn, bestm1, bestm2, bestp1, bestp2;
8434 u32 coreclk, reg_val;
8435
8436 /* Enable Refclk */
8437 intel_de_write(dev_priv, DPLL(pipe),
8438 pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
8439
8440 /* No need to actually set up the DPLL with DSI */
8441 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8442 return;
8443
8444 vlv_dpio_get(dev_priv);
8445
8446 bestn = pipe_config->dpll.n;
8447 bestm1 = pipe_config->dpll.m1;
8448 bestm2 = pipe_config->dpll.m2;
8449 bestp1 = pipe_config->dpll.p1;
8450 bestp2 = pipe_config->dpll.p2;
8451
8452 /* See eDP HDMI DPIO driver vbios notes doc */
8453
8454 /* PLL B needs special handling */
8455 if (pipe == PIPE_B)
8456 vlv_pllb_recal_opamp(dev_priv, pipe);
8457
8458 /* Set up Tx target for periodic Rcomp update */
8459 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
8460
8461 /* Disable target IRef on PLL */
8462 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
8463 reg_val &= 0x00ffffff;
8464 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
8465
8466 /* Disable fast lock */
8467 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
8468
8469 /* Set idtafcrecal before PLL is enabled */
8470 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
8471 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
8472 mdiv |= ((bestn << DPIO_N_SHIFT));
8473 mdiv |= (1 << DPIO_K_SHIFT);
8474
8475 /*
8476 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
8477 * but we don't support that).
8478 * Note: don't use the DAC post divider as it seems unstable.
8479 */
8480 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
8481 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8482
8483 mdiv |= DPIO_ENABLE_CALIBRATION;
8484 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8485
8486 /* Set HBR and RBR LPF coefficients */
8487 if (pipe_config->port_clock == 162000 ||
8488 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
8489 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
8490 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8491 0x009f0003);
8492 else
8493 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8494 0x00d0000f);
8495
8496 if (intel_crtc_has_dp_encoder(pipe_config)) {
8497 /* Use SSC source */
8498 if (pipe == PIPE_A)
8499 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8500 0x0df40000);
8501 else
8502 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8503 0x0df70000);
8504 } else { /* HDMI or VGA */
8505 /* Use bend source */
8506 if (pipe == PIPE_A)
8507 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8508 0x0df70000);
8509 else
8510 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8511 0x0df40000);
8512 }
8513
8514 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
8515 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
8516 if (intel_crtc_has_dp_encoder(pipe_config))
8517 coreclk |= 0x01000000;
8518 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
8519
8520 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
8521
8522 vlv_dpio_put(dev_priv);
8523 }
8524
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)8525 static void chv_prepare_pll(struct intel_crtc *crtc,
8526 const struct intel_crtc_state *pipe_config)
8527 {
8528 struct drm_device *dev = crtc->base.dev;
8529 struct drm_i915_private *dev_priv = to_i915(dev);
8530 enum pipe pipe = crtc->pipe;
8531 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8532 u32 loopfilter, tribuf_calcntr;
8533 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8534 u32 dpio_val;
8535 int vco;
8536
8537 /* Enable Refclk and SSC */
8538 intel_de_write(dev_priv, DPLL(pipe),
8539 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8540
8541 /* No need to actually set up the DPLL with DSI */
8542 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8543 return;
8544
8545 bestn = pipe_config->dpll.n;
8546 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8547 bestm1 = pipe_config->dpll.m1;
8548 bestm2 = pipe_config->dpll.m2 >> 22;
8549 bestp1 = pipe_config->dpll.p1;
8550 bestp2 = pipe_config->dpll.p2;
8551 vco = pipe_config->dpll.vco;
8552 dpio_val = 0;
8553 loopfilter = 0;
8554
8555 vlv_dpio_get(dev_priv);
8556
8557 /* p1 and p2 divider */
8558 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8559 5 << DPIO_CHV_S1_DIV_SHIFT |
8560 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8561 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8562 1 << DPIO_CHV_K_DIV_SHIFT);
8563
8564 /* Feedback post-divider - m2 */
8565 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8566
8567 /* Feedback refclk divider - n and m1 */
8568 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8569 DPIO_CHV_M1_DIV_BY_2 |
8570 1 << DPIO_CHV_N_DIV_SHIFT);
8571
8572 /* M2 fraction division */
8573 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8574
8575 /* M2 fraction division enable */
8576 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8577 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8578 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8579 if (bestm2_frac)
8580 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8581 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8582
8583 /* Program digital lock detect threshold */
8584 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8585 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8586 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8587 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8588 if (!bestm2_frac)
8589 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8590 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8591
8592 /* Loop filter */
8593 if (vco == 5400000) {
8594 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8595 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8596 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8597 tribuf_calcntr = 0x9;
8598 } else if (vco <= 6200000) {
8599 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8600 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8601 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8602 tribuf_calcntr = 0x9;
8603 } else if (vco <= 6480000) {
8604 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8605 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8606 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8607 tribuf_calcntr = 0x8;
8608 } else {
8609 /* Not supported. Apply the same limits as in the max case */
8610 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8611 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8612 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8613 tribuf_calcntr = 0;
8614 }
8615 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8616
8617 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8618 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8619 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8620 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8621
8622 /* AFC Recal */
8623 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8624 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8625 DPIO_AFC_RECAL);
8626
8627 vlv_dpio_put(dev_priv);
8628 }
8629
8630 /**
8631 * vlv_force_pll_on - forcibly enable just the PLL
8632 * @dev_priv: i915 private structure
8633 * @pipe: pipe PLL to enable
8634 * @dpll: PLL configuration
8635 *
8636 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8637 * in cases where we need the PLL enabled even when @pipe is not going to
8638 * be enabled.
8639 */
vlv_force_pll_on(struct drm_i915_private * dev_priv,enum pipe pipe,const struct dpll * dpll)8640 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8641 const struct dpll *dpll)
8642 {
8643 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8644 struct intel_crtc_state *pipe_config;
8645
8646 pipe_config = intel_crtc_state_alloc(crtc);
8647 if (!pipe_config)
8648 return -ENOMEM;
8649
8650 pipe_config->cpu_transcoder = (enum transcoder)pipe;
8651 pipe_config->pixel_multiplier = 1;
8652 pipe_config->dpll = *dpll;
8653
8654 if (IS_CHERRYVIEW(dev_priv)) {
8655 chv_compute_dpll(crtc, pipe_config);
8656 chv_prepare_pll(crtc, pipe_config);
8657 chv_enable_pll(crtc, pipe_config);
8658 } else {
8659 vlv_compute_dpll(crtc, pipe_config);
8660 vlv_prepare_pll(crtc, pipe_config);
8661 vlv_enable_pll(crtc, pipe_config);
8662 }
8663
8664 kfree(pipe_config);
8665
8666 return 0;
8667 }
8668
8669 /**
8670 * vlv_force_pll_off - forcibly disable just the PLL
8671 * @dev_priv: i915 private structure
8672 * @pipe: pipe PLL to disable
8673 *
8674 * Disable the PLL for @pipe. To be used in cases where we need
8675 * the PLL enabled even when @pipe is not going to be enabled.
8676 */
vlv_force_pll_off(struct drm_i915_private * dev_priv,enum pipe pipe)8677 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8678 {
8679 if (IS_CHERRYVIEW(dev_priv))
8680 chv_disable_pll(dev_priv, pipe);
8681 else
8682 vlv_disable_pll(dev_priv, pipe);
8683 }
8684
i9xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8685 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8686 struct intel_crtc_state *crtc_state,
8687 struct dpll *reduced_clock)
8688 {
8689 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8690 u32 dpll;
8691 struct dpll *clock = &crtc_state->dpll;
8692
8693 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8694
8695 dpll = DPLL_VGA_MODE_DIS;
8696
8697 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8698 dpll |= DPLLB_MODE_LVDS;
8699 else
8700 dpll |= DPLLB_MODE_DAC_SERIAL;
8701
8702 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8703 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8704 dpll |= (crtc_state->pixel_multiplier - 1)
8705 << SDVO_MULTIPLIER_SHIFT_HIRES;
8706 }
8707
8708 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8709 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8710 dpll |= DPLL_SDVO_HIGH_SPEED;
8711
8712 if (intel_crtc_has_dp_encoder(crtc_state))
8713 dpll |= DPLL_SDVO_HIGH_SPEED;
8714
8715 /* compute bitmask from p1 value */
8716 if (IS_PINEVIEW(dev_priv))
8717 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8718 else {
8719 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8720 if (IS_G4X(dev_priv) && reduced_clock)
8721 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8722 }
8723 switch (clock->p2) {
8724 case 5:
8725 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8726 break;
8727 case 7:
8728 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8729 break;
8730 case 10:
8731 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8732 break;
8733 case 14:
8734 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8735 break;
8736 }
8737 if (INTEL_GEN(dev_priv) >= 4)
8738 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8739
8740 if (crtc_state->sdvo_tv_clock)
8741 dpll |= PLL_REF_INPUT_TVCLKINBC;
8742 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8743 intel_panel_use_ssc(dev_priv))
8744 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8745 else
8746 dpll |= PLL_REF_INPUT_DREFCLK;
8747
8748 dpll |= DPLL_VCO_ENABLE;
8749 crtc_state->dpll_hw_state.dpll = dpll;
8750
8751 if (INTEL_GEN(dev_priv) >= 4) {
8752 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8753 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8754 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8755 }
8756 }
8757
i8xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8758 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8759 struct intel_crtc_state *crtc_state,
8760 struct dpll *reduced_clock)
8761 {
8762 struct drm_device *dev = crtc->base.dev;
8763 struct drm_i915_private *dev_priv = to_i915(dev);
8764 u32 dpll;
8765 struct dpll *clock = &crtc_state->dpll;
8766
8767 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8768
8769 dpll = DPLL_VGA_MODE_DIS;
8770
8771 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8772 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8773 } else {
8774 if (clock->p1 == 2)
8775 dpll |= PLL_P1_DIVIDE_BY_TWO;
8776 else
8777 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8778 if (clock->p2 == 4)
8779 dpll |= PLL_P2_DIVIDE_BY_4;
8780 }
8781
8782 /*
8783 * Bspec:
8784 * "[Almador Errata}: For the correct operation of the muxed DVO pins
8785 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8786 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8787 * Enable) must be set to “1” in both the DPLL A Control Register
8788 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8789 *
8790 * For simplicity We simply keep both bits always enabled in
8791 * both DPLLS. The spec says we should disable the DVO 2X clock
8792 * when not needed, but this seems to work fine in practice.
8793 */
8794 if (IS_I830(dev_priv) ||
8795 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8796 dpll |= DPLL_DVO_2X_MODE;
8797
8798 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8799 intel_panel_use_ssc(dev_priv))
8800 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8801 else
8802 dpll |= PLL_REF_INPUT_DREFCLK;
8803
8804 dpll |= DPLL_VCO_ENABLE;
8805 crtc_state->dpll_hw_state.dpll = dpll;
8806 }
8807
intel_set_pipe_timings(const struct intel_crtc_state * crtc_state)8808 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8809 {
8810 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8811 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8812 enum pipe pipe = crtc->pipe;
8813 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8814 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
8815 u32 crtc_vtotal, crtc_vblank_end;
8816 int vsyncshift = 0;
8817
8818 /* We need to be careful not to changed the adjusted mode, for otherwise
8819 * the hw state checker will get angry at the mismatch. */
8820 crtc_vtotal = adjusted_mode->crtc_vtotal;
8821 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8822
8823 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8824 /* the chip adds 2 halflines automatically */
8825 crtc_vtotal -= 1;
8826 crtc_vblank_end -= 1;
8827
8828 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8829 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8830 else
8831 vsyncshift = adjusted_mode->crtc_hsync_start -
8832 adjusted_mode->crtc_htotal / 2;
8833 if (vsyncshift < 0)
8834 vsyncshift += adjusted_mode->crtc_htotal;
8835 }
8836
8837 if (INTEL_GEN(dev_priv) > 3)
8838 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder),
8839 vsyncshift);
8840
8841 intel_de_write(dev_priv, HTOTAL(cpu_transcoder),
8842 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16));
8843 intel_de_write(dev_priv, HBLANK(cpu_transcoder),
8844 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16));
8845 intel_de_write(dev_priv, HSYNC(cpu_transcoder),
8846 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16));
8847
8848 intel_de_write(dev_priv, VTOTAL(cpu_transcoder),
8849 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16));
8850 intel_de_write(dev_priv, VBLANK(cpu_transcoder),
8851 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16));
8852 intel_de_write(dev_priv, VSYNC(cpu_transcoder),
8853 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16));
8854
8855 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8856 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8857 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8858 * bits. */
8859 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8860 (pipe == PIPE_B || pipe == PIPE_C))
8861 intel_de_write(dev_priv, VTOTAL(pipe),
8862 intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
8863
8864 }
8865
intel_set_pipe_src_size(const struct intel_crtc_state * crtc_state)8866 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8867 {
8868 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8869 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8870 enum pipe pipe = crtc->pipe;
8871
8872 /* pipesrc controls the size that is scaled from, which should
8873 * always be the user's requested size.
8874 */
8875 intel_de_write(dev_priv, PIPESRC(pipe),
8876 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1));
8877 }
8878
intel_pipe_is_interlaced(const struct intel_crtc_state * crtc_state)8879 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8880 {
8881 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8882 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8883
8884 if (IS_GEN(dev_priv, 2))
8885 return false;
8886
8887 if (INTEL_GEN(dev_priv) >= 9 ||
8888 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8889 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8890 else
8891 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8892 }
8893
intel_get_pipe_timings(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8894 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8895 struct intel_crtc_state *pipe_config)
8896 {
8897 struct drm_device *dev = crtc->base.dev;
8898 struct drm_i915_private *dev_priv = to_i915(dev);
8899 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8900 u32 tmp;
8901
8902 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder));
8903 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8904 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8905
8906 if (!transcoder_is_dsi(cpu_transcoder)) {
8907 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder));
8908 pipe_config->hw.adjusted_mode.crtc_hblank_start =
8909 (tmp & 0xffff) + 1;
8910 pipe_config->hw.adjusted_mode.crtc_hblank_end =
8911 ((tmp >> 16) & 0xffff) + 1;
8912 }
8913 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder));
8914 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8915 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8916
8917 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder));
8918 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8919 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8920
8921 if (!transcoder_is_dsi(cpu_transcoder)) {
8922 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder));
8923 pipe_config->hw.adjusted_mode.crtc_vblank_start =
8924 (tmp & 0xffff) + 1;
8925 pipe_config->hw.adjusted_mode.crtc_vblank_end =
8926 ((tmp >> 16) & 0xffff) + 1;
8927 }
8928 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder));
8929 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8930 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8931
8932 if (intel_pipe_is_interlaced(pipe_config)) {
8933 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8934 pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
8935 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
8936 }
8937 }
8938
intel_get_pipe_src_size(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8939 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8940 struct intel_crtc_state *pipe_config)
8941 {
8942 struct drm_device *dev = crtc->base.dev;
8943 struct drm_i915_private *dev_priv = to_i915(dev);
8944 u32 tmp;
8945
8946 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe));
8947 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8948 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8949
8950 pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h;
8951 pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w;
8952 }
8953
intel_mode_from_pipe_config(struct drm_display_mode * mode,struct intel_crtc_state * pipe_config)8954 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8955 struct intel_crtc_state *pipe_config)
8956 {
8957 mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay;
8958 mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal;
8959 mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start;
8960 mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end;
8961
8962 mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay;
8963 mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal;
8964 mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start;
8965 mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end;
8966
8967 mode->flags = pipe_config->hw.adjusted_mode.flags;
8968 mode->type = DRM_MODE_TYPE_DRIVER;
8969
8970 mode->clock = pipe_config->hw.adjusted_mode.crtc_clock;
8971
8972 drm_mode_set_name(mode);
8973 }
8974
i9xx_set_pipeconf(const struct intel_crtc_state * crtc_state)8975 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8976 {
8977 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8978 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8979 u32 pipeconf;
8980
8981 pipeconf = 0;
8982
8983 /* we keep both pipes enabled on 830 */
8984 if (IS_I830(dev_priv))
8985 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8986
8987 if (crtc_state->double_wide)
8988 pipeconf |= PIPECONF_DOUBLE_WIDE;
8989
8990 /* only g4x and later have fancy bpc/dither controls */
8991 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8992 IS_CHERRYVIEW(dev_priv)) {
8993 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8994 if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8995 pipeconf |= PIPECONF_DITHER_EN |
8996 PIPECONF_DITHER_TYPE_SP;
8997
8998 switch (crtc_state->pipe_bpp) {
8999 case 18:
9000 pipeconf |= PIPECONF_6BPC;
9001 break;
9002 case 24:
9003 pipeconf |= PIPECONF_8BPC;
9004 break;
9005 case 30:
9006 pipeconf |= PIPECONF_10BPC;
9007 break;
9008 default:
9009 /* Case prevented by intel_choose_pipe_bpp_dither. */
9010 BUG();
9011 }
9012 }
9013
9014 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
9015 if (INTEL_GEN(dev_priv) < 4 ||
9016 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
9017 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
9018 else
9019 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
9020 } else {
9021 pipeconf |= PIPECONF_PROGRESSIVE;
9022 }
9023
9024 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9025 crtc_state->limited_color_range)
9026 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9027
9028 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9029
9030 pipeconf |= PIPECONF_FRAME_START_DELAY(0);
9031
9032 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf);
9033 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe));
9034 }
9035
i8xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9036 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
9037 struct intel_crtc_state *crtc_state)
9038 {
9039 struct drm_device *dev = crtc->base.dev;
9040 struct drm_i915_private *dev_priv = to_i915(dev);
9041 const struct intel_limit *limit;
9042 int refclk = 48000;
9043
9044 memset(&crtc_state->dpll_hw_state, 0,
9045 sizeof(crtc_state->dpll_hw_state));
9046
9047 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9048 if (intel_panel_use_ssc(dev_priv)) {
9049 refclk = dev_priv->vbt.lvds_ssc_freq;
9050 drm_dbg_kms(&dev_priv->drm,
9051 "using SSC reference clock of %d kHz\n",
9052 refclk);
9053 }
9054
9055 limit = &intel_limits_i8xx_lvds;
9056 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
9057 limit = &intel_limits_i8xx_dvo;
9058 } else {
9059 limit = &intel_limits_i8xx_dac;
9060 }
9061
9062 if (!crtc_state->clock_set &&
9063 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9064 refclk, NULL, &crtc_state->dpll)) {
9065 drm_err(&dev_priv->drm,
9066 "Couldn't find PLL settings for mode!\n");
9067 return -EINVAL;
9068 }
9069
9070 i8xx_compute_dpll(crtc, crtc_state, NULL);
9071
9072 return 0;
9073 }
9074
g4x_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9075 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
9076 struct intel_crtc_state *crtc_state)
9077 {
9078 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9079 const struct intel_limit *limit;
9080 int refclk = 96000;
9081
9082 memset(&crtc_state->dpll_hw_state, 0,
9083 sizeof(crtc_state->dpll_hw_state));
9084
9085 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9086 if (intel_panel_use_ssc(dev_priv)) {
9087 refclk = dev_priv->vbt.lvds_ssc_freq;
9088 drm_dbg_kms(&dev_priv->drm,
9089 "using SSC reference clock of %d kHz\n",
9090 refclk);
9091 }
9092
9093 if (intel_is_dual_link_lvds(dev_priv))
9094 limit = &intel_limits_g4x_dual_channel_lvds;
9095 else
9096 limit = &intel_limits_g4x_single_channel_lvds;
9097 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
9098 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
9099 limit = &intel_limits_g4x_hdmi;
9100 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
9101 limit = &intel_limits_g4x_sdvo;
9102 } else {
9103 /* The option is for other outputs */
9104 limit = &intel_limits_i9xx_sdvo;
9105 }
9106
9107 if (!crtc_state->clock_set &&
9108 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9109 refclk, NULL, &crtc_state->dpll)) {
9110 drm_err(&dev_priv->drm,
9111 "Couldn't find PLL settings for mode!\n");
9112 return -EINVAL;
9113 }
9114
9115 i9xx_compute_dpll(crtc, crtc_state, NULL);
9116
9117 return 0;
9118 }
9119
pnv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9120 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
9121 struct intel_crtc_state *crtc_state)
9122 {
9123 struct drm_device *dev = crtc->base.dev;
9124 struct drm_i915_private *dev_priv = to_i915(dev);
9125 const struct intel_limit *limit;
9126 int refclk = 96000;
9127
9128 memset(&crtc_state->dpll_hw_state, 0,
9129 sizeof(crtc_state->dpll_hw_state));
9130
9131 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9132 if (intel_panel_use_ssc(dev_priv)) {
9133 refclk = dev_priv->vbt.lvds_ssc_freq;
9134 drm_dbg_kms(&dev_priv->drm,
9135 "using SSC reference clock of %d kHz\n",
9136 refclk);
9137 }
9138
9139 limit = &pnv_limits_lvds;
9140 } else {
9141 limit = &pnv_limits_sdvo;
9142 }
9143
9144 if (!crtc_state->clock_set &&
9145 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9146 refclk, NULL, &crtc_state->dpll)) {
9147 drm_err(&dev_priv->drm,
9148 "Couldn't find PLL settings for mode!\n");
9149 return -EINVAL;
9150 }
9151
9152 i9xx_compute_dpll(crtc, crtc_state, NULL);
9153
9154 return 0;
9155 }
9156
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9157 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
9158 struct intel_crtc_state *crtc_state)
9159 {
9160 struct drm_device *dev = crtc->base.dev;
9161 struct drm_i915_private *dev_priv = to_i915(dev);
9162 const struct intel_limit *limit;
9163 int refclk = 96000;
9164
9165 memset(&crtc_state->dpll_hw_state, 0,
9166 sizeof(crtc_state->dpll_hw_state));
9167
9168 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9169 if (intel_panel_use_ssc(dev_priv)) {
9170 refclk = dev_priv->vbt.lvds_ssc_freq;
9171 drm_dbg_kms(&dev_priv->drm,
9172 "using SSC reference clock of %d kHz\n",
9173 refclk);
9174 }
9175
9176 limit = &intel_limits_i9xx_lvds;
9177 } else {
9178 limit = &intel_limits_i9xx_sdvo;
9179 }
9180
9181 if (!crtc_state->clock_set &&
9182 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9183 refclk, NULL, &crtc_state->dpll)) {
9184 drm_err(&dev_priv->drm,
9185 "Couldn't find PLL settings for mode!\n");
9186 return -EINVAL;
9187 }
9188
9189 i9xx_compute_dpll(crtc, crtc_state, NULL);
9190
9191 return 0;
9192 }
9193
chv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9194 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
9195 struct intel_crtc_state *crtc_state)
9196 {
9197 int refclk = 100000;
9198 const struct intel_limit *limit = &intel_limits_chv;
9199 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9200
9201 memset(&crtc_state->dpll_hw_state, 0,
9202 sizeof(crtc_state->dpll_hw_state));
9203
9204 if (!crtc_state->clock_set &&
9205 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9206 refclk, NULL, &crtc_state->dpll)) {
9207 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
9208 return -EINVAL;
9209 }
9210
9211 chv_compute_dpll(crtc, crtc_state);
9212
9213 return 0;
9214 }
9215
vlv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9216 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
9217 struct intel_crtc_state *crtc_state)
9218 {
9219 int refclk = 100000;
9220 const struct intel_limit *limit = &intel_limits_vlv;
9221 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9222
9223 memset(&crtc_state->dpll_hw_state, 0,
9224 sizeof(crtc_state->dpll_hw_state));
9225
9226 if (!crtc_state->clock_set &&
9227 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9228 refclk, NULL, &crtc_state->dpll)) {
9229 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
9230 return -EINVAL;
9231 }
9232
9233 vlv_compute_dpll(crtc, crtc_state);
9234
9235 return 0;
9236 }
9237
i9xx_has_pfit(struct drm_i915_private * dev_priv)9238 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
9239 {
9240 if (IS_I830(dev_priv))
9241 return false;
9242
9243 return INTEL_GEN(dev_priv) >= 4 ||
9244 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
9245 }
9246
i9xx_get_pfit_config(struct intel_crtc_state * crtc_state)9247 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state)
9248 {
9249 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9250 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9251 u32 tmp;
9252
9253 if (!i9xx_has_pfit(dev_priv))
9254 return;
9255
9256 tmp = intel_de_read(dev_priv, PFIT_CONTROL);
9257 if (!(tmp & PFIT_ENABLE))
9258 return;
9259
9260 /* Check whether the pfit is attached to our pipe. */
9261 if (INTEL_GEN(dev_priv) < 4) {
9262 if (crtc->pipe != PIPE_B)
9263 return;
9264 } else {
9265 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
9266 return;
9267 }
9268
9269 crtc_state->gmch_pfit.control = tmp;
9270 crtc_state->gmch_pfit.pgm_ratios =
9271 intel_de_read(dev_priv, PFIT_PGM_RATIOS);
9272 }
9273
vlv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9274 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
9275 struct intel_crtc_state *pipe_config)
9276 {
9277 struct drm_device *dev = crtc->base.dev;
9278 struct drm_i915_private *dev_priv = to_i915(dev);
9279 enum pipe pipe = crtc->pipe;
9280 struct dpll clock;
9281 u32 mdiv;
9282 int refclk = 100000;
9283
9284 /* In case of DSI, DPLL will not be used */
9285 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9286 return;
9287
9288 vlv_dpio_get(dev_priv);
9289 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
9290 vlv_dpio_put(dev_priv);
9291
9292 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
9293 clock.m2 = mdiv & DPIO_M2DIV_MASK;
9294 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
9295 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
9296 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
9297
9298 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
9299 }
9300
9301 static void
i9xx_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9302 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
9303 struct intel_initial_plane_config *plane_config)
9304 {
9305 struct drm_device *dev = crtc->base.dev;
9306 struct drm_i915_private *dev_priv = to_i915(dev);
9307 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9308 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9309 enum pipe pipe;
9310 u32 val, base, offset;
9311 int fourcc, pixel_format;
9312 unsigned int aligned_height;
9313 struct drm_framebuffer *fb;
9314 struct intel_framebuffer *intel_fb;
9315
9316 if (!plane->get_hw_state(plane, &pipe))
9317 return;
9318
9319 drm_WARN_ON(dev, pipe != crtc->pipe);
9320
9321 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9322 if (!intel_fb) {
9323 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
9324 return;
9325 }
9326
9327 fb = &intel_fb->base;
9328
9329 fb->dev = dev;
9330
9331 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9332
9333 if (INTEL_GEN(dev_priv) >= 4) {
9334 if (val & DISPPLANE_TILED) {
9335 plane_config->tiling = I915_TILING_X;
9336 fb->modifier = I915_FORMAT_MOD_X_TILED;
9337 }
9338
9339 if (val & DISPPLANE_ROTATE_180)
9340 plane_config->rotation = DRM_MODE_ROTATE_180;
9341 }
9342
9343 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
9344 val & DISPPLANE_MIRROR)
9345 plane_config->rotation |= DRM_MODE_REFLECT_X;
9346
9347 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9348 fourcc = i9xx_format_to_fourcc(pixel_format);
9349 fb->format = drm_format_info(fourcc);
9350
9351 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9352 offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane));
9353 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9354 } else if (INTEL_GEN(dev_priv) >= 4) {
9355 if (plane_config->tiling)
9356 offset = intel_de_read(dev_priv,
9357 DSPTILEOFF(i9xx_plane));
9358 else
9359 offset = intel_de_read(dev_priv,
9360 DSPLINOFF(i9xx_plane));
9361 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9362 } else {
9363 base = intel_de_read(dev_priv, DSPADDR(i9xx_plane));
9364 }
9365 plane_config->base = base;
9366
9367 val = intel_de_read(dev_priv, PIPESRC(pipe));
9368 fb->width = ((val >> 16) & 0xfff) + 1;
9369 fb->height = ((val >> 0) & 0xfff) + 1;
9370
9371 val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane));
9372 fb->pitches[0] = val & 0xffffffc0;
9373
9374 aligned_height = intel_fb_align_height(fb, 0, fb->height);
9375
9376 plane_config->size = fb->pitches[0] * aligned_height;
9377
9378 drm_dbg_kms(&dev_priv->drm,
9379 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9380 crtc->base.name, plane->base.name, fb->width, fb->height,
9381 fb->format->cpp[0] * 8, base, fb->pitches[0],
9382 plane_config->size);
9383
9384 plane_config->fb = intel_fb;
9385 }
9386
chv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9387 static void chv_crtc_clock_get(struct intel_crtc *crtc,
9388 struct intel_crtc_state *pipe_config)
9389 {
9390 struct drm_device *dev = crtc->base.dev;
9391 struct drm_i915_private *dev_priv = to_i915(dev);
9392 enum pipe pipe = crtc->pipe;
9393 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9394 struct dpll clock;
9395 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
9396 int refclk = 100000;
9397
9398 /* In case of DSI, DPLL will not be used */
9399 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9400 return;
9401
9402 vlv_dpio_get(dev_priv);
9403 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
9404 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
9405 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
9406 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
9407 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
9408 vlv_dpio_put(dev_priv);
9409
9410 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
9411 clock.m2 = (pll_dw0 & 0xff) << 22;
9412 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
9413 clock.m2 |= pll_dw2 & 0x3fffff;
9414 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
9415 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
9416 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
9417
9418 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
9419 }
9420
9421 static enum intel_output_format
bdw_get_pipemisc_output_format(struct intel_crtc * crtc)9422 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
9423 {
9424 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9425 u32 tmp;
9426
9427 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
9428
9429 if (tmp & PIPEMISC_YUV420_ENABLE) {
9430 /* We support 4:2:0 in full blend mode only */
9431 drm_WARN_ON(&dev_priv->drm,
9432 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
9433
9434 return INTEL_OUTPUT_FORMAT_YCBCR420;
9435 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
9436 return INTEL_OUTPUT_FORMAT_YCBCR444;
9437 } else {
9438 return INTEL_OUTPUT_FORMAT_RGB;
9439 }
9440 }
9441
i9xx_get_pipe_color_config(struct intel_crtc_state * crtc_state)9442 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
9443 {
9444 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9445 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9446 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9447 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9448 u32 tmp;
9449
9450 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9451
9452 if (tmp & DISPPLANE_GAMMA_ENABLE)
9453 crtc_state->gamma_enable = true;
9454
9455 if (!HAS_GMCH(dev_priv) &&
9456 tmp & DISPPLANE_PIPE_CSC_ENABLE)
9457 crtc_state->csc_enable = true;
9458 }
9459
i9xx_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9460 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
9461 struct intel_crtc_state *pipe_config)
9462 {
9463 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9464 enum intel_display_power_domain power_domain;
9465 intel_wakeref_t wakeref;
9466 u32 tmp;
9467 bool ret;
9468
9469 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9470 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9471 if (!wakeref)
9472 return false;
9473
9474 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9475 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9476 pipe_config->shared_dpll = NULL;
9477
9478 ret = false;
9479
9480 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
9481 if (!(tmp & PIPECONF_ENABLE))
9482 goto out;
9483
9484 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9485 IS_CHERRYVIEW(dev_priv)) {
9486 switch (tmp & PIPECONF_BPC_MASK) {
9487 case PIPECONF_6BPC:
9488 pipe_config->pipe_bpp = 18;
9489 break;
9490 case PIPECONF_8BPC:
9491 pipe_config->pipe_bpp = 24;
9492 break;
9493 case PIPECONF_10BPC:
9494 pipe_config->pipe_bpp = 30;
9495 break;
9496 default:
9497 break;
9498 }
9499 }
9500
9501 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9502 (tmp & PIPECONF_COLOR_RANGE_SELECT))
9503 pipe_config->limited_color_range = true;
9504
9505 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
9506 PIPECONF_GAMMA_MODE_SHIFT;
9507
9508 if (IS_CHERRYVIEW(dev_priv))
9509 pipe_config->cgm_mode = intel_de_read(dev_priv,
9510 CGM_PIPE_MODE(crtc->pipe));
9511
9512 i9xx_get_pipe_color_config(pipe_config);
9513 intel_color_get_config(pipe_config);
9514
9515 if (INTEL_GEN(dev_priv) < 4)
9516 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
9517
9518 intel_get_pipe_timings(crtc, pipe_config);
9519 intel_get_pipe_src_size(crtc, pipe_config);
9520
9521 i9xx_get_pfit_config(pipe_config);
9522
9523 if (INTEL_GEN(dev_priv) >= 4) {
9524 /* No way to read it out on pipes B and C */
9525 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
9526 tmp = dev_priv->chv_dpll_md[crtc->pipe];
9527 else
9528 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
9529 pipe_config->pixel_multiplier =
9530 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
9531 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
9532 pipe_config->dpll_hw_state.dpll_md = tmp;
9533 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
9534 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
9535 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe));
9536 pipe_config->pixel_multiplier =
9537 ((tmp & SDVO_MULTIPLIER_MASK)
9538 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
9539 } else {
9540 /* Note that on i915G/GM the pixel multiplier is in the sdvo
9541 * port and will be fixed up in the encoder->get_config
9542 * function. */
9543 pipe_config->pixel_multiplier = 1;
9544 }
9545 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv,
9546 DPLL(crtc->pipe));
9547 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
9548 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv,
9549 FP0(crtc->pipe));
9550 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv,
9551 FP1(crtc->pipe));
9552 } else {
9553 /* Mask out read-only status bits. */
9554 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
9555 DPLL_PORTC_READY_MASK |
9556 DPLL_PORTB_READY_MASK);
9557 }
9558
9559 if (IS_CHERRYVIEW(dev_priv))
9560 chv_crtc_clock_get(crtc, pipe_config);
9561 else if (IS_VALLEYVIEW(dev_priv))
9562 vlv_crtc_clock_get(crtc, pipe_config);
9563 else
9564 i9xx_crtc_clock_get(crtc, pipe_config);
9565
9566 /*
9567 * Normally the dotclock is filled in by the encoder .get_config()
9568 * but in case the pipe is enabled w/o any ports we need a sane
9569 * default.
9570 */
9571 pipe_config->hw.adjusted_mode.crtc_clock =
9572 pipe_config->port_clock / pipe_config->pixel_multiplier;
9573
9574 ret = true;
9575
9576 out:
9577 intel_display_power_put(dev_priv, power_domain, wakeref);
9578
9579 return ret;
9580 }
9581
ilk_init_pch_refclk(struct drm_i915_private * dev_priv)9582 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv)
9583 {
9584 struct intel_encoder *encoder;
9585 int i;
9586 u32 val, final;
9587 bool has_lvds = false;
9588 bool has_cpu_edp = false;
9589 bool has_panel = false;
9590 bool has_ck505 = false;
9591 bool can_ssc = false;
9592 bool using_ssc_source = false;
9593
9594 /* We need to take the global config into account */
9595 for_each_intel_encoder(&dev_priv->drm, encoder) {
9596 switch (encoder->type) {
9597 case INTEL_OUTPUT_LVDS:
9598 has_panel = true;
9599 has_lvds = true;
9600 break;
9601 case INTEL_OUTPUT_EDP:
9602 has_panel = true;
9603 if (encoder->port == PORT_A)
9604 has_cpu_edp = true;
9605 break;
9606 default:
9607 break;
9608 }
9609 }
9610
9611 if (HAS_PCH_IBX(dev_priv)) {
9612 has_ck505 = dev_priv->vbt.display_clock_mode;
9613 can_ssc = has_ck505;
9614 } else {
9615 has_ck505 = false;
9616 can_ssc = true;
9617 }
9618
9619 /* Check if any DPLLs are using the SSC source */
9620 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) {
9621 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i));
9622
9623 if (!(temp & DPLL_VCO_ENABLE))
9624 continue;
9625
9626 if ((temp & PLL_REF_INPUT_MASK) ==
9627 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9628 using_ssc_source = true;
9629 break;
9630 }
9631 }
9632
9633 drm_dbg_kms(&dev_priv->drm,
9634 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9635 has_panel, has_lvds, has_ck505, using_ssc_source);
9636
9637 /* Ironlake: try to setup display ref clock before DPLL
9638 * enabling. This is only under driver's control after
9639 * PCH B stepping, previous chipset stepping should be
9640 * ignoring this setting.
9641 */
9642 val = intel_de_read(dev_priv, PCH_DREF_CONTROL);
9643
9644 /* As we must carefully and slowly disable/enable each source in turn,
9645 * compute the final state we want first and check if we need to
9646 * make any changes at all.
9647 */
9648 final = val;
9649 final &= ~DREF_NONSPREAD_SOURCE_MASK;
9650 if (has_ck505)
9651 final |= DREF_NONSPREAD_CK505_ENABLE;
9652 else
9653 final |= DREF_NONSPREAD_SOURCE_ENABLE;
9654
9655 final &= ~DREF_SSC_SOURCE_MASK;
9656 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9657 final &= ~DREF_SSC1_ENABLE;
9658
9659 if (has_panel) {
9660 final |= DREF_SSC_SOURCE_ENABLE;
9661
9662 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9663 final |= DREF_SSC1_ENABLE;
9664
9665 if (has_cpu_edp) {
9666 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9667 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9668 else
9669 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9670 } else
9671 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9672 } else if (using_ssc_source) {
9673 final |= DREF_SSC_SOURCE_ENABLE;
9674 final |= DREF_SSC1_ENABLE;
9675 }
9676
9677 if (final == val)
9678 return;
9679
9680 /* Always enable nonspread source */
9681 val &= ~DREF_NONSPREAD_SOURCE_MASK;
9682
9683 if (has_ck505)
9684 val |= DREF_NONSPREAD_CK505_ENABLE;
9685 else
9686 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9687
9688 if (has_panel) {
9689 val &= ~DREF_SSC_SOURCE_MASK;
9690 val |= DREF_SSC_SOURCE_ENABLE;
9691
9692 /* SSC must be turned on before enabling the CPU output */
9693 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9694 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n");
9695 val |= DREF_SSC1_ENABLE;
9696 } else
9697 val &= ~DREF_SSC1_ENABLE;
9698
9699 /* Get SSC going before enabling the outputs */
9700 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9701 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9702 udelay(200);
9703
9704 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9705
9706 /* Enable CPU source on CPU attached eDP */
9707 if (has_cpu_edp) {
9708 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9709 drm_dbg_kms(&dev_priv->drm,
9710 "Using SSC on eDP\n");
9711 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9712 } else
9713 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9714 } else
9715 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9716
9717 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9718 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9719 udelay(200);
9720 } else {
9721 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n");
9722
9723 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9724
9725 /* Turn off CPU output */
9726 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9727
9728 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9729 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9730 udelay(200);
9731
9732 if (!using_ssc_source) {
9733 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n");
9734
9735 /* Turn off the SSC source */
9736 val &= ~DREF_SSC_SOURCE_MASK;
9737 val |= DREF_SSC_SOURCE_DISABLE;
9738
9739 /* Turn off SSC1 */
9740 val &= ~DREF_SSC1_ENABLE;
9741
9742 intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9743 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9744 udelay(200);
9745 }
9746 }
9747
9748 BUG_ON(val != final);
9749 }
9750
lpt_reset_fdi_mphy(struct drm_i915_private * dev_priv)9751 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9752 {
9753 u32 tmp;
9754
9755 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9756 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9757 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9758
9759 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9760 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9761 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n");
9762
9763 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9764 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9765 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9766
9767 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9768 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9769 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n");
9770 }
9771
9772 /* WaMPhyProgramming:hsw */
lpt_program_fdi_mphy(struct drm_i915_private * dev_priv)9773 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9774 {
9775 u32 tmp;
9776
9777 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9778 tmp &= ~(0xFF << 24);
9779 tmp |= (0x12 << 24);
9780 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9781
9782 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9783 tmp |= (1 << 11);
9784 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9785
9786 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9787 tmp |= (1 << 11);
9788 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9789
9790 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9791 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9792 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9793
9794 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9795 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9796 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9797
9798 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9799 tmp &= ~(7 << 13);
9800 tmp |= (5 << 13);
9801 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9802
9803 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9804 tmp &= ~(7 << 13);
9805 tmp |= (5 << 13);
9806 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9807
9808 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9809 tmp &= ~0xFF;
9810 tmp |= 0x1C;
9811 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9812
9813 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9814 tmp &= ~0xFF;
9815 tmp |= 0x1C;
9816 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9817
9818 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9819 tmp &= ~(0xFF << 16);
9820 tmp |= (0x1C << 16);
9821 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9822
9823 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9824 tmp &= ~(0xFF << 16);
9825 tmp |= (0x1C << 16);
9826 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9827
9828 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9829 tmp |= (1 << 27);
9830 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9831
9832 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9833 tmp |= (1 << 27);
9834 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9835
9836 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9837 tmp &= ~(0xF << 28);
9838 tmp |= (4 << 28);
9839 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9840
9841 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9842 tmp &= ~(0xF << 28);
9843 tmp |= (4 << 28);
9844 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9845 }
9846
9847 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9848 * Programming" based on the parameters passed:
9849 * - Sequence to enable CLKOUT_DP
9850 * - Sequence to enable CLKOUT_DP without spread
9851 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9852 */
lpt_enable_clkout_dp(struct drm_i915_private * dev_priv,bool with_spread,bool with_fdi)9853 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9854 bool with_spread, bool with_fdi)
9855 {
9856 u32 reg, tmp;
9857
9858 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread,
9859 "FDI requires downspread\n"))
9860 with_spread = true;
9861 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) &&
9862 with_fdi, "LP PCH doesn't have FDI\n"))
9863 with_fdi = false;
9864
9865 mutex_lock(&dev_priv->sb_lock);
9866
9867 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9868 tmp &= ~SBI_SSCCTL_DISABLE;
9869 tmp |= SBI_SSCCTL_PATHALT;
9870 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9871
9872 udelay(24);
9873
9874 if (with_spread) {
9875 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9876 tmp &= ~SBI_SSCCTL_PATHALT;
9877 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9878
9879 if (with_fdi) {
9880 lpt_reset_fdi_mphy(dev_priv);
9881 lpt_program_fdi_mphy(dev_priv);
9882 }
9883 }
9884
9885 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9886 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9887 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9888 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9889
9890 mutex_unlock(&dev_priv->sb_lock);
9891 }
9892
9893 /* Sequence to disable CLKOUT_DP */
lpt_disable_clkout_dp(struct drm_i915_private * dev_priv)9894 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9895 {
9896 u32 reg, tmp;
9897
9898 mutex_lock(&dev_priv->sb_lock);
9899
9900 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9901 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9902 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9903 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9904
9905 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9906 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9907 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9908 tmp |= SBI_SSCCTL_PATHALT;
9909 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9910 udelay(32);
9911 }
9912 tmp |= SBI_SSCCTL_DISABLE;
9913 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9914 }
9915
9916 mutex_unlock(&dev_priv->sb_lock);
9917 }
9918
9919 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9920
9921 static const u16 sscdivintphase[] = {
9922 [BEND_IDX( 50)] = 0x3B23,
9923 [BEND_IDX( 45)] = 0x3B23,
9924 [BEND_IDX( 40)] = 0x3C23,
9925 [BEND_IDX( 35)] = 0x3C23,
9926 [BEND_IDX( 30)] = 0x3D23,
9927 [BEND_IDX( 25)] = 0x3D23,
9928 [BEND_IDX( 20)] = 0x3E23,
9929 [BEND_IDX( 15)] = 0x3E23,
9930 [BEND_IDX( 10)] = 0x3F23,
9931 [BEND_IDX( 5)] = 0x3F23,
9932 [BEND_IDX( 0)] = 0x0025,
9933 [BEND_IDX( -5)] = 0x0025,
9934 [BEND_IDX(-10)] = 0x0125,
9935 [BEND_IDX(-15)] = 0x0125,
9936 [BEND_IDX(-20)] = 0x0225,
9937 [BEND_IDX(-25)] = 0x0225,
9938 [BEND_IDX(-30)] = 0x0325,
9939 [BEND_IDX(-35)] = 0x0325,
9940 [BEND_IDX(-40)] = 0x0425,
9941 [BEND_IDX(-45)] = 0x0425,
9942 [BEND_IDX(-50)] = 0x0525,
9943 };
9944
9945 /*
9946 * Bend CLKOUT_DP
9947 * steps -50 to 50 inclusive, in steps of 5
9948 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9949 * change in clock period = -(steps / 10) * 5.787 ps
9950 */
lpt_bend_clkout_dp(struct drm_i915_private * dev_priv,int steps)9951 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9952 {
9953 u32 tmp;
9954 int idx = BEND_IDX(steps);
9955
9956 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0))
9957 return;
9958
9959 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase)))
9960 return;
9961
9962 mutex_lock(&dev_priv->sb_lock);
9963
9964 if (steps % 10 != 0)
9965 tmp = 0xAAAAAAAB;
9966 else
9967 tmp = 0x00000000;
9968 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9969
9970 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9971 tmp &= 0xffff0000;
9972 tmp |= sscdivintphase[idx];
9973 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9974
9975 mutex_unlock(&dev_priv->sb_lock);
9976 }
9977
9978 #undef BEND_IDX
9979
spll_uses_pch_ssc(struct drm_i915_private * dev_priv)9980 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9981 {
9982 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
9983 u32 ctl = intel_de_read(dev_priv, SPLL_CTL);
9984
9985 if ((ctl & SPLL_PLL_ENABLE) == 0)
9986 return false;
9987
9988 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9989 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9990 return true;
9991
9992 if (IS_BROADWELL(dev_priv) &&
9993 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9994 return true;
9995
9996 return false;
9997 }
9998
wrpll_uses_pch_ssc(struct drm_i915_private * dev_priv,enum intel_dpll_id id)9999 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
10000 enum intel_dpll_id id)
10001 {
10002 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
10003 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id));
10004
10005 if ((ctl & WRPLL_PLL_ENABLE) == 0)
10006 return false;
10007
10008 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
10009 return true;
10010
10011 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
10012 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
10013 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
10014 return true;
10015
10016 return false;
10017 }
10018
lpt_init_pch_refclk(struct drm_i915_private * dev_priv)10019 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
10020 {
10021 struct intel_encoder *encoder;
10022 bool has_fdi = false;
10023
10024 for_each_intel_encoder(&dev_priv->drm, encoder) {
10025 switch (encoder->type) {
10026 case INTEL_OUTPUT_ANALOG:
10027 has_fdi = true;
10028 break;
10029 default:
10030 break;
10031 }
10032 }
10033
10034 /*
10035 * The BIOS may have decided to use the PCH SSC
10036 * reference so we must not disable it until the
10037 * relevant PLLs have stopped relying on it. We'll
10038 * just leave the PCH SSC reference enabled in case
10039 * any active PLL is using it. It will get disabled
10040 * after runtime suspend if we don't have FDI.
