1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/block_dev.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7 */
8
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/pseudo_fs.h>
29 #include <linux/uio.h>
30 #include <linux/namei.h>
31 #include <linux/log2.h>
32 #include <linux/cleancache.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include <linux/suspend.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
BDEV_I(struct inode * inode)46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
I_BDEV(struct inode * inode)51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
bdev_write_inode(struct block_device * bdev)57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)78 static void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88
89 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)90 void invalidate_bdev(struct block_device *bdev)
91 {
92 struct address_space *mapping = bdev->bd_inode->i_mapping;
93
94 if (mapping->nrpages) {
95 invalidate_bh_lrus();
96 lru_add_drain_all(); /* make sure all lru add caches are flushed */
97 invalidate_mapping_pages(mapping, 0, -1);
98 }
99 /* 99% of the time, we don't need to flush the cleancache on the bdev.
100 * But, for the strange corners, lets be cautious
101 */
102 cleancache_invalidate_inode(mapping);
103 }
104 EXPORT_SYMBOL(invalidate_bdev);
105
106 /*
107 * Drop all buffers & page cache for given bdev range. This function bails
108 * with error if bdev has other exclusive owner (such as filesystem).
109 */
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)110 int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
111 loff_t lstart, loff_t lend)
112 {
113 struct block_device *claimed_bdev = NULL;
114 int err;
115
116 /*
117 * If we don't hold exclusive handle for the device, upgrade to it
118 * while we discard the buffer cache to avoid discarding buffers
119 * under live filesystem.
120 */
121 if (!(mode & FMODE_EXCL)) {
122 claimed_bdev = bdev->bd_contains;
123 err = bd_prepare_to_claim(bdev, claimed_bdev,
124 truncate_bdev_range);
125 if (err)
126 goto invalidate;
127 }
128 truncate_inode_pages_range(bdev->bd_inode->i_mapping, lstart, lend);
129 if (claimed_bdev)
130 bd_abort_claiming(bdev, claimed_bdev, truncate_bdev_range);
131 return 0;
132
133 invalidate:
134 /*
135 * Someone else has handle exclusively open. Try invalidating instead.
136 * The 'end' argument is inclusive so the rounding is safe.
137 */
138 return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping,
139 lstart >> PAGE_SHIFT,
140 lend >> PAGE_SHIFT);
141 }
142 EXPORT_SYMBOL(truncate_bdev_range);
143
set_init_blocksize(struct block_device * bdev)144 static void set_init_blocksize(struct block_device *bdev)
145 {
146 unsigned int bsize = bdev_logical_block_size(bdev);
147 loff_t size = i_size_read(bdev->bd_inode);
148
149 while (bsize < PAGE_SIZE) {
150 if (size & bsize)
151 break;
152 bsize <<= 1;
153 }
154 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
155 }
156
set_blocksize(struct block_device * bdev,int size)157 int set_blocksize(struct block_device *bdev, int size)
158 {
159 /* Size must be a power of two, and between 512 and PAGE_SIZE */
160 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
161 return -EINVAL;
162
163 /* Size cannot be smaller than the size supported by the device */
164 if (size < bdev_logical_block_size(bdev))
165 return -EINVAL;
166
167 /* Don't change the size if it is same as current */
168 if (bdev->bd_inode->i_blkbits != blksize_bits(size)) {
169 sync_blockdev(bdev);
170 bdev->bd_inode->i_blkbits = blksize_bits(size);
171 kill_bdev(bdev);
172 }
173 return 0;
174 }
175
176 EXPORT_SYMBOL(set_blocksize);
177
sb_set_blocksize(struct super_block * sb,int size)178 int sb_set_blocksize(struct super_block *sb, int size)
179 {
180 if (set_blocksize(sb->s_bdev, size))
181 return 0;
182 /* If we get here, we know size is power of two
183 * and it's value is between 512 and PAGE_SIZE */
184 sb->s_blocksize = size;
185 sb->s_blocksize_bits = blksize_bits(size);
186 return sb->s_blocksize;
187 }
188
189 EXPORT_SYMBOL_NS(sb_set_blocksize, ANDROID_GKI_VFS_EXPORT_ONLY);
190
sb_min_blocksize(struct super_block * sb,int size)191 int sb_min_blocksize(struct super_block *sb, int size)
192 {
193 int minsize = bdev_logical_block_size(sb->s_bdev);
194 if (size < minsize)
195 size = minsize;
196 return sb_set_blocksize(sb, size);
197 }
198
199 EXPORT_SYMBOL_NS(sb_min_blocksize, ANDROID_GKI_VFS_EXPORT_ONLY);
200
201 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)202 blkdev_get_block(struct inode *inode, sector_t iblock,
203 struct buffer_head *bh, int create)
204 {
205 bh->b_bdev = I_BDEV(inode);
206 bh->b_blocknr = iblock;
207 set_buffer_mapped(bh);
208 return 0;
209 }
210
bdev_file_inode(struct file * file)211 static struct inode *bdev_file_inode(struct file *file)
212 {
213 return file->f_mapping->host;
214 }
215
dio_bio_write_op(struct kiocb * iocb)216 static unsigned int dio_bio_write_op(struct kiocb *iocb)
217 {
218 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
219
220 /* avoid the need for a I/O completion work item */
221 if (iocb->ki_flags & IOCB_DSYNC)
222 op |= REQ_FUA;
223 return op;
224 }
225
226 #define DIO_INLINE_BIO_VECS 4
227
blkdev_bio_end_io_simple(struct bio * bio)228 static void blkdev_bio_end_io_simple(struct bio *bio)
229 {
230 struct task_struct *waiter = bio->bi_private;
231
232 WRITE_ONCE(bio->bi_private, NULL);
233 blk_wake_io_task(waiter);
234 }
235
236 static ssize_t
__blkdev_direct_IO_simple(struct kiocb * iocb,struct iov_iter * iter,unsigned int nr_pages)237 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
238 unsigned int nr_pages)
239 {
240 struct file *file = iocb->ki_filp;
241 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
242 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
243 loff_t pos = iocb->ki_pos;
244 bool should_dirty = false;
245 struct bio bio;
246 ssize_t ret;
247 blk_qc_t qc;
248
249 if ((pos | iov_iter_alignment(iter)) &
250 (bdev_logical_block_size(bdev) - 1))
251 return -EINVAL;
252
253 if (nr_pages <= DIO_INLINE_BIO_VECS)
254 vecs = inline_vecs;
255 else {
256 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
257 GFP_KERNEL);
258 if (!vecs)
259 return -ENOMEM;
260 }
261
262 bio_init(&bio, vecs, nr_pages);
263 bio_set_dev(&bio, bdev);
264 bio.bi_iter.bi_sector = pos >> 9;
265 bio.bi_write_hint = iocb->ki_hint;
266 bio.bi_private = current;
267 bio.bi_end_io = blkdev_bio_end_io_simple;
268 bio.bi_ioprio = iocb->ki_ioprio;
269
270 ret = bio_iov_iter_get_pages(&bio, iter);
271 if (unlikely(ret))
272 goto out;
273 ret = bio.bi_iter.bi_size;
274
275 if (iov_iter_rw(iter) == READ) {
276 bio.bi_opf = REQ_OP_READ;
277 if (iter_is_iovec(iter))
278 should_dirty = true;
279 } else {
280 bio.bi_opf = dio_bio_write_op(iocb);
281 task_io_account_write(ret);
282 }
283 if (iocb->ki_flags & IOCB_NOWAIT)
284 bio.bi_opf |= REQ_NOWAIT;
285 if (iocb->ki_flags & IOCB_HIPRI)
286 bio_set_polled(&bio, iocb);
287
288 qc = submit_bio(&bio);
289 for (;;) {
290 set_current_state(TASK_UNINTERRUPTIBLE);
291 if (!READ_ONCE(bio.bi_private))
292 break;
293 if (!(iocb->ki_flags & IOCB_HIPRI) ||
294 !blk_poll(bdev_get_queue(bdev), qc, true))
295 blk_io_schedule();
296 }
297 __set_current_state(TASK_RUNNING);
