1 /* bnx2x_sp.c: Qlogic Everest network driver.
2 *
3 * Copyright 2011-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * Unless you and Qlogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/gpl-2.0.html (the "GPL").
11 *
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other Qlogic software provided under a
14 * license other than the GPL, without Qlogic's express prior written
15 * consent.
16 *
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Vladislav Zolotarov
19 *
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/crc32.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/crc32c.h>
29 #include "bnx2x.h"
30 #include "bnx2x_cmn.h"
31 #include "bnx2x_sp.h"
32
33 #define BNX2X_MAX_EMUL_MULTI 16
34
35 /**** Exe Queue interfaces ****/
36
37 /**
38 * bnx2x_exe_queue_init - init the Exe Queue object
39 *
40 * @bp: driver handle
41 * @o: pointer to the object
42 * @exe_len: length
43 * @owner: pointer to the owner
44 * @validate: validate function pointer
45 * @remove: remove function pointer
46 * @optimize: optimize function pointer
47 * @exec: execute function pointer
48 * @get: get function pointer
49 */
bnx2x_exe_queue_init(struct bnx2x * bp,struct bnx2x_exe_queue_obj * o,int exe_len,union bnx2x_qable_obj * owner,exe_q_validate validate,exe_q_remove remove,exe_q_optimize optimize,exe_q_execute exec,exe_q_get get)50 static inline void bnx2x_exe_queue_init(struct bnx2x *bp,
51 struct bnx2x_exe_queue_obj *o,
52 int exe_len,
53 union bnx2x_qable_obj *owner,
54 exe_q_validate validate,
55 exe_q_remove remove,
56 exe_q_optimize optimize,
57 exe_q_execute exec,
58 exe_q_get get)
59 {
60 memset(o, 0, sizeof(*o));
61
62 INIT_LIST_HEAD(&o->exe_queue);
63 INIT_LIST_HEAD(&o->pending_comp);
64
65 spin_lock_init(&o->lock);
66
67 o->exe_chunk_len = exe_len;
68 o->owner = owner;
69
70 /* Owner specific callbacks */
71 o->validate = validate;
72 o->remove = remove;
73 o->optimize = optimize;
74 o->execute = exec;
75 o->get = get;
76
77 DP(BNX2X_MSG_SP, "Setup the execution queue with the chunk length of %d\n",
78 exe_len);
79 }
80
bnx2x_exe_queue_free_elem(struct bnx2x * bp,struct bnx2x_exeq_elem * elem)81 static inline void bnx2x_exe_queue_free_elem(struct bnx2x *bp,
82 struct bnx2x_exeq_elem *elem)
83 {
84 DP(BNX2X_MSG_SP, "Deleting an exe_queue element\n");
85 kfree(elem);
86 }
87
bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj * o)88 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj *o)
89 {
90 struct bnx2x_exeq_elem *elem;
91 int cnt = 0;
92
93 spin_lock_bh(&o->lock);
94
95 list_for_each_entry(elem, &o->exe_queue, link)
96 cnt++;
97
98 spin_unlock_bh(&o->lock);
99
100 return cnt;
101 }
102
103 /**
104 * bnx2x_exe_queue_add - add a new element to the execution queue
105 *
106 * @bp: driver handle
107 * @o: queue
108 * @elem: new command to add
109 * @restore: true - do not optimize the command
110 *
111 * If the element is optimized or is illegal, frees it.
112 */
bnx2x_exe_queue_add(struct bnx2x * bp,struct bnx2x_exe_queue_obj * o,struct bnx2x_exeq_elem * elem,bool restore)113 static inline int bnx2x_exe_queue_add(struct bnx2x *bp,
114 struct bnx2x_exe_queue_obj *o,
115 struct bnx2x_exeq_elem *elem,
116 bool restore)
117 {
118 int rc;
119
120 spin_lock_bh(&o->lock);
121
122 if (!restore) {
123 /* Try to cancel this element queue */
124 rc = o->optimize(bp, o->owner, elem);
125 if (rc)
126 goto free_and_exit;
127
128 /* Check if this request is ok */
129 rc = o->validate(bp, o->owner, elem);
130 if (rc) {
131 DP(BNX2X_MSG_SP, "Preamble failed: %d\n", rc);
132 goto free_and_exit;
133 }
134 }
135
136 /* If so, add it to the execution queue */
137 list_add_tail(&elem->link, &o->exe_queue);
138
139 spin_unlock_bh(&o->lock);
140
141 return 0;
142
143 free_and_exit:
144 bnx2x_exe_queue_free_elem(bp, elem);
145
146 spin_unlock_bh(&o->lock);
147
148 return rc;
149 }
150
__bnx2x_exe_queue_reset_pending(struct bnx2x * bp,struct bnx2x_exe_queue_obj * o)151 static inline void __bnx2x_exe_queue_reset_pending(
152 struct bnx2x *bp,
153 struct bnx2x_exe_queue_obj *o)
154 {
155 struct bnx2x_exeq_elem *elem;
156
157 while (!list_empty(&o->pending_comp)) {
158 elem = list_first_entry(&o->pending_comp,
159 struct bnx2x_exeq_elem, link);
160
161 list_del(&elem->link);
162 bnx2x_exe_queue_free_elem(bp, elem);
163 }
164 }
165
166 /**
167 * bnx2x_exe_queue_step - execute one execution chunk atomically
168 *
169 * @bp: driver handle
170 * @o: queue
171 * @ramrod_flags: flags
172 *
173 * (Should be called while holding the exe_queue->lock).
174 */
bnx2x_exe_queue_step(struct bnx2x * bp,struct bnx2x_exe_queue_obj * o,unsigned long * ramrod_flags)175 static inline int bnx2x_exe_queue_step(struct bnx2x *bp,
176 struct bnx2x_exe_queue_obj *o,
177 unsigned long *ramrod_flags)
178 {
179 struct bnx2x_exeq_elem *elem, spacer;
180 int cur_len = 0, rc;
181
182 memset(&spacer, 0, sizeof(spacer));
183
184 /* Next step should not be performed until the current is finished,
185 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
186 * properly clear object internals without sending any command to the FW
187 * which also implies there won't be any completion to clear the
188 * 'pending' list.
189 */
190 if (!list_empty(&o->pending_comp)) {
191 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
192 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
193 __bnx2x_exe_queue_reset_pending(bp, o);
194 } else {
195 return 1;
196 }
197 }
198
199 /* Run through the pending commands list and create a next
200 * execution chunk.
201 */
202 while (!list_empty(&o->exe_queue)) {
203 elem = list_first_entry(&o->exe_queue, struct bnx2x_exeq_elem,
204 link);
205 WARN_ON(!elem->cmd_len);
206
207 if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
208 cur_len += elem->cmd_len;
209 /* Prevent from both lists being empty when moving an
210 * element. This will allow the call of
211 * bnx2x_exe_queue_empty() without locking.
212 */
213 list_add_tail(&spacer.link, &o->pending_comp);
214 mb();
215 list_move_tail(&elem->link, &o->pending_comp);
216 list_del(&spacer.link);
217 } else
218 break;
219 }
220
221 /* Sanity check */
222 if (!cur_len)
223 return 0;
224
225 rc = o->execute(bp, o->owner, &o->pending_comp, ramrod_flags);
226 if (rc < 0)
227 /* In case of an error return the commands back to the queue
228 * and reset the pending_comp.
229 */
230 list_splice_init(&o->pending_comp, &o->exe_queue);
231 else if (!rc)
232 /* If zero is returned, means there are no outstanding pending
233 * completions and we may dismiss the pending list.
234 */
235 __bnx2x_exe_queue_reset_pending(bp, o);
236
237 return rc;
238 }
239
bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj * o)240 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj *o)
241 {
242 bool empty = list_empty(&o->exe_queue);
243
244 /* Don't reorder!!! */
245 mb();
246
247 return empty && list_empty(&o->pending_comp);
248 }
249
bnx2x_exe_queue_alloc_elem(struct bnx2x * bp)250 static inline struct bnx2x_exeq_elem *bnx2x_exe_queue_alloc_elem(
251 struct bnx2x *bp)
252 {
253 DP(BNX2X_MSG_SP, "Allocating a new exe_queue element\n");
254 return kzalloc(sizeof(struct bnx2x_exeq_elem), GFP_ATOMIC);
255 }
256
257 /************************ raw_obj functions ***********************************/
bnx2x_raw_check_pending(struct bnx2x_raw_obj * o)258 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj *o)
259 {
260 return !!test_bit(o->state, o->pstate);
261 }
262
bnx2x_raw_clear_pending(struct bnx2x_raw_obj * o)263 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj *o)
264 {
265 smp_mb__before_atomic();
266 clear_bit(o->state, o->pstate);
267 smp_mb__after_atomic();
268 }
269
bnx2x_raw_set_pending(struct bnx2x_raw_obj * o)270 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj *o)
271 {
272 smp_mb__before_atomic();
273 set_bit(o->state, o->pstate);
274 smp_mb__after_atomic();
275 }
276
277 /**
278 * bnx2x_state_wait - wait until the given bit(state) is cleared
279 *
280 * @bp: device handle
281 * @state: state which is to be cleared
282 * @pstate: state buffer
283 *
284 */
bnx2x_state_wait(struct bnx2x * bp,int state,unsigned long * pstate)285 static inline int bnx2x_state_wait(struct bnx2x *bp, int state,
286 unsigned long *pstate)
287 {
288 /* can take a while if any port is running */
289 int cnt = 5000;
290
291 if (CHIP_REV_IS_EMUL(bp))
292 cnt *= 20;
293
294 DP(BNX2X_MSG_SP, "waiting for state to become %d\n", state);
295
296 might_sleep();
297 while (cnt--) {
298 if (!test_bit(state, pstate)) {
299 #ifdef BNX2X_STOP_ON_ERROR
300 DP(BNX2X_MSG_SP, "exit (cnt %d)\n", 5000 - cnt);
301 #endif
302 return 0;
303 }
304
305 usleep_range(1000, 2000);
306
307 if (bp->panic)
308 return -EIO;
309 }
310
311 /* timeout! */
312 BNX2X_ERR("timeout waiting for state %d\n", state);
313 #ifdef BNX2X_STOP_ON_ERROR
314 bnx2x_panic();
315 #endif
316
317 return -EBUSY;
318 }
319
bnx2x_raw_wait(struct bnx2x * bp,struct bnx2x_raw_obj * raw)320 static int bnx2x_raw_wait(struct bnx2x *bp, struct bnx2x_raw_obj *raw)
321 {
322 return bnx2x_state_wait(bp, raw->state, raw->pstate);
323 }
324
325 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
326 /* credit handling callbacks */
bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj * o,int * offset)327 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int *offset)
328 {
329 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
330
331 WARN_ON(!mp);
332
333 return mp->get_entry(mp, offset);
334 }
335
bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj * o)336 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj *o)
337 {
338 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
339
340 WARN_ON(!mp);
341
342 return mp->get(mp, 1);
343 }
344
bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj * o,int * offset)345 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int *offset)
346 {
347 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
348
349 WARN_ON(!vp);
350
351 return vp->get_entry(vp, offset);
352 }
353
bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj * o)354 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj *o)
355 {
356 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
357
358 WARN_ON(!vp);
359
360 return vp->get(vp, 1);
361 }
362
bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj * o)363 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
364 {
365 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
366 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
367
368 if (!mp->get(mp, 1))
369 return false;
370
371 if (!vp->get(vp, 1)) {
372 mp->put(mp, 1);
373 return false;
374 }
375
376 return true;
377 }
378
bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj * o,int offset)379 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj *o, int offset)
380 {
381 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
382
383 return mp->put_entry(mp, offset);
384 }
385
bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj * o)386 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj *o)
387 {
388 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
389
390 return mp->put(mp, 1);
391 }
392
bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj * o,int offset)393 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj *o, int offset)
394 {
395 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
396
397 return vp->put_entry(vp, offset);
398 }
399
bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj * o)400 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj *o)
401 {
402 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
403
404 return vp->put(vp, 1);
405 }
406
bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj * o)407 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj *o)
408 {
409 struct bnx2x_credit_pool_obj *mp = o->macs_pool;
410 struct bnx2x_credit_pool_obj *vp = o->vlans_pool;
411
412 if (!mp->put(mp, 1))
413 return false;
414
415 if (!vp->put(vp, 1)) {
416 mp->get(mp, 1);
417 return false;
418 }
419
420 return true;
421 }
422
423 /**
424 * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
425 *
426 * @bp: device handle
427 * @o: vlan_mac object
428 *
429 * Context: Non-blocking implementation; should be called under execution
430 * queue lock.
431 */
__bnx2x_vlan_mac_h_write_trylock(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o)432 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x *bp,
433 struct bnx2x_vlan_mac_obj *o)
434 {
435 if (o->head_reader) {
436 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - There are readers; Busy\n");
437 return -EBUSY;
438 }
439
440 DP(BNX2X_MSG_SP, "vlan_mac_lock writer - Taken\n");
441 return 0;
442 }
443
444 /**
445 * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
446 *
447 * @bp: device handle
448 * @o: vlan_mac object
449 *
450 * details Should be called under execution queue lock; notice it might release
451 * and reclaim it during its run.
452 */
__bnx2x_vlan_mac_h_exec_pending(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o)453 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x *bp,
454 struct bnx2x_vlan_mac_obj *o)
455 {
456 int rc;
457 unsigned long ramrod_flags = o->saved_ramrod_flags;
458
459 DP(BNX2X_MSG_SP, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
460 ramrod_flags);
461 o->head_exe_request = false;
462 o->saved_ramrod_flags = 0;
463 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, &ramrod_flags);
464 if ((rc != 0) && (rc != 1)) {
465 BNX2X_ERR("execution of pending commands failed with rc %d\n",
466 rc);
467 #ifdef BNX2X_STOP_ON_ERROR
468 bnx2x_panic();
469 #endif
470 }
471 }
472
473 /**
474 * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
475 *
476 * @bp: device handle
477 * @o: vlan_mac object
478 * @ramrod_flags: ramrod flags of missed execution
479 *
480 * Context: Should be called under execution queue lock.
481 */
__bnx2x_vlan_mac_h_pend(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,unsigned long ramrod_flags)482 static void __bnx2x_vlan_mac_h_pend(struct bnx2x *bp,
483 struct bnx2x_vlan_mac_obj *o,
484 unsigned long ramrod_flags)
485 {
486 o->head_exe_request = true;
487 o->saved_ramrod_flags = ramrod_flags;
488 DP(BNX2X_MSG_SP, "Placing pending execution with ramrod flags %lu\n",
489 ramrod_flags);
490 }
491
492 /**
493 * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
494 *
495 * @bp: device handle
496 * @o: vlan_mac object
497 *
498 * Context: Should be called under execution queue lock. Notice if a pending
499 * execution exists, it would perform it - possibly releasing and
500 * reclaiming the execution queue lock.
501 */
__bnx2x_vlan_mac_h_write_unlock(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o)502 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x *bp,
503 struct bnx2x_vlan_mac_obj *o)
504 {
505 /* It's possible a new pending execution was added since this writer
506 * executed. If so, execute again. [Ad infinitum]
507 */
508 while (o->head_exe_request) {
509 DP(BNX2X_MSG_SP, "vlan_mac_lock - writer release encountered a pending request\n");
510 __bnx2x_vlan_mac_h_exec_pending(bp, o);
511 }
512 }
513
514
515 /**
516 * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
517 *
518 * @bp: device handle
519 * @o: vlan_mac object
520 *
521 * Context: Should be called under the execution queue lock. May sleep. May
522 * release and reclaim execution queue lock during its run.
523 */
__bnx2x_vlan_mac_h_read_lock(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o)524 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
525 struct bnx2x_vlan_mac_obj *o)
526 {
527 /* If we got here, we're holding lock --> no WRITER exists */
528 o->head_reader++;
529 DP(BNX2X_MSG_SP, "vlan_mac_lock - locked reader - number %d\n",
530 o->head_reader);
531
532 return 0;
533 }
534
535 /**
536 * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
537 *
538 * @bp: device handle
539 * @o: vlan_mac object
540 *
541 * Context: May sleep. Claims and releases execution queue lock during its run.
542 */
bnx2x_vlan_mac_h_read_lock(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o)543 int bnx2x_vlan_mac_h_read_lock(struct bnx2x *bp,
544 struct bnx2x_vlan_mac_obj *o)
545 {
546 int rc;
547
548 spin_lock_bh(&o->exe_queue.lock);
549 rc = __bnx2x_vlan_mac_h_read_lock(bp, o);
550 spin_unlock_bh(&o->exe_queue.lock);
551
552 return rc;
553 }
554
555 /**
556 * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
557 *
558 * @bp: device handle
559 * @o: vlan_mac object
560 *
561 * Context: Should be called under execution queue lock. Notice if a pending
562 * execution exists, it would be performed if this was the last
563 * reader. possibly releasing and reclaiming the execution queue lock.
564 */
__bnx2x_vlan_mac_h_read_unlock(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o)565 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
566 struct bnx2x_vlan_mac_obj *o)
567 {
568 if (!o->head_reader) {
569 BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
570 #ifdef BNX2X_STOP_ON_ERROR
571 bnx2x_panic();
572 #endif
573 } else {
574 o->head_reader--;
575 DP(BNX2X_MSG_SP, "vlan_mac_lock - decreased readers to %d\n",
576 o->head_reader);
577 }
578
579 /* It's possible a new pending execution was added, and that this reader
580 * was last - if so we need to execute the command.
581 */
582 if (!o->head_reader && o->head_exe_request) {
583 DP(BNX2X_MSG_SP, "vlan_mac_lock - reader release encountered a pending request\n");
584
585 /* Writer release will do the trick */
586 __bnx2x_vlan_mac_h_write_unlock(bp, o);
587 }
588 }
589
590 /**
591 * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
592 *
593 * @bp: device handle
594 * @o: vlan_mac object
595 *
596 * Context: Notice if a pending execution exists, it would be performed if this
597 * was the last reader. Claims and releases the execution queue lock
598 * during its run.