10041 *
10042 * TODO: Move the whole reference clock handling
10043 * to the modeset sequence proper so that we can
10044 * actually enable/disable/reconfigure these things
10045 * safely. To do that we need to introduce a real
10046 * clock hierarchy. That would also allow us to do
10047 * clock bending finally.
10048 */
10049 dev_priv->pch_ssc_use = 0;
10050
10051 if (spll_uses_pch_ssc(dev_priv)) {
10052 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n");
10053 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
10054 }
10055
10056 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
10057 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n");
10058 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
10059 }
10060
10061 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
10062 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n");
10063 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
10064 }
10065
10066 if (dev_priv->pch_ssc_use)
10067 return;
10068
10069 if (has_fdi) {
10070 lpt_bend_clkout_dp(dev_priv, 0);
10071 lpt_enable_clkout_dp(dev_priv, true, true);
10072 } else {
10073 lpt_disable_clkout_dp(dev_priv);
10074 }
10075 }
10076
10077 /*
10078 * Initialize reference clocks when the driver loads
10079 */
intel_init_pch_refclk(struct drm_i915_private * dev_priv)10080 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
10081 {
10082 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
10083 ilk_init_pch_refclk(dev_priv);
10084 else if (HAS_PCH_LPT(dev_priv))
10085 lpt_init_pch_refclk(dev_priv);
10086 }
10087
ilk_set_pipeconf(const struct intel_crtc_state * crtc_state)10088 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
10089 {
10090 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10091 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10092 enum pipe pipe = crtc->pipe;
10093 u32 val;
10094
10095 val = 0;
10096
10097 switch (crtc_state->pipe_bpp) {
10098 case 18:
10099 val |= PIPECONF_6BPC;
10100 break;
10101 case 24:
10102 val |= PIPECONF_8BPC;
10103 break;
10104 case 30:
10105 val |= PIPECONF_10BPC;
10106 break;
10107 case 36:
10108 val |= PIPECONF_12BPC;
10109 break;
10110 default:
10111 /* Case prevented by intel_choose_pipe_bpp_dither. */
10112 BUG();
10113 }
10114
10115 if (crtc_state->dither)
10116 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10117
10118 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10119 val |= PIPECONF_INTERLACED_ILK;
10120 else
10121 val |= PIPECONF_PROGRESSIVE;
10122
10123 /*
10124 * This would end up with an odd purple hue over
10125 * the entire display. Make sure we don't do it.
10126 */
10127 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range &&
10128 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
10129
10130 if (crtc_state->limited_color_range &&
10131 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
10132 val |= PIPECONF_COLOR_RANGE_SELECT;
10133
10134 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10135 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
10136
10137 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
10138
10139 val |= PIPECONF_FRAME_START_DELAY(0);
10140
10141 intel_de_write(dev_priv, PIPECONF(pipe), val);
10142 intel_de_posting_read(dev_priv, PIPECONF(pipe));
10143 }
10144
hsw_set_pipeconf(const struct intel_crtc_state * crtc_state)10145 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state)
10146 {
10147 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10148 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10149 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
10150 u32 val = 0;
10151
10152 if (IS_HASWELL(dev_priv) && crtc_state->dither)
10153 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10154
10155 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10156 val |= PIPECONF_INTERLACED_ILK;
10157 else
10158 val |= PIPECONF_PROGRESSIVE;
10159
10160 if (IS_HASWELL(dev_priv) &&
10161 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10162 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
10163
10164 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val);
10165 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder));
10166 }
10167
bdw_set_pipemisc(const struct intel_crtc_state * crtc_state)10168 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
10169 {
10170 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10171 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10172 u32 val = 0;
10173
10174 switch (crtc_state->pipe_bpp) {
10175 case 18:
10176 val |= PIPEMISC_DITHER_6_BPC;
10177 break;
10178 case 24:
10179 val |= PIPEMISC_DITHER_8_BPC;
10180 break;
10181 case 30:
10182 val |= PIPEMISC_DITHER_10_BPC;
10183 break;
10184 case 36:
10185 val |= PIPEMISC_DITHER_12_BPC;
10186 break;
10187 default:
10188 MISSING_CASE(crtc_state->pipe_bpp);
10189 break;
10190 }
10191
10192 if (crtc_state->dither)
10193 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
10194
10195 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
10196 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
10197 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
10198
10199 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
10200 val |= PIPEMISC_YUV420_ENABLE |
10201 PIPEMISC_YUV420_MODE_FULL_BLEND;
10202
10203 if (INTEL_GEN(dev_priv) >= 11 &&
10204 (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
10205 BIT(PLANE_CURSOR))) == 0)
10206 val |= PIPEMISC_HDR_MODE_PRECISION;
10207
10208 if (INTEL_GEN(dev_priv) >= 12)
10209 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC;
10210
10211 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val);
10212 }
10213
bdw_get_pipemisc_bpp(struct intel_crtc * crtc)10214 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
10215 {
10216 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10217 u32 tmp;
10218
10219 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
10220
10221 switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
10222 case PIPEMISC_DITHER_6_BPC:
10223 return 18;
10224 case PIPEMISC_DITHER_8_BPC:
10225 return 24;
10226 case PIPEMISC_DITHER_10_BPC:
10227 return 30;
10228 case PIPEMISC_DITHER_12_BPC:
10229 return 36;
10230 default:
10231 MISSING_CASE(tmp);
10232 return 0;
10233 }
10234 }
10235
ilk_get_lanes_required(int target_clock,int link_bw,int bpp)10236 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
10237 {
10238 /*
10239 * Account for spread spectrum to avoid
10240 * oversubscribing the link. Max center spread
10241 * is 2.5%; use 5% for safety's sake.
10242 */
10243 u32 bps = target_clock * bpp * 21 / 20;
10244 return DIV_ROUND_UP(bps, link_bw * 8);
10245 }
10246
ilk_needs_fb_cb_tune(struct dpll * dpll,int factor)10247 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
10248 {
10249 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
10250 }
10251
ilk_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)10252 static void ilk_compute_dpll(struct intel_crtc *crtc,
10253 struct intel_crtc_state *crtc_state,
10254 struct dpll *reduced_clock)
10255 {
10256 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10257 u32 dpll, fp, fp2;
10258 int factor;
10259
10260 /* Enable autotuning of the PLL clock (if permissible) */
10261 factor = 21;
10262 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10263 if ((intel_panel_use_ssc(dev_priv) &&
10264 dev_priv->vbt.lvds_ssc_freq == 100000) ||
10265 (HAS_PCH_IBX(dev_priv) &&
10266 intel_is_dual_link_lvds(dev_priv)))
10267 factor = 25;
10268 } else if (crtc_state->sdvo_tv_clock) {
10269 factor = 20;
10270 }
10271
10272 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
10273
10274 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
10275 fp |= FP_CB_TUNE;
10276
10277 if (reduced_clock) {
10278 fp2 = i9xx_dpll_compute_fp(reduced_clock);
10279
10280 if (reduced_clock->m < factor * reduced_clock->n)
10281 fp2 |= FP_CB_TUNE;
10282 } else {
10283 fp2 = fp;
10284 }
10285
10286 dpll = 0;
10287
10288 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
10289 dpll |= DPLLB_MODE_LVDS;
10290 else
10291 dpll |= DPLLB_MODE_DAC_SERIAL;
10292
10293 dpll |= (crtc_state->pixel_multiplier - 1)
10294 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
10295
10296 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
10297 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
10298 dpll |= DPLL_SDVO_HIGH_SPEED;
10299
10300 if (intel_crtc_has_dp_encoder(crtc_state))
10301 dpll |= DPLL_SDVO_HIGH_SPEED;
10302
10303 /*
10304 * The high speed IO clock is only really required for
10305 * SDVO/HDMI/DP, but we also enable it for CRT to make it
10306 * possible to share the DPLL between CRT and HDMI. Enabling
10307 * the clock needlessly does no real harm, except use up a
10308 * bit of power potentially.
10309 *
10310 * We'll limit this to IVB with 3 pipes, since it has only two
10311 * DPLLs and so DPLL sharing is the only way to get three pipes
10312 * driving PCH ports at the same time. On SNB we could do this,
10313 * and potentially avoid enabling the second DPLL, but it's not
10314 * clear if it''s a win or loss power wise. No point in doing
10315 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
10316 */
10317 if (INTEL_NUM_PIPES(dev_priv) == 3 &&
10318 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
10319 dpll |= DPLL_SDVO_HIGH_SPEED;
10320
10321 /* compute bitmask from p1 value */
10322 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
10323 /* also FPA1 */
10324 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
10325
10326 switch (crtc_state->dpll.p2) {
10327 case 5:
10328 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
10329 break;
10330 case 7:
10331 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
10332 break;
10333 case 10:
10334 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
10335 break;
10336 case 14:
10337 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
10338 break;
10339 }
10340
10341 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
10342 intel_panel_use_ssc(dev_priv))
10343 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
10344 else
10345 dpll |= PLL_REF_INPUT_DREFCLK;
10346
10347 dpll |= DPLL_VCO_ENABLE;
10348
10349 crtc_state->dpll_hw_state.dpll = dpll;
10350 crtc_state->dpll_hw_state.fp0 = fp;
10351 crtc_state->dpll_hw_state.fp1 = fp2;
10352 }
10353
ilk_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)10354 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
10355 struct intel_crtc_state *crtc_state)
10356 {
10357 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10358 struct intel_atomic_state *state =
10359 to_intel_atomic_state(crtc_state->uapi.state);
10360 const struct intel_limit *limit;
10361 int refclk = 120000;
10362
10363 memset(&crtc_state->dpll_hw_state, 0,
10364 sizeof(crtc_state->dpll_hw_state));
10365
10366 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
10367 if (!crtc_state->has_pch_encoder)
10368 return 0;
10369
10370 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10371 if (intel_panel_use_ssc(dev_priv)) {
10372 drm_dbg_kms(&dev_priv->drm,
10373 "using SSC reference clock of %d kHz\n",
10374 dev_priv->vbt.lvds_ssc_freq);
10375 refclk = dev_priv->vbt.lvds_ssc_freq;
10376 }
10377
10378 if (intel_is_dual_link_lvds(dev_priv)) {
10379 if (refclk == 100000)
10380 limit = &ilk_limits_dual_lvds_100m;
10381 else
10382 limit = &ilk_limits_dual_lvds;
10383 } else {
10384 if (refclk == 100000)
10385 limit = &ilk_limits_single_lvds_100m;
10386 else
10387 limit = &ilk_limits_single_lvds;
10388 }
10389 } else {
10390 limit = &ilk_limits_dac;
10391 }
10392
10393 if (!crtc_state->clock_set &&
10394 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
10395 refclk, NULL, &crtc_state->dpll)) {
10396 drm_err(&dev_priv->drm,
10397 "Couldn't find PLL settings for mode!\n");
10398 return -EINVAL;
10399 }
10400
10401 ilk_compute_dpll(crtc, crtc_state, NULL);
10402
10403 if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
10404 drm_dbg_kms(&dev_priv->drm,
10405 "failed to find PLL for pipe %c\n",
10406 pipe_name(crtc->pipe));
10407 return -EINVAL;
10408 }
10409
10410 return 0;
10411 }
10412
intel_pch_transcoder_get_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)10413 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
10414 struct intel_link_m_n *m_n)
10415 {
10416 struct drm_device *dev = crtc->base.dev;
10417 struct drm_i915_private *dev_priv = to_i915(dev);
10418 enum pipe pipe = crtc->pipe;
10419
10420 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe));
10421 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe));
10422 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10423 & ~TU_SIZE_MASK;
10424 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe));
10425 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10426 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10427 }
10428
intel_cpu_transcoder_get_m_n(struct intel_crtc * crtc,enum transcoder transcoder,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)10429 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
10430 enum transcoder transcoder,
10431 struct intel_link_m_n *m_n,
10432 struct intel_link_m_n *m2_n2)
10433 {
10434 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10435 enum pipe pipe = crtc->pipe;
10436
10437 if (INTEL_GEN(dev_priv) >= 5) {
10438 m_n->link_m = intel_de_read(dev_priv,
10439 PIPE_LINK_M1(transcoder));
10440 m_n->link_n = intel_de_read(dev_priv,
10441 PIPE_LINK_N1(transcoder));
10442 m_n->gmch_m = intel_de_read(dev_priv,
10443 PIPE_DATA_M1(transcoder))
10444 & ~TU_SIZE_MASK;
10445 m_n->gmch_n = intel_de_read(dev_priv,
10446 PIPE_DATA_N1(transcoder));
10447 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder))
10448 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10449
10450 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
10451 m2_n2->link_m = intel_de_read(dev_priv,
10452 PIPE_LINK_M2(transcoder));
10453 m2_n2->link_n = intel_de_read(dev_priv,
10454 PIPE_LINK_N2(transcoder));
10455 m2_n2->gmch_m = intel_de_read(dev_priv,
10456 PIPE_DATA_M2(transcoder))
10457 & ~TU_SIZE_MASK;
10458 m2_n2->gmch_n = intel_de_read(dev_priv,
10459 PIPE_DATA_N2(transcoder));
10460 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder))
10461 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10462 }
10463 } else {
10464 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe));
10465 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe));
10466 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10467 & ~TU_SIZE_MASK;
10468 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe));
10469 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10470 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10471 }
10472 }
10473
intel_dp_get_m_n(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10474 void intel_dp_get_m_n(struct intel_crtc *crtc,
10475 struct intel_crtc_state *pipe_config)
10476 {
10477 if (pipe_config->has_pch_encoder)
10478 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
10479 else
10480 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10481 &pipe_config->dp_m_n,
10482 &pipe_config->dp_m2_n2);
10483 }
10484
ilk_get_fdi_m_n_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10485 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc,
10486 struct intel_crtc_state *pipe_config)
10487 {
10488 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10489 &pipe_config->fdi_m_n, NULL);
10490 }
10491
ilk_get_pfit_pos_size(struct intel_crtc_state * crtc_state,u32 pos,u32 size)10492 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state,
10493 u32 pos, u32 size)
10494 {
10495 drm_rect_init(&crtc_state->pch_pfit.dst,
10496 pos >> 16, pos & 0xffff,
10497 size >> 16, size & 0xffff);
10498 }
10499
skl_get_pfit_config(struct intel_crtc_state * crtc_state)10500 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state)
10501 {
10502 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10503 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10504 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
10505 int id = -1;
10506 int i;
10507
10508 /* find scaler attached to this pipe */
10509 for (i = 0; i < crtc->num_scalers; i++) {
10510 u32 ctl, pos, size;
10511
10512 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i));
10513 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN)
10514 continue;
10515
10516 id = i;
10517 crtc_state->pch_pfit.enabled = true;
10518
10519 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i));
10520 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i));
10521
10522 ilk_get_pfit_pos_size(crtc_state, pos, size);
10523
10524 scaler_state->scalers[i].in_use = true;
10525 break;
10526 }
10527
10528 scaler_state->scaler_id = id;
10529 if (id >= 0)
10530 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
10531 else
10532 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
10533 }
10534
10535 static void
skl_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)10536 skl_get_initial_plane_config(struct intel_crtc *crtc,
10537 struct intel_initial_plane_config *plane_config)
10538 {
10539 struct drm_device *dev = crtc->base.dev;
10540 struct drm_i915_private *dev_priv = to_i915(dev);
10541 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
10542 enum plane_id plane_id = plane->id;
10543 enum pipe pipe;
10544 u32 val, base, offset, stride_mult, tiling, alpha;
10545 int fourcc, pixel_format;
10546 unsigned int aligned_height;
10547 struct drm_framebuffer *fb;
10548 struct intel_framebuffer *intel_fb;
10549
10550 if (!plane->get_hw_state(plane, &pipe))
10551 return;
10552
10553 drm_WARN_ON(dev, pipe != crtc->pipe);
10554
10555 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10556 if (!intel_fb) {
10557 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
10558 return;
10559 }
10560
10561 fb = &intel_fb->base;
10562
10563 fb->dev = dev;
10564
10565 val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id));
10566
10567 if (INTEL_GEN(dev_priv) >= 11)
10568 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
10569 else
10570 pixel_format = val & PLANE_CTL_FORMAT_MASK;
10571
10572 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
10573 alpha = intel_de_read(dev_priv,
10574 PLANE_COLOR_CTL(pipe, plane_id));
10575 alpha &= PLANE_COLOR_ALPHA_MASK;
10576 } else {
10577 alpha = val & PLANE_CTL_ALPHA_MASK;
10578 }
10579
10580 fourcc = skl_format_to_fourcc(pixel_format,
10581 val & PLANE_CTL_ORDER_RGBX, alpha);
10582 fb->format = drm_format_info(fourcc);
10583
10584 tiling = val & PLANE_CTL_TILED_MASK;
10585 switch (tiling) {
10586 case PLANE_CTL_TILED_LINEAR:
10587 fb->modifier = DRM_FORMAT_MOD_LINEAR;
10588 break;
10589 case PLANE_CTL_TILED_X:
10590 plane_config->tiling = I915_TILING_X;
10591 fb->modifier = I915_FORMAT_MOD_X_TILED;
10592 break;
10593 case PLANE_CTL_TILED_Y:
10594 plane_config->tiling = I915_TILING_Y;
10595 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10596 fb->modifier = INTEL_GEN(dev_priv) >= 12 ?
10597 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS :
10598 I915_FORMAT_MOD_Y_TILED_CCS;
10599 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE)
10600 fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
10601 else
10602 fb->modifier = I915_FORMAT_MOD_Y_TILED;
10603 break;
10604 case PLANE_CTL_TILED_YF:
10605 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10606 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
10607 else
10608 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
10609 break;
10610 default:
10611 MISSING_CASE(tiling);
10612 goto error;
10613 }
10614
10615 /*
10616 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10617 * while i915 HW rotation is clockwise, thats why this swapping.
10618 */
10619 switch (val & PLANE_CTL_ROTATE_MASK) {
10620 case PLANE_CTL_ROTATE_0:
10621 plane_config->rotation = DRM_MODE_ROTATE_0;
10622 break;
10623 case PLANE_CTL_ROTATE_90:
10624 plane_config->rotation = DRM_MODE_ROTATE_270;
10625 break;
10626 case PLANE_CTL_ROTATE_180:
10627 plane_config->rotation = DRM_MODE_ROTATE_180;
10628 break;
10629 case PLANE_CTL_ROTATE_270:
10630 plane_config->rotation = DRM_MODE_ROTATE_90;
10631 break;
10632 }
10633
10634 if (INTEL_GEN(dev_priv) >= 10 &&
10635 val & PLANE_CTL_FLIP_HORIZONTAL)
10636 plane_config->rotation |= DRM_MODE_REFLECT_X;
10637
10638 /* 90/270 degree rotation would require extra work */
10639 if (drm_rotation_90_or_270(plane_config->rotation))
10640 goto error;
10641
10642 base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10643 plane_config->base = base;
10644
10645 offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id));
10646
10647 val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id));
10648 fb->height = ((val >> 16) & 0xffff) + 1;
10649 fb->width = ((val >> 0) & 0xffff) + 1;
10650
10651 val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id));
10652 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10653 fb->pitches[0] = (val & 0x3ff) * stride_mult;
10654
10655 aligned_height = intel_fb_align_height(fb, 0, fb->height);
10656
10657 plane_config->size = fb->pitches[0] * aligned_height;
10658
10659 drm_dbg_kms(&dev_priv->drm,
10660 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10661 crtc->base.name, plane->base.name, fb->width, fb->height,
10662 fb->format->cpp[0] * 8, base, fb->pitches[0],
10663 plane_config->size);
10664
10665 plane_config->fb = intel_fb;
10666 return;
10667
10668 error:
10669 kfree(intel_fb);
10670 }
10671
ilk_get_pfit_config(struct intel_crtc_state * crtc_state)10672 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state)
10673 {
10674 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10675 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10676 u32 ctl, pos, size;
10677
10678 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe));
10679 if ((ctl & PF_ENABLE) == 0)
10680 return;
10681
10682 crtc_state->pch_pfit.enabled = true;
10683
10684 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe));
10685 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe));
10686
10687 ilk_get_pfit_pos_size(crtc_state, pos, size);
10688
10689 /*
10690 * We currently do not free assignements of panel fitters on
10691 * ivb/hsw (since we don't use the higher upscaling modes which
10692 * differentiates them) so just WARN about this case for now.
10693 */
10694 drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) &&
10695 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe));
10696 }
10697
ilk_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10698 static bool ilk_get_pipe_config(struct intel_crtc *crtc,
10699 struct intel_crtc_state *pipe_config)
10700 {
10701 struct drm_device *dev = crtc->base.dev;
10702 struct drm_i915_private *dev_priv = to_i915(dev);
10703 enum intel_display_power_domain power_domain;
10704 intel_wakeref_t wakeref;
10705 u32 tmp;
10706 bool ret;
10707
10708 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10709 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10710 if (!wakeref)
10711 return false;
10712
10713 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10714 pipe_config->shared_dpll = NULL;
10715
10716 ret = false;
10717 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
10718 if (!(tmp & PIPECONF_ENABLE))
10719 goto out;
10720
10721 switch (tmp & PIPECONF_BPC_MASK) {
10722 case PIPECONF_6BPC:
10723 pipe_config->pipe_bpp = 18;
10724 break;
10725 case PIPECONF_8BPC:
10726 pipe_config->pipe_bpp = 24;
10727 break;
10728 case PIPECONF_10BPC:
10729 pipe_config->pipe_bpp = 30;
10730 break;
10731 case PIPECONF_12BPC:
10732 pipe_config->pipe_bpp = 36;
10733 break;
10734 default:
10735 break;
10736 }
10737
10738 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10739 pipe_config->limited_color_range = true;
10740
10741 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10742 case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10743 case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10744 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10745 break;
10746 default:
10747 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10748 break;
10749 }
10750
10751 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10752 PIPECONF_GAMMA_MODE_SHIFT;
10753
10754 pipe_config->csc_mode = intel_de_read(dev_priv,
10755 PIPE_CSC_MODE(crtc->pipe));
10756
10757 i9xx_get_pipe_color_config(pipe_config);
10758 intel_color_get_config(pipe_config);
10759
10760 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10761 struct intel_shared_dpll *pll;
10762 enum intel_dpll_id pll_id;
10763
10764 pipe_config->has_pch_encoder = true;
10765
10766 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe));
10767 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10768 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10769
10770 ilk_get_fdi_m_n_config(crtc, pipe_config);
10771
10772 if (HAS_PCH_IBX(dev_priv)) {
10773 /*
10774 * The pipe->pch transcoder and pch transcoder->pll
10775 * mapping is fixed.
10776 */
10777 pll_id = (enum intel_dpll_id) crtc->pipe;
10778 } else {
10779 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL);
10780 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10781 pll_id = DPLL_ID_PCH_PLL_B;
10782 else
10783 pll_id= DPLL_ID_PCH_PLL_A;
10784 }
10785
10786 pipe_config->shared_dpll =
10787 intel_get_shared_dpll_by_id(dev_priv, pll_id);
10788 pll = pipe_config->shared_dpll;
10789
10790 drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll,
10791 &pipe_config->dpll_hw_state));
10792
10793 tmp = pipe_config->dpll_hw_state.dpll;
10794 pipe_config->pixel_multiplier =
10795 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10796 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10797
10798 ilk_pch_clock_get(crtc, pipe_config);
10799 } else {
10800 pipe_config->pixel_multiplier = 1;
10801 }
10802
10803 intel_get_pipe_timings(crtc, pipe_config);
10804 intel_get_pipe_src_size(crtc, pipe_config);
10805
10806 ilk_get_pfit_config(pipe_config);
10807
10808 ret = true;
10809
10810 out:
10811 intel_display_power_put(dev_priv, power_domain, wakeref);
10812
10813 return ret;
10814 }
10815
hsw_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)10816 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
10817 struct intel_crtc_state *crtc_state)
10818 {
10819 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10820 struct intel_atomic_state *state =
10821 to_intel_atomic_state(crtc_state->uapi.state);
10822
10823 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10824 INTEL_GEN(dev_priv) >= 11) {
10825 struct intel_encoder *encoder =
10826 intel_get_crtc_new_encoder(state, crtc_state);
10827
10828 if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10829 drm_dbg_kms(&dev_priv->drm,
10830 "failed to find PLL for pipe %c\n",
10831 pipe_name(crtc->pipe));
10832 return -EINVAL;
10833 }
10834 }
10835
10836 return 0;
10837 }
10838
cnl_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10839 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10840 struct intel_crtc_state *pipe_config)
10841 {
10842 enum intel_dpll_id id;
10843 u32 temp;
10844
10845 temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10846 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10847
10848 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2))
10849 return;
10850
10851 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10852 }
10853
icl_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10854 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10855 struct intel_crtc_state *pipe_config)
10856 {
10857 enum phy phy = intel_port_to_phy(dev_priv, port);
10858 enum icl_port_dpll_id port_dpll_id;
10859 enum intel_dpll_id id;
10860 u32 temp;
10861
10862 if (intel_phy_is_combo(dev_priv, phy)) {
10863 u32 mask, shift;
10864
10865 if (IS_ROCKETLAKE(dev_priv)) {
10866 mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10867 shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10868 } else {
10869 mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10870 shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10871 }
10872
10873 temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask;
10874 id = temp >> shift;
10875 port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10876 } else if (intel_phy_is_tc(dev_priv, phy)) {
10877 u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10878
10879 if (clk_sel == DDI_CLK_SEL_MG) {
10880 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10881 port));
10882 port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10883 } else {
10884 drm_WARN_ON(&dev_priv->drm,
10885 clk_sel < DDI_CLK_SEL_TBT_162);
10886 id = DPLL_ID_ICL_TBTPLL;
10887 port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10888 }
10889 } else {
10890 drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port);
10891 return;
10892 }
10893
10894 pipe_config->icl_port_dplls[port_dpll_id].pll =
10895 intel_get_shared_dpll_by_id(dev_priv, id);
10896
10897 icl_set_active_port_dpll(pipe_config, port_dpll_id);
10898 }
10899
bxt_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10900 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10901 enum port port,
10902 struct intel_crtc_state *pipe_config)
10903 {
10904 enum intel_dpll_id id;
10905
10906 switch (port) {
10907 case PORT_A:
10908 id = DPLL_ID_SKL_DPLL0;
10909 break;
10910 case PORT_B:
10911 id = DPLL_ID_SKL_DPLL1;
10912 break;
10913 case PORT_C:
10914 id = DPLL_ID_SKL_DPLL2;
10915 break;
10916 default:
10917 drm_err(&dev_priv->drm, "Incorrect port type\n");
10918 return;
10919 }
10920
10921 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10922 }
10923
skl_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10924 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10925 struct intel_crtc_state *pipe_config)
10926 {
10927 enum intel_dpll_id id;
10928 u32 temp;
10929
10930 temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10931 id = temp >> (port * 3 + 1);
10932
10933 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3))
10934 return;
10935
10936 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10937 }
10938
hsw_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10939 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10940 struct intel_crtc_state *pipe_config)
10941 {
10942 enum intel_dpll_id id;
10943 u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port));
10944
10945 switch (ddi_pll_sel) {
10946 case PORT_CLK_SEL_WRPLL1:
10947 id = DPLL_ID_WRPLL1;
10948 break;
10949 case PORT_CLK_SEL_WRPLL2:
10950 id = DPLL_ID_WRPLL2;
10951 break;
10952 case PORT_CLK_SEL_SPLL:
10953 id = DPLL_ID_SPLL;
10954 break;
10955 case PORT_CLK_SEL_LCPLL_810:
10956 id = DPLL_ID_LCPLL_810;
10957 break;
10958 case PORT_CLK_SEL_LCPLL_1350:
10959 id = DPLL_ID_LCPLL_1350;
10960 break;
10961 case PORT_CLK_SEL_LCPLL_2700:
10962 id = DPLL_ID_LCPLL_2700;
10963 break;
10964 default:
10965 MISSING_CASE(ddi_pll_sel);
10966 fallthrough;
10967 case PORT_CLK_SEL_NONE:
10968 return;
10969 }
10970
10971 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10972 }
10973
hsw_get_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,u64 * power_domain_mask,intel_wakeref_t * wakerefs)10974 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10975 struct intel_crtc_state *pipe_config,
10976 u64 *power_domain_mask,
10977 intel_wakeref_t *wakerefs)
10978 {
10979 struct drm_device *dev = crtc->base.dev;
10980 struct drm_i915_private *dev_priv = to_i915(dev);
10981 enum intel_display_power_domain power_domain;
10982 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP);
10983 unsigned long enabled_panel_transcoders = 0;
10984 enum transcoder panel_transcoder;
10985 intel_wakeref_t wf;
10986 u32 tmp;
10987
10988 if (INTEL_GEN(dev_priv) >= 11)
10989 panel_transcoder_mask |=
10990 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10991
10992 /*
10993 * The pipe->transcoder mapping is fixed with the exception of the eDP
10994 * and DSI transcoders handled below.
10995 */
10996 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10997
10998 /*
10999 * XXX: Do intel_display_power_get_if_enabled before reading this (for
11000 * consistency and less surprising code; it's in always on power).
11001 */
11002 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder,
11003 panel_transcoder_mask) {
11004 bool force_thru = false;
11005 enum pipe trans_pipe;
11006
11007 tmp = intel_de_read(dev_priv,
11008 TRANS_DDI_FUNC_CTL(panel_transcoder));
11009 if (!(tmp & TRANS_DDI_FUNC_ENABLE))
11010 continue;
11011
11012 /*
11013 * Log all enabled ones, only use the first one.
11014 *
11015 * FIXME: This won't work for two separate DSI displays.
11016 */
11017 enabled_panel_transcoders |= BIT(panel_transcoder);
11018 if (enabled_panel_transcoders != BIT(panel_transcoder))
11019 continue;
11020
11021 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
11022 default:
11023 drm_WARN(dev, 1,
11024 "unknown pipe linked to transcoder %s\n",
11025 transcoder_name(panel_transcoder));
11026 fallthrough;
11027 case TRANS_DDI_EDP_INPUT_A_ONOFF:
11028 force_thru = true;
11029 fallthrough;
11030 case TRANS_DDI_EDP_INPUT_A_ON:
11031 trans_pipe = PIPE_A;
11032 break;
11033 case TRANS_DDI_EDP_INPUT_B_ONOFF:
11034 trans_pipe = PIPE_B;
11035 break;
11036 case TRANS_DDI_EDP_INPUT_C_ONOFF:
11037 trans_pipe = PIPE_C;
11038 break;
11039 case TRANS_DDI_EDP_INPUT_D_ONOFF:
11040 trans_pipe = PIPE_D;
11041 break;
11042 }
11043
11044 if (trans_pipe == crtc->pipe) {
11045 pipe_config->cpu_transcoder = panel_transcoder;
11046 pipe_config->pch_pfit.force_thru = force_thru;
11047 }
11048 }
11049
11050 /*
11051 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
11052 */
11053 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
11054 enabled_panel_transcoders != BIT(TRANSCODER_EDP));
11055
11056 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
11057 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11058
11059 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11060 if (!wf)
11061 return false;
11062
11063 wakerefs[power_domain] = wf;
11064 *power_domain_mask |= BIT_ULL(power_domain);
11065
11066 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder));
11067
11068 return tmp & PIPECONF_ENABLE;
11069 }
11070
bxt_get_dsi_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,u64 * power_domain_mask,intel_wakeref_t * wakerefs)11071 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
11072 struct intel_crtc_state *pipe_config,
11073 u64 *power_domain_mask,
11074 intel_wakeref_t *wakerefs)
11075 {
11076 struct drm_device *dev = crtc->base.dev;
11077 struct drm_i915_private *dev_priv = to_i915(dev);
11078 enum intel_display_power_domain power_domain;
11079 enum transcoder cpu_transcoder;
11080 intel_wakeref_t wf;
11081 enum port port;
11082 u32 tmp;
11083
11084 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
11085 if (port == PORT_A)
11086 cpu_transcoder = TRANSCODER_DSI_A;
11087 else
11088 cpu_transcoder = TRANSCODER_DSI_C;
11089
11090 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
11091 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11092
11093 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11094 if (!wf)
11095 continue;
11096
11097 wakerefs[power_domain] = wf;
11098 *power_domain_mask |= BIT_ULL(power_domain);
11099
11100 /*
11101 * The PLL needs to be enabled with a valid divider
11102 * configuration, otherwise accessing DSI registers will hang
11103 * the machine. See BSpec North Display Engine
11104 * registers/MIPI[BXT]. We can break out here early, since we
11105 * need the same DSI PLL to be enabled for both DSI ports.
11106 */
11107 if (!bxt_dsi_pll_is_enabled(dev_priv))
11108 break;
11109
11110 /* XXX: this works for video mode only */
11111 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port));
11112 if (!(tmp & DPI_ENABLE))
11113 continue;
11114
11115 tmp = intel_de_read(dev_priv, MIPI_CTRL(port));
11116 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
11117 continue;
11118
11119 pipe_config->cpu_transcoder = cpu_transcoder;
11120 break;
11121 }
11122
11123 return transcoder_is_dsi(pipe_config->cpu_transcoder);
11124 }
11125
hsw_get_ddi_port_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11126 static void hsw_get_ddi_port_state(struct intel_crtc *crtc,
11127 struct intel_crtc_state *pipe_config)
11128 {
11129 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11130 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
11131 struct intel_shared_dpll *pll;
11132 enum port port;
11133 u32 tmp;
11134
11135 if (transcoder_is_dsi(cpu_transcoder)) {
11136 port = (cpu_transcoder == TRANSCODER_DSI_A) ?
11137 PORT_A : PORT_B;
11138 } else {
11139 tmp = intel_de_read(dev_priv,
11140 TRANS_DDI_FUNC_CTL(cpu_transcoder));
11141 if (INTEL_GEN(dev_priv) >= 12)
11142 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11143 else
11144 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11145 }
11146
11147 if (INTEL_GEN(dev_priv) >= 11)
11148 icl_get_ddi_pll(dev_priv, port, pipe_config);
11149 else if (IS_CANNONLAKE(dev_priv))
11150 cnl_get_ddi_pll(dev_priv, port, pipe_config);
11151 else if (IS_GEN9_BC(dev_priv))
11152 skl_get_ddi_pll(dev_priv, port, pipe_config);
11153 else if (IS_GEN9_LP(dev_priv))
11154 bxt_get_ddi_pll(dev_priv, port, pipe_config);
11155 else
11156 hsw_get_ddi_pll(dev_priv, port, pipe_config);
11157
11158 pll = pipe_config->shared_dpll;
11159 if (pll) {
11160 drm_WARN_ON(&dev_priv->drm,
11161 !pll->info->funcs->get_hw_state(dev_priv, pll,
11162 &pipe_config->dpll_hw_state));
11163 }
11164
11165 /*
11166 * Haswell has only FDI/PCH transcoder A. It is which is connected to
11167 * DDI E. So just check whether this pipe is wired to DDI E and whether
11168 * the PCH transcoder is on.
11169 */
11170 if (INTEL_GEN(dev_priv) < 9 &&
11171 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) {
11172 pipe_config->has_pch_encoder = true;
11173
11174 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A));
11175 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
11176 FDI_DP_PORT_WIDTH_SHIFT) + 1;
11177
11178 ilk_get_fdi_m_n_config(crtc, pipe_config);
11179 }
11180 }
11181
hsw_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11182 static bool hsw_get_pipe_config(struct intel_crtc *crtc,
11183 struct intel_crtc_state *pipe_config)
11184 {
11185 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11186 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
11187 enum intel_display_power_domain power_domain;
11188 u64 power_domain_mask;
11189 bool active;
11190 u32 tmp;
11191
11192 pipe_config->master_transcoder = INVALID_TRANSCODER;
11193
11194 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
11195 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11196 if (!wf)
11197 return false;
11198
11199 wakerefs[power_domain] = wf;
11200 power_domain_mask = BIT_ULL(power_domain);
11201
11202 pipe_config->shared_dpll = NULL;
11203
11204 active = hsw_get_transcoder_state(crtc, pipe_config,
11205 &power_domain_mask, wakerefs);
11206
11207 if (IS_GEN9_LP(dev_priv) &&
11208 bxt_get_dsi_transcoder_state(crtc, pipe_config,
11209 &power_domain_mask, wakerefs)) {
11210 drm_WARN_ON(&dev_priv->drm, active);
11211 active = true;
11212 }
11213
11214 if (!active)
11215 goto out;
11216
11217 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
11218 INTEL_GEN(dev_priv) >= 11) {
11219 hsw_get_ddi_port_state(crtc, pipe_config);
11220 intel_get_pipe_timings(crtc, pipe_config);
11221 }
11222
11223 intel_get_pipe_src_size(crtc, pipe_config);
11224
11225 if (IS_HASWELL(dev_priv)) {
11226 u32 tmp = intel_de_read(dev_priv,
11227 PIPECONF(pipe_config->cpu_transcoder));
11228
11229 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
11230 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
11231 else
11232 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
11233 } else {
11234 pipe_config->output_format =
11235 bdw_get_pipemisc_output_format(crtc);
11236
11237 /*
11238 * Currently there is no interface defined to
11239 * check user preference between RGB/YCBCR444
11240 * or YCBCR420. So the only possible case for
11241 * YCBCR444 usage is driving YCBCR420 output
11242 * with LSPCON, when pipe is configured for
11243 * YCBCR444 output and LSPCON takes care of
11244 * downsampling it.
11245 */
11246 pipe_config->lspcon_downsampling =
11247 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
11248 }
11249
11250 pipe_config->gamma_mode = intel_de_read(dev_priv,
11251 GAMMA_MODE(crtc->pipe));
11252
11253 pipe_config->csc_mode = intel_de_read(dev_priv,
11254 PIPE_CSC_MODE(crtc->pipe));
11255
11256 if (INTEL_GEN(dev_priv) >= 9) {
11257 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe));
11258
11259 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
11260 pipe_config->gamma_enable = true;
11261
11262 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
11263 pipe_config->csc_enable = true;
11264 } else {
11265 i9xx_get_pipe_color_config(pipe_config);
11266 }
11267
11268 intel_color_get_config(pipe_config);
11269
11270 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe));
11271 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp);
11272 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
11273 pipe_config->ips_linetime =
11274 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp);
11275
11276 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
11277 drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain));
11278
11279 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11280 if (wf) {
11281 wakerefs[power_domain] = wf;
11282 power_domain_mask |= BIT_ULL(power_domain);
11283
11284 if (INTEL_GEN(dev_priv) >= 9)
11285 skl_get_pfit_config(pipe_config);
11286 else
11287 ilk_get_pfit_config(pipe_config);
11288 }
11289
11290 if (hsw_crtc_supports_ips(crtc)) {
11291 if (IS_HASWELL(dev_priv))
11292 pipe_config->ips_enabled = intel_de_read(dev_priv,
11293 IPS_CTL) & IPS_ENABLE;
11294 else {
11295 /*
11296 * We cannot readout IPS state on broadwell, set to
11297 * true so we can set it to a defined state on first
11298 * commit.
11299 */
11300 pipe_config->ips_enabled = true;
11301 }
11302 }
11303
11304 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
11305 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
11306 pipe_config->pixel_multiplier =
11307 intel_de_read(dev_priv,
11308 PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
11309 } else {
11310 pipe_config->pixel_multiplier = 1;
11311 }
11312
11313 out:
11314 for_each_power_domain(power_domain, power_domain_mask)
11315 intel_display_power_put(dev_priv,
11316 power_domain, wakerefs[power_domain]);
11317
11318 return active;
11319 }
11320
intel_cursor_base(const struct intel_plane_state * plane_state)11321 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
11322 {
11323 struct drm_i915_private *dev_priv =
11324 to_i915(plane_state->uapi.plane->dev);
11325 const struct drm_framebuffer *fb = plane_state->hw.fb;
11326 const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11327 u32 base;
11328
11329 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
11330 base = sg_dma_address(obj->mm.pages->sgl);
11331 else
11332 base = intel_plane_ggtt_offset(plane_state);
11333
11334 return base + plane_state->color_plane[0].offset;
11335 }
11336
intel_cursor_position(const struct intel_plane_state * plane_state)11337 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
11338 {
11339 int x = plane_state->uapi.dst.x1;
11340 int y = plane_state->uapi.dst.y1;
11341 u32 pos = 0;
11342
11343 if (x < 0) {
11344 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
11345 x = -x;
11346 }
11347 pos |= x << CURSOR_X_SHIFT;
11348
11349 if (y < 0) {
11350 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
11351 y = -y;
11352 }
11353 pos |= y << CURSOR_Y_SHIFT;
11354
11355 return pos;
11356 }
11357
intel_cursor_size_ok(const struct intel_plane_state * plane_state)11358 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
11359 {
11360 const struct drm_mode_config *config =
11361 &plane_state->uapi.plane->dev->mode_config;
11362 int width = drm_rect_width(&plane_state->uapi.dst);
11363 int height = drm_rect_height(&plane_state->uapi.dst);
11364
11365 return width > 0 && width <= config->cursor_width &&
11366 height > 0 && height <= config->cursor_height;
11367 }
11368
intel_cursor_check_surface(struct intel_plane_state * plane_state)11369 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
11370 {
11371 struct drm_i915_private *dev_priv =
11372 to_i915(plane_state->uapi.plane->dev);
11373 unsigned int rotation = plane_state->hw.rotation;
11374 int src_x, src_y;
11375 u32 offset;
11376 int ret;
11377
11378 ret = intel_plane_compute_gtt(plane_state);
11379 if (ret)
11380 return ret;
11381
11382 if (!plane_state->uapi.visible)
11383 return 0;
11384
11385 src_x = plane_state->uapi.src.x1 >> 16;
11386 src_y = plane_state->uapi.src.y1 >> 16;
11387
11388 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
11389 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
11390 plane_state, 0);
11391
11392 if (src_x != 0 || src_y != 0) {
11393 drm_dbg_kms(&dev_priv->drm,
11394 "Arbitrary cursor panning not supported\n");
11395 return -EINVAL;
11396 }
11397
11398 /*
11399 * Put the final coordinates back so that the src
11400 * coordinate checks will see the right values.