298
299 bio_release_pages(&bio, should_dirty);
300 if (unlikely(bio.bi_status))
301 ret = blk_status_to_errno(bio.bi_status);
302
303 out:
304 if (vecs != inline_vecs)
305 kfree(vecs);
306
307 bio_uninit(&bio);
308
309 return ret;
310 }
311
312 struct blkdev_dio {
313 union {
314 struct kiocb *iocb;
315 struct task_struct *waiter;
316 };
317 size_t size;
318 atomic_t ref;
319 bool multi_bio : 1;
320 bool should_dirty : 1;
321 bool is_sync : 1;
322 struct bio bio;
323 };
324
325 static struct bio_set blkdev_dio_pool;
326
blkdev_iopoll(struct kiocb * kiocb,bool wait)327 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
328 {
329 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
330 struct request_queue *q = bdev_get_queue(bdev);
331
332 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
333 }
334
blkdev_bio_end_io(struct bio * bio)335 static void blkdev_bio_end_io(struct bio *bio)
336 {
337 struct blkdev_dio *dio = bio->bi_private;
338 bool should_dirty = dio->should_dirty;
339
340 if (bio->bi_status && !dio->bio.bi_status)
341 dio->bio.bi_status = bio->bi_status;
342
343 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
344 if (!dio->is_sync) {
345 struct kiocb *iocb = dio->iocb;
346 ssize_t ret;
347
348 if (likely(!dio->bio.bi_status)) {
349 ret = dio->size;
350 iocb->ki_pos += ret;
351 } else {
352 ret = blk_status_to_errno(dio->bio.bi_status);
353 }
354
355 dio->iocb->ki_complete(iocb, ret, 0);
356 if (dio->multi_bio)
357 bio_put(&dio->bio);
358 } else {
359 struct task_struct *waiter = dio->waiter;
360
361 WRITE_ONCE(dio->waiter, NULL);
362 blk_wake_io_task(waiter);
363 }
364 }
365
366 if (should_dirty) {
367 bio_check_pages_dirty(bio);
368 } else {
369 bio_release_pages(bio, false);
370 bio_put(bio);
371 }
372 }
373
__blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,unsigned int nr_pages)374 static ssize_t __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
375 unsigned int nr_pages)
376 {
377 struct file *file = iocb->ki_filp;
378 struct inode *inode = bdev_file_inode(file);
379 struct block_device *bdev = I_BDEV(inode);
380 struct blk_plug plug;
381 struct blkdev_dio *dio;
382 struct bio *bio;
383 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
384 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
385 loff_t pos = iocb->ki_pos;
386 blk_qc_t qc = BLK_QC_T_NONE;
387 int ret = 0;
388
389 if ((pos | iov_iter_alignment(iter)) &
390 (bdev_logical_block_size(bdev) - 1))
391 return -EINVAL;
392
393 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
394
395 dio = container_of(bio, struct blkdev_dio, bio);
396 dio->is_sync = is_sync = is_sync_kiocb(iocb);
397 if (dio->is_sync) {
398 dio->waiter = current;
399 bio_get(bio);
400 } else {
401 dio->iocb = iocb;
402 }
403
404 dio->size = 0;
405 dio->multi_bio = false;
406 dio->should_dirty = is_read && iter_is_iovec(iter);
407
408 /*
409 * Don't plug for HIPRI/polled IO, as those should go straight
410 * to issue
411 */
412 if (!is_poll)
413 blk_start_plug(&plug);
414
415 for (;;) {
416 bio_set_dev(bio, bdev);
417 bio->bi_iter.bi_sector = pos >> 9;
418 bio->bi_write_hint = iocb->ki_hint;
419 bio->bi_private = dio;
420 bio->bi_end_io = blkdev_bio_end_io;
421 bio->bi_ioprio = iocb->ki_ioprio;
422
423 ret = bio_iov_iter_get_pages(bio, iter);
424 if (unlikely(ret)) {
425 bio->bi_status = BLK_STS_IOERR;
426 bio_endio(bio);
427 break;
428 }
429
430 if (is_read) {
431 bio->bi_opf = REQ_OP_READ;
432 if (dio->should_dirty)
433 bio_set_pages_dirty(bio);
434 } else {
435 bio->bi_opf = dio_bio_write_op(iocb);
436 task_io_account_write(bio->bi_iter.bi_size);
437 }
438 if (iocb->ki_flags & IOCB_NOWAIT)
439 bio->bi_opf |= REQ_NOWAIT;
440
441 dio->size += bio->bi_iter.bi_size;
442 pos += bio->bi_iter.bi_size;
443
444 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
445 if (!nr_pages) {
446 bool polled = false;
447
448 if (iocb->ki_flags & IOCB_HIPRI) {
449 bio_set_polled(bio, iocb);
450 polled = true;
451 }
452
453 qc = submit_bio(bio);
454
455 if (polled)
456 WRITE_ONCE(iocb->ki_cookie, qc);
457 break;
458 }
459
460 if (!dio->multi_bio) {
461 /*
462 * AIO needs an extra reference to ensure the dio
463 * structure which is embedded into the first bio
464 * stays around.
465 */
466 if (!is_sync)
467 bio_get(bio);
468 dio->multi_bio = true;
469 atomic_set(&dio->ref, 2);
470 } else {
471 atomic_inc(&dio->ref);
472 }
473
474 submit_bio(bio);
475 bio = bio_alloc(GFP_KERNEL, nr_pages);
476 }
477
478 if (!is_poll)
479 blk_finish_plug(&plug);
480
481 if (!is_sync)
482 return -EIOCBQUEUED;
483
484 for (;;) {
485 set_current_state(TASK_UNINTERRUPTIBLE);
486 if (!READ_ONCE(dio->waiter))
487 break;
488
489 if (!(iocb->ki_flags & IOCB_HIPRI) ||
490 !blk_poll(bdev_get_queue(bdev), qc, true))
491 blk_io_schedule();
492 }
493 __set_current_state(TASK_RUNNING);
494
495 if (!ret)
496 ret = blk_status_to_errno(dio->bio.bi_status);
497 if (likely(!ret))
498 ret = dio->size;
499
500 bio_put(&dio->bio);
501 return ret;
502 }
503
504 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)505 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
506 {
507 unsigned int nr_pages;
508
509 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
510 if (!nr_pages)
511 return 0;
512 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
513 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
514
515 return __blkdev_direct_IO(iocb, iter, bio_max_segs(nr_pages));
516 }
517
blkdev_init(void)518 static __init int blkdev_init(void)
519 {
520 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
521 }
522 module_init(blkdev_init);
523
__sync_blockdev(struct block_device * bdev,int wait)524 int __sync_blockdev(struct block_device *bdev, int wait)
525 {
526 if (!bdev)
527 return 0;
528 if (!wait)
529 return filemap_flush(bdev->bd_inode->i_mapping);
530 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
531 }
532
533 /*
534 * Write out and wait upon all the dirty data associated with a block
535 * device via its mapping. Does not take the superblock lock.
536 */
sync_blockdev(struct block_device * bdev)537 int sync_blockdev(struct block_device *bdev)
538 {
539 return __sync_blockdev(bdev, 1);
540 }
541 EXPORT_SYMBOL(sync_blockdev);
542
543 /*
544 * Write out and wait upon all dirty data associated with this
545 * device. Filesystem data as well as the underlying block
546 * device. Takes the superblock lock.
547 */
fsync_bdev(struct block_device * bdev)548 int fsync_bdev(struct block_device *bdev)
549 {
550 struct super_block *sb = get_super(bdev);
551 if (sb) {
552 int res = sync_filesystem(sb);
553 drop_super(sb);
554 return res;
555 }
556 return sync_blockdev(bdev);
557 }
558 EXPORT_SYMBOL(fsync_bdev);
559
560 /**
561 * freeze_bdev -- lock a filesystem and force it into a consistent state
562 * @bdev: blockdevice to lock
563 *
564 * If a superblock is found on this device, we take the s_umount semaphore
565 * on it to make sure nobody unmounts until the snapshot creation is done.
566 * The reference counter (bd_fsfreeze_count) guarantees that only the last
567 * unfreeze process can unfreeze the frozen filesystem actually when multiple
568 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
569 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
570 * actually.