599 */
bnx2x_vlan_mac_h_read_unlock(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o)600 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x *bp,
601 struct bnx2x_vlan_mac_obj *o)
602 {
603 spin_lock_bh(&o->exe_queue.lock);
604 __bnx2x_vlan_mac_h_read_unlock(bp, o);
605 spin_unlock_bh(&o->exe_queue.lock);
606 }
607
bnx2x_get_n_elements(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,int n,u8 * base,u8 stride,u8 size)608 static int bnx2x_get_n_elements(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *o,
609 int n, u8 *base, u8 stride, u8 size)
610 {
611 struct bnx2x_vlan_mac_registry_elem *pos;
612 u8 *next = base;
613 int counter = 0;
614 int read_lock;
615
616 DP(BNX2X_MSG_SP, "get_n_elements - taking vlan_mac_lock (reader)\n");
617 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
618 if (read_lock != 0)
619 BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
620
621 /* traverse list */
622 list_for_each_entry(pos, &o->head, link) {
623 if (counter < n) {
624 memcpy(next, &pos->u, size);
625 counter++;
626 DP(BNX2X_MSG_SP, "copied element number %d to address %p element was:\n",
627 counter, next);
628 next += stride + size;
629 }
630 }
631
632 if (read_lock == 0) {
633 DP(BNX2X_MSG_SP, "get_n_elements - releasing vlan_mac_lock (reader)\n");
634 bnx2x_vlan_mac_h_read_unlock(bp, o);
635 }
636
637 return counter * ETH_ALEN;
638 }
639
640 /* check_add() callbacks */
bnx2x_check_mac_add(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,union bnx2x_classification_ramrod_data * data)641 static int bnx2x_check_mac_add(struct bnx2x *bp,
642 struct bnx2x_vlan_mac_obj *o,
643 union bnx2x_classification_ramrod_data *data)
644 {
645 struct bnx2x_vlan_mac_registry_elem *pos;
646
647 DP(BNX2X_MSG_SP, "Checking MAC %pM for ADD command\n", data->mac.mac);
648
649 if (!is_valid_ether_addr(data->mac.mac))
650 return -EINVAL;
651
652 /* Check if a requested MAC already exists */
653 list_for_each_entry(pos, &o->head, link)
654 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
655 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
656 return -EEXIST;
657
658 return 0;
659 }
660
bnx2x_check_vlan_add(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,union bnx2x_classification_ramrod_data * data)661 static int bnx2x_check_vlan_add(struct bnx2x *bp,
662 struct bnx2x_vlan_mac_obj *o,
663 union bnx2x_classification_ramrod_data *data)
664 {
665 struct bnx2x_vlan_mac_registry_elem *pos;
666
667 DP(BNX2X_MSG_SP, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
668
669 list_for_each_entry(pos, &o->head, link)
670 if (data->vlan.vlan == pos->u.vlan.vlan)
671 return -EEXIST;
672
673 return 0;
674 }
675
bnx2x_check_vlan_mac_add(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,union bnx2x_classification_ramrod_data * data)676 static int bnx2x_check_vlan_mac_add(struct bnx2x *bp,
677 struct bnx2x_vlan_mac_obj *o,
678 union bnx2x_classification_ramrod_data *data)
679 {
680 struct bnx2x_vlan_mac_registry_elem *pos;
681
682 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
683 data->vlan_mac.mac, data->vlan_mac.vlan);
684
685 list_for_each_entry(pos, &o->head, link)
686 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
687 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
688 ETH_ALEN)) &&
689 (data->vlan_mac.is_inner_mac ==
690 pos->u.vlan_mac.is_inner_mac))
691 return -EEXIST;
692
693 return 0;
694 }
695
696 /* check_del() callbacks */
697 static struct bnx2x_vlan_mac_registry_elem *
bnx2x_check_mac_del(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,union bnx2x_classification_ramrod_data * data)698 bnx2x_check_mac_del(struct bnx2x *bp,
699 struct bnx2x_vlan_mac_obj *o,
700 union bnx2x_classification_ramrod_data *data)
701 {
702 struct bnx2x_vlan_mac_registry_elem *pos;
703
704 DP(BNX2X_MSG_SP, "Checking MAC %pM for DEL command\n", data->mac.mac);
705
706 list_for_each_entry(pos, &o->head, link)
707 if (ether_addr_equal(data->mac.mac, pos->u.mac.mac) &&
708 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
709 return pos;
710
711 return NULL;
712 }
713
714 static struct bnx2x_vlan_mac_registry_elem *
bnx2x_check_vlan_del(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,union bnx2x_classification_ramrod_data * data)715 bnx2x_check_vlan_del(struct bnx2x *bp,
716 struct bnx2x_vlan_mac_obj *o,
717 union bnx2x_classification_ramrod_data *data)
718 {
719 struct bnx2x_vlan_mac_registry_elem *pos;
720
721 DP(BNX2X_MSG_SP, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
722
723 list_for_each_entry(pos, &o->head, link)
724 if (data->vlan.vlan == pos->u.vlan.vlan)
725 return pos;
726
727 return NULL;
728 }
729
730 static struct bnx2x_vlan_mac_registry_elem *
bnx2x_check_vlan_mac_del(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,union bnx2x_classification_ramrod_data * data)731 bnx2x_check_vlan_mac_del(struct bnx2x *bp,
732 struct bnx2x_vlan_mac_obj *o,
733 union bnx2x_classification_ramrod_data *data)
734 {
735 struct bnx2x_vlan_mac_registry_elem *pos;
736
737 DP(BNX2X_MSG_SP, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
738 data->vlan_mac.mac, data->vlan_mac.vlan);
739
740 list_for_each_entry(pos, &o->head, link)
741 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
742 (!memcmp(data->vlan_mac.mac, pos->u.vlan_mac.mac,
743 ETH_ALEN)) &&
744 (data->vlan_mac.is_inner_mac ==
745 pos->u.vlan_mac.is_inner_mac))
746 return pos;
747
748 return NULL;
749 }
750
751 /* check_move() callback */
bnx2x_check_move(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * src_o,struct bnx2x_vlan_mac_obj * dst_o,union bnx2x_classification_ramrod_data * data)752 static bool bnx2x_check_move(struct bnx2x *bp,
753 struct bnx2x_vlan_mac_obj *src_o,
754 struct bnx2x_vlan_mac_obj *dst_o,
755 union bnx2x_classification_ramrod_data *data)
756 {
757 struct bnx2x_vlan_mac_registry_elem *pos;
758 int rc;
759
760 /* Check if we can delete the requested configuration from the first
761 * object.
762 */
763 pos = src_o->check_del(bp, src_o, data);
764
765 /* check if configuration can be added */
766 rc = dst_o->check_add(bp, dst_o, data);
767
768 /* If this classification can not be added (is already set)
769 * or can't be deleted - return an error.
770 */
771 if (rc || !pos)
772 return false;
773
774 return true;
775 }
776
bnx2x_check_move_always_err(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * src_o,struct bnx2x_vlan_mac_obj * dst_o,union bnx2x_classification_ramrod_data * data)777 static bool bnx2x_check_move_always_err(
778 struct bnx2x *bp,
779 struct bnx2x_vlan_mac_obj *src_o,
780 struct bnx2x_vlan_mac_obj *dst_o,
781 union bnx2x_classification_ramrod_data *data)
782 {
783 return false;
784 }
785
bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj * o)786 static inline u8 bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj *o)
787 {
788 struct bnx2x_raw_obj *raw = &o->raw;
789 u8 rx_tx_flag = 0;
790
791 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
792 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
793 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
794
795 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
796 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
797 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
798
799 return rx_tx_flag;
800 }
801
bnx2x_set_mac_in_nig(struct bnx2x * bp,bool add,unsigned char * dev_addr,int index)802 static void bnx2x_set_mac_in_nig(struct bnx2x *bp,
803 bool add, unsigned char *dev_addr, int index)
804 {
805 u32 wb_data[2];
806 u32 reg_offset = BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM :
807 NIG_REG_LLH0_FUNC_MEM;
808
809 if (!IS_MF_SI(bp) && !IS_MF_AFEX(bp))
810 return;
811
812 if (index > BNX2X_LLH_CAM_MAX_PF_LINE)
813 return;
814
815 DP(BNX2X_MSG_SP, "Going to %s LLH configuration at entry %d\n",
816 (add ? "ADD" : "DELETE"), index);
817
818 if (add) {
819 /* LLH_FUNC_MEM is a u64 WB register */
820 reg_offset += 8*index;
821
822 wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
823 (dev_addr[4] << 8) | dev_addr[5]);
824 wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]);
825
826 REG_WR_DMAE(bp, reg_offset, wb_data, 2);
827 }
828
829 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
830 NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
831 }
832
833 /**
834 * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
835 *
836 * @bp: device handle
837 * @o: queue for which we want to configure this rule
838 * @add: if true the command is an ADD command, DEL otherwise
839 * @opcode: CLASSIFY_RULE_OPCODE_XXX
840 * @hdr: pointer to a header to setup
841 *
842 */
bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,bool add,int opcode,struct eth_classify_cmd_header * hdr)843 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x *bp,
844 struct bnx2x_vlan_mac_obj *o, bool add, int opcode,
845 struct eth_classify_cmd_header *hdr)
846 {
847 struct bnx2x_raw_obj *raw = &o->raw;
848
849 hdr->client_id = raw->cl_id;
850 hdr->func_id = raw->func_id;
851
852 /* Rx or/and Tx (internal switching) configuration ? */
853 hdr->cmd_general_data |=
854 bnx2x_vlan_mac_get_rx_tx_flag(o);
855
856 if (add)
857 hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
858
859 hdr->cmd_general_data |=
860 (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
861 }
862
863 /**
864 * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
865 *
866 * @cid: connection id
867 * @type: BNX2X_FILTER_XXX_PENDING
868 * @hdr: pointer to header to setup
869 * @rule_cnt:
870 *
871 * currently we always configure one rule and echo field to contain a CID and an
872 * opcode type.
873 */
bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid,int type,struct eth_classify_header * hdr,int rule_cnt)874 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid, int type,
875 struct eth_classify_header *hdr, int rule_cnt)
876 {
877 hdr->echo = cpu_to_le32((cid & BNX2X_SWCID_MASK) |
878 (type << BNX2X_SWCID_SHIFT));
879 hdr->rule_cnt = (u8)rule_cnt;
880 }
881
882 /* hw_config() callbacks */
bnx2x_set_one_mac_e2(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,struct bnx2x_exeq_elem * elem,int rule_idx,int cam_offset)883 static void bnx2x_set_one_mac_e2(struct bnx2x *bp,
884 struct bnx2x_vlan_mac_obj *o,
885 struct bnx2x_exeq_elem *elem, int rule_idx,
886 int cam_offset)
887 {
888 struct bnx2x_raw_obj *raw = &o->raw;
889 struct eth_classify_rules_ramrod_data *data =
890 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
891 int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
892 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
893 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
894 unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
895 u8 *mac = elem->cmd_data.vlan_mac.u.mac.mac;
896
897 /* Set LLH CAM entry: currently only iSCSI and ETH macs are
898 * relevant. In addition, current implementation is tuned for a
899 * single ETH MAC.
900 *
901 * When multiple unicast ETH MACs PF configuration in switch
902 * independent mode is required (NetQ, multiple netdev MACs,
903 * etc.), consider better utilisation of 8 per function MAC
904 * entries in the LLH register. There is also
905 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
906 * total number of CAM entries to 16.
907 *
908 * Currently we won't configure NIG for MACs other than a primary ETH
909 * MAC and iSCSI L2 MAC.
910 *
911 * If this MAC is moving from one Queue to another, no need to change
912 * NIG configuration.
913 */
914 if (cmd != BNX2X_VLAN_MAC_MOVE) {
915 if (test_bit(BNX2X_ISCSI_ETH_MAC, vlan_mac_flags))
916 bnx2x_set_mac_in_nig(bp, add, mac,
917 BNX2X_LLH_CAM_ISCSI_ETH_LINE);
918 else if (test_bit(BNX2X_ETH_MAC, vlan_mac_flags))
919 bnx2x_set_mac_in_nig(bp, add, mac,
920 BNX2X_LLH_CAM_ETH_LINE);
921 }
922
923 /* Reset the ramrod data buffer for the first rule */
924 if (rule_idx == 0)
925 memset(data, 0, sizeof(*data));
926
927 /* Setup a command header */
928 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_MAC,
929 &rule_entry->mac.header);
930
931 DP(BNX2X_MSG_SP, "About to %s MAC %pM for Queue %d\n",
932 (add ? "add" : "delete"), mac, raw->cl_id);
933
934 /* Set a MAC itself */
935 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
936 &rule_entry->mac.mac_mid,
937 &rule_entry->mac.mac_lsb, mac);
938 rule_entry->mac.inner_mac =
939 cpu_to_le16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
940
941 /* MOVE: Add a rule that will add this MAC to the target Queue */
942 if (cmd == BNX2X_VLAN_MAC_MOVE) {
943 rule_entry++;
944 rule_cnt++;
945
946 /* Setup ramrod data */
947 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
948 elem->cmd_data.vlan_mac.target_obj,
949 true, CLASSIFY_RULE_OPCODE_MAC,
950 &rule_entry->mac.header);
951
952 /* Set a MAC itself */
953 bnx2x_set_fw_mac_addr(&rule_entry->mac.mac_msb,
954 &rule_entry->mac.mac_mid,
955 &rule_entry->mac.mac_lsb, mac);
956 rule_entry->mac.inner_mac =
957 cpu_to_le16(elem->cmd_data.vlan_mac.
958 u.mac.is_inner_mac);
959 }
960
961 /* Set the ramrod data header */
962 /* TODO: take this to the higher level in order to prevent multiple
963 writing */
964 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
965 rule_cnt);
966 }
967
968 /**
969 * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
970 *
971 * @bp: device handle
972 * @o: queue
973 * @type: the type of echo
974 * @cam_offset: offset in cam memory
975 * @hdr: pointer to a header to setup
976 *
977 * E1/E1H
978 */
bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,int type,int cam_offset,struct mac_configuration_hdr * hdr)979 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x *bp,
980 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset,
981 struct mac_configuration_hdr *hdr)
982 {
983 struct bnx2x_raw_obj *r = &o->raw;
984
985 hdr->length = 1;
986 hdr->offset = (u8)cam_offset;
987 hdr->client_id = cpu_to_le16(0xff);
988 hdr->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
989 (type << BNX2X_SWCID_SHIFT));
990 }
991
bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,bool add,int opcode,u8 * mac,u16 vlan_id,struct mac_configuration_entry * cfg_entry)992 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x *bp,
993 struct bnx2x_vlan_mac_obj *o, bool add, int opcode, u8 *mac,
994 u16 vlan_id, struct mac_configuration_entry *cfg_entry)
995 {
996 struct bnx2x_raw_obj *r = &o->raw;
997 u32 cl_bit_vec = (1 << r->cl_id);
998
999 cfg_entry->clients_bit_vector = cpu_to_le32(cl_bit_vec);
1000 cfg_entry->pf_id = r->func_id;
1001 cfg_entry->vlan_id = cpu_to_le16(vlan_id);
1002
1003 if (add) {
1004 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1005 T_ETH_MAC_COMMAND_SET);
1006 SET_FLAG(cfg_entry->flags,
1007 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE, opcode);
1008
1009 /* Set a MAC in a ramrod data */
1010 bnx2x_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1011 &cfg_entry->middle_mac_addr,
1012 &cfg_entry->lsb_mac_addr, mac);
1013 } else
1014 SET_FLAG(cfg_entry->flags, MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1015 T_ETH_MAC_COMMAND_INVALIDATE);
1016 }
1017
bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,int type,int cam_offset,bool add,u8 * mac,u16 vlan_id,int opcode,struct mac_configuration_cmd * config)1018 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x *bp,
1019 struct bnx2x_vlan_mac_obj *o, int type, int cam_offset, bool add,
1020 u8 *mac, u16 vlan_id, int opcode, struct mac_configuration_cmd *config)
1021 {
1022 struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1023 struct bnx2x_raw_obj *raw = &o->raw;
1024
1025 bnx2x_vlan_mac_set_rdata_hdr_e1x(bp, o, type, cam_offset,
1026 &config->hdr);
1027 bnx2x_vlan_mac_set_cfg_entry_e1x(bp, o, add, opcode, mac, vlan_id,
1028 cfg_entry);
1029
1030 DP(BNX2X_MSG_SP, "%s MAC %pM CLID %d CAM offset %d\n",
1031 (add ? "setting" : "clearing"),
1032 mac, raw->cl_id, cam_offset);
1033 }
1034
1035 /**
1036 * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
1037 *
1038 * @bp: device handle
1039 * @o: bnx2x_vlan_mac_obj
1040 * @elem: bnx2x_exeq_elem
1041 * @rule_idx: rule_idx
1042 * @cam_offset: cam_offset
1043 */
bnx2x_set_one_mac_e1x(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,struct bnx2x_exeq_elem * elem,int rule_idx,int cam_offset)1044 static void bnx2x_set_one_mac_e1x(struct bnx2x *bp,
1045 struct bnx2x_vlan_mac_obj *o,
1046 struct bnx2x_exeq_elem *elem, int rule_idx,
1047 int cam_offset)
1048 {
1049 struct bnx2x_raw_obj *raw = &o->raw;
1050 struct mac_configuration_cmd *config =
1051 (struct mac_configuration_cmd *)(raw->rdata);
1052 /* 57710 and 57711 do not support MOVE command,
1053 * so it's either ADD or DEL
1054 */
1055 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1056 true : false;
1057
1058 /* Reset the ramrod data buffer */
1059 memset(config, 0, sizeof(*config));
1060
1061 bnx2x_vlan_mac_set_rdata_e1x(bp, o, raw->state,
1062 cam_offset, add,
1063 elem->cmd_data.vlan_mac.u.mac.mac, 0,
1064 ETH_VLAN_FILTER_ANY_VLAN, config);
1065 }
1066
bnx2x_set_one_vlan_e2(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,struct bnx2x_exeq_elem * elem,int rule_idx,int cam_offset)1067 static void bnx2x_set_one_vlan_e2(struct bnx2x *bp,
1068 struct bnx2x_vlan_mac_obj *o,
1069 struct bnx2x_exeq_elem *elem, int rule_idx,
1070 int cam_offset)
1071 {
1072 struct bnx2x_raw_obj *raw = &o->raw;
1073 struct eth_classify_rules_ramrod_data *data =
1074 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1075 int rule_cnt = rule_idx + 1;
1076 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1077 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1078 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1079 u16 vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1080
1081 /* Reset the ramrod data buffer for the first rule */
1082 if (rule_idx == 0)
1083 memset(data, 0, sizeof(*data));
1084
1085 /* Set a rule header */
1086 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1087 &rule_entry->vlan.header);
1088
1089 DP(BNX2X_MSG_SP, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1090 vlan);
1091
1092 /* Set a VLAN itself */
1093 rule_entry->vlan.vlan = cpu_to_le16(vlan);
1094
1095 /* MOVE: Add a rule that will add this MAC to the target Queue */
1096 if (cmd == BNX2X_VLAN_MAC_MOVE) {
1097 rule_entry++;
1098 rule_cnt++;
1099
1100 /* Setup ramrod data */
1101 bnx2x_vlan_mac_set_cmd_hdr_e2(bp,
1102 elem->cmd_data.vlan_mac.target_obj,
1103 true, CLASSIFY_RULE_OPCODE_VLAN,
1104 &rule_entry->vlan.header);
1105
1106 /* Set a VLAN itself */
1107 rule_entry->vlan.vlan = cpu_to_le16(vlan);
1108 }
1109
1110 /* Set the ramrod data header */
1111 /* TODO: take this to the higher level in order to prevent multiple
1112 writing */
1113 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1114 rule_cnt);
1115 }
1116
bnx2x_set_one_vlan_mac_e2(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,struct bnx2x_exeq_elem * elem,int rule_idx,int cam_offset)1117 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x *bp,
1118 struct bnx2x_vlan_mac_obj *o,
1119 struct bnx2x_exeq_elem *elem,
1120 int rule_idx, int cam_offset)
1121 {
1122 struct bnx2x_raw_obj *raw = &o->raw;
1123 struct eth_classify_rules_ramrod_data *data =
1124 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1125 int rule_cnt = rule_idx + 1;
1126 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1127 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1128 bool add = (cmd == BNX2X_VLAN_MAC_ADD) ? true : false;
1129 u16 vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1130 u8 *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1131 u16 inner_mac;
1132
1133 /* Reset the ramrod data buffer for the first rule */
1134 if (rule_idx == 0)
1135 memset(data, 0, sizeof(*data));
1136
1137 /* Set a rule header */
1138 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1139 &rule_entry->pair.header);
1140
1141 /* Set VLAN and MAC themselves */
1142 rule_entry->pair.vlan = cpu_to_le16(vlan);
1143 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1144 &rule_entry->pair.mac_mid,
1145 &rule_entry->pair.mac_lsb, mac);
1146 inner_mac = elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1147 rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1148 /* MOVE: Add a rule that will add this MAC/VLAN to the target Queue */
1149 if (cmd == BNX2X_VLAN_MAC_MOVE) {
1150 struct bnx2x_vlan_mac_obj *target_obj;
1151
1152 rule_entry++;
1153 rule_cnt++;
1154
1155 /* Setup ramrod data */
1156 target_obj = elem->cmd_data.vlan_mac.target_obj;
1157 bnx2x_vlan_mac_set_cmd_hdr_e2(bp, target_obj,
1158 true, CLASSIFY_RULE_OPCODE_PAIR,
1159 &rule_entry->pair.header);
1160
1161 /* Set a VLAN itself */
1162 rule_entry->pair.vlan = cpu_to_le16(vlan);
1163 bnx2x_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1164 &rule_entry->pair.mac_mid,
1165 &rule_entry->pair.mac_lsb, mac);
1166 rule_entry->pair.inner_mac = cpu_to_le16(inner_mac);
1167 }
1168
1169 /* Set the ramrod data header */
1170 bnx2x_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1171 rule_cnt);
1172 }
1173
1174 /**
1175 * bnx2x_set_one_vlan_mac_e1h -
1176 *
1177 * @bp: device handle
1178 * @o: bnx2x_vlan_mac_obj
1179 * @elem: bnx2x_exeq_elem
1180 * @rule_idx: rule_idx
1181 * @cam_offset: cam_offset
1182 */
bnx2x_set_one_vlan_mac_e1h(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,struct bnx2x_exeq_elem * elem,int rule_idx,int cam_offset)1183 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x *bp,
1184 struct bnx2x_vlan_mac_obj *o,
1185 struct bnx2x_exeq_elem *elem,
1186 int rule_idx, int cam_offset)
1187 {
1188 struct bnx2x_raw_obj *raw = &o->raw;
1189 struct mac_configuration_cmd *config =
1190 (struct mac_configuration_cmd *)(raw->rdata);
1191 /* 57710 and 57711 do not support MOVE command,
1192 * so it's either ADD or DEL
1193 */
1194 bool add = (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1195 true : false;
1196
1197 /* Reset the ramrod data buffer */
1198 memset(config, 0, sizeof(*config));
1199
1200 bnx2x_vlan_mac_set_rdata_e1x(bp, o, BNX2X_FILTER_VLAN_MAC_PENDING,
1201 cam_offset, add,
1202 elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1203 elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1204 ETH_VLAN_FILTER_CLASSIFY, config);
1205 }
1206
1207 /**
1208 * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1209 *
1210 * @bp: device handle
1211 * @p: command parameters
1212 * @ppos: pointer to the cookie
1213 *
1214 * reconfigure next MAC/VLAN/VLAN-MAC element from the
1215 * previously configured elements list.