11401 */
11402 drm_rect_translate_to(&plane_state->uapi.src,
11403 src_x << 16, src_y << 16);
11404
11405 /* ILK+ do this automagically in hardware */
11406 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
11407 const struct drm_framebuffer *fb = plane_state->hw.fb;
11408 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
11409 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
11410
11411 offset += (src_h * src_w - 1) * fb->format->cpp[0];
11412 }
11413
11414 plane_state->color_plane[0].offset = offset;
11415 plane_state->color_plane[0].x = src_x;
11416 plane_state->color_plane[0].y = src_y;
11417
11418 return 0;
11419 }
11420
intel_check_cursor(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)11421 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
11422 struct intel_plane_state *plane_state)
11423 {
11424 const struct drm_framebuffer *fb = plane_state->hw.fb;
11425 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11426 int ret;
11427
11428 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
11429 drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n");
11430 return -EINVAL;
11431 }
11432
11433 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
11434 &crtc_state->uapi,
11435 DRM_PLANE_HELPER_NO_SCALING,
11436 DRM_PLANE_HELPER_NO_SCALING,
11437 true, true);
11438 if (ret)
11439 return ret;
11440
11441 /* Use the unclipped src/dst rectangles, which we program to hw */
11442 plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi);
11443 plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi);
11444
11445 ret = intel_cursor_check_surface(plane_state);
11446 if (ret)
11447 return ret;
11448
11449 if (!plane_state->uapi.visible)
11450 return 0;
11451
11452 ret = intel_plane_check_src_coordinates(plane_state);
11453 if (ret)
11454 return ret;
11455
11456 return 0;
11457 }
11458
11459 static unsigned int
i845_cursor_max_stride(struct intel_plane * plane,u32 pixel_format,u64 modifier,unsigned int rotation)11460 i845_cursor_max_stride(struct intel_plane *plane,
11461 u32 pixel_format, u64 modifier,
11462 unsigned int rotation)
11463 {
11464 return 2048;
11465 }
11466
i845_cursor_ctl_crtc(const struct intel_crtc_state * crtc_state)11467 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11468 {
11469 u32 cntl = 0;
11470
11471 if (crtc_state->gamma_enable)
11472 cntl |= CURSOR_GAMMA_ENABLE;
11473
11474 return cntl;
11475 }
11476
i845_cursor_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11477 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
11478 const struct intel_plane_state *plane_state)
11479 {
11480 return CURSOR_ENABLE |
11481 CURSOR_FORMAT_ARGB |
11482 CURSOR_STRIDE(plane_state->color_plane[0].stride);
11483 }
11484
i845_cursor_size_ok(const struct intel_plane_state * plane_state)11485 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
11486 {
11487 int width = drm_rect_width(&plane_state->uapi.dst);
11488
11489 /*
11490 * 845g/865g are only limited by the width of their cursors,
11491 * the height is arbitrary up to the precision of the register.
11492 */
11493 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
11494 }
11495
i845_check_cursor(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)11496 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
11497 struct intel_plane_state *plane_state)
11498 {
11499 const struct drm_framebuffer *fb = plane_state->hw.fb;
11500 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11501 int ret;
11502
11503 ret = intel_check_cursor(crtc_state, plane_state);
11504 if (ret)
11505 return ret;
11506
11507 /* if we want to turn off the cursor ignore width and height */
11508 if (!fb)
11509 return 0;
11510
11511 /* Check for which cursor types we support */
11512 if (!i845_cursor_size_ok(plane_state)) {
11513 drm_dbg_kms(&i915->drm,
11514 "Cursor dimension %dx%d not supported\n",
11515 drm_rect_width(&plane_state->uapi.dst),
11516 drm_rect_height(&plane_state->uapi.dst));
11517 return -EINVAL;
11518 }
11519
11520 drm_WARN_ON(&i915->drm, plane_state->uapi.visible &&
11521 plane_state->color_plane[0].stride != fb->pitches[0]);
11522
11523 switch (fb->pitches[0]) {
11524 case 256:
11525 case 512:
11526 case 1024:
11527 case 2048:
11528 break;
11529 default:
11530 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n",
11531 fb->pitches[0]);
11532 return -EINVAL;
11533 }
11534
11535 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
11536
11537 return 0;
11538 }
11539
i845_update_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11540 static void i845_update_cursor(struct intel_plane *plane,
11541 const struct intel_crtc_state *crtc_state,
11542 const struct intel_plane_state *plane_state)
11543 {
11544 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11545 u32 cntl = 0, base = 0, pos = 0, size = 0;
11546 unsigned long irqflags;
11547
11548 if (plane_state && plane_state->uapi.visible) {
11549 unsigned int width = drm_rect_width(&plane_state->uapi.dst);
11550 unsigned int height = drm_rect_height(&plane_state->uapi.dst);
11551
11552 cntl = plane_state->ctl |
11553 i845_cursor_ctl_crtc(crtc_state);
11554
11555 size = (height << 12) | width;
11556
11557 base = intel_cursor_base(plane_state);
11558 pos = intel_cursor_position(plane_state);
11559 }
11560
11561 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11562
11563 /* On these chipsets we can only modify the base/size/stride
11564 * whilst the cursor is disabled.
11565 */
11566 if (plane->cursor.base != base ||
11567 plane->cursor.size != size ||
11568 plane->cursor.cntl != cntl) {
11569 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0);
11570 intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base);
11571 intel_de_write_fw(dev_priv, CURSIZE, size);
11572 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11573 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl);
11574
11575 plane->cursor.base = base;
11576 plane->cursor.size = size;
11577 plane->cursor.cntl = cntl;
11578 } else {
11579 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11580 }
11581
11582 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11583 }
11584
i845_disable_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)11585 static void i845_disable_cursor(struct intel_plane *plane,
11586 const struct intel_crtc_state *crtc_state)
11587 {
11588 i845_update_cursor(plane, crtc_state, NULL);
11589 }
11590
i845_cursor_get_hw_state(struct intel_plane * plane,enum pipe * pipe)11591 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
11592 enum pipe *pipe)
11593 {
11594 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11595 enum intel_display_power_domain power_domain;
11596 intel_wakeref_t wakeref;
11597 bool ret;
11598
11599 power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11600 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11601 if (!wakeref)
11602 return false;
11603
11604 ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11605
11606 *pipe = PIPE_A;
11607
11608 intel_display_power_put(dev_priv, power_domain, wakeref);
11609
11610 return ret;
11611 }
11612
11613 static unsigned int
i9xx_cursor_max_stride(struct intel_plane * plane,u32 pixel_format,u64 modifier,unsigned int rotation)11614 i9xx_cursor_max_stride(struct intel_plane *plane,
11615 u32 pixel_format, u64 modifier,
11616 unsigned int rotation)
11617 {
11618 return plane->base.dev->mode_config.cursor_width * 4;
11619 }
11620
i9xx_cursor_ctl_crtc(const struct intel_crtc_state * crtc_state)11621 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11622 {
11623 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11624 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11625 u32 cntl = 0;
11626
11627 if (INTEL_GEN(dev_priv) >= 11)
11628 return cntl;
11629
11630 if (crtc_state->gamma_enable)
11631 cntl = MCURSOR_GAMMA_ENABLE;
11632
11633 if (crtc_state->csc_enable)
11634 cntl |= MCURSOR_PIPE_CSC_ENABLE;
11635
11636 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11637 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11638
11639 return cntl;
11640 }
11641
i9xx_cursor_ctl(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11642 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11643 const struct intel_plane_state *plane_state)
11644 {
11645 struct drm_i915_private *dev_priv =
11646 to_i915(plane_state->uapi.plane->dev);
11647 u32 cntl = 0;
11648
11649 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11650 cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11651
11652 switch (drm_rect_width(&plane_state->uapi.dst)) {
11653 case 64:
11654 cntl |= MCURSOR_MODE_64_ARGB_AX;
11655 break;
11656 case 128:
11657 cntl |= MCURSOR_MODE_128_ARGB_AX;
11658 break;
11659 case 256:
11660 cntl |= MCURSOR_MODE_256_ARGB_AX;
11661 break;
11662 default:
11663 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst));
11664 return 0;
11665 }
11666
11667 if (plane_state->hw.rotation & DRM_MODE_ROTATE_180)
11668 cntl |= MCURSOR_ROTATE_180;
11669
11670 return cntl;
11671 }
11672
i9xx_cursor_size_ok(const struct intel_plane_state * plane_state)11673 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11674 {
11675 struct drm_i915_private *dev_priv =
11676 to_i915(plane_state->uapi.plane->dev);
11677 int width = drm_rect_width(&plane_state->uapi.dst);
11678 int height = drm_rect_height(&plane_state->uapi.dst);
11679
11680 if (!intel_cursor_size_ok(plane_state))
11681 return false;
11682
11683 /* Cursor width is limited to a few power-of-two sizes */
11684 switch (width) {
11685 case 256:
11686 case 128:
11687 case 64:
11688 break;
11689 default:
11690 return false;
11691 }
11692
11693 /*
11694 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11695 * height from 8 lines up to the cursor width, when the
11696 * cursor is not rotated. Everything else requires square
11697 * cursors.
11698 */
11699 if (HAS_CUR_FBC(dev_priv) &&
11700 plane_state->hw.rotation & DRM_MODE_ROTATE_0) {
11701 if (height < 8 || height > width)
11702 return false;
11703 } else {
11704 if (height != width)
11705 return false;
11706 }
11707
11708 return true;
11709 }
11710
i9xx_check_cursor(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)11711 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11712 struct intel_plane_state *plane_state)
11713 {
11714 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
11715 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11716 const struct drm_framebuffer *fb = plane_state->hw.fb;
11717 enum pipe pipe = plane->pipe;
11718 int ret;
11719
11720 ret = intel_check_cursor(crtc_state, plane_state);
11721 if (ret)
11722 return ret;
11723
11724 /* if we want to turn off the cursor ignore width and height */
11725 if (!fb)
11726 return 0;
11727
11728 /* Check for which cursor types we support */
11729 if (!i9xx_cursor_size_ok(plane_state)) {
11730 drm_dbg(&dev_priv->drm,
11731 "Cursor dimension %dx%d not supported\n",
11732 drm_rect_width(&plane_state->uapi.dst),
11733 drm_rect_height(&plane_state->uapi.dst));
11734 return -EINVAL;
11735 }
11736
11737 drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible &&
11738 plane_state->color_plane[0].stride != fb->pitches[0]);
11739
11740 if (fb->pitches[0] !=
11741 drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) {
11742 drm_dbg_kms(&dev_priv->drm,
11743 "Invalid cursor stride (%u) (cursor width %d)\n",
11744 fb->pitches[0],
11745 drm_rect_width(&plane_state->uapi.dst));
11746 return -EINVAL;
11747 }
11748
11749 /*
11750 * There's something wrong with the cursor on CHV pipe C.
11751 * If it straddles the left edge of the screen then
11752 * moving it away from the edge or disabling it often
11753 * results in a pipe underrun, and often that can lead to
11754 * dead pipe (constant underrun reported, and it scans
11755 * out just a solid color). To recover from that, the
11756 * display power well must be turned off and on again.
11757 * Refuse the put the cursor into that compromised position.
11758 */
11759 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11760 plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) {
11761 drm_dbg_kms(&dev_priv->drm,
11762 "CHV cursor C not allowed to straddle the left screen edge\n");
11763 return -EINVAL;
11764 }
11765
11766 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11767
11768 return 0;
11769 }
11770
i9xx_update_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)11771 static void i9xx_update_cursor(struct intel_plane *plane,
11772 const struct intel_crtc_state *crtc_state,
11773 const struct intel_plane_state *plane_state)
11774 {
11775 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11776 enum pipe pipe = plane->pipe;
11777 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11778 unsigned long irqflags;
11779
11780 if (plane_state && plane_state->uapi.visible) {
11781 unsigned width = drm_rect_width(&plane_state->uapi.dst);
11782 unsigned height = drm_rect_height(&plane_state->uapi.dst);
11783
11784 cntl = plane_state->ctl |
11785 i9xx_cursor_ctl_crtc(crtc_state);
11786
11787 if (width != height)
11788 fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11789
11790 base = intel_cursor_base(plane_state);
11791 pos = intel_cursor_position(plane_state);
11792 }
11793
11794 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11795
11796 /*
11797 * On some platforms writing CURCNTR first will also
11798 * cause CURPOS to be armed by the CURBASE write.
11799 * Without the CURCNTR write the CURPOS write would
11800 * arm itself. Thus we always update CURCNTR before
11801 * CURPOS.
11802 *
11803 * On other platforms CURPOS always requires the
11804 * CURBASE write to arm the update. Additonally
11805 * a write to any of the cursor register will cancel
11806 * an already armed cursor update. Thus leaving out
11807 * the CURBASE write after CURPOS could lead to a
11808 * cursor that doesn't appear to move, or even change
11809 * shape. Thus we always write CURBASE.
11810 *
11811 * The other registers are armed by by the CURBASE write
11812 * except when the plane is getting enabled at which time
11813 * the CURCNTR write arms the update.
11814 */
11815
11816 if (INTEL_GEN(dev_priv) >= 9)
11817 skl_write_cursor_wm(plane, crtc_state);
11818
11819 if (plane->cursor.base != base ||
11820 plane->cursor.size != fbc_ctl ||
11821 plane->cursor.cntl != cntl) {
11822 if (HAS_CUR_FBC(dev_priv))
11823 intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe),
11824 fbc_ctl);
11825 intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl);
11826 intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11827 intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11828
11829 plane->cursor.base = base;
11830 plane->cursor.size = fbc_ctl;
11831 plane->cursor.cntl = cntl;
11832 } else {
11833 intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11834 intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11835 }
11836
11837 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11838 }
11839
i9xx_disable_cursor(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)11840 static void i9xx_disable_cursor(struct intel_plane *plane,
11841 const struct intel_crtc_state *crtc_state)
11842 {
11843 i9xx_update_cursor(plane, crtc_state, NULL);
11844 }
11845
i9xx_cursor_get_hw_state(struct intel_plane * plane,enum pipe * pipe)11846 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11847 enum pipe *pipe)
11848 {
11849 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11850 enum intel_display_power_domain power_domain;
11851 intel_wakeref_t wakeref;
11852 bool ret;
11853 u32 val;
11854
11855 /*
11856 * Not 100% correct for planes that can move between pipes,
11857 * but that's only the case for gen2-3 which don't have any
11858 * display power wells.
11859 */
11860 power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11861 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11862 if (!wakeref)
11863 return false;
11864
11865 val = intel_de_read(dev_priv, CURCNTR(plane->pipe));
11866
11867 ret = val & MCURSOR_MODE;
11868
11869 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11870 *pipe = plane->pipe;
11871 else
11872 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11873 MCURSOR_PIPE_SELECT_SHIFT;
11874
11875 intel_display_power_put(dev_priv, power_domain, wakeref);
11876
11877 return ret;
11878 }
11879
11880 /* VESA 640x480x72Hz mode to set on the pipe */
11881 static const struct drm_display_mode load_detect_mode = {
11882 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11883 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11884 };
11885
11886 struct drm_framebuffer *
intel_framebuffer_create(struct drm_i915_gem_object * obj,struct drm_mode_fb_cmd2 * mode_cmd)11887 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11888 struct drm_mode_fb_cmd2 *mode_cmd)
11889 {
11890 struct intel_framebuffer *intel_fb;
11891 int ret;
11892
11893 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11894 if (!intel_fb)
11895 return ERR_PTR(-ENOMEM);
11896
11897 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11898 if (ret)
11899 goto err;
11900
11901 return &intel_fb->base;
11902
11903 err:
11904 kfree(intel_fb);
11905 return ERR_PTR(ret);
11906 }
11907
intel_modeset_disable_planes(struct drm_atomic_state * state,struct drm_crtc * crtc)11908 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11909 struct drm_crtc *crtc)
11910 {
11911 struct drm_plane *plane;
11912 struct drm_plane_state *plane_state;
11913 int ret, i;
11914
11915 ret = drm_atomic_add_affected_planes(state, crtc);
11916 if (ret)
11917 return ret;
11918
11919 for_each_new_plane_in_state(state, plane, plane_state, i) {
11920 if (plane_state->crtc != crtc)
11921 continue;
11922
11923 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11924 if (ret)
11925 return ret;
11926
11927 drm_atomic_set_fb_for_plane(plane_state, NULL);
11928 }
11929
11930 return 0;
11931 }
11932
intel_get_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)11933 int intel_get_load_detect_pipe(struct drm_connector *connector,
11934 struct intel_load_detect_pipe *old,
11935 struct drm_modeset_acquire_ctx *ctx)
11936 {
11937 struct intel_crtc *intel_crtc;
11938 struct intel_encoder *intel_encoder =
11939 intel_attached_encoder(to_intel_connector(connector));
11940 struct drm_crtc *possible_crtc;
11941 struct drm_encoder *encoder = &intel_encoder->base;
11942 struct drm_crtc *crtc = NULL;
11943 struct drm_device *dev = encoder->dev;
11944 struct drm_i915_private *dev_priv = to_i915(dev);
11945 struct drm_mode_config *config = &dev->mode_config;
11946 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11947 struct drm_connector_state *connector_state;
11948 struct intel_crtc_state *crtc_state;
11949 int ret, i = -1;
11950
11951 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11952 connector->base.id, connector->name,
11953 encoder->base.id, encoder->name);
11954
11955 old->restore_state = NULL;
11956
11957 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex));
11958
11959 /*
11960 * Algorithm gets a little messy:
11961 *
11962 * - if the connector already has an assigned crtc, use it (but make
11963 * sure it's on first)
11964 *
11965 * - try to find the first unused crtc that can drive this connector,
11966 * and use that if we find one
11967 */
11968
11969 /* See if we already have a CRTC for this connector */
11970 if (connector->state->crtc) {
11971 crtc = connector->state->crtc;
11972
11973 ret = drm_modeset_lock(&crtc->mutex, ctx);
11974 if (ret)
11975 goto fail;
11976
11977 /* Make sure the crtc and connector are running */
11978 goto found;
11979 }
11980
11981 /* Find an unused one (if possible) */
11982 for_each_crtc(dev, possible_crtc) {
11983 i++;
11984 if (!(encoder->possible_crtcs & (1 << i)))
11985 continue;
11986
11987 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11988 if (ret)
11989 goto fail;
11990
11991 if (possible_crtc->state->enable) {
11992 drm_modeset_unlock(&possible_crtc->mutex);
11993 continue;
11994 }
11995
11996 crtc = possible_crtc;
11997 break;
11998 }
11999
12000 /*
12001 * If we didn't find an unused CRTC, don't use any.
12002 */
12003 if (!crtc) {
12004 drm_dbg_kms(&dev_priv->drm,
12005 "no pipe available for load-detect\n");
12006 ret = -ENODEV;
12007 goto fail;
12008 }
12009
12010 found:
12011 intel_crtc = to_intel_crtc(crtc);
12012
12013 state = drm_atomic_state_alloc(dev);
12014 restore_state = drm_atomic_state_alloc(dev);
12015 if (!state || !restore_state) {
12016 ret = -ENOMEM;
12017 goto fail;
12018 }
12019
12020 state->acquire_ctx = ctx;
12021 restore_state->acquire_ctx = ctx;
12022
12023 connector_state = drm_atomic_get_connector_state(state, connector);
12024 if (IS_ERR(connector_state)) {
12025 ret = PTR_ERR(connector_state);
12026 goto fail;
12027 }
12028
12029 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
12030 if (ret)
12031 goto fail;
12032
12033 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
12034 if (IS_ERR(crtc_state)) {
12035 ret = PTR_ERR(crtc_state);
12036 goto fail;
12037 }
12038
12039 crtc_state->uapi.active = true;
12040
12041 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
12042 &load_detect_mode);
12043 if (ret)
12044 goto fail;
12045
12046 ret = intel_modeset_disable_planes(state, crtc);
12047 if (ret)
12048 goto fail;
12049
12050 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
12051 if (!ret)
12052 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
12053 if (!ret)
12054 ret = drm_atomic_add_affected_planes(restore_state, crtc);
12055 if (ret) {
12056 drm_dbg_kms(&dev_priv->drm,
12057 "Failed to create a copy of old state to restore: %i\n",
12058 ret);
12059 goto fail;
12060 }
12061
12062 ret = drm_atomic_commit(state);
12063 if (ret) {
12064 drm_dbg_kms(&dev_priv->drm,
12065 "failed to set mode on load-detect pipe\n");
12066 goto fail;
12067 }
12068
12069 old->restore_state = restore_state;
12070 drm_atomic_state_put(state);
12071
12072 /* let the connector get through one full cycle before testing */
12073 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
12074 return true;
12075
12076 fail:
12077 if (state) {
12078 drm_atomic_state_put(state);
12079 state = NULL;
12080 }
12081 if (restore_state) {
12082 drm_atomic_state_put(restore_state);
12083 restore_state = NULL;
12084 }
12085
12086 if (ret == -EDEADLK)
12087 return ret;
12088
12089 return false;
12090 }
12091
intel_release_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)12092 void intel_release_load_detect_pipe(struct drm_connector *connector,
12093 struct intel_load_detect_pipe *old,
12094 struct drm_modeset_acquire_ctx *ctx)
12095 {
12096 struct intel_encoder *intel_encoder =
12097 intel_attached_encoder(to_intel_connector(connector));
12098 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev);
12099 struct drm_encoder *encoder = &intel_encoder->base;
12100 struct drm_atomic_state *state = old->restore_state;
12101 int ret;
12102
12103 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
12104 connector->base.id, connector->name,
12105 encoder->base.id, encoder->name);
12106
12107 if (!state)
12108 return;
12109
12110 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
12111 if (ret)
12112 drm_dbg_kms(&i915->drm,
12113 "Couldn't release load detect pipe: %i\n", ret);
12114 drm_atomic_state_put(state);
12115 }
12116
i9xx_pll_refclk(struct drm_device * dev,const struct intel_crtc_state * pipe_config)12117 static int i9xx_pll_refclk(struct drm_device *dev,
12118 const struct intel_crtc_state *pipe_config)
12119 {
12120 struct drm_i915_private *dev_priv = to_i915(dev);
12121 u32 dpll = pipe_config->dpll_hw_state.dpll;
12122
12123 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
12124 return dev_priv->vbt.lvds_ssc_freq;
12125 else if (HAS_PCH_SPLIT(dev_priv))
12126 return 120000;
12127 else if (!IS_GEN(dev_priv, 2))
12128 return 96000;
12129 else
12130 return 48000;
12131 }
12132
12133 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)12134 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
12135 struct intel_crtc_state *pipe_config)
12136 {
12137 struct drm_device *dev = crtc->base.dev;
12138 struct drm_i915_private *dev_priv = to_i915(dev);
12139 enum pipe pipe = crtc->pipe;
12140 u32 dpll = pipe_config->dpll_hw_state.dpll;
12141 u32 fp;
12142 struct dpll clock;
12143 int port_clock;
12144 int refclk = i9xx_pll_refclk(dev, pipe_config);
12145
12146 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
12147 fp = pipe_config->dpll_hw_state.fp0;
12148 else
12149 fp = pipe_config->dpll_hw_state.fp1;
12150
12151 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
12152 if (IS_PINEVIEW(dev_priv)) {
12153 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
12154 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
12155 } else {
12156 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
12157 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
12158 }
12159
12160 if (!IS_GEN(dev_priv, 2)) {
12161 if (IS_PINEVIEW(dev_priv))
12162 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
12163 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
12164 else
12165 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
12166 DPLL_FPA01_P1_POST_DIV_SHIFT);
12167
12168 switch (dpll & DPLL_MODE_MASK) {
12169 case DPLLB_MODE_DAC_SERIAL:
12170 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
12171 5 : 10;
12172 break;
12173 case DPLLB_MODE_LVDS:
12174 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
12175 7 : 14;
12176 break;
12177 default:
12178 drm_dbg_kms(&dev_priv->drm,
12179 "Unknown DPLL mode %08x in programmed "
12180 "mode\n", (int)(dpll & DPLL_MODE_MASK));
12181 return;
12182 }
12183
12184 if (IS_PINEVIEW(dev_priv))
12185 port_clock = pnv_calc_dpll_params(refclk, &clock);
12186 else
12187 port_clock = i9xx_calc_dpll_params(refclk, &clock);
12188 } else {
12189 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv,
12190 LVDS);
12191 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
12192
12193 if (is_lvds) {
12194 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
12195 DPLL_FPA01_P1_POST_DIV_SHIFT);
12196
12197 if (lvds & LVDS_CLKB_POWER_UP)
12198 clock.p2 = 7;
12199 else
12200 clock.p2 = 14;
12201 } else {
12202 if (dpll & PLL_P1_DIVIDE_BY_TWO)
12203 clock.p1 = 2;
12204 else {
12205 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
12206 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
12207 }
12208 if (dpll & PLL_P2_DIVIDE_BY_4)
12209 clock.p2 = 4;
12210 else
12211 clock.p2 = 2;
12212 }
12213
12214 port_clock = i9xx_calc_dpll_params(refclk, &clock);
12215 }
12216
12217 /*
12218 * This value includes pixel_multiplier. We will use
12219 * port_clock to compute adjusted_mode.crtc_clock in the
12220 * encoder's get_config() function.
12221 */
12222 pipe_config->port_clock = port_clock;
12223 }
12224
intel_dotclock_calculate(int link_freq,const struct intel_link_m_n * m_n)12225 int intel_dotclock_calculate(int link_freq,
12226 const struct intel_link_m_n *m_n)
12227 {
12228 /*
12229 * The calculation for the data clock is:
12230 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
12231 * But we want to avoid losing precison if possible, so:
12232 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
12233 *
12234 * and the link clock is simpler:
12235 * link_clock = (m * link_clock) / n
12236 */
12237
12238 if (!m_n->link_n)
12239 return 0;
12240
12241 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
12242 }
12243
ilk_pch_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)12244 static void ilk_pch_clock_get(struct intel_crtc *crtc,
12245 struct intel_crtc_state *pipe_config)
12246 {
12247 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12248
12249 /* read out port_clock from the DPLL */
12250 i9xx_crtc_clock_get(crtc, pipe_config);
12251
12252 /*
12253 * In case there is an active pipe without active ports,
12254 * we may need some idea for the dotclock anyway.
12255 * Calculate one based on the FDI configuration.
12256 */
12257 pipe_config->hw.adjusted_mode.crtc_clock =
12258 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12259 &pipe_config->fdi_m_n);
12260 }
12261
intel_crtc_state_reset(struct intel_crtc_state * crtc_state,struct intel_crtc * crtc)12262 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
12263 struct intel_crtc *crtc)
12264 {
12265 memset(crtc_state, 0, sizeof(*crtc_state));
12266
12267 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
12268
12269 crtc_state->cpu_transcoder = INVALID_TRANSCODER;
12270 crtc_state->master_transcoder = INVALID_TRANSCODER;
12271 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
12272 crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID;
12273 crtc_state->scaler_state.scaler_id = -1;
12274 crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
12275 }
12276
intel_crtc_state_alloc(struct intel_crtc * crtc)12277 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
12278 {
12279 struct intel_crtc_state *crtc_state;
12280
12281 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
12282
12283 if (crtc_state)
12284 intel_crtc_state_reset(crtc_state, crtc);
12285
12286 return crtc_state;
12287 }
12288
12289 /* Returns the currently programmed mode of the given encoder. */
12290 struct drm_display_mode *
intel_encoder_current_mode(struct intel_encoder * encoder)12291 intel_encoder_current_mode(struct intel_encoder *encoder)
12292 {
12293 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
12294 struct intel_crtc_state *crtc_state;
12295 struct drm_display_mode *mode;
12296 struct intel_crtc *crtc;
12297 enum pipe pipe;
12298
12299 if (!encoder->get_hw_state(encoder, &pipe))
12300 return NULL;
12301
12302 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12303
12304 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
12305 if (!mode)
12306 return NULL;
12307
12308 crtc_state = intel_crtc_state_alloc(crtc);
12309 if (!crtc_state) {
12310 kfree(mode);
12311 return NULL;
12312 }
12313
12314 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
12315 kfree(crtc_state);
12316 kfree(mode);
12317 return NULL;
12318 }
12319
12320 encoder->get_config(encoder, crtc_state);
12321
12322 intel_mode_from_pipe_config(mode, crtc_state);
12323
12324 kfree(crtc_state);
12325
12326 return mode;
12327 }
12328
intel_crtc_destroy(struct drm_crtc * crtc)12329 static void intel_crtc_destroy(struct drm_crtc *crtc)
12330 {
12331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12332
12333 drm_crtc_cleanup(crtc);
12334 kfree(intel_crtc);
12335 }
12336
12337 /**
12338 * intel_wm_need_update - Check whether watermarks need updating
12339 * @cur: current plane state
12340 * @new: new plane state
12341 *
12342 * Check current plane state versus the new one to determine whether
12343 * watermarks need to be recalculated.
12344 *
12345 * Returns true or false.
12346 */
intel_wm_need_update(const struct intel_plane_state * cur,struct intel_plane_state * new)12347 static bool intel_wm_need_update(const struct intel_plane_state *cur,
12348 struct intel_plane_state *new)
12349 {
12350 /* Update watermarks on tiling or size changes. */
12351 if (new->uapi.visible != cur->uapi.visible)
12352 return true;
12353
12354 if (!cur->hw.fb || !new->hw.fb)
12355 return false;
12356
12357 if (cur->hw.fb->modifier != new->hw.fb->modifier ||
12358 cur->hw.rotation != new->hw.rotation ||
12359 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) ||
12360 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) ||
12361 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) ||
12362 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst))
12363 return true;
12364
12365 return false;
12366 }
12367
needs_scaling(const struct intel_plane_state * state)12368 static bool needs_scaling(const struct intel_plane_state *state)
12369 {
12370 int src_w = drm_rect_width(&state->uapi.src) >> 16;
12371 int src_h = drm_rect_height(&state->uapi.src) >> 16;
12372 int dst_w = drm_rect_width(&state->uapi.dst);
12373 int dst_h = drm_rect_height(&state->uapi.dst);
12374
12375 return (src_w != dst_w || src_h != dst_h);
12376 }
12377
intel_plane_atomic_calc_changes(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * crtc_state,const struct intel_plane_state * old_plane_state,struct intel_plane_state * plane_state)12378 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
12379 struct intel_crtc_state *crtc_state,
12380 const struct intel_plane_state *old_plane_state,
12381 struct intel_plane_state *plane_state)
12382 {
12383 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12384 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12385 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12386 bool mode_changed = needs_modeset(crtc_state);
12387 bool was_crtc_enabled = old_crtc_state->hw.active;
12388 bool is_crtc_enabled = crtc_state->hw.active;
12389 bool turn_off, turn_on, visible, was_visible;
12390 int ret;
12391
12392 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
12393 ret = skl_update_scaler_plane(crtc_state, plane_state);
12394 if (ret)
12395 return ret;
12396 }
12397
12398 was_visible = old_plane_state->uapi.visible;
12399 visible = plane_state->uapi.visible;
12400
12401 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible))
12402 was_visible = false;
12403
12404 /*
12405 * Visibility is calculated as if the crtc was on, but
12406 * after scaler setup everything depends on it being off
12407 * when the crtc isn't active.
12408 *
12409 * FIXME this is wrong for watermarks. Watermarks should also
12410 * be computed as if the pipe would be active. Perhaps move
12411 * per-plane wm computation to the .check_plane() hook, and
12412 * only combine the results from all planes in the current place?
12413 */
12414 if (!is_crtc_enabled) {
12415 intel_plane_set_invisible(crtc_state, plane_state);
12416 visible = false;
12417 }
12418
12419 if (!was_visible && !visible)
12420 return 0;
12421
12422 turn_off = was_visible && (!visible || mode_changed);
12423 turn_on = visible && (!was_visible || mode_changed);
12424
12425 drm_dbg_atomic(&dev_priv->drm,
12426 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12427 crtc->base.base.id, crtc->base.name,
12428 plane->base.base.id, plane->base.name,
12429 was_visible, visible,
12430 turn_off, turn_on, mode_changed);
12431
12432 if (turn_on) {
12433 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12434 crtc_state->update_wm_pre = true;
12435
12436 /* must disable cxsr around plane enable/disable */
12437 if (plane->id != PLANE_CURSOR)
12438 crtc_state->disable_cxsr = true;
12439 } else if (turn_off) {
12440 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12441 crtc_state->update_wm_post = true;
12442
12443 /* must disable cxsr around plane enable/disable */
12444 if (plane->id != PLANE_CURSOR)
12445 crtc_state->disable_cxsr = true;
12446 } else if (intel_wm_need_update(old_plane_state, plane_state)) {
12447 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
12448 /* FIXME bollocks */
12449 crtc_state->update_wm_pre = true;
12450 crtc_state->update_wm_post = true;
12451 }
12452 }
12453
12454 if (visible || was_visible)
12455 crtc_state->fb_bits |= plane->frontbuffer_bit;
12456
12457 /*
12458 * ILK/SNB DVSACNTR/Sprite Enable
12459 * IVB SPR_CTL/Sprite Enable
12460 * "When in Self Refresh Big FIFO mode, a write to enable the
12461 * plane will be internally buffered and delayed while Big FIFO
12462 * mode is exiting."
12463 *
12464 * Which means that enabling the sprite can take an extra frame
12465 * when we start in big FIFO mode (LP1+). Thus we need to drop
12466 * down to LP0 and wait for vblank in order to make sure the
12467 * sprite gets enabled on the next vblank after the register write.
12468 * Doing otherwise would risk enabling the sprite one frame after
12469 * we've already signalled flip completion. We can resume LP1+
12470 * once the sprite has been enabled.
12471 *
12472 *
12473 * WaCxSRDisabledForSpriteScaling:ivb
12474 * IVB SPR_SCALE/Scaling Enable
12475 * "Low Power watermarks must be disabled for at least one
12476 * frame before enabling sprite scaling, and kept disabled
12477 * until sprite scaling is disabled."
12478 *
12479 * ILK/SNB DVSASCALE/Scaling Enable
12480 * "When in Self Refresh Big FIFO mode, scaling enable will be
12481 * masked off while Big FIFO mode is exiting."
12482 *
12483 * Despite the w/a only being listed for IVB we assume that
12484 * the ILK/SNB note has similar ramifications, hence we apply
12485 * the w/a on all three platforms.
12486 *
12487 * With experimental results seems this is needed also for primary
12488 * plane, not only sprite plane.
12489 */
12490 if (plane->id != PLANE_CURSOR &&
12491 (IS_GEN_RANGE(dev_priv, 5, 6) ||
12492 IS_IVYBRIDGE(dev_priv)) &&
12493 (turn_on || (!needs_scaling(old_plane_state) &&
12494 needs_scaling(plane_state))))
12495 crtc_state->disable_lp_wm = true;
12496
12497 return 0;
12498 }
12499
encoders_cloneable(const struct intel_encoder * a,const struct intel_encoder * b)12500 static bool encoders_cloneable(const struct intel_encoder *a,
12501 const struct intel_encoder *b)
12502 {
12503 /* masks could be asymmetric, so check both ways */
12504 return a == b || (a->cloneable & (1 << b->type) &&
12505 b->cloneable & (1 << a->type));
12506 }
12507
check_single_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder)12508 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12509 struct intel_crtc *crtc,
12510 struct intel_encoder *encoder)
12511 {
12512 struct intel_encoder *source_encoder;
12513 struct drm_connector *connector;
12514 struct drm_connector_state *connector_state;
12515 int i;
12516
12517 for_each_new_connector_in_state(state, connector, connector_state, i) {
12518 if (connector_state->crtc != &crtc->base)
12519 continue;
12520
12521 source_encoder =
12522 to_intel_encoder(connector_state->best_encoder);
12523 if (!encoders_cloneable(encoder, source_encoder))
12524 return false;
12525 }
12526
12527 return true;
12528 }
12529
icl_add_linked_planes(struct intel_atomic_state * state)12530 static int icl_add_linked_planes(struct intel_atomic_state *state)
12531 {
12532 struct intel_plane *plane, *linked;
12533 struct intel_plane_state *plane_state, *linked_plane_state;
12534 int i;
12535
12536 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12537 linked = plane_state->planar_linked_plane;
12538
12539 if (!linked)
12540 continue;
12541
12542 linked_plane_state = intel_atomic_get_plane_state(state, linked);
12543 if (IS_ERR(linked_plane_state))
12544 return PTR_ERR(linked_plane_state);
12545
12546 drm_WARN_ON(state->base.dev,
12547 linked_plane_state->planar_linked_plane != plane);
12548 drm_WARN_ON(state->base.dev,
12549 linked_plane_state->planar_slave == plane_state->planar_slave);
12550 }
12551
12552 return 0;
12553 }
12554
icl_check_nv12_planes(struct intel_crtc_state * crtc_state)12555 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
12556 {
12557 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12558 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12559 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12560 struct intel_plane *plane, *linked;
12561 struct intel_plane_state *plane_state;
12562 int i;
12563
12564 if (INTEL_GEN(dev_priv) < 11)
12565 return 0;
12566
12567 /*
12568 * Destroy all old plane links and make the slave plane invisible
12569 * in the crtc_state->active_planes mask.
12570 */
12571 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12572 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
12573 continue;
12574
12575 plane_state->planar_linked_plane = NULL;
12576 if (plane_state->planar_slave && !plane_state->uapi.visible) {
12577 crtc_state->active_planes &= ~BIT(plane->id);
12578 crtc_state->update_planes |= BIT(plane->id);
12579 }
12580
12581 plane_state->planar_slave = false;
12582 }
12583
12584 if (!crtc_state->nv12_planes)
12585 return 0;
12586
12587 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12588 struct intel_plane_state *linked_state = NULL;
12589
12590 if (plane->pipe != crtc->pipe ||
12591 !(crtc_state->nv12_planes & BIT(plane->id)))
12592 continue;
12593
12594 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
12595 if (!icl_is_nv12_y_plane(dev_priv, linked->id))
12596 continue;
12597
12598 if (crtc_state->active_planes & BIT(linked->id))
12599 continue;
12600
12601 linked_state = intel_atomic_get_plane_state(state, linked);
12602 if (IS_ERR(linked_state))
12603 return PTR_ERR(linked_state);
12604
12605 break;
12606 }
12607
12608 if (!linked_state) {
12609 drm_dbg_kms(&dev_priv->drm,
12610 "Need %d free Y planes for planar YUV\n",
12611 hweight8(crtc_state->nv12_planes));
12612
12613 return -EINVAL;
12614 }
12615
12616 plane_state->planar_linked_plane = linked;
12617
12618 linked_state->planar_slave = true;
12619 linked_state->planar_linked_plane = plane;
12620 crtc_state->active_planes |= BIT(linked->id);
12621 crtc_state->update_planes |= BIT(linked->id);
12622 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n",
12623 linked->base.name, plane->base.name);
12624
12625 /* Copy parameters to slave plane */
12626 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
12627 linked_state->color_ctl = plane_state->color_ctl;
12628 linked_state->view = plane_state->view;
12629 memcpy(linked_state->color_plane, plane_state->color_plane,
12630 sizeof(linked_state->color_plane));
12631
12632 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state);
12633 linked_state->uapi.src = plane_state->uapi.src;
12634 linked_state->uapi.dst = plane_state->uapi.dst;
12635
12636 if (icl_is_hdr_plane(dev_priv, plane->id)) {
12637 if (linked->id == PLANE_SPRITE5)
12638 plane_state->cus_ctl |= PLANE_CUS_PLANE_7;
12639 else if (linked->id == PLANE_SPRITE4)
12640 plane_state->cus_ctl |= PLANE_CUS_PLANE_6;
12641 else if (linked->id == PLANE_SPRITE3)
12642 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL;
12643 else if (linked->id == PLANE_SPRITE2)
12644 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL;
12645 else
12646 MISSING_CASE(linked->id);
12647 }
12648 }
12649
12650 return 0;
12651 }
12652
c8_planes_changed(const struct intel_crtc_state * new_crtc_state)12653 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
12654 {
12655 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
12656 struct intel_atomic_state *state =
12657 to_intel_atomic_state(new_crtc_state->uapi.state);
12658 const struct intel_crtc_state *old_crtc_state =
12659 intel_atomic_get_old_crtc_state(state, crtc);
12660
12661 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12662 }
12663
hsw_linetime_wm(const struct intel_crtc_state * crtc_state)12664 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state)
12665 {
12666 const struct drm_display_mode *adjusted_mode =
12667 &crtc_state->hw.adjusted_mode;
12668 int linetime_wm;
12669
12670 if (!crtc_state->hw.enable)
12671 return 0;
12672
12673 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12674 adjusted_mode->crtc_clock);
12675
12676 return min(linetime_wm, 0x1ff);
12677 }
12678
hsw_ips_linetime_wm(const struct intel_crtc_state * crtc_state,const struct intel_cdclk_state * cdclk_state)12679 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state,
12680 const struct intel_cdclk_state *cdclk_state)
12681 {
12682 const struct drm_display_mode *adjusted_mode =
12683 &crtc_state->hw.adjusted_mode;
12684 int linetime_wm;
12685
12686 if (!crtc_state->hw.enable)
12687 return 0;
12688
12689 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12690 cdclk_state->logical.cdclk);
12691
12692 return min(linetime_wm, 0x1ff);
12693 }
12694
skl_linetime_wm(const struct intel_crtc_state * crtc_state)12695 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state)
12696 {
12697 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12698 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12699 const struct drm_display_mode *adjusted_mode =
12700 &crtc_state->hw.adjusted_mode;
12701 int linetime_wm;
12702
12703 if (!crtc_state->hw.enable)
12704 return 0;
12705
12706 linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8,
12707 crtc_state->pixel_rate);
12708
12709 /* Display WA #1135: BXT:ALL GLK:ALL */
12710 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
12711 linetime_wm /= 2;
12712
12713 return min(linetime_wm, 0x1ff);
12714 }
12715
hsw_compute_linetime_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)12716 static int hsw_compute_linetime_wm(struct intel_atomic_state *state,
12717 struct intel_crtc *crtc)
12718 {
12719 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12720 struct intel_crtc_state *crtc_state =
12721 intel_atomic_get_new_crtc_state(state, crtc);
12722 const struct intel_cdclk_state *cdclk_state;
12723
12724 if (INTEL_GEN(dev_priv) >= 9)
12725 crtc_state->linetime = skl_linetime_wm(crtc_state);
12726 else
12727 crtc_state->linetime = hsw_linetime_wm(crtc_state);
12728
12729 if (!hsw_crtc_supports_ips(crtc))
12730 return 0;
12731
12732 cdclk_state = intel_atomic_get_cdclk_state(state);
12733 if (IS_ERR(cdclk_state))
12734 return PTR_ERR(cdclk_state);
12735
12736 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state,
12737 cdclk_state);
12738
12739 return 0;
12740 }
12741
intel_crtc_atomic_check(struct intel_atomic_state * state,struct intel_crtc * crtc)12742 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12743 struct intel_crtc *crtc)
12744 {
12745 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12746 struct intel_crtc_state *crtc_state =
12747 intel_atomic_get_new_crtc_state(state, crtc);
12748 bool mode_changed = needs_modeset(crtc_state);
12749 int ret;
12750
12751 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12752 mode_changed && !crtc_state->hw.active)
12753 crtc_state->update_wm_post = true;
12754
12755 if (mode_changed && crtc_state->hw.enable &&
12756 dev_priv->display.crtc_compute_clock &&
12757 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) {
12758 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12759 if (ret)
12760 return ret;
12761 }
12762
12763 /*
12764 * May need to update pipe gamma enable bits
12765 * when C8 planes are getting enabled/disabled.