571 */
freeze_bdev(struct block_device * bdev)572 int freeze_bdev(struct block_device *bdev)
573 {
574 struct super_block *sb;
575 int error = 0;
576
577 mutex_lock(&bdev->bd_fsfreeze_mutex);
578 if (++bdev->bd_fsfreeze_count > 1)
579 goto done;
580
581 sb = get_active_super(bdev);
582 if (!sb)
583 goto sync;
584 if (sb->s_op->freeze_super)
585 error = sb->s_op->freeze_super(sb);
586 else
587 error = freeze_super(sb);
588 deactivate_super(sb);
589
590 if (error) {
591 bdev->bd_fsfreeze_count--;
592 goto done;
593 }
594 bdev->bd_fsfreeze_sb = sb;
595
596 sync:
597 sync_blockdev(bdev);
598 done:
599 mutex_unlock(&bdev->bd_fsfreeze_mutex);
600 return error;
601 }
602 EXPORT_SYMBOL(freeze_bdev);
603
604 /**
605 * thaw_bdev -- unlock filesystem
606 * @bdev: blockdevice to unlock
607 *
608 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
609 */
thaw_bdev(struct block_device * bdev)610 int thaw_bdev(struct block_device *bdev)
611 {
612 struct super_block *sb;
613 int error = -EINVAL;
614
615 mutex_lock(&bdev->bd_fsfreeze_mutex);
616 if (!bdev->bd_fsfreeze_count)
617 goto out;
618
619 error = 0;
620 if (--bdev->bd_fsfreeze_count > 0)
621 goto out;
622
623 sb = bdev->bd_fsfreeze_sb;
624 if (!sb)
625 goto out;
626
627 if (sb->s_op->thaw_super)
628 error = sb->s_op->thaw_super(sb);
629 else
630 error = thaw_super(sb);
631 if (error)
632 bdev->bd_fsfreeze_count++;
633 else
634 bdev->bd_fsfreeze_sb = NULL;
635 out:
636 mutex_unlock(&bdev->bd_fsfreeze_mutex);
637 return error;
638 }
639 EXPORT_SYMBOL(thaw_bdev);
640
blkdev_writepage(struct page * page,struct writeback_control * wbc)641 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
642 {
643 return block_write_full_page(page, blkdev_get_block, wbc);
644 }
645
blkdev_readpage(struct file * file,struct page * page)646 static int blkdev_readpage(struct file * file, struct page * page)
647 {
648 return block_read_full_page(page, blkdev_get_block);
649 }
650
blkdev_readahead(struct readahead_control * rac)651 static void blkdev_readahead(struct readahead_control *rac)
652 {
653 mpage_readahead(rac, blkdev_get_block);
654 }
655
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)656 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
657 loff_t pos, unsigned len, unsigned flags,
658 struct page **pagep, void **fsdata)
659 {
660 return block_write_begin(mapping, pos, len, flags, pagep,
661 blkdev_get_block);
662 }
663
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)664 static int blkdev_write_end(struct file *file, struct address_space *mapping,
665 loff_t pos, unsigned len, unsigned copied,
666 struct page *page, void *fsdata)
667 {
668 int ret;
669 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
670
671 unlock_page(page);
672 put_page(page);
673
674 return ret;
675 }
676
677 /*
678 * private llseek:
679 * for a block special file file_inode(file)->i_size is zero
680 * so we compute the size by hand (just as in block_read/write above)
681 */
block_llseek(struct file * file,loff_t offset,int whence)682 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
683 {
684 struct inode *bd_inode = bdev_file_inode(file);
685 loff_t retval;
686
687 inode_lock(bd_inode);
688 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
689 inode_unlock(bd_inode);
690 return retval;
691 }
692
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)693 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
694 {
695 struct inode *bd_inode = bdev_file_inode(filp);
696 struct block_device *bdev = I_BDEV(bd_inode);
697 int error;
698
699 error = file_write_and_wait_range(filp, start, end);
700 if (error)
701 return error;
702
703 /*
704 * There is no need to serialise calls to blkdev_issue_flush with
705 * i_mutex and doing so causes performance issues with concurrent
706 * O_SYNC writers to a block device.
707 */
708 error = blkdev_issue_flush(bdev, GFP_KERNEL);
709 if (error == -EOPNOTSUPP)
710 error = 0;
711
712 return error;
713 }
714 EXPORT_SYMBOL(blkdev_fsync);
715
716 /**
717 * bdev_read_page() - Start reading a page from a block device
718 * @bdev: The device to read the page from
719 * @sector: The offset on the device to read the page to (need not be aligned)
720 * @page: The page to read
721 *
722 * On entry, the page should be locked. It will be unlocked when the page
723 * has been read. If the block driver implements rw_page synchronously,
724 * that will be true on exit from this function, but it need not be.
725 *
726 * Errors returned by this function are usually "soft", eg out of memory, or
727 * queue full; callers should try a different route to read this page rather
728 * than propagate an error back up the stack.
729 *
730 * Return: negative errno if an error occurs, 0 if submission was successful.
731 */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)732 int bdev_read_page(struct block_device *bdev, sector_t sector,
733 struct page *page)
734 {
735 const struct block_device_operations *ops = bdev->bd_disk->fops;
736 int result = -EOPNOTSUPP;
737
738 if (!ops->rw_page || bdev_get_integrity(bdev))
739 return result;
740
741 result = blk_queue_enter(bdev->bd_disk->queue, 0);
742 if (result)
743 return result;
744 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
745 REQ_OP_READ);
746 blk_queue_exit(bdev->bd_disk->queue);
747 return result;
748 }
749
750 /**
751 * bdev_write_page() - Start writing a page to a block device
752 * @bdev: The device to write the page to
753 * @sector: The offset on the device to write the page to (need not be aligned)
754 * @page: The page to write
755 * @wbc: The writeback_control for the write
756 *
757 * On entry, the page should be locked and not currently under writeback.
758 * On exit, if the write started successfully, the page will be unlocked and
759 * under writeback. If the write failed already (eg the driver failed to
760 * queue the page to the device), the page will still be locked. If the
761 * caller is a ->writepage implementation, it will need to unlock the page.
762 *
763 * Errors returned by this function are usually "soft", eg out of memory, or
764 * queue full; callers should try a different route to write this page rather
765 * than propagate an error back up the stack.
766 *
767 * Return: negative errno if an error occurs, 0 if submission was successful.
768 */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)769 int bdev_write_page(struct block_device *bdev, sector_t sector,
770 struct page *page, struct writeback_control *wbc)
771 {
772 int result;
773 const struct block_device_operations *ops = bdev->bd_disk->fops;
774
775 if (!ops->rw_page || bdev_get_integrity(bdev))
776 return -EOPNOTSUPP;
777 result = blk_queue_enter(bdev->bd_disk->queue, 0);
778 if (result)
779 return result;
780
781 set_page_writeback(page);
782 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
783 REQ_OP_WRITE);
784 if (result) {
785 end_page_writeback(page);
786 } else {
787 clean_page_buffers(page);
788 unlock_page(page);
789 }
790 blk_queue_exit(bdev->bd_disk->queue);
791 return result;
792 }
793
794 /*
795 * pseudo-fs
796 */
797
798 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
799 static struct kmem_cache * bdev_cachep __read_mostly;
800
bdev_alloc_inode(struct super_block * sb)801 static struct inode *bdev_alloc_inode(struct super_block *sb)
802 {
803 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
804 if (!ei)
805 return NULL;
806 return &ei->vfs_inode;
807 }
808
bdev_free_inode(struct inode * inode)809 static void bdev_free_inode(struct inode *inode)
810 {
811 kmem_cache_free(bdev_cachep, BDEV_I(inode));
812 }
813
init_once(void * foo)814 static void init_once(void *foo)
815 {
816 struct bdev_inode *ei = (struct bdev_inode *) foo;
817 struct block_device *bdev = &ei->bdev;
818
819 memset(bdev, 0, sizeof(*bdev));
820 mutex_init(&bdev->bd_mutex);
821 #ifdef CONFIG_SYSFS
822 INIT_LIST_HEAD(&bdev->bd_holder_disks);
823 #endif
824 bdev->bd_bdi = &noop_backing_dev_info;
825 inode_init_once(&ei->vfs_inode);
826 /* Initialize mutex for freeze. */
827 mutex_init(&bdev->bd_fsfreeze_mutex);
828 }
829
bdev_evict_inode(struct inode * inode)830 static void bdev_evict_inode(struct inode *inode)
831 {
832 struct block_device *bdev = &BDEV_I(inode)->bdev;
833 truncate_inode_pages_final(&inode->i_data);
834 invalidate_inode_buffers(inode); /* is it needed here? */
835 clear_inode(inode);
836 /* Detach inode from wb early as bdi_put() may free bdi->wb */
837 inode_detach_wb(inode);
838 if (bdev->bd_bdi != &noop_backing_dev_info) {
839 bdi_put(bdev->bd_bdi);
840 bdev->bd_bdi = &noop_backing_dev_info;
841 }
842 }
843
844 static const struct super_operations bdev_sops = {
845 .statfs = simple_statfs,
846 .alloc_inode = bdev_alloc_inode,
847 .free_inode = bdev_free_inode,
848 .drop_inode = generic_delete_inode,
849 .evict_inode = bdev_evict_inode,
850 };
851
bd_init_fs_context(struct fs_context * fc)852 static int bd_init_fs_context(struct fs_context *fc)
853 {
854 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
855 if (!ctx)
856 return -ENOMEM;
857 fc->s_iflags |= SB_I_CGROUPWB;
858 ctx->ops = &bdev_sops;
859 return 0;
860 }
861
862 static struct file_system_type bd_type = {
863 .name = "bdev",
864 .init_fs_context = bd_init_fs_context,
865 .kill_sb = kill_anon_super,
866 };
867
868 struct super_block *blockdev_superblock __read_mostly;
869 EXPORT_SYMBOL_GPL(blockdev_superblock);
870
bdev_cache_init(void)871 void __init bdev_cache_init(void)
872 {
873 int err;
874 static struct vfsmount *bd_mnt;
875
876 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
877 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
878 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
879 init_once);
880 err = register_filesystem(&bd_type);
881 if (err)
882 panic("Cannot register bdev pseudo-fs");
883 bd_mnt = kern_mount(&bd_type);
884 if (IS_ERR(bd_mnt))
885 panic("Cannot create bdev pseudo-fs");
886 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
887 }
888
889 /*
890 * Most likely _very_ bad one - but then it's hardly critical for small
891 * /dev and can be fixed when somebody will need really large one.
