• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/block_dev.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
7  */
8 
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/pseudo_fs.h>
29 #include <linux/uio.h>
30 #include <linux/namei.h>
31 #include <linux/log2.h>
32 #include <linux/cleancache.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include <linux/suspend.h>
37 #include "internal.h"
38 
39 struct bdev_inode {
40 	struct block_device bdev;
41 	struct inode vfs_inode;
42 };
43 
44 static const struct address_space_operations def_blk_aops;
45 
BDEV_I(struct inode * inode)46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 	return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50 
I_BDEV(struct inode * inode)51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 	return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56 
bdev_write_inode(struct block_device * bdev)57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 	struct inode *inode = bdev->bd_inode;
60 	int ret;
61 
62 	spin_lock(&inode->i_lock);
63 	while (inode->i_state & I_DIRTY) {
64 		spin_unlock(&inode->i_lock);
65 		ret = write_inode_now(inode, true);
66 		if (ret) {
67 			char name[BDEVNAME_SIZE];
68 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 					    "for block device %s (err=%d).\n",
70 					    bdevname(bdev, name), ret);
71 		}
72 		spin_lock(&inode->i_lock);
73 	}
74 	spin_unlock(&inode->i_lock);
75 }
76 
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)78 static void kill_bdev(struct block_device *bdev)
79 {
80 	struct address_space *mapping = bdev->bd_inode->i_mapping;
81 
82 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 		return;
84 
85 	invalidate_bh_lrus();
86 	truncate_inode_pages(mapping, 0);
87 }
88 
89 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)90 void invalidate_bdev(struct block_device *bdev)
91 {
92 	struct address_space *mapping = bdev->bd_inode->i_mapping;
93 
94 	if (mapping->nrpages) {
95 		invalidate_bh_lrus();
96 		lru_add_drain_all();	/* make sure all lru add caches are flushed */
97 		invalidate_mapping_pages(mapping, 0, -1);
98 	}
99 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
100 	 * But, for the strange corners, lets be cautious
101 	 */
102 	cleancache_invalidate_inode(mapping);
103 }
104 EXPORT_SYMBOL(invalidate_bdev);
105 
106 /*
107  * Drop all buffers & page cache for given bdev range. This function bails
108  * with error if bdev has other exclusive owner (such as filesystem).
109  */
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)110 int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
111 			loff_t lstart, loff_t lend)
112 {
113 	struct block_device *claimed_bdev = NULL;
114 	int err;
115 
116 	/*
117 	 * If we don't hold exclusive handle for the device, upgrade to it
118 	 * while we discard the buffer cache to avoid discarding buffers
119 	 * under live filesystem.
120 	 */
121 	if (!(mode & FMODE_EXCL)) {
122 		claimed_bdev = bdev->bd_contains;
123 		err = bd_prepare_to_claim(bdev, claimed_bdev,
124 					  truncate_bdev_range);
125 		if (err)
126 			goto invalidate;
127 	}
128 	truncate_inode_pages_range(bdev->bd_inode->i_mapping, lstart, lend);
129 	if (claimed_bdev)
130 		bd_abort_claiming(bdev, claimed_bdev, truncate_bdev_range);
131 	return 0;
132 
133 invalidate:
134 	/*
135 	 * Someone else has handle exclusively open. Try invalidating instead.
136 	 * The 'end' argument is inclusive so the rounding is safe.
137 	 */
138 	return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping,
139 					     lstart >> PAGE_SHIFT,
140 					     lend >> PAGE_SHIFT);
141 }
142 EXPORT_SYMBOL(truncate_bdev_range);
143 
set_init_blocksize(struct block_device * bdev)144 static void set_init_blocksize(struct block_device *bdev)
145 {
146 	unsigned int bsize = bdev_logical_block_size(bdev);
147 	loff_t size = i_size_read(bdev->bd_inode);
148 
149 	while (bsize < PAGE_SIZE) {
150 		if (size & bsize)
151 			break;
152 		bsize <<= 1;
153 	}
154 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
155 }
156 
set_blocksize(struct block_device * bdev,int size)157 int set_blocksize(struct block_device *bdev, int size)
158 {
159 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
160 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
161 		return -EINVAL;
162 
163 	/* Size cannot be smaller than the size supported by the device */
164 	if (size < bdev_logical_block_size(bdev))
165 		return -EINVAL;
166 
167 	/* Don't change the size if it is same as current */
168 	if (bdev->bd_inode->i_blkbits != blksize_bits(size)) {
169 		sync_blockdev(bdev);
170 		bdev->bd_inode->i_blkbits = blksize_bits(size);
171 		kill_bdev(bdev);
172 	}
173 	return 0;
174 }
175 
176 EXPORT_SYMBOL(set_blocksize);
177 
sb_set_blocksize(struct super_block * sb,int size)178 int sb_set_blocksize(struct super_block *sb, int size)
179 {
180 	if (set_blocksize(sb->s_bdev, size))
181 		return 0;
182 	/* If we get here, we know size is power of two
183 	 * and it's value is between 512 and PAGE_SIZE */
184 	sb->s_blocksize = size;
185 	sb->s_blocksize_bits = blksize_bits(size);
186 	return sb->s_blocksize;
187 }
188 
189 EXPORT_SYMBOL_NS(sb_set_blocksize, ANDROID_GKI_VFS_EXPORT_ONLY);
190 
sb_min_blocksize(struct super_block * sb,int size)191 int sb_min_blocksize(struct super_block *sb, int size)
192 {
193 	int minsize = bdev_logical_block_size(sb->s_bdev);
194 	if (size < minsize)
195 		size = minsize;
196 	return sb_set_blocksize(sb, size);
197 }
198 
199 EXPORT_SYMBOL_NS(sb_min_blocksize, ANDROID_GKI_VFS_EXPORT_ONLY);
200 
201 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)202 blkdev_get_block(struct inode *inode, sector_t iblock,
203 		struct buffer_head *bh, int create)
204 {
205 	bh->b_bdev = I_BDEV(inode);
206 	bh->b_blocknr = iblock;
207 	set_buffer_mapped(bh);
208 	return 0;
209 }
210 
bdev_file_inode(struct file * file)211 static struct inode *bdev_file_inode(struct file *file)
212 {
213 	return file->f_mapping->host;
214 }
215 
dio_bio_write_op(struct kiocb * iocb)216 static unsigned int dio_bio_write_op(struct kiocb *iocb)
217 {
218 	unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
219 
220 	/* avoid the need for a I/O completion work item */
221 	if (iocb->ki_flags & IOCB_DSYNC)
222 		op |= REQ_FUA;
223 	return op;
224 }
225 
226 #define DIO_INLINE_BIO_VECS 4
227 
blkdev_bio_end_io_simple(struct bio * bio)228 static void blkdev_bio_end_io_simple(struct bio *bio)
229 {
230 	struct task_struct *waiter = bio->bi_private;
231 
232 	WRITE_ONCE(bio->bi_private, NULL);
233 	blk_wake_io_task(waiter);
234 }
235 
236 static ssize_t
__blkdev_direct_IO_simple(struct kiocb * iocb,struct iov_iter * iter,unsigned int nr_pages)237 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
238 		unsigned int nr_pages)
239 {
240 	struct file *file = iocb->ki_filp;
241 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
242 	struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
243 	loff_t pos = iocb->ki_pos;
244 	bool should_dirty = false;
245 	struct bio bio;
246 	ssize_t ret;
247 	blk_qc_t qc;
248 
249 	if ((pos | iov_iter_alignment(iter)) &
250 	    (bdev_logical_block_size(bdev) - 1))
251 		return -EINVAL;
252 
253 	if (nr_pages <= DIO_INLINE_BIO_VECS)
254 		vecs = inline_vecs;
255 	else {
256 		vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
257 				     GFP_KERNEL);
258 		if (!vecs)
259 			return -ENOMEM;
260 	}
261 
262 	bio_init(&bio, vecs, nr_pages);
263 	bio_set_dev(&bio, bdev);
264 	bio.bi_iter.bi_sector = pos >> 9;
265 	bio.bi_write_hint = iocb->ki_hint;
266 	bio.bi_private = current;
267 	bio.bi_end_io = blkdev_bio_end_io_simple;
268 	bio.bi_ioprio = iocb->ki_ioprio;
269 
270 	ret = bio_iov_iter_get_pages(&bio, iter);
271 	if (unlikely(ret))
272 		goto out;
273 	ret = bio.bi_iter.bi_size;
274 
275 	if (iov_iter_rw(iter) == READ) {
276 		bio.bi_opf = REQ_OP_READ;
277 		if (iter_is_iovec(iter))
278 			should_dirty = true;
279 	} else {
280 		bio.bi_opf = dio_bio_write_op(iocb);
281 		task_io_account_write(ret);
282 	}
283 	if (iocb->ki_flags & IOCB_NOWAIT)
284 		bio.bi_opf |= REQ_NOWAIT;