1216 *
1217 * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1218 * into an account
1219 *
1220 * pointer to the cookie - that should be given back in the next call to make
1221 * function handle the next element. If *ppos is set to NULL it will restart the
1222 * iterator. If returned *ppos == NULL this means that the last element has been
1223 * handled.
1224 *
1225 */
bnx2x_vlan_mac_restore(struct bnx2x * bp,struct bnx2x_vlan_mac_ramrod_params * p,struct bnx2x_vlan_mac_registry_elem ** ppos)1226 static int bnx2x_vlan_mac_restore(struct bnx2x *bp,
1227 struct bnx2x_vlan_mac_ramrod_params *p,
1228 struct bnx2x_vlan_mac_registry_elem **ppos)
1229 {
1230 struct bnx2x_vlan_mac_registry_elem *pos;
1231 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1232
1233 /* If list is empty - there is nothing to do here */
1234 if (list_empty(&o->head)) {
1235 *ppos = NULL;
1236 return 0;
1237 }
1238
1239 /* make a step... */
1240 if (*ppos == NULL)
1241 *ppos = list_first_entry(&o->head,
1242 struct bnx2x_vlan_mac_registry_elem,
1243 link);
1244 else
1245 *ppos = list_next_entry(*ppos, link);
1246
1247 pos = *ppos;
1248
1249 /* If it's the last step - return NULL */
1250 if (list_is_last(&pos->link, &o->head))
1251 *ppos = NULL;
1252
1253 /* Prepare a 'user_req' */
1254 memcpy(&p->user_req.u, &pos->u, sizeof(pos->u));
1255
1256 /* Set the command */
1257 p->user_req.cmd = BNX2X_VLAN_MAC_ADD;
1258
1259 /* Set vlan_mac_flags */
1260 p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1261
1262 /* Set a restore bit */
1263 __set_bit(RAMROD_RESTORE, &p->ramrod_flags);
1264
1265 return bnx2x_config_vlan_mac(bp, p);
1266 }
1267
1268 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1269 * pointer to an element with a specific criteria and NULL if such an element
1270 * hasn't been found.
1271 */
bnx2x_exeq_get_mac(struct bnx2x_exe_queue_obj * o,struct bnx2x_exeq_elem * elem)1272 static struct bnx2x_exeq_elem *bnx2x_exeq_get_mac(
1273 struct bnx2x_exe_queue_obj *o,
1274 struct bnx2x_exeq_elem *elem)
1275 {
1276 struct bnx2x_exeq_elem *pos;
1277 struct bnx2x_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1278
1279 /* Check pending for execution commands */
1280 list_for_each_entry(pos, &o->exe_queue, link)
1281 if (!memcmp(&pos->cmd_data.vlan_mac.u.mac, data,
1282 sizeof(*data)) &&
1283 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1284 return pos;
1285
1286 return NULL;
1287 }
1288
bnx2x_exeq_get_vlan(struct bnx2x_exe_queue_obj * o,struct bnx2x_exeq_elem * elem)1289 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan(
1290 struct bnx2x_exe_queue_obj *o,
1291 struct bnx2x_exeq_elem *elem)
1292 {
1293 struct bnx2x_exeq_elem *pos;
1294 struct bnx2x_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1295
1296 /* Check pending for execution commands */
1297 list_for_each_entry(pos, &o->exe_queue, link)
1298 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan, data,
1299 sizeof(*data)) &&
1300 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1301 return pos;
1302
1303 return NULL;
1304 }
1305
bnx2x_exeq_get_vlan_mac(struct bnx2x_exe_queue_obj * o,struct bnx2x_exeq_elem * elem)1306 static struct bnx2x_exeq_elem *bnx2x_exeq_get_vlan_mac(
1307 struct bnx2x_exe_queue_obj *o,
1308 struct bnx2x_exeq_elem *elem)
1309 {
1310 struct bnx2x_exeq_elem *pos;
1311 struct bnx2x_vlan_mac_ramrod_data *data =
1312 &elem->cmd_data.vlan_mac.u.vlan_mac;
1313
1314 /* Check pending for execution commands */
1315 list_for_each_entry(pos, &o->exe_queue, link)
1316 if (!memcmp(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1317 sizeof(*data)) &&
1318 (pos->cmd_data.vlan_mac.cmd ==
1319 elem->cmd_data.vlan_mac.cmd))
1320 return pos;
1321
1322 return NULL;
1323 }
1324
1325 /**
1326 * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1327 *
1328 * @bp: device handle
1329 * @qo: bnx2x_qable_obj
1330 * @elem: bnx2x_exeq_elem
1331 *
1332 * Checks that the requested configuration can be added. If yes and if
1333 * requested, consume CAM credit.
1334 *
1335 * The 'validate' is run after the 'optimize'.
1336 *
1337 */
bnx2x_validate_vlan_mac_add(struct bnx2x * bp,union bnx2x_qable_obj * qo,struct bnx2x_exeq_elem * elem)1338 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x *bp,
1339 union bnx2x_qable_obj *qo,
1340 struct bnx2x_exeq_elem *elem)
1341 {
1342 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1343 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1344 int rc;
1345
1346 /* Check the registry */
1347 rc = o->check_add(bp, o, &elem->cmd_data.vlan_mac.u);
1348 if (rc) {
1349 DP(BNX2X_MSG_SP, "ADD command is not allowed considering current registry state.\n");
1350 return rc;
1351 }
1352
1353 /* Check if there is a pending ADD command for this
1354 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1355 */
1356 if (exeq->get(exeq, elem)) {
1357 DP(BNX2X_MSG_SP, "There is a pending ADD command already\n");
1358 return -EEXIST;
1359 }
1360
1361 /* TODO: Check the pending MOVE from other objects where this
1362 * object is a destination object.
1363 */
1364
1365 /* Consume the credit if not requested not to */
1366 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1367 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1368 o->get_credit(o)))
1369 return -EINVAL;
1370
1371 return 0;
1372 }
1373
1374 /**
1375 * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1376 *
1377 * @bp: device handle
1378 * @qo: quable object to check
1379 * @elem: element that needs to be deleted
1380 *
1381 * Checks that the requested configuration can be deleted. If yes and if
1382 * requested, returns a CAM credit.
1383 *
1384 * The 'validate' is run after the 'optimize'.
1385 */
bnx2x_validate_vlan_mac_del(struct bnx2x * bp,union bnx2x_qable_obj * qo,struct bnx2x_exeq_elem * elem)1386 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x *bp,
1387 union bnx2x_qable_obj *qo,
1388 struct bnx2x_exeq_elem *elem)
1389 {
1390 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1391 struct bnx2x_vlan_mac_registry_elem *pos;
1392 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1393 struct bnx2x_exeq_elem query_elem;
1394
1395 /* If this classification can not be deleted (doesn't exist)
1396 * - return a BNX2X_EXIST.
1397 */
1398 pos = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1399 if (!pos) {
1400 DP(BNX2X_MSG_SP, "DEL command is not allowed considering current registry state\n");
1401 return -EEXIST;
1402 }
1403
1404 /* Check if there are pending DEL or MOVE commands for this
1405 * MAC/VLAN/VLAN-MAC. Return an error if so.
1406 */
1407 memcpy(&query_elem, elem, sizeof(query_elem));
1408
1409 /* Check for MOVE commands */
1410 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_MOVE;
1411 if (exeq->get(exeq, &query_elem)) {
1412 BNX2X_ERR("There is a pending MOVE command already\n");
1413 return -EINVAL;
1414 }
1415
1416 /* Check for DEL commands */
1417 if (exeq->get(exeq, elem)) {
1418 DP(BNX2X_MSG_SP, "There is a pending DEL command already\n");
1419 return -EEXIST;
1420 }
1421
1422 /* Return the credit to the credit pool if not requested not to */
1423 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1424 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1425 o->put_credit(o))) {
1426 BNX2X_ERR("Failed to return a credit\n");
1427 return -EINVAL;
1428 }
1429
1430 return 0;
1431 }
1432
1433 /**
1434 * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1435 *
1436 * @bp: device handle
1437 * @qo: quable object to check (source)
1438 * @elem: element that needs to be moved
1439 *
1440 * Checks that the requested configuration can be moved. If yes and if
1441 * requested, returns a CAM credit.
1442 *
1443 * The 'validate' is run after the 'optimize'.
1444 */
bnx2x_validate_vlan_mac_move(struct bnx2x * bp,union bnx2x_qable_obj * qo,struct bnx2x_exeq_elem * elem)1445 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x *bp,
1446 union bnx2x_qable_obj *qo,
1447 struct bnx2x_exeq_elem *elem)
1448 {
1449 struct bnx2x_vlan_mac_obj *src_o = &qo->vlan_mac;
1450 struct bnx2x_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1451 struct bnx2x_exeq_elem query_elem;
1452 struct bnx2x_exe_queue_obj *src_exeq = &src_o->exe_queue;
1453 struct bnx2x_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1454
1455 /* Check if we can perform this operation based on the current registry
1456 * state.
1457 */
1458 if (!src_o->check_move(bp, src_o, dest_o,
1459 &elem->cmd_data.vlan_mac.u)) {
1460 DP(BNX2X_MSG_SP, "MOVE command is not allowed considering current registry state\n");
1461 return -EINVAL;
1462 }
1463
1464 /* Check if there is an already pending DEL or MOVE command for the
1465 * source object or ADD command for a destination object. Return an
1466 * error if so.
1467 */
1468 memcpy(&query_elem, elem, sizeof(query_elem));
1469
1470 /* Check DEL on source */
1471 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1472 if (src_exeq->get(src_exeq, &query_elem)) {
1473 BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1474 return -EINVAL;
1475 }
1476
1477 /* Check MOVE on source */
1478 if (src_exeq->get(src_exeq, elem)) {
1479 DP(BNX2X_MSG_SP, "There is a pending MOVE command already\n");
1480 return -EEXIST;
1481 }
1482
1483 /* Check ADD on destination */
1484 query_elem.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1485 if (dest_exeq->get(dest_exeq, &query_elem)) {
1486 BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1487 return -EINVAL;
1488 }
1489
1490 /* Consume the credit if not requested not to */
1491 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST,
1492 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1493 dest_o->get_credit(dest_o)))
1494 return -EINVAL;
1495
1496 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1497 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1498 src_o->put_credit(src_o))) {
1499 /* return the credit taken from dest... */
1500 dest_o->put_credit(dest_o);
1501 return -EINVAL;
1502 }
1503
1504 return 0;
1505 }
1506
bnx2x_validate_vlan_mac(struct bnx2x * bp,union bnx2x_qable_obj * qo,struct bnx2x_exeq_elem * elem)1507 static int bnx2x_validate_vlan_mac(struct bnx2x *bp,
1508 union bnx2x_qable_obj *qo,
1509 struct bnx2x_exeq_elem *elem)
1510 {
1511 switch (elem->cmd_data.vlan_mac.cmd) {
1512 case BNX2X_VLAN_MAC_ADD:
1513 return bnx2x_validate_vlan_mac_add(bp, qo, elem);
1514 case BNX2X_VLAN_MAC_DEL:
1515 return bnx2x_validate_vlan_mac_del(bp, qo, elem);
1516 case BNX2X_VLAN_MAC_MOVE:
1517 return bnx2x_validate_vlan_mac_move(bp, qo, elem);
1518 default:
1519 return -EINVAL;
1520 }
1521 }
1522
bnx2x_remove_vlan_mac(struct bnx2x * bp,union bnx2x_qable_obj * qo,struct bnx2x_exeq_elem * elem)1523 static int bnx2x_remove_vlan_mac(struct bnx2x *bp,
1524 union bnx2x_qable_obj *qo,
1525 struct bnx2x_exeq_elem *elem)
1526 {
1527 int rc = 0;
1528
1529 /* If consumption wasn't required, nothing to do */
1530 if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1531 &elem->cmd_data.vlan_mac.vlan_mac_flags))
1532 return 0;
1533
1534 switch (elem->cmd_data.vlan_mac.cmd) {
1535 case BNX2X_VLAN_MAC_ADD:
1536 case BNX2X_VLAN_MAC_MOVE:
1537 rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1538 break;
1539 case BNX2X_VLAN_MAC_DEL:
1540 rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1541 break;
1542 default:
1543 return -EINVAL;
1544 }
1545
1546 if (rc != true)
1547 return -EINVAL;
1548
1549 return 0;
1550 }
1551
1552 /**
1553 * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1554 *
1555 * @bp: device handle
1556 * @o: bnx2x_vlan_mac_obj
1557 *
1558 */
bnx2x_wait_vlan_mac(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o)1559 static int bnx2x_wait_vlan_mac(struct bnx2x *bp,
1560 struct bnx2x_vlan_mac_obj *o)
1561 {
1562 int cnt = 5000, rc;
1563 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1564 struct bnx2x_raw_obj *raw = &o->raw;
1565
1566 while (cnt--) {
1567 /* Wait for the current command to complete */
1568 rc = raw->wait_comp(bp, raw);
1569 if (rc)
1570 return rc;
1571
1572 /* Wait until there are no pending commands */
1573 if (!bnx2x_exe_queue_empty(exeq))
1574 usleep_range(1000, 2000);
1575 else
1576 return 0;
1577 }
1578
1579 return -EBUSY;
1580 }
1581
__bnx2x_vlan_mac_execute_step(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,unsigned long * ramrod_flags)1582 static int __bnx2x_vlan_mac_execute_step(struct bnx2x *bp,
1583 struct bnx2x_vlan_mac_obj *o,
1584 unsigned long *ramrod_flags)
1585 {
1586 int rc = 0;
1587
1588 spin_lock_bh(&o->exe_queue.lock);
1589
1590 DP(BNX2X_MSG_SP, "vlan_mac_execute_step - trying to take writer lock\n");
1591 rc = __bnx2x_vlan_mac_h_write_trylock(bp, o);
1592
1593 if (rc != 0) {
1594 __bnx2x_vlan_mac_h_pend(bp, o, *ramrod_flags);
1595
1596 /* Calling function should not differentiate between this case
1597 * and the case in which there is already a pending ramrod
1598 */
1599 rc = 1;
1600 } else {
1601 rc = bnx2x_exe_queue_step(bp, &o->exe_queue, ramrod_flags);
1602 }
1603 spin_unlock_bh(&o->exe_queue.lock);
1604
1605 return rc;
1606 }
1607
1608 /**
1609 * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1610 *
1611 * @bp: device handle
1612 * @o: bnx2x_vlan_mac_obj
1613 * @cqe: completion element
1614 * @ramrod_flags: if set schedule next execution chunk
1615 *
1616 */
bnx2x_complete_vlan_mac(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,union event_ring_elem * cqe,unsigned long * ramrod_flags)1617 static int bnx2x_complete_vlan_mac(struct bnx2x *bp,
1618 struct bnx2x_vlan_mac_obj *o,
1619 union event_ring_elem *cqe,
1620 unsigned long *ramrod_flags)
1621 {
1622 struct bnx2x_raw_obj *r = &o->raw;
1623 int rc;
1624
1625 /* Clearing the pending list & raw state should be made
1626 * atomically (as execution flow assumes they represent the same).