12766 */
12767 if (c8_planes_changed(crtc_state))
12768 crtc_state->uapi.color_mgmt_changed = true;
12769
12770 if (mode_changed || crtc_state->update_pipe ||
12771 crtc_state->uapi.color_mgmt_changed) {
12772 ret = intel_color_check(crtc_state);
12773 if (ret)
12774 return ret;
12775 }
12776
12777 if (dev_priv->display.compute_pipe_wm) {
12778 ret = dev_priv->display.compute_pipe_wm(crtc_state);
12779 if (ret) {
12780 drm_dbg_kms(&dev_priv->drm,
12781 "Target pipe watermarks are invalid\n");
12782 return ret;
12783 }
12784 }
12785
12786 if (dev_priv->display.compute_intermediate_wm) {
12787 if (drm_WARN_ON(&dev_priv->drm,
12788 !dev_priv->display.compute_pipe_wm))
12789 return 0;
12790
12791 /*
12792 * Calculate 'intermediate' watermarks that satisfy both the
12793 * old state and the new state. We can program these
12794 * immediately.
12795 */
12796 ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12797 if (ret) {
12798 drm_dbg_kms(&dev_priv->drm,
12799 "No valid intermediate pipe watermarks are possible\n");
12800 return ret;
12801 }
12802 }
12803
12804 if (INTEL_GEN(dev_priv) >= 9) {
12805 if (mode_changed || crtc_state->update_pipe) {
12806 ret = skl_update_scaler_crtc(crtc_state);
12807 if (ret)
12808 return ret;
12809 }
12810
12811 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state);
12812 if (ret)
12813 return ret;
12814 }
12815
12816 if (HAS_IPS(dev_priv)) {
12817 ret = hsw_compute_ips_config(crtc_state);
12818 if (ret)
12819 return ret;
12820 }
12821
12822 if (INTEL_GEN(dev_priv) >= 9 ||
12823 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
12824 ret = hsw_compute_linetime_wm(state, crtc);
12825 if (ret)
12826 return ret;
12827
12828 }
12829
12830 if (!mode_changed)
12831 intel_psr2_sel_fetch_update(state, crtc);
12832
12833 return 0;
12834 }
12835
intel_modeset_update_connector_atomic_state(struct drm_device * dev)12836 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12837 {
12838 struct intel_connector *connector;
12839 struct drm_connector_list_iter conn_iter;
12840
12841 drm_connector_list_iter_begin(dev, &conn_iter);
12842 for_each_intel_connector_iter(connector, &conn_iter) {
12843 if (connector->base.state->crtc)
12844 drm_connector_put(&connector->base);
12845
12846 if (connector->base.encoder) {
12847 connector->base.state->best_encoder =
12848 connector->base.encoder;
12849 connector->base.state->crtc =
12850 connector->base.encoder->crtc;
12851
12852 drm_connector_get(&connector->base);
12853 } else {
12854 connector->base.state->best_encoder = NULL;
12855 connector->base.state->crtc = NULL;
12856 }
12857 }
12858 drm_connector_list_iter_end(&conn_iter);
12859 }
12860
12861 static int
compute_sink_pipe_bpp(const struct drm_connector_state * conn_state,struct intel_crtc_state * pipe_config)12862 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12863 struct intel_crtc_state *pipe_config)
12864 {
12865 struct drm_connector *connector = conn_state->connector;
12866 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12867 const struct drm_display_info *info = &connector->display_info;
12868 int bpp;
12869
12870 switch (conn_state->max_bpc) {
12871 case 6 ... 7:
12872 bpp = 6 * 3;
12873 break;
12874 case 8 ... 9:
12875 bpp = 8 * 3;
12876 break;
12877 case 10 ... 11:
12878 bpp = 10 * 3;
12879 break;
12880 case 12 ... 16:
12881 bpp = 12 * 3;
12882 break;
12883 default:
12884 MISSING_CASE(conn_state->max_bpc);
12885 return -EINVAL;
12886 }
12887
12888 if (bpp < pipe_config->pipe_bpp) {
12889 drm_dbg_kms(&i915->drm,
12890 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12891 "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12892 connector->base.id, connector->name,
12893 bpp, 3 * info->bpc,
12894 3 * conn_state->max_requested_bpc,
12895 pipe_config->pipe_bpp);
12896
12897 pipe_config->pipe_bpp = bpp;
12898 }
12899
12900 return 0;
12901 }
12902
12903 static int
compute_baseline_pipe_bpp(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)12904 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12905 struct intel_crtc_state *pipe_config)
12906 {
12907 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12908 struct drm_atomic_state *state = pipe_config->uapi.state;
12909 struct drm_connector *connector;
12910 struct drm_connector_state *connector_state;
12911 int bpp, i;
12912
12913 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12914 IS_CHERRYVIEW(dev_priv)))
12915 bpp = 10*3;
12916 else if (INTEL_GEN(dev_priv) >= 5)
12917 bpp = 12*3;
12918 else
12919 bpp = 8*3;
12920
12921 pipe_config->pipe_bpp = bpp;
12922
12923 /* Clamp display bpp to connector max bpp */
12924 for_each_new_connector_in_state(state, connector, connector_state, i) {
12925 int ret;
12926
12927 if (connector_state->crtc != &crtc->base)
12928 continue;
12929
12930 ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12931 if (ret)
12932 return ret;
12933 }
12934
12935 return 0;
12936 }
12937
intel_dump_crtc_timings(struct drm_i915_private * i915,const struct drm_display_mode * mode)12938 static void intel_dump_crtc_timings(struct drm_i915_private *i915,
12939 const struct drm_display_mode *mode)
12940 {
12941 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, "
12942 "type: 0x%x flags: 0x%x\n",
12943 mode->crtc_clock,
12944 mode->crtc_hdisplay, mode->crtc_hsync_start,
12945 mode->crtc_hsync_end, mode->crtc_htotal,
12946 mode->crtc_vdisplay, mode->crtc_vsync_start,
12947 mode->crtc_vsync_end, mode->crtc_vtotal,
12948 mode->type, mode->flags);
12949 }
12950
12951 static void
intel_dump_m_n_config(const struct intel_crtc_state * pipe_config,const char * id,unsigned int lane_count,const struct intel_link_m_n * m_n)12952 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12953 const char *id, unsigned int lane_count,
12954 const struct intel_link_m_n *m_n)
12955 {
12956 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12957
12958 drm_dbg_kms(&i915->drm,
12959 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12960 id, lane_count,
12961 m_n->gmch_m, m_n->gmch_n,
12962 m_n->link_m, m_n->link_n, m_n->tu);
12963 }
12964
12965 static void
intel_dump_infoframe(struct drm_i915_private * dev_priv,const union hdmi_infoframe * frame)12966 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12967 const union hdmi_infoframe *frame)
12968 {
12969 if (!drm_debug_enabled(DRM_UT_KMS))
12970 return;
12971
12972 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12973 }
12974
12975 static void
intel_dump_dp_vsc_sdp(struct drm_i915_private * dev_priv,const struct drm_dp_vsc_sdp * vsc)12976 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv,
12977 const struct drm_dp_vsc_sdp *vsc)
12978 {
12979 if (!drm_debug_enabled(DRM_UT_KMS))
12980 return;
12981
12982 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc);
12983 }
12984
12985 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12986
12987 static const char * const output_type_str[] = {
12988 OUTPUT_TYPE(UNUSED),
12989 OUTPUT_TYPE(ANALOG),
12990 OUTPUT_TYPE(DVO),
12991 OUTPUT_TYPE(SDVO),
12992 OUTPUT_TYPE(LVDS),
12993 OUTPUT_TYPE(TVOUT),
12994 OUTPUT_TYPE(HDMI),
12995 OUTPUT_TYPE(DP),
12996 OUTPUT_TYPE(EDP),
12997 OUTPUT_TYPE(DSI),
12998 OUTPUT_TYPE(DDI),
12999 OUTPUT_TYPE(DP_MST),
13000 };
13001
13002 #undef OUTPUT_TYPE
13003
snprintf_output_types(char * buf,size_t len,unsigned int output_types)13004 static void snprintf_output_types(char *buf, size_t len,
13005 unsigned int output_types)
13006 {
13007 char *str = buf;
13008 int i;
13009
13010 str[0] = '\0';
13011
13012 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
13013 int r;
13014
13015 if ((output_types & BIT(i)) == 0)
13016 continue;
13017
13018 r = snprintf(str, len, "%s%s",
13019 str != buf ? "," : "", output_type_str[i]);
13020 if (r >= len)
13021 break;
13022 str += r;
13023 len -= r;
13024
13025 output_types &= ~BIT(i);
13026 }
13027
13028 WARN_ON_ONCE(output_types != 0);
13029 }
13030
13031 static const char * const output_format_str[] = {
13032 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
13033 [INTEL_OUTPUT_FORMAT_RGB] = "RGB",
13034 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
13035 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
13036 };
13037
output_formats(enum intel_output_format format)13038 static const char *output_formats(enum intel_output_format format)
13039 {
13040 if (format >= ARRAY_SIZE(output_format_str))
13041 format = INTEL_OUTPUT_FORMAT_INVALID;
13042 return output_format_str[format];
13043 }
13044
intel_dump_plane_state(const struct intel_plane_state * plane_state)13045 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
13046 {
13047 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
13048 struct drm_i915_private *i915 = to_i915(plane->base.dev);
13049 const struct drm_framebuffer *fb = plane_state->hw.fb;
13050 struct drm_format_name_buf format_name;
13051
13052 if (!fb) {
13053 drm_dbg_kms(&i915->drm,
13054 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
13055 plane->base.base.id, plane->base.name,
13056 yesno(plane_state->uapi.visible));
13057 return;
13058 }
13059
13060 drm_dbg_kms(&i915->drm,
13061 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
13062 plane->base.base.id, plane->base.name,
13063 fb->base.id, fb->width, fb->height,
13064 drm_get_format_name(fb->format->format, &format_name),
13065 yesno(plane_state->uapi.visible));
13066 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n",
13067 plane_state->hw.rotation, plane_state->scaler_id);
13068 if (plane_state->uapi.visible)
13069 drm_dbg_kms(&i915->drm,
13070 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
13071 DRM_RECT_FP_ARG(&plane_state->uapi.src),
13072 DRM_RECT_ARG(&plane_state->uapi.dst));
13073 }
13074
intel_dump_pipe_config(const struct intel_crtc_state * pipe_config,struct intel_atomic_state * state,const char * context)13075 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
13076 struct intel_atomic_state *state,
13077 const char *context)
13078 {
13079 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13080 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13081 const struct intel_plane_state *plane_state;
13082 struct intel_plane *plane;
13083 char buf[64];
13084 int i;
13085
13086 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n",
13087 crtc->base.base.id, crtc->base.name,
13088 yesno(pipe_config->hw.enable), context);
13089
13090 if (!pipe_config->hw.enable)
13091 goto dump_planes;
13092
13093 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
13094 drm_dbg_kms(&dev_priv->drm,
13095 "active: %s, output_types: %s (0x%x), output format: %s\n",
13096 yesno(pipe_config->hw.active),
13097 buf, pipe_config->output_types,
13098 output_formats(pipe_config->output_format));
13099
13100 drm_dbg_kms(&dev_priv->drm,
13101 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
13102 transcoder_name(pipe_config->cpu_transcoder),
13103 pipe_config->pipe_bpp, pipe_config->dither);
13104
13105 drm_dbg_kms(&dev_priv->drm,
13106 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n",
13107 transcoder_name(pipe_config->master_transcoder),
13108 pipe_config->sync_mode_slaves_mask);
13109
13110 if (pipe_config->has_pch_encoder)
13111 intel_dump_m_n_config(pipe_config, "fdi",
13112 pipe_config->fdi_lanes,
13113 &pipe_config->fdi_m_n);
13114
13115 if (intel_crtc_has_dp_encoder(pipe_config)) {
13116 intel_dump_m_n_config(pipe_config, "dp m_n",
13117 pipe_config->lane_count, &pipe_config->dp_m_n);
13118 if (pipe_config->has_drrs)
13119 intel_dump_m_n_config(pipe_config, "dp m2_n2",
13120 pipe_config->lane_count,
13121 &pipe_config->dp_m2_n2);
13122 }
13123
13124 drm_dbg_kms(&dev_priv->drm,
13125 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
13126 pipe_config->has_audio, pipe_config->has_infoframe,
13127 pipe_config->infoframes.enable);
13128
13129 if (pipe_config->infoframes.enable &
13130 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
13131 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n",
13132 pipe_config->infoframes.gcp);
13133 if (pipe_config->infoframes.enable &
13134 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
13135 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
13136 if (pipe_config->infoframes.enable &
13137 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
13138 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
13139 if (pipe_config->infoframes.enable &
13140 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
13141 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
13142 if (pipe_config->infoframes.enable &
13143 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM))
13144 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13145 if (pipe_config->infoframes.enable &
13146 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA))
13147 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13148 if (pipe_config->infoframes.enable &
13149 intel_hdmi_infoframe_enable(DP_SDP_VSC))
13150 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc);
13151
13152 drm_dbg_kms(&dev_priv->drm, "requested mode:\n");
13153 drm_mode_debug_printmodeline(&pipe_config->hw.mode);
13154 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n");
13155 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode);
13156 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode);
13157 drm_dbg_kms(&dev_priv->drm,
13158 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
13159 pipe_config->port_clock,
13160 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
13161 pipe_config->pixel_rate);
13162
13163 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n",
13164 pipe_config->linetime, pipe_config->ips_linetime);
13165
13166 if (INTEL_GEN(dev_priv) >= 9)
13167 drm_dbg_kms(&dev_priv->drm,
13168 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
13169 crtc->num_scalers,
13170 pipe_config->scaler_state.scaler_users,
13171 pipe_config->scaler_state.scaler_id);
13172
13173 if (HAS_GMCH(dev_priv))
13174 drm_dbg_kms(&dev_priv->drm,
13175 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
13176 pipe_config->gmch_pfit.control,
13177 pipe_config->gmch_pfit.pgm_ratios,
13178 pipe_config->gmch_pfit.lvds_border_bits);
13179 else
13180 drm_dbg_kms(&dev_priv->drm,
13181 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n",
13182 DRM_RECT_ARG(&pipe_config->pch_pfit.dst),
13183 enableddisabled(pipe_config->pch_pfit.enabled),
13184 yesno(pipe_config->pch_pfit.force_thru));
13185
13186 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n",
13187 pipe_config->ips_enabled, pipe_config->double_wide);
13188
13189 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
13190
13191 if (IS_CHERRYVIEW(dev_priv))
13192 drm_dbg_kms(&dev_priv->drm,
13193 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13194 pipe_config->cgm_mode, pipe_config->gamma_mode,
13195 pipe_config->gamma_enable, pipe_config->csc_enable);
13196 else
13197 drm_dbg_kms(&dev_priv->drm,
13198 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13199 pipe_config->csc_mode, pipe_config->gamma_mode,
13200 pipe_config->gamma_enable, pipe_config->csc_enable);
13201
13202 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n",
13203 transcoder_name(pipe_config->mst_master_transcoder));
13204
13205 dump_planes:
13206 if (!state)
13207 return;
13208
13209 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
13210 if (plane->pipe == crtc->pipe)
13211 intel_dump_plane_state(plane_state);
13212 }
13213 }
13214
check_digital_port_conflicts(struct intel_atomic_state * state)13215 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
13216 {
13217 struct drm_device *dev = state->base.dev;
13218 struct drm_connector *connector;
13219 struct drm_connector_list_iter conn_iter;
13220 unsigned int used_ports = 0;
13221 unsigned int used_mst_ports = 0;
13222 bool ret = true;
13223
13224 /*
13225 * We're going to peek into connector->state,
13226 * hence connection_mutex must be held.
13227 */
13228 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
13229
13230 /*
13231 * Walk the connector list instead of the encoder
13232 * list to detect the problem on ddi platforms
13233 * where there's just one encoder per digital port.
13234 */
13235 drm_connector_list_iter_begin(dev, &conn_iter);
13236 drm_for_each_connector_iter(connector, &conn_iter) {
13237 struct drm_connector_state *connector_state;
13238 struct intel_encoder *encoder;
13239
13240 connector_state =
13241 drm_atomic_get_new_connector_state(&state->base,
13242 connector);
13243 if (!connector_state)
13244 connector_state = connector->state;
13245
13246 if (!connector_state->best_encoder)
13247 continue;
13248
13249 encoder = to_intel_encoder(connector_state->best_encoder);
13250
13251 drm_WARN_ON(dev, !connector_state->crtc);
13252
13253 switch (encoder->type) {
13254 case INTEL_OUTPUT_DDI:
13255 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev))))
13256 break;
13257 fallthrough;
13258 case INTEL_OUTPUT_DP:
13259 case INTEL_OUTPUT_HDMI:
13260 case INTEL_OUTPUT_EDP:
13261 /* the same port mustn't appear more than once */
13262 if (used_ports & BIT(encoder->port))
13263 ret = false;
13264
13265 used_ports |= BIT(encoder->port);
13266 break;
13267 case INTEL_OUTPUT_DP_MST:
13268 used_mst_ports |=
13269 1 << encoder->port;
13270 break;
13271 default:
13272 break;
13273 }
13274 }
13275 drm_connector_list_iter_end(&conn_iter);
13276
13277 /* can't mix MST and SST/HDMI on the same port */
13278 if (used_ports & used_mst_ports)
13279 return false;
13280
13281 return ret;
13282 }
13283
13284 static void
intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state * crtc_state)13285 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state)
13286 {
13287 intel_crtc_copy_color_blobs(crtc_state);
13288 }
13289
13290 static void
intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state * crtc_state)13291 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state)
13292 {
13293 crtc_state->hw.enable = crtc_state->uapi.enable;
13294 crtc_state->hw.active = crtc_state->uapi.active;
13295 crtc_state->hw.mode = crtc_state->uapi.mode;
13296 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode;
13297 intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state);
13298 }
13299
intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state * crtc_state)13300 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state)
13301 {
13302 crtc_state->uapi.enable = crtc_state->hw.enable;
13303 crtc_state->uapi.active = crtc_state->hw.active;
13304 drm_WARN_ON(crtc_state->uapi.crtc->dev,
13305 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0);
13306
13307 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode;
13308
13309 /* copy color blobs to uapi */
13310 drm_property_replace_blob(&crtc_state->uapi.degamma_lut,
13311 crtc_state->hw.degamma_lut);
13312 drm_property_replace_blob(&crtc_state->uapi.gamma_lut,
13313 crtc_state->hw.gamma_lut);
13314 drm_property_replace_blob(&crtc_state->uapi.ctm,
13315 crtc_state->hw.ctm);
13316 }
13317
13318 static int
intel_crtc_prepare_cleared_state(struct intel_crtc_state * crtc_state)13319 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state)
13320 {
13321 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13322 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13323 struct intel_crtc_state *saved_state;
13324
13325 saved_state = intel_crtc_state_alloc(crtc);
13326 if (!saved_state)
13327 return -ENOMEM;
13328
13329 /* free the old crtc_state->hw members */
13330 intel_crtc_free_hw_state(crtc_state);
13331
13332 /* FIXME: before the switch to atomic started, a new pipe_config was
13333 * kzalloc'd. Code that depends on any field being zero should be
13334 * fixed, so that the crtc_state can be safely duplicated. For now,
13335 * only fields that are know to not cause problems are preserved. */
13336
13337 saved_state->uapi = crtc_state->uapi;
13338 saved_state->inherited = crtc_state->inherited;
13339 saved_state->scaler_state = crtc_state->scaler_state;
13340 saved_state->shared_dpll = crtc_state->shared_dpll;
13341 saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
13342 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
13343 sizeof(saved_state->icl_port_dplls));
13344 saved_state->crc_enabled = crtc_state->crc_enabled;
13345 if (IS_G4X(dev_priv) ||
13346 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13347 saved_state->wm = crtc_state->wm;
13348
13349 memcpy(crtc_state, saved_state, sizeof(*crtc_state));
13350 kfree(saved_state);
13351
13352 intel_crtc_copy_uapi_to_hw_state(crtc_state);
13353
13354 return 0;
13355 }
13356
13357 static int
intel_modeset_pipe_config(struct intel_crtc_state * pipe_config)13358 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
13359 {
13360 struct drm_crtc *crtc = pipe_config->uapi.crtc;
13361 struct drm_atomic_state *state = pipe_config->uapi.state;
13362 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
13363 struct drm_connector *connector;
13364 struct drm_connector_state *connector_state;
13365 int base_bpp, ret, i;
13366 bool retry = true;
13367
13368 pipe_config->cpu_transcoder =
13369 (enum transcoder) to_intel_crtc(crtc)->pipe;
13370
13371 /*
13372 * Sanitize sync polarity flags based on requested ones. If neither
13373 * positive or negative polarity is requested, treat this as meaning
13374 * negative polarity.
13375 */
13376 if (!(pipe_config->hw.adjusted_mode.flags &
13377 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13378 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13379
13380 if (!(pipe_config->hw.adjusted_mode.flags &
13381 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13382 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13383
13384 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13385 pipe_config);
13386 if (ret)
13387 return ret;
13388
13389 base_bpp = pipe_config->pipe_bpp;
13390
13391 /*
13392 * Determine the real pipe dimensions. Note that stereo modes can
13393 * increase the actual pipe size due to the frame doubling and
13394 * insertion of additional space for blanks between the frame. This
13395 * is stored in the crtc timings. We use the requested mode to do this
13396 * computation to clearly distinguish it from the adjusted mode, which
13397 * can be changed by the connectors in the below retry loop.
13398 */
13399 drm_mode_get_hv_timing(&pipe_config->hw.mode,
13400 &pipe_config->pipe_src_w,
13401 &pipe_config->pipe_src_h);
13402
13403 for_each_new_connector_in_state(state, connector, connector_state, i) {
13404 struct intel_encoder *encoder =
13405 to_intel_encoder(connector_state->best_encoder);
13406
13407 if (connector_state->crtc != crtc)
13408 continue;
13409
13410 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13411 drm_dbg_kms(&i915->drm,
13412 "rejecting invalid cloning configuration\n");
13413 return -EINVAL;
13414 }
13415
13416 /*
13417 * Determine output_types before calling the .compute_config()
13418 * hooks so that the hooks can use this information safely.
13419 */
13420 if (encoder->compute_output_type)
13421 pipe_config->output_types |=
13422 BIT(encoder->compute_output_type(encoder, pipe_config,
13423 connector_state));
13424 else
13425 pipe_config->output_types |= BIT(encoder->type);
13426 }
13427
13428 encoder_retry:
13429 /* Ensure the port clock defaults are reset when retrying. */
13430 pipe_config->port_clock = 0;
13431 pipe_config->pixel_multiplier = 1;
13432
13433 /* Fill in default crtc timings, allow encoders to overwrite them. */
13434 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode,
13435 CRTC_STEREO_DOUBLE);
13436
13437 /* Pass our mode to the connectors and the CRTC to give them a chance to
13438 * adjust it according to limitations or connector properties, and also
13439 * a chance to reject the mode entirely.
13440 */
13441 for_each_new_connector_in_state(state, connector, connector_state, i) {
13442 struct intel_encoder *encoder =
13443 to_intel_encoder(connector_state->best_encoder);
13444
13445 if (connector_state->crtc != crtc)
13446 continue;
13447
13448 ret = encoder->compute_config(encoder, pipe_config,
13449 connector_state);
13450 if (ret < 0) {
13451 if (ret != -EDEADLK)
13452 drm_dbg_kms(&i915->drm,
13453 "Encoder config failure: %d\n",
13454 ret);
13455 return ret;
13456 }
13457 }
13458
13459 /* Set default port clock if not overwritten by the encoder. Needs to be
13460 * done afterwards in case the encoder adjusts the mode. */
13461 if (!pipe_config->port_clock)
13462 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock
13463 * pipe_config->pixel_multiplier;
13464
13465 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13466 if (ret == -EDEADLK)
13467 return ret;
13468 if (ret < 0) {
13469 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n");
13470 return ret;
13471 }
13472
13473 if (ret == RETRY) {
13474 if (drm_WARN(&i915->drm, !retry,
13475 "loop in pipe configuration computation\n"))
13476 return -EINVAL;
13477
13478 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n");
13479 retry = false;
13480 goto encoder_retry;
13481 }
13482
13483 /* Dithering seems to not pass-through bits correctly when it should, so
13484 * only enable it on 6bpc panels and when its not a compliance
13485 * test requesting 6bpc video pattern.
13486 */
13487 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
13488 !pipe_config->dither_force_disable;
13489 drm_dbg_kms(&i915->drm,
13490 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13491 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13492
13493 return 0;
13494 }
13495
13496 static int
intel_modeset_pipe_config_late(struct intel_crtc_state * crtc_state)13497 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state)
13498 {
13499 struct intel_atomic_state *state =
13500 to_intel_atomic_state(crtc_state->uapi.state);
13501 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13502 struct drm_connector_state *conn_state;
13503 struct drm_connector *connector;
13504 int i;
13505
13506 for_each_new_connector_in_state(&state->base, connector,
13507 conn_state, i) {
13508 struct intel_encoder *encoder =
13509 to_intel_encoder(conn_state->best_encoder);
13510 int ret;
13511
13512 if (conn_state->crtc != &crtc->base ||
13513 !encoder->compute_config_late)
13514 continue;
13515
13516 ret = encoder->compute_config_late(encoder, crtc_state,
13517 conn_state);
13518 if (ret)
13519 return ret;
13520 }
13521
13522 return 0;
13523 }
13524
intel_fuzzy_clock_check(int clock1,int clock2)13525 bool intel_fuzzy_clock_check(int clock1, int clock2)
13526 {
13527 int diff;
13528
13529 if (clock1 == clock2)
13530 return true;
13531
13532 if (!clock1 || !clock2)
13533 return false;
13534
13535 diff = abs(clock1 - clock2);
13536
13537 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13538 return true;
13539
13540 return false;
13541 }
13542
13543 static bool
intel_compare_m_n(unsigned int m,unsigned int n,unsigned int m2,unsigned int n2,bool exact)13544 intel_compare_m_n(unsigned int m, unsigned int n,
13545 unsigned int m2, unsigned int n2,
13546 bool exact)
13547 {
13548 if (m == m2 && n == n2)
13549 return true;
13550
13551 if (exact || !m || !n || !m2 || !n2)
13552 return false;
13553
13554 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13555
13556 if (n > n2) {
13557 while (n > n2) {
13558 m2 <<= 1;
13559 n2 <<= 1;
13560 }
13561 } else if (n < n2) {
13562 while (n < n2) {
13563 m <<= 1;
13564 n <<= 1;
13565 }
13566 }
13567
13568 if (n != n2)
13569 return false;
13570
13571 return intel_fuzzy_clock_check(m, m2);
13572 }
13573
13574 static bool
intel_compare_link_m_n(const struct intel_link_m_n * m_n,const struct intel_link_m_n * m2_n2,bool exact)13575 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13576 const struct intel_link_m_n *m2_n2,
13577 bool exact)
13578 {
13579 return m_n->tu == m2_n2->tu &&
13580 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13581 m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
13582 intel_compare_m_n(m_n->link_m, m_n->link_n,
13583 m2_n2->link_m, m2_n2->link_n, exact);
13584 }
13585
13586 static bool
intel_compare_infoframe(const union hdmi_infoframe * a,const union hdmi_infoframe * b)13587 intel_compare_infoframe(const union hdmi_infoframe *a,
13588 const union hdmi_infoframe *b)
13589 {
13590 return memcmp(a, b, sizeof(*a)) == 0;
13591 }
13592
13593 static bool
intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp * a,const struct drm_dp_vsc_sdp * b)13594 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a,
13595 const struct drm_dp_vsc_sdp *b)
13596 {
13597 return memcmp(a, b, sizeof(*a)) == 0;
13598 }
13599
13600 static void
pipe_config_infoframe_mismatch(struct drm_i915_private * dev_priv,bool fastset,const char * name,const union hdmi_infoframe * a,const union hdmi_infoframe * b)13601 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
13602 bool fastset, const char *name,
13603 const union hdmi_infoframe *a,
13604 const union hdmi_infoframe *b)
13605 {
13606 if (fastset) {
13607 if (!drm_debug_enabled(DRM_UT_KMS))
13608 return;
13609
13610 drm_dbg_kms(&dev_priv->drm,
13611 "fastset mismatch in %s infoframe\n", name);
13612 drm_dbg_kms(&dev_priv->drm, "expected:\n");
13613 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
13614 drm_dbg_kms(&dev_priv->drm, "found:\n");
13615 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
13616 } else {
13617 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name);
13618 drm_err(&dev_priv->drm, "expected:\n");
13619 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
13620 drm_err(&dev_priv->drm, "found:\n");
13621 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
13622 }
13623 }
13624
13625 static void
pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private * dev_priv,bool fastset,const char * name,const struct drm_dp_vsc_sdp * a,const struct drm_dp_vsc_sdp * b)13626 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv,
13627 bool fastset, const char *name,
13628 const struct drm_dp_vsc_sdp *a,
13629 const struct drm_dp_vsc_sdp *b)
13630 {
13631 if (fastset) {
13632 if (!drm_debug_enabled(DRM_UT_KMS))
13633 return;
13634
13635 drm_dbg_kms(&dev_priv->drm,
13636 "fastset mismatch in %s dp sdp\n", name);
13637 drm_dbg_kms(&dev_priv->drm, "expected:\n");
13638 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a);
13639 drm_dbg_kms(&dev_priv->drm, "found:\n");
13640 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b);
13641 } else {
13642 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name);
13643 drm_err(&dev_priv->drm, "expected:\n");
13644 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a);
13645 drm_err(&dev_priv->drm, "found:\n");
13646 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b);
13647 }
13648 }
13649
13650 static void __printf(4, 5)
pipe_config_mismatch(bool fastset,const struct intel_crtc * crtc,const char * name,const char * format,...)13651 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
13652 const char *name, const char *format, ...)
13653 {
13654 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
13655 struct va_format vaf;
13656 va_list args;
13657
13658 va_start(args, format);
13659 vaf.fmt = format;
13660 vaf.va = &args;
13661
13662 if (fastset)
13663 drm_dbg_kms(&i915->drm,
13664 "[CRTC:%d:%s] fastset mismatch in %s %pV\n",
13665 crtc->base.base.id, crtc->base.name, name, &vaf);
13666 else
13667 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n",
13668 crtc->base.base.id, crtc->base.name, name, &vaf);
13669
13670 va_end(args);
13671 }
13672
fastboot_enabled(struct drm_i915_private * dev_priv)13673 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
13674 {
13675 if (dev_priv->params.fastboot != -1)
13676 return dev_priv->params.fastboot;
13677
13678 /* Enable fastboot by default on Skylake and newer */
13679 if (INTEL_GEN(dev_priv) >= 9)
13680 return true;
13681
13682 /* Enable fastboot by default on VLV and CHV */
13683 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13684 return true;
13685
13686 /* Disabled by default on all others */
13687 return false;
13688 }
13689
13690 static bool
intel_pipe_config_compare(const struct intel_crtc_state * current_config,const struct intel_crtc_state * pipe_config,bool fastset)13691 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
13692 const struct intel_crtc_state *pipe_config,
13693 bool fastset)
13694 {
13695 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
13696 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13697 bool ret = true;
13698 u32 bp_gamma = 0;
13699 bool fixup_inherited = fastset &&
13700 current_config->inherited && !pipe_config->inherited;
13701
13702 if (fixup_inherited && !fastboot_enabled(dev_priv)) {
13703 drm_dbg_kms(&dev_priv->drm,
13704 "initial modeset and fastboot not set\n");
13705 ret = false;
13706 }
13707
13708 #define PIPE_CONF_CHECK_X(name) do { \
13709 if (current_config->name != pipe_config->name) { \
13710 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13711 "(expected 0x%08x, found 0x%08x)", \
13712 current_config->name, \
13713 pipe_config->name); \
13714 ret = false; \
13715 } \
13716 } while (0)
13717
13718 #define PIPE_CONF_CHECK_I(name) do { \
13719 if (current_config->name != pipe_config->name) { \
13720 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13721 "(expected %i, found %i)", \
13722 current_config->name, \
13723 pipe_config->name); \
13724 ret = false; \
13725 } \
13726 } while (0)
13727
13728 #define PIPE_CONF_CHECK_BOOL(name) do { \
13729 if (current_config->name != pipe_config->name) { \
13730 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13731 "(expected %s, found %s)", \
13732 yesno(current_config->name), \
13733 yesno(pipe_config->name)); \
13734 ret = false; \
13735 } \
13736 } while (0)
13737
13738 /*
13739 * Checks state where we only read out the enabling, but not the entire
13740 * state itself (like full infoframes or ELD for audio). These states
13741 * require a full modeset on bootup to fix up.
13742 */
13743 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
13744 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
13745 PIPE_CONF_CHECK_BOOL(name); \
13746 } else { \
13747 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13748 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
13749 yesno(current_config->name), \
13750 yesno(pipe_config->name)); \
13751 ret = false; \
13752 } \
13753 } while (0)
13754
13755 #define PIPE_CONF_CHECK_P(name) do { \
13756 if (current_config->name != pipe_config->name) { \
13757 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13758 "(expected %p, found %p)", \
13759 current_config->name, \
13760 pipe_config->name); \
13761 ret = false; \
13762 } \
13763 } while (0)
13764
13765 #define PIPE_CONF_CHECK_M_N(name) do { \
13766 if (!intel_compare_link_m_n(¤t_config->name, \
13767 &pipe_config->name,\
13768 !fastset)) { \
13769 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13770 "(expected tu %i gmch %i/%i link %i/%i, " \
13771 "found tu %i, gmch %i/%i link %i/%i)", \
13772 current_config->name.tu, \
13773 current_config->name.gmch_m, \
13774 current_config->name.gmch_n, \
13775 current_config->name.link_m, \
13776 current_config->name.link_n, \
13777 pipe_config->name.tu, \
13778 pipe_config->name.gmch_m, \
13779 pipe_config->name.gmch_n, \
13780 pipe_config->name.link_m, \
13781 pipe_config->name.link_n); \
13782 ret = false; \
13783 } \
13784 } while (0)
13785
13786 /* This is required for BDW+ where there is only one set of registers for
13787 * switching between high and low RR.
13788 * This macro can be used whenever a comparison has to be made between one
13789 * hw state and multiple sw state variables.
13790 */
13791 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
13792 if (!intel_compare_link_m_n(¤t_config->name, \
13793 &pipe_config->name, !fastset) && \
13794 !intel_compare_link_m_n(¤t_config->alt_name, \
13795 &pipe_config->name, !fastset)) { \
13796 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13797 "(expected tu %i gmch %i/%i link %i/%i, " \
13798 "or tu %i gmch %i/%i link %i/%i, " \
13799 "found tu %i, gmch %i/%i link %i/%i)", \
13800 current_config->name.tu, \
13801 current_config->name.gmch_m, \
13802 current_config->name.gmch_n, \
13803 current_config->name.link_m, \
13804 current_config->name.link_n, \
13805 current_config->alt_name.tu, \
13806 current_config->alt_name.gmch_m, \
13807 current_config->alt_name.gmch_n, \
13808 current_config->alt_name.link_m, \
13809 current_config->alt_name.link_n, \
13810 pipe_config->name.tu, \
13811 pipe_config->name.gmch_m, \
13812 pipe_config->name.gmch_n, \
13813 pipe_config->name.link_m, \
13814 pipe_config->name.link_n); \
13815 ret = false; \
13816 } \
13817 } while (0)
13818
13819 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13820 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13821 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13822 "(%x) (expected %i, found %i)", \
13823 (mask), \
13824 current_config->name & (mask), \
13825 pipe_config->name & (mask)); \
13826 ret = false; \
13827 } \
13828 } while (0)
13829
13830 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13831 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13832 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13833 "(expected %i, found %i)", \
13834 current_config->name, \
13835 pipe_config->name); \
13836 ret = false; \
13837 } \
13838 } while (0)
13839
13840 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13841 if (!intel_compare_infoframe(¤t_config->infoframes.name, \
13842 &pipe_config->infoframes.name)) { \
13843 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13844 ¤t_config->infoframes.name, \
13845 &pipe_config->infoframes.name); \
13846 ret = false; \
13847 } \
13848 } while (0)
13849
13850 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \
13851 if (!current_config->has_psr && !pipe_config->has_psr && \
13852 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \
13853 &pipe_config->infoframes.name)) { \
13854 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \
13855 ¤t_config->infoframes.name, \
13856 &pipe_config->infoframes.name); \
13857 ret = false; \
13858 } \
13859 } while (0)
13860
13861 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13862 if (current_config->name1 != pipe_config->name1) { \
13863 pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13864 "(expected %i, found %i, won't compare lut values)", \
13865 current_config->name1, \
13866 pipe_config->name1); \
13867 ret = false;\
13868 } else { \
13869 if (!intel_color_lut_equal(current_config->name2, \
13870 pipe_config->name2, pipe_config->name1, \
13871 bit_precision)) { \
13872 pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13873 "hw_state doesn't match sw_state"); \
13874 ret = false; \
13875 } \
13876 } \
13877 } while (0)
13878
13879 #define PIPE_CONF_QUIRK(quirk) \
13880 ((current_config->quirks | pipe_config->quirks) & (quirk))
13881
13882 PIPE_CONF_CHECK_I(cpu_transcoder);
13883
13884 PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13885 PIPE_CONF_CHECK_I(fdi_lanes);
13886 PIPE_CONF_CHECK_M_N(fdi_m_n);
13887
13888 PIPE_CONF_CHECK_I(lane_count);
13889 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13890
13891 if (INTEL_GEN(dev_priv) < 8) {
13892 PIPE_CONF_CHECK_M_N(dp_m_n);
13893
13894 if (current_config->has_drrs)
13895 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13896 } else
13897 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13898
13899 PIPE_CONF_CHECK_X(output_types);
13900
13901 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay);
13902 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal);
13903 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start);
13904 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end);
13905 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start);
13906 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end);
13907
13908 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay);
13909 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal);
13910 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start);
13911 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end);
13912 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start);
13913 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end);
13914
13915 PIPE_CONF_CHECK_I(pixel_multiplier);
13916 PIPE_CONF_CHECK_I(output_format);
13917 PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13918 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13919 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13920 PIPE_CONF_CHECK_BOOL(limited_color_range);
13921
13922 PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13923 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13924 PIPE_CONF_CHECK_BOOL(has_infoframe);
13925 PIPE_CONF_CHECK_BOOL(fec_enable);
13926
13927 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13928
13929 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13930 DRM_MODE_FLAG_INTERLACE);
13931
13932 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13933 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13934 DRM_MODE_FLAG_PHSYNC);
13935 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13936 DRM_MODE_FLAG_NHSYNC);
13937 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13938 DRM_MODE_FLAG_PVSYNC);
13939 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13940 DRM_MODE_FLAG_NVSYNC);
13941 }
13942
13943 PIPE_CONF_CHECK_X(gmch_pfit.control);
13944 /* pfit ratios are autocomputed by the hw on gen4+ */
13945 if (INTEL_GEN(dev_priv) < 4)
13946 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13947 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13948
13949 /*
13950 * Changing the EDP transcoder input mux
13951 * (A_ONOFF vs. A_ON) requires a full modeset.
13952 */
13953 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13954
13955 if (!fastset) {
13956 PIPE_CONF_CHECK_I(pipe_src_w);
13957 PIPE_CONF_CHECK_I(pipe_src_h);
13958
13959 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13960 if (current_config->pch_pfit.enabled) {
13961 PIPE_CONF_CHECK_I(pch_pfit.dst.x1);
13962 PIPE_CONF_CHECK_I(pch_pfit.dst.y1);
13963 PIPE_CONF_CHECK_I(pch_pfit.dst.x2);
13964 PIPE_CONF_CHECK_I(pch_pfit.dst.y2);
13965 }
13966
13967 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13968 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13969
13970 PIPE_CONF_CHECK_X(gamma_mode);
13971 if (IS_CHERRYVIEW(dev_priv))
13972 PIPE_CONF_CHECK_X(cgm_mode);
13973 else
13974 PIPE_CONF_CHECK_X(csc_mode);
13975 PIPE_CONF_CHECK_BOOL(gamma_enable);
13976 PIPE_CONF_CHECK_BOOL(csc_enable);
13977
13978 PIPE_CONF_CHECK_I(linetime);
13979 PIPE_CONF_CHECK_I(ips_linetime);
13980
13981 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13982 if (bp_gamma)
13983 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
13984 }
13985
13986 PIPE_CONF_CHECK_BOOL(double_wide);
13987
13988 PIPE_CONF_CHECK_P(shared_dpll);
13989 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13990 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13991 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13992 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13993 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13994 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13995 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13996 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13997 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13998 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13999 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
14000 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
14001 PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
14002 PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
14003 PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
14004 PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
14005 PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
14006 PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
14007 PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
14008 PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
14009 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
14010 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
14011 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
14012 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
14013 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
14014 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
14015 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
14016 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
14017 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
14018 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
14019 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
14020
14021 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
14022 PIPE_CONF_CHECK_X(dsi_pll.div);
14023
14024 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
14025 PIPE_CONF_CHECK_I(pipe_bpp);
14026
14027 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock);
14028 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
14029
14030 PIPE_CONF_CHECK_I(min_voltage_level);
14031
14032 PIPE_CONF_CHECK_X(infoframes.enable);
14033 PIPE_CONF_CHECK_X(infoframes.gcp);
14034 PIPE_CONF_CHECK_INFOFRAME(avi);
14035 PIPE_CONF_CHECK_INFOFRAME(spd);
14036 PIPE_CONF_CHECK_INFOFRAME(hdmi);
14037 PIPE_CONF_CHECK_INFOFRAME(drm);
14038 PIPE_CONF_CHECK_DP_VSC_SDP(vsc);
14039
14040 PIPE_CONF_CHECK_X(sync_mode_slaves_mask);
14041 PIPE_CONF_CHECK_I(master_transcoder);
14042
14043 PIPE_CONF_CHECK_I(dsc.compression_enable);
14044 PIPE_CONF_CHECK_I(dsc.dsc_split);
14045 PIPE_CONF_CHECK_I(dsc.compressed_bpp);
14046
14047 PIPE_CONF_CHECK_I(mst_master_transcoder);
14048
14049 #undef PIPE_CONF_CHECK_X
14050 #undef PIPE_CONF_CHECK_I
14051 #undef PIPE_CONF_CHECK_BOOL
14052 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
14053 #undef PIPE_CONF_CHECK_P
14054 #undef PIPE_CONF_CHECK_FLAGS
14055 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
14056 #undef PIPE_CONF_CHECK_COLOR_LUT
14057 #undef PIPE_CONF_QUIRK
14058
14059 return ret;
14060 }
14061
intel_pipe_config_sanity_check(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)14062 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
14063 const struct intel_crtc_state *pipe_config)
14064 {
14065 if (pipe_config->has_pch_encoder) {
14066 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
14067 &pipe_config->fdi_m_n);
14068 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock;
14069
14070 /*
14071 * FDI already provided one idea for the dotclock.