285 	if (iocb->ki_flags & IOCB_HIPRI)
286 		bio_set_polled(&bio, iocb);
287 
288 	qc = submit_bio(&bio);
289 	for (;;) {
290 		set_current_state(TASK_UNINTERRUPTIBLE);
291 		if (!READ_ONCE(bio.bi_private))
292 			break;
293 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
294 		    !blk_poll(bdev_get_queue(bdev), qc, true))
295 			blk_io_schedule();
296 	}
297 	__set_current_state(TASK_RUNNING);
298 
299 	bio_release_pages(&bio, should_dirty);
300 	if (unlikely(bio.bi_status))
301 		ret = blk_status_to_errno(bio.bi_status);
302 
303 out:
304 	if (vecs != inline_vecs)
305 		kfree(vecs);
306 
307 	bio_uninit(&bio);
308 
309 	return ret;
310 }
311 
312 struct blkdev_dio {
313 	union {
314 		struct kiocb		*iocb;
315 		struct task_struct	*waiter;
316 	};
317 	size_t			size;
318 	atomic_t		ref;
319 	bool			multi_bio : 1;
320 	bool			should_dirty : 1;
321 	bool			is_sync : 1;
322 	struct bio		bio;
323 };
324 
325 static struct bio_set blkdev_dio_pool;
326 
blkdev_iopoll(struct kiocb * kiocb,bool wait)327 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
328 {
329 	struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
330 	struct request_queue *q = bdev_get_queue(bdev);
331 
332 	return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
333 }
334 
blkdev_bio_end_io(struct bio * bio)335 static void blkdev_bio_end_io(struct bio *bio)
336 {
337 	struct blkdev_dio *dio = bio->bi_private;
338 	bool should_dirty = dio->should_dirty;
339 
340 	if (bio->bi_status && !dio->bio.bi_status)
341 		dio->bio.bi_status = bio->bi_status;
342 
343 	if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
344 		if (!dio->is_sync) {
345 			struct kiocb *iocb = dio->iocb;
346 			ssize_t ret;
347 
348 			if (likely(!dio->bio.bi_status)) {
349 				ret = dio->size;
350 				iocb->ki_pos += ret;
351 			} else {
352 				ret = blk_status_to_errno(dio->bio.bi_status);
353 			}
354 
355 			dio->iocb->ki_complete(iocb, ret, 0);
356 			if (dio->multi_bio)
357 				bio_put(&dio->bio);
358 		} else {
359 			struct task_struct *waiter = dio->waiter;
360 
361 			WRITE_ONCE(dio->waiter, NULL);
362 			blk_wake_io_task(waiter);
363 		}
364 	}
365 
366 	if (should_dirty) {
367 		bio_check_pages_dirty(bio);
368 	} else {
369 		bio_release_pages(bio, false);
370 		bio_put(bio);
371 	}
372 }
373 
__blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,unsigned int nr_pages)374 static ssize_t __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
375 		unsigned int nr_pages)
376 {
377 	struct file *file = iocb->ki_filp;
378 	struct inode *inode = bdev_file_inode(file);
379 	struct block_device *bdev = I_BDEV(inode);
380 	struct blk_plug plug;
381 	struct blkdev_dio *dio;
382 	struct bio *bio;
383 	bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
384 	bool is_read = (iov_iter_rw(iter) == READ), is_sync;
385 	loff_t pos = iocb->ki_pos;
386 	blk_qc_t qc = BLK_QC_T_NONE;
387 	int ret = 0;
388 
389 	if ((pos | iov_iter_alignment(iter)) &
390 	    (bdev_logical_block_size(bdev) - 1))
391 		return -EINVAL;
392 
393 	bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
394 
395 	dio = container_of(bio, struct blkdev_dio, bio);
396 	dio->is_sync = is_sync = is_sync_kiocb(iocb);
397 	if (dio->is_sync) {
398 		dio->waiter = current;
399 		bio_get(bio);
400 	} else {
401 		dio->iocb = iocb;
402 	}
403 
404 	dio->size = 0;
405 	dio->multi_bio = false;
406 	dio->should_dirty = is_read && iter_is_iovec(iter);
407 
408 	/*
409 	 * Don't plug for HIPRI/polled IO, as those should go straight
410 	 * to issue
411 	 */
412 	if (!is_poll)
413 		blk_start_plug(&plug);
414 
415 	for (;;) {
416 		bio_set_dev(bio, bdev);
417 		bio->bi_iter.bi_sector = pos >> 9;
418 		bio->bi_write_hint = iocb->ki_hint;
419 		bio->bi_private = dio;
420 		bio->bi_end_io = blkdev_bio_end_io;
421 		bio->bi_ioprio = iocb->ki_ioprio;
422 
423 		ret = bio_iov_iter_get_pages(bio, iter);
424 		if (unlikely(ret)) {
425 			bio->bi_status = BLK_STS_IOERR;
426 			bio_endio(bio);
427 			break;
428 		}
429 
430 		if (is_read) {
431 			bio->bi_opf = REQ_OP_READ;
432 			if (dio->should_dirty)
433 				bio_set_pages_dirty(bio);
434 		} else {
435 			bio->bi_opf = dio_bio_write_op(iocb);
436 			task_io_account_write(bio->bi_iter.bi_size);
437 		}
438 		if (iocb->ki_flags & IOCB_NOWAIT)
439 			bio->bi_opf |= REQ_NOWAIT;
440 
441 		dio->size += bio->bi_iter.bi_size;
442 		pos += bio->bi_iter.bi_size;
443 
444 		nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
445 		if (!nr_pages) {
446 			bool polled = false;
447 
448 			if (iocb->ki_flags & IOCB_HIPRI) {
449 				bio_set_polled(bio, iocb);
450 				polled = true;
451 			}
452 
453 			qc = submit_bio(bio);
454 
455 			if (polled)
456 				WRITE_ONCE(iocb->ki_cookie, qc);
457 			break;
458 		}
459 
460 		if (!dio->multi_bio) {
461 			/*
462 			 * AIO needs an extra reference to ensure the dio
463 			 * structure which is embedded into the first bio
464 			 * stays around.
465 			 */
466 			if (!is_sync)
467 				bio_get(bio);
468 			dio->multi_bio = true;
469 			atomic_set(&dio->ref, 2);
470 		} else {
471 			atomic_inc(&dio->ref);
472 		}
473 
474 		submit_bio(bio);
475 		bio = bio_alloc(GFP_KERNEL, nr_pages);
476 	}
477 
478 	if (!is_poll)
479 		blk_finish_plug(&plug);
480 
481 	if (!is_sync)
482 		return -EIOCBQUEUED;
483 
484 	for (;;) {
485 		set_current_state(TASK_UNINTERRUPTIBLE);
486 		if (!READ_ONCE(dio->waiter))
487 			break;
488 
489 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
490 		    !blk_poll(bdev_get_queue(bdev), qc, true))
491 			blk_io_schedule();
492 	}
493 	__set_current_state(TASK_RUNNING);
494 
495 	if (!ret)
496 		ret = blk_status_to_errno(dio->bio.bi_status);
497 	if (likely(!ret))
498 		ret = dio->size;
499 
500 	bio_put(&dio->bio);
501 	return ret;
502 }
503 
504 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)505 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
506 {
507 	unsigned int nr_pages;
508 
509 	nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
510 	if (!nr_pages)
511 		return 0;
512 	if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
513 		return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
514 
515 	return __blkdev_direct_IO(iocb, iter, bio_max_segs(nr_pages));
516 }
517 
blkdev_init(void)518 static __init int blkdev_init(void)
519 {
520 	return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
521 }
522 module_init(blkdev_init);
523 
__sync_blockdev(struct block_device * bdev,int wait)524 int __sync_blockdev(struct block_device *bdev, int wait)
525 {
526 	if (!bdev)
527 		return 0;
528 	if (!wait)
529 		return filemap_flush(bdev->bd_inode->i_mapping);
530 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
531 }
532 
533 /*
534  * Write out and wait upon all the dirty data associated with a block
535  * device via its mapping.  Does not take the superblock lock.
536  */
sync_blockdev(struct block_device * bdev)537 int sync_blockdev(struct block_device *bdev)
538 {
539 	return __sync_blockdev(bdev, 1);
540 }
541 EXPORT_SYMBOL(sync_blockdev);
542 
543 /*
544  * Write out and wait upon all dirty data associated with this
545  * device.   Filesystem data as well as the underlying block
546  * device.  Takes the superblock lock.
547  */
fsync_bdev(struct block_device * bdev)548 int fsync_bdev(struct block_device *bdev)
549 {
550 	struct super_block *sb = get_super(bdev);
551 	if (sb) {
552 		int res = sync_filesystem(sb);
553 		drop_super(sb);
554 		return res;
555 	}
556 	return sync_blockdev(bdev);
557 }
558 EXPORT_SYMBOL(fsync_bdev);
559 
560 /**
561  * freeze_bdev  --  lock a filesystem and force it into a consistent state
562  * @bdev:	blockdevice to lock
563  *
564  * If a superblock is found on this device, we take the s_umount semaphore
565  * on it to make sure nobody unmounts until the snapshot creation is done.
566  * The reference counter (bd_fsfreeze_count) guarantees that only the last
567  * unfreeze process can unfreeze the frozen filesystem actually when multiple
568  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
569  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
570  * actually.