1627 */
1628 spin_lock_bh(&o->exe_queue.lock);
1629
1630 /* Reset pending list */
1631 __bnx2x_exe_queue_reset_pending(bp, &o->exe_queue);
1632
1633 /* Clear pending */
1634 r->clear_pending(r);
1635
1636 spin_unlock_bh(&o->exe_queue.lock);
1637
1638 /* If ramrod failed this is most likely a SW bug */
1639 if (cqe->message.error)
1640 return -EINVAL;
1641
1642 /* Run the next bulk of pending commands if requested */
1643 if (test_bit(RAMROD_CONT, ramrod_flags)) {
1644 rc = __bnx2x_vlan_mac_execute_step(bp, o, ramrod_flags);
1645
1646 if (rc < 0)
1647 return rc;
1648 }
1649
1650 /* If there is more work to do return PENDING */
1651 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1652 return 1;
1653
1654 return 0;
1655 }
1656
1657 /**
1658 * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1659 *
1660 * @bp: device handle
1661 * @qo: bnx2x_qable_obj
1662 * @elem: bnx2x_exeq_elem
1663 */
bnx2x_optimize_vlan_mac(struct bnx2x * bp,union bnx2x_qable_obj * qo,struct bnx2x_exeq_elem * elem)1664 static int bnx2x_optimize_vlan_mac(struct bnx2x *bp,
1665 union bnx2x_qable_obj *qo,
1666 struct bnx2x_exeq_elem *elem)
1667 {
1668 struct bnx2x_exeq_elem query, *pos;
1669 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac;
1670 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
1671
1672 memcpy(&query, elem, sizeof(query));
1673
1674 switch (elem->cmd_data.vlan_mac.cmd) {
1675 case BNX2X_VLAN_MAC_ADD:
1676 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_DEL;
1677 break;
1678 case BNX2X_VLAN_MAC_DEL:
1679 query.cmd_data.vlan_mac.cmd = BNX2X_VLAN_MAC_ADD;
1680 break;
1681 default:
1682 /* Don't handle anything other than ADD or DEL */
1683 return 0;
1684 }
1685
1686 /* If we found the appropriate element - delete it */
1687 pos = exeq->get(exeq, &query);
1688 if (pos) {
1689
1690 /* Return the credit of the optimized command */
1691 if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT,
1692 &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1693 if ((query.cmd_data.vlan_mac.cmd ==
1694 BNX2X_VLAN_MAC_ADD) && !o->put_credit(o)) {
1695 BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1696 return -EINVAL;
1697 } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1698 BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1699 return -EINVAL;
1700 }
1701 }
1702
1703 DP(BNX2X_MSG_SP, "Optimizing %s command\n",
1704 (elem->cmd_data.vlan_mac.cmd == BNX2X_VLAN_MAC_ADD) ?
1705 "ADD" : "DEL");
1706
1707 list_del(&pos->link);
1708 bnx2x_exe_queue_free_elem(bp, pos);
1709 return 1;
1710 }
1711
1712 return 0;
1713 }
1714
1715 /**
1716 * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1717 *
1718 * @bp: device handle
1719 * @o: vlan object
1720 * @elem: element
1721 * @restore: to restore or not
1722 * @re: registry
1723 *
1724 * prepare a registry element according to the current command request.
1725 */
bnx2x_vlan_mac_get_registry_elem(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,struct bnx2x_exeq_elem * elem,bool restore,struct bnx2x_vlan_mac_registry_elem ** re)1726 static inline int bnx2x_vlan_mac_get_registry_elem(
1727 struct bnx2x *bp,
1728 struct bnx2x_vlan_mac_obj *o,
1729 struct bnx2x_exeq_elem *elem,
1730 bool restore,
1731 struct bnx2x_vlan_mac_registry_elem **re)
1732 {
1733 enum bnx2x_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1734 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1735
1736 /* Allocate a new registry element if needed. */
1737 if (!restore &&
1738 ((cmd == BNX2X_VLAN_MAC_ADD) || (cmd == BNX2X_VLAN_MAC_MOVE))) {
1739 reg_elem = kzalloc(sizeof(*reg_elem), GFP_ATOMIC);
1740 if (!reg_elem)
1741 return -ENOMEM;
1742
1743 /* Get a new CAM offset */
1744 if (!o->get_cam_offset(o, ®_elem->cam_offset)) {
1745 /* This shall never happen, because we have checked the
1746 * CAM availability in the 'validate'.
1747 */
1748 WARN_ON(1);
1749 kfree(reg_elem);
1750 return -EINVAL;
1751 }
1752
1753 DP(BNX2X_MSG_SP, "Got cam offset %d\n", reg_elem->cam_offset);
1754
1755 /* Set a VLAN-MAC data */
1756 memcpy(®_elem->u, &elem->cmd_data.vlan_mac.u,
1757 sizeof(reg_elem->u));
1758
1759 /* Copy the flags (needed for DEL and RESTORE flows) */
1760 reg_elem->vlan_mac_flags =
1761 elem->cmd_data.vlan_mac.vlan_mac_flags;
1762 } else /* DEL, RESTORE */
1763 reg_elem = o->check_del(bp, o, &elem->cmd_data.vlan_mac.u);
1764
1765 *re = reg_elem;
1766 return 0;
1767 }
1768
1769 /**
1770 * bnx2x_execute_vlan_mac - execute vlan mac command
1771 *
1772 * @bp: device handle
1773 * @qo: bnx2x_qable_obj pointer
1774 * @exe_chunk: chunk
1775 * @ramrod_flags: flags
1776 *
1777 * go and send a ramrod!
1778 */
bnx2x_execute_vlan_mac(struct bnx2x * bp,union bnx2x_qable_obj * qo,struct list_head * exe_chunk,unsigned long * ramrod_flags)1779 static int bnx2x_execute_vlan_mac(struct bnx2x *bp,
1780 union bnx2x_qable_obj *qo,
1781 struct list_head *exe_chunk,
1782 unsigned long *ramrod_flags)
1783 {
1784 struct bnx2x_exeq_elem *elem;
1785 struct bnx2x_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1786 struct bnx2x_raw_obj *r = &o->raw;
1787 int rc, idx = 0;
1788 bool restore = test_bit(RAMROD_RESTORE, ramrod_flags);
1789 bool drv_only = test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1790 struct bnx2x_vlan_mac_registry_elem *reg_elem;
1791 enum bnx2x_vlan_mac_cmd cmd;
1792
1793 /* If DRIVER_ONLY execution is requested, cleanup a registry
1794 * and exit. Otherwise send a ramrod to FW.
1795 */
1796 if (!drv_only) {
1797 WARN_ON(r->check_pending(r));
1798
1799 /* Set pending */
1800 r->set_pending(r);
1801
1802 /* Fill the ramrod data */
1803 list_for_each_entry(elem, exe_chunk, link) {
1804 cmd = elem->cmd_data.vlan_mac.cmd;
1805 /* We will add to the target object in MOVE command, so
1806 * change the object for a CAM search.
1807 */
1808 if (cmd == BNX2X_VLAN_MAC_MOVE)
1809 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1810 else
1811 cam_obj = o;
1812
1813 rc = bnx2x_vlan_mac_get_registry_elem(bp, cam_obj,
1814 elem, restore,
1815 ®_elem);
1816 if (rc)
1817 goto error_exit;
1818
1819 WARN_ON(!reg_elem);
1820
1821 /* Push a new entry into the registry */
1822 if (!restore &&
1823 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1824 (cmd == BNX2X_VLAN_MAC_MOVE)))
1825 list_add(®_elem->link, &cam_obj->head);
1826
1827 /* Configure a single command in a ramrod data buffer */
1828 o->set_one_rule(bp, o, elem, idx,
1829 reg_elem->cam_offset);
1830
1831 /* MOVE command consumes 2 entries in the ramrod data */
1832 if (cmd == BNX2X_VLAN_MAC_MOVE)
1833 idx += 2;
1834 else
1835 idx++;
1836 }
1837
1838 /* No need for an explicit memory barrier here as long we would
1839 * need to ensure the ordering of writing to the SPQ element
1840 * and updating of the SPQ producer which involves a memory
1841 * read and we will have to put a full memory barrier there
1842 * (inside bnx2x_sp_post()).
1843 */
1844
1845 rc = bnx2x_sp_post(bp, o->ramrod_cmd, r->cid,
1846 U64_HI(r->rdata_mapping),
1847 U64_LO(r->rdata_mapping),
1848 ETH_CONNECTION_TYPE);
1849 if (rc)
1850 goto error_exit;
1851 }
1852
1853 /* Now, when we are done with the ramrod - clean up the registry */
1854 list_for_each_entry(elem, exe_chunk, link) {
1855 cmd = elem->cmd_data.vlan_mac.cmd;
1856 if ((cmd == BNX2X_VLAN_MAC_DEL) ||
1857 (cmd == BNX2X_VLAN_MAC_MOVE)) {
1858 reg_elem = o->check_del(bp, o,
1859 &elem->cmd_data.vlan_mac.u);
1860
1861 WARN_ON(!reg_elem);
1862
1863 o->put_cam_offset(o, reg_elem->cam_offset);
1864 list_del(®_elem->link);
1865 kfree(reg_elem);
1866 }
1867 }
1868
1869 if (!drv_only)
1870 return 1;
1871 else
1872 return 0;
1873
1874 error_exit:
1875 r->clear_pending(r);
1876
1877 /* Cleanup a registry in case of a failure */
1878 list_for_each_entry(elem, exe_chunk, link) {
1879 cmd = elem->cmd_data.vlan_mac.cmd;
1880
1881 if (cmd == BNX2X_VLAN_MAC_MOVE)
1882 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1883 else
1884 cam_obj = o;
1885
1886 /* Delete all newly added above entries */
1887 if (!restore &&
1888 ((cmd == BNX2X_VLAN_MAC_ADD) ||
1889 (cmd == BNX2X_VLAN_MAC_MOVE))) {
1890 reg_elem = o->check_del(bp, cam_obj,
1891 &elem->cmd_data.vlan_mac.u);
1892 if (reg_elem) {
1893 list_del(®_elem->link);
1894 kfree(reg_elem);
1895 }
1896 }
1897 }
1898
1899 return rc;
1900 }
1901
bnx2x_vlan_mac_push_new_cmd(struct bnx2x * bp,struct bnx2x_vlan_mac_ramrod_params * p)1902 static inline int bnx2x_vlan_mac_push_new_cmd(
1903 struct bnx2x *bp,
1904 struct bnx2x_vlan_mac_ramrod_params *p)
1905 {
1906 struct bnx2x_exeq_elem *elem;
1907 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1908 bool restore = test_bit(RAMROD_RESTORE, &p->ramrod_flags);
1909
1910 /* Allocate the execution queue element */
1911 elem = bnx2x_exe_queue_alloc_elem(bp);
1912 if (!elem)
1913 return -ENOMEM;
1914
1915 /* Set the command 'length' */
1916 switch (p->user_req.cmd) {
1917 case BNX2X_VLAN_MAC_MOVE:
1918 elem->cmd_len = 2;
1919 break;
1920 default:
1921 elem->cmd_len = 1;
1922 }
1923
1924 /* Fill the object specific info */
1925 memcpy(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
1926
1927 /* Try to add a new command to the pending list */
1928 return bnx2x_exe_queue_add(bp, &o->exe_queue, elem, restore);
1929 }
1930
1931 /**
1932 * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1933 *
1934 * @bp: device handle
1935 * @p:
1936 *
1937 */
bnx2x_config_vlan_mac(struct bnx2x * bp,struct bnx2x_vlan_mac_ramrod_params * p)1938 int bnx2x_config_vlan_mac(struct bnx2x *bp,
1939 struct bnx2x_vlan_mac_ramrod_params *p)
1940 {
1941 int rc = 0;
1942 struct bnx2x_vlan_mac_obj *o = p->vlan_mac_obj;
1943 unsigned long *ramrod_flags = &p->ramrod_flags;
1944 bool cont = test_bit(RAMROD_CONT, ramrod_flags);
1945 struct bnx2x_raw_obj *raw = &o->raw;
1946
1947 /*
1948 * Add new elements to the execution list for commands that require it.
1949 */
1950 if (!cont) {
1951 rc = bnx2x_vlan_mac_push_new_cmd(bp, p);
1952 if (rc)
1953 return rc;
1954 }
1955
1956 /* If nothing will be executed further in this iteration we want to
1957 * return PENDING if there are pending commands
1958 */
1959 if (!bnx2x_exe_queue_empty(&o->exe_queue))
1960 rc = 1;
1961
1962 if (test_bit(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
1963 DP(BNX2X_MSG_SP, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1964 raw->clear_pending(raw);
1965 }
1966
1967 /* Execute commands if required */
1968 if (cont || test_bit(RAMROD_EXEC, ramrod_flags) ||
1969 test_bit(RAMROD_COMP_WAIT, ramrod_flags)) {
1970 rc = __bnx2x_vlan_mac_execute_step(bp, p->vlan_mac_obj,
1971 &p->ramrod_flags);
1972 if (rc < 0)
1973 return rc;
1974 }
1975
1976 /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1977 * then user want to wait until the last command is done.
1978 */
1979 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1980 /* Wait maximum for the current exe_queue length iterations plus
1981 * one (for the current pending command).
1982 */
1983 int max_iterations = bnx2x_exe_queue_length(&o->exe_queue) + 1;
1984
1985 while (!bnx2x_exe_queue_empty(&o->exe_queue) &&
1986 max_iterations--) {
1987
1988 /* Wait for the current command to complete */
1989 rc = raw->wait_comp(bp, raw);
1990 if (rc)
1991 return rc;
1992
1993 /* Make a next step */
1994 rc = __bnx2x_vlan_mac_execute_step(bp,
1995 p->vlan_mac_obj,
1996 &p->ramrod_flags);
1997 if (rc < 0)
1998 return rc;
1999 }
2000
2001 return 0;
2002 }
2003
2004 return rc;
2005 }
2006
2007 /**
2008 * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2009 *
2010 * @bp: device handle
2011 * @o: vlan object info
2012 * @vlan_mac_flags: vlan flags
2013 * @ramrod_flags: execution flags to be used for this deletion
2014 *
2015 * if the last operation has completed successfully and there are no
2016 * more elements left, positive value if the last operation has completed
2017 * successfully and there are more previously configured elements, negative
2018 * value is current operation has failed.
2019 */
bnx2x_vlan_mac_del_all(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * o,unsigned long * vlan_mac_flags,unsigned long * ramrod_flags)2020 static int bnx2x_vlan_mac_del_all(struct bnx2x *bp,
2021 struct bnx2x_vlan_mac_obj *o,
2022 unsigned long *vlan_mac_flags,
2023 unsigned long *ramrod_flags)
2024 {
2025 struct bnx2x_vlan_mac_registry_elem *pos = NULL;
2026 struct bnx2x_vlan_mac_ramrod_params p;
2027 struct bnx2x_exe_queue_obj *exeq = &o->exe_queue;
2028 struct bnx2x_exeq_elem *exeq_pos, *exeq_pos_n;
2029 unsigned long flags;
2030 int read_lock;
2031 int rc = 0;
2032
2033 /* Clear pending commands first */
2034
2035 spin_lock_bh(&exeq->lock);
2036
2037 list_for_each_entry_safe(exeq_pos, exeq_pos_n, &exeq->exe_queue, link) {
2038 flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2039 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2040 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2041 rc = exeq->remove(bp, exeq->owner, exeq_pos);
2042 if (rc) {
2043 BNX2X_ERR("Failed to remove command\n");
2044 spin_unlock_bh(&exeq->lock);
2045 return rc;
2046 }
2047 list_del(&exeq_pos->link);
2048 bnx2x_exe_queue_free_elem(bp, exeq_pos);
2049 }
2050 }
2051
2052 spin_unlock_bh(&exeq->lock);
2053
2054 /* Prepare a command request */
2055 memset(&p, 0, sizeof(p));
2056 p.vlan_mac_obj = o;
2057 p.ramrod_flags = *ramrod_flags;
2058 p.user_req.cmd = BNX2X_VLAN_MAC_DEL;
2059
2060 /* Add all but the last VLAN-MAC to the execution queue without actually
2061 * execution anything.