14072 * Yell if the encoder disagrees.
14073 */
14074 drm_WARN(&dev_priv->drm,
14075 !intel_fuzzy_clock_check(fdi_dotclock, dotclock),
14076 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
14077 fdi_dotclock, dotclock);
14078 }
14079 }
14080
verify_wm_state(struct intel_crtc * crtc,struct intel_crtc_state * new_crtc_state)14081 static void verify_wm_state(struct intel_crtc *crtc,
14082 struct intel_crtc_state *new_crtc_state)
14083 {
14084 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14085 struct skl_hw_state {
14086 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
14087 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
14088 struct skl_pipe_wm wm;
14089 } *hw;
14090 struct skl_pipe_wm *sw_wm;
14091 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
14092 u8 hw_enabled_slices;
14093 const enum pipe pipe = crtc->pipe;
14094 int plane, level, max_level = ilk_wm_max_level(dev_priv);
14095
14096 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active)
14097 return;
14098
14099 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
14100 if (!hw)
14101 return;
14102
14103 skl_pipe_wm_get_hw_state(crtc, &hw->wm);
14104 sw_wm = &new_crtc_state->wm.skl.optimal;
14105
14106 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
14107
14108 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv);
14109
14110 if (INTEL_GEN(dev_priv) >= 11 &&
14111 hw_enabled_slices != dev_priv->dbuf.enabled_slices)
14112 drm_err(&dev_priv->drm,
14113 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
14114 dev_priv->dbuf.enabled_slices,
14115 hw_enabled_slices);
14116
14117 /* planes */
14118 for_each_universal_plane(dev_priv, pipe, plane) {
14119 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14120
14121 hw_plane_wm = &hw->wm.planes[plane];
14122 sw_plane_wm = &sw_wm->planes[plane];
14123
14124 /* Watermarks */
14125 for (level = 0; level <= max_level; level++) {
14126 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14127 &sw_plane_wm->wm[level]) ||
14128 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14129 &sw_plane_wm->sagv_wm0)))
14130 continue;
14131
14132 drm_err(&dev_priv->drm,
14133 "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14134 pipe_name(pipe), plane + 1, level,
14135 sw_plane_wm->wm[level].plane_en,
14136 sw_plane_wm->wm[level].plane_res_b,
14137 sw_plane_wm->wm[level].plane_res_l,
14138 hw_plane_wm->wm[level].plane_en,
14139 hw_plane_wm->wm[level].plane_res_b,
14140 hw_plane_wm->wm[level].plane_res_l);
14141 }
14142
14143 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14144 &sw_plane_wm->trans_wm)) {
14145 drm_err(&dev_priv->drm,
14146 "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14147 pipe_name(pipe), plane + 1,
14148 sw_plane_wm->trans_wm.plane_en,
14149 sw_plane_wm->trans_wm.plane_res_b,
14150 sw_plane_wm->trans_wm.plane_res_l,
14151 hw_plane_wm->trans_wm.plane_en,
14152 hw_plane_wm->trans_wm.plane_res_b,
14153 hw_plane_wm->trans_wm.plane_res_l);
14154 }
14155
14156 /* DDB */
14157 hw_ddb_entry = &hw->ddb_y[plane];
14158 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
14159
14160 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14161 drm_err(&dev_priv->drm,
14162 "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
14163 pipe_name(pipe), plane + 1,
14164 sw_ddb_entry->start, sw_ddb_entry->end,
14165 hw_ddb_entry->start, hw_ddb_entry->end);
14166 }
14167 }
14168
14169 /*
14170 * cursor
14171 * If the cursor plane isn't active, we may not have updated it's ddb
14172 * allocation. In that case since the ddb allocation will be updated
14173 * once the plane becomes visible, we can skip this check
14174 */
14175 if (1) {
14176 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14177
14178 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
14179 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
14180
14181 /* Watermarks */
14182 for (level = 0; level <= max_level; level++) {
14183 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14184 &sw_plane_wm->wm[level]) ||
14185 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14186 &sw_plane_wm->sagv_wm0)))
14187 continue;
14188
14189 drm_err(&dev_priv->drm,
14190 "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14191 pipe_name(pipe), level,
14192 sw_plane_wm->wm[level].plane_en,
14193 sw_plane_wm->wm[level].plane_res_b,
14194 sw_plane_wm->wm[level].plane_res_l,
14195 hw_plane_wm->wm[level].plane_en,
14196 hw_plane_wm->wm[level].plane_res_b,
14197 hw_plane_wm->wm[level].plane_res_l);
14198 }
14199
14200 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14201 &sw_plane_wm->trans_wm)) {
14202 drm_err(&dev_priv->drm,
14203 "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14204 pipe_name(pipe),
14205 sw_plane_wm->trans_wm.plane_en,
14206 sw_plane_wm->trans_wm.plane_res_b,
14207 sw_plane_wm->trans_wm.plane_res_l,
14208 hw_plane_wm->trans_wm.plane_en,
14209 hw_plane_wm->trans_wm.plane_res_b,
14210 hw_plane_wm->trans_wm.plane_res_l);
14211 }
14212
14213 /* DDB */
14214 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
14215 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
14216
14217 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14218 drm_err(&dev_priv->drm,
14219 "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
14220 pipe_name(pipe),
14221 sw_ddb_entry->start, sw_ddb_entry->end,
14222 hw_ddb_entry->start, hw_ddb_entry->end);
14223 }
14224 }
14225
14226 kfree(hw);
14227 }
14228
14229 static void
verify_connector_state(struct intel_atomic_state * state,struct intel_crtc * crtc)14230 verify_connector_state(struct intel_atomic_state *state,
14231 struct intel_crtc *crtc)
14232 {
14233 struct drm_connector *connector;
14234 struct drm_connector_state *new_conn_state;
14235 int i;
14236
14237 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
14238 struct drm_encoder *encoder = connector->encoder;
14239 struct intel_crtc_state *crtc_state = NULL;
14240
14241 if (new_conn_state->crtc != &crtc->base)
14242 continue;
14243
14244 if (crtc)
14245 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
14246
14247 intel_connector_verify_state(crtc_state, new_conn_state);
14248
14249 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
14250 "connector's atomic encoder doesn't match legacy encoder\n");
14251 }
14252 }
14253
14254 static void
verify_encoder_state(struct drm_i915_private * dev_priv,struct intel_atomic_state * state)14255 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
14256 {
14257 struct intel_encoder *encoder;
14258 struct drm_connector *connector;
14259 struct drm_connector_state *old_conn_state, *new_conn_state;
14260 int i;
14261
14262 for_each_intel_encoder(&dev_priv->drm, encoder) {
14263 bool enabled = false, found = false;
14264 enum pipe pipe;
14265
14266 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n",
14267 encoder->base.base.id,
14268 encoder->base.name);
14269
14270 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
14271 new_conn_state, i) {
14272 if (old_conn_state->best_encoder == &encoder->base)
14273 found = true;
14274
14275 if (new_conn_state->best_encoder != &encoder->base)
14276 continue;
14277 found = enabled = true;
14278
14279 I915_STATE_WARN(new_conn_state->crtc !=
14280 encoder->base.crtc,
14281 "connector's crtc doesn't match encoder crtc\n");
14282 }
14283
14284 if (!found)
14285 continue;
14286
14287 I915_STATE_WARN(!!encoder->base.crtc != enabled,
14288 "encoder's enabled state mismatch "
14289 "(expected %i, found %i)\n",
14290 !!encoder->base.crtc, enabled);
14291
14292 if (!encoder->base.crtc) {
14293 bool active;
14294
14295 active = encoder->get_hw_state(encoder, &pipe);
14296 I915_STATE_WARN(active,
14297 "encoder detached but still enabled on pipe %c.\n",
14298 pipe_name(pipe));
14299 }
14300 }
14301 }
14302
14303 static void
verify_crtc_state(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14304 verify_crtc_state(struct intel_crtc *crtc,
14305 struct intel_crtc_state *old_crtc_state,
14306 struct intel_crtc_state *new_crtc_state)
14307 {
14308 struct drm_device *dev = crtc->base.dev;
14309 struct drm_i915_private *dev_priv = to_i915(dev);
14310 struct intel_encoder *encoder;
14311 struct intel_crtc_state *pipe_config = old_crtc_state;
14312 struct drm_atomic_state *state = old_crtc_state->uapi.state;
14313
14314 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi);
14315 intel_crtc_free_hw_state(old_crtc_state);
14316 intel_crtc_state_reset(old_crtc_state, crtc);
14317 old_crtc_state->uapi.state = state;
14318
14319 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id,
14320 crtc->base.name);
14321
14322 pipe_config->hw.enable = new_crtc_state->hw.enable;
14323
14324 pipe_config->hw.active =
14325 dev_priv->display.get_pipe_config(crtc, pipe_config);
14326
14327 /* we keep both pipes enabled on 830 */
14328 if (IS_I830(dev_priv) && pipe_config->hw.active)
14329 pipe_config->hw.active = new_crtc_state->hw.active;
14330
14331 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active,
14332 "crtc active state doesn't match with hw state "
14333 "(expected %i, found %i)\n",
14334 new_crtc_state->hw.active, pipe_config->hw.active);
14335
14336 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active,
14337 "transitional active state does not match atomic hw state "
14338 "(expected %i, found %i)\n",
14339 new_crtc_state->hw.active, crtc->active);
14340
14341 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14342 enum pipe pipe;
14343 bool active;
14344
14345 active = encoder->get_hw_state(encoder, &pipe);
14346 I915_STATE_WARN(active != new_crtc_state->hw.active,
14347 "[ENCODER:%i] active %i with crtc active %i\n",
14348 encoder->base.base.id, active,
14349 new_crtc_state->hw.active);
14350
14351 I915_STATE_WARN(active && crtc->pipe != pipe,
14352 "Encoder connected to wrong pipe %c\n",
14353 pipe_name(pipe));
14354
14355 if (active)
14356 encoder->get_config(encoder, pipe_config);
14357 }
14358
14359 intel_crtc_compute_pixel_rate(pipe_config);
14360
14361 if (!new_crtc_state->hw.active)
14362 return;
14363
14364 intel_pipe_config_sanity_check(dev_priv, pipe_config);
14365
14366 if (!intel_pipe_config_compare(new_crtc_state,
14367 pipe_config, false)) {
14368 I915_STATE_WARN(1, "pipe state doesn't match!\n");
14369 intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
14370 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
14371 }
14372 }
14373
14374 static void
intel_verify_planes(struct intel_atomic_state * state)14375 intel_verify_planes(struct intel_atomic_state *state)
14376 {
14377 struct intel_plane *plane;
14378 const struct intel_plane_state *plane_state;
14379 int i;
14380
14381 for_each_new_intel_plane_in_state(state, plane,
14382 plane_state, i)
14383 assert_plane(plane, plane_state->planar_slave ||
14384 plane_state->uapi.visible);
14385 }
14386
14387 static void
verify_single_dpll_state(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,struct intel_crtc * crtc,struct intel_crtc_state * new_crtc_state)14388 verify_single_dpll_state(struct drm_i915_private *dev_priv,
14389 struct intel_shared_dpll *pll,
14390 struct intel_crtc *crtc,
14391 struct intel_crtc_state *new_crtc_state)
14392 {
14393 struct intel_dpll_hw_state dpll_hw_state;
14394 unsigned int crtc_mask;
14395 bool active;
14396
14397 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
14398
14399 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name);
14400
14401 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
14402
14403 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
14404 I915_STATE_WARN(!pll->on && pll->active_mask,
14405 "pll in active use but not on in sw tracking\n");
14406 I915_STATE_WARN(pll->on && !pll->active_mask,
14407 "pll is on but not used by any active crtc\n");
14408 I915_STATE_WARN(pll->on != active,
14409 "pll on state mismatch (expected %i, found %i)\n",
14410 pll->on, active);
14411 }
14412
14413 if (!crtc) {
14414 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
14415 "more active pll users than references: %x vs %x\n",
14416 pll->active_mask, pll->state.crtc_mask);
14417
14418 return;
14419 }
14420
14421 crtc_mask = drm_crtc_mask(&crtc->base);
14422
14423 if (new_crtc_state->hw.active)
14424 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
14425 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
14426 pipe_name(crtc->pipe), pll->active_mask);
14427 else
14428 I915_STATE_WARN(pll->active_mask & crtc_mask,
14429 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
14430 pipe_name(crtc->pipe), pll->active_mask);
14431
14432 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
14433 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
14434 crtc_mask, pll->state.crtc_mask);
14435
14436 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
14437 &dpll_hw_state,
14438 sizeof(dpll_hw_state)),
14439 "pll hw state mismatch\n");
14440 }
14441
14442 static void
verify_shared_dpll_state(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14443 verify_shared_dpll_state(struct intel_crtc *crtc,
14444 struct intel_crtc_state *old_crtc_state,
14445 struct intel_crtc_state *new_crtc_state)
14446 {
14447 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14448
14449 if (new_crtc_state->shared_dpll)
14450 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
14451
14452 if (old_crtc_state->shared_dpll &&
14453 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
14454 unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
14455 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
14456
14457 I915_STATE_WARN(pll->active_mask & crtc_mask,
14458 "pll active mismatch (didn't expect pipe %c in active mask)\n",
14459 pipe_name(crtc->pipe));
14460 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
14461 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
14462 pipe_name(crtc->pipe));
14463 }
14464 }
14465
14466 static void
intel_modeset_verify_crtc(struct intel_crtc * crtc,struct intel_atomic_state * state,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14467 intel_modeset_verify_crtc(struct intel_crtc *crtc,
14468 struct intel_atomic_state *state,
14469 struct intel_crtc_state *old_crtc_state,
14470 struct intel_crtc_state *new_crtc_state)
14471 {
14472 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
14473 return;
14474
14475 verify_wm_state(crtc, new_crtc_state);
14476 verify_connector_state(state, crtc);
14477 verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
14478 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
14479 }
14480
14481 static void
verify_disabled_dpll_state(struct drm_i915_private * dev_priv)14482 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
14483 {
14484 int i;
14485
14486 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++)
14487 verify_single_dpll_state(dev_priv,
14488 &dev_priv->dpll.shared_dplls[i],
14489 NULL, NULL);
14490 }
14491
14492 static void
intel_modeset_verify_disabled(struct drm_i915_private * dev_priv,struct intel_atomic_state * state)14493 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
14494 struct intel_atomic_state *state)
14495 {
14496 verify_encoder_state(dev_priv, state);
14497 verify_connector_state(state, NULL);
14498 verify_disabled_dpll_state(dev_priv);
14499 }
14500
14501 static void
intel_crtc_update_active_timings(const struct intel_crtc_state * crtc_state)14502 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
14503 {
14504 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
14505 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14506 const struct drm_display_mode *adjusted_mode =
14507 &crtc_state->hw.adjusted_mode;
14508
14509 drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
14510
14511 crtc->mode_flags = crtc_state->mode_flags;
14512
14513 /*
14514 * The scanline counter increments at the leading edge of hsync.
14515 *
14516 * On most platforms it starts counting from vtotal-1 on the
14517 * first active line. That means the scanline counter value is
14518 * always one less than what we would expect. Ie. just after
14519 * start of vblank, which also occurs at start of hsync (on the
14520 * last active line), the scanline counter will read vblank_start-1.
14521 *
14522 * On gen2 the scanline counter starts counting from 1 instead
14523 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
14524 * to keep the value positive), instead of adding one.
14525 *
14526 * On HSW+ the behaviour of the scanline counter depends on the output
14527 * type. For DP ports it behaves like most other platforms, but on HDMI
14528 * there's an extra 1 line difference. So we need to add two instead of
14529 * one to the value.
14530 *
14531 * On VLV/CHV DSI the scanline counter would appear to increment
14532 * approx. 1/3 of a scanline before start of vblank. Unfortunately
14533 * that means we can't tell whether we're in vblank or not while
14534 * we're on that particular line. We must still set scanline_offset
14535 * to 1 so that the vblank timestamps come out correct when we query
14536 * the scanline counter from within the vblank interrupt handler.
14537 * However if queried just before the start of vblank we'll get an
14538 * answer that's slightly in the future.
14539 */
14540 if (IS_GEN(dev_priv, 2)) {
14541 int vtotal;
14542
14543 vtotal = adjusted_mode->crtc_vtotal;
14544 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
14545 vtotal /= 2;
14546
14547 crtc->scanline_offset = vtotal - 1;
14548 } else if (HAS_DDI(dev_priv) &&
14549 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
14550 crtc->scanline_offset = 2;
14551 } else {
14552 crtc->scanline_offset = 1;
14553 }
14554 }
14555
intel_modeset_clear_plls(struct intel_atomic_state * state)14556 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
14557 {
14558 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14559 struct intel_crtc_state *new_crtc_state;
14560 struct intel_crtc *crtc;
14561 int i;
14562
14563 if (!dev_priv->display.crtc_compute_clock)
14564 return;
14565
14566 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14567 if (!needs_modeset(new_crtc_state))
14568 continue;
14569
14570 intel_release_shared_dplls(state, crtc);
14571 }
14572 }
14573
14574 /*
14575 * This implements the workaround described in the "notes" section of the mode
14576 * set sequence documentation. When going from no pipes or single pipe to
14577 * multiple pipes, and planes are enabled after the pipe, we need to wait at
14578 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
14579 */
hsw_mode_set_planes_workaround(struct intel_atomic_state * state)14580 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
14581 {
14582 struct intel_crtc_state *crtc_state;
14583 struct intel_crtc *crtc;
14584 struct intel_crtc_state *first_crtc_state = NULL;
14585 struct intel_crtc_state *other_crtc_state = NULL;
14586 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
14587 int i;
14588
14589 /* look at all crtc's that are going to be enabled in during modeset */
14590 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14591 if (!crtc_state->hw.active ||
14592 !needs_modeset(crtc_state))
14593 continue;
14594
14595 if (first_crtc_state) {
14596 other_crtc_state = crtc_state;
14597 break;
14598 } else {
14599 first_crtc_state = crtc_state;
14600 first_pipe = crtc->pipe;
14601 }
14602 }
14603
14604 /* No workaround needed? */
14605 if (!first_crtc_state)
14606 return 0;
14607
14608 /* w/a possibly needed, check how many crtc's are already enabled. */
14609 for_each_intel_crtc(state->base.dev, crtc) {
14610 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
14611 if (IS_ERR(crtc_state))
14612 return PTR_ERR(crtc_state);
14613
14614 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
14615
14616 if (!crtc_state->hw.active ||
14617 needs_modeset(crtc_state))
14618 continue;
14619
14620 /* 2 or more enabled crtcs means no need for w/a */
14621 if (enabled_pipe != INVALID_PIPE)
14622 return 0;
14623
14624 enabled_pipe = crtc->pipe;
14625 }
14626
14627 if (enabled_pipe != INVALID_PIPE)
14628 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
14629 else if (other_crtc_state)
14630 other_crtc_state->hsw_workaround_pipe = first_pipe;
14631
14632 return 0;
14633 }
14634
intel_calc_active_pipes(struct intel_atomic_state * state,u8 active_pipes)14635 u8 intel_calc_active_pipes(struct intel_atomic_state *state,
14636 u8 active_pipes)
14637 {
14638 const struct intel_crtc_state *crtc_state;
14639 struct intel_crtc *crtc;
14640 int i;
14641
14642 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14643 if (crtc_state->hw.active)
14644 active_pipes |= BIT(crtc->pipe);
14645 else
14646 active_pipes &= ~BIT(crtc->pipe);
14647 }
14648
14649 return active_pipes;
14650 }
14651
intel_modeset_checks(struct intel_atomic_state * state)14652 static int intel_modeset_checks(struct intel_atomic_state *state)
14653 {
14654 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14655
14656 state->modeset = true;
14657
14658 if (IS_HASWELL(dev_priv))
14659 return hsw_mode_set_planes_workaround(state);
14660
14661 return 0;
14662 }
14663
14664 /*
14665 * Handle calculation of various watermark data at the end of the atomic check
14666 * phase. The code here should be run after the per-crtc and per-plane 'check'
14667 * handlers to ensure that all derived state has been updated.
14668 */
calc_watermark_data(struct intel_atomic_state * state)14669 static int calc_watermark_data(struct intel_atomic_state *state)
14670 {
14671 struct drm_device *dev = state->base.dev;
14672 struct drm_i915_private *dev_priv = to_i915(dev);
14673
14674 /* Is there platform-specific watermark information to calculate? */
14675 if (dev_priv->display.compute_global_watermarks)
14676 return dev_priv->display.compute_global_watermarks(state);
14677
14678 return 0;
14679 }
14680
intel_crtc_check_fastset(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14681 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
14682 struct intel_crtc_state *new_crtc_state)
14683 {
14684 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
14685 return;
14686
14687 new_crtc_state->uapi.mode_changed = false;
14688 new_crtc_state->update_pipe = true;
14689 }
14690
intel_crtc_copy_fastset(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)14691 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state,
14692 struct intel_crtc_state *new_crtc_state)
14693 {
14694 /*
14695 * If we're not doing the full modeset we want to
14696 * keep the current M/N values as they may be
14697 * sufficiently different to the computed values
14698 * to cause problems.
14699 *
14700 * FIXME: should really copy more fuzzy state here
14701 */
14702 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
14703 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
14704 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
14705 new_crtc_state->has_drrs = old_crtc_state->has_drrs;
14706 }
14707
intel_crtc_add_planes_to_state(struct intel_atomic_state * state,struct intel_crtc * crtc,u8 plane_ids_mask)14708 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
14709 struct intel_crtc *crtc,
14710 u8 plane_ids_mask)
14711 {
14712 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14713 struct intel_plane *plane;
14714
14715 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14716 struct intel_plane_state *plane_state;
14717
14718 if ((plane_ids_mask & BIT(plane->id)) == 0)
14719 continue;
14720
14721 plane_state = intel_atomic_get_plane_state(state, plane);
14722 if (IS_ERR(plane_state))
14723 return PTR_ERR(plane_state);
14724 }
14725
14726 return 0;
14727 }
14728
active_planes_affects_min_cdclk(struct drm_i915_private * dev_priv)14729 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
14730 {
14731 /* See {hsw,vlv,ivb}_plane_ratio() */
14732 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
14733 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
14734 IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11);
14735 }
14736
intel_atomic_check_planes(struct intel_atomic_state * state)14737 static int intel_atomic_check_planes(struct intel_atomic_state *state)
14738 {
14739 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14740 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14741 struct intel_plane_state *plane_state;
14742 struct intel_plane *plane;
14743 struct intel_crtc *crtc;
14744 int i, ret;
14745
14746 ret = icl_add_linked_planes(state);
14747 if (ret)
14748 return ret;
14749
14750 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14751 ret = intel_plane_atomic_check(state, plane);
14752 if (ret) {
14753 drm_dbg_atomic(&dev_priv->drm,
14754 "[PLANE:%d:%s] atomic driver check failed\n",
14755 plane->base.base.id, plane->base.name);
14756 return ret;
14757 }
14758 }
14759
14760 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14761 new_crtc_state, i) {
14762 u8 old_active_planes, new_active_planes;
14763
14764 ret = icl_check_nv12_planes(new_crtc_state);
14765 if (ret)
14766 return ret;
14767
14768 /*
14769 * On some platforms the number of active planes affects
14770 * the planes' minimum cdclk calculation. Add such planes
14771 * to the state before we compute the minimum cdclk.
14772 */
14773 if (!active_planes_affects_min_cdclk(dev_priv))
14774 continue;
14775
14776 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14777 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14778
14779 /*
14780 * Not only the number of planes, but if the plane configuration had
14781 * changed might already mean we need to recompute min CDCLK,
14782 * because different planes might consume different amount of Dbuf bandwidth
14783 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor
14784 */
14785 if (old_active_planes == new_active_planes)
14786 continue;
14787
14788 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
14789 if (ret)
14790 return ret;
14791 }
14792
14793 return 0;
14794 }
14795
intel_atomic_check_cdclk(struct intel_atomic_state * state,bool * need_cdclk_calc)14796 static int intel_atomic_check_cdclk(struct intel_atomic_state *state,
14797 bool *need_cdclk_calc)
14798 {
14799 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14800 const struct intel_cdclk_state *old_cdclk_state;
14801 const struct intel_cdclk_state *new_cdclk_state;
14802 struct intel_plane_state *plane_state;
14803 struct intel_bw_state *new_bw_state;
14804 struct intel_plane *plane;
14805 int min_cdclk = 0;
14806 enum pipe pipe;
14807 int ret;
14808 int i;
14809 /*
14810 * active_planes bitmask has been updated, and potentially
14811 * affected planes are part of the state. We can now
14812 * compute the minimum cdclk for each plane.
14813 */
14814 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14815 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
14816 if (ret)
14817 return ret;
14818 }
14819
14820 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
14821 new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
14822
14823 if (new_cdclk_state &&
14824 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
14825 *need_cdclk_calc = true;
14826
14827 ret = dev_priv->display.bw_calc_min_cdclk(state);
14828 if (ret)
14829 return ret;
14830
14831 new_bw_state = intel_atomic_get_new_bw_state(state);
14832
14833 if (!new_cdclk_state || !new_bw_state)
14834 return 0;
14835
14836 for_each_pipe(dev_priv, pipe) {
14837 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk);
14838
14839 /*
14840 * Currently do this change only if we need to increase
14841 */
14842 if (new_bw_state->min_cdclk > min_cdclk)
14843 *need_cdclk_calc = true;
14844 }
14845
14846 return 0;
14847 }
14848
intel_atomic_check_crtcs(struct intel_atomic_state * state)14849 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
14850 {
14851 struct intel_crtc_state *crtc_state;
14852 struct intel_crtc *crtc;
14853 int i;
14854
14855 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14856 int ret = intel_crtc_atomic_check(state, crtc);
14857 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
14858 if (ret) {
14859 drm_dbg_atomic(&i915->drm,
14860 "[CRTC:%d:%s] atomic driver check failed\n",
14861 crtc->base.base.id, crtc->base.name);
14862 return ret;
14863 }
14864 }
14865
14866 return 0;
14867 }
14868
intel_cpu_transcoders_need_modeset(struct intel_atomic_state * state,u8 transcoders)14869 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
14870 u8 transcoders)
14871 {
14872 const struct intel_crtc_state *new_crtc_state;
14873 struct intel_crtc *crtc;
14874 int i;
14875
14876 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14877 if (new_crtc_state->hw.enable &&
14878 transcoders & BIT(new_crtc_state->cpu_transcoder) &&
14879 needs_modeset(new_crtc_state))
14880 return true;
14881 }
14882
14883 return false;
14884 }
14885
14886 /**
14887 * intel_atomic_check - validate state object
14888 * @dev: drm device
14889 * @_state: state to validate
14890 */
intel_atomic_check(struct drm_device * dev,struct drm_atomic_state * _state)14891 static int intel_atomic_check(struct drm_device *dev,
14892 struct drm_atomic_state *_state)
14893 {
14894 struct drm_i915_private *dev_priv = to_i915(dev);
14895 struct intel_atomic_state *state = to_intel_atomic_state(_state);
14896 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14897 struct intel_crtc *crtc;
14898 int ret, i;
14899 bool any_ms = false;
14900
14901 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14902 new_crtc_state, i) {
14903 if (new_crtc_state->inherited != old_crtc_state->inherited)
14904 new_crtc_state->uapi.mode_changed = true;
14905 }
14906
14907 ret = drm_atomic_helper_check_modeset(dev, &state->base);
14908 if (ret)
14909 goto fail;
14910
14911 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14912 new_crtc_state, i) {
14913 if (!needs_modeset(new_crtc_state)) {
14914 /* Light copy */
14915 intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state);
14916
14917 continue;
14918 }
14919
14920 ret = intel_crtc_prepare_cleared_state(new_crtc_state);
14921 if (ret)
14922 goto fail;
14923
14924 if (!new_crtc_state->hw.enable)
14925 continue;
14926
14927 ret = intel_modeset_pipe_config(new_crtc_state);
14928 if (ret)
14929 goto fail;
14930 }
14931
14932 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14933 new_crtc_state, i) {
14934 if (!needs_modeset(new_crtc_state))
14935 continue;
14936
14937 ret = intel_modeset_pipe_config_late(new_crtc_state);
14938 if (ret)
14939 goto fail;
14940
14941 intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14942 }
14943
14944 /**
14945 * Check if fastset is allowed by external dependencies like other
14946 * pipes and transcoders.
14947 *
14948 * Right now it only forces a fullmodeset when the MST master
14949 * transcoder did not changed but the pipe of the master transcoder
14950 * needs a fullmodeset so all slaves also needs to do a fullmodeset or
14951 * in case of port synced crtcs, if one of the synced crtcs
14952 * needs a full modeset, all other synced crtcs should be
14953 * forced a full modeset.
14954 */
14955 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14956 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state))
14957 continue;
14958
14959 if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
14960 enum transcoder master = new_crtc_state->mst_master_transcoder;
14961
14962 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) {
14963 new_crtc_state->uapi.mode_changed = true;
14964 new_crtc_state->update_pipe = false;
14965 }
14966 }
14967
14968 if (is_trans_port_sync_mode(new_crtc_state)) {
14969 u8 trans = new_crtc_state->sync_mode_slaves_mask;
14970
14971 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER)
14972 trans |= BIT(new_crtc_state->master_transcoder);
14973
14974 if (intel_cpu_transcoders_need_modeset(state, trans)) {
14975 new_crtc_state->uapi.mode_changed = true;
14976 new_crtc_state->update_pipe = false;
14977 }
14978 }
14979 }
14980
14981 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14982 new_crtc_state, i) {
14983 if (needs_modeset(new_crtc_state)) {
14984 any_ms = true;
14985 continue;
14986 }
14987
14988 if (!new_crtc_state->update_pipe)
14989 continue;
14990
14991 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state);
14992 }
14993
14994 if (any_ms && !check_digital_port_conflicts(state)) {
14995 drm_dbg_kms(&dev_priv->drm,
14996 "rejecting conflicting digital port configuration\n");
14997 ret = -EINVAL;
14998 goto fail;
14999 }
15000
15001 ret = drm_dp_mst_atomic_check(&state->base);
15002 if (ret)
15003 goto fail;
15004
15005 ret = intel_atomic_check_planes(state);
15006 if (ret)
15007 goto fail;
15008
15009 /*
15010 * distrust_bios_wm will force a full dbuf recomputation
15011 * but the hardware state will only get updated accordingly
15012 * if state->modeset==true. Hence distrust_bios_wm==true &&
15013 * state->modeset==false is an invalid combination which
15014 * would cause the hardware and software dbuf state to get
15015 * out of sync. We must prevent that.
15016 *
15017 * FIXME clean up this mess and introduce better
15018 * state tracking for dbuf.
15019 */
15020 if (dev_priv->wm.distrust_bios_wm)
15021 any_ms = true;
15022
15023 intel_fbc_choose_crtc(dev_priv, state);
15024 ret = calc_watermark_data(state);
15025 if (ret)
15026 goto fail;
15027
15028 ret = intel_bw_atomic_check(state);
15029 if (ret)
15030 goto fail;
15031
15032 ret = intel_atomic_check_cdclk(state, &any_ms);
15033 if (ret)
15034 goto fail;
15035
15036 if (any_ms) {
15037 ret = intel_modeset_checks(state);
15038 if (ret)
15039 goto fail;
15040
15041 ret = intel_modeset_calc_cdclk(state);
15042 if (ret)
15043 return ret;
15044
15045 intel_modeset_clear_plls(state);
15046 }
15047
15048 ret = intel_atomic_check_crtcs(state);
15049 if (ret)
15050 goto fail;
15051
15052 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15053 new_crtc_state, i) {
15054 if (!needs_modeset(new_crtc_state) &&
15055 !new_crtc_state->update_pipe)
15056 continue;
15057
15058 intel_dump_pipe_config(new_crtc_state, state,
15059 needs_modeset(new_crtc_state) ?
15060 "[modeset]" : "[fastset]");
15061 }
15062
15063 return 0;
15064
15065 fail:
15066 if (ret == -EDEADLK)
15067 return ret;
15068
15069 /*
15070 * FIXME would probably be nice to know which crtc specifically
15071 * caused the failure, in cases where we can pinpoint it.
15072 */
15073 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15074 new_crtc_state, i)
15075 intel_dump_pipe_config(new_crtc_state, state, "[failed]");
15076
15077 return ret;
15078 }
15079
intel_atomic_prepare_commit(struct intel_atomic_state * state)15080 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
15081 {
15082 struct intel_crtc_state *crtc_state;
15083 struct intel_crtc *crtc;
15084 int i, ret;
15085
15086 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base);
15087 if (ret < 0)
15088 return ret;
15089
15090 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15091 bool mode_changed = needs_modeset(crtc_state);
15092
15093 if (mode_changed || crtc_state->update_pipe ||
15094 crtc_state->uapi.color_mgmt_changed) {
15095 intel_dsb_prepare(crtc_state);
15096 }
15097 }
15098
15099 return 0;
15100 }
15101
intel_crtc_get_vblank_counter(struct intel_crtc * crtc)15102 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
15103 {
15104 struct drm_device *dev = crtc->base.dev;
15105 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
15106
15107 if (!vblank->max_vblank_count)
15108 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
15109
15110 return crtc->base.funcs->get_vblank_counter(&crtc->base);
15111 }
15112
intel_crtc_arm_fifo_underrun(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)15113 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
15114 struct intel_crtc_state *crtc_state)
15115 {
15116 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15117
15118 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes)
15119 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15120
15121 if (crtc_state->has_pch_encoder) {
15122 enum pipe pch_transcoder =
15123 intel_crtc_pch_transcoder(crtc);
15124
15125 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
15126 }
15127 }
15128
intel_pipe_fastset(const struct intel_crtc_state * old_crtc_state,const struct intel_crtc_state * new_crtc_state)15129 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
15130 const struct intel_crtc_state *new_crtc_state)
15131 {
15132 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
15133 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15134
15135 /*
15136 * Update pipe size and adjust fitter if needed: the reason for this is
15137 * that in compute_mode_changes we check the native mode (not the pfit
15138 * mode) to see if we can flip rather than do a full mode set. In the
15139 * fastboot case, we'll flip, but if we don't update the pipesrc and
15140 * pfit state, we'll end up with a big fb scanned out into the wrong
15141 * sized surface.
15142 */
15143 intel_set_pipe_src_size(new_crtc_state);
15144
15145 /* on skylake this is done by detaching scalers */
15146 if (INTEL_GEN(dev_priv) >= 9) {
15147 skl_detach_scalers(new_crtc_state);
15148
15149 if (new_crtc_state->pch_pfit.enabled)
15150 skl_pfit_enable(new_crtc_state);
15151 } else if (HAS_PCH_SPLIT(dev_priv)) {
15152 if (new_crtc_state->pch_pfit.enabled)
15153 ilk_pfit_enable(new_crtc_state);
15154 else if (old_crtc_state->pch_pfit.enabled)
15155 ilk_pfit_disable(old_crtc_state);
15156 }
15157
15158 /*
15159 * The register is supposedly single buffered so perhaps
15160 * not 100% correct to do this here. But SKL+ calculate
15161 * this based on the adjust pixel rate so pfit changes do
15162 * affect it and so it must be updated for fastsets.
15163 * HSW/BDW only really need this here for fastboot, after
15164 * that the value should not change without a full modeset.
15165 */
15166 if (INTEL_GEN(dev_priv) >= 9 ||
15167 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15168 hsw_set_linetime_wm(new_crtc_state);
15169
15170 if (INTEL_GEN(dev_priv) >= 11)
15171 icl_set_pipe_chicken(crtc);
15172 }
15173
commit_pipe_config(struct intel_atomic_state * state,struct intel_crtc * crtc)15174 static void commit_pipe_config(struct intel_atomic_state *state,
15175 struct intel_crtc *crtc)
15176 {
15177 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15178 const struct intel_crtc_state *old_crtc_state =
15179 intel_atomic_get_old_crtc_state(state, crtc);
15180 const struct intel_crtc_state *new_crtc_state =
15181 intel_atomic_get_new_crtc_state(state, crtc);
15182 bool modeset = needs_modeset(new_crtc_state);
15183
15184 /*
15185 * During modesets pipe configuration was programmed as the
15186 * CRTC was enabled.
15187 */
15188 if (!modeset) {
15189 if (new_crtc_state->uapi.color_mgmt_changed ||
15190 new_crtc_state->update_pipe)
15191 intel_color_commit(new_crtc_state);
15192
15193 if (INTEL_GEN(dev_priv) >= 9)
15194 skl_detach_scalers(new_crtc_state);
15195
15196 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15197 bdw_set_pipemisc(new_crtc_state);
15198
15199 if (new_crtc_state->update_pipe)
15200 intel_pipe_fastset(old_crtc_state, new_crtc_state);
15201
15202 intel_psr2_program_trans_man_trk_ctl(new_crtc_state);
15203 }
15204
15205 if (dev_priv->display.atomic_update_watermarks)
15206 dev_priv->display.atomic_update_watermarks(state, crtc);
15207 }
15208
intel_enable_crtc(struct intel_atomic_state * state,struct intel_crtc * crtc)15209 static void intel_enable_crtc(struct intel_atomic_state *state,
15210 struct intel_crtc *crtc)
15211 {
15212 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15213 const struct intel_crtc_state *new_crtc_state =
15214 intel_atomic_get_new_crtc_state(state, crtc);
15215
15216 if (!needs_modeset(new_crtc_state))
15217 return;
15218
15219 intel_crtc_update_active_timings(new_crtc_state);
15220
15221 dev_priv->display.crtc_enable(state, crtc);
15222
15223 /* vblanks work again, re-enable pipe CRC. */
15224 intel_crtc_enable_pipe_crc(crtc);
15225 }
15226
intel_update_crtc(struct intel_atomic_state * state,struct intel_crtc * crtc)15227 static void intel_update_crtc(struct intel_atomic_state *state,
15228 struct intel_crtc *crtc)
15229 {
15230 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15231 const struct intel_crtc_state *old_crtc_state =
15232 intel_atomic_get_old_crtc_state(state, crtc);
15233 struct intel_crtc_state *new_crtc_state =
15234 intel_atomic_get_new_crtc_state(state, crtc);
15235 bool modeset = needs_modeset(new_crtc_state);
15236
15237 if (!modeset) {
15238 if (new_crtc_state->preload_luts &&
15239 (new_crtc_state->uapi.color_mgmt_changed ||
15240 new_crtc_state->update_pipe))
15241 intel_color_load_luts(new_crtc_state);
15242
15243 intel_pre_plane_update(state, crtc);
15244
15245 if (new_crtc_state->update_pipe)
15246 intel_encoders_update_pipe(state, crtc);
15247 }
15248
15249 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
15250 intel_fbc_disable(crtc);
15251 else
15252 intel_fbc_enable(state, crtc);
15253
15254 /* Perform vblank evasion around commit operation */
15255 intel_pipe_update_start(new_crtc_state);
15256
15257 commit_pipe_config(state, crtc);
15258
15259 if (INTEL_GEN(dev_priv) >= 9)
15260 skl_update_planes_on_crtc(state, crtc);
15261 else
15262 i9xx_update_planes_on_crtc(state, crtc);
15263
15264 intel_pipe_update_end(new_crtc_state);
15265
15266 /*
15267 * We usually enable FIFO underrun interrupts as part of the
15268 * CRTC enable sequence during modesets. But when we inherit a
15269 * valid pipe configuration from the BIOS we need to take care
15270 * of enabling them on the CRTC's first fastset.
15271 */
15272 if (new_crtc_state->update_pipe && !modeset &&
15273 old_crtc_state->inherited)
15274 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
15275 }
15276
15277
intel_old_crtc_state_disables(struct intel_atomic_state * state,struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state,struct intel_crtc * crtc)15278 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
15279 struct intel_crtc_state *old_crtc_state,
15280 struct intel_crtc_state *new_crtc_state,
15281 struct intel_crtc *crtc)
15282 {
15283 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15284
15285 intel_crtc_disable_planes(state, crtc);
15286
15287 /*
15288 * We need to disable pipe CRC before disabling the pipe,
15289 * or we race against vblank off.
15290 */
15291 intel_crtc_disable_pipe_crc(crtc);
15292
15293 dev_priv->display.crtc_disable(state, crtc);
15294 crtc->active = false;
15295 intel_fbc_disable(crtc);
15296 intel_disable_shared_dpll(old_crtc_state);
15297
15298 /* FIXME unify this for all platforms */
15299 if (!new_crtc_state->hw.active &&
15300 !HAS_GMCH(dev_priv) &&
15301 dev_priv->display.initial_watermarks)
15302 dev_priv->display.initial_watermarks(state, crtc);
15303 }
15304
intel_commit_modeset_disables(struct intel_atomic_state * state)15305 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
15306 {
15307 struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15308 struct intel_crtc *crtc;
15309 u32 handled = 0;
15310 int i;
15311
15312 /* Only disable port sync and MST slaves */
15313 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15314 new_crtc_state, i) {
15315 if (!needs_modeset(new_crtc_state))
15316 continue;
15317
15318 if (!old_crtc_state->hw.active)
15319 continue;
15320
15321 /* In case of Transcoder port Sync master slave CRTCs can be
15322 * assigned in any order and we need to make sure that
15323 * slave CRTCs are disabled first and then master CRTC since
15324 * Slave vblanks are masked till Master Vblanks.
15325 */
15326 if (!is_trans_port_sync_slave(old_crtc_state) &&
15327 !intel_dp_mst_is_slave_trans(old_crtc_state))
15328 continue;
15329
15330 intel_pre_plane_update(state, crtc);
15331 intel_old_crtc_state_disables(state, old_crtc_state,
15332 new_crtc_state, crtc);
15333 handled |= BIT(crtc->pipe);
15334 }
15335
15336 /* Disable everything else left on */
15337 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15338 new_crtc_state, i) {
15339 if (!needs_modeset(new_crtc_state) ||
15340 (handled & BIT(crtc->pipe)))
15341 continue;
15342
15343 intel_pre_plane_update(state, crtc);
15344 if (old_crtc_state->hw.active)
15345 intel_old_crtc_state_disables(state, old_crtc_state,
15346 new_crtc_state, crtc);
15347 }
15348 }
15349
intel_commit_modeset_enables(struct intel_atomic_state * state)15350 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
15351 {
15352 struct intel_crtc_state *new_crtc_state;
15353 struct intel_crtc *crtc;
15354 int i;
15355
15356 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15357 if (!new_crtc_state->hw.active)
15358 continue;
15359
15360 intel_enable_crtc(state, crtc);
15361 intel_update_crtc(state, crtc);
15362 }
15363 }
15364
skl_commit_modeset_enables(struct intel_atomic_state * state)15365 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
15366 {
15367 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15368 struct intel_crtc *crtc;
15369 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15370 struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
15371 u8 update_pipes = 0, modeset_pipes = 0;
15372 int i;
15373
15374 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15375 enum pipe pipe = crtc->pipe;
15376
15377 if (!new_crtc_state->hw.active)
15378 continue;
15379
15380 /* ignore allocations for crtc's that have been turned off. */
15381 if (!needs_modeset(new_crtc_state)) {
15382 entries[pipe] = old_crtc_state->wm.skl.ddb;
15383 update_pipes |= BIT(pipe);
15384 } else {
15385 modeset_pipes |= BIT(pipe);
15386 }
15387 }
15388
15389 /*
15390 * Whenever the number of active pipes changes, we need to make sure we
15391 * update the pipes in the right order so that their ddb allocations
15392 * never overlap with each other between CRTC updates. Otherwise we'll
15393 * cause pipe underruns and other bad stuff.