571  */
freeze_bdev(struct block_device * bdev)572 int freeze_bdev(struct block_device *bdev)
573 {
574 	struct super_block *sb;
575 	int error = 0;
576 
577 	mutex_lock(&bdev->bd_fsfreeze_mutex);
578 	if (++bdev->bd_fsfreeze_count > 1)
579 		goto done;
580 
581 	sb = get_active_super(bdev);
582 	if (!sb)
583 		goto sync;
584 	if (sb->s_op->freeze_super)
585 		error = sb->s_op->freeze_super(sb);
586 	else
587 		error = freeze_super(sb);
588 	deactivate_super(sb);
589 
590 	if (error) {
591 		bdev->bd_fsfreeze_count--;
592 		goto done;
593 	}
594 	bdev->bd_fsfreeze_sb = sb;
595 
596 sync:
597 	sync_blockdev(bdev);
598 done:
599 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
600 	return error;
601 }
602 EXPORT_SYMBOL(freeze_bdev);
603 
604 /**
605  * thaw_bdev  -- unlock filesystem
606  * @bdev:	blockdevice to unlock
607  *
608  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
609  */
thaw_bdev(struct block_device * bdev)610 int thaw_bdev(struct block_device *bdev)
611 {
612 	struct super_block *sb;
613 	int error = -EINVAL;
614 
615 	mutex_lock(&bdev->bd_fsfreeze_mutex);
616 	if (!bdev->bd_fsfreeze_count)
617 		goto out;
618 
619 	error = 0;
620 	if (--bdev->bd_fsfreeze_count > 0)
621 		goto out;
622 
623 	sb = bdev->bd_fsfreeze_sb;
624 	if (!sb)
625 		goto out;
626 
627 	if (sb->s_op->thaw_super)
628 		error = sb->s_op->thaw_super(sb);
629 	else
630 		error = thaw_super(sb);
631 	if (error)
632 		bdev->bd_fsfreeze_count++;
633 	else
634 		bdev->bd_fsfreeze_sb = NULL;
635 out:
636 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
637 	return error;
638 }
639 EXPORT_SYMBOL(thaw_bdev);
640 
blkdev_writepage(struct page * page,struct writeback_control * wbc)641 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
642 {
643 	return block_write_full_page(page, blkdev_get_block, wbc);
644 }
645 
blkdev_readpage(struct file * file,struct page * page)646 static int blkdev_readpage(struct file * file, struct page * page)
647 {
648 	return block_read_full_page(page, blkdev_get_block);
649 }
650 
blkdev_readahead(struct readahead_control * rac)651 static void blkdev_readahead(struct readahead_control *rac)
652 {
653 	mpage_readahead(rac, blkdev_get_block);
654 }
655 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)656 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
657 			loff_t pos, unsigned len, unsigned flags,
658 			struct page **pagep, void **fsdata)
659 {
660 	return block_write_begin(mapping, pos, len, flags, pagep,
661 				 blkdev_get_block);
662 }
663 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)664 static int blkdev_write_end(struct file *file, struct address_space *mapping,
665 			loff_t pos, unsigned len, unsigned copied,
666 			struct page *page, void *fsdata)
667 {
668 	int ret;
669 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
670 
671 	unlock_page(page);
672 	put_page(page);
673 
674 	return ret;
675 }
676 
677 /*
678  * private llseek:
679  * for a block special file file_inode(file)->i_size is zero
680  * so we compute the size by hand (just as in block_read/write above)
681  */
block_llseek(struct file * file,loff_t offset,int whence)682 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
683 {
684 	struct inode *bd_inode = bdev_file_inode(file);
685 	loff_t retval;
686 
687 	inode_lock(bd_inode);
688 	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
689 	inode_unlock(bd_inode);
690 	return retval;
691 }
692 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)693 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
694 {
695 	struct inode *bd_inode = bdev_file_inode(filp);
696 	struct block_device *bdev = I_BDEV(bd_inode);
697 	int error;
698 
699 	error = file_write_and_wait_range(filp, start, end);
700 	if (error)
701 		return error;
702 
703 	/*
704 	 * There is no need to serialise calls to blkdev_issue_flush with
705 	 * i_mutex and doing so causes performance issues with concurrent
706 	 * O_SYNC writers to a block device.
707 	 */
708 	error = blkdev_issue_flush(bdev, GFP_KERNEL);
709 	if (error == -EOPNOTSUPP)
710 		error = 0;
711 
712 	return error;
713 }
714 EXPORT_SYMBOL(blkdev_fsync);
715 
716 /**
717  * bdev_read_page() - Start reading a page from a block device
718  * @bdev: The device to read the page from
719  * @sector: The offset on the device to read the page to (need not be aligned)
720  * @page: The page to read
721  *
722  * On entry, the page should be locked.  It will be unlocked when the page
723  * has been read.  If the block driver implements rw_page synchronously,
724  * that will be true on exit from this function, but it need not be.
725  *
726  * Errors returned by this function are usually "soft", eg out of memory, or
727  * queue full; callers should try a different route to read this page rather
728  * than propagate an error back up the stack.
729  *
730  * Return: negative errno if an error occurs, 0 if submission was successful.
731  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)732 int bdev_read_page(struct block_device *bdev, sector_t sector,
733 			struct page *page)
734 {
735 	const struct block_device_operations *ops = bdev->bd_disk->fops;
736 	int result = -EOPNOTSUPP;
737 
738 	if (!ops->rw_page || bdev_get_integrity(bdev))
739 		return result;
740 
741 	result = blk_queue_enter(bdev->bd_disk->queue, 0);
742 	if (result)
743 		return result;
744 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
745 			      REQ_OP_READ);
746 	blk_queue_exit(bdev->bd_disk->queue);
747 	return result;
748 }
749 
750 /**
751  * bdev_write_page() - Start writing a page to a block device
752  * @bdev: The device to write the page to
753  * @sector: The offset on the device to write the page to (need not be aligned)
754  * @page: The page to write
755  * @wbc: The writeback_control for the write
756  *
757  * On entry, the page should be locked and not currently under writeback.
758  * On exit, if the write started successfully, the page will be unlocked and
759  * under writeback.  If the write failed already (eg the driver failed to
760  * queue the page to the device), the page will still be locked.  If the
761  * caller is a ->writepage implementation, it will need to unlock the page.
762  *
763  * Errors returned by this function are usually "soft", eg out of memory, or
764  * queue full; callers should try a different route to write this page rather
765  * than propagate an error back up the stack.
766  *
767  * Return: negative errno if an error occurs, 0 if submission was successful.
768  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)769 int bdev_write_page(struct block_device *bdev, sector_t sector,
770 			struct page *page, struct writeback_control *wbc)
771 {
772 	int result;
773 	const struct block_device_operations *ops = bdev->bd_disk->fops;
774 
775 	if (!ops->rw_page || bdev_get_integrity(bdev))
776 		return -EOPNOTSUPP;
777 	result = blk_queue_enter(bdev->bd_disk->queue, 0);
778 	if (result)
779 		return result;
780 
781 	set_page_writeback(page);
782 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
783 			      REQ_OP_WRITE);
784 	if (result) {
785 		end_page_writeback(page);
786 	} else {
787 		clean_page_buffers(page);
788 		unlock_page(page);
789 	}
790 	blk_queue_exit(bdev->bd_disk->queue);
791 	return result;
792 }
793 
794 /*
795  * pseudo-fs
796  */
797 
798 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
799 static struct kmem_cache * bdev_cachep __read_mostly;
800 
bdev_alloc_inode(struct super_block * sb)801 static struct inode *bdev_alloc_inode(struct super_block *sb)
802 {
803 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
804 	if (!ei)
805 		return NULL;
806 	return &ei->vfs_inode;
807 }
808 
bdev_free_inode(struct inode * inode)809 static void bdev_free_inode(struct inode *inode)
810 {
811 	kmem_cache_free(bdev_cachep, BDEV_I(inode));
812 }
813 
init_once(void * foo)814 static void init_once(void *foo)
815 {
816 	struct bdev_inode *ei = (struct bdev_inode *) foo;
817 	struct block_device *bdev = &ei->bdev;
818 
819 	memset(bdev, 0, sizeof(*bdev));
820 	mutex_init(&bdev->bd_mutex);
821 #ifdef CONFIG_SYSFS
822 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
823 #endif
824 	bdev->bd_bdi = &noop_backing_dev_info;
825 	inode_init_once(&ei->vfs_inode);
826 	/* Initialize mutex for freeze. */
827 	mutex_init(&bdev->bd_fsfreeze_mutex);
828 }
829 
bdev_evict_inode(struct inode * inode)830 static void bdev_evict_inode(struct inode *inode)
831 {
832 	struct block_device *bdev = &BDEV_I(inode)->bdev;
833 	truncate_inode_pages_final(&inode->i_data);
834 	invalidate_inode_buffers(inode); /* is it needed here? */
835 	clear_inode(inode);
836 	/* Detach inode from wb early as bdi_put() may free bdi->wb */
837 	inode_detach_wb(inode);
838 	if (bdev->bd_bdi != &noop_backing_dev_info) {
839 		bdi_put(bdev->bd_bdi);
840 		bdev->bd_bdi = &noop_backing_dev_info;
841 	}
842 }
843 
844 static const struct super_operations bdev_sops = {
845 	.statfs = simple_statfs,
846 	.alloc_inode = bdev_alloc_inode,
847 	.free_inode = bdev_free_inode,
848 	.drop_inode = generic_delete_inode,
849 	.evict_inode = bdev_evict_inode,
850 };
851 
bd_init_fs_context(struct fs_context * fc)852 static int bd_init_fs_context(struct fs_context *fc)
853 {
854 	struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
855 	if (!ctx)
856 		return -ENOMEM;
857 	fc->s_iflags |= SB_I_CGROUPWB;
858 	ctx->ops = &bdev_sops;
859 	return 0;
860 }
861 
862 static struct file_system_type bd_type = {
863 	.name		= "bdev",
864 	.init_fs_context = bd_init_fs_context,
865 	.kill_sb	= kill_anon_super,
866 };
867 
868 struct super_block *blockdev_superblock __read_mostly;
869 EXPORT_SYMBOL_GPL(blockdev_superblock);
870 
bdev_cache_init(void)871 void __init bdev_cache_init(void)
872 {
873 	int err;
874 	static struct vfsmount *bd_mnt;
875 
876 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
877 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
878 				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
879 			init_once);
880 	err = register_filesystem(&bd_type);
881 	if (err)
882 		panic("Cannot register bdev pseudo-fs");
883 	bd_mnt = kern_mount(&bd_type);
884 	if (IS_ERR(bd_mnt))
885 		panic("Cannot create bdev pseudo-fs");
886 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
887 }
888 
889 /*
890  * Most likely _very_ bad one - but then it's hardly critical for small
891  * /dev and can be fixed when somebody will need really large one.