892 * Keep in mind that it will be fed through icache hash function too.
893 */
hash(dev_t dev)894 static inline unsigned long hash(dev_t dev)
895 {
896 return MAJOR(dev)+MINOR(dev);
897 }
898
bdev_test(struct inode * inode,void * data)899 static int bdev_test(struct inode *inode, void *data)
900 {
901 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
902 }
903
bdev_set(struct inode * inode,void * data)904 static int bdev_set(struct inode *inode, void *data)
905 {
906 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
907 return 0;
908 }
909
bdget(dev_t dev)910 static struct block_device *bdget(dev_t dev)
911 {
912 struct block_device *bdev;
913 struct inode *inode;
914
915 inode = iget5_locked(blockdev_superblock, hash(dev),
916 bdev_test, bdev_set, &dev);
917
918 if (!inode)
919 return NULL;
920
921 bdev = &BDEV_I(inode)->bdev;
922
923 if (inode->i_state & I_NEW) {
924 spin_lock_init(&bdev->bd_size_lock);
925 bdev->bd_contains = NULL;
926 bdev->bd_super = NULL;
927 bdev->bd_inode = inode;
928 bdev->bd_part_count = 0;
929 inode->i_mode = S_IFBLK;
930 inode->i_rdev = dev;
931 inode->i_bdev = bdev;
932 inode->i_data.a_ops = &def_blk_aops;
933 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
934 unlock_new_inode(inode);
935 }
936 return bdev;
937 }
938
939 /**
940 * bdgrab -- Grab a reference to an already referenced block device
941 * @bdev: Block device to grab a reference to.
942 */
bdgrab(struct block_device * bdev)943 struct block_device *bdgrab(struct block_device *bdev)
944 {
945 ihold(bdev->bd_inode);
946 return bdev;
947 }
948 EXPORT_SYMBOL(bdgrab);
949
bdget_part(struct hd_struct * part)950 struct block_device *bdget_part(struct hd_struct *part)
951 {
952 return bdget(part_devt(part));
953 }
954
nr_blockdev_pages(void)955 long nr_blockdev_pages(void)
956 {
957 struct inode *inode;
958 long ret = 0;
959
960 spin_lock(&blockdev_superblock->s_inode_list_lock);
961 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list)
962 ret += inode->i_mapping->nrpages;
963 spin_unlock(&blockdev_superblock->s_inode_list_lock);
964
965 return ret;
966 }
967
bdput(struct block_device * bdev)968 void bdput(struct block_device *bdev)
969 {
970 iput(bdev->bd_inode);
971 }
972
973 EXPORT_SYMBOL(bdput);
974
bd_acquire(struct inode * inode)975 static struct block_device *bd_acquire(struct inode *inode)
976 {
977 struct block_device *bdev;
978
979 spin_lock(&bdev_lock);
980 bdev = inode->i_bdev;
981 if (bdev && !inode_unhashed(bdev->bd_inode)) {
982 bdgrab(bdev);
983 spin_unlock(&bdev_lock);
984 return bdev;
985 }
986 spin_unlock(&bdev_lock);
987
988 /*
989 * i_bdev references block device inode that was already shut down
990 * (corresponding device got removed). Remove the reference and look
991 * up block device inode again just in case new device got
992 * reestablished under the same device number.
993 */
994 if (bdev)
995 bd_forget(inode);
996
997 bdev = bdget(inode->i_rdev);
998 if (bdev) {
999 spin_lock(&bdev_lock);
1000 if (!inode->i_bdev) {
1001 /*
1002 * We take an additional reference to bd_inode,
1003 * and it's released in clear_inode() of inode.
1004 * So, we can access it via ->i_mapping always
1005 * without igrab().
1006 */
1007 bdgrab(bdev);
1008 inode->i_bdev = bdev;
1009 inode->i_mapping = bdev->bd_inode->i_mapping;
1010 }
1011 spin_unlock(&bdev_lock);
1012 }
1013 return bdev;
1014 }
1015
1016 /* Call when you free inode */
1017
bd_forget(struct inode * inode)1018 void bd_forget(struct inode *inode)
1019 {
1020 struct block_device *bdev = NULL;
1021
1022 spin_lock(&bdev_lock);
1023 if (!sb_is_blkdev_sb(inode->i_sb))
1024 bdev = inode->i_bdev;
1025 inode->i_bdev = NULL;
1026 inode->i_mapping = &inode->i_data;
1027 spin_unlock(&bdev_lock);
1028
1029 if (bdev)
1030 bdput(bdev);
1031 }
1032
1033 /**
1034 * bd_may_claim - test whether a block device can be claimed
1035 * @bdev: block device of interest
1036 * @whole: whole block device containing @bdev, may equal @bdev
1037 * @holder: holder trying to claim @bdev
1038 *
1039 * Test whether @bdev can be claimed by @holder.
1040 *
1041 * CONTEXT:
1042 * spin_lock(&bdev_lock).
1043 *
1044 * RETURNS:
1045 * %true if @bdev can be claimed, %false otherwise.
1046 */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)1047 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1048 void *holder)
1049 {
1050 if (bdev->bd_holder == holder)
1051 return true; /* already a holder */
1052 else if (bdev->bd_holder != NULL)
1053 return false; /* held by someone else */
1054 else if (whole == bdev)
1055 return true; /* is a whole device which isn't held */
1056
1057 else if (whole->bd_holder == bd_may_claim)
1058 return true; /* is a partition of a device that is being partitioned */
1059 else if (whole->bd_holder != NULL)
1060 return false; /* is a partition of a held device */
1061 else
1062 return true; /* is a partition of an un-held device */
1063 }
1064
1065 /**
1066 * bd_prepare_to_claim - claim a block device
1067 * @bdev: block device of interest
1068 * @whole: the whole device containing @bdev, may equal @bdev
1069 * @holder: holder trying to claim @bdev
1070 *
1071 * Claim @bdev. This function fails if @bdev is already claimed by another
1072 * holder and waits if another claiming is in progress. return, the caller
1073 * has ownership of bd_claiming and bd_holder[s].
1074 *
1075 * RETURNS:
1076 * 0 if @bdev can be claimed, -EBUSY otherwise.
1077 */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)1078 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
1079 void *holder)
1080 {
1081 retry:
1082 spin_lock(&bdev_lock);
1083 /* if someone else claimed, fail */
1084 if (!bd_may_claim(bdev, whole, holder)) {
1085 spin_unlock(&bdev_lock);
1086 return -EBUSY;
1087 }
1088
1089 /* if claiming is already in progress, wait for it to finish */
1090 if (whole->bd_claiming) {
1091 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1092 DEFINE_WAIT(wait);
1093
1094 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1095 spin_unlock(&bdev_lock);
1096 schedule();
1097 finish_wait(wq, &wait);
1098 goto retry;
1099 }
1100
1101 /* yay, all mine */
1102 whole->bd_claiming = holder;
1103 spin_unlock(&bdev_lock);
1104 return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */
1107
bdev_get_gendisk(struct block_device * bdev,int * partno)1108 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1109 {
1110 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1111
1112 if (!disk)
1113 return NULL;
1114 /*
1115 * Now that we hold gendisk reference we make sure bdev we looked up is
1116 * not stale. If it is, it means device got removed and created before
1117 * we looked up gendisk and we fail open in such case. Associating
1118 * unhashed bdev with newly created gendisk could lead to two bdevs
1119 * (and thus two independent caches) being associated with one device
1120 * which is bad.