15394 *
15395 * So first lets enable all pipes that do not need a fullmodeset as
15396 * those don't have any external dependency.
15397 */
15398 while (update_pipes) {
15399 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15400 new_crtc_state, i) {
15401 enum pipe pipe = crtc->pipe;
15402
15403 if ((update_pipes & BIT(pipe)) == 0)
15404 continue;
15405
15406 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15407 entries, I915_MAX_PIPES, pipe))
15408 continue;
15409
15410 entries[pipe] = new_crtc_state->wm.skl.ddb;
15411 update_pipes &= ~BIT(pipe);
15412
15413 intel_update_crtc(state, crtc);
15414
15415 /*
15416 * If this is an already active pipe, it's DDB changed,
15417 * and this isn't the last pipe that needs updating
15418 * then we need to wait for a vblank to pass for the
15419 * new ddb allocation to take effect.
15420 */
15421 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
15422 &old_crtc_state->wm.skl.ddb) &&
15423 (update_pipes | modeset_pipes))
15424 intel_wait_for_vblank(dev_priv, pipe);
15425 }
15426 }
15427
15428 update_pipes = modeset_pipes;
15429
15430 /*
15431 * Enable all pipes that needs a modeset and do not depends on other
15432 * pipes
15433 */
15434 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15435 enum pipe pipe = crtc->pipe;
15436
15437 if ((modeset_pipes & BIT(pipe)) == 0)
15438 continue;
15439
15440 if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
15441 is_trans_port_sync_master(new_crtc_state))
15442 continue;
15443
15444 modeset_pipes &= ~BIT(pipe);
15445
15446 intel_enable_crtc(state, crtc);
15447 }
15448
15449 /*
15450 * Then we enable all remaining pipes that depend on other
15451 * pipes: MST slaves and port sync masters.
15452 */
15453 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15454 enum pipe pipe = crtc->pipe;
15455
15456 if ((modeset_pipes & BIT(pipe)) == 0)
15457 continue;
15458
15459 modeset_pipes &= ~BIT(pipe);
15460
15461 intel_enable_crtc(state, crtc);
15462 }
15463
15464 /*
15465 * Finally we do the plane updates/etc. for all pipes that got enabled.
15466 */
15467 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15468 enum pipe pipe = crtc->pipe;
15469
15470 if ((update_pipes & BIT(pipe)) == 0)
15471 continue;
15472
15473 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15474 entries, I915_MAX_PIPES, pipe));
15475
15476 entries[pipe] = new_crtc_state->wm.skl.ddb;
15477 update_pipes &= ~BIT(pipe);
15478
15479 intel_update_crtc(state, crtc);
15480 }
15481
15482 drm_WARN_ON(&dev_priv->drm, modeset_pipes);
15483 drm_WARN_ON(&dev_priv->drm, update_pipes);
15484 }
15485
intel_atomic_helper_free_state(struct drm_i915_private * dev_priv)15486 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
15487 {
15488 struct intel_atomic_state *state, *next;
15489 struct llist_node *freed;
15490
15491 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
15492 llist_for_each_entry_safe(state, next, freed, freed)
15493 drm_atomic_state_put(&state->base);
15494 }
15495
intel_atomic_helper_free_state_worker(struct work_struct * work)15496 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
15497 {
15498 struct drm_i915_private *dev_priv =
15499 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
15500
15501 intel_atomic_helper_free_state(dev_priv);
15502 }
15503
intel_atomic_commit_fence_wait(struct intel_atomic_state * intel_state)15504 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
15505 {
15506 struct wait_queue_entry wait_fence, wait_reset;
15507 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
15508
15509 init_wait_entry(&wait_fence, 0);
15510 init_wait_entry(&wait_reset, 0);
15511 for (;;) {
15512 prepare_to_wait(&intel_state->commit_ready.wait,
15513 &wait_fence, TASK_UNINTERRUPTIBLE);
15514 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15515 I915_RESET_MODESET),
15516 &wait_reset, TASK_UNINTERRUPTIBLE);
15517
15518
15519 if (i915_sw_fence_done(&intel_state->commit_ready) ||
15520 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
15521 break;
15522
15523 schedule();
15524 }
15525 finish_wait(&intel_state->commit_ready.wait, &wait_fence);
15526 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15527 I915_RESET_MODESET),
15528 &wait_reset);
15529 }
15530
intel_cleanup_dsbs(struct intel_atomic_state * state)15531 static void intel_cleanup_dsbs(struct intel_atomic_state *state)
15532 {
15533 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15534 struct intel_crtc *crtc;
15535 int i;
15536
15537 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15538 new_crtc_state, i)
15539 intel_dsb_cleanup(old_crtc_state);
15540 }
15541
intel_atomic_cleanup_work(struct work_struct * work)15542 static void intel_atomic_cleanup_work(struct work_struct *work)
15543 {
15544 struct intel_atomic_state *state =
15545 container_of(work, struct intel_atomic_state, base.commit_work);
15546 struct drm_i915_private *i915 = to_i915(state->base.dev);
15547
15548 intel_cleanup_dsbs(state);
15549 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base);
15550 drm_atomic_helper_commit_cleanup_done(&state->base);
15551 drm_atomic_state_put(&state->base);
15552
15553 intel_atomic_helper_free_state(i915);
15554 }
15555
intel_atomic_commit_tail(struct intel_atomic_state * state)15556 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
15557 {
15558 struct drm_device *dev = state->base.dev;
15559 struct drm_i915_private *dev_priv = to_i915(dev);
15560 struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15561 struct intel_crtc *crtc;
15562 u64 put_domains[I915_MAX_PIPES] = {};
15563 intel_wakeref_t wakeref = 0;
15564 int i;
15565
15566 intel_atomic_commit_fence_wait(state);
15567
15568 drm_atomic_helper_wait_for_dependencies(&state->base);
15569
15570 if (state->modeset)
15571 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
15572
15573 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15574 new_crtc_state, i) {
15575 if (needs_modeset(new_crtc_state) ||
15576 new_crtc_state->update_pipe) {
15577
15578 put_domains[crtc->pipe] =
15579 modeset_get_crtc_power_domains(new_crtc_state);
15580 }
15581 }
15582
15583 intel_commit_modeset_disables(state);
15584
15585 /* FIXME: Eventually get rid of our crtc->config pointer */
15586 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15587 crtc->config = new_crtc_state;
15588
15589 if (state->modeset) {
15590 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
15591
15592 intel_set_cdclk_pre_plane_update(state);
15593
15594 intel_modeset_verify_disabled(dev_priv, state);
15595 }
15596
15597 intel_sagv_pre_plane_update(state);
15598
15599 /* Complete the events for pipes that have now been disabled */
15600 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15601 bool modeset = needs_modeset(new_crtc_state);
15602
15603 /* Complete events for now disable pipes here. */
15604 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
15605 spin_lock_irq(&dev->event_lock);
15606 drm_crtc_send_vblank_event(&crtc->base,
15607 new_crtc_state->uapi.event);
15608 spin_unlock_irq(&dev->event_lock);
15609
15610 new_crtc_state->uapi.event = NULL;
15611 }
15612 }
15613
15614 if (state->modeset)
15615 intel_encoders_update_prepare(state);
15616
15617 intel_dbuf_pre_plane_update(state);
15618
15619 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
15620 dev_priv->display.commit_modeset_enables(state);
15621
15622 if (state->modeset) {
15623 intel_encoders_update_complete(state);
15624
15625 intel_set_cdclk_post_plane_update(state);
15626 }
15627
15628 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
15629 * already, but still need the state for the delayed optimization. To
15630 * fix this:
15631 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
15632 * - schedule that vblank worker _before_ calling hw_done
15633 * - at the start of commit_tail, cancel it _synchrously
15634 * - switch over to the vblank wait helper in the core after that since
15635 * we don't need out special handling any more.
15636 */
15637 drm_atomic_helper_wait_for_flip_done(dev, &state->base);
15638
15639 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15640 if (new_crtc_state->hw.active &&
15641 !needs_modeset(new_crtc_state) &&
15642 !new_crtc_state->preload_luts &&
15643 (new_crtc_state->uapi.color_mgmt_changed ||
15644 new_crtc_state->update_pipe))
15645 intel_color_load_luts(new_crtc_state);
15646 }
15647
15648 /*
15649 * Now that the vblank has passed, we can go ahead and program the
15650 * optimal watermarks on platforms that need two-step watermark
15651 * programming.
15652 *
15653 * TODO: Move this (and other cleanup) to an async worker eventually.
15654 */
15655 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15656 new_crtc_state, i) {
15657 /*
15658 * Gen2 reports pipe underruns whenever all planes are disabled.
15659 * So re-enable underrun reporting after some planes get enabled.
15660 *
15661 * We do this before .optimize_watermarks() so that we have a
15662 * chance of catching underruns with the intermediate watermarks
15663 * vs. the new plane configuration.
15664 */
15665 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state))
15666 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15667
15668 if (dev_priv->display.optimize_watermarks)
15669 dev_priv->display.optimize_watermarks(state, crtc);
15670 }
15671
15672 intel_dbuf_post_plane_update(state);
15673
15674 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15675 intel_post_plane_update(state, crtc);
15676
15677 if (put_domains[i])
15678 modeset_put_power_domains(dev_priv, put_domains[i]);
15679
15680 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
15681
15682 /*
15683 * DSB cleanup is done in cleanup_work aligning with framebuffer
15684 * cleanup. So copy and reset the dsb structure to sync with
15685 * commit_done and later do dsb cleanup in cleanup_work.
15686 */
15687 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb);
15688 }
15689
15690 /* Underruns don't always raise interrupts, so check manually */
15691 intel_check_cpu_fifo_underruns(dev_priv);
15692 intel_check_pch_fifo_underruns(dev_priv);
15693
15694 if (state->modeset)
15695 intel_verify_planes(state);
15696
15697 intel_sagv_post_plane_update(state);
15698
15699 drm_atomic_helper_commit_hw_done(&state->base);
15700
15701 if (state->modeset) {
15702 /* As one of the primary mmio accessors, KMS has a high
15703 * likelihood of triggering bugs in unclaimed access. After we
15704 * finish modesetting, see if an error has been flagged, and if
15705 * so enable debugging for the next modeset - and hope we catch
15706 * the culprit.
15707 */
15708 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
15709 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
15710 }
15711 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15712
15713 /*
15714 * Defer the cleanup of the old state to a separate worker to not
15715 * impede the current task (userspace for blocking modesets) that
15716 * are executed inline. For out-of-line asynchronous modesets/flips,
15717 * deferring to a new worker seems overkill, but we would place a
15718 * schedule point (cond_resched()) here anyway to keep latencies
15719 * down.
15720 */
15721 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
15722 queue_work(system_highpri_wq, &state->base.commit_work);
15723 }
15724
intel_atomic_commit_work(struct work_struct * work)15725 static void intel_atomic_commit_work(struct work_struct *work)
15726 {
15727 struct intel_atomic_state *state =
15728 container_of(work, struct intel_atomic_state, base.commit_work);
15729
15730 intel_atomic_commit_tail(state);
15731 }
15732
15733 static int __i915_sw_fence_call
intel_atomic_commit_ready(struct i915_sw_fence * fence,enum i915_sw_fence_notify notify)15734 intel_atomic_commit_ready(struct i915_sw_fence *fence,
15735 enum i915_sw_fence_notify notify)
15736 {
15737 struct intel_atomic_state *state =
15738 container_of(fence, struct intel_atomic_state, commit_ready);
15739
15740 switch (notify) {
15741 case FENCE_COMPLETE:
15742 /* we do blocking waits in the worker, nothing to do here */
15743 break;
15744 case FENCE_FREE:
15745 {
15746 struct intel_atomic_helper *helper =
15747 &to_i915(state->base.dev)->atomic_helper;
15748
15749 if (llist_add(&state->freed, &helper->free_list))
15750 schedule_work(&helper->free_work);
15751 break;
15752 }
15753 }
15754
15755 return NOTIFY_DONE;
15756 }
15757
intel_atomic_track_fbs(struct intel_atomic_state * state)15758 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
15759 {
15760 struct intel_plane_state *old_plane_state, *new_plane_state;
15761 struct intel_plane *plane;
15762 int i;
15763
15764 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
15765 new_plane_state, i)
15766 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
15767 to_intel_frontbuffer(new_plane_state->hw.fb),
15768 plane->frontbuffer_bit);
15769 }
15770
intel_atomic_commit(struct drm_device * dev,struct drm_atomic_state * _state,bool nonblock)15771 static int intel_atomic_commit(struct drm_device *dev,
15772 struct drm_atomic_state *_state,
15773 bool nonblock)
15774 {
15775 struct intel_atomic_state *state = to_intel_atomic_state(_state);
15776 struct drm_i915_private *dev_priv = to_i915(dev);
15777 int ret = 0;
15778
15779 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
15780
15781 drm_atomic_state_get(&state->base);
15782 i915_sw_fence_init(&state->commit_ready,
15783 intel_atomic_commit_ready);
15784
15785 /*
15786 * The intel_legacy_cursor_update() fast path takes care
15787 * of avoiding the vblank waits for simple cursor
15788 * movement and flips. For cursor on/off and size changes,
15789 * we want to perform the vblank waits so that watermark
15790 * updates happen during the correct frames. Gen9+ have
15791 * double buffered watermarks and so shouldn't need this.
15792 *
15793 * Unset state->legacy_cursor_update before the call to
15794 * drm_atomic_helper_setup_commit() because otherwise
15795 * drm_atomic_helper_wait_for_flip_done() is a noop and
15796 * we get FIFO underruns because we didn't wait
15797 * for vblank.
15798 *
15799 * FIXME doing watermarks and fb cleanup from a vblank worker
15800 * (assuming we had any) would solve these problems.
15801 */
15802 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
15803 struct intel_crtc_state *new_crtc_state;
15804 struct intel_crtc *crtc;
15805 int i;
15806
15807 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15808 if (new_crtc_state->wm.need_postvbl_update ||
15809 new_crtc_state->update_wm_post)
15810 state->base.legacy_cursor_update = false;
15811 }
15812
15813 ret = intel_atomic_prepare_commit(state);
15814 if (ret) {
15815 drm_dbg_atomic(&dev_priv->drm,
15816 "Preparing state failed with %i\n", ret);
15817 i915_sw_fence_commit(&state->commit_ready);
15818 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15819 return ret;
15820 }
15821
15822 ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
15823 if (!ret)
15824 ret = drm_atomic_helper_swap_state(&state->base, true);
15825 if (!ret)
15826 intel_atomic_swap_global_state(state);
15827
15828 if (ret) {
15829 struct intel_crtc_state *new_crtc_state;
15830 struct intel_crtc *crtc;
15831 int i;
15832
15833 i915_sw_fence_commit(&state->commit_ready);
15834
15835 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15836 intel_dsb_cleanup(new_crtc_state);
15837
15838 drm_atomic_helper_cleanup_planes(dev, &state->base);
15839 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15840 return ret;
15841 }
15842 dev_priv->wm.distrust_bios_wm = false;
15843 intel_shared_dpll_swap_state(state);
15844 intel_atomic_track_fbs(state);
15845
15846 drm_atomic_state_get(&state->base);
15847 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
15848
15849 i915_sw_fence_commit(&state->commit_ready);
15850 if (nonblock && state->modeset) {
15851 queue_work(dev_priv->modeset_wq, &state->base.commit_work);
15852 } else if (nonblock) {
15853 queue_work(dev_priv->flip_wq, &state->base.commit_work);
15854 } else {
15855 if (state->modeset)
15856 flush_workqueue(dev_priv->modeset_wq);
15857 intel_atomic_commit_tail(state);
15858 }
15859
15860 return 0;
15861 }
15862
15863 struct wait_rps_boost {
15864 struct wait_queue_entry wait;
15865
15866 struct drm_crtc *crtc;
15867 struct i915_request *request;
15868 };
15869
do_rps_boost(struct wait_queue_entry * _wait,unsigned mode,int sync,void * key)15870 static int do_rps_boost(struct wait_queue_entry *_wait,
15871 unsigned mode, int sync, void *key)
15872 {
15873 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
15874 struct i915_request *rq = wait->request;
15875
15876 /*
15877 * If we missed the vblank, but the request is already running it
15878 * is reasonable to assume that it will complete before the next
15879 * vblank without our intervention, so leave RPS alone.
15880 */
15881 if (!i915_request_started(rq))
15882 intel_rps_boost(rq);
15883 i915_request_put(rq);
15884
15885 drm_crtc_vblank_put(wait->crtc);
15886
15887 list_del(&wait->wait.entry);
15888 kfree(wait);
15889 return 1;
15890 }
15891
add_rps_boost_after_vblank(struct drm_crtc * crtc,struct dma_fence * fence)15892 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
15893 struct dma_fence *fence)
15894 {
15895 struct wait_rps_boost *wait;
15896
15897 if (!dma_fence_is_i915(fence))
15898 return;
15899
15900 if (INTEL_GEN(to_i915(crtc->dev)) < 6)
15901 return;
15902
15903 if (drm_crtc_vblank_get(crtc))
15904 return;
15905
15906 wait = kmalloc(sizeof(*wait), GFP_KERNEL);
15907 if (!wait) {
15908 drm_crtc_vblank_put(crtc);
15909 return;
15910 }
15911
15912 wait->request = to_request(dma_fence_get(fence));
15913 wait->crtc = crtc;
15914
15915 wait->wait.func = do_rps_boost;
15916 wait->wait.flags = 0;
15917
15918 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
15919 }
15920
intel_plane_pin_fb(struct intel_plane_state * plane_state)15921 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
15922 {
15923 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
15924 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15925 struct drm_framebuffer *fb = plane_state->hw.fb;
15926 struct i915_vma *vma;
15927
15928 if (plane->id == PLANE_CURSOR &&
15929 INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
15930 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15931 const int align = intel_cursor_alignment(dev_priv);
15932 int err;
15933
15934 err = i915_gem_object_attach_phys(obj, align);
15935 if (err)
15936 return err;
15937 }
15938
15939 vma = intel_pin_and_fence_fb_obj(fb,
15940 &plane_state->view,
15941 intel_plane_uses_fence(plane_state),
15942 &plane_state->flags);
15943 if (IS_ERR(vma))
15944 return PTR_ERR(vma);
15945
15946 plane_state->vma = vma;
15947
15948 return 0;
15949 }
15950
intel_plane_unpin_fb(struct intel_plane_state * old_plane_state)15951 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15952 {
15953 struct i915_vma *vma;
15954
15955 vma = fetch_and_zero(&old_plane_state->vma);
15956 if (vma)
15957 intel_unpin_fb_vma(vma, old_plane_state->flags);
15958 }
15959
fb_obj_bump_render_priority(struct drm_i915_gem_object * obj)15960 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15961 {
15962 struct i915_sched_attr attr = {
15963 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15964 };
15965
15966 i915_gem_object_wait_priority(obj, 0, &attr);
15967 }
15968
15969 /**
15970 * intel_prepare_plane_fb - Prepare fb for usage on plane
15971 * @_plane: drm plane to prepare for
15972 * @_new_plane_state: the plane state being prepared
15973 *
15974 * Prepares a framebuffer for usage on a display plane. Generally this
15975 * involves pinning the underlying object and updating the frontbuffer tracking
15976 * bits. Some older platforms need special physical address handling for
15977 * cursor planes.
15978 *
15979 * Returns 0 on success, negative error code on failure.
15980 */
15981 int
intel_prepare_plane_fb(struct drm_plane * _plane,struct drm_plane_state * _new_plane_state)15982 intel_prepare_plane_fb(struct drm_plane *_plane,
15983 struct drm_plane_state *_new_plane_state)
15984 {
15985 struct intel_plane *plane = to_intel_plane(_plane);
15986 struct intel_plane_state *new_plane_state =
15987 to_intel_plane_state(_new_plane_state);
15988 struct intel_atomic_state *state =
15989 to_intel_atomic_state(new_plane_state->uapi.state);
15990 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15991 const struct intel_plane_state *old_plane_state =
15992 intel_atomic_get_old_plane_state(state, plane);
15993 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb);
15994 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb);
15995 int ret;
15996
15997 if (old_obj) {
15998 const struct intel_crtc_state *crtc_state =
15999 intel_atomic_get_new_crtc_state(state,
16000 to_intel_crtc(old_plane_state->hw.crtc));
16001
16002 /* Big Hammer, we also need to ensure that any pending
16003 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
16004 * current scanout is retired before unpinning the old
16005 * framebuffer. Note that we rely on userspace rendering
16006 * into the buffer attached to the pipe they are waiting
16007 * on. If not, userspace generates a GPU hang with IPEHR
16008 * point to the MI_WAIT_FOR_EVENT.
16009 *
16010 * This should only fail upon a hung GPU, in which case we
16011 * can safely continue.
16012 */
16013 if (needs_modeset(crtc_state)) {
16014 ret = i915_sw_fence_await_reservation(&state->commit_ready,
16015 old_obj->base.resv, NULL,
16016 false, 0,
16017 GFP_KERNEL);
16018 if (ret < 0)
16019 return ret;
16020 }
16021 }
16022
16023 if (new_plane_state->uapi.fence) { /* explicit fencing */
16024 ret = i915_sw_fence_await_dma_fence(&state->commit_ready,
16025 new_plane_state->uapi.fence,
16026 i915_fence_timeout(dev_priv),
16027 GFP_KERNEL);
16028 if (ret < 0)
16029 return ret;
16030 }
16031
16032 if (!obj)
16033 return 0;
16034
16035 ret = i915_gem_object_pin_pages(obj);
16036 if (ret)
16037 return ret;
16038
16039 ret = intel_plane_pin_fb(new_plane_state);
16040
16041 i915_gem_object_unpin_pages(obj);
16042 if (ret)
16043 return ret;
16044
16045 fb_obj_bump_render_priority(obj);
16046 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB);
16047
16048 if (!new_plane_state->uapi.fence) { /* implicit fencing */
16049 struct dma_fence *fence;
16050
16051 ret = i915_sw_fence_await_reservation(&state->commit_ready,
16052 obj->base.resv, NULL,
16053 false,
16054 i915_fence_timeout(dev_priv),
16055 GFP_KERNEL);
16056 if (ret < 0)
16057 goto unpin_fb;
16058
16059 fence = dma_resv_get_excl_rcu(obj->base.resv);
16060 if (fence) {
16061 add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16062 fence);
16063 dma_fence_put(fence);
16064 }
16065 } else {
16066 add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16067 new_plane_state->uapi.fence);
16068 }
16069
16070 /*
16071 * We declare pageflips to be interactive and so merit a small bias
16072 * towards upclocking to deliver the frame on time. By only changing
16073 * the RPS thresholds to sample more regularly and aim for higher
16074 * clocks we can hopefully deliver low power workloads (like kodi)
16075 * that are not quite steady state without resorting to forcing
16076 * maximum clocks following a vblank miss (see do_rps_boost()).
16077 */
16078 if (!state->rps_interactive) {
16079 intel_rps_mark_interactive(&dev_priv->gt.rps, true);
16080 state->rps_interactive = true;
16081 }
16082
16083 return 0;
16084
16085 unpin_fb:
16086 intel_plane_unpin_fb(new_plane_state);
16087
16088 return ret;
16089 }
16090
16091 /**
16092 * intel_cleanup_plane_fb - Cleans up an fb after plane use
16093 * @plane: drm plane to clean up for
16094 * @_old_plane_state: the state from the previous modeset
16095 *
16096 * Cleans up a framebuffer that has just been removed from a plane.
16097 */
16098 void
intel_cleanup_plane_fb(struct drm_plane * plane,struct drm_plane_state * _old_plane_state)16099 intel_cleanup_plane_fb(struct drm_plane *plane,
16100 struct drm_plane_state *_old_plane_state)
16101 {
16102 struct intel_plane_state *old_plane_state =
16103 to_intel_plane_state(_old_plane_state);
16104 struct intel_atomic_state *state =
16105 to_intel_atomic_state(old_plane_state->uapi.state);
16106 struct drm_i915_private *dev_priv = to_i915(plane->dev);
16107 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb);
16108
16109 if (!obj)
16110 return;
16111
16112 if (state->rps_interactive) {
16113 intel_rps_mark_interactive(&dev_priv->gt.rps, false);
16114 state->rps_interactive = false;
16115 }
16116
16117 /* Should only be called after a successful intel_prepare_plane_fb()! */
16118 intel_plane_unpin_fb(old_plane_state);
16119 }
16120
16121 /**
16122 * intel_plane_destroy - destroy a plane
16123 * @plane: plane to destroy
16124 *
16125 * Common destruction function for all types of planes (primary, cursor,
16126 * sprite).
16127 */
intel_plane_destroy(struct drm_plane * plane)16128 void intel_plane_destroy(struct drm_plane *plane)
16129 {
16130 drm_plane_cleanup(plane);
16131 kfree(to_intel_plane(plane));
16132 }
16133
i8xx_plane_format_mod_supported(struct drm_plane * _plane,u32 format,u64 modifier)16134 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
16135 u32 format, u64 modifier)
16136 {
16137 switch (modifier) {
16138 case DRM_FORMAT_MOD_LINEAR:
16139 case I915_FORMAT_MOD_X_TILED:
16140 break;
16141 default:
16142 return false;
16143 }
16144
16145 switch (format) {
16146 case DRM_FORMAT_C8:
16147 case DRM_FORMAT_RGB565:
16148 case DRM_FORMAT_XRGB1555:
16149 case DRM_FORMAT_XRGB8888:
16150 return modifier == DRM_FORMAT_MOD_LINEAR ||
16151 modifier == I915_FORMAT_MOD_X_TILED;
16152 default:
16153 return false;
16154 }
16155 }
16156
i965_plane_format_mod_supported(struct drm_plane * _plane,u32 format,u64 modifier)16157 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
16158 u32 format, u64 modifier)
16159 {
16160 switch (modifier) {
16161 case DRM_FORMAT_MOD_LINEAR:
16162 case I915_FORMAT_MOD_X_TILED:
16163 break;
16164 default:
16165 return false;
16166 }
16167
16168 switch (format) {
16169 case DRM_FORMAT_C8:
16170 case DRM_FORMAT_RGB565:
16171 case DRM_FORMAT_XRGB8888:
16172 case DRM_FORMAT_XBGR8888:
16173 case DRM_FORMAT_ARGB8888:
16174 case DRM_FORMAT_ABGR8888:
16175 case DRM_FORMAT_XRGB2101010:
16176 case DRM_FORMAT_XBGR2101010:
16177 case DRM_FORMAT_ARGB2101010:
16178 case DRM_FORMAT_ABGR2101010:
16179 case DRM_FORMAT_XBGR16161616F:
16180 return modifier == DRM_FORMAT_MOD_LINEAR ||
16181 modifier == I915_FORMAT_MOD_X_TILED;
16182 default:
16183 return false;
16184 }
16185 }
16186
intel_cursor_format_mod_supported(struct drm_plane * _plane,u32 format,u64 modifier)16187 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
16188 u32 format, u64 modifier)
16189 {
16190 return modifier == DRM_FORMAT_MOD_LINEAR &&
16191 format == DRM_FORMAT_ARGB8888;
16192 }
16193
16194 static const struct drm_plane_funcs i965_plane_funcs = {
16195 .update_plane = drm_atomic_helper_update_plane,
16196 .disable_plane = drm_atomic_helper_disable_plane,
16197 .destroy = intel_plane_destroy,
16198 .atomic_duplicate_state = intel_plane_duplicate_state,
16199 .atomic_destroy_state = intel_plane_destroy_state,
16200 .format_mod_supported = i965_plane_format_mod_supported,
16201 };
16202
16203 static const struct drm_plane_funcs i8xx_plane_funcs = {
16204 .update_plane = drm_atomic_helper_update_plane,
16205 .disable_plane = drm_atomic_helper_disable_plane,
16206 .destroy = intel_plane_destroy,
16207 .atomic_duplicate_state = intel_plane_duplicate_state,
16208 .atomic_destroy_state = intel_plane_destroy_state,
16209 .format_mod_supported = i8xx_plane_format_mod_supported,
16210 };
16211
16212 static int
intel_legacy_cursor_update(struct drm_plane * _plane,struct drm_crtc * _crtc,struct drm_framebuffer * fb,int crtc_x,int crtc_y,unsigned int crtc_w,unsigned int crtc_h,u32 src_x,u32 src_y,u32 src_w,u32 src_h,struct drm_modeset_acquire_ctx * ctx)16213 intel_legacy_cursor_update(struct drm_plane *_plane,
16214 struct drm_crtc *_crtc,
16215 struct drm_framebuffer *fb,
16216 int crtc_x, int crtc_y,
16217 unsigned int crtc_w, unsigned int crtc_h,
16218 u32 src_x, u32 src_y,
16219 u32 src_w, u32 src_h,
16220 struct drm_modeset_acquire_ctx *ctx)
16221 {
16222 struct intel_plane *plane = to_intel_plane(_plane);
16223 struct intel_crtc *crtc = to_intel_crtc(_crtc);
16224 struct intel_plane_state *old_plane_state =
16225 to_intel_plane_state(plane->base.state);
16226 struct intel_plane_state *new_plane_state;
16227 struct intel_crtc_state *crtc_state =
16228 to_intel_crtc_state(crtc->base.state);
16229 struct intel_crtc_state *new_crtc_state;
16230 int ret;
16231
16232 /*
16233 * When crtc is inactive or there is a modeset pending,
16234 * wait for it to complete in the slowpath
16235 */
16236 if (!crtc_state->hw.active || needs_modeset(crtc_state) ||
16237 crtc_state->update_pipe)
16238 goto slow;
16239
16240 /*
16241 * Don't do an async update if there is an outstanding commit modifying
16242 * the plane. This prevents our async update's changes from getting
16243 * overridden by a previous synchronous update's state.
16244 */
16245 if (old_plane_state->uapi.commit &&
16246 !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done))
16247 goto slow;
16248
16249 /*
16250 * If any parameters change that may affect watermarks,
16251 * take the slowpath. Only changing fb or position should be
16252 * in the fastpath.
16253 */
16254 if (old_plane_state->uapi.crtc != &crtc->base ||
16255 old_plane_state->uapi.src_w != src_w ||
16256 old_plane_state->uapi.src_h != src_h ||
16257 old_plane_state->uapi.crtc_w != crtc_w ||
16258 old_plane_state->uapi.crtc_h != crtc_h ||
16259 !old_plane_state->uapi.fb != !fb)
16260 goto slow;
16261
16262 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
16263 if (!new_plane_state)
16264 return -ENOMEM;
16265
16266 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
16267 if (!new_crtc_state) {
16268 ret = -ENOMEM;
16269 goto out_free;
16270 }
16271
16272 drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb);
16273
16274 new_plane_state->uapi.src_x = src_x;
16275 new_plane_state->uapi.src_y = src_y;
16276 new_plane_state->uapi.src_w = src_w;
16277 new_plane_state->uapi.src_h = src_h;
16278 new_plane_state->uapi.crtc_x = crtc_x;
16279 new_plane_state->uapi.crtc_y = crtc_y;
16280 new_plane_state->uapi.crtc_w = crtc_w;
16281 new_plane_state->uapi.crtc_h = crtc_h;
16282
16283 intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state);
16284
16285 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
16286 old_plane_state, new_plane_state);
16287 if (ret)
16288 goto out_free;
16289
16290 ret = intel_plane_pin_fb(new_plane_state);
16291 if (ret)
16292 goto out_free;
16293
16294 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb),
16295 ORIGIN_FLIP);
16296 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
16297 to_intel_frontbuffer(new_plane_state->hw.fb),
16298 plane->frontbuffer_bit);
16299
16300 /* Swap plane state */
16301 plane->base.state = &new_plane_state->uapi;
16302
16303 /*
16304 * We cannot swap crtc_state as it may be in use by an atomic commit or
16305 * page flip that's running simultaneously. If we swap crtc_state and
16306 * destroy the old state, we will cause a use-after-free there.
16307 *
16308 * Only update active_planes, which is needed for our internal
16309 * bookkeeping. Either value will do the right thing when updating
16310 * planes atomically. If the cursor was part of the atomic update then
16311 * we would have taken the slowpath.
16312 */
16313 crtc_state->active_planes = new_crtc_state->active_planes;
16314
16315 if (new_plane_state->uapi.visible)
16316 intel_update_plane(plane, crtc_state, new_plane_state);
16317 else
16318 intel_disable_plane(plane, crtc_state);
16319
16320 intel_plane_unpin_fb(old_plane_state);
16321
16322 out_free:
16323 if (new_crtc_state)
16324 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi);
16325 if (ret)
16326 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi);
16327 else
16328 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi);
16329 return ret;
16330
16331 slow:
16332 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
16333 crtc_x, crtc_y, crtc_w, crtc_h,
16334 src_x, src_y, src_w, src_h, ctx);
16335 }
16336
16337 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
16338 .update_plane = intel_legacy_cursor_update,
16339 .disable_plane = drm_atomic_helper_disable_plane,
16340 .destroy = intel_plane_destroy,
16341 .atomic_duplicate_state = intel_plane_duplicate_state,
16342 .atomic_destroy_state = intel_plane_destroy_state,
16343 .format_mod_supported = intel_cursor_format_mod_supported,
16344 };
16345
i9xx_plane_has_fbc(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)16346 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
16347 enum i9xx_plane_id i9xx_plane)
16348 {
16349 if (!HAS_FBC(dev_priv))
16350 return false;
16351
16352 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16353 return i9xx_plane == PLANE_A; /* tied to pipe A */
16354 else if (IS_IVYBRIDGE(dev_priv))
16355 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
16356 i9xx_plane == PLANE_C;
16357 else if (INTEL_GEN(dev_priv) >= 4)
16358 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
16359 else
16360 return i9xx_plane == PLANE_A;
16361 }
16362
16363 static struct intel_plane *
intel_primary_plane_create(struct drm_i915_private * dev_priv,enum pipe pipe)16364 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
16365 {
16366 struct intel_plane *plane;
16367 const struct drm_plane_funcs *plane_funcs;
16368 unsigned int supported_rotations;
16369 const u32 *formats;
16370 int num_formats;
16371 int ret, zpos;
16372
16373 if (INTEL_GEN(dev_priv) >= 9)
16374 return skl_universal_plane_create(dev_priv, pipe,
16375 PLANE_PRIMARY);
16376
16377 plane = intel_plane_alloc();
16378 if (IS_ERR(plane))
16379 return plane;
16380
16381 plane->pipe = pipe;
16382 /*
16383 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
16384 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
16385 */
16386 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 &&
16387 INTEL_NUM_PIPES(dev_priv) == 2)
16388 plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
16389 else
16390 plane->i9xx_plane = (enum i9xx_plane_id) pipe;
16391 plane->id = PLANE_PRIMARY;
16392 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
16393
16394 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
16395 if (plane->has_fbc) {
16396 struct intel_fbc *fbc = &dev_priv->fbc;
16397
16398 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
16399 }
16400
16401 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16402 formats = vlv_primary_formats;
16403 num_formats = ARRAY_SIZE(vlv_primary_formats);
16404 } else if (INTEL_GEN(dev_priv) >= 4) {
16405 /*
16406 * WaFP16GammaEnabling:ivb
16407 * "Workaround : When using the 64-bit format, the plane
16408 * output on each color channel has one quarter amplitude.
16409 * It can be brought up to full amplitude by using pipe
16410 * gamma correction or pipe color space conversion to
16411 * multiply the plane output by four."
16412 *
16413 * There is no dedicated plane gamma for the primary plane,
16414 * and using the pipe gamma/csc could conflict with other
16415 * planes, so we choose not to expose fp16 on IVB primary
16416 * planes. HSW primary planes no longer have this problem.
16417 */
16418 if (IS_IVYBRIDGE(dev_priv)) {
16419 formats = ivb_primary_formats;
16420 num_formats = ARRAY_SIZE(ivb_primary_formats);
16421 } else {
16422 formats = i965_primary_formats;
16423 num_formats = ARRAY_SIZE(i965_primary_formats);
16424 }
16425 } else {
16426 formats = i8xx_primary_formats;
16427 num_formats = ARRAY_SIZE(i8xx_primary_formats);
16428 }
16429
16430 if (INTEL_GEN(dev_priv) >= 4)
16431 plane_funcs = &i965_plane_funcs;
16432 else
16433 plane_funcs = &i8xx_plane_funcs;
16434
16435 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16436 plane->min_cdclk = vlv_plane_min_cdclk;
16437 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16438 plane->min_cdclk = hsw_plane_min_cdclk;
16439 else if (IS_IVYBRIDGE(dev_priv))
16440 plane->min_cdclk = ivb_plane_min_cdclk;
16441 else
16442 plane->min_cdclk = i9xx_plane_min_cdclk;
16443
16444 plane->max_stride = i9xx_plane_max_stride;
16445 plane->update_plane = i9xx_update_plane;
16446 plane->disable_plane = i9xx_disable_plane;
16447 plane->get_hw_state = i9xx_plane_get_hw_state;
16448 plane->check_plane = i9xx_plane_check;
16449
16450 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
16451 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16452 0, plane_funcs,
16453 formats, num_formats,
16454 i9xx_format_modifiers,
16455 DRM_PLANE_TYPE_PRIMARY,
16456 "primary %c", pipe_name(pipe));
16457 else
16458 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16459 0, plane_funcs,
16460 formats, num_formats,
16461 i9xx_format_modifiers,
16462 DRM_PLANE_TYPE_PRIMARY,
16463 "plane %c",
16464 plane_name(plane->i9xx_plane));
16465 if (ret)
16466 goto fail;
16467
16468 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
16469 supported_rotations =
16470 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
16471 DRM_MODE_REFLECT_X;
16472 } else if (INTEL_GEN(dev_priv) >= 4) {
16473 supported_rotations =
16474 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
16475 } else {
16476 supported_rotations = DRM_MODE_ROTATE_0;
16477 }
16478
16479 if (INTEL_GEN(dev_priv) >= 4)
16480 drm_plane_create_rotation_property(&plane->base,
16481 DRM_MODE_ROTATE_0,
16482 supported_rotations);
16483
16484 zpos = 0;
16485 drm_plane_create_zpos_immutable_property(&plane->base, zpos);
16486
16487 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
16488
16489 return plane;
16490
16491 fail:
16492 intel_plane_free(plane);
16493
16494 return ERR_PTR(ret);
16495 }
16496
16497 static struct intel_plane *
intel_cursor_plane_create(struct drm_i915_private * dev_priv,enum pipe pipe)16498 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
16499 enum pipe pipe)
16500 {
16501 struct intel_plane *cursor;
16502 int ret, zpos;
16503
16504 cursor = intel_plane_alloc();
16505 if (IS_ERR(cursor))
16506 return cursor;
16507
16508 cursor->pipe = pipe;
16509 cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
16510 cursor->id = PLANE_CURSOR;
16511 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
16512
16513 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16514 cursor->max_stride = i845_cursor_max_stride;
16515 cursor->update_plane = i845_update_cursor;
16516 cursor->disable_plane = i845_disable_cursor;
16517 cursor->get_hw_state = i845_cursor_get_hw_state;
16518 cursor->check_plane = i845_check_cursor;
16519 } else {
16520 cursor->max_stride = i9xx_cursor_max_stride;
16521 cursor->update_plane = i9xx_update_cursor;
16522 cursor->disable_plane = i9xx_disable_cursor;
16523 cursor->get_hw_state = i9xx_cursor_get_hw_state;
16524 cursor->check_plane = i9xx_check_cursor;
16525 }
16526
16527 cursor->cursor.base = ~0;
16528 cursor->cursor.cntl = ~0;
16529
16530 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
16531 cursor->cursor.size = ~0;
16532
16533 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
16534 0, &intel_cursor_plane_funcs,
16535 intel_cursor_formats,
16536 ARRAY_SIZE(intel_cursor_formats),
16537 cursor_format_modifiers,
16538 DRM_PLANE_TYPE_CURSOR,
16539 "cursor %c", pipe_name(pipe));
16540 if (ret)
16541 goto fail;
16542
16543 if (INTEL_GEN(dev_priv) >= 4)
16544 drm_plane_create_rotation_property(&cursor->base,
16545 DRM_MODE_ROTATE_0,
16546 DRM_MODE_ROTATE_0 |
16547 DRM_MODE_ROTATE_180);
16548
16549 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
16550 drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
16551
16552 if (INTEL_GEN(dev_priv) >= 12)
16553 drm_plane_enable_fb_damage_clips(&cursor->base);
16554
16555 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
16556
16557 return cursor;
16558
16559 fail:
16560 intel_plane_free(cursor);
16561
16562 return ERR_PTR(ret);
16563 }
16564
16565 #define INTEL_CRTC_FUNCS \
16566 .gamma_set = drm_atomic_helper_legacy_gamma_set, \
16567 .set_config = drm_atomic_helper_set_config, \
16568 .destroy = intel_crtc_destroy, \
16569 .page_flip = drm_atomic_helper_page_flip, \
16570 .atomic_duplicate_state = intel_crtc_duplicate_state, \
16571 .atomic_destroy_state = intel_crtc_destroy_state, \
16572 .set_crc_source = intel_crtc_set_crc_source, \
16573 .verify_crc_source = intel_crtc_verify_crc_source, \
16574 .get_crc_sources = intel_crtc_get_crc_sources
16575
16576 static const struct drm_crtc_funcs bdw_crtc_funcs = {
16577 INTEL_CRTC_FUNCS,
16578
16579 .get_vblank_counter = g4x_get_vblank_counter,
16580 .enable_vblank = bdw_enable_vblank,
16581 .disable_vblank = bdw_disable_vblank,
16582 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16583 };
16584
16585 static const struct drm_crtc_funcs ilk_crtc_funcs = {
16586 INTEL_CRTC_FUNCS,
16587
16588 .get_vblank_counter = g4x_get_vblank_counter,
16589 .enable_vblank = ilk_enable_vblank,
16590 .disable_vblank = ilk_disable_vblank,
16591 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16592 };
16593
16594 static const struct drm_crtc_funcs g4x_crtc_funcs = {
16595 INTEL_CRTC_FUNCS,
16596
16597 .get_vblank_counter = g4x_get_vblank_counter,
16598 .enable_vblank = i965_enable_vblank,
16599 .disable_vblank = i965_disable_vblank,
16600 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16601 };
16602
16603 static const struct drm_crtc_funcs i965_crtc_funcs = {
16604 INTEL_CRTC_FUNCS,
16605
16606 .get_vblank_counter = i915_get_vblank_counter,
16607 .enable_vblank = i965_enable_vblank,
16608 .disable_vblank = i965_disable_vblank,
16609 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16610 };
16611
16612 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
16613 INTEL_CRTC_FUNCS,
16614
16615 .get_vblank_counter = i915_get_vblank_counter,
16616 .enable_vblank = i915gm_enable_vblank,
16617 .disable_vblank = i915gm_disable_vblank,
16618 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16619 };
16620
16621 static const struct drm_crtc_funcs i915_crtc_funcs = {
16622 INTEL_CRTC_FUNCS,
16623
16624 .get_vblank_counter = i915_get_vblank_counter,
16625 .enable_vblank = i8xx_enable_vblank,
16626 .disable_vblank = i8xx_disable_vblank,
16627 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16628 };
16629
16630 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
16631 INTEL_CRTC_FUNCS,
16632
16633 /* no hw vblank counter */
16634 .enable_vblank = i8xx_enable_vblank,
16635 .disable_vblank = i8xx_disable_vblank,
16636 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16637 };
16638
intel_crtc_alloc(void)16639 static struct intel_crtc *intel_crtc_alloc(void)
16640 {
16641 struct intel_crtc_state *crtc_state;
16642 struct intel_crtc *crtc;
16643
16644 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
16645 if (!crtc)
16646 return ERR_PTR(-ENOMEM);
16647
16648 crtc_state = intel_crtc_state_alloc(crtc);
16649 if (!crtc_state) {
16650 kfree(crtc);
16651 return ERR_PTR(-ENOMEM);
16652 }
16653
16654 crtc->base.state = &crtc_state->uapi;
16655 crtc->config = crtc_state;
16656
16657 return crtc;
16658 }
16659
intel_crtc_free(struct intel_crtc * crtc)16660 static void intel_crtc_free(struct intel_crtc *crtc)
16661 {
16662 intel_crtc_destroy_state(&crtc->base, crtc->base.state);
16663 kfree(crtc);
16664 }
16665
intel_plane_possible_crtcs_init(struct drm_i915_private * dev_priv)16666 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv)
16667 {
16668 struct intel_plane *plane;
16669
16670 for_each_intel_plane(&dev_priv->drm, plane) {
16671 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
16672 plane->pipe);
16673
16674 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base);
16675 }
16676 }
16677
intel_crtc_init(struct drm_i915_private * dev_priv,enum pipe pipe)16678 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
16679 {
16680 struct intel_plane *primary, *cursor;
16681 const struct drm_crtc_funcs *funcs;
16682 struct intel_crtc *crtc;
16683 int sprite, ret;
16684
16685 crtc = intel_crtc_alloc();
16686 if (IS_ERR(crtc))
16687 return PTR_ERR(crtc);
16688
16689 crtc->pipe = pipe;
16690 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
16691
16692 primary = intel_primary_plane_create(dev_priv, pipe);
16693 if (IS_ERR(primary)) {
16694 ret = PTR_ERR(primary);
16695 goto fail;
16696 }
16697 crtc->plane_ids_mask |= BIT(primary->id);
16698
16699 for_each_sprite(dev_priv, pipe, sprite) {
16700 struct intel_plane *plane;
16701
16702 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
16703 if (IS_ERR(plane)) {
16704 ret = PTR_ERR(plane);
16705 goto fail;
16706 }
16707 crtc->plane_ids_mask |= BIT(plane->id);
16708 }
16709
16710 cursor = intel_cursor_plane_create(dev_priv, pipe);
16711 if (IS_ERR(cursor)) {
16712 ret = PTR_ERR(cursor);
16713 goto fail;
16714 }
16715 crtc->plane_ids_mask |= BIT(cursor->id);
16716
16717 if (HAS_GMCH(dev_priv)) {
16718 if (IS_CHERRYVIEW(dev_priv) ||
16719 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
16720 funcs = &g4x_crtc_funcs;
16721 else if (IS_GEN(dev_priv, 4))
16722 funcs = &i965_crtc_funcs;
16723 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
16724 funcs = &i915gm_crtc_funcs;
16725 else if (IS_GEN(dev_priv, 3))
16726 funcs = &i915_crtc_funcs;
16727 else
16728 funcs = &i8xx_crtc_funcs;
16729 } else {
16730 if (INTEL_GEN(dev_priv) >= 8)
16731 funcs = &bdw_crtc_funcs;
16732 else
16733 funcs = &ilk_crtc_funcs;
16734 }
16735
16736 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
16737 &primary->base, &cursor->base,
16738 funcs, "pipe %c", pipe_name(pipe));
16739 if (ret)
16740 goto fail;
16741
16742 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
16743 dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
16744 dev_priv->pipe_to_crtc_mapping[pipe] = crtc;
16745
16746 if (INTEL_GEN(dev_priv) < 9) {
16747 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
16748
16749 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
16750 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
16751 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc;
16752 }
16753
16754 intel_color_init(crtc);
16755
16756 intel_crtc_crc_init(crtc);
16757
16758 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
16759
16760 return 0;
16761
16762 fail:
16763 intel_crtc_free(crtc);
16764
16765 return ret;
16766 }
16767
intel_get_pipe_from_crtc_id_ioctl(struct drm_device * dev,void * data,struct drm_file * file)16768 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
16769 struct drm_file *file)
16770 {
16771 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
16772 struct drm_crtc *drmmode_crtc;
16773 struct intel_crtc *crtc;
16774
16775 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
16776 if (!drmmode_crtc)
16777 return -ENOENT;
16778
16779 crtc = to_intel_crtc(drmmode_crtc);
16780 pipe_from_crtc_id->pipe = crtc->pipe;
16781
16782 return 0;
16783 }
16784
intel_encoder_possible_clones(struct intel_encoder * encoder)16785 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
16786 {
16787 struct drm_device *dev = encoder->base.dev;
16788 struct intel_encoder *source_encoder;
16789 u32 possible_clones = 0;
16790
16791 for_each_intel_encoder(dev, source_encoder) {
16792 if (encoders_cloneable(encoder, source_encoder))
16793 possible_clones |= drm_encoder_mask(&source_encoder->base);
16794 }
16795
16796 return possible_clones;
16797 }
16798
intel_encoder_possible_crtcs(struct intel_encoder * encoder)16799 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
16800 {
16801 struct drm_device *dev = encoder->base.dev;
16802 struct intel_crtc *crtc;
16803 u32 possible_crtcs = 0;
16804
16805 for_each_intel_crtc(dev, crtc) {
16806 if (encoder->pipe_mask & BIT(crtc->pipe))
16807 possible_crtcs |= drm_crtc_mask(&crtc->base);
16808 }
16809
16810 return possible_crtcs;
16811 }
16812
ilk_has_edp_a(struct drm_i915_private * dev_priv)16813 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
16814 {
16815 if (!IS_MOBILE(dev_priv))
16816 return false;
16817
16818 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0)
16819 return false;
16820
16821 if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE))
16822 return false;
16823
16824 return true;
16825 }
16826
intel_ddi_crt_present(struct drm_i915_private * dev_priv)16827 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
16828 {
16829 if (INTEL_GEN(dev_priv) >= 9)
16830 return false;
16831
16832 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
16833 return false;
16834
16835 if (HAS_PCH_LPT_H(dev_priv) &&
16836 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
16837 return false;
16838
16839 /* DDI E can't be used if DDI A requires 4 lanes */
16840 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
16841 return false;
16842
16843 if (!dev_priv->vbt.int_crt_support)
16844 return false;
16845
16846 return true;
16847 }
16848
intel_pps_unlock_regs_wa(struct drm_i915_private * dev_priv)16849 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
16850 {
16851 int pps_num;
16852 int pps_idx;
16853
16854 if (HAS_DDI(dev_priv))
16855 return;
16856 /*
16857 * This w/a is needed at least on CPT/PPT, but to be sure apply it
16858 * everywhere where registers can be write protected.