892  * Keep in mind that it will be fed through icache hash function too.
893  */
hash(dev_t dev)894 static inline unsigned long hash(dev_t dev)
895 {
896 	return MAJOR(dev)+MINOR(dev);
897 }
898 
bdev_test(struct inode * inode,void * data)899 static int bdev_test(struct inode *inode, void *data)
900 {
901 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
902 }
903 
bdev_set(struct inode * inode,void * data)904 static int bdev_set(struct inode *inode, void *data)
905 {
906 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
907 	return 0;
908 }
909 
bdget(dev_t dev)910 static struct block_device *bdget(dev_t dev)
911 {
912 	struct block_device *bdev;
913 	struct inode *inode;
914 
915 	inode = iget5_locked(blockdev_superblock, hash(dev),
916 			bdev_test, bdev_set, &dev);
917 
918 	if (!inode)
919 		return NULL;
920 
921 	bdev = &BDEV_I(inode)->bdev;
922 
923 	if (inode->i_state & I_NEW) {
924 		spin_lock_init(&bdev->bd_size_lock);
925 		bdev->bd_contains = NULL;
926 		bdev->bd_super = NULL;
927 		bdev->bd_inode = inode;
928 		bdev->bd_part_count = 0;
929 		inode->i_mode = S_IFBLK;
930 		inode->i_rdev = dev;
931 		inode->i_bdev = bdev;
932 		inode->i_data.a_ops = &def_blk_aops;
933 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
934 		unlock_new_inode(inode);
935 	}
936 	return bdev;
937 }
938 
939 /**
940  * bdgrab -- Grab a reference to an already referenced block device
941  * @bdev:	Block device to grab a reference to.
942  */
bdgrab(struct block_device * bdev)943 struct block_device *bdgrab(struct block_device *bdev)
944 {
945 	ihold(bdev->bd_inode);
946 	return bdev;
947 }
948 EXPORT_SYMBOL(bdgrab);
949 
bdget_part(struct hd_struct * part)950 struct block_device *bdget_part(struct hd_struct *part)
951 {
952 	return bdget(part_devt(part));
953 }
954 
nr_blockdev_pages(void)955 long nr_blockdev_pages(void)
956 {
957 	struct inode *inode;
958 	long ret = 0;
959 
960 	spin_lock(&blockdev_superblock->s_inode_list_lock);
961 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list)
962 		ret += inode->i_mapping->nrpages;
963 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
964 
965 	return ret;
966 }
967 
bdput(struct block_device * bdev)968 void bdput(struct block_device *bdev)
969 {
970 	iput(bdev->bd_inode);
971 }
972 
973 EXPORT_SYMBOL(bdput);
974 
bd_acquire(struct inode * inode)975 static struct block_device *bd_acquire(struct inode *inode)
976 {
977 	struct block_device *bdev;
978 
979 	spin_lock(&bdev_lock);
980 	bdev = inode->i_bdev;
981 	if (bdev && !inode_unhashed(bdev->bd_inode)) {
982 		bdgrab(bdev);
983 		spin_unlock(&bdev_lock);
984 		return bdev;
985 	}
986 	spin_unlock(&bdev_lock);
987 
988 	/*
989 	 * i_bdev references block device inode that was already shut down
990 	 * (corresponding device got removed).  Remove the reference and look
991 	 * up block device inode again just in case new device got
992 	 * reestablished under the same device number.
993 	 */
994 	if (bdev)
995 		bd_forget(inode);
996 
997 	bdev = bdget(inode->i_rdev);
998 	if (bdev) {
999 		spin_lock(&bdev_lock);
1000 		if (!inode->i_bdev) {
1001 			/*
1002 			 * We take an additional reference to bd_inode,
1003 			 * and it's released in clear_inode() of inode.
1004 			 * So, we can access it via ->i_mapping always
1005 			 * without igrab().
1006 			 */
1007 			bdgrab(bdev);
1008 			inode->i_bdev = bdev;
1009 			inode->i_mapping = bdev->bd_inode->i_mapping;
1010 		}
1011 		spin_unlock(&bdev_lock);
1012 	}
1013 	return bdev;
1014 }
1015 
1016 /* Call when you free inode */
1017 
bd_forget(struct inode * inode)1018 void bd_forget(struct inode *inode)
1019 {
1020 	struct block_device *bdev = NULL;
1021 
1022 	spin_lock(&bdev_lock);
1023 	if (!sb_is_blkdev_sb(inode->i_sb))
1024 		bdev = inode->i_bdev;
1025 	inode->i_bdev = NULL;
1026 	inode->i_mapping = &inode->i_data;
1027 	spin_unlock(&bdev_lock);
1028 
1029 	if (bdev)
1030 		bdput(bdev);
1031 }
1032 
1033 /**
1034  * bd_may_claim - test whether a block device can be claimed
1035  * @bdev: block device of interest
1036  * @whole: whole block device containing @bdev, may equal @bdev
1037  * @holder: holder trying to claim @bdev
1038  *
1039  * Test whether @bdev can be claimed by @holder.
1040  *
1041  * CONTEXT:
1042  * spin_lock(&bdev_lock).
1043  *
1044  * RETURNS:
1045  * %true if @bdev can be claimed, %false otherwise.
1046  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)1047 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1048 			 void *holder)
1049 {
1050 	if (bdev->bd_holder == holder)
1051 		return true;	 /* already a holder */
1052 	else if (bdev->bd_holder != NULL)
1053 		return false; 	 /* held by someone else */
1054 	else if (whole == bdev)
1055 		return true;  	 /* is a whole device which isn't held */
1056 
1057 	else if (whole->bd_holder == bd_may_claim)
1058 		return true; 	 /* is a partition of a device that is being partitioned */
1059 	else if (whole->bd_holder != NULL)
1060 		return false;	 /* is a partition of a held device */
1061 	else
1062 		return true;	 /* is a partition of an un-held device */
1063 }
1064 
1065 /**
1066  * bd_prepare_to_claim - claim a block device
1067  * @bdev: block device of interest
1068  * @whole: the whole device containing @bdev, may equal @bdev
1069  * @holder: holder trying to claim @bdev
1070  *
1071  * Claim @bdev.  This function fails if @bdev is already claimed by another
1072  * holder and waits if another claiming is in progress. return, the caller
1073  * has ownership of bd_claiming and bd_holder[s].
1074  *
1075  * RETURNS:
1076  * 0 if @bdev can be claimed, -EBUSY otherwise.
1077  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)1078 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
1079 		void *holder)
1080 {
1081 retry:
1082 	spin_lock(&bdev_lock);
1083 	/* if someone else claimed, fail */
1084 	if (!bd_may_claim(bdev, whole, holder)) {
1085 		spin_unlock(&bdev_lock);
1086 		return -EBUSY;
1087 	}
1088 
1089 	/* if claiming is already in progress, wait for it to finish */
1090 	if (whole->bd_claiming) {
1091 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1092 		DEFINE_WAIT(wait);
1093 
1094 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1095 		spin_unlock(&bdev_lock);
1096 		schedule();
1097 		finish_wait(wq, &wait);
1098 		goto retry;
1099 	}
1100 
1101 	/* yay, all mine */
1102 	whole->bd_claiming = holder;
1103 	spin_unlock(&bdev_lock);
1104 	return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */
1107 
bdev_get_gendisk(struct block_device * bdev,int * partno)1108 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1109 {
1110 	struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1111 
1112 	if (!disk)
1113 		return NULL;
1114 	/*
1115 	 * Now that we hold gendisk reference we make sure bdev we looked up is
1116 	 * not stale. If it is, it means device got removed and created before
1117 	 * we looked up gendisk and we fail open in such case. Associating
1118 	 * unhashed bdev with newly created gendisk could lead to two bdevs
1119 	 * (and thus two independent caches) being associated with one device
1120 	 * which is bad.