1121 */
1122 if (inode_unhashed(bdev->bd_inode)) {
1123 put_disk_and_module(disk);
1124 return NULL;
1125 }
1126 return disk;
1127 }
1128
bd_clear_claiming(struct block_device * whole,void * holder)1129 static void bd_clear_claiming(struct block_device *whole, void *holder)
1130 {
1131 lockdep_assert_held(&bdev_lock);
1132 /* tell others that we're done */
1133 BUG_ON(whole->bd_claiming != holder);
1134 whole->bd_claiming = NULL;
1135 wake_up_bit(&whole->bd_claiming, 0);
1136 }
1137
1138 /**
1139 * bd_finish_claiming - finish claiming of a block device
1140 * @bdev: block device of interest
1141 * @whole: whole block device
1142 * @holder: holder that has claimed @bdev
1143 *
1144 * Finish exclusive open of a block device. Mark the device as exlusively
1145 * open by the holder and wake up all waiters for exclusive open to finish.
1146 */
bd_finish_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1147 static void bd_finish_claiming(struct block_device *bdev,
1148 struct block_device *whole, void *holder)
1149 {
1150 spin_lock(&bdev_lock);
1151 BUG_ON(!bd_may_claim(bdev, whole, holder));
1152 /*
1153 * Note that for a whole device bd_holders will be incremented twice,
1154 * and bd_holder will be set to bd_may_claim before being set to holder
1155 */
1156 whole->bd_holders++;
1157 whole->bd_holder = bd_may_claim;
1158 bdev->bd_holders++;
1159 bdev->bd_holder = holder;
1160 bd_clear_claiming(whole, holder);
1161 spin_unlock(&bdev_lock);
1162 }
1163
1164 /**
1165 * bd_abort_claiming - abort claiming of a block device
1166 * @bdev: block device of interest
1167 * @whole: whole block device
1168 * @holder: holder that has claimed @bdev
1169 *
1170 * Abort claiming of a block device when the exclusive open failed. This can be
1171 * also used when exclusive open is not actually desired and we just needed
1172 * to block other exclusive openers for a while.
1173 */
bd_abort_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1174 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1175 void *holder)
1176 {
1177 spin_lock(&bdev_lock);
1178 bd_clear_claiming(whole, holder);
1179 spin_unlock(&bdev_lock);
1180 }
1181 EXPORT_SYMBOL(bd_abort_claiming);
1182
1183 #ifdef CONFIG_SYSFS
1184 struct bd_holder_disk {
1185 struct list_head list;
1186 struct gendisk *disk;
1187 int refcnt;
1188 };
1189
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)1190 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1191 struct gendisk *disk)
1192 {
1193 struct bd_holder_disk *holder;
1194
1195 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1196 if (holder->disk == disk)
1197 return holder;
1198 return NULL;
1199 }
1200
add_symlink(struct kobject * from,struct kobject * to)1201 static int add_symlink(struct kobject *from, struct kobject *to)
1202 {
1203 return sysfs_create_link(from, to, kobject_name(to));
1204 }
1205
del_symlink(struct kobject * from,struct kobject * to)1206 static void del_symlink(struct kobject *from, struct kobject *to)
1207 {
1208 sysfs_remove_link(from, kobject_name(to));
1209 }
1210
1211 /**
1212 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1213 * @bdev: the claimed slave bdev
1214 * @disk: the holding disk
1215 *
1216 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1217 *
1218 * This functions creates the following sysfs symlinks.
1219 *
1220 * - from "slaves" directory of the holder @disk to the claimed @bdev
1221 * - from "holders" directory of the @bdev to the holder @disk
1222 *
1223 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1224 * passed to bd_link_disk_holder(), then:
1225 *
1226 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1227 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1228 *
1229 * The caller must have claimed @bdev before calling this function and
1230 * ensure that both @bdev and @disk are valid during the creation and
1231 * lifetime of these symlinks.
1232 *
1233 * CONTEXT:
1234 * Might sleep.
1235 *
1236 * RETURNS:
1237 * 0 on success, -errno on failure.
1238 */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1239 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1240 {
1241 struct bd_holder_disk *holder;
1242 int ret = 0;
1243
1244 mutex_lock(&bdev->bd_mutex);
1245
1246 WARN_ON_ONCE(!bdev->bd_holder);
1247
1248 /* FIXME: remove the following once add_disk() handles errors */
1249 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1250 goto out_unlock;
1251
1252 holder = bd_find_holder_disk(bdev, disk);
1253 if (holder) {
1254 holder->refcnt++;
1255 goto out_unlock;
1256 }
1257
1258 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1259 if (!holder) {
1260 ret = -ENOMEM;
1261 goto out_unlock;
1262 }
1263
1264 INIT_LIST_HEAD(&holder->list);
1265 holder->disk = disk;
1266 holder->refcnt = 1;
1267
1268 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1269 if (ret)
1270 goto out_free;
1271
1272 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1273 if (ret)
1274 goto out_del;
1275 /*
1276 * bdev could be deleted beneath us which would implicitly destroy
1277 * the holder directory. Hold on to it.
1278 */
1279 kobject_get(bdev->bd_part->holder_dir);
1280
1281 list_add(&holder->list, &bdev->bd_holder_disks);
1282 goto out_unlock;
1283
1284 out_del:
1285 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1286 out_free:
1287 kfree(holder);
1288 out_unlock:
1289 mutex_unlock(&bdev->bd_mutex);
1290 return ret;
1291 }
1292 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1293
1294 /**
1295 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1296 * @bdev: the calimed slave bdev
1297 * @disk: the holding disk
1298 *
1299 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1300 *
1301 * CONTEXT:
1302 * Might sleep.
1303 */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1304 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1305 {
1306 struct bd_holder_disk *holder;
1307
1308 mutex_lock(&bdev->bd_mutex);
1309
1310 holder = bd_find_holder_disk(bdev, disk);
1311
1312 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1313 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1314 del_symlink(bdev->bd_part->holder_dir,
1315 &disk_to_dev(disk)->kobj);
1316 kobject_put(bdev->bd_part->holder_dir);
1317 list_del_init(&holder->list);
1318 kfree(holder);
1319 }
1320
1321 mutex_unlock(&bdev->bd_mutex);
1322 }
1323 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1324 #endif
1325
1326 /**
1327 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1328 * @disk: struct gendisk to check
1329 * @bdev: struct bdev to adjust.
1330 * @verbose: if %true log a message about a size change if there is any
1331 *
1332 * This routine checks to see if the bdev size does not match the disk size
1333 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1334 * are freed.
1335 */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev,bool verbose)1336 static void check_disk_size_change(struct gendisk *disk,
1337 struct block_device *bdev, bool verbose)
1338 {
1339 loff_t disk_size, bdev_size;
1340
1341 spin_lock(&bdev->bd_size_lock);
1342 disk_size = (loff_t)get_capacity(disk) << 9;
1343 bdev_size = i_size_read(bdev->bd_inode);
1344 if (disk_size != bdev_size) {
1345 if (verbose) {
1346 printk(KERN_INFO
1347 "%s: detected capacity change from %lld to %lld\n",
1348 disk->disk_name, bdev_size, disk_size);
1349 }
1350 i_size_write(bdev->bd_inode, disk_size);
1351 }
1352 spin_unlock(&bdev->bd_size_lock);
1353
1354 if (bdev_size > disk_size) {
1355 if (__invalidate_device(bdev, false))
1356 pr_warn("VFS: busy inodes on resized disk %s\n",
1357 disk->disk_name);
1358 }
1359 }
1360
1361 /**
1362 * revalidate_disk_size - checks for disk size change and adjusts bdev size.
1363 * @disk: struct gendisk to check
1364 * @verbose: if %true log a message about a size change if there is any
1365 *
1366 * This routine checks to see if the bdev size does not match the disk size
1367 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1368 * are freed.
1369 */
revalidate_disk_size(struct gendisk * disk,bool verbose)1370 void revalidate_disk_size(struct gendisk *disk, bool verbose)
1371 {
1372 struct block_device *bdev;
1373
1374 /*
1375 * Hidden disks don't have associated bdev so there's no point in
1376 * revalidating them.