2062 */
2063 __clear_bit(RAMROD_COMP_WAIT, &p.ramrod_flags);
2064 __clear_bit(RAMROD_EXEC, &p.ramrod_flags);
2065 __clear_bit(RAMROD_CONT, &p.ramrod_flags);
2066
2067 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2068 read_lock = bnx2x_vlan_mac_h_read_lock(bp, o);
2069 if (read_lock != 0)
2070 return read_lock;
2071
2072 list_for_each_entry(pos, &o->head, link) {
2073 flags = pos->vlan_mac_flags;
2074 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags) ==
2075 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2076 p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2077 memcpy(&p.user_req.u, &pos->u, sizeof(pos->u));
2078 rc = bnx2x_config_vlan_mac(bp, &p);
2079 if (rc < 0) {
2080 BNX2X_ERR("Failed to add a new DEL command\n");
2081 bnx2x_vlan_mac_h_read_unlock(bp, o);
2082 return rc;
2083 }
2084 }
2085 }
2086
2087 DP(BNX2X_MSG_SP, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2088 bnx2x_vlan_mac_h_read_unlock(bp, o);
2089
2090 p.ramrod_flags = *ramrod_flags;
2091 __set_bit(RAMROD_CONT, &p.ramrod_flags);
2092
2093 return bnx2x_config_vlan_mac(bp, &p);
2094 }
2095
bnx2x_init_raw_obj(struct bnx2x_raw_obj * raw,u8 cl_id,u32 cid,u8 func_id,void * rdata,dma_addr_t rdata_mapping,int state,unsigned long * pstate,bnx2x_obj_type type)2096 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj *raw, u8 cl_id,
2097 u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping, int state,
2098 unsigned long *pstate, bnx2x_obj_type type)
2099 {
2100 raw->func_id = func_id;
2101 raw->cid = cid;
2102 raw->cl_id = cl_id;
2103 raw->rdata = rdata;
2104 raw->rdata_mapping = rdata_mapping;
2105 raw->state = state;
2106 raw->pstate = pstate;
2107 raw->obj_type = type;
2108 raw->check_pending = bnx2x_raw_check_pending;
2109 raw->clear_pending = bnx2x_raw_clear_pending;
2110 raw->set_pending = bnx2x_raw_set_pending;
2111 raw->wait_comp = bnx2x_raw_wait;
2112 }
2113
bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj * o,u8 cl_id,u32 cid,u8 func_id,void * rdata,dma_addr_t rdata_mapping,int state,unsigned long * pstate,bnx2x_obj_type type,struct bnx2x_credit_pool_obj * macs_pool,struct bnx2x_credit_pool_obj * vlans_pool)2114 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj *o,
2115 u8 cl_id, u32 cid, u8 func_id, void *rdata, dma_addr_t rdata_mapping,
2116 int state, unsigned long *pstate, bnx2x_obj_type type,
2117 struct bnx2x_credit_pool_obj *macs_pool,
2118 struct bnx2x_credit_pool_obj *vlans_pool)
2119 {
2120 INIT_LIST_HEAD(&o->head);
2121 o->head_reader = 0;
2122 o->head_exe_request = false;
2123 o->saved_ramrod_flags = 0;
2124
2125 o->macs_pool = macs_pool;
2126 o->vlans_pool = vlans_pool;
2127
2128 o->delete_all = bnx2x_vlan_mac_del_all;
2129 o->restore = bnx2x_vlan_mac_restore;
2130 o->complete = bnx2x_complete_vlan_mac;
2131 o->wait = bnx2x_wait_vlan_mac;
2132
2133 bnx2x_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2134 state, pstate, type);
2135 }
2136
bnx2x_init_mac_obj(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * mac_obj,u8 cl_id,u32 cid,u8 func_id,void * rdata,dma_addr_t rdata_mapping,int state,unsigned long * pstate,bnx2x_obj_type type,struct bnx2x_credit_pool_obj * macs_pool)2137 void bnx2x_init_mac_obj(struct bnx2x *bp,
2138 struct bnx2x_vlan_mac_obj *mac_obj,
2139 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2140 dma_addr_t rdata_mapping, int state,
2141 unsigned long *pstate, bnx2x_obj_type type,
2142 struct bnx2x_credit_pool_obj *macs_pool)
2143 {
2144 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)mac_obj;
2145
2146 bnx2x_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2147 rdata_mapping, state, pstate, type,
2148 macs_pool, NULL);
2149
2150 /* CAM credit pool handling */
2151 mac_obj->get_credit = bnx2x_get_credit_mac;
2152 mac_obj->put_credit = bnx2x_put_credit_mac;
2153 mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2154 mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2155
2156 if (CHIP_IS_E1x(bp)) {
2157 mac_obj->set_one_rule = bnx2x_set_one_mac_e1x;
2158 mac_obj->check_del = bnx2x_check_mac_del;
2159 mac_obj->check_add = bnx2x_check_mac_add;
2160 mac_obj->check_move = bnx2x_check_move_always_err;
2161 mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2162
2163 /* Exe Queue */
2164 bnx2x_exe_queue_init(bp,
2165 &mac_obj->exe_queue, 1, qable_obj,
2166 bnx2x_validate_vlan_mac,
2167 bnx2x_remove_vlan_mac,
2168 bnx2x_optimize_vlan_mac,
2169 bnx2x_execute_vlan_mac,
2170 bnx2x_exeq_get_mac);
2171 } else {
2172 mac_obj->set_one_rule = bnx2x_set_one_mac_e2;
2173 mac_obj->check_del = bnx2x_check_mac_del;
2174 mac_obj->check_add = bnx2x_check_mac_add;
2175 mac_obj->check_move = bnx2x_check_move;
2176 mac_obj->ramrod_cmd =
2177 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2178 mac_obj->get_n_elements = bnx2x_get_n_elements;
2179
2180 /* Exe Queue */
2181 bnx2x_exe_queue_init(bp,
2182 &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2183 qable_obj, bnx2x_validate_vlan_mac,
2184 bnx2x_remove_vlan_mac,
2185 bnx2x_optimize_vlan_mac,
2186 bnx2x_execute_vlan_mac,
2187 bnx2x_exeq_get_mac);
2188 }
2189 }
2190
bnx2x_init_vlan_obj(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * vlan_obj,u8 cl_id,u32 cid,u8 func_id,void * rdata,dma_addr_t rdata_mapping,int state,unsigned long * pstate,bnx2x_obj_type type,struct bnx2x_credit_pool_obj * vlans_pool)2191 void bnx2x_init_vlan_obj(struct bnx2x *bp,
2192 struct bnx2x_vlan_mac_obj *vlan_obj,
2193 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2194 dma_addr_t rdata_mapping, int state,
2195 unsigned long *pstate, bnx2x_obj_type type,
2196 struct bnx2x_credit_pool_obj *vlans_pool)
2197 {
2198 union bnx2x_qable_obj *qable_obj = (union bnx2x_qable_obj *)vlan_obj;
2199
2200 bnx2x_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2201 rdata_mapping, state, pstate, type, NULL,
2202 vlans_pool);
2203
2204 vlan_obj->get_credit = bnx2x_get_credit_vlan;
2205 vlan_obj->put_credit = bnx2x_put_credit_vlan;
2206 vlan_obj->get_cam_offset = bnx2x_get_cam_offset_vlan;
2207 vlan_obj->put_cam_offset = bnx2x_put_cam_offset_vlan;
2208
2209 if (CHIP_IS_E1x(bp)) {
2210 BNX2X_ERR("Do not support chips others than E2 and newer\n");
2211 BUG();
2212 } else {
2213 vlan_obj->set_one_rule = bnx2x_set_one_vlan_e2;
2214 vlan_obj->check_del = bnx2x_check_vlan_del;
2215 vlan_obj->check_add = bnx2x_check_vlan_add;
2216 vlan_obj->check_move = bnx2x_check_move;
2217 vlan_obj->ramrod_cmd =
2218 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2219 vlan_obj->get_n_elements = bnx2x_get_n_elements;
2220
2221 /* Exe Queue */
2222 bnx2x_exe_queue_init(bp,
2223 &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2224 qable_obj, bnx2x_validate_vlan_mac,
2225 bnx2x_remove_vlan_mac,
2226 bnx2x_optimize_vlan_mac,
2227 bnx2x_execute_vlan_mac,
2228 bnx2x_exeq_get_vlan);
2229 }
2230 }
2231
bnx2x_init_vlan_mac_obj(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * vlan_mac_obj,u8 cl_id,u32 cid,u8 func_id,void * rdata,dma_addr_t rdata_mapping,int state,unsigned long * pstate,bnx2x_obj_type type,struct bnx2x_credit_pool_obj * macs_pool,struct bnx2x_credit_pool_obj * vlans_pool)2232 void bnx2x_init_vlan_mac_obj(struct bnx2x *bp,
2233 struct bnx2x_vlan_mac_obj *vlan_mac_obj,
2234 u8 cl_id, u32 cid, u8 func_id, void *rdata,
2235 dma_addr_t rdata_mapping, int state,
2236 unsigned long *pstate, bnx2x_obj_type type,
2237 struct bnx2x_credit_pool_obj *macs_pool,
2238 struct bnx2x_credit_pool_obj *vlans_pool)
2239 {
2240 union bnx2x_qable_obj *qable_obj =
2241 (union bnx2x_qable_obj *)vlan_mac_obj;
2242
2243 bnx2x_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2244 rdata_mapping, state, pstate, type,
2245 macs_pool, vlans_pool);
2246
2247 /* CAM pool handling */
2248 vlan_mac_obj->get_credit = bnx2x_get_credit_vlan_mac;
2249 vlan_mac_obj->put_credit = bnx2x_put_credit_vlan_mac;
2250 /* CAM offset is relevant for 57710 and 57711 chips only which have a
2251 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2252 * will be taken from MACs' pool object only.
2253 */
2254 vlan_mac_obj->get_cam_offset = bnx2x_get_cam_offset_mac;
2255 vlan_mac_obj->put_cam_offset = bnx2x_put_cam_offset_mac;
2256
2257 if (CHIP_IS_E1(bp)) {
2258 BNX2X_ERR("Do not support chips others than E2\n");
2259 BUG();
2260 } else if (CHIP_IS_E1H(bp)) {
2261 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e1h;
2262 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
2263 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
2264 vlan_mac_obj->check_move = bnx2x_check_move_always_err;
2265 vlan_mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2266
2267 /* Exe Queue */
2268 bnx2x_exe_queue_init(bp,
2269 &vlan_mac_obj->exe_queue, 1, qable_obj,
2270 bnx2x_validate_vlan_mac,
2271 bnx2x_remove_vlan_mac,
2272 bnx2x_optimize_vlan_mac,
2273 bnx2x_execute_vlan_mac,
2274 bnx2x_exeq_get_vlan_mac);
2275 } else {
2276 vlan_mac_obj->set_one_rule = bnx2x_set_one_vlan_mac_e2;
2277 vlan_mac_obj->check_del = bnx2x_check_vlan_mac_del;
2278 vlan_mac_obj->check_add = bnx2x_check_vlan_mac_add;
2279 vlan_mac_obj->check_move = bnx2x_check_move;
2280 vlan_mac_obj->ramrod_cmd =
2281 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2282
2283 /* Exe Queue */
2284 bnx2x_exe_queue_init(bp,
2285 &vlan_mac_obj->exe_queue,
2286 CLASSIFY_RULES_COUNT,
2287 qable_obj, bnx2x_validate_vlan_mac,
2288 bnx2x_remove_vlan_mac,
2289 bnx2x_optimize_vlan_mac,
2290 bnx2x_execute_vlan_mac,
2291 bnx2x_exeq_get_vlan_mac);
2292 }
2293 }
2294 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
__storm_memset_mac_filters(struct bnx2x * bp,struct tstorm_eth_mac_filter_config * mac_filters,u16 pf_id)2295 static inline void __storm_memset_mac_filters(struct bnx2x *bp,
2296 struct tstorm_eth_mac_filter_config *mac_filters,
2297 u16 pf_id)
2298 {
2299 size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2300
2301 u32 addr = BAR_TSTRORM_INTMEM +
2302 TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2303
2304 __storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
2305 }
2306
bnx2x_set_rx_mode_e1x(struct bnx2x * bp,struct bnx2x_rx_mode_ramrod_params * p)2307 static int bnx2x_set_rx_mode_e1x(struct bnx2x *bp,
2308 struct bnx2x_rx_mode_ramrod_params *p)
2309 {
2310 /* update the bp MAC filter structure */
2311 u32 mask = (1 << p->cl_id);
2312
2313 struct tstorm_eth_mac_filter_config *mac_filters =
2314 (struct tstorm_eth_mac_filter_config *)p->rdata;
2315
2316 /* initial setting is drop-all */
2317 u8 drop_all_ucast = 1, drop_all_mcast = 1;
2318 u8 accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2319 u8 unmatched_unicast = 0;
2320
2321 /* In e1x there we only take into account rx accept flag since tx switching
2322 * isn't enabled. */
2323 if (test_bit(BNX2X_ACCEPT_UNICAST, &p->rx_accept_flags))
2324 /* accept matched ucast */
2325 drop_all_ucast = 0;
2326
2327 if (test_bit(BNX2X_ACCEPT_MULTICAST, &p->rx_accept_flags))
2328 /* accept matched mcast */
2329 drop_all_mcast = 0;
2330
2331 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2332 /* accept all mcast */
2333 drop_all_ucast = 0;
2334 accp_all_ucast = 1;
2335 }
2336 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2337 /* accept all mcast */
2338 drop_all_mcast = 0;
2339 accp_all_mcast = 1;
2340 }
2341 if (test_bit(BNX2X_ACCEPT_BROADCAST, &p->rx_accept_flags))
2342 /* accept (all) bcast */
2343 accp_all_bcast = 1;
2344 if (test_bit(BNX2X_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2345 /* accept unmatched unicasts */
2346 unmatched_unicast = 1;
2347
2348 mac_filters->ucast_drop_all = drop_all_ucast ?
2349 mac_filters->ucast_drop_all | mask :
2350 mac_filters->ucast_drop_all & ~mask;
2351
2352 mac_filters->mcast_drop_all = drop_all_mcast ?
2353 mac_filters->mcast_drop_all | mask :
2354 mac_filters->mcast_drop_all & ~mask;
2355
2356 mac_filters->ucast_accept_all = accp_all_ucast ?
2357 mac_filters->ucast_accept_all | mask :
2358 mac_filters->ucast_accept_all & ~mask;
2359
2360 mac_filters->mcast_accept_all = accp_all_mcast ?
2361 mac_filters->mcast_accept_all | mask :
2362 mac_filters->mcast_accept_all & ~mask;
2363
2364 mac_filters->bcast_accept_all = accp_all_bcast ?
2365 mac_filters->bcast_accept_all | mask :
2366 mac_filters->bcast_accept_all & ~mask;
2367
2368 mac_filters->unmatched_unicast = unmatched_unicast ?
2369 mac_filters->unmatched_unicast | mask :
2370 mac_filters->unmatched_unicast & ~mask;
2371
2372 DP(BNX2X_MSG_SP, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2373 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2374 mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2375 mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2376 mac_filters->bcast_accept_all);
2377
2378 /* write the MAC filter structure*/
2379 __storm_memset_mac_filters(bp, mac_filters, p->func_id);
2380
2381 /* The operation is completed */
2382 clear_bit(p->state, p->pstate);
2383 smp_mb__after_atomic();
2384
2385 return 0;
2386 }
2387
2388 /* Setup ramrod data */
bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,struct eth_classify_header * hdr,u8 rule_cnt)2389 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid,
2390 struct eth_classify_header *hdr,
2391 u8 rule_cnt)
2392 {
2393 hdr->echo = cpu_to_le32(cid);
2394 hdr->rule_cnt = rule_cnt;
2395 }
2396
bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x * bp,unsigned long * accept_flags,struct eth_filter_rules_cmd * cmd,bool clear_accept_all)2397 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x *bp,
2398 unsigned long *accept_flags,
2399 struct eth_filter_rules_cmd *cmd,
2400 bool clear_accept_all)
2401 {
2402 u16 state;
2403
2404 /* start with 'drop-all' */
2405 state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2406 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2407
2408 if (test_bit(BNX2X_ACCEPT_UNICAST, accept_flags))
2409 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2410
2411 if (test_bit(BNX2X_ACCEPT_MULTICAST, accept_flags))
2412 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2413
2414 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST, accept_flags)) {
2415 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2416 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2417 }
2418
2419 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST, accept_flags)) {
2420 state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2421 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2422 }
2423
2424 if (test_bit(BNX2X_ACCEPT_BROADCAST, accept_flags))
2425 state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2426
2427 if (test_bit(BNX2X_ACCEPT_UNMATCHED, accept_flags)) {
2428 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2429 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2430 }
2431
2432 if (test_bit(BNX2X_ACCEPT_ANY_VLAN, accept_flags))
2433 state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2434
2435 /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2436 if (clear_accept_all) {
2437 state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2438 state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2439 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2440 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2441 }
2442
2443 cmd->state = cpu_to_le16(state);
2444 }
2445
bnx2x_set_rx_mode_e2(struct bnx2x * bp,struct bnx2x_rx_mode_ramrod_params * p)2446 static int bnx2x_set_rx_mode_e2(struct bnx2x *bp,
2447 struct bnx2x_rx_mode_ramrod_params *p)
2448 {
2449 struct eth_filter_rules_ramrod_data *data = p->rdata;
2450 int rc;
2451 u8 rule_idx = 0;
2452
2453 /* Reset the ramrod data buffer */
2454 memset(data, 0, sizeof(*data));
2455
2456 /* Setup ramrod data */
2457
2458 /* Tx (internal switching) */
2459 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2460 data->rules[rule_idx].client_id = p->cl_id;
2461 data->rules[rule_idx].func_id = p->func_id;
2462
2463 data->rules[rule_idx].cmd_general_data =
2464 ETH_FILTER_RULES_CMD_TX_CMD;
2465
2466 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2467 &(data->rules[rule_idx++]),
2468 false);
2469 }
2470
2471 /* Rx */
2472 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2473 data->rules[rule_idx].client_id = p->cl_id;
2474 data->rules[rule_idx].func_id = p->func_id;
2475
2476 data->rules[rule_idx].cmd_general_data =
2477 ETH_FILTER_RULES_CMD_RX_CMD;
2478
2479 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2480 &(data->rules[rule_idx++]),
2481 false);
2482 }
2483
2484 /* If FCoE Queue configuration has been requested configure the Rx and
2485 * internal switching modes for this queue in separate rules.
2486 *
2487 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2488 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2489 */
2490 if (test_bit(BNX2X_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2491 /* Tx (internal switching) */
2492 if (test_bit(RAMROD_TX, &p->ramrod_flags)) {
2493 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2494 data->rules[rule_idx].func_id = p->func_id;
2495
2496 data->rules[rule_idx].cmd_general_data =
2497 ETH_FILTER_RULES_CMD_TX_CMD;
2498
2499 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->tx_accept_flags,
2500 &(data->rules[rule_idx]),
2501 true);
2502 rule_idx++;
2503 }
2504
2505 /* Rx */
2506 if (test_bit(RAMROD_RX, &p->ramrod_flags)) {
2507 data->rules[rule_idx].client_id = bnx2x_fcoe(bp, cl_id);
2508 data->rules[rule_idx].func_id = p->func_id;
2509
2510 data->rules[rule_idx].cmd_general_data =
2511 ETH_FILTER_RULES_CMD_RX_CMD;
2512
2513 bnx2x_rx_mode_set_cmd_state_e2(bp, &p->rx_accept_flags,
2514 &(data->rules[rule_idx]),
2515 true);
2516 rule_idx++;
2517 }
2518 }
2519
2520 /* Set the ramrod header (most importantly - number of rules to
2521 * configure).