1121 	 */
1122 	if (inode_unhashed(bdev->bd_inode)) {
1123 		put_disk_and_module(disk);
1124 		return NULL;
1125 	}
1126 	return disk;
1127 }
1128 
bd_clear_claiming(struct block_device * whole,void * holder)1129 static void bd_clear_claiming(struct block_device *whole, void *holder)
1130 {
1131 	lockdep_assert_held(&bdev_lock);
1132 	/* tell others that we're done */
1133 	BUG_ON(whole->bd_claiming != holder);
1134 	whole->bd_claiming = NULL;
1135 	wake_up_bit(&whole->bd_claiming, 0);
1136 }
1137 
1138 /**
1139  * bd_finish_claiming - finish claiming of a block device
1140  * @bdev: block device of interest
1141  * @whole: whole block device
1142  * @holder: holder that has claimed @bdev
1143  *
1144  * Finish exclusive open of a block device. Mark the device as exlusively
1145  * open by the holder and wake up all waiters for exclusive open to finish.
1146  */
bd_finish_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1147 static void bd_finish_claiming(struct block_device *bdev,
1148 		struct block_device *whole, void *holder)
1149 {
1150 	spin_lock(&bdev_lock);
1151 	BUG_ON(!bd_may_claim(bdev, whole, holder));
1152 	/*
1153 	 * Note that for a whole device bd_holders will be incremented twice,
1154 	 * and bd_holder will be set to bd_may_claim before being set to holder
1155 	 */
1156 	whole->bd_holders++;
1157 	whole->bd_holder = bd_may_claim;
1158 	bdev->bd_holders++;
1159 	bdev->bd_holder = holder;
1160 	bd_clear_claiming(whole, holder);
1161 	spin_unlock(&bdev_lock);
1162 }
1163 
1164 /**
1165  * bd_abort_claiming - abort claiming of a block device
1166  * @bdev: block device of interest
1167  * @whole: whole block device
1168  * @holder: holder that has claimed @bdev
1169  *
1170  * Abort claiming of a block device when the exclusive open failed. This can be
1171  * also used when exclusive open is not actually desired and we just needed
1172  * to block other exclusive openers for a while.
1173  */
bd_abort_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1174 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1175 		       void *holder)
1176 {
1177 	spin_lock(&bdev_lock);
1178 	bd_clear_claiming(whole, holder);
1179 	spin_unlock(&bdev_lock);
1180 }
1181 EXPORT_SYMBOL(bd_abort_claiming);
1182 
1183 #ifdef CONFIG_SYSFS
1184 struct bd_holder_disk {
1185 	struct list_head	list;
1186 	struct gendisk		*disk;
1187 	int			refcnt;
1188 };
1189 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)1190 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1191 						  struct gendisk *disk)
1192 {
1193 	struct bd_holder_disk *holder;
1194 
1195 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1196 		if (holder->disk == disk)
1197 			return holder;
1198 	return NULL;
1199 }
1200 
add_symlink(struct kobject * from,struct kobject * to)1201 static int add_symlink(struct kobject *from, struct kobject *to)
1202 {
1203 	return sysfs_create_link(from, to, kobject_name(to));
1204 }
1205 
del_symlink(struct kobject * from,struct kobject * to)1206 static void del_symlink(struct kobject *from, struct kobject *to)
1207 {
1208 	sysfs_remove_link(from, kobject_name(to));
1209 }
1210 
1211 /**
1212  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1213  * @bdev: the claimed slave bdev
1214  * @disk: the holding disk
1215  *
1216  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1217  *
1218  * This functions creates the following sysfs symlinks.
1219  *
1220  * - from "slaves" directory of the holder @disk to the claimed @bdev
1221  * - from "holders" directory of the @bdev to the holder @disk
1222  *
1223  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1224  * passed to bd_link_disk_holder(), then:
1225  *
1226  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1227  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1228  *
1229  * The caller must have claimed @bdev before calling this function and
1230  * ensure that both @bdev and @disk are valid during the creation and
1231  * lifetime of these symlinks.
1232  *
1233  * CONTEXT:
1234  * Might sleep.
1235  *
1236  * RETURNS:
1237  * 0 on success, -errno on failure.
1238  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1239 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1240 {
1241 	struct bd_holder_disk *holder;
1242 	int ret = 0;
1243 
1244 	mutex_lock(&bdev->bd_mutex);
1245 
1246 	WARN_ON_ONCE(!bdev->bd_holder);
1247 
1248 	/* FIXME: remove the following once add_disk() handles errors */
1249 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1250 		goto out_unlock;
1251 
1252 	holder = bd_find_holder_disk(bdev, disk);
1253 	if (holder) {
1254 		holder->refcnt++;
1255 		goto out_unlock;
1256 	}
1257 
1258 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1259 	if (!holder) {
1260 		ret = -ENOMEM;
1261 		goto out_unlock;
1262 	}
1263 
1264 	INIT_LIST_HEAD(&holder->list);
1265 	holder->disk = disk;
1266 	holder->refcnt = 1;
1267 
1268 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1269 	if (ret)
1270 		goto out_free;
1271 
1272 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1273 	if (ret)
1274 		goto out_del;
1275 	/*
1276 	 * bdev could be deleted beneath us which would implicitly destroy
1277 	 * the holder directory.  Hold on to it.
1278 	 */
1279 	kobject_get(bdev->bd_part->holder_dir);
1280 
1281 	list_add(&holder->list, &bdev->bd_holder_disks);
1282 	goto out_unlock;
1283 
1284 out_del:
1285 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1286 out_free:
1287 	kfree(holder);
1288 out_unlock:
1289 	mutex_unlock(&bdev->bd_mutex);
1290 	return ret;
1291 }
1292 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1293 
1294 /**
1295  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1296  * @bdev: the calimed slave bdev
1297  * @disk: the holding disk
1298  *
1299  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1300  *
1301  * CONTEXT:
1302  * Might sleep.
1303  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1304 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1305 {
1306 	struct bd_holder_disk *holder;
1307 
1308 	mutex_lock(&bdev->bd_mutex);
1309 
1310 	holder = bd_find_holder_disk(bdev, disk);
1311 
1312 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1313 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1314 		del_symlink(bdev->bd_part->holder_dir,
1315 			    &disk_to_dev(disk)->kobj);
1316 		kobject_put(bdev->bd_part->holder_dir);
1317 		list_del_init(&holder->list);
1318 		kfree(holder);
1319 	}
1320 
1321 	mutex_unlock(&bdev->bd_mutex);
1322 }
1323 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1324 #endif
1325 
1326 /**
1327  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1328  * @disk: struct gendisk to check
1329  * @bdev: struct bdev to adjust.
1330  * @verbose: if %true log a message about a size change if there is any
1331  *
1332  * This routine checks to see if the bdev size does not match the disk size
1333  * and adjusts it if it differs. When shrinking the bdev size, its all caches
1334  * are freed.
1335  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev,bool verbose)1336 static void check_disk_size_change(struct gendisk *disk,
1337 		struct block_device *bdev, bool verbose)
1338 {
1339 	loff_t disk_size, bdev_size;
1340 
1341 	spin_lock(&bdev->bd_size_lock);
1342 	disk_size = (loff_t)get_capacity(disk) << 9;
1343 	bdev_size = i_size_read(bdev->bd_inode);
1344 	if (disk_size != bdev_size) {
1345 		if (verbose) {
1346 			printk(KERN_INFO
1347 			       "%s: detected capacity change from %lld to %lld\n",
1348 			       disk->disk_name, bdev_size, disk_size);
1349 		}
1350 		i_size_write(bdev->bd_inode, disk_size);
1351 	}
1352 	spin_unlock(&bdev->bd_size_lock);
1353 
1354 	if (bdev_size > disk_size) {
1355 		if (__invalidate_device(bdev, false))
1356 			pr_warn("VFS: busy inodes on resized disk %s\n",
1357 				disk->disk_name);
1358 	}
1359 }
1360 
1361 /**
1362  * revalidate_disk_size - checks for disk size change and adjusts bdev size.
1363  * @disk: struct gendisk to check
1364  * @verbose: if %true log a message about a size change if there is any
1365  *
1366  * This routine checks to see if the bdev size does not match the disk size
1367  * and adjusts it if it differs. When shrinking the bdev size, its all caches
1368  * are freed.
1369  */
revalidate_disk_size(struct gendisk * disk,bool verbose)1370 void revalidate_disk_size(struct gendisk *disk, bool verbose)
1371 {
1372 	struct block_device *bdev;
1373 
1374 	/*
1375 	 * Hidden disks don't have associated bdev so there's no point in
1376 	 * revalidating them.