16859 */
16860 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16861 pps_num = 2;
16862 else
16863 pps_num = 1;
16864
16865 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
16866 u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx));
16867
16868 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
16869 intel_de_write(dev_priv, PP_CONTROL(pps_idx), val);
16870 }
16871 }
16872
intel_pps_init(struct drm_i915_private * dev_priv)16873 static void intel_pps_init(struct drm_i915_private *dev_priv)
16874 {
16875 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
16876 dev_priv->pps_mmio_base = PCH_PPS_BASE;
16877 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16878 dev_priv->pps_mmio_base = VLV_PPS_BASE;
16879 else
16880 dev_priv->pps_mmio_base = PPS_BASE;
16881
16882 intel_pps_unlock_regs_wa(dev_priv);
16883 }
16884
intel_setup_outputs(struct drm_i915_private * dev_priv)16885 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
16886 {
16887 struct intel_encoder *encoder;
16888 bool dpd_is_edp = false;
16889
16890 intel_pps_init(dev_priv);
16891
16892 if (!HAS_DISPLAY(dev_priv))
16893 return;
16894
16895 if (IS_ROCKETLAKE(dev_priv)) {
16896 intel_ddi_init(dev_priv, PORT_A);
16897 intel_ddi_init(dev_priv, PORT_B);
16898 intel_ddi_init(dev_priv, PORT_D); /* DDI TC1 */
16899 intel_ddi_init(dev_priv, PORT_E); /* DDI TC2 */
16900 } else if (INTEL_GEN(dev_priv) >= 12) {
16901 intel_ddi_init(dev_priv, PORT_A);
16902 intel_ddi_init(dev_priv, PORT_B);
16903 intel_ddi_init(dev_priv, PORT_D);
16904 intel_ddi_init(dev_priv, PORT_E);
16905 intel_ddi_init(dev_priv, PORT_F);
16906 intel_ddi_init(dev_priv, PORT_G);
16907 intel_ddi_init(dev_priv, PORT_H);
16908 intel_ddi_init(dev_priv, PORT_I);
16909 icl_dsi_init(dev_priv);
16910 } else if (IS_ELKHARTLAKE(dev_priv)) {
16911 intel_ddi_init(dev_priv, PORT_A);
16912 intel_ddi_init(dev_priv, PORT_B);
16913 intel_ddi_init(dev_priv, PORT_C);
16914 intel_ddi_init(dev_priv, PORT_D);
16915 icl_dsi_init(dev_priv);
16916 } else if (IS_GEN(dev_priv, 11)) {
16917 intel_ddi_init(dev_priv, PORT_A);
16918 intel_ddi_init(dev_priv, PORT_B);
16919 intel_ddi_init(dev_priv, PORT_C);
16920 intel_ddi_init(dev_priv, PORT_D);
16921 intel_ddi_init(dev_priv, PORT_E);
16922 /*
16923 * On some ICL SKUs port F is not present. No strap bits for
16924 * this, so rely on VBT.
16925 * Work around broken VBTs on SKUs known to have no port F.
16926 */
16927 if (IS_ICL_WITH_PORT_F(dev_priv) &&
16928 intel_bios_is_port_present(dev_priv, PORT_F))
16929 intel_ddi_init(dev_priv, PORT_F);
16930
16931 icl_dsi_init(dev_priv);
16932 } else if (IS_GEN9_LP(dev_priv)) {
16933 /*
16934 * FIXME: Broxton doesn't support port detection via the
16935 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
16936 * detect the ports.
16937 */
16938 intel_ddi_init(dev_priv, PORT_A);
16939 intel_ddi_init(dev_priv, PORT_B);
16940 intel_ddi_init(dev_priv, PORT_C);
16941
16942 vlv_dsi_init(dev_priv);
16943 } else if (HAS_DDI(dev_priv)) {
16944 int found;
16945
16946 if (intel_ddi_crt_present(dev_priv))
16947 intel_crt_init(dev_priv);
16948
16949 /*
16950 * Haswell uses DDI functions to detect digital outputs.
16951 * On SKL pre-D0 the strap isn't connected, so we assume
16952 * it's there.
16953 */
16954 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
16955 /* WaIgnoreDDIAStrap: skl */
16956 if (found || IS_GEN9_BC(dev_priv))
16957 intel_ddi_init(dev_priv, PORT_A);
16958
16959 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16960 * register */
16961 found = intel_de_read(dev_priv, SFUSE_STRAP);
16962
16963 if (found & SFUSE_STRAP_DDIB_DETECTED)
16964 intel_ddi_init(dev_priv, PORT_B);
16965 if (found & SFUSE_STRAP_DDIC_DETECTED)
16966 intel_ddi_init(dev_priv, PORT_C);
16967 if (found & SFUSE_STRAP_DDID_DETECTED)
16968 intel_ddi_init(dev_priv, PORT_D);
16969 if (found & SFUSE_STRAP_DDIF_DETECTED)
16970 intel_ddi_init(dev_priv, PORT_F);
16971 /*
16972 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16973 */
16974 if (IS_GEN9_BC(dev_priv) &&
16975 intel_bios_is_port_present(dev_priv, PORT_E))
16976 intel_ddi_init(dev_priv, PORT_E);
16977
16978 } else if (HAS_PCH_SPLIT(dev_priv)) {
16979 int found;
16980
16981 /*
16982 * intel_edp_init_connector() depends on this completing first,
16983 * to prevent the registration of both eDP and LVDS and the
16984 * incorrect sharing of the PPS.
16985 */
16986 intel_lvds_init(dev_priv);
16987 intel_crt_init(dev_priv);
16988
16989 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16990
16991 if (ilk_has_edp_a(dev_priv))
16992 intel_dp_init(dev_priv, DP_A, PORT_A);
16993
16994 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) {
16995 /* PCH SDVOB multiplex with HDMIB */
16996 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16997 if (!found)
16998 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16999 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED))
17000 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
17001 }
17002
17003 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED)
17004 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
17005
17006 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED)
17007 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
17008
17009 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED)
17010 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
17011
17012 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED)
17013 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
17014 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17015 bool has_edp, has_port;
17016
17017 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
17018 intel_crt_init(dev_priv);
17019
17020 /*
17021 * The DP_DETECTED bit is the latched state of the DDC
17022 * SDA pin at boot. However since eDP doesn't require DDC
17023 * (no way to plug in a DP->HDMI dongle) the DDC pins for
17024 * eDP ports may have been muxed to an alternate function.
17025 * Thus we can't rely on the DP_DETECTED bit alone to detect
17026 * eDP ports. Consult the VBT as well as DP_DETECTED to
17027 * detect eDP ports.
17028 *
17029 * Sadly the straps seem to be missing sometimes even for HDMI
17030 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
17031 * and VBT for the presence of the port. Additionally we can't
17032 * trust the port type the VBT declares as we've seen at least
17033 * HDMI ports that the VBT claim are DP or eDP.
17034 */
17035 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
17036 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
17037 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port)
17038 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
17039 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
17040 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
17041
17042 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
17043 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
17044 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port)
17045 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
17046 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
17047 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
17048
17049 if (IS_CHERRYVIEW(dev_priv)) {
17050 /*
17051 * eDP not supported on port D,
17052 * so no need to worry about it
17053 */
17054 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
17055 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port)
17056 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
17057 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port)
17058 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
17059 }
17060
17061 vlv_dsi_init(dev_priv);
17062 } else if (IS_PINEVIEW(dev_priv)) {
17063 intel_lvds_init(dev_priv);
17064 intel_crt_init(dev_priv);
17065 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
17066 bool found = false;
17067
17068 if (IS_MOBILE(dev_priv))
17069 intel_lvds_init(dev_priv);
17070
17071 intel_crt_init(dev_priv);
17072
17073 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17074 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n");
17075 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
17076 if (!found && IS_G4X(dev_priv)) {
17077 drm_dbg_kms(&dev_priv->drm,
17078 "probing HDMI on SDVOB\n");
17079 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
17080 }
17081
17082 if (!found && IS_G4X(dev_priv))
17083 intel_dp_init(dev_priv, DP_B, PORT_B);
17084 }
17085
17086 /* Before G4X SDVOC doesn't have its own detect register */
17087
17088 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17089 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n");
17090 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
17091 }
17092
17093 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) {
17094
17095 if (IS_G4X(dev_priv)) {
17096 drm_dbg_kms(&dev_priv->drm,
17097 "probing HDMI on SDVOC\n");
17098 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
17099 }
17100 if (IS_G4X(dev_priv))
17101 intel_dp_init(dev_priv, DP_C, PORT_C);
17102 }
17103
17104 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED))
17105 intel_dp_init(dev_priv, DP_D, PORT_D);
17106
17107 if (SUPPORTS_TV(dev_priv))
17108 intel_tv_init(dev_priv);
17109 } else if (IS_GEN(dev_priv, 2)) {
17110 if (IS_I85X(dev_priv))
17111 intel_lvds_init(dev_priv);
17112
17113 intel_crt_init(dev_priv);
17114 intel_dvo_init(dev_priv);
17115 }
17116
17117 intel_psr_init(dev_priv);
17118
17119 for_each_intel_encoder(&dev_priv->drm, encoder) {
17120 encoder->base.possible_crtcs =
17121 intel_encoder_possible_crtcs(encoder);
17122 encoder->base.possible_clones =
17123 intel_encoder_possible_clones(encoder);
17124 }
17125
17126 intel_init_pch_refclk(dev_priv);
17127
17128 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
17129 }
17130
intel_user_framebuffer_destroy(struct drm_framebuffer * fb)17131 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
17132 {
17133 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
17134
17135 drm_framebuffer_cleanup(fb);
17136 intel_frontbuffer_put(intel_fb->frontbuffer);
17137
17138 kfree(intel_fb);
17139 }
17140
intel_user_framebuffer_create_handle(struct drm_framebuffer * fb,struct drm_file * file,unsigned int * handle)17141 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
17142 struct drm_file *file,
17143 unsigned int *handle)
17144 {
17145 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17146 struct drm_i915_private *i915 = to_i915(obj->base.dev);
17147
17148 if (obj->userptr.mm) {
17149 drm_dbg(&i915->drm,
17150 "attempting to use a userptr for a framebuffer, denied\n");
17151 return -EINVAL;
17152 }
17153
17154 return drm_gem_handle_create(file, &obj->base, handle);
17155 }
17156
intel_user_framebuffer_dirty(struct drm_framebuffer * fb,struct drm_file * file,unsigned flags,unsigned color,struct drm_clip_rect * clips,unsigned num_clips)17157 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
17158 struct drm_file *file,
17159 unsigned flags, unsigned color,
17160 struct drm_clip_rect *clips,
17161 unsigned num_clips)
17162 {
17163 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17164
17165 i915_gem_object_flush_if_display(obj);
17166 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
17167
17168 return 0;
17169 }
17170
17171 static const struct drm_framebuffer_funcs intel_fb_funcs = {
17172 .destroy = intel_user_framebuffer_destroy,
17173 .create_handle = intel_user_framebuffer_create_handle,
17174 .dirty = intel_user_framebuffer_dirty,
17175 };
17176
intel_framebuffer_init(struct intel_framebuffer * intel_fb,struct drm_i915_gem_object * obj,struct drm_mode_fb_cmd2 * mode_cmd)17177 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
17178 struct drm_i915_gem_object *obj,
17179 struct drm_mode_fb_cmd2 *mode_cmd)
17180 {
17181 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
17182 struct drm_framebuffer *fb = &intel_fb->base;
17183 u32 max_stride;
17184 unsigned int tiling, stride;
17185 int ret = -EINVAL;
17186 int i;
17187
17188 intel_fb->frontbuffer = intel_frontbuffer_get(obj);
17189 if (!intel_fb->frontbuffer)
17190 return -ENOMEM;
17191
17192 i915_gem_object_lock(obj, NULL);
17193 tiling = i915_gem_object_get_tiling(obj);
17194 stride = i915_gem_object_get_stride(obj);
17195 i915_gem_object_unlock(obj);
17196
17197 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
17198 /*
17199 * If there's a fence, enforce that
17200 * the fb modifier and tiling mode match.
17201 */
17202 if (tiling != I915_TILING_NONE &&
17203 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17204 drm_dbg_kms(&dev_priv->drm,
17205 "tiling_mode doesn't match fb modifier\n");
17206 goto err;
17207 }
17208 } else {
17209 if (tiling == I915_TILING_X) {
17210 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
17211 } else if (tiling == I915_TILING_Y) {
17212 drm_dbg_kms(&dev_priv->drm,
17213 "No Y tiling for legacy addfb\n");
17214 goto err;
17215 }
17216 }
17217
17218 if (!drm_any_plane_has_format(&dev_priv->drm,
17219 mode_cmd->pixel_format,
17220 mode_cmd->modifier[0])) {
17221 struct drm_format_name_buf format_name;
17222
17223 drm_dbg_kms(&dev_priv->drm,
17224 "unsupported pixel format %s / modifier 0x%llx\n",
17225 drm_get_format_name(mode_cmd->pixel_format,
17226 &format_name),
17227 mode_cmd->modifier[0]);
17228 goto err;
17229 }
17230
17231 /*
17232 * gen2/3 display engine uses the fence if present,
17233 * so the tiling mode must match the fb modifier exactly.
17234 */
17235 if (INTEL_GEN(dev_priv) < 4 &&
17236 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17237 drm_dbg_kms(&dev_priv->drm,
17238 "tiling_mode must match fb modifier exactly on gen2/3\n");
17239 goto err;
17240 }
17241
17242 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
17243 mode_cmd->modifier[0]);
17244 if (mode_cmd->pitches[0] > max_stride) {
17245 drm_dbg_kms(&dev_priv->drm,
17246 "%s pitch (%u) must be at most %d\n",
17247 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
17248 "tiled" : "linear",
17249 mode_cmd->pitches[0], max_stride);
17250 goto err;
17251 }
17252
17253 /*
17254 * If there's a fence, enforce that
17255 * the fb pitch and fence stride match.
17256 */
17257 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
17258 drm_dbg_kms(&dev_priv->drm,
17259 "pitch (%d) must match tiling stride (%d)\n",
17260 mode_cmd->pitches[0], stride);
17261 goto err;
17262 }
17263
17264 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
17265 if (mode_cmd->offsets[0] != 0) {
17266 drm_dbg_kms(&dev_priv->drm,
17267 "plane 0 offset (0x%08x) must be 0\n",
17268 mode_cmd->offsets[0]);
17269 goto err;
17270 }
17271
17272 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
17273
17274 for (i = 0; i < fb->format->num_planes; i++) {
17275 u32 stride_alignment;
17276
17277 if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
17278 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n",
17279 i);
17280 goto err;
17281 }
17282
17283 stride_alignment = intel_fb_stride_alignment(fb, i);
17284 if (fb->pitches[i] & (stride_alignment - 1)) {
17285 drm_dbg_kms(&dev_priv->drm,
17286 "plane %d pitch (%d) must be at least %u byte aligned\n",
17287 i, fb->pitches[i], stride_alignment);
17288 goto err;
17289 }
17290
17291 if (is_gen12_ccs_plane(fb, i)) {
17292 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i);
17293
17294 if (fb->pitches[i] != ccs_aux_stride) {
17295 drm_dbg_kms(&dev_priv->drm,
17296 "ccs aux plane %d pitch (%d) must be %d\n",
17297 i,
17298 fb->pitches[i], ccs_aux_stride);
17299 goto err;
17300 }
17301 }
17302
17303 fb->obj[i] = &obj->base;
17304 }
17305
17306 ret = intel_fill_fb_info(dev_priv, fb);
17307 if (ret)
17308 goto err;
17309
17310 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
17311 if (ret) {
17312 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret);
17313 goto err;
17314 }
17315
17316 return 0;
17317
17318 err:
17319 intel_frontbuffer_put(intel_fb->frontbuffer);
17320 return ret;
17321 }
17322
17323 static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device * dev,struct drm_file * filp,const struct drm_mode_fb_cmd2 * user_mode_cmd)17324 intel_user_framebuffer_create(struct drm_device *dev,
17325 struct drm_file *filp,
17326 const struct drm_mode_fb_cmd2 *user_mode_cmd)
17327 {
17328 struct drm_framebuffer *fb;
17329 struct drm_i915_gem_object *obj;
17330 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
17331
17332 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
17333 if (!obj)
17334 return ERR_PTR(-ENOENT);
17335
17336 fb = intel_framebuffer_create(obj, &mode_cmd);
17337 i915_gem_object_put(obj);
17338
17339 return fb;
17340 }
17341
17342 static enum drm_mode_status
intel_mode_valid(struct drm_device * dev,const struct drm_display_mode * mode)17343 intel_mode_valid(struct drm_device *dev,
17344 const struct drm_display_mode *mode)
17345 {
17346 struct drm_i915_private *dev_priv = to_i915(dev);
17347 int hdisplay_max, htotal_max;
17348 int vdisplay_max, vtotal_max;
17349
17350 /*
17351 * Can't reject DBLSCAN here because Xorg ddxen can add piles
17352 * of DBLSCAN modes to the output's mode list when they detect
17353 * the scaling mode property on the connector. And they don't
17354 * ask the kernel to validate those modes in any way until
17355 * modeset time at which point the client gets a protocol error.
17356 * So in order to not upset those clients we silently ignore the
17357 * DBLSCAN flag on such connectors. For other connectors we will
17358 * reject modes with the DBLSCAN flag in encoder->compute_config().
17359 * And we always reject DBLSCAN modes in connector->mode_valid()
17360 * as we never want such modes on the connector's mode list.
17361 */
17362
17363 if (mode->vscan > 1)
17364 return MODE_NO_VSCAN;
17365
17366 if (mode->flags & DRM_MODE_FLAG_HSKEW)
17367 return MODE_H_ILLEGAL;
17368
17369 if (mode->flags & (DRM_MODE_FLAG_CSYNC |
17370 DRM_MODE_FLAG_NCSYNC |
17371 DRM_MODE_FLAG_PCSYNC))
17372 return MODE_HSYNC;
17373
17374 if (mode->flags & (DRM_MODE_FLAG_BCAST |
17375 DRM_MODE_FLAG_PIXMUX |
17376 DRM_MODE_FLAG_CLKDIV2))
17377 return MODE_BAD;
17378
17379 /* Transcoder timing limits */
17380 if (INTEL_GEN(dev_priv) >= 11) {
17381 hdisplay_max = 16384;
17382 vdisplay_max = 8192;
17383 htotal_max = 16384;
17384 vtotal_max = 8192;
17385 } else if (INTEL_GEN(dev_priv) >= 9 ||
17386 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17387 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
17388 vdisplay_max = 4096;
17389 htotal_max = 8192;
17390 vtotal_max = 8192;
17391 } else if (INTEL_GEN(dev_priv) >= 3) {
17392 hdisplay_max = 4096;
17393 vdisplay_max = 4096;
17394 htotal_max = 8192;
17395 vtotal_max = 8192;
17396 } else {
17397 hdisplay_max = 2048;
17398 vdisplay_max = 2048;
17399 htotal_max = 4096;
17400 vtotal_max = 4096;
17401 }
17402
17403 if (mode->hdisplay > hdisplay_max ||
17404 mode->hsync_start > htotal_max ||
17405 mode->hsync_end > htotal_max ||
17406 mode->htotal > htotal_max)
17407 return MODE_H_ILLEGAL;
17408
17409 if (mode->vdisplay > vdisplay_max ||
17410 mode->vsync_start > vtotal_max ||
17411 mode->vsync_end > vtotal_max ||
17412 mode->vtotal > vtotal_max)
17413 return MODE_V_ILLEGAL;
17414
17415 if (INTEL_GEN(dev_priv) >= 5) {
17416 if (mode->hdisplay < 64 ||
17417 mode->htotal - mode->hdisplay < 32)
17418 return MODE_H_ILLEGAL;
17419
17420 if (mode->vtotal - mode->vdisplay < 5)
17421 return MODE_V_ILLEGAL;
17422 } else {
17423 if (mode->htotal - mode->hdisplay < 32)
17424 return MODE_H_ILLEGAL;
17425
17426 if (mode->vtotal - mode->vdisplay < 3)
17427 return MODE_V_ILLEGAL;
17428 }
17429
17430 return MODE_OK;
17431 }
17432
17433 enum drm_mode_status
intel_mode_valid_max_plane_size(struct drm_i915_private * dev_priv,const struct drm_display_mode * mode)17434 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
17435 const struct drm_display_mode *mode)
17436 {
17437 int plane_width_max, plane_height_max;
17438
17439 /*
17440 * intel_mode_valid() should be
17441 * sufficient on older platforms.
17442 */
17443 if (INTEL_GEN(dev_priv) < 9)
17444 return MODE_OK;
17445
17446 /*
17447 * Most people will probably want a fullscreen
17448 * plane so let's not advertize modes that are
17449 * too big for that.
17450 */
17451 if (INTEL_GEN(dev_priv) >= 11) {
17452 plane_width_max = 5120;
17453 plane_height_max = 4320;
17454 } else {
17455 plane_width_max = 5120;
17456 plane_height_max = 4096;
17457 }
17458
17459 if (mode->hdisplay > plane_width_max)
17460 return MODE_H_ILLEGAL;
17461
17462 if (mode->vdisplay > plane_height_max)
17463 return MODE_V_ILLEGAL;
17464
17465 return MODE_OK;
17466 }
17467
17468 static const struct drm_mode_config_funcs intel_mode_funcs = {
17469 .fb_create = intel_user_framebuffer_create,
17470 .get_format_info = intel_get_format_info,
17471 .output_poll_changed = intel_fbdev_output_poll_changed,
17472 .mode_valid = intel_mode_valid,
17473 .atomic_check = intel_atomic_check,
17474 .atomic_commit = intel_atomic_commit,
17475 .atomic_state_alloc = intel_atomic_state_alloc,
17476 .atomic_state_clear = intel_atomic_state_clear,
17477 .atomic_state_free = intel_atomic_state_free,
17478 };
17479
17480 /**
17481 * intel_init_display_hooks - initialize the display modesetting hooks
17482 * @dev_priv: device private
17483 */
intel_init_display_hooks(struct drm_i915_private * dev_priv)17484 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
17485 {
17486 intel_init_cdclk_hooks(dev_priv);
17487
17488 if (INTEL_GEN(dev_priv) >= 9) {
17489 dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17490 dev_priv->display.get_initial_plane_config =
17491 skl_get_initial_plane_config;
17492 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
17493 dev_priv->display.crtc_enable = hsw_crtc_enable;
17494 dev_priv->display.crtc_disable = hsw_crtc_disable;
17495 } else if (HAS_DDI(dev_priv)) {
17496 dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17497 dev_priv->display.get_initial_plane_config =
17498 i9xx_get_initial_plane_config;
17499 dev_priv->display.crtc_compute_clock =
17500 hsw_crtc_compute_clock;
17501 dev_priv->display.crtc_enable = hsw_crtc_enable;
17502 dev_priv->display.crtc_disable = hsw_crtc_disable;
17503 } else if (HAS_PCH_SPLIT(dev_priv)) {
17504 dev_priv->display.get_pipe_config = ilk_get_pipe_config;
17505 dev_priv->display.get_initial_plane_config =
17506 i9xx_get_initial_plane_config;
17507 dev_priv->display.crtc_compute_clock =
17508 ilk_crtc_compute_clock;
17509 dev_priv->display.crtc_enable = ilk_crtc_enable;
17510 dev_priv->display.crtc_disable = ilk_crtc_disable;
17511 } else if (IS_CHERRYVIEW(dev_priv)) {
17512 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17513 dev_priv->display.get_initial_plane_config =
17514 i9xx_get_initial_plane_config;
17515 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
17516 dev_priv->display.crtc_enable = valleyview_crtc_enable;
17517 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17518 } else if (IS_VALLEYVIEW(dev_priv)) {
17519 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17520 dev_priv->display.get_initial_plane_config =
17521 i9xx_get_initial_plane_config;
17522 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
17523 dev_priv->display.crtc_enable = valleyview_crtc_enable;
17524 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17525 } else if (IS_G4X(dev_priv)) {
17526 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17527 dev_priv->display.get_initial_plane_config =
17528 i9xx_get_initial_plane_config;
17529 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
17530 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17531 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17532 } else if (IS_PINEVIEW(dev_priv)) {
17533 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17534 dev_priv->display.get_initial_plane_config =
17535 i9xx_get_initial_plane_config;
17536 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
17537 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17538 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17539 } else if (!IS_GEN(dev_priv, 2)) {
17540 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17541 dev_priv->display.get_initial_plane_config =
17542 i9xx_get_initial_plane_config;
17543 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
17544 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17545 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17546 } else {
17547 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17548 dev_priv->display.get_initial_plane_config =
17549 i9xx_get_initial_plane_config;
17550 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
17551 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17552 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17553 }
17554
17555 if (IS_GEN(dev_priv, 5)) {
17556 dev_priv->display.fdi_link_train = ilk_fdi_link_train;
17557 } else if (IS_GEN(dev_priv, 6)) {
17558 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
17559 } else if (IS_IVYBRIDGE(dev_priv)) {
17560 /* FIXME: detect B0+ stepping and use auto training */
17561 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
17562 }
17563
17564 if (INTEL_GEN(dev_priv) >= 9)
17565 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
17566 else
17567 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
17568
17569 }
17570
intel_modeset_init_hw(struct drm_i915_private * i915)17571 void intel_modeset_init_hw(struct drm_i915_private *i915)
17572 {
17573 struct intel_cdclk_state *cdclk_state =
17574 to_intel_cdclk_state(i915->cdclk.obj.state);
17575 struct intel_dbuf_state *dbuf_state =
17576 to_intel_dbuf_state(i915->dbuf.obj.state);
17577
17578 intel_update_cdclk(i915);
17579 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK");
17580 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw;
17581
17582 dbuf_state->enabled_slices = i915->dbuf.enabled_slices;
17583 }
17584
sanitize_watermarks_add_affected(struct drm_atomic_state * state)17585 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state)
17586 {
17587 struct drm_plane *plane;
17588 struct intel_crtc *crtc;
17589
17590 for_each_intel_crtc(state->dev, crtc) {
17591 struct intel_crtc_state *crtc_state;
17592
17593 crtc_state = intel_atomic_get_crtc_state(state, crtc);
17594 if (IS_ERR(crtc_state))
17595 return PTR_ERR(crtc_state);
17596
17597 if (crtc_state->hw.active) {
17598 /*
17599 * Preserve the inherited flag to avoid
17600 * taking the full modeset path.
17601 */
17602 crtc_state->inherited = true;
17603 }
17604 }
17605
17606 drm_for_each_plane(plane, state->dev) {
17607 struct drm_plane_state *plane_state;
17608
17609 plane_state = drm_atomic_get_plane_state(state, plane);
17610 if (IS_ERR(plane_state))
17611 return PTR_ERR(plane_state);
17612 }
17613
17614 return 0;
17615 }
17616
17617 /*
17618 * Calculate what we think the watermarks should be for the state we've read
17619 * out of the hardware and then immediately program those watermarks so that
17620 * we ensure the hardware settings match our internal state.
17621 *
17622 * We can calculate what we think WM's should be by creating a duplicate of the
17623 * current state (which was constructed during hardware readout) and running it
17624 * through the atomic check code to calculate new watermark values in the
17625 * state object.
17626 */
sanitize_watermarks(struct drm_i915_private * dev_priv)17627 static void sanitize_watermarks(struct drm_i915_private *dev_priv)
17628 {
17629 struct drm_atomic_state *state;
17630 struct intel_atomic_state *intel_state;
17631 struct intel_crtc *crtc;
17632 struct intel_crtc_state *crtc_state;
17633 struct drm_modeset_acquire_ctx ctx;
17634 int ret;
17635 int i;
17636
17637 /* Only supported on platforms that use atomic watermark design */
17638 if (!dev_priv->display.optimize_watermarks)
17639 return;
17640
17641 state = drm_atomic_state_alloc(&dev_priv->drm);
17642 if (drm_WARN_ON(&dev_priv->drm, !state))
17643 return;
17644
17645 intel_state = to_intel_atomic_state(state);
17646
17647 drm_modeset_acquire_init(&ctx, 0);
17648
17649 retry:
17650 state->acquire_ctx = &ctx;
17651
17652 /*
17653 * Hardware readout is the only time we don't want to calculate
17654 * intermediate watermarks (since we don't trust the current
17655 * watermarks).
17656 */
17657 if (!HAS_GMCH(dev_priv))
17658 intel_state->skip_intermediate_wm = true;
17659
17660 ret = sanitize_watermarks_add_affected(state);
17661 if (ret)
17662 goto fail;
17663
17664 ret = intel_atomic_check(&dev_priv->drm, state);
17665 if (ret)
17666 goto fail;
17667
17668 /* Write calculated watermark values back */
17669 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
17670 crtc_state->wm.need_postvbl_update = true;
17671 dev_priv->display.optimize_watermarks(intel_state, crtc);
17672
17673 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
17674 }
17675
17676 fail:
17677 if (ret == -EDEADLK) {
17678 drm_atomic_state_clear(state);
17679 drm_modeset_backoff(&ctx);
17680 goto retry;
17681 }
17682
17683 /*
17684 * If we fail here, it means that the hardware appears to be
17685 * programmed in a way that shouldn't be possible, given our
17686 * understanding of watermark requirements. This might mean a
17687 * mistake in the hardware readout code or a mistake in the
17688 * watermark calculations for a given platform. Raise a WARN
17689 * so that this is noticeable.
17690 *
17691 * If this actually happens, we'll have to just leave the
17692 * BIOS-programmed watermarks untouched and hope for the best.
17693 */
17694 drm_WARN(&dev_priv->drm, ret,
17695 "Could not determine valid watermarks for inherited state\n");
17696
17697 drm_atomic_state_put(state);
17698
17699 drm_modeset_drop_locks(&ctx);
17700 drm_modeset_acquire_fini(&ctx);
17701 }
17702
intel_update_fdi_pll_freq(struct drm_i915_private * dev_priv)17703 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
17704 {
17705 if (IS_GEN(dev_priv, 5)) {
17706 u32 fdi_pll_clk =
17707 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
17708
17709 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
17710 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
17711 dev_priv->fdi_pll_freq = 270000;
17712 } else {
17713 return;
17714 }
17715
17716 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
17717 }
17718
intel_initial_commit(struct drm_device * dev)17719 static int intel_initial_commit(struct drm_device *dev)
17720 {
17721 struct drm_atomic_state *state = NULL;
17722 struct drm_modeset_acquire_ctx ctx;
17723 struct intel_crtc *crtc;
17724 int ret = 0;
17725
17726 state = drm_atomic_state_alloc(dev);
17727 if (!state)
17728 return -ENOMEM;
17729
17730 drm_modeset_acquire_init(&ctx, 0);
17731
17732 retry:
17733 state->acquire_ctx = &ctx;
17734
17735 for_each_intel_crtc(dev, crtc) {
17736 struct intel_crtc_state *crtc_state =
17737 intel_atomic_get_crtc_state(state, crtc);
17738
17739 if (IS_ERR(crtc_state)) {
17740 ret = PTR_ERR(crtc_state);
17741 goto out;
17742 }
17743
17744 if (crtc_state->hw.active) {
17745 /*
17746 * We've not yet detected sink capabilities
17747 * (audio,infoframes,etc.) and thus we don't want to
17748 * force a full state recomputation yet. We want that to
17749 * happen only for the first real commit from userspace.
17750 * So preserve the inherited flag for the time being.
17751 */
17752 crtc_state->inherited = true;
17753
17754 ret = drm_atomic_add_affected_planes(state, &crtc->base);
17755 if (ret)
17756 goto out;
17757
17758 /*
17759 * FIXME hack to force a LUT update to avoid the
17760 * plane update forcing the pipe gamma on without
17761 * having a proper LUT loaded. Remove once we
17762 * have readout for pipe gamma enable.
17763 */
17764 crtc_state->uapi.color_mgmt_changed = true;
17765
17766 /*
17767 * FIXME hack to force full modeset when DSC is being
17768 * used.
17769 *
17770 * As long as we do not have full state readout and
17771 * config comparison of crtc_state->dsc, we have no way
17772 * to ensure reliable fastset. Remove once we have
17773 * readout for DSC.
17774 */
17775 if (crtc_state->dsc.compression_enable) {
17776 ret = drm_atomic_add_affected_connectors(state,
17777 &crtc->base);
17778 if (ret)
17779 goto out;
17780 crtc_state->uapi.mode_changed = true;
17781 drm_dbg_kms(dev, "Force full modeset for DSC\n");
17782 }
17783 }
17784 }
17785
17786 ret = drm_atomic_commit(state);
17787
17788 out:
17789 if (ret == -EDEADLK) {
17790 drm_atomic_state_clear(state);
17791 drm_modeset_backoff(&ctx);
17792 goto retry;
17793 }
17794
17795 drm_atomic_state_put(state);
17796
17797 drm_modeset_drop_locks(&ctx);
17798 drm_modeset_acquire_fini(&ctx);
17799
17800 return ret;
17801 }
17802
intel_mode_config_init(struct drm_i915_private * i915)17803 static void intel_mode_config_init(struct drm_i915_private *i915)
17804 {
17805 struct drm_mode_config *mode_config = &i915->drm.mode_config;
17806
17807 drm_mode_config_init(&i915->drm);
17808 INIT_LIST_HEAD(&i915->global_obj_list);
17809
17810 mode_config->min_width = 0;
17811 mode_config->min_height = 0;
17812
17813 mode_config->preferred_depth = 24;
17814 mode_config->prefer_shadow = 1;
17815
17816 mode_config->allow_fb_modifiers = true;
17817
17818 mode_config->funcs = &intel_mode_funcs;
17819
17820 /*
17821 * Maximum framebuffer dimensions, chosen to match
17822 * the maximum render engine surface size on gen4+.
17823 */
17824 if (INTEL_GEN(i915) >= 7) {
17825 mode_config->max_width = 16384;
17826 mode_config->max_height = 16384;
17827 } else if (INTEL_GEN(i915) >= 4) {
17828 mode_config->max_width = 8192;
17829 mode_config->max_height = 8192;
17830 } else if (IS_GEN(i915, 3)) {
17831 mode_config->max_width = 4096;
17832 mode_config->max_height = 4096;
17833 } else {
17834 mode_config->max_width = 2048;
17835 mode_config->max_height = 2048;
17836 }
17837
17838 if (IS_I845G(i915) || IS_I865G(i915)) {
17839 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
17840 mode_config->cursor_height = 1023;
17841 } else if (IS_I830(i915) || IS_I85X(i915) ||
17842 IS_I915G(i915) || IS_I915GM(i915)) {
17843 mode_config->cursor_width = 64;
17844 mode_config->cursor_height = 64;
17845 } else {
17846 mode_config->cursor_width = 256;
17847 mode_config->cursor_height = 256;
17848 }
17849 }
17850
intel_mode_config_cleanup(struct drm_i915_private * i915)17851 static void intel_mode_config_cleanup(struct drm_i915_private *i915)
17852 {
17853 intel_atomic_global_obj_cleanup(i915);
17854 drm_mode_config_cleanup(&i915->drm);
17855 }
17856
plane_config_fini(struct intel_initial_plane_config * plane_config)17857 static void plane_config_fini(struct intel_initial_plane_config *plane_config)
17858 {
17859 if (plane_config->fb) {
17860 struct drm_framebuffer *fb = &plane_config->fb->base;
17861
17862 /* We may only have the stub and not a full framebuffer */
17863 if (drm_framebuffer_read_refcount(fb))
17864 drm_framebuffer_put(fb);
17865 else
17866 kfree(fb);
17867 }
17868
17869 if (plane_config->vma)
17870 i915_vma_put(plane_config->vma);
17871 }
17872
17873 /* part #1: call before irq install */
intel_modeset_init_noirq(struct drm_i915_private * i915)17874 int intel_modeset_init_noirq(struct drm_i915_private *i915)
17875 {
17876 int ret;
17877
17878 if (i915_inject_probe_failure(i915))
17879 return -ENODEV;
17880
17881 if (HAS_DISPLAY(i915)) {
17882 ret = drm_vblank_init(&i915->drm,
17883 INTEL_NUM_PIPES(i915));
17884 if (ret)
17885 return ret;
17886 }
17887
17888 intel_bios_init(i915);
17889
17890 ret = intel_vga_register(i915);
17891 if (ret)
17892 goto cleanup_bios;
17893
17894 /* FIXME: completely on the wrong abstraction layer */
17895 intel_power_domains_init_hw(i915, false);
17896
17897 intel_csr_ucode_init(i915);
17898
17899 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
17900 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
17901 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
17902
17903 intel_mode_config_init(i915);
17904
17905 ret = intel_cdclk_init(i915);
17906 if (ret)
17907 goto cleanup_vga_client_pw_domain_csr;
17908
17909 ret = intel_dbuf_init(i915);
17910 if (ret)
17911 goto cleanup_vga_client_pw_domain_csr;
17912
17913 ret = intel_bw_init(i915);
17914 if (ret)
17915 goto cleanup_vga_client_pw_domain_csr;
17916
17917 init_llist_head(&i915->atomic_helper.free_list);
17918 INIT_WORK(&i915->atomic_helper.free_work,
17919 intel_atomic_helper_free_state_worker);
17920
17921 intel_init_quirks(i915);
17922
17923 intel_fbc_init(i915);
17924
17925 return 0;
17926
17927 cleanup_vga_client_pw_domain_csr:
17928 intel_csr_ucode_fini(i915);
17929 intel_power_domains_driver_remove(i915);
17930 intel_vga_unregister(i915);
17931 cleanup_bios:
17932 intel_bios_driver_remove(i915);
17933
17934 return ret;
17935 }
17936
17937 /* part #2: call after irq install, but before gem init */
intel_modeset_init_nogem(struct drm_i915_private * i915)17938 int intel_modeset_init_nogem(struct drm_i915_private *i915)
17939 {
17940 struct drm_device *dev = &i915->drm;
17941 enum pipe pipe;
17942 struct intel_crtc *crtc;
17943 int ret;
17944
17945 intel_init_pm(i915);
17946
17947 intel_panel_sanitize_ssc(i915);
17948
17949 intel_gmbus_setup(i915);
17950
17951 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n",
17952 INTEL_NUM_PIPES(i915),
17953 INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
17954
17955 if (HAS_DISPLAY(i915)) {
17956 for_each_pipe(i915, pipe) {
17957 ret = intel_crtc_init(i915, pipe);
17958 if (ret) {
17959 intel_mode_config_cleanup(i915);
17960 return ret;
17961 }
17962 }
17963 }
17964
17965 intel_plane_possible_crtcs_init(i915);
17966 intel_shared_dpll_init(dev);
17967 intel_update_fdi_pll_freq(i915);
17968
17969 intel_update_czclk(i915);
17970 intel_modeset_init_hw(i915);
17971
17972 intel_hdcp_component_init(i915);
17973
17974 if (i915->max_cdclk_freq == 0)
17975 intel_update_max_cdclk(i915);
17976
17977 /*
17978 * If the platform has HTI, we need to find out whether it has reserved
17979 * any display resources before we create our display outputs.