2522 */
2523 bnx2x_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2524
2525 DP(BNX2X_MSG_SP, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2526 data->header.rule_cnt, p->rx_accept_flags,
2527 p->tx_accept_flags);
2528
2529 /* No need for an explicit memory barrier here as long as we
2530 * ensure the ordering of writing to the SPQ element
2531 * and updating of the SPQ producer which involves a memory
2532 * read. If the memory read is removed we will have to put a
2533 * full memory barrier there (inside bnx2x_sp_post()).
2534 */
2535
2536 /* Send a ramrod */
2537 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_FILTER_RULES, p->cid,
2538 U64_HI(p->rdata_mapping),
2539 U64_LO(p->rdata_mapping),
2540 ETH_CONNECTION_TYPE);
2541 if (rc)
2542 return rc;
2543
2544 /* Ramrod completion is pending */
2545 return 1;
2546 }
2547
bnx2x_wait_rx_mode_comp_e2(struct bnx2x * bp,struct bnx2x_rx_mode_ramrod_params * p)2548 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x *bp,
2549 struct bnx2x_rx_mode_ramrod_params *p)
2550 {
2551 return bnx2x_state_wait(bp, p->state, p->pstate);
2552 }
2553
bnx2x_empty_rx_mode_wait(struct bnx2x * bp,struct bnx2x_rx_mode_ramrod_params * p)2554 static int bnx2x_empty_rx_mode_wait(struct bnx2x *bp,
2555 struct bnx2x_rx_mode_ramrod_params *p)
2556 {
2557 /* Do nothing */
2558 return 0;
2559 }
2560
bnx2x_config_rx_mode(struct bnx2x * bp,struct bnx2x_rx_mode_ramrod_params * p)2561 int bnx2x_config_rx_mode(struct bnx2x *bp,
2562 struct bnx2x_rx_mode_ramrod_params *p)
2563 {
2564 int rc;
2565
2566 /* Configure the new classification in the chip */
2567 rc = p->rx_mode_obj->config_rx_mode(bp, p);
2568 if (rc < 0)
2569 return rc;
2570
2571 /* Wait for a ramrod completion if was requested */
2572 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2573 rc = p->rx_mode_obj->wait_comp(bp, p);
2574 if (rc)
2575 return rc;
2576 }
2577
2578 return rc;
2579 }
2580
bnx2x_init_rx_mode_obj(struct bnx2x * bp,struct bnx2x_rx_mode_obj * o)2581 void bnx2x_init_rx_mode_obj(struct bnx2x *bp,
2582 struct bnx2x_rx_mode_obj *o)
2583 {
2584 if (CHIP_IS_E1x(bp)) {
2585 o->wait_comp = bnx2x_empty_rx_mode_wait;
2586 o->config_rx_mode = bnx2x_set_rx_mode_e1x;
2587 } else {
2588 o->wait_comp = bnx2x_wait_rx_mode_comp_e2;
2589 o->config_rx_mode = bnx2x_set_rx_mode_e2;
2590 }
2591 }
2592
2593 /********************* Multicast verbs: SET, CLEAR ****************************/
bnx2x_mcast_bin_from_mac(u8 * mac)2594 static inline u8 bnx2x_mcast_bin_from_mac(u8 *mac)
2595 {
2596 return (crc32c_le(0, mac, ETH_ALEN) >> 24) & 0xff;
2597 }
2598
2599 struct bnx2x_mcast_mac_elem {
2600 struct list_head link;
2601 u8 mac[ETH_ALEN];
2602 u8 pad[2]; /* For a natural alignment of the following buffer */
2603 };
2604
2605 struct bnx2x_mcast_bin_elem {
2606 struct list_head link;
2607 int bin;
2608 int type; /* BNX2X_MCAST_CMD_SET_{ADD, DEL} */
2609 };
2610
2611 union bnx2x_mcast_elem {
2612 struct bnx2x_mcast_bin_elem bin_elem;
2613 struct bnx2x_mcast_mac_elem mac_elem;
2614 };
2615
2616 struct bnx2x_mcast_elem_group {
2617 struct list_head mcast_group_link;
2618 union bnx2x_mcast_elem mcast_elems[];
2619 };
2620
2621 #define MCAST_MAC_ELEMS_PER_PG \
2622 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_elem_group)) / \
2623 sizeof(union bnx2x_mcast_elem))
2624
2625 struct bnx2x_pending_mcast_cmd {
2626 struct list_head link;
2627 struct list_head group_head;
2628 int type; /* BNX2X_MCAST_CMD_X */
2629 union {
2630 struct list_head macs_head;
2631 u32 macs_num; /* Needed for DEL command */
2632 int next_bin; /* Needed for RESTORE flow with aprox match */
2633 } data;
2634
2635 bool set_convert; /* in case type == BNX2X_MCAST_CMD_SET, this is set
2636 * when macs_head had been converted to a list of
2637 * bnx2x_mcast_bin_elem.
2638 */
2639
2640 bool done; /* set to true, when the command has been handled,
2641 * practically used in 57712 handling only, where one pending
2642 * command may be handled in a few operations. As long as for
2643 * other chips every operation handling is completed in a
2644 * single ramrod, there is no need to utilize this field.
2645 */
2646 };
2647
bnx2x_mcast_wait(struct bnx2x * bp,struct bnx2x_mcast_obj * o)2648 static int bnx2x_mcast_wait(struct bnx2x *bp,
2649 struct bnx2x_mcast_obj *o)
2650 {
2651 if (bnx2x_state_wait(bp, o->sched_state, o->raw.pstate) ||
2652 o->raw.wait_comp(bp, &o->raw))
2653 return -EBUSY;
2654
2655 return 0;
2656 }
2657
bnx2x_free_groups(struct list_head * mcast_group_list)2658 static void bnx2x_free_groups(struct list_head *mcast_group_list)
2659 {
2660 struct bnx2x_mcast_elem_group *current_mcast_group;
2661
2662 while (!list_empty(mcast_group_list)) {
2663 current_mcast_group = list_first_entry(mcast_group_list,
2664 struct bnx2x_mcast_elem_group,
2665 mcast_group_link);
2666 list_del(¤t_mcast_group->mcast_group_link);
2667 free_page((unsigned long)current_mcast_group);
2668 }
2669 }
2670
bnx2x_mcast_enqueue_cmd(struct bnx2x * bp,struct bnx2x_mcast_obj * o,struct bnx2x_mcast_ramrod_params * p,enum bnx2x_mcast_cmd cmd)2671 static int bnx2x_mcast_enqueue_cmd(struct bnx2x *bp,
2672 struct bnx2x_mcast_obj *o,
2673 struct bnx2x_mcast_ramrod_params *p,
2674 enum bnx2x_mcast_cmd cmd)
2675 {
2676 struct bnx2x_pending_mcast_cmd *new_cmd;
2677 struct bnx2x_mcast_list_elem *pos;
2678 struct bnx2x_mcast_elem_group *elem_group;
2679 struct bnx2x_mcast_mac_elem *mac_elem;
2680 int total_elems = 0, macs_list_len = 0, offset = 0;
2681
2682 /* When adding MACs we'll need to store their values */
2683 if (cmd == BNX2X_MCAST_CMD_ADD || cmd == BNX2X_MCAST_CMD_SET)
2684 macs_list_len = p->mcast_list_len;
2685
2686 /* If the command is empty ("handle pending commands only"), break */
2687 if (!p->mcast_list_len)
2688 return 0;
2689
2690 /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2691 new_cmd = kzalloc(sizeof(*new_cmd), GFP_ATOMIC);
2692 if (!new_cmd)
2693 return -ENOMEM;
2694
2695 INIT_LIST_HEAD(&new_cmd->data.macs_head);
2696 INIT_LIST_HEAD(&new_cmd->group_head);
2697 new_cmd->type = cmd;
2698 new_cmd->done = false;
2699
2700 DP(BNX2X_MSG_SP, "About to enqueue a new %d command. macs_list_len=%d\n",
2701 cmd, macs_list_len);
2702
2703 switch (cmd) {
2704 case BNX2X_MCAST_CMD_ADD:
2705 case BNX2X_MCAST_CMD_SET:
2706 /* For a set command, we need to allocate sufficient memory for
2707 * all the bins, since we can't analyze at this point how much
2708 * memory would be required.
2709 */
2710 total_elems = macs_list_len;
2711 if (cmd == BNX2X_MCAST_CMD_SET) {
2712 if (total_elems < BNX2X_MCAST_BINS_NUM)
2713 total_elems = BNX2X_MCAST_BINS_NUM;
2714 }
2715 while (total_elems > 0) {
2716 elem_group = (struct bnx2x_mcast_elem_group *)
2717 __get_free_page(GFP_ATOMIC | __GFP_ZERO);
2718 if (!elem_group) {
2719 bnx2x_free_groups(&new_cmd->group_head);
2720 kfree(new_cmd);
2721 return -ENOMEM;
2722 }
2723 total_elems -= MCAST_MAC_ELEMS_PER_PG;
2724 list_add_tail(&elem_group->mcast_group_link,
2725 &new_cmd->group_head);
2726 }
2727 elem_group = list_first_entry(&new_cmd->group_head,
2728 struct bnx2x_mcast_elem_group,
2729 mcast_group_link);
2730 list_for_each_entry(pos, &p->mcast_list, link) {
2731 mac_elem = &elem_group->mcast_elems[offset].mac_elem;
2732 memcpy(mac_elem->mac, pos->mac, ETH_ALEN);
2733 /* Push the MACs of the current command into the pending
2734 * command MACs list: FIFO
2735 */
2736 list_add_tail(&mac_elem->link,
2737 &new_cmd->data.macs_head);
2738 offset++;
2739 if (offset == MCAST_MAC_ELEMS_PER_PG) {
2740 offset = 0;
2741 elem_group = list_next_entry(elem_group,
2742 mcast_group_link);
2743 }
2744 }
2745 break;
2746
2747 case BNX2X_MCAST_CMD_DEL:
2748 new_cmd->data.macs_num = p->mcast_list_len;
2749 break;
2750
2751 case BNX2X_MCAST_CMD_RESTORE:
2752 new_cmd->data.next_bin = 0;
2753 break;
2754
2755 default:
2756 kfree(new_cmd);
2757 BNX2X_ERR("Unknown command: %d\n", cmd);
2758 return -EINVAL;
2759 }
2760
2761 /* Push the new pending command to the tail of the pending list: FIFO */
2762 list_add_tail(&new_cmd->link, &o->pending_cmds_head);
2763
2764 o->set_sched(o);
2765
2766 return 1;
2767 }
2768
2769 /**
2770 * bnx2x_mcast_get_next_bin - get the next set bin (index)
2771 *
2772 * @o: multicast object info
2773 * @last: index to start looking from (including)
2774 *
2775 * returns the next found (set) bin or a negative value if none is found.
2776 */
bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj * o,int last)2777 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj *o, int last)
2778 {
2779 int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2780
2781 for (i = last / BIT_VEC64_ELEM_SZ; i < BNX2X_MCAST_VEC_SZ; i++) {
2782 if (o->registry.aprox_match.vec[i])
2783 for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2784 int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2785 if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2786 vec, cur_bit)) {
2787 return cur_bit;
2788 }
2789 }
2790 inner_start = 0;
2791 }
2792
2793 /* None found */
2794 return -1;
2795 }
2796
2797 /**
2798 * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2799 *
2800 * @o:
2801 *
2802 * returns the index of the found bin or -1 if none is found
2803 */
bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj * o)2804 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj *o)
2805 {
2806 int cur_bit = bnx2x_mcast_get_next_bin(o, 0);
2807
2808 if (cur_bit >= 0)
2809 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2810
2811 return cur_bit;
2812 }
2813
bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj * o)2814 static inline u8 bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj *o)
2815 {
2816 struct bnx2x_raw_obj *raw = &o->raw;
2817 u8 rx_tx_flag = 0;
2818
2819 if ((raw->obj_type == BNX2X_OBJ_TYPE_TX) ||
2820 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2821 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2822
2823 if ((raw->obj_type == BNX2X_OBJ_TYPE_RX) ||
2824 (raw->obj_type == BNX2X_OBJ_TYPE_RX_TX))
2825 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2826
2827 return rx_tx_flag;
2828 }
2829
bnx2x_mcast_set_one_rule_e2(struct bnx2x * bp,struct bnx2x_mcast_obj * o,int idx,union bnx2x_mcast_config_data * cfg_data,enum bnx2x_mcast_cmd cmd)2830 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x *bp,
2831 struct bnx2x_mcast_obj *o, int idx,
2832 union bnx2x_mcast_config_data *cfg_data,
2833 enum bnx2x_mcast_cmd cmd)
2834 {
2835 struct bnx2x_raw_obj *r = &o->raw;
2836 struct eth_multicast_rules_ramrod_data *data =
2837 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2838 u8 func_id = r->func_id;
2839 u8 rx_tx_add_flag = bnx2x_mcast_get_rx_tx_flag(o);
2840 int bin;
2841
2842 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE) ||
2843 (cmd == BNX2X_MCAST_CMD_SET_ADD))
2844 rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2845
2846 data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2847
2848 /* Get a bin and update a bins' vector */
2849 switch (cmd) {
2850 case BNX2X_MCAST_CMD_ADD:
2851 bin = bnx2x_mcast_bin_from_mac(cfg_data->mac);
2852 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2853 break;
2854
2855 case BNX2X_MCAST_CMD_DEL:
2856 /* If there were no more bins to clear
2857 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2858 * clear any (0xff) bin.
2859 * See bnx2x_mcast_validate_e2() for explanation when it may
2860 * happen.
2861 */
2862 bin = bnx2x_mcast_clear_first_bin(o);
2863 break;
2864
2865 case BNX2X_MCAST_CMD_RESTORE:
2866 bin = cfg_data->bin;
2867 break;
2868
2869 case BNX2X_MCAST_CMD_SET_ADD:
2870 bin = cfg_data->bin;
2871 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2872 break;
2873
2874 case BNX2X_MCAST_CMD_SET_DEL:
2875 bin = cfg_data->bin;
2876 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, bin);
2877 break;
2878
2879 default:
2880 BNX2X_ERR("Unknown command: %d\n", cmd);
2881 return;
2882 }
2883
2884 DP(BNX2X_MSG_SP, "%s bin %d\n",
2885 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2886 "Setting" : "Clearing"), bin);
2887
2888 data->rules[idx].bin_id = (u8)bin;
2889 data->rules[idx].func_id = func_id;
2890 data->rules[idx].engine_id = o->engine_id;
2891 }
2892
2893 /**
2894 * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2895 *
2896 * @bp: device handle
2897 * @o: multicast object info
2898 * @start_bin: index in the registry to start from (including)
2899 * @rdata_idx: index in the ramrod data to start from
2900 *
2901 * returns last handled bin index or -1 if all bins have been handled
2902 */
bnx2x_mcast_handle_restore_cmd_e2(struct bnx2x * bp,struct bnx2x_mcast_obj * o,int start_bin,int * rdata_idx)2903 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2904 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_bin,
2905 int *rdata_idx)
2906 {
2907 int cur_bin, cnt = *rdata_idx;
2908 union bnx2x_mcast_config_data cfg_data = {NULL};
2909
2910 /* go through the registry and configure the bins from it */
2911 for (cur_bin = bnx2x_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2912 cur_bin = bnx2x_mcast_get_next_bin(o, cur_bin + 1)) {
2913
2914 cfg_data.bin = (u8)cur_bin;
2915 o->set_one_rule(bp, o, cnt, &cfg_data,
2916 BNX2X_MCAST_CMD_RESTORE);
2917
2918 cnt++;
2919
2920 DP(BNX2X_MSG_SP, "About to configure a bin %d\n", cur_bin);
2921
2922 /* Break if we reached the maximum number
2923 * of rules.
2924 */
2925 if (cnt >= o->max_cmd_len)
2926 break;
2927 }
2928
2929 *rdata_idx = cnt;
2930
2931 return cur_bin;
2932 }
2933
bnx2x_mcast_hdl_pending_add_e2(struct bnx2x * bp,struct bnx2x_mcast_obj * o,struct bnx2x_pending_mcast_cmd * cmd_pos,int * line_idx)2934 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x *bp,
2935 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2936 int *line_idx)
2937 {
2938 struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2939 int cnt = *line_idx;
2940 union bnx2x_mcast_config_data cfg_data = {NULL};
2941
2942 list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
2943 link) {
2944
2945 cfg_data.mac = &pmac_pos->mac[0];
2946 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
2947
2948 cnt++;
2949
2950 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
2951 pmac_pos->mac);
2952
2953 list_del(&pmac_pos->link);
2954
2955 /* Break if we reached the maximum number
2956 * of rules.
2957 */
2958 if (cnt >= o->max_cmd_len)
2959 break;
2960 }
2961
2962 *line_idx = cnt;
2963
2964 /* if no more MACs to configure - we are done */
2965 if (list_empty(&cmd_pos->data.macs_head))
2966 cmd_pos->done = true;
2967 }
2968
bnx2x_mcast_hdl_pending_del_e2(struct bnx2x * bp,struct bnx2x_mcast_obj * o,struct bnx2x_pending_mcast_cmd * cmd_pos,int * line_idx)2969 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x *bp,
2970 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
2971 int *line_idx)
2972 {
2973 int cnt = *line_idx;
2974
2975 while (cmd_pos->data.macs_num) {
2976 o->set_one_rule(bp, o, cnt, NULL, cmd_pos->type);
2977
2978 cnt++;
2979
2980 cmd_pos->data.macs_num--;
2981
2982 DP(BNX2X_MSG_SP, "Deleting MAC. %d left,cnt is %d\n",
2983 cmd_pos->data.macs_num, cnt);
2984
2985 /* Break if we reached the maximum
2986 * number of rules.