1377 	 */
1378 	if (disk->flags & GENHD_FL_HIDDEN)
1379 		return;
1380 
1381 	bdev = bdget_disk(disk, 0);
1382 	if (bdev) {
1383 		check_disk_size_change(disk, bdev, verbose);
1384 		bdput(bdev);
1385 	}
1386 }
1387 EXPORT_SYMBOL(revalidate_disk_size);
1388 
bd_set_nr_sectors(struct block_device * bdev,sector_t sectors)1389 void bd_set_nr_sectors(struct block_device *bdev, sector_t sectors)
1390 {
1391 	spin_lock(&bdev->bd_size_lock);
1392 	i_size_write(bdev->bd_inode, (loff_t)sectors << SECTOR_SHIFT);
1393 	spin_unlock(&bdev->bd_size_lock);
1394 }
1395 EXPORT_SYMBOL(bd_set_nr_sectors);
1396 
1397 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1398 
bdev_disk_changed(struct block_device * bdev,bool invalidate)1399 int bdev_disk_changed(struct block_device *bdev, bool invalidate)
1400 {
1401 	struct gendisk *disk = bdev->bd_disk;
1402 	int ret;
1403 
1404 	lockdep_assert_held(&bdev->bd_mutex);
1405 
1406 	if (!(disk->flags & GENHD_FL_UP))
1407 		return -ENXIO;
1408 
1409 rescan:
1410 	ret = blk_drop_partitions(bdev);
1411 	if (ret)
1412 		return ret;
1413 
1414 	clear_bit(GD_NEED_PART_SCAN, &disk->state);
1415 
1416 	/*
1417 	 * Historically we only set the capacity to zero for devices that
1418 	 * support partitions (independ of actually having partitions created).
1419 	 * Doing that is rather inconsistent, but changing it broke legacy
1420 	 * udisks polling for legacy ide-cdrom devices.  Use the crude check
1421 	 * below to get the sane behavior for most device while not breaking
1422 	 * userspace for this particular setup.
1423 	 */
1424 	if (invalidate) {
1425 		if (disk_part_scan_enabled(disk) ||
1426 		    !(disk->flags & GENHD_FL_REMOVABLE))
1427 			set_capacity(disk, 0);
1428 	} else {
1429 		if (disk->fops->revalidate_disk)
1430 			disk->fops->revalidate_disk(disk);
1431 	}
1432 
1433 	check_disk_size_change(disk, bdev, !invalidate);
1434 
1435 	if (get_capacity(disk)) {
1436 		ret = blk_add_partitions(disk, bdev);
1437 		if (ret == -EAGAIN)
1438 			goto rescan;
1439 	} else if (invalidate) {
1440 		/*
1441 		 * Tell userspace that the media / partition table may have
1442 		 * changed.
1443 		 */
1444 		kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
1445 	}
1446 
1447 	return ret;
1448 }
1449 /*
1450  * Only exported for for loop and dasd for historic reasons.  Don't use in new
1451  * code!
1452  */
1453 EXPORT_SYMBOL_GPL(bdev_disk_changed);
1454 
1455 /*
1456  * bd_mutex locking:
1457  *
1458  *  mutex_lock(part->bd_mutex)
1459  *    mutex_lock_nested(whole->bd_mutex, 1)
1460  */
1461 
__blkdev_get(struct block_device * bdev,fmode_t mode,void * holder,int for_part)1462 static int __blkdev_get(struct block_device *bdev, fmode_t mode, void *holder,
1463 		int for_part)
1464 {
1465 	struct block_device *whole = NULL, *claiming = NULL;
1466 	struct gendisk *disk;
1467 	int ret;
1468 	int partno;
1469 	bool first_open = false, unblock_events = true, need_restart;
1470 
1471  restart:
1472 	need_restart = false;
1473 	ret = -ENXIO;
1474 	disk = bdev_get_gendisk(bdev, &partno);
1475 	if (!disk)
1476 		goto out;
1477 
1478 	if (partno) {
1479 		whole = bdget_disk(disk, 0);
1480 		if (!whole) {
1481 			ret = -ENOMEM;
1482 			goto out_put_disk;
1483 		}
1484 	}
1485 
1486 	if (!for_part && (mode & FMODE_EXCL)) {
1487 		WARN_ON_ONCE(!holder);
1488 		if (whole)
1489 			claiming = whole;
1490 		else
1491 			claiming = bdev;
1492 		ret = bd_prepare_to_claim(bdev, claiming, holder);
1493 		if (ret)
1494 			goto out_put_whole;
1495 	}
1496 
1497 	disk_block_events(disk);
1498 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1499 	if (!bdev->bd_openers) {
1500 		first_open = true;
1501 		bdev->bd_disk = disk;
1502 		bdev->bd_contains = bdev;
1503 		bdev->bd_partno = partno;
1504 
1505 		if (!partno) {
1506 			ret = -ENXIO;
1507 			bdev->bd_part = disk_get_part(disk, partno);
1508 			if (!bdev->bd_part)
1509 				goto out_clear;
1510 
1511 			ret = 0;
1512 			if (disk->fops->open) {
1513 				ret = disk->fops->open(bdev, mode);
1514 				/*
1515 				 * If we lost a race with 'disk' being deleted,
1516 				 * try again.  See md.c
1517 				 */
1518 				if (ret == -ERESTARTSYS)
1519 					need_restart = true;
1520 			}
1521 
1522 			if (!ret) {
1523 				bd_set_nr_sectors(bdev, get_capacity(disk));
1524 				set_init_blocksize(bdev);
1525 			}
1526 
1527 			/*
1528 			 * If the device is invalidated, rescan partition
1529 			 * if open succeeded or failed with -ENOMEDIUM.
1530 			 * The latter is necessary to prevent ghost
1531 			 * partitions on a removed medium.
1532 			 */
1533 			if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1534 			    (!ret || ret == -ENOMEDIUM))
1535 				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1536 
1537 			if (ret)
1538 				goto out_clear;
1539 		} else {
1540 			BUG_ON(for_part);
1541 			ret = __blkdev_get(whole, mode, NULL, 1);
1542 			if (ret)
1543 				goto out_clear;
1544 			bdev->bd_contains = bdgrab(whole);
1545 			bdev->bd_part = disk_get_part(disk, partno);
1546 			if (!(disk->flags & GENHD_FL_UP) ||
1547 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1548 				ret = -ENXIO;
1549 				goto out_clear;
1550 			}
1551 			bd_set_nr_sectors(bdev, bdev->bd_part->nr_sects);
1552 			set_init_blocksize(bdev);
1553 		}
1554 
1555 		if (bdev->bd_bdi == &noop_backing_dev_info)
1556 			bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1557 	} else {
1558 		if (bdev->bd_contains == bdev) {
1559 			ret = 0;
1560 			if (bdev->bd_disk->fops->open)
1561 				ret = bdev->bd_disk->fops->open(bdev, mode);
1562 			/* the same as first opener case, read comment there */
1563 			if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1564 			    (!ret || ret == -ENOMEDIUM))
1565 				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1566 			if (ret)
1567 				goto out_unlock_bdev;
1568 		}
1569 	}
1570 	bdev->bd_openers++;
1571 	if (for_part)
1572 		bdev->bd_part_count++;
1573 	if (claiming)
1574 		bd_finish_claiming(bdev, claiming, holder);
1575 
1576 	/*
1577 	 * Block event polling for write claims if requested.  Any write holder
1578 	 * makes the write_holder state stick until all are released.  This is
1579 	 * good enough and tracking individual writeable reference is too
1580 	 * fragile given the way @mode is used in blkdev_get/put().
1581 	 */
1582 	if (claiming && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1583 	    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1584 		bdev->bd_write_holder = true;
1585 		unblock_events = false;
1586 	}
1587 	mutex_unlock(&bdev->bd_mutex);
1588 
1589 	if (unblock_events)
1590 		disk_unblock_events(disk);
1591 
1592 	/* only one opener holds refs to the module and disk */
1593 	if (!first_open)
1594 		put_disk_and_module(disk);
1595 	if (whole)
1596 		bdput(whole);
1597 	return 0;
1598 
1599  out_clear:
1600 	disk_put_part(bdev->bd_part);
1601 	bdev->bd_disk = NULL;
1602 	bdev->bd_part = NULL;
1603 	if (bdev != bdev->bd_contains)
1604 		__blkdev_put(bdev->bd_contains, mode, 1);
1605 	bdev->bd_contains = NULL;
1606  out_unlock_bdev:
1607 	if (claiming)
1608 		bd_abort_claiming(bdev, claiming, holder);
1609 	mutex_unlock(&bdev->bd_mutex);
1610 	disk_unblock_events(disk);
1611  out_put_whole:
1612  	if (whole)
1613 		bdput(whole);
1614  out_put_disk:
1615 	put_disk_and_module(disk);
1616 	if (need_restart)
1617 		goto restart;
1618  out:
1619 	return ret;
1620 }
1621 
1622 /**
1623  * blkdev_get - open a block device
1624  * @bdev: block_device to open
1625  * @mode: FMODE_* mask
1626  * @holder: exclusive holder identifier
1627  *
1628  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1629  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1630  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1631  *
1632  * On success, the reference count of @bdev is unchanged.  On failure,
1633  * @bdev is put.
1634  *
1635  * CONTEXT:
1636  * Might sleep.
1637  *
1638  * RETURNS:
1639  * 0 on success, -errno on failure.