1377 */
1378 if (disk->flags & GENHD_FL_HIDDEN)
1379 return;
1380
1381 bdev = bdget_disk(disk, 0);
1382 if (bdev) {
1383 check_disk_size_change(disk, bdev, verbose);
1384 bdput(bdev);
1385 }
1386 }
1387 EXPORT_SYMBOL(revalidate_disk_size);
1388
bd_set_nr_sectors(struct block_device * bdev,sector_t sectors)1389 void bd_set_nr_sectors(struct block_device *bdev, sector_t sectors)
1390 {
1391 spin_lock(&bdev->bd_size_lock);
1392 i_size_write(bdev->bd_inode, (loff_t)sectors << SECTOR_SHIFT);
1393 spin_unlock(&bdev->bd_size_lock);
1394 }
1395 EXPORT_SYMBOL(bd_set_nr_sectors);
1396
1397 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1398
bdev_disk_changed(struct block_device * bdev,bool invalidate)1399 int bdev_disk_changed(struct block_device *bdev, bool invalidate)
1400 {
1401 struct gendisk *disk = bdev->bd_disk;
1402 int ret;
1403
1404 lockdep_assert_held(&bdev->bd_mutex);
1405
1406 if (!(disk->flags & GENHD_FL_UP))
1407 return -ENXIO;
1408
1409 rescan:
1410 ret = blk_drop_partitions(bdev);
1411 if (ret)
1412 return ret;
1413
1414 clear_bit(GD_NEED_PART_SCAN, &disk->state);
1415
1416 /*
1417 * Historically we only set the capacity to zero for devices that
1418 * support partitions (independ of actually having partitions created).
1419 * Doing that is rather inconsistent, but changing it broke legacy
1420 * udisks polling for legacy ide-cdrom devices. Use the crude check
1421 * below to get the sane behavior for most device while not breaking
1422 * userspace for this particular setup.
1423 */
1424 if (invalidate) {
1425 if (disk_part_scan_enabled(disk) ||
1426 !(disk->flags & GENHD_FL_REMOVABLE))
1427 set_capacity(disk, 0);
1428 } else {
1429 if (disk->fops->revalidate_disk)
1430 disk->fops->revalidate_disk(disk);
1431 }
1432
1433 check_disk_size_change(disk, bdev, !invalidate);
1434
1435 if (get_capacity(disk)) {
1436 ret = blk_add_partitions(disk, bdev);
1437 if (ret == -EAGAIN)
1438 goto rescan;
1439 } else if (invalidate) {
1440 /*
1441 * Tell userspace that the media / partition table may have
1442 * changed.
1443 */
1444 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
1445 }
1446
1447 return ret;
1448 }
1449 /*
1450 * Only exported for for loop and dasd for historic reasons. Don't use in new
1451 * code!
1452 */
1453 EXPORT_SYMBOL_GPL(bdev_disk_changed);
1454
1455 /*
1456 * bd_mutex locking:
1457 *
1458 * mutex_lock(part->bd_mutex)
1459 * mutex_lock_nested(whole->bd_mutex, 1)
1460 */
1461
__blkdev_get(struct block_device * bdev,fmode_t mode,void * holder,int for_part)1462 static int __blkdev_get(struct block_device *bdev, fmode_t mode, void *holder,
1463 int for_part)
1464 {
1465 struct block_device *whole = NULL, *claiming = NULL;
1466 struct gendisk *disk;
1467 int ret;
1468 int partno;
1469 bool first_open = false, unblock_events = true, need_restart;
1470
1471 restart:
1472 need_restart = false;
1473 ret = -ENXIO;
1474 disk = bdev_get_gendisk(bdev, &partno);
1475 if (!disk)
1476 goto out;
1477
1478 if (partno) {
1479 whole = bdget_disk(disk, 0);
1480 if (!whole) {
1481 ret = -ENOMEM;
1482 goto out_put_disk;
1483 }
1484 }
1485
1486 if (!for_part && (mode & FMODE_EXCL)) {
1487 WARN_ON_ONCE(!holder);
1488 if (whole)
1489 claiming = whole;
1490 else
1491 claiming = bdev;
1492 ret = bd_prepare_to_claim(bdev, claiming, holder);
1493 if (ret)
1494 goto out_put_whole;
1495 }
1496
1497 disk_block_events(disk);
1498 mutex_lock_nested(&bdev->bd_mutex, for_part);
1499 if (!bdev->bd_openers) {
1500 first_open = true;
1501 bdev->bd_disk = disk;
1502 bdev->bd_contains = bdev;
1503 bdev->bd_partno = partno;
1504
1505 if (!partno) {
1506 ret = -ENXIO;
1507 bdev->bd_part = disk_get_part(disk, partno);
1508 if (!bdev->bd_part)
1509 goto out_clear;
1510
1511 ret = 0;
1512 if (disk->fops->open) {
1513 ret = disk->fops->open(bdev, mode);
1514 /*
1515 * If we lost a race with 'disk' being deleted,
1516 * try again. See md.c
1517 */
1518 if (ret == -ERESTARTSYS)
1519 need_restart = true;
1520 }
1521
1522 if (!ret) {
1523 bd_set_nr_sectors(bdev, get_capacity(disk));
1524 set_init_blocksize(bdev);
1525 }
1526
1527 /*
1528 * If the device is invalidated, rescan partition
1529 * if open succeeded or failed with -ENOMEDIUM.
1530 * The latter is necessary to prevent ghost
1531 * partitions on a removed medium.
1532 */
1533 if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1534 (!ret || ret == -ENOMEDIUM))
1535 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1536
1537 if (ret)
1538 goto out_clear;
1539 } else {
1540 BUG_ON(for_part);
1541 ret = __blkdev_get(whole, mode, NULL, 1);
1542 if (ret)
1543 goto out_clear;
1544 bdev->bd_contains = bdgrab(whole);
1545 bdev->bd_part = disk_get_part(disk, partno);
1546 if (!(disk->flags & GENHD_FL_UP) ||
1547 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1548 ret = -ENXIO;
1549 goto out_clear;
1550 }
1551 bd_set_nr_sectors(bdev, bdev->bd_part->nr_sects);
1552 set_init_blocksize(bdev);
1553 }
1554
1555 if (bdev->bd_bdi == &noop_backing_dev_info)
1556 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1557 } else {
1558 if (bdev->bd_contains == bdev) {
1559 ret = 0;
1560 if (bdev->bd_disk->fops->open)
1561 ret = bdev->bd_disk->fops->open(bdev, mode);
1562 /* the same as first opener case, read comment there */
1563 if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1564 (!ret || ret == -ENOMEDIUM))
1565 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1566 if (ret)
1567 goto out_unlock_bdev;
1568 }
1569 }
1570 bdev->bd_openers++;
1571 if (for_part)
1572 bdev->bd_part_count++;
1573 if (claiming)
1574 bd_finish_claiming(bdev, claiming, holder);
1575
1576 /*
1577 * Block event polling for write claims if requested. Any write holder
1578 * makes the write_holder state stick until all are released. This is
1579 * good enough and tracking individual writeable reference is too
1580 * fragile given the way @mode is used in blkdev_get/put().
1581 */
1582 if (claiming && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1583 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1584 bdev->bd_write_holder = true;
1585 unblock_events = false;
1586 }
1587 mutex_unlock(&bdev->bd_mutex);
1588
1589 if (unblock_events)
1590 disk_unblock_events(disk);
1591
1592 /* only one opener holds refs to the module and disk */
1593 if (!first_open)
1594 put_disk_and_module(disk);
1595 if (whole)
1596 bdput(whole);
1597 return 0;
1598
1599 out_clear:
1600 disk_put_part(bdev->bd_part);
1601 bdev->bd_disk = NULL;
1602 bdev->bd_part = NULL;
1603 if (bdev != bdev->bd_contains)
1604 __blkdev_put(bdev->bd_contains, mode, 1);
1605 bdev->bd_contains = NULL;
1606 out_unlock_bdev:
1607 if (claiming)
1608 bd_abort_claiming(bdev, claiming, holder);
1609 mutex_unlock(&bdev->bd_mutex);
1610 disk_unblock_events(disk);
1611 out_put_whole:
1612 if (whole)
1613 bdput(whole);
1614 out_put_disk:
1615 put_disk_and_module(disk);
1616 if (need_restart)
1617 goto restart;
1618 out:
1619 return ret;
1620 }
1621
1622 /**
1623 * blkdev_get - open a block device
1624 * @bdev: block_device to open
1625 * @mode: FMODE_* mask
1626 * @holder: exclusive holder identifier
1627 *
1628 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1629 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1630 * @holder is invalid. Exclusive opens may nest for the same @holder.
1631 *
1632 * On success, the reference count of @bdev is unchanged. On failure,
1633 * @bdev is put.
1634 *
1635 * CONTEXT:
1636 * Might sleep.
1637 *
1638 * RETURNS:
1639 * 0 on success, -errno on failure.