2987 */
2988 if (cnt >= o->max_cmd_len)
2989 break;
2990 }
2991
2992 *line_idx = cnt;
2993
2994 /* If we cleared all bins - we are done */
2995 if (!cmd_pos->data.macs_num)
2996 cmd_pos->done = true;
2997 }
2998
bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x * bp,struct bnx2x_mcast_obj * o,struct bnx2x_pending_mcast_cmd * cmd_pos,int * line_idx)2999 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x *bp,
3000 struct bnx2x_mcast_obj *o, struct bnx2x_pending_mcast_cmd *cmd_pos,
3001 int *line_idx)
3002 {
3003 cmd_pos->data.next_bin = o->hdl_restore(bp, o, cmd_pos->data.next_bin,
3004 line_idx);
3005
3006 if (cmd_pos->data.next_bin < 0)
3007 /* If o->set_restore returned -1 we are done */
3008 cmd_pos->done = true;
3009 else
3010 /* Start from the next bin next time */
3011 cmd_pos->data.next_bin++;
3012 }
3013
3014 static void
bnx2x_mcast_hdl_pending_set_e2_convert(struct bnx2x * bp,struct bnx2x_mcast_obj * o,struct bnx2x_pending_mcast_cmd * cmd_pos)3015 bnx2x_mcast_hdl_pending_set_e2_convert(struct bnx2x *bp,
3016 struct bnx2x_mcast_obj *o,
3017 struct bnx2x_pending_mcast_cmd *cmd_pos)
3018 {
3019 u64 cur[BNX2X_MCAST_VEC_SZ], req[BNX2X_MCAST_VEC_SZ];
3020 struct bnx2x_mcast_mac_elem *pmac_pos, *pmac_pos_n;
3021 struct bnx2x_mcast_bin_elem *p_item;
3022 struct bnx2x_mcast_elem_group *elem_group;
3023 int cnt = 0, mac_cnt = 0, offset = 0, i;
3024
3025 memset(req, 0, sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3026 memcpy(cur, o->registry.aprox_match.vec,
3027 sizeof(u64) * BNX2X_MCAST_VEC_SZ);
3028
3029 /* Fill `current' with the required set of bins to configure */
3030 list_for_each_entry_safe(pmac_pos, pmac_pos_n, &cmd_pos->data.macs_head,
3031 link) {
3032 int bin = bnx2x_mcast_bin_from_mac(pmac_pos->mac);
3033
3034 DP(BNX2X_MSG_SP, "Set contains %pM mcast MAC\n",
3035 pmac_pos->mac);
3036
3037 BIT_VEC64_SET_BIT(req, bin);
3038 list_del(&pmac_pos->link);
3039 mac_cnt++;
3040 }
3041
3042 /* We no longer have use for the MACs; Need to re-use memory for
3043 * a list that will be used to configure bins.
3044 */
3045 cmd_pos->set_convert = true;
3046 INIT_LIST_HEAD(&cmd_pos->data.macs_head);
3047 elem_group = list_first_entry(&cmd_pos->group_head,
3048 struct bnx2x_mcast_elem_group,
3049 mcast_group_link);
3050 for (i = 0; i < BNX2X_MCAST_BINS_NUM; i++) {
3051 bool b_current = !!BIT_VEC64_TEST_BIT(cur, i);
3052 bool b_required = !!BIT_VEC64_TEST_BIT(req, i);
3053
3054 if (b_current == b_required)
3055 continue;
3056
3057 p_item = &elem_group->mcast_elems[offset].bin_elem;
3058 p_item->bin = i;
3059 p_item->type = b_required ? BNX2X_MCAST_CMD_SET_ADD
3060 : BNX2X_MCAST_CMD_SET_DEL;
3061 list_add_tail(&p_item->link , &cmd_pos->data.macs_head);
3062 cnt++;
3063 offset++;
3064 if (offset == MCAST_MAC_ELEMS_PER_PG) {
3065 offset = 0;
3066 elem_group = list_next_entry(elem_group,
3067 mcast_group_link);
3068 }
3069 }
3070
3071 /* We now definitely know how many commands are hiding here.
3072 * Also need to correct the disruption we've added to guarantee this
3073 * would be enqueued.
3074 */
3075 o->total_pending_num -= (o->max_cmd_len + mac_cnt);
3076 o->total_pending_num += cnt;
3077
3078 DP(BNX2X_MSG_SP, "o->total_pending_num=%d\n", o->total_pending_num);
3079 }
3080
3081 static void
bnx2x_mcast_hdl_pending_set_e2(struct bnx2x * bp,struct bnx2x_mcast_obj * o,struct bnx2x_pending_mcast_cmd * cmd_pos,int * cnt)3082 bnx2x_mcast_hdl_pending_set_e2(struct bnx2x *bp,
3083 struct bnx2x_mcast_obj *o,
3084 struct bnx2x_pending_mcast_cmd *cmd_pos,
3085 int *cnt)
3086 {
3087 union bnx2x_mcast_config_data cfg_data = {NULL};
3088 struct bnx2x_mcast_bin_elem *p_item, *p_item_n;
3089
3090 /* This is actually a 2-part scheme - it starts by converting the MACs
3091 * into a list of bins to be added/removed, and correcting the numbers
3092 * on the object. this is now allowed, as we're now sure that all
3093 * previous configured requests have already applied.
3094 * The second part is actually adding rules for the newly introduced
3095 * entries [like all the rest of the hdl_pending functions].
3096 */
3097 if (!cmd_pos->set_convert)
3098 bnx2x_mcast_hdl_pending_set_e2_convert(bp, o, cmd_pos);
3099
3100 list_for_each_entry_safe(p_item, p_item_n, &cmd_pos->data.macs_head,
3101 link) {
3102 cfg_data.bin = (u8)p_item->bin;
3103 o->set_one_rule(bp, o, *cnt, &cfg_data, p_item->type);
3104 (*cnt)++;
3105
3106 list_del(&p_item->link);
3107
3108 /* Break if we reached the maximum number of rules. */
3109 if (*cnt >= o->max_cmd_len)
3110 break;
3111 }
3112
3113 /* if no more MACs to configure - we are done */
3114 if (list_empty(&cmd_pos->data.macs_head))
3115 cmd_pos->done = true;
3116 }
3117
bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p)3118 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x *bp,
3119 struct bnx2x_mcast_ramrod_params *p)
3120 {
3121 struct bnx2x_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3122 int cnt = 0;
3123 struct bnx2x_mcast_obj *o = p->mcast_obj;
3124
3125 list_for_each_entry_safe(cmd_pos, cmd_pos_n, &o->pending_cmds_head,
3126 link) {
3127 switch (cmd_pos->type) {
3128 case BNX2X_MCAST_CMD_ADD:
3129 bnx2x_mcast_hdl_pending_add_e2(bp, o, cmd_pos, &cnt);
3130 break;
3131
3132 case BNX2X_MCAST_CMD_DEL:
3133 bnx2x_mcast_hdl_pending_del_e2(bp, o, cmd_pos, &cnt);
3134 break;
3135
3136 case BNX2X_MCAST_CMD_RESTORE:
3137 bnx2x_mcast_hdl_pending_restore_e2(bp, o, cmd_pos,
3138 &cnt);
3139 break;
3140
3141 case BNX2X_MCAST_CMD_SET:
3142 bnx2x_mcast_hdl_pending_set_e2(bp, o, cmd_pos, &cnt);
3143 break;
3144
3145 default:
3146 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3147 return -EINVAL;
3148 }
3149
3150 /* If the command has been completed - remove it from the list
3151 * and free the memory
3152 */
3153 if (cmd_pos->done) {
3154 list_del(&cmd_pos->link);
3155 bnx2x_free_groups(&cmd_pos->group_head);
3156 kfree(cmd_pos);
3157 }
3158
3159 /* Break if we reached the maximum number of rules */
3160 if (cnt >= o->max_cmd_len)
3161 break;
3162 }
3163
3164 return cnt;
3165 }
3166
bnx2x_mcast_hdl_add(struct bnx2x * bp,struct bnx2x_mcast_obj * o,struct bnx2x_mcast_ramrod_params * p,int * line_idx)3167 static inline void bnx2x_mcast_hdl_add(struct bnx2x *bp,
3168 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3169 int *line_idx)
3170 {
3171 struct bnx2x_mcast_list_elem *mlist_pos;
3172 union bnx2x_mcast_config_data cfg_data = {NULL};
3173 int cnt = *line_idx;
3174
3175 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3176 cfg_data.mac = mlist_pos->mac;
3177 o->set_one_rule(bp, o, cnt, &cfg_data, BNX2X_MCAST_CMD_ADD);
3178
3179 cnt++;
3180
3181 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3182 mlist_pos->mac);
3183 }
3184
3185 *line_idx = cnt;
3186 }
3187
bnx2x_mcast_hdl_del(struct bnx2x * bp,struct bnx2x_mcast_obj * o,struct bnx2x_mcast_ramrod_params * p,int * line_idx)3188 static inline void bnx2x_mcast_hdl_del(struct bnx2x *bp,
3189 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3190 int *line_idx)
3191 {
3192 int cnt = *line_idx, i;
3193
3194 for (i = 0; i < p->mcast_list_len; i++) {
3195 o->set_one_rule(bp, o, cnt, NULL, BNX2X_MCAST_CMD_DEL);
3196
3197 cnt++;
3198
3199 DP(BNX2X_MSG_SP, "Deleting MAC. %d left\n",
3200 p->mcast_list_len - i - 1);
3201 }
3202
3203 *line_idx = cnt;
3204 }
3205
3206 /**
3207 * bnx2x_mcast_handle_current_cmd - send command if room
3208 *
3209 * @bp: device handle
3210 * @p: ramrod mcast info
3211 * @cmd: command
3212 * @start_cnt: first line in the ramrod data that may be used
3213 *
3214 * This function is called iff there is enough place for the current command in
3215 * the ramrod data.
3216 * Returns number of lines filled in the ramrod data in total.
3217 */
bnx2x_mcast_handle_current_cmd(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,enum bnx2x_mcast_cmd cmd,int start_cnt)3218 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x *bp,
3219 struct bnx2x_mcast_ramrod_params *p,
3220 enum bnx2x_mcast_cmd cmd,
3221 int start_cnt)
3222 {
3223 struct bnx2x_mcast_obj *o = p->mcast_obj;
3224 int cnt = start_cnt;
3225
3226 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3227
3228 switch (cmd) {
3229 case BNX2X_MCAST_CMD_ADD:
3230 bnx2x_mcast_hdl_add(bp, o, p, &cnt);
3231 break;
3232
3233 case BNX2X_MCAST_CMD_DEL:
3234 bnx2x_mcast_hdl_del(bp, o, p, &cnt);
3235 break;
3236
3237 case BNX2X_MCAST_CMD_RESTORE:
3238 o->hdl_restore(bp, o, 0, &cnt);
3239 break;
3240
3241 default:
3242 BNX2X_ERR("Unknown command: %d\n", cmd);
3243 return -EINVAL;
3244 }
3245
3246 /* The current command has been handled */
3247 p->mcast_list_len = 0;
3248
3249 return cnt;
3250 }
3251
bnx2x_mcast_validate_e2(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,enum bnx2x_mcast_cmd cmd)3252 static int bnx2x_mcast_validate_e2(struct bnx2x *bp,
3253 struct bnx2x_mcast_ramrod_params *p,
3254 enum bnx2x_mcast_cmd cmd)
3255 {
3256 struct bnx2x_mcast_obj *o = p->mcast_obj;
3257 int reg_sz = o->get_registry_size(o);
3258
3259 switch (cmd) {
3260 /* DEL command deletes all currently configured MACs */
3261 case BNX2X_MCAST_CMD_DEL:
3262 o->set_registry_size(o, 0);
3263 fallthrough;
3264
3265 /* RESTORE command will restore the entire multicast configuration */
3266 case BNX2X_MCAST_CMD_RESTORE:
3267 /* Here we set the approximate amount of work to do, which in
3268 * fact may be only less as some MACs in postponed ADD
3269 * command(s) scheduled before this command may fall into
3270 * the same bin and the actual number of bins set in the
3271 * registry would be less than we estimated here. See
3272 * bnx2x_mcast_set_one_rule_e2() for further details.
3273 */
3274 p->mcast_list_len = reg_sz;
3275 break;
3276
3277 case BNX2X_MCAST_CMD_ADD:
3278 case BNX2X_MCAST_CMD_CONT:
3279 /* Here we assume that all new MACs will fall into new bins.
3280 * However we will correct the real registry size after we
3281 * handle all pending commands.
3282 */
3283 o->set_registry_size(o, reg_sz + p->mcast_list_len);
3284 break;
3285
3286 case BNX2X_MCAST_CMD_SET:
3287 /* We can only learn how many commands would actually be used
3288 * when this is being configured. So for now, simply guarantee
3289 * the command will be enqueued [to refrain from adding logic
3290 * that handles this and THEN learns it needs several ramrods].
3291 * Just like for ADD/Cont, the mcast_list_len might be an over
3292 * estimation; or even more so, since we don't take into
3293 * account the possibility of removal of existing bins.
3294 */
3295 o->set_registry_size(o, reg_sz + p->mcast_list_len);
3296 o->total_pending_num += o->max_cmd_len;
3297 break;
3298
3299 default:
3300 BNX2X_ERR("Unknown command: %d\n", cmd);
3301 return -EINVAL;
3302 }
3303
3304 /* Increase the total number of MACs pending to be configured */
3305 o->total_pending_num += p->mcast_list_len;
3306
3307 return 0;
3308 }
3309
bnx2x_mcast_revert_e2(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,int old_num_bins,enum bnx2x_mcast_cmd cmd)3310 static void bnx2x_mcast_revert_e2(struct bnx2x *bp,
3311 struct bnx2x_mcast_ramrod_params *p,
3312 int old_num_bins,
3313 enum bnx2x_mcast_cmd cmd)
3314 {
3315 struct bnx2x_mcast_obj *o = p->mcast_obj;
3316
3317 o->set_registry_size(o, old_num_bins);
3318 o->total_pending_num -= p->mcast_list_len;
3319
3320 if (cmd == BNX2X_MCAST_CMD_SET)
3321 o->total_pending_num -= o->max_cmd_len;
3322 }
3323
3324 /**
3325 * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
3326 *
3327 * @bp: device handle
3328 * @p: ramrod parameters
3329 * @len: number of rules to handle
3330 */
bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,u8 len)3331 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x *bp,
3332 struct bnx2x_mcast_ramrod_params *p,
3333 u8 len)
3334 {
3335 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3336 struct eth_multicast_rules_ramrod_data *data =
3337 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
3338
3339 data->header.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3340 (BNX2X_FILTER_MCAST_PENDING <<
3341 BNX2X_SWCID_SHIFT));
3342 data->header.rule_cnt = len;
3343 }
3344
3345 /**
3346 * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3347 *
3348 * @bp: device handle
3349 * @o:
3350 *
3351 * Recalculate the actual number of set bins in the registry using Brian
3352 * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3353 *
3354 * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
3355 */
bnx2x_mcast_refresh_registry_e2(struct bnx2x * bp,struct bnx2x_mcast_obj * o)3356 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x *bp,
3357 struct bnx2x_mcast_obj *o)
3358 {
3359 int i, cnt = 0;
3360 u64 elem;
3361
3362 for (i = 0; i < BNX2X_MCAST_VEC_SZ; i++) {
3363 elem = o->registry.aprox_match.vec[i];
3364 for (; elem; cnt++)
3365 elem &= elem - 1;
3366 }
3367
3368 o->set_registry_size(o, cnt);
3369
3370 return 0;
3371 }
3372
bnx2x_mcast_setup_e2(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,enum bnx2x_mcast_cmd cmd)3373 static int bnx2x_mcast_setup_e2(struct bnx2x *bp,
3374 struct bnx2x_mcast_ramrod_params *p,
3375 enum bnx2x_mcast_cmd cmd)
3376 {
3377 struct bnx2x_raw_obj *raw = &p->mcast_obj->raw;
3378 struct bnx2x_mcast_obj *o = p->mcast_obj;
3379 struct eth_multicast_rules_ramrod_data *data =
3380 (struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3381 int cnt = 0, rc;
3382
3383 /* Reset the ramrod data buffer */
3384 memset(data, 0, sizeof(*data));
3385
3386 cnt = bnx2x_mcast_handle_pending_cmds_e2(bp, p);
3387
3388 /* If there are no more pending commands - clear SCHEDULED state */
3389 if (list_empty(&o->pending_cmds_head))
3390 o->clear_sched(o);
3391
3392 /* The below may be true iff there was enough room in ramrod
3393 * data for all pending commands and for the current
3394 * command. Otherwise the current command would have been added
3395 * to the pending commands and p->mcast_list_len would have been
3396 * zeroed.
3397 */
3398 if (p->mcast_list_len > 0)
3399 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, cnt);
3400
3401 /* We've pulled out some MACs - update the total number of
3402 * outstanding.
3403 */
3404 o->total_pending_num -= cnt;
3405
3406 /* send a ramrod */
3407 WARN_ON(o->total_pending_num < 0);
3408 WARN_ON(cnt > o->max_cmd_len);
3409
3410 bnx2x_mcast_set_rdata_hdr_e2(bp, p, (u8)cnt);
3411
3412 /* Update a registry size if there are no more pending operations.
3413 *
3414 * We don't want to change the value of the registry size if there are
3415 * pending operations because we want it to always be equal to the
3416 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3417 * set bins after the last requested operation in order to properly
3418 * evaluate the size of the next DEL/RESTORE operation.
3419 *
3420 * Note that we update the registry itself during command(s) handling
3421 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3422 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3423 * with a limited amount of update commands (per MAC/bin) and we don't
3424 * know in this scope what the actual state of bins configuration is
3425 * going to be after this ramrod.
3426 */
3427 if (!o->total_pending_num)
3428 bnx2x_mcast_refresh_registry_e2(bp, o);
3429
3430 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3431 * RAMROD_PENDING status immediately. due to the SET option, it's also
3432 * possible that after evaluating the differences there's no need for
3433 * a ramrod. In that case, we can skip it as well.
3434 */
3435 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags) || !cnt) {
3436 raw->clear_pending(raw);
3437 return 0;
3438 } else {
3439 /* No need for an explicit memory barrier here as long as we
3440 * ensure the ordering of writing to the SPQ element
3441 * and updating of the SPQ producer which involves a memory
3442 * read. If the memory read is removed we will have to put a
3443 * full memory barrier there (inside bnx2x_sp_post()).