1640  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1641 static int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1642 {
1643 	int ret, perm = 0;
1644 
1645 	if (mode & FMODE_READ)
1646 		perm |= MAY_READ;
1647 	if (mode & FMODE_WRITE)
1648 		perm |= MAY_WRITE;
1649 	ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1650 	if (ret)
1651 		goto bdput;
1652 
1653 	ret =__blkdev_get(bdev, mode, holder, 0);
1654 	if (ret)
1655 		goto bdput;
1656 	return 0;
1657 
1658 bdput:
1659 	bdput(bdev);
1660 	return ret;
1661 }
1662 
1663 /**
1664  * blkdev_get_by_path - open a block device by name
1665  * @path: path to the block device to open
1666  * @mode: FMODE_* mask
1667  * @holder: exclusive holder identifier
1668  *
1669  * Open the blockdevice described by the device file at @path.  @mode
1670  * and @holder are identical to blkdev_get().
1671  *
1672  * On success, the returned block_device has reference count of one.
1673  *
1674  * CONTEXT:
1675  * Might sleep.
1676  *
1677  * RETURNS:
1678  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1679  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1680 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1681 					void *holder)
1682 {
1683 	struct block_device *bdev;
1684 	int err;
1685 
1686 	bdev = lookup_bdev(path);
1687 	if (IS_ERR(bdev))
1688 		return bdev;
1689 
1690 	err = blkdev_get(bdev, mode, holder);
1691 	if (err)
1692 		return ERR_PTR(err);
1693 
1694 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1695 		blkdev_put(bdev, mode);
1696 		return ERR_PTR(-EACCES);
1697 	}
1698 
1699 	return bdev;
1700 }
1701 EXPORT_SYMBOL(blkdev_get_by_path);
1702 
1703 /**
1704  * blkdev_get_by_dev - open a block device by device number
1705  * @dev: device number of block device to open
1706  * @mode: FMODE_* mask
1707  * @holder: exclusive holder identifier
1708  *
1709  * Open the blockdevice described by device number @dev.  @mode and
1710  * @holder are identical to blkdev_get().
1711  *
1712  * Use it ONLY if you really do not have anything better - i.e. when
1713  * you are behind a truly sucky interface and all you are given is a
1714  * device number.  _Never_ to be used for internal purposes.  If you
1715  * ever need it - reconsider your API.
1716  *
1717  * On success, the returned block_device has reference count of one.
1718  *
1719  * CONTEXT:
1720  * Might sleep.
1721  *
1722  * RETURNS:
1723  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1724  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1725 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1726 {
1727 	struct block_device *bdev;
1728 	int err;
1729 
1730 	bdev = bdget(dev);
1731 	if (!bdev)
1732 		return ERR_PTR(-ENOMEM);
1733 
1734 	err = blkdev_get(bdev, mode, holder);
1735 	if (err)
1736 		return ERR_PTR(err);
1737 
1738 	return bdev;
1739 }
1740 EXPORT_SYMBOL(blkdev_get_by_dev);
1741 
blkdev_open(struct inode * inode,struct file * filp)1742 static int blkdev_open(struct inode * inode, struct file * filp)
1743 {
1744 	struct block_device *bdev;
1745 
1746 	/*
1747 	 * Preserve backwards compatibility and allow large file access
1748 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1749 	 * binary needs it. We might want to drop this workaround
1750 	 * during an unstable branch.
1751 	 */
1752 	filp->f_flags |= O_LARGEFILE;
1753 
1754 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1755 
1756 	if (filp->f_flags & O_NDELAY)
1757 		filp->f_mode |= FMODE_NDELAY;
1758 	if (filp->f_flags & O_EXCL)
1759 		filp->f_mode |= FMODE_EXCL;
1760 	if ((filp->f_flags & O_ACCMODE) == 3)
1761 		filp->f_mode |= FMODE_WRITE_IOCTL;
1762 
1763 	bdev = bd_acquire(inode);
1764 	if (bdev == NULL)
1765 		return -ENOMEM;
1766 
1767 	filp->f_mapping = bdev->bd_inode->i_mapping;
1768 	filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1769 
1770 	return blkdev_get(bdev, filp->f_mode, filp);
1771 }
1772 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1773 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1774 {
1775 	struct gendisk *disk = bdev->bd_disk;
1776 	struct block_device *victim = NULL;
1777 
1778 	/*
1779 	 * Sync early if it looks like we're the last one.  If someone else
1780 	 * opens the block device between now and the decrement of bd_openers
1781 	 * then we did a sync that we didn't need to, but that's not the end
1782 	 * of the world and we want to avoid long (could be several minute)
1783 	 * syncs while holding the mutex.
1784 	 */
1785 	if (bdev->bd_openers == 1)
1786 		sync_blockdev(bdev);
1787 
1788 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1789 	if (for_part)
1790 		bdev->bd_part_count--;
1791 
1792 	if (!--bdev->bd_openers) {
1793 		WARN_ON_ONCE(bdev->bd_holders);
1794 		sync_blockdev(bdev);
1795 		kill_bdev(bdev);
1796 
1797 		bdev_write_inode(bdev);
1798 	}
1799 	if (bdev->bd_contains == bdev) {
1800 		if (disk->fops->release)
1801 			disk->fops->release(disk, mode);
1802 	}
1803 	if (!bdev->bd_openers) {
1804 		disk_put_part(bdev->bd_part);
1805 		bdev->bd_part = NULL;
1806 		bdev->bd_disk = NULL;
1807 		if (bdev != bdev->bd_contains)
1808 			victim = bdev->bd_contains;
1809 		bdev->bd_contains = NULL;
1810 
1811 		put_disk_and_module(disk);
1812 	}
1813 	mutex_unlock(&bdev->bd_mutex);
1814 	bdput(bdev);
1815 	if (victim)
1816 		__blkdev_put(victim, mode, 1);
1817 }
1818 
blkdev_put(struct block_device * bdev,fmode_t mode)1819 void blkdev_put(struct block_device *bdev, fmode_t mode)
1820 {
1821 	mutex_lock(&bdev->bd_mutex);
1822 
1823 	if (mode & FMODE_EXCL) {
1824 		bool bdev_free;
1825 
1826 		/*
1827 		 * Release a claim on the device.  The holder fields
1828 		 * are protected with bdev_lock.  bd_mutex is to
1829 		 * synchronize disk_holder unlinking.
1830 		 */
1831 		spin_lock(&bdev_lock);
1832 
1833 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1834 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1835 
1836 		/* bd_contains might point to self, check in a separate step */
1837 		if ((bdev_free = !bdev->bd_holders))
1838 			bdev->bd_holder = NULL;
1839 		if (!bdev->bd_contains->bd_holders)
1840 			bdev->bd_contains->bd_holder = NULL;
1841 
1842 		spin_unlock(&bdev_lock);
1843 
1844 		/*
1845 		 * If this was the last claim, remove holder link and
1846 		 * unblock evpoll if it was a write holder.
1847 		 */
1848 		if (bdev_free && bdev->bd_write_holder) {
1849 			disk_unblock_events(bdev->bd_disk);
1850 			bdev->bd_write_holder = false;
1851 		}
1852 	}
1853 
1854 	/*
1855 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1856 	 * event.  This is to ensure detection of media removal commanded
1857 	 * from userland - e.g. eject(1).
1858 	 */
1859 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1860 
1861 	mutex_unlock(&bdev->bd_mutex);
1862 
1863 	__blkdev_put(bdev, mode, 0);
1864 }
1865 EXPORT_SYMBOL(blkdev_put);
1866 
blkdev_close(struct inode * inode,struct file * filp)1867 static int blkdev_close(struct inode * inode, struct file * filp)
1868 {
1869 	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1870 	blkdev_put(bdev, filp->f_mode);
1871 	return 0;
1872 }
1873 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1874 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1875 {
1876 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1877 	fmode_t mode = file->f_mode;
1878 
1879 	/*
1880 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1881 	 * to updated it before every ioctl.
1882 	 */
1883 	if (file->f_flags & O_NDELAY)
1884 		mode |= FMODE_NDELAY;
1885 	else
1886 		mode &= ~FMODE_NDELAY;
1887 
1888 	return blkdev_ioctl(bdev, mode, cmd, arg);
1889 }
1890 
1891 /*
1892  * Write data to the block device.  Only intended for the block device itself
1893  * and the raw driver which basically is a fake block device.
1894  *
1895  * Does not take i_mutex for the write and thus is not for general purpose
1896  * use.