1640 */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1641 static int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1642 {
1643 int ret, perm = 0;
1644
1645 if (mode & FMODE_READ)
1646 perm |= MAY_READ;
1647 if (mode & FMODE_WRITE)
1648 perm |= MAY_WRITE;
1649 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1650 if (ret)
1651 goto bdput;
1652
1653 ret =__blkdev_get(bdev, mode, holder, 0);
1654 if (ret)
1655 goto bdput;
1656 return 0;
1657
1658 bdput:
1659 bdput(bdev);
1660 return ret;
1661 }
1662
1663 /**
1664 * blkdev_get_by_path - open a block device by name
1665 * @path: path to the block device to open
1666 * @mode: FMODE_* mask
1667 * @holder: exclusive holder identifier
1668 *
1669 * Open the blockdevice described by the device file at @path. @mode
1670 * and @holder are identical to blkdev_get().
1671 *
1672 * On success, the returned block_device has reference count of one.
1673 *
1674 * CONTEXT:
1675 * Might sleep.
1676 *
1677 * RETURNS:
1678 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1679 */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1680 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1681 void *holder)
1682 {
1683 struct block_device *bdev;
1684 int err;
1685
1686 bdev = lookup_bdev(path);
1687 if (IS_ERR(bdev))
1688 return bdev;
1689
1690 err = blkdev_get(bdev, mode, holder);
1691 if (err)
1692 return ERR_PTR(err);
1693
1694 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1695 blkdev_put(bdev, mode);
1696 return ERR_PTR(-EACCES);
1697 }
1698
1699 return bdev;
1700 }
1701 EXPORT_SYMBOL(blkdev_get_by_path);
1702
1703 /**
1704 * blkdev_get_by_dev - open a block device by device number
1705 * @dev: device number of block device to open
1706 * @mode: FMODE_* mask
1707 * @holder: exclusive holder identifier
1708 *
1709 * Open the blockdevice described by device number @dev. @mode and
1710 * @holder are identical to blkdev_get().
1711 *
1712 * Use it ONLY if you really do not have anything better - i.e. when
1713 * you are behind a truly sucky interface and all you are given is a
1714 * device number. _Never_ to be used for internal purposes. If you
1715 * ever need it - reconsider your API.
1716 *
1717 * On success, the returned block_device has reference count of one.
1718 *
1719 * CONTEXT:
1720 * Might sleep.
1721 *
1722 * RETURNS:
1723 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1724 */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1725 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1726 {
1727 struct block_device *bdev;
1728 int err;
1729
1730 bdev = bdget(dev);
1731 if (!bdev)
1732 return ERR_PTR(-ENOMEM);
1733
1734 err = blkdev_get(bdev, mode, holder);
1735 if (err)
1736 return ERR_PTR(err);
1737
1738 return bdev;
1739 }
1740 EXPORT_SYMBOL(blkdev_get_by_dev);
1741
blkdev_open(struct inode * inode,struct file * filp)1742 static int blkdev_open(struct inode * inode, struct file * filp)
1743 {
1744 struct block_device *bdev;
1745
1746 /*
1747 * Preserve backwards compatibility and allow large file access
1748 * even if userspace doesn't ask for it explicitly. Some mkfs
1749 * binary needs it. We might want to drop this workaround
1750 * during an unstable branch.
1751 */
1752 filp->f_flags |= O_LARGEFILE;
1753
1754 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1755
1756 if (filp->f_flags & O_NDELAY)
1757 filp->f_mode |= FMODE_NDELAY;
1758 if (filp->f_flags & O_EXCL)
1759 filp->f_mode |= FMODE_EXCL;
1760 if ((filp->f_flags & O_ACCMODE) == 3)
1761 filp->f_mode |= FMODE_WRITE_IOCTL;
1762
1763 bdev = bd_acquire(inode);
1764 if (bdev == NULL)
1765 return -ENOMEM;
1766
1767 filp->f_mapping = bdev->bd_inode->i_mapping;
1768 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1769
1770 return blkdev_get(bdev, filp->f_mode, filp);
1771 }
1772
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1773 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1774 {
1775 struct gendisk *disk = bdev->bd_disk;
1776 struct block_device *victim = NULL;
1777
1778 /*
1779 * Sync early if it looks like we're the last one. If someone else
1780 * opens the block device between now and the decrement of bd_openers
1781 * then we did a sync that we didn't need to, but that's not the end
1782 * of the world and we want to avoid long (could be several minute)
1783 * syncs while holding the mutex.
1784 */
1785 if (bdev->bd_openers == 1)
1786 sync_blockdev(bdev);
1787
1788 mutex_lock_nested(&bdev->bd_mutex, for_part);
1789 if (for_part)
1790 bdev->bd_part_count--;
1791
1792 if (!--bdev->bd_openers) {
1793 WARN_ON_ONCE(bdev->bd_holders);
1794 sync_blockdev(bdev);
1795 kill_bdev(bdev);
1796
1797 bdev_write_inode(bdev);
1798 }
1799 if (bdev->bd_contains == bdev) {
1800 if (disk->fops->release)
1801 disk->fops->release(disk, mode);
1802 }
1803 if (!bdev->bd_openers) {
1804 disk_put_part(bdev->bd_part);
1805 bdev->bd_part = NULL;
1806 bdev->bd_disk = NULL;
1807 if (bdev != bdev->bd_contains)
1808 victim = bdev->bd_contains;
1809 bdev->bd_contains = NULL;
1810
1811 put_disk_and_module(disk);
1812 }
1813 mutex_unlock(&bdev->bd_mutex);
1814 bdput(bdev);
1815 if (victim)
1816 __blkdev_put(victim, mode, 1);
1817 }
1818
blkdev_put(struct block_device * bdev,fmode_t mode)1819 void blkdev_put(struct block_device *bdev, fmode_t mode)
1820 {
1821 mutex_lock(&bdev->bd_mutex);
1822
1823 if (mode & FMODE_EXCL) {
1824 bool bdev_free;
1825
1826 /*
1827 * Release a claim on the device. The holder fields
1828 * are protected with bdev_lock. bd_mutex is to
1829 * synchronize disk_holder unlinking.
1830 */
1831 spin_lock(&bdev_lock);
1832
1833 WARN_ON_ONCE(--bdev->bd_holders < 0);
1834 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1835
1836 /* bd_contains might point to self, check in a separate step */
1837 if ((bdev_free = !bdev->bd_holders))
1838 bdev->bd_holder = NULL;
1839 if (!bdev->bd_contains->bd_holders)
1840 bdev->bd_contains->bd_holder = NULL;
1841
1842 spin_unlock(&bdev_lock);
1843
1844 /*
1845 * If this was the last claim, remove holder link and
1846 * unblock evpoll if it was a write holder.
1847 */
1848 if (bdev_free && bdev->bd_write_holder) {
1849 disk_unblock_events(bdev->bd_disk);
1850 bdev->bd_write_holder = false;
1851 }
1852 }
1853
1854 /*
1855 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1856 * event. This is to ensure detection of media removal commanded
1857 * from userland - e.g. eject(1).
1858 */
1859 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1860
1861 mutex_unlock(&bdev->bd_mutex);
1862
1863 __blkdev_put(bdev, mode, 0);
1864 }
1865 EXPORT_SYMBOL(blkdev_put);
1866
blkdev_close(struct inode * inode,struct file * filp)1867 static int blkdev_close(struct inode * inode, struct file * filp)
1868 {
1869 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1870 blkdev_put(bdev, filp->f_mode);
1871 return 0;
1872 }
1873
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1874 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1875 {
1876 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1877 fmode_t mode = file->f_mode;
1878
1879 /*
1880 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1881 * to updated it before every ioctl.
1882 */
1883 if (file->f_flags & O_NDELAY)
1884 mode |= FMODE_NDELAY;
1885 else
1886 mode &= ~FMODE_NDELAY;
1887
1888 return blkdev_ioctl(bdev, mode, cmd, arg);
1889 }
1890
1891 /*
1892 * Write data to the block device. Only intended for the block device itself
1893 * and the raw driver which basically is a fake block device.
1894 *
1895 * Does not take i_mutex for the write and thus is not for general purpose
1896 * use.