17980 */
17981 if (INTEL_INFO(i915)->display.has_hti)
17982 i915->hti_state = intel_de_read(i915, HDPORT_STATE);
17983
17984 /* Just disable it once at startup */
17985 intel_vga_disable(i915);
17986 intel_setup_outputs(i915);
17987
17988 drm_modeset_lock_all(dev);
17989 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
17990 drm_modeset_unlock_all(dev);
17991
17992 for_each_intel_crtc(dev, crtc) {
17993 struct intel_initial_plane_config plane_config = {};
17994
17995 if (!crtc->active)
17996 continue;
17997
17998 /*
17999 * Note that reserving the BIOS fb up front prevents us
18000 * from stuffing other stolen allocations like the ring
18001 * on top. This prevents some ugliness at boot time, and
18002 * can even allow for smooth boot transitions if the BIOS
18003 * fb is large enough for the active pipe configuration.
18004 */
18005 i915->display.get_initial_plane_config(crtc, &plane_config);
18006
18007 /*
18008 * If the fb is shared between multiple heads, we'll
18009 * just get the first one.
18010 */
18011 intel_find_initial_plane_obj(crtc, &plane_config);
18012
18013 plane_config_fini(&plane_config);
18014 }
18015
18016 /*
18017 * Make sure hardware watermarks really match the state we read out.
18018 * Note that we need to do this after reconstructing the BIOS fb's
18019 * since the watermark calculation done here will use pstate->fb.
18020 */
18021 if (!HAS_GMCH(i915))
18022 sanitize_watermarks(i915);
18023
18024 return 0;
18025 }
18026
18027 /* part #3: call after gem init */
intel_modeset_init(struct drm_i915_private * i915)18028 int intel_modeset_init(struct drm_i915_private *i915)
18029 {
18030 int ret;
18031
18032 if (!HAS_DISPLAY(i915))
18033 return 0;
18034
18035 /*
18036 * Force all active planes to recompute their states. So that on
18037 * mode_setcrtc after probe, all the intel_plane_state variables
18038 * are already calculated and there is no assert_plane warnings
18039 * during bootup.
18040 */
18041 ret = intel_initial_commit(&i915->drm);
18042 if (ret)
18043 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret);
18044
18045 intel_overlay_setup(i915);
18046
18047 ret = intel_fbdev_init(&i915->drm);
18048 if (ret)
18049 return ret;
18050
18051 /* Only enable hotplug handling once the fbdev is fully set up. */
18052 intel_hpd_init(i915);
18053
18054 intel_init_ipc(i915);
18055
18056 intel_psr_set_force_mode_changed(i915->psr.dp);
18057
18058 return 0;
18059 }
18060
i830_enable_pipe(struct drm_i915_private * dev_priv,enum pipe pipe)18061 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18062 {
18063 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18064 /* 640x480@60Hz, ~25175 kHz */
18065 struct dpll clock = {
18066 .m1 = 18,
18067 .m2 = 7,
18068 .p1 = 13,
18069 .p2 = 4,
18070 .n = 2,
18071 };
18072 u32 dpll, fp;
18073 int i;
18074
18075 drm_WARN_ON(&dev_priv->drm,
18076 i9xx_calc_dpll_params(48000, &clock) != 25154);
18077
18078 drm_dbg_kms(&dev_priv->drm,
18079 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
18080 pipe_name(pipe), clock.vco, clock.dot);
18081
18082 fp = i9xx_dpll_compute_fp(&clock);
18083 dpll = DPLL_DVO_2X_MODE |
18084 DPLL_VGA_MODE_DIS |
18085 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
18086 PLL_P2_DIVIDE_BY_4 |
18087 PLL_REF_INPUT_DREFCLK |
18088 DPLL_VCO_ENABLE;
18089
18090 intel_de_write(dev_priv, FP0(pipe), fp);
18091 intel_de_write(dev_priv, FP1(pipe), fp);
18092
18093 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
18094 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
18095 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
18096 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
18097 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
18098 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
18099 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
18100
18101 /*
18102 * Apparently we need to have VGA mode enabled prior to changing
18103 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
18104 * dividers, even though the register value does change.
18105 */
18106 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
18107 intel_de_write(dev_priv, DPLL(pipe), dpll);
18108
18109 /* Wait for the clocks to stabilize. */
18110 intel_de_posting_read(dev_priv, DPLL(pipe));
18111 udelay(150);
18112
18113 /* The pixel multiplier can only be updated once the
18114 * DPLL is enabled and the clocks are stable.
18115 *
18116 * So write it again.
18117 */
18118 intel_de_write(dev_priv, DPLL(pipe), dpll);
18119
18120 /* We do this three times for luck */
18121 for (i = 0; i < 3 ; i++) {
18122 intel_de_write(dev_priv, DPLL(pipe), dpll);
18123 intel_de_posting_read(dev_priv, DPLL(pipe));
18124 udelay(150); /* wait for warmup */
18125 }
18126
18127 intel_de_write(dev_priv, PIPECONF(pipe),
18128 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
18129 intel_de_posting_read(dev_priv, PIPECONF(pipe));
18130
18131 intel_wait_for_pipe_scanline_moving(crtc);
18132 }
18133
i830_disable_pipe(struct drm_i915_private * dev_priv,enum pipe pipe)18134 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18135 {
18136 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18137
18138 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n",
18139 pipe_name(pipe));
18140
18141 drm_WARN_ON(&dev_priv->drm,
18142 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) &
18143 DISPLAY_PLANE_ENABLE);
18144 drm_WARN_ON(&dev_priv->drm,
18145 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) &
18146 DISPLAY_PLANE_ENABLE);
18147 drm_WARN_ON(&dev_priv->drm,
18148 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) &
18149 DISPLAY_PLANE_ENABLE);
18150 drm_WARN_ON(&dev_priv->drm,
18151 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE);
18152 drm_WARN_ON(&dev_priv->drm,
18153 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE);
18154
18155 intel_de_write(dev_priv, PIPECONF(pipe), 0);
18156 intel_de_posting_read(dev_priv, PIPECONF(pipe));
18157
18158 intel_wait_for_pipe_scanline_stopped(crtc);
18159
18160 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
18161 intel_de_posting_read(dev_priv, DPLL(pipe));
18162 }
18163
18164 static void
intel_sanitize_plane_mapping(struct drm_i915_private * dev_priv)18165 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
18166 {
18167 struct intel_crtc *crtc;
18168
18169 if (INTEL_GEN(dev_priv) >= 4)
18170 return;
18171
18172 for_each_intel_crtc(&dev_priv->drm, crtc) {
18173 struct intel_plane *plane =
18174 to_intel_plane(crtc->base.primary);
18175 struct intel_crtc *plane_crtc;
18176 enum pipe pipe;
18177
18178 if (!plane->get_hw_state(plane, &pipe))
18179 continue;
18180
18181 if (pipe == crtc->pipe)
18182 continue;
18183
18184 drm_dbg_kms(&dev_priv->drm,
18185 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
18186 plane->base.base.id, plane->base.name);
18187
18188 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18189 intel_plane_disable_noatomic(plane_crtc, plane);
18190 }
18191 }
18192
intel_crtc_has_encoders(struct intel_crtc * crtc)18193 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
18194 {
18195 struct drm_device *dev = crtc->base.dev;
18196 struct intel_encoder *encoder;
18197
18198 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
18199 return true;
18200
18201 return false;
18202 }
18203
intel_encoder_find_connector(struct intel_encoder * encoder)18204 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
18205 {
18206 struct drm_device *dev = encoder->base.dev;
18207 struct intel_connector *connector;
18208
18209 for_each_connector_on_encoder(dev, &encoder->base, connector)
18210 return connector;
18211
18212 return NULL;
18213 }
18214
has_pch_trancoder(struct drm_i915_private * dev_priv,enum pipe pch_transcoder)18215 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
18216 enum pipe pch_transcoder)
18217 {
18218 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
18219 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
18220 }
18221
intel_sanitize_frame_start_delay(const struct intel_crtc_state * crtc_state)18222 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state)
18223 {
18224 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
18225 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
18226 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
18227
18228 if (INTEL_GEN(dev_priv) >= 9 ||
18229 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
18230 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
18231 u32 val;
18232
18233 if (transcoder_is_dsi(cpu_transcoder))
18234 return;
18235
18236 val = intel_de_read(dev_priv, reg);
18237 val &= ~HSW_FRAME_START_DELAY_MASK;
18238 val |= HSW_FRAME_START_DELAY(0);
18239 intel_de_write(dev_priv, reg, val);
18240 } else {
18241 i915_reg_t reg = PIPECONF(cpu_transcoder);
18242 u32 val;
18243
18244 val = intel_de_read(dev_priv, reg);
18245 val &= ~PIPECONF_FRAME_START_DELAY_MASK;
18246 val |= PIPECONF_FRAME_START_DELAY(0);
18247 intel_de_write(dev_priv, reg, val);
18248 }
18249
18250 if (!crtc_state->has_pch_encoder)
18251 return;
18252
18253 if (HAS_PCH_IBX(dev_priv)) {
18254 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe);
18255 u32 val;
18256
18257 val = intel_de_read(dev_priv, reg);
18258 val &= ~TRANS_FRAME_START_DELAY_MASK;
18259 val |= TRANS_FRAME_START_DELAY(0);
18260 intel_de_write(dev_priv, reg, val);
18261 } else {
18262 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc);
18263 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder);
18264 u32 val;
18265
18266 val = intel_de_read(dev_priv, reg);
18267 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
18268 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
18269 intel_de_write(dev_priv, reg, val);
18270 }
18271 }
18272
intel_sanitize_crtc(struct intel_crtc * crtc,struct drm_modeset_acquire_ctx * ctx)18273 static void intel_sanitize_crtc(struct intel_crtc *crtc,
18274 struct drm_modeset_acquire_ctx *ctx)
18275 {
18276 struct drm_device *dev = crtc->base.dev;
18277 struct drm_i915_private *dev_priv = to_i915(dev);
18278 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
18279
18280 if (crtc_state->hw.active) {
18281 struct intel_plane *plane;
18282
18283 /* Clear any frame start delays used for debugging left by the BIOS */
18284 intel_sanitize_frame_start_delay(crtc_state);
18285
18286 /* Disable everything but the primary plane */
18287 for_each_intel_plane_on_crtc(dev, crtc, plane) {
18288 const struct intel_plane_state *plane_state =
18289 to_intel_plane_state(plane->base.state);
18290
18291 if (plane_state->uapi.visible &&
18292 plane->base.type != DRM_PLANE_TYPE_PRIMARY)
18293 intel_plane_disable_noatomic(crtc, plane);
18294 }
18295
18296 /*
18297 * Disable any background color set by the BIOS, but enable the
18298 * gamma and CSC to match how we program our planes.
18299 */
18300 if (INTEL_GEN(dev_priv) >= 9)
18301 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe),
18302 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE);
18303 }
18304
18305 /* Adjust the state of the output pipe according to whether we
18306 * have active connectors/encoders. */
18307 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc))
18308 intel_crtc_disable_noatomic(crtc, ctx);
18309
18310 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) {
18311 /*
18312 * We start out with underrun reporting disabled to avoid races.
18313 * For correct bookkeeping mark this on active crtcs.
18314 *
18315 * Also on gmch platforms we dont have any hardware bits to
18316 * disable the underrun reporting. Which means we need to start
18317 * out with underrun reporting disabled also on inactive pipes,
18318 * since otherwise we'll complain about the garbage we read when
18319 * e.g. coming up after runtime pm.
18320 *
18321 * No protection against concurrent access is required - at
18322 * worst a fifo underrun happens which also sets this to false.
18323 */
18324 crtc->cpu_fifo_underrun_disabled = true;
18325 /*
18326 * We track the PCH trancoder underrun reporting state
18327 * within the crtc. With crtc for pipe A housing the underrun
18328 * reporting state for PCH transcoder A, crtc for pipe B housing
18329 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
18330 * and marking underrun reporting as disabled for the non-existing
18331 * PCH transcoders B and C would prevent enabling the south
18332 * error interrupt (see cpt_can_enable_serr_int()).
18333 */
18334 if (has_pch_trancoder(dev_priv, crtc->pipe))
18335 crtc->pch_fifo_underrun_disabled = true;
18336 }
18337 }
18338
has_bogus_dpll_config(const struct intel_crtc_state * crtc_state)18339 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
18340 {
18341 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
18342
18343 /*
18344 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
18345 * the hardware when a high res displays plugged in. DPLL P
18346 * divider is zero, and the pipe timings are bonkers. We'll
18347 * try to disable everything in that case.
18348 *
18349 * FIXME would be nice to be able to sanitize this state
18350 * without several WARNs, but for now let's take the easy
18351 * road.
18352 */
18353 return IS_GEN(dev_priv, 6) &&
18354 crtc_state->hw.active &&
18355 crtc_state->shared_dpll &&
18356 crtc_state->port_clock == 0;
18357 }
18358
intel_sanitize_encoder(struct intel_encoder * encoder)18359 static void intel_sanitize_encoder(struct intel_encoder *encoder)
18360 {
18361 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
18362 struct intel_connector *connector;
18363 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
18364 struct intel_crtc_state *crtc_state = crtc ?
18365 to_intel_crtc_state(crtc->base.state) : NULL;
18366
18367 /* We need to check both for a crtc link (meaning that the
18368 * encoder is active and trying to read from a pipe) and the
18369 * pipe itself being active. */
18370 bool has_active_crtc = crtc_state &&
18371 crtc_state->hw.active;
18372
18373 if (crtc_state && has_bogus_dpll_config(crtc_state)) {
18374 drm_dbg_kms(&dev_priv->drm,
18375 "BIOS has misprogrammed the hardware. Disabling pipe %c\n",
18376 pipe_name(crtc->pipe));
18377 has_active_crtc = false;
18378 }
18379
18380 connector = intel_encoder_find_connector(encoder);
18381 if (connector && !has_active_crtc) {
18382 drm_dbg_kms(&dev_priv->drm,
18383 "[ENCODER:%d:%s] has active connectors but no active pipe!\n",
18384 encoder->base.base.id,
18385 encoder->base.name);
18386
18387 /* Connector is active, but has no active pipe. This is
18388 * fallout from our resume register restoring. Disable
18389 * the encoder manually again. */
18390 if (crtc_state) {
18391 struct drm_encoder *best_encoder;
18392
18393 drm_dbg_kms(&dev_priv->drm,
18394 "[ENCODER:%d:%s] manually disabled\n",
18395 encoder->base.base.id,
18396 encoder->base.name);
18397
18398 /* avoid oopsing in case the hooks consult best_encoder */
18399 best_encoder = connector->base.state->best_encoder;
18400 connector->base.state->best_encoder = &encoder->base;
18401
18402 /* FIXME NULL atomic state passed! */
18403 if (encoder->disable)
18404 encoder->disable(NULL, encoder, crtc_state,
18405 connector->base.state);
18406 if (encoder->post_disable)
18407 encoder->post_disable(NULL, encoder, crtc_state,
18408 connector->base.state);
18409
18410 connector->base.state->best_encoder = best_encoder;
18411 }
18412 encoder->base.crtc = NULL;
18413
18414 /* Inconsistent output/port/pipe state happens presumably due to
18415 * a bug in one of the get_hw_state functions. Or someplace else
18416 * in our code, like the register restore mess on resume. Clamp
18417 * things to off as a safer default. */
18418
18419 connector->base.dpms = DRM_MODE_DPMS_OFF;
18420 connector->base.encoder = NULL;
18421 }
18422
18423 /* notify opregion of the sanitized encoder state */
18424 intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
18425
18426 if (INTEL_GEN(dev_priv) >= 11)
18427 icl_sanitize_encoder_pll_mapping(encoder);
18428 }
18429
18430 /* FIXME read out full plane state for all planes */
readout_plane_state(struct drm_i915_private * dev_priv)18431 static void readout_plane_state(struct drm_i915_private *dev_priv)
18432 {
18433 struct intel_plane *plane;
18434 struct intel_crtc *crtc;
18435
18436 for_each_intel_plane(&dev_priv->drm, plane) {
18437 struct intel_plane_state *plane_state =
18438 to_intel_plane_state(plane->base.state);
18439 struct intel_crtc_state *crtc_state;
18440 enum pipe pipe = PIPE_A;
18441 bool visible;
18442
18443 visible = plane->get_hw_state(plane, &pipe);
18444
18445 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18446 crtc_state = to_intel_crtc_state(crtc->base.state);
18447
18448 intel_set_plane_visible(crtc_state, plane_state, visible);
18449
18450 drm_dbg_kms(&dev_priv->drm,
18451 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
18452 plane->base.base.id, plane->base.name,
18453 enableddisabled(visible), pipe_name(pipe));
18454 }
18455
18456 for_each_intel_crtc(&dev_priv->drm, crtc) {
18457 struct intel_crtc_state *crtc_state =
18458 to_intel_crtc_state(crtc->base.state);
18459
18460 fixup_active_planes(crtc_state);
18461 }
18462 }
18463
intel_modeset_readout_hw_state(struct drm_device * dev)18464 static void intel_modeset_readout_hw_state(struct drm_device *dev)
18465 {
18466 struct drm_i915_private *dev_priv = to_i915(dev);
18467 struct intel_cdclk_state *cdclk_state =
18468 to_intel_cdclk_state(dev_priv->cdclk.obj.state);
18469 struct intel_dbuf_state *dbuf_state =
18470 to_intel_dbuf_state(dev_priv->dbuf.obj.state);
18471 enum pipe pipe;
18472 struct intel_crtc *crtc;
18473 struct intel_encoder *encoder;
18474 struct intel_connector *connector;
18475 struct drm_connector_list_iter conn_iter;
18476 u8 active_pipes = 0;
18477
18478 for_each_intel_crtc(dev, crtc) {
18479 struct intel_crtc_state *crtc_state =
18480 to_intel_crtc_state(crtc->base.state);
18481
18482 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi);
18483 intel_crtc_free_hw_state(crtc_state);
18484 intel_crtc_state_reset(crtc_state, crtc);
18485
18486 crtc_state->hw.active = crtc_state->hw.enable =
18487 dev_priv->display.get_pipe_config(crtc, crtc_state);
18488
18489 crtc->base.enabled = crtc_state->hw.enable;
18490 crtc->active = crtc_state->hw.active;
18491
18492 if (crtc_state->hw.active)
18493 active_pipes |= BIT(crtc->pipe);
18494
18495 drm_dbg_kms(&dev_priv->drm,
18496 "[CRTC:%d:%s] hw state readout: %s\n",
18497 crtc->base.base.id, crtc->base.name,
18498 enableddisabled(crtc_state->hw.active));
18499 }
18500
18501 dev_priv->active_pipes = cdclk_state->active_pipes =
18502 dbuf_state->active_pipes = active_pipes;
18503
18504 readout_plane_state(dev_priv);
18505
18506 intel_dpll_readout_hw_state(dev_priv);
18507
18508 for_each_intel_encoder(dev, encoder) {
18509 pipe = 0;
18510
18511 if (encoder->get_hw_state(encoder, &pipe)) {
18512 struct intel_crtc_state *crtc_state;
18513
18514 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18515 crtc_state = to_intel_crtc_state(crtc->base.state);
18516
18517 encoder->base.crtc = &crtc->base;
18518 encoder->get_config(encoder, crtc_state);
18519 } else {
18520 encoder->base.crtc = NULL;
18521 }
18522
18523 drm_dbg_kms(&dev_priv->drm,
18524 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
18525 encoder->base.base.id, encoder->base.name,
18526 enableddisabled(encoder->base.crtc),
18527 pipe_name(pipe));
18528 }
18529
18530 drm_connector_list_iter_begin(dev, &conn_iter);
18531 for_each_intel_connector_iter(connector, &conn_iter) {
18532 if (connector->get_hw_state(connector)) {
18533 struct intel_crtc_state *crtc_state;
18534 struct intel_crtc *crtc;
18535
18536 connector->base.dpms = DRM_MODE_DPMS_ON;
18537
18538 encoder = intel_attached_encoder(connector);
18539 connector->base.encoder = &encoder->base;
18540
18541 crtc = to_intel_crtc(encoder->base.crtc);
18542 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
18543
18544 if (crtc_state && crtc_state->hw.active) {
18545 /*
18546 * This has to be done during hardware readout
18547 * because anything calling .crtc_disable may
18548 * rely on the connector_mask being accurate.
18549 */
18550 crtc_state->uapi.connector_mask |=
18551 drm_connector_mask(&connector->base);
18552 crtc_state->uapi.encoder_mask |=
18553 drm_encoder_mask(&encoder->base);
18554 }
18555 } else {
18556 connector->base.dpms = DRM_MODE_DPMS_OFF;
18557 connector->base.encoder = NULL;
18558 }
18559 drm_dbg_kms(&dev_priv->drm,
18560 "[CONNECTOR:%d:%s] hw state readout: %s\n",
18561 connector->base.base.id, connector->base.name,
18562 enableddisabled(connector->base.encoder));
18563 }
18564 drm_connector_list_iter_end(&conn_iter);
18565
18566 for_each_intel_crtc(dev, crtc) {
18567 struct intel_bw_state *bw_state =
18568 to_intel_bw_state(dev_priv->bw_obj.state);
18569 struct intel_crtc_state *crtc_state =
18570 to_intel_crtc_state(crtc->base.state);
18571 struct intel_plane *plane;
18572 int min_cdclk = 0;
18573
18574 if (crtc_state->hw.active) {
18575 struct drm_display_mode *mode = &crtc_state->hw.mode;
18576
18577 intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode,
18578 crtc_state);
18579
18580 *mode = crtc_state->hw.adjusted_mode;
18581 mode->hdisplay = crtc_state->pipe_src_w;
18582 mode->vdisplay = crtc_state->pipe_src_h;
18583
18584 /*
18585 * The initial mode needs to be set in order to keep
18586 * the atomic core happy. It wants a valid mode if the
18587 * crtc's enabled, so we do the above call.
18588 *
18589 * But we don't set all the derived state fully, hence
18590 * set a flag to indicate that a full recalculation is
18591 * needed on the next commit.
18592 */
18593 crtc_state->inherited = true;
18594
18595 intel_crtc_compute_pixel_rate(crtc_state);
18596
18597 intel_crtc_update_active_timings(crtc_state);
18598
18599 intel_crtc_copy_hw_to_uapi_state(crtc_state);
18600 }
18601
18602 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
18603 const struct intel_plane_state *plane_state =
18604 to_intel_plane_state(plane->base.state);
18605
18606 /*
18607 * FIXME don't have the fb yet, so can't
18608 * use intel_plane_data_rate() :(
18609 */
18610 if (plane_state->uapi.visible)
18611 crtc_state->data_rate[plane->id] =
18612 4 * crtc_state->pixel_rate;
18613 /*
18614 * FIXME don't have the fb yet, so can't
18615 * use plane->min_cdclk() :(
18616 */
18617 if (plane_state->uapi.visible && plane->min_cdclk) {
18618 if (crtc_state->double_wide ||
18619 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
18620 crtc_state->min_cdclk[plane->id] =
18621 DIV_ROUND_UP(crtc_state->pixel_rate, 2);
18622 else
18623 crtc_state->min_cdclk[plane->id] =
18624 crtc_state->pixel_rate;
18625 }
18626 drm_dbg_kms(&dev_priv->drm,
18627 "[PLANE:%d:%s] min_cdclk %d kHz\n",
18628 plane->base.base.id, plane->base.name,
18629 crtc_state->min_cdclk[plane->id]);
18630 }
18631
18632 if (crtc_state->hw.active) {
18633 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
18634 if (drm_WARN_ON(dev, min_cdclk < 0))
18635 min_cdclk = 0;
18636 }
18637
18638 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
18639 cdclk_state->min_voltage_level[crtc->pipe] =
18640 crtc_state->min_voltage_level;
18641
18642 intel_bw_crtc_update(bw_state, crtc_state);
18643
18644 intel_pipe_config_sanity_check(dev_priv, crtc_state);
18645 }
18646 }
18647
18648 static void
get_encoder_power_domains(struct drm_i915_private * dev_priv)18649 get_encoder_power_domains(struct drm_i915_private *dev_priv)
18650 {
18651 struct intel_encoder *encoder;
18652
18653 for_each_intel_encoder(&dev_priv->drm, encoder) {
18654 struct intel_crtc_state *crtc_state;
18655
18656 if (!encoder->get_power_domains)
18657 continue;
18658
18659 /*
18660 * MST-primary and inactive encoders don't have a crtc state
18661 * and neither of these require any power domain references.
18662 */
18663 if (!encoder->base.crtc)
18664 continue;
18665
18666 crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
18667 encoder->get_power_domains(encoder, crtc_state);
18668 }
18669 }
18670
intel_early_display_was(struct drm_i915_private * dev_priv)18671 static void intel_early_display_was(struct drm_i915_private *dev_priv)
18672 {
18673 /*
18674 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl
18675 * Also known as Wa_14010480278.
18676 */
18677 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv))
18678 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0,
18679 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS);
18680
18681 if (IS_HASWELL(dev_priv)) {
18682 /*
18683 * WaRsPkgCStateDisplayPMReq:hsw
18684 * System hang if this isn't done before disabling all planes!
18685 */
18686 intel_de_write(dev_priv, CHICKEN_PAR1_1,
18687 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
18688 }
18689 }
18690
ibx_sanitize_pch_hdmi_port(struct drm_i915_private * dev_priv,enum port port,i915_reg_t hdmi_reg)18691 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
18692 enum port port, i915_reg_t hdmi_reg)
18693 {
18694 u32 val = intel_de_read(dev_priv, hdmi_reg);
18695
18696 if (val & SDVO_ENABLE ||
18697 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
18698 return;
18699
18700 drm_dbg_kms(&dev_priv->drm,
18701 "Sanitizing transcoder select for HDMI %c\n",
18702 port_name(port));
18703
18704 val &= ~SDVO_PIPE_SEL_MASK;
18705 val |= SDVO_PIPE_SEL(PIPE_A);
18706
18707 intel_de_write(dev_priv, hdmi_reg, val);
18708 }
18709
ibx_sanitize_pch_dp_port(struct drm_i915_private * dev_priv,enum port port,i915_reg_t dp_reg)18710 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
18711 enum port port, i915_reg_t dp_reg)
18712 {
18713 u32 val = intel_de_read(dev_priv, dp_reg);
18714
18715 if (val & DP_PORT_EN ||
18716 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
18717 return;
18718
18719 drm_dbg_kms(&dev_priv->drm,
18720 "Sanitizing transcoder select for DP %c\n",
18721 port_name(port));
18722
18723 val &= ~DP_PIPE_SEL_MASK;
18724 val |= DP_PIPE_SEL(PIPE_A);
18725
18726 intel_de_write(dev_priv, dp_reg, val);
18727 }
18728
ibx_sanitize_pch_ports(struct drm_i915_private * dev_priv)18729 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
18730 {
18731 /*
18732 * The BIOS may select transcoder B on some of the PCH
18733 * ports even it doesn't enable the port. This would trip
18734 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
18735 * Sanitize the transcoder select bits to prevent that. We
18736 * assume that the BIOS never actually enabled the port,
18737 * because if it did we'd actually have to toggle the port
18738 * on and back off to make the transcoder A select stick
18739 * (see. intel_dp_link_down(), intel_disable_hdmi(),
18740 * intel_disable_sdvo()).
18741 */
18742 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
18743 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
18744 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
18745
18746 /* PCH SDVOB multiplex with HDMIB */
18747 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
18748 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
18749 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
18750 }
18751
18752 /* Scan out the current hw modeset state,
18753 * and sanitizes it to the current state
18754 */
18755 static void
intel_modeset_setup_hw_state(struct drm_device * dev,struct drm_modeset_acquire_ctx * ctx)18756 intel_modeset_setup_hw_state(struct drm_device *dev,
18757 struct drm_modeset_acquire_ctx *ctx)
18758 {
18759 struct drm_i915_private *dev_priv = to_i915(dev);
18760 struct intel_encoder *encoder;
18761 struct intel_crtc *crtc;
18762 intel_wakeref_t wakeref;
18763
18764 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
18765
18766 intel_early_display_was(dev_priv);
18767 intel_modeset_readout_hw_state(dev);
18768
18769 /* HW state is read out, now we need to sanitize this mess. */
18770
18771 /* Sanitize the TypeC port mode upfront, encoders depend on this */
18772 for_each_intel_encoder(dev, encoder) {
18773 enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
18774
18775 /* We need to sanitize only the MST primary port. */
18776 if (encoder->type != INTEL_OUTPUT_DP_MST &&
18777 intel_phy_is_tc(dev_priv, phy))
18778 intel_tc_port_sanitize(enc_to_dig_port(encoder));
18779 }
18780
18781 get_encoder_power_domains(dev_priv);
18782
18783 if (HAS_PCH_IBX(dev_priv))
18784 ibx_sanitize_pch_ports(dev_priv);
18785
18786 /*
18787 * intel_sanitize_plane_mapping() may need to do vblank
18788 * waits, so we need vblank interrupts restored beforehand.
18789 */
18790 for_each_intel_crtc(&dev_priv->drm, crtc) {
18791 struct intel_crtc_state *crtc_state =
18792 to_intel_crtc_state(crtc->base.state);
18793
18794 drm_crtc_vblank_reset(&crtc->base);
18795
18796 if (crtc_state->hw.active)
18797 intel_crtc_vblank_on(crtc_state);
18798 }
18799
18800 intel_sanitize_plane_mapping(dev_priv);
18801
18802 for_each_intel_encoder(dev, encoder)
18803 intel_sanitize_encoder(encoder);
18804
18805 for_each_intel_crtc(&dev_priv->drm, crtc) {
18806 struct intel_crtc_state *crtc_state =
18807 to_intel_crtc_state(crtc->base.state);
18808
18809 intel_sanitize_crtc(crtc, ctx);
18810 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
18811 }
18812
18813 intel_modeset_update_connector_atomic_state(dev);
18814
18815 intel_dpll_sanitize_state(dev_priv);
18816
18817 if (IS_G4X(dev_priv)) {
18818 g4x_wm_get_hw_state(dev_priv);
18819 g4x_wm_sanitize(dev_priv);
18820 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
18821 vlv_wm_get_hw_state(dev_priv);
18822 vlv_wm_sanitize(dev_priv);
18823 } else if (INTEL_GEN(dev_priv) >= 9) {
18824 skl_wm_get_hw_state(dev_priv);
18825 } else if (HAS_PCH_SPLIT(dev_priv)) {
18826 ilk_wm_get_hw_state(dev_priv);
18827 }
18828
18829 for_each_intel_crtc(dev, crtc) {
18830 struct intel_crtc_state *crtc_state =
18831 to_intel_crtc_state(crtc->base.state);
18832 u64 put_domains;
18833
18834 put_domains = modeset_get_crtc_power_domains(crtc_state);
18835 if (drm_WARN_ON(dev, put_domains))
18836 modeset_put_power_domains(dev_priv, put_domains);
18837 }
18838
18839 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
18840 }
18841
intel_display_resume(struct drm_device * dev)18842 void intel_display_resume(struct drm_device *dev)
18843 {
18844 struct drm_i915_private *dev_priv = to_i915(dev);
18845 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
18846 struct drm_modeset_acquire_ctx ctx;
18847 int ret;
18848
18849 dev_priv->modeset_restore_state = NULL;
18850 if (state)
18851 state->acquire_ctx = &ctx;
18852
18853 drm_modeset_acquire_init(&ctx, 0);
18854
18855 while (1) {
18856 ret = drm_modeset_lock_all_ctx(dev, &ctx);
18857 if (ret != -EDEADLK)
18858 break;
18859
18860 drm_modeset_backoff(&ctx);
18861 }
18862
18863 if (!ret)
18864 ret = __intel_display_resume(dev, state, &ctx);
18865
18866 intel_enable_ipc(dev_priv);
18867 drm_modeset_drop_locks(&ctx);
18868 drm_modeset_acquire_fini(&ctx);
18869
18870 if (ret)
18871 drm_err(&dev_priv->drm,
18872 "Restoring old state failed with %i\n", ret);
18873 if (state)
18874 drm_atomic_state_put(state);
18875 }
18876
intel_hpd_poll_fini(struct drm_i915_private * i915)18877 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
18878 {
18879 struct intel_connector *connector;
18880 struct drm_connector_list_iter conn_iter;
18881
18882 /* Kill all the work that may have been queued by hpd. */
18883 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
18884 for_each_intel_connector_iter(connector, &conn_iter) {
18885 if (connector->modeset_retry_work.func)
18886 cancel_work_sync(&connector->modeset_retry_work);
18887 if (connector->hdcp.shim) {
18888 cancel_delayed_work_sync(&connector->hdcp.check_work);
18889 cancel_work_sync(&connector->hdcp.prop_work);
18890 }
18891 }
18892 drm_connector_list_iter_end(&conn_iter);
18893 }
18894
18895 /* part #1: call before irq uninstall */
intel_modeset_driver_remove(struct drm_i915_private * i915)18896 void intel_modeset_driver_remove(struct drm_i915_private *i915)
18897 {
18898 flush_workqueue(i915->flip_wq);
18899 flush_workqueue(i915->modeset_wq);
18900
18901 flush_work(&i915->atomic_helper.free_work);
18902 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list));
18903 }
18904
18905 /* part #2: call after irq uninstall */
intel_modeset_driver_remove_noirq(struct drm_i915_private * i915)18906 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915)
18907 {
18908 /*
18909 * Due to the hpd irq storm handling the hotplug work can re-arm the
18910 * poll handlers. Hence disable polling after hpd handling is shut down.
18911 */
18912 intel_hpd_poll_fini(i915);
18913
18914 /*
18915 * MST topology needs to be suspended so we don't have any calls to
18916 * fbdev after it's finalized. MST will be destroyed later as part of
18917 * drm_mode_config_cleanup()
18918 */
18919 intel_dp_mst_suspend(i915);
18920
18921 /* poll work can call into fbdev, hence clean that up afterwards */
18922 intel_fbdev_fini(i915);
18923
18924 intel_unregister_dsm_handler();
18925
18926 intel_fbc_global_disable(i915);
18927
18928 /* flush any delayed tasks or pending work */
18929 flush_scheduled_work();
18930
18931 intel_hdcp_component_fini(i915);
18932
18933 intel_mode_config_cleanup(i915);
18934
18935 intel_overlay_cleanup(i915);
18936
18937 intel_gmbus_teardown(i915);
18938
18939 destroy_workqueue(i915->flip_wq);
18940 destroy_workqueue(i915->modeset_wq);
18941
18942 intel_fbc_cleanup_cfb(i915);
18943 }
18944
18945 /* part #3: call after gem init */
intel_modeset_driver_remove_nogem(struct drm_i915_private * i915)18946 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915)
18947 {
18948 intel_csr_ucode_fini(i915);
18949
18950 intel_power_domains_driver_remove(i915);
18951
18952 intel_vga_unregister(i915);
18953
18954 intel_bios_driver_remove(i915);
18955 }
18956
18957 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
18958
18959 struct intel_display_error_state {
18960
18961 u32 power_well_driver;
18962
18963 struct intel_cursor_error_state {
18964 u32 control;
18965 u32 position;
18966 u32 base;
18967 u32 size;
18968 } cursor[I915_MAX_PIPES];
18969
18970 struct intel_pipe_error_state {
18971 bool power_domain_on;
18972 u32 source;
18973 u32 stat;
18974 } pipe[I915_MAX_PIPES];
18975
18976 struct intel_plane_error_state {
18977 u32 control;
18978 u32 stride;
18979 u32 size;
18980 u32 pos;
18981 u32 addr;
18982 u32 surface;
18983 u32 tile_offset;
18984 } plane[I915_MAX_PIPES];
18985
18986 struct intel_transcoder_error_state {
18987 bool available;
18988 bool power_domain_on;
18989 enum transcoder cpu_transcoder;
18990
18991 u32 conf;
18992
18993 u32 htotal;
18994 u32 hblank;
18995 u32 hsync;
18996 u32 vtotal;
18997 u32 vblank;
18998 u32 vsync;
18999 } transcoder[5];
19000 };
19001
19002 struct intel_display_error_state *
intel_display_capture_error_state(struct drm_i915_private * dev_priv)19003 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
19004 {
19005 struct intel_display_error_state *error;
19006 int transcoders[] = {
19007 TRANSCODER_A,
19008 TRANSCODER_B,
19009 TRANSCODER_C,
19010 TRANSCODER_D,
19011 TRANSCODER_EDP,
19012 };
19013 int i;
19014
19015 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
19016
19017 if (!HAS_DISPLAY(dev_priv))
19018 return NULL;
19019
19020 error = kzalloc(sizeof(*error), GFP_ATOMIC);
19021 if (error == NULL)
19022 return NULL;
19023
19024 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19025 error->power_well_driver = intel_de_read(dev_priv,
19026 HSW_PWR_WELL_CTL2);
19027
19028 for_each_pipe(dev_priv, i) {
19029 error->pipe[i].power_domain_on =
19030 __intel_display_power_is_enabled(dev_priv,
19031 POWER_DOMAIN_PIPE(i));
19032 if (!error->pipe[i].power_domain_on)
19033 continue;
19034
19035 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i));
19036 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i));
19037 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i));
19038
19039 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i));
19040 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i));
19041 if (INTEL_GEN(dev_priv) <= 3) {
19042 error->plane[i].size = intel_de_read(dev_priv,
19043 DSPSIZE(i));
19044 error->plane[i].pos = intel_de_read(dev_priv,
19045 DSPPOS(i));
19046 }
19047 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19048 error->plane[i].addr = intel_de_read(dev_priv,
19049 DSPADDR(i));
19050 if (INTEL_GEN(dev_priv) >= 4) {
19051 error->plane[i].surface = intel_de_read(dev_priv,
19052 DSPSURF(i));
19053 error->plane[i].tile_offset = intel_de_read(dev_priv,
19054 DSPTILEOFF(i));
19055 }
19056
19057 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i));
19058
19059 if (HAS_GMCH(dev_priv))
19060 error->pipe[i].stat = intel_de_read(dev_priv,
19061 PIPESTAT(i));
19062 }
19063
19064 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19065 enum transcoder cpu_transcoder = transcoders[i];
19066
19067 if (!HAS_TRANSCODER(dev_priv, cpu_transcoder))
19068 continue;
19069
19070 error->transcoder[i].available = true;
19071 error->transcoder[i].power_domain_on =
19072 __intel_display_power_is_enabled(dev_priv,
19073 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
19074 if (!error->transcoder[i].power_domain_on)
19075 continue;
19076
19077 error->transcoder[i].cpu_transcoder = cpu_transcoder;
19078
19079 error->transcoder[i].conf = intel_de_read(dev_priv,
19080 PIPECONF(cpu_transcoder));
19081 error->transcoder[i].htotal = intel_de_read(dev_priv,
19082 HTOTAL(cpu_transcoder));
19083 error->transcoder[i].hblank = intel_de_read(dev_priv,
19084 HBLANK(cpu_transcoder));
19085 error->transcoder[i].hsync = intel_de_read(dev_priv,
19086 HSYNC(cpu_transcoder));
19087 error->transcoder[i].vtotal = intel_de_read(dev_priv,
19088 VTOTAL(cpu_transcoder));
19089 error->transcoder[i].vblank = intel_de_read(dev_priv,
19090 VBLANK(cpu_transcoder));
19091 error->transcoder[i].vsync = intel_de_read(dev_priv,
19092 VSYNC(cpu_transcoder));
19093 }
19094
19095 return error;
19096 }
19097
19098 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
19099
19100 void
intel_display_print_error_state(struct drm_i915_error_state_buf * m,struct intel_display_error_state * error)19101 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
19102 struct intel_display_error_state *error)
19103 {
19104 struct drm_i915_private *dev_priv = m->i915;
19105 int i;
19106
19107 if (!error)
19108 return;
19109
19110 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
19111 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19112 err_printf(m, "PWR_WELL_CTL2: %08x\n",
19113 error->power_well_driver);
19114 for_each_pipe(dev_priv, i) {
19115 err_printf(m, "Pipe [%d]:\n", i);
19116 err_printf(m, " Power: %s\n",
19117 onoff(error->pipe[i].power_domain_on));
19118 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
19119 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
19120
19121 err_printf(m, "Plane [%d]:\n", i);
19122 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
19123 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
19124 if (INTEL_GEN(dev_priv) <= 3) {
19125 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
19126 err_printf(m, " POS: %08x\n", error->plane[i].pos);
19127 }
19128 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19129 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
19130 if (INTEL_GEN(dev_priv) >= 4) {
19131 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
19132 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
19133 }
19134
19135 err_printf(m, "Cursor [%d]:\n", i);
19136 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
19137 err_printf(m, " POS: %08x\n", error->cursor[i].position);
19138 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
19139 }
19140
19141 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19142 if (!error->transcoder[i].available)
19143 continue;
19144
19145 err_printf(m, "CPU transcoder: %s\n",
19146 transcoder_name(error->transcoder[i].cpu_transcoder));
19147 err_printf(m, " Power: %s\n",
19148 onoff(error->transcoder[i].power_domain_on));
19149 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
19150 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
19151 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
19152 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
19153 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
19154 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
19155 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
19156 }
19157 }
19158
19159 #endif
19160