1897  */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1898 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1899 {
1900 	struct file *file = iocb->ki_filp;
1901 	struct inode *bd_inode = bdev_file_inode(file);
1902 	loff_t size = i_size_read(bd_inode);
1903 	struct blk_plug plug;
1904 	size_t shorted = 0;
1905 	ssize_t ret;
1906 
1907 	if (bdev_read_only(I_BDEV(bd_inode)))
1908 		return -EPERM;
1909 
1910 	if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode->i_rdev))
1911 		return -ETXTBSY;
1912 
1913 	if (!iov_iter_count(from))
1914 		return 0;
1915 
1916 	if (iocb->ki_pos >= size)
1917 		return -ENOSPC;
1918 
1919 	if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1920 		return -EOPNOTSUPP;
1921 
1922 	size -= iocb->ki_pos;
1923 	if (iov_iter_count(from) > size) {
1924 		shorted = iov_iter_count(from) - size;
1925 		iov_iter_truncate(from, size);
1926 	}
1927 
1928 	blk_start_plug(&plug);
1929 	ret = __generic_file_write_iter(iocb, from);
1930 	if (ret > 0)
1931 		ret = generic_write_sync(iocb, ret);
1932 	iov_iter_reexpand(from, iov_iter_count(from) + shorted);
1933 	blk_finish_plug(&plug);
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1937 
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1938 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1939 {
1940 	struct file *file = iocb->ki_filp;
1941 	struct inode *bd_inode = bdev_file_inode(file);
1942 	loff_t size = i_size_read(bd_inode);
1943 	loff_t pos = iocb->ki_pos;
1944 	size_t shorted = 0;
1945 	ssize_t ret;
1946 
1947 	if (pos >= size)
1948 		return 0;
1949 
1950 	size -= pos;
1951 	if (iov_iter_count(to) > size) {
1952 		shorted = iov_iter_count(to) - size;
1953 		iov_iter_truncate(to, size);
1954 	}
1955 
1956 	ret = generic_file_read_iter(iocb, to);
1957 	iov_iter_reexpand(to, iov_iter_count(to) + shorted);
1958 	return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1961 
1962 /*
1963  * Try to release a page associated with block device when the system
1964  * is under memory pressure.
1965  */
blkdev_releasepage(struct page * page,gfp_t wait)1966 static int blkdev_releasepage(struct page *page, gfp_t wait)
1967 {
1968 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1969 
1970 	if (super && super->s_op->bdev_try_to_free_page)
1971 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1972 
1973 	return try_to_free_buffers(page);
1974 }
1975 
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)1976 static int blkdev_writepages(struct address_space *mapping,
1977 			     struct writeback_control *wbc)
1978 {
1979 	return generic_writepages(mapping, wbc);
1980 }
1981 
1982 static const struct address_space_operations def_blk_aops = {
1983 	.readpage	= blkdev_readpage,
1984 	.readahead	= blkdev_readahead,
1985 	.writepage	= blkdev_writepage,
1986 	.write_begin	= blkdev_write_begin,
1987 	.write_end	= blkdev_write_end,
1988 	.writepages	= blkdev_writepages,
1989 	.releasepage	= blkdev_releasepage,
1990 	.direct_IO	= blkdev_direct_IO,
1991 	.migratepage	= buffer_migrate_page_norefs,
1992 	.is_dirty_writeback = buffer_check_dirty_writeback,
1993 };
1994 
1995 #define	BLKDEV_FALLOC_FL_SUPPORTED					\
1996 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
1997 		 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1998 
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)1999 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2000 			     loff_t len)
2001 {
2002 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2003 	loff_t end = start + len - 1;
2004 	loff_t isize;
2005 	int error;
2006 
2007 	/* Fail if we don't recognize the flags. */
2008 	if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2009 		return -EOPNOTSUPP;
2010 
2011 	/* Don't go off the end of the device. */
2012 	isize = i_size_read(bdev->bd_inode);
2013 	if (start >= isize)
2014 		return -EINVAL;
2015 	if (end >= isize) {
2016 		if (mode & FALLOC_FL_KEEP_SIZE) {
2017 			len = isize - start;
2018 			end = start + len - 1;
2019 		} else
2020 			return -EINVAL;
2021 	}
2022 
2023 	/*
2024 	 * Don't allow IO that isn't aligned to logical block size.
2025 	 */
2026 	if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2027 		return -EINVAL;
2028 
2029 	/*
2030 	 * Invalidate the page cache, including dirty pages, for valid
2031 	 * de-allocate mode calls to fallocate().
2032 	 */
2033 	switch (mode) {
2034 	case FALLOC_FL_ZERO_RANGE:
2035 	case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2036 		error = truncate_bdev_range(bdev, file->f_mode, start, end);
2037 		if (error)
2038 			break;
2039 
2040 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2041 					    GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2042 		break;
2043 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2044 		error = truncate_bdev_range(bdev, file->f_mode, start, end);
2045 		if (error)
2046 			break;
2047 
2048 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2049 					     GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2050 		break;
2051 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2052 		error = truncate_bdev_range(bdev, file->f_mode, start, end);
2053 		if (error)
2054 			break;
2055 
2056 		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2057 					     GFP_KERNEL, 0);
2058 		break;
2059 	default:
2060 		return -EOPNOTSUPP;
2061 	}
2062 	if (error)
2063 		return error;
2064 
2065 	/*
2066 	 * Invalidate again; if someone wandered in and dirtied a page,
2067 	 * the caller will be given -EBUSY.  The third argument is
2068 	 * inclusive, so the rounding here is safe.
2069 	 */
2070 	return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping,
2071 					     start >> PAGE_SHIFT,
2072 					     end >> PAGE_SHIFT);
2073 }
2074 
2075 const struct file_operations def_blk_fops = {
2076 	.open		= blkdev_open,
2077 	.release	= blkdev_close,
2078 	.llseek		= block_llseek,
2079 	.read_iter	= blkdev_read_iter,
2080 	.write_iter	= blkdev_write_iter,
2081 	.iopoll		= blkdev_iopoll,
2082 	.mmap		= generic_file_mmap,
2083 	.fsync		= blkdev_fsync,
2084 	.unlocked_ioctl	= block_ioctl,
2085 #ifdef CONFIG_COMPAT
2086 	.compat_ioctl	= compat_blkdev_ioctl,
2087 #endif
2088 	.splice_read	= generic_file_splice_read,
2089 	.splice_write	= iter_file_splice_write,
2090 	.fallocate	= blkdev_fallocate,
2091 };
2092 
2093 /**
2094  * lookup_bdev  - lookup a struct block_device by name
2095  * @pathname:	special file representing the block device
2096  *
2097  * Get a reference to the blockdevice at @pathname in the current
2098  * namespace if possible and return it.  Return ERR_PTR(error)
2099  * otherwise.
2100  */
lookup_bdev(const char * pathname)2101 struct block_device *lookup_bdev(const char *pathname)
2102 {
2103 	struct block_device *bdev;
2104 	struct inode *inode;
2105 	struct path path;
2106 	int error;
2107 
2108 	if (!pathname || !*pathname)
2109 		return ERR_PTR(-EINVAL);
2110 
2111 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2112 	if (error)
2113 		return ERR_PTR(error);
2114 
2115 	inode = d_backing_inode(path.dentry);
2116 	error = -ENOTBLK;
2117 	if (!S_ISBLK(inode->i_mode))
2118 		goto fail;
2119 	error = -EACCES;
2120 	if (!may_open_dev(&path))
2121 		goto fail;
2122 	error = -ENOMEM;
2123 	bdev = bd_acquire(inode);
2124 	if (!bdev)
2125 		goto fail;
2126 out:
2127 	path_put(&path);
2128 	return bdev;
2129 fail:
2130 	bdev = ERR_PTR(error);
2131 	goto out;
2132 }
2133 EXPORT_SYMBOL(lookup_bdev);
2134 
__invalidate_device(struct block_device * bdev,bool kill_dirty)2135 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2136 {
2137 	struct super_block *sb = get_super(bdev);
2138 	int res = 0;
2139 
2140 	if (sb) {
2141 		/*
2142 		 * no need to lock the super, get_super holds the
2143 		 * read mutex so the filesystem cannot go away
2144 		 * under us (->put_super runs with the write lock
2145 		 * hold).
2146 		 */
2147 		shrink_dcache_sb(sb);
2148 		res = invalidate_inodes(sb, kill_dirty);
2149 		drop_super(sb);
2150 	}
2151 	invalidate_bdev(bdev);
2152 	return res;
2153 }
2154 EXPORT_SYMBOL(__invalidate_device);
2155 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)2156 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2157 {
2158 	struct inode *inode, *old_inode = NULL;
2159 
2160 	spin_lock(&blockdev_superblock->s_inode_list_lock);
2161 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2162 		struct address_space *mapping = inode->i_mapping;
2163 		struct block_device *bdev;
2164 
2165 		spin_lock(&inode->i_lock);
2166 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2167 		    mapping->nrpages == 0) {
2168 			spin_unlock(&inode->i_lock);
2169 			continue;
2170 		}
2171 		__iget(inode);
2172 		spin_unlock(&inode->i_lock);
2173 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
2174 		/*
2175 		 * We hold a reference to 'inode' so it couldn't have been
2176 		 * removed from s_inodes list while we dropped the
2177 		 * s_inode_list_lock  We cannot iput the inode now as we can
2178 		 * be holding the last reference and we cannot iput it under
2179 		 * s_inode_list_lock. So we keep the reference and iput it
2180 		 * later.
2181 		 */
2182 		iput(old_inode);
2183 		old_inode = inode;
2184 		bdev = I_BDEV(inode);
2185 
2186 		mutex_lock(&bdev->bd_mutex);
2187 		if (bdev->bd_openers)
2188 			func(bdev, arg);
2189 		mutex_unlock(&bdev->bd_mutex);
2190 
2191 		spin_lock(&blockdev_superblock->s_inode_list_lock);
2192 	}
2193 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
2194 	iput(old_inode);
2195 }
2196