1897 */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1898 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1899 {
1900 struct file *file = iocb->ki_filp;
1901 struct inode *bd_inode = bdev_file_inode(file);
1902 loff_t size = i_size_read(bd_inode);
1903 struct blk_plug plug;
1904 size_t shorted = 0;
1905 ssize_t ret;
1906
1907 if (bdev_read_only(I_BDEV(bd_inode)))
1908 return -EPERM;
1909
1910 if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode->i_rdev))
1911 return -ETXTBSY;
1912
1913 if (!iov_iter_count(from))
1914 return 0;
1915
1916 if (iocb->ki_pos >= size)
1917 return -ENOSPC;
1918
1919 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1920 return -EOPNOTSUPP;
1921
1922 size -= iocb->ki_pos;
1923 if (iov_iter_count(from) > size) {
1924 shorted = iov_iter_count(from) - size;
1925 iov_iter_truncate(from, size);
1926 }
1927
1928 blk_start_plug(&plug);
1929 ret = __generic_file_write_iter(iocb, from);
1930 if (ret > 0)
1931 ret = generic_write_sync(iocb, ret);
1932 iov_iter_reexpand(from, iov_iter_count(from) + shorted);
1933 blk_finish_plug(&plug);
1934 return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1937
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1938 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1939 {
1940 struct file *file = iocb->ki_filp;
1941 struct inode *bd_inode = bdev_file_inode(file);
1942 loff_t size = i_size_read(bd_inode);
1943 loff_t pos = iocb->ki_pos;
1944 size_t shorted = 0;
1945 ssize_t ret;
1946
1947 if (pos >= size)
1948 return 0;
1949
1950 size -= pos;
1951 if (iov_iter_count(to) > size) {
1952 shorted = iov_iter_count(to) - size;
1953 iov_iter_truncate(to, size);
1954 }
1955
1956 ret = generic_file_read_iter(iocb, to);
1957 iov_iter_reexpand(to, iov_iter_count(to) + shorted);
1958 return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1961
1962 /*
1963 * Try to release a page associated with block device when the system
1964 * is under memory pressure.
1965 */
blkdev_releasepage(struct page * page,gfp_t wait)1966 static int blkdev_releasepage(struct page *page, gfp_t wait)
1967 {
1968 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1969
1970 if (super && super->s_op->bdev_try_to_free_page)
1971 return super->s_op->bdev_try_to_free_page(super, page, wait);
1972
1973 return try_to_free_buffers(page);
1974 }
1975
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)1976 static int blkdev_writepages(struct address_space *mapping,
1977 struct writeback_control *wbc)
1978 {
1979 return generic_writepages(mapping, wbc);
1980 }
1981
1982 static const struct address_space_operations def_blk_aops = {
1983 .readpage = blkdev_readpage,
1984 .readahead = blkdev_readahead,
1985 .writepage = blkdev_writepage,
1986 .write_begin = blkdev_write_begin,
1987 .write_end = blkdev_write_end,
1988 .writepages = blkdev_writepages,
1989 .releasepage = blkdev_releasepage,
1990 .direct_IO = blkdev_direct_IO,
1991 .migratepage = buffer_migrate_page_norefs,
1992 .is_dirty_writeback = buffer_check_dirty_writeback,
1993 };
1994
1995 #define BLKDEV_FALLOC_FL_SUPPORTED \
1996 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1997 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1998
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)1999 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2000 loff_t len)
2001 {
2002 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2003 loff_t end = start + len - 1;
2004 loff_t isize;
2005 int error;
2006
2007 /* Fail if we don't recognize the flags. */
2008 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2009 return -EOPNOTSUPP;
2010
2011 /* Don't go off the end of the device. */
2012 isize = i_size_read(bdev->bd_inode);
2013 if (start >= isize)
2014 return -EINVAL;
2015 if (end >= isize) {
2016 if (mode & FALLOC_FL_KEEP_SIZE) {
2017 len = isize - start;
2018 end = start + len - 1;
2019 } else
2020 return -EINVAL;
2021 }
2022
2023 /*
2024 * Don't allow IO that isn't aligned to logical block size.
2025 */
2026 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2027 return -EINVAL;
2028
2029 /*
2030 * Invalidate the page cache, including dirty pages, for valid
2031 * de-allocate mode calls to fallocate().
2032 */
2033 switch (mode) {
2034 case FALLOC_FL_ZERO_RANGE:
2035 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2036 error = truncate_bdev_range(bdev, file->f_mode, start, end);
2037 if (error)
2038 break;
2039
2040 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2041 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2042 break;
2043 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2044 error = truncate_bdev_range(bdev, file->f_mode, start, end);
2045 if (error)
2046 break;
2047
2048 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2049 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2050 break;
2051 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2052 error = truncate_bdev_range(bdev, file->f_mode, start, end);
2053 if (error)
2054 break;
2055
2056 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2057 GFP_KERNEL, 0);
2058 break;
2059 default:
2060 return -EOPNOTSUPP;
2061 }
2062 if (error)
2063 return error;
2064
2065 /*
2066 * Invalidate again; if someone wandered in and dirtied a page,
2067 * the caller will be given -EBUSY. The third argument is
2068 * inclusive, so the rounding here is safe.
2069 */
2070 return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping,
2071 start >> PAGE_SHIFT,
2072 end >> PAGE_SHIFT);
2073 }
2074
2075 const struct file_operations def_blk_fops = {
2076 .open = blkdev_open,
2077 .release = blkdev_close,
2078 .llseek = block_llseek,
2079 .read_iter = blkdev_read_iter,
2080 .write_iter = blkdev_write_iter,
2081 .iopoll = blkdev_iopoll,
2082 .mmap = generic_file_mmap,
2083 .fsync = blkdev_fsync,
2084 .unlocked_ioctl = block_ioctl,
2085 #ifdef CONFIG_COMPAT
2086 .compat_ioctl = compat_blkdev_ioctl,
2087 #endif
2088 .splice_read = generic_file_splice_read,
2089 .splice_write = iter_file_splice_write,
2090 .fallocate = blkdev_fallocate,
2091 };
2092
2093 /**
2094 * lookup_bdev - lookup a struct block_device by name
2095 * @pathname: special file representing the block device
2096 *
2097 * Get a reference to the blockdevice at @pathname in the current
2098 * namespace if possible and return it. Return ERR_PTR(error)
2099 * otherwise.
2100 */
lookup_bdev(const char * pathname)2101 struct block_device *lookup_bdev(const char *pathname)
2102 {
2103 struct block_device *bdev;
2104 struct inode *inode;
2105 struct path path;
2106 int error;
2107
2108 if (!pathname || !*pathname)
2109 return ERR_PTR(-EINVAL);
2110
2111 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2112 if (error)
2113 return ERR_PTR(error);
2114
2115 inode = d_backing_inode(path.dentry);
2116 error = -ENOTBLK;
2117 if (!S_ISBLK(inode->i_mode))
2118 goto fail;
2119 error = -EACCES;
2120 if (!may_open_dev(&path))
2121 goto fail;
2122 error = -ENOMEM;
2123 bdev = bd_acquire(inode);
2124 if (!bdev)
2125 goto fail;
2126 out:
2127 path_put(&path);
2128 return bdev;
2129 fail:
2130 bdev = ERR_PTR(error);
2131 goto out;
2132 }
2133 EXPORT_SYMBOL(lookup_bdev);
2134
__invalidate_device(struct block_device * bdev,bool kill_dirty)2135 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2136 {
2137 struct super_block *sb = get_super(bdev);
2138 int res = 0;
2139
2140 if (sb) {
2141 /*
2142 * no need to lock the super, get_super holds the
2143 * read mutex so the filesystem cannot go away
2144 * under us (->put_super runs with the write lock
2145 * hold).
2146 */
2147 shrink_dcache_sb(sb);
2148 res = invalidate_inodes(sb, kill_dirty);
2149 drop_super(sb);
2150 }
2151 invalidate_bdev(bdev);
2152 return res;
2153 }
2154 EXPORT_SYMBOL(__invalidate_device);
2155
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)2156 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2157 {
2158 struct inode *inode, *old_inode = NULL;
2159
2160 spin_lock(&blockdev_superblock->s_inode_list_lock);
2161 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2162 struct address_space *mapping = inode->i_mapping;
2163 struct block_device *bdev;
2164
2165 spin_lock(&inode->i_lock);
2166 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2167 mapping->nrpages == 0) {
2168 spin_unlock(&inode->i_lock);
2169 continue;
2170 }
2171 __iget(inode);
2172 spin_unlock(&inode->i_lock);
2173 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2174 /*
2175 * We hold a reference to 'inode' so it couldn't have been
2176 * removed from s_inodes list while we dropped the
2177 * s_inode_list_lock We cannot iput the inode now as we can
2178 * be holding the last reference and we cannot iput it under
2179 * s_inode_list_lock. So we keep the reference and iput it
2180 * later.
2181 */
2182 iput(old_inode);
2183 old_inode = inode;
2184 bdev = I_BDEV(inode);
2185
2186 mutex_lock(&bdev->bd_mutex);
2187 if (bdev->bd_openers)
2188 func(bdev, arg);
2189 mutex_unlock(&bdev->bd_mutex);
2190
2191 spin_lock(&blockdev_superblock->s_inode_list_lock);
2192 }
2193 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2194 iput(old_inode);
2195 }
2196