3444 */
3445
3446 /* Send a ramrod */
3447 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3448 raw->cid, U64_HI(raw->rdata_mapping),
3449 U64_LO(raw->rdata_mapping),
3450 ETH_CONNECTION_TYPE);
3451 if (rc)
3452 return rc;
3453
3454 /* Ramrod completion is pending */
3455 return 1;
3456 }
3457 }
3458
bnx2x_mcast_validate_e1h(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,enum bnx2x_mcast_cmd cmd)3459 static int bnx2x_mcast_validate_e1h(struct bnx2x *bp,
3460 struct bnx2x_mcast_ramrod_params *p,
3461 enum bnx2x_mcast_cmd cmd)
3462 {
3463 if (cmd == BNX2X_MCAST_CMD_SET) {
3464 BNX2X_ERR("Can't use `set' command on e1h!\n");
3465 return -EINVAL;
3466 }
3467
3468 /* Mark, that there is a work to do */
3469 if ((cmd == BNX2X_MCAST_CMD_DEL) || (cmd == BNX2X_MCAST_CMD_RESTORE))
3470 p->mcast_list_len = 1;
3471
3472 return 0;
3473 }
3474
bnx2x_mcast_revert_e1h(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,int old_num_bins,enum bnx2x_mcast_cmd cmd)3475 static void bnx2x_mcast_revert_e1h(struct bnx2x *bp,
3476 struct bnx2x_mcast_ramrod_params *p,
3477 int old_num_bins,
3478 enum bnx2x_mcast_cmd cmd)
3479 {
3480 /* Do nothing */
3481 }
3482
3483 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3484 do { \
3485 (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3486 } while (0)
3487
bnx2x_mcast_hdl_add_e1h(struct bnx2x * bp,struct bnx2x_mcast_obj * o,struct bnx2x_mcast_ramrod_params * p,u32 * mc_filter)3488 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x *bp,
3489 struct bnx2x_mcast_obj *o,
3490 struct bnx2x_mcast_ramrod_params *p,
3491 u32 *mc_filter)
3492 {
3493 struct bnx2x_mcast_list_elem *mlist_pos;
3494 int bit;
3495
3496 list_for_each_entry(mlist_pos, &p->mcast_list, link) {
3497 bit = bnx2x_mcast_bin_from_mac(mlist_pos->mac);
3498 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3499
3500 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC, bin %d\n",
3501 mlist_pos->mac, bit);
3502
3503 /* bookkeeping... */
3504 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3505 bit);
3506 }
3507 }
3508
bnx2x_mcast_hdl_restore_e1h(struct bnx2x * bp,struct bnx2x_mcast_obj * o,struct bnx2x_mcast_ramrod_params * p,u32 * mc_filter)3509 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x *bp,
3510 struct bnx2x_mcast_obj *o, struct bnx2x_mcast_ramrod_params *p,
3511 u32 *mc_filter)
3512 {
3513 int bit;
3514
3515 for (bit = bnx2x_mcast_get_next_bin(o, 0);
3516 bit >= 0;
3517 bit = bnx2x_mcast_get_next_bin(o, bit + 1)) {
3518 BNX2X_57711_SET_MC_FILTER(mc_filter, bit);
3519 DP(BNX2X_MSG_SP, "About to set bin %d\n", bit);
3520 }
3521 }
3522
3523 /* On 57711 we write the multicast MACs' approximate match
3524 * table by directly into the TSTORM's internal RAM. So we don't
3525 * really need to handle any tricks to make it work.
3526 */
bnx2x_mcast_setup_e1h(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,enum bnx2x_mcast_cmd cmd)3527 static int bnx2x_mcast_setup_e1h(struct bnx2x *bp,
3528 struct bnx2x_mcast_ramrod_params *p,
3529 enum bnx2x_mcast_cmd cmd)
3530 {
3531 int i;
3532 struct bnx2x_mcast_obj *o = p->mcast_obj;
3533 struct bnx2x_raw_obj *r = &o->raw;
3534
3535 /* If CLEAR_ONLY has been requested - clear the registry
3536 * and clear a pending bit.
3537 */
3538 if (!test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3539 u32 mc_filter[MC_HASH_SIZE] = {0};
3540
3541 /* Set the multicast filter bits before writing it into
3542 * the internal memory.
3543 */
3544 switch (cmd) {
3545 case BNX2X_MCAST_CMD_ADD:
3546 bnx2x_mcast_hdl_add_e1h(bp, o, p, mc_filter);
3547 break;
3548
3549 case BNX2X_MCAST_CMD_DEL:
3550 DP(BNX2X_MSG_SP,
3551 "Invalidating multicast MACs configuration\n");
3552
3553 /* clear the registry */
3554 memset(o->registry.aprox_match.vec, 0,
3555 sizeof(o->registry.aprox_match.vec));
3556 break;
3557
3558 case BNX2X_MCAST_CMD_RESTORE:
3559 bnx2x_mcast_hdl_restore_e1h(bp, o, p, mc_filter);
3560 break;
3561
3562 default:
3563 BNX2X_ERR("Unknown command: %d\n", cmd);
3564 return -EINVAL;
3565 }
3566
3567 /* Set the mcast filter in the internal memory */
3568 for (i = 0; i < MC_HASH_SIZE; i++)
3569 REG_WR(bp, MC_HASH_OFFSET(bp, i), mc_filter[i]);
3570 } else
3571 /* clear the registry */
3572 memset(o->registry.aprox_match.vec, 0,
3573 sizeof(o->registry.aprox_match.vec));
3574
3575 /* We are done */
3576 r->clear_pending(r);
3577
3578 return 0;
3579 }
3580
bnx2x_mcast_validate_e1(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,enum bnx2x_mcast_cmd cmd)3581 static int bnx2x_mcast_validate_e1(struct bnx2x *bp,
3582 struct bnx2x_mcast_ramrod_params *p,
3583 enum bnx2x_mcast_cmd cmd)
3584 {
3585 struct bnx2x_mcast_obj *o = p->mcast_obj;
3586 int reg_sz = o->get_registry_size(o);
3587
3588 if (cmd == BNX2X_MCAST_CMD_SET) {
3589 BNX2X_ERR("Can't use `set' command on e1!\n");
3590 return -EINVAL;
3591 }
3592
3593 switch (cmd) {
3594 /* DEL command deletes all currently configured MACs */
3595 case BNX2X_MCAST_CMD_DEL:
3596 o->set_registry_size(o, 0);
3597 fallthrough;
3598
3599 /* RESTORE command will restore the entire multicast configuration */
3600 case BNX2X_MCAST_CMD_RESTORE:
3601 p->mcast_list_len = reg_sz;
3602 DP(BNX2X_MSG_SP, "Command %d, p->mcast_list_len=%d\n",
3603 cmd, p->mcast_list_len);
3604 break;
3605
3606 case BNX2X_MCAST_CMD_ADD:
3607 case BNX2X_MCAST_CMD_CONT:
3608 /* Multicast MACs on 57710 are configured as unicast MACs and
3609 * there is only a limited number of CAM entries for that
3610 * matter.
3611 */
3612 if (p->mcast_list_len > o->max_cmd_len) {
3613 BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3614 o->max_cmd_len);
3615 return -EINVAL;
3616 }
3617 /* Every configured MAC should be cleared if DEL command is
3618 * called. Only the last ADD command is relevant as long as
3619 * every ADD commands overrides the previous configuration.
3620 */
3621 DP(BNX2X_MSG_SP, "p->mcast_list_len=%d\n", p->mcast_list_len);
3622 if (p->mcast_list_len > 0)
3623 o->set_registry_size(o, p->mcast_list_len);
3624
3625 break;
3626
3627 default:
3628 BNX2X_ERR("Unknown command: %d\n", cmd);
3629 return -EINVAL;
3630 }
3631
3632 /* We want to ensure that commands are executed one by one for 57710.
3633 * Therefore each none-empty command will consume o->max_cmd_len.
3634 */
3635 if (p->mcast_list_len)
3636 o->total_pending_num += o->max_cmd_len;
3637
3638 return 0;
3639 }
3640
bnx2x_mcast_revert_e1(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,int old_num_macs,enum bnx2x_mcast_cmd cmd)3641 static void bnx2x_mcast_revert_e1(struct bnx2x *bp,
3642 struct bnx2x_mcast_ramrod_params *p,
3643 int old_num_macs,
3644 enum bnx2x_mcast_cmd cmd)
3645 {
3646 struct bnx2x_mcast_obj *o = p->mcast_obj;
3647
3648 o->set_registry_size(o, old_num_macs);
3649
3650 /* If current command hasn't been handled yet and we are
3651 * here means that it's meant to be dropped and we have to
3652 * update the number of outstanding MACs accordingly.
3653 */
3654 if (p->mcast_list_len)
3655 o->total_pending_num -= o->max_cmd_len;
3656 }
3657
bnx2x_mcast_set_one_rule_e1(struct bnx2x * bp,struct bnx2x_mcast_obj * o,int idx,union bnx2x_mcast_config_data * cfg_data,enum bnx2x_mcast_cmd cmd)3658 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x *bp,
3659 struct bnx2x_mcast_obj *o, int idx,
3660 union bnx2x_mcast_config_data *cfg_data,
3661 enum bnx2x_mcast_cmd cmd)
3662 {
3663 struct bnx2x_raw_obj *r = &o->raw;
3664 struct mac_configuration_cmd *data =
3665 (struct mac_configuration_cmd *)(r->rdata);
3666
3667 /* copy mac */
3668 if ((cmd == BNX2X_MCAST_CMD_ADD) || (cmd == BNX2X_MCAST_CMD_RESTORE)) {
3669 bnx2x_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3670 &data->config_table[idx].middle_mac_addr,
3671 &data->config_table[idx].lsb_mac_addr,
3672 cfg_data->mac);
3673
3674 data->config_table[idx].vlan_id = 0;
3675 data->config_table[idx].pf_id = r->func_id;
3676 data->config_table[idx].clients_bit_vector =
3677 cpu_to_le32(1 << r->cl_id);
3678
3679 SET_FLAG(data->config_table[idx].flags,
3680 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3681 T_ETH_MAC_COMMAND_SET);
3682 }
3683 }
3684
3685 /**
3686 * bnx2x_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd
3687 *
3688 * @bp: device handle
3689 * @p: ramrod parameters
3690 * @len: number of rules to handle
3691 */
bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,u8 len)3692 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x *bp,
3693 struct bnx2x_mcast_ramrod_params *p,
3694 u8 len)
3695 {
3696 struct bnx2x_raw_obj *r = &p->mcast_obj->raw;
3697 struct mac_configuration_cmd *data =
3698 (struct mac_configuration_cmd *)(r->rdata);
3699
3700 u8 offset = (CHIP_REV_IS_SLOW(bp) ?
3701 BNX2X_MAX_EMUL_MULTI*(1 + r->func_id) :
3702 BNX2X_MAX_MULTICAST*(1 + r->func_id));
3703
3704 data->hdr.offset = offset;
3705 data->hdr.client_id = cpu_to_le16(0xff);
3706 data->hdr.echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
3707 (BNX2X_FILTER_MCAST_PENDING <<
3708 BNX2X_SWCID_SHIFT));
3709 data->hdr.length = len;
3710 }
3711
3712 /**
3713 * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3714 *
3715 * @bp: device handle
3716 * @o: multicast info
3717 * @start_idx: index in the registry to start from
3718 * @rdata_idx: index in the ramrod data to start from
3719 *
3720 * restore command for 57710 is like all other commands - always a stand alone
3721 * command - start_idx and rdata_idx will always be 0. This function will always
3722 * succeed.
3723 * returns -1 to comply with 57712 variant.
3724 */
bnx2x_mcast_handle_restore_cmd_e1(struct bnx2x * bp,struct bnx2x_mcast_obj * o,int start_idx,int * rdata_idx)3725 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3726 struct bnx2x *bp, struct bnx2x_mcast_obj *o , int start_idx,
3727 int *rdata_idx)
3728 {
3729 struct bnx2x_mcast_mac_elem *elem;
3730 int i = 0;
3731 union bnx2x_mcast_config_data cfg_data = {NULL};
3732
3733 /* go through the registry and configure the MACs from it. */
3734 list_for_each_entry(elem, &o->registry.exact_match.macs, link) {
3735 cfg_data.mac = &elem->mac[0];
3736 o->set_one_rule(bp, o, i, &cfg_data, BNX2X_MCAST_CMD_RESTORE);
3737
3738 i++;
3739
3740 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3741 cfg_data.mac);
3742 }
3743
3744 *rdata_idx = i;
3745
3746 return -1;
3747 }
3748
bnx2x_mcast_handle_pending_cmds_e1(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p)3749 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3750 struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p)
3751 {
3752 struct bnx2x_pending_mcast_cmd *cmd_pos;
3753 struct bnx2x_mcast_mac_elem *pmac_pos;
3754 struct bnx2x_mcast_obj *o = p->mcast_obj;
3755 union bnx2x_mcast_config_data cfg_data = {NULL};
3756 int cnt = 0;
3757
3758 /* If nothing to be done - return */
3759 if (list_empty(&o->pending_cmds_head))
3760 return 0;
3761
3762 /* Handle the first command */
3763 cmd_pos = list_first_entry(&o->pending_cmds_head,
3764 struct bnx2x_pending_mcast_cmd, link);
3765
3766 switch (cmd_pos->type) {
3767 case BNX2X_MCAST_CMD_ADD:
3768 list_for_each_entry(pmac_pos, &cmd_pos->data.macs_head, link) {
3769 cfg_data.mac = &pmac_pos->mac[0];
3770 o->set_one_rule(bp, o, cnt, &cfg_data, cmd_pos->type);
3771
3772 cnt++;
3773
3774 DP(BNX2X_MSG_SP, "About to configure %pM mcast MAC\n",
3775 pmac_pos->mac);
3776 }
3777 break;
3778
3779 case BNX2X_MCAST_CMD_DEL:
3780 cnt = cmd_pos->data.macs_num;
3781 DP(BNX2X_MSG_SP, "About to delete %d multicast MACs\n", cnt);
3782 break;
3783
3784 case BNX2X_MCAST_CMD_RESTORE:
3785 o->hdl_restore(bp, o, 0, &cnt);
3786 break;
3787
3788 default:
3789 BNX2X_ERR("Unknown command: %d\n", cmd_pos->type);
3790 return -EINVAL;
3791 }
3792
3793 list_del(&cmd_pos->link);
3794 bnx2x_free_groups(&cmd_pos->group_head);
3795 kfree(cmd_pos);
3796
3797 return cnt;
3798 }
3799
3800 /**
3801 * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3802 *
3803 * @fw_hi: address
3804 * @fw_mid: address
3805 * @fw_lo: address
3806 * @mac: mac address
3807 */
bnx2x_get_fw_mac_addr(__le16 * fw_hi,__le16 * fw_mid,__le16 * fw_lo,u8 * mac)3808 static inline void bnx2x_get_fw_mac_addr(__le16 *fw_hi, __le16 *fw_mid,
3809 __le16 *fw_lo, u8 *mac)
3810 {
3811 mac[1] = ((u8 *)fw_hi)[0];
3812 mac[0] = ((u8 *)fw_hi)[1];
3813 mac[3] = ((u8 *)fw_mid)[0];
3814 mac[2] = ((u8 *)fw_mid)[1];
3815 mac[5] = ((u8 *)fw_lo)[0];
3816 mac[4] = ((u8 *)fw_lo)[1];
3817 }
3818
3819 /**
3820 * bnx2x_mcast_refresh_registry_e1 -
3821 *
3822 * @bp: device handle
3823 * @o: multicast info
3824 *
3825 * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3826 * and update the registry correspondingly: if ADD - allocate a memory and add
3827 * the entries to the registry (list), if DELETE - clear the registry and free
3828 * the memory.
3829 */
bnx2x_mcast_refresh_registry_e1(struct bnx2x * bp,struct bnx2x_mcast_obj * o)3830 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x *bp,
3831 struct bnx2x_mcast_obj *o)
3832 {
3833 struct bnx2x_raw_obj *raw = &o->raw;
3834 struct bnx2x_mcast_mac_elem *elem;
3835 struct mac_configuration_cmd *data =
3836 (struct mac_configuration_cmd *)(raw->rdata);
3837
3838 /* If first entry contains a SET bit - the command was ADD,
3839 * otherwise - DEL_ALL
3840 */
3841 if (GET_FLAG(data->config_table[0].flags,
3842 MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3843 int i, len = data->hdr.length;
3844
3845 /* Break if it was a RESTORE command */
3846 if (!list_empty(&o->registry.exact_match.macs))
3847 return 0;
3848
3849 elem = kcalloc(len, sizeof(*elem), GFP_ATOMIC);
3850 if (!elem) {
3851 BNX2X_ERR("Failed to allocate registry memory\n");
3852 return -ENOMEM;
3853 }
3854
3855 for (i = 0; i < len; i++, elem++) {
3856 bnx2x_get_fw_mac_addr(
3857 &data->config_table[i].msb_mac_addr,
3858 &data->config_table[i].middle_mac_addr,
3859 &data->config_table[i].lsb_mac_addr,
3860 elem->mac);
3861 DP(BNX2X_MSG_SP, "Adding registry entry for [%pM]\n",
3862 elem->mac);
3863 list_add_tail(&elem->link,
3864 &o->registry.exact_match.macs);
3865 }
3866 } else {
3867 elem = list_first_entry(&o->registry.exact_match.macs,
3868 struct bnx2x_mcast_mac_elem, link);
3869 DP(BNX2X_MSG_SP, "Deleting a registry\n");
3870 kfree(elem);
3871 INIT_LIST_HEAD(&o->registry.exact_match.macs);
3872 }
3873
3874 return 0;
3875 }
3876
bnx2x_mcast_setup_e1(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,enum bnx2x_mcast_cmd cmd)3877 static int bnx2x_mcast_setup_e1(struct bnx2x *bp,
3878 struct bnx2x_mcast_ramrod_params *p,
3879 enum bnx2x_mcast_cmd cmd)
3880 {
3881 struct bnx2x_mcast_obj *o = p->mcast_obj;
3882 struct bnx2x_raw_obj *raw = &o->raw;
3883 struct mac_configuration_cmd *data =
3884 (struct mac_configuration_cmd *)(raw->rdata);
3885 int cnt = 0, i, rc;
3886
3887 /* Reset the ramrod data buffer */
3888 memset(data, 0, sizeof(*data));
3889
3890 /* First set all entries as invalid */
3891 for (i = 0; i < o->max_cmd_len ; i++)
3892 SET_FLAG(data->config_table[i].flags,
3893 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3894 T_ETH_MAC_COMMAND_INVALIDATE);
3895
3896 /* Handle pending commands first */
3897 cnt = bnx2x_mcast_handle_pending_cmds_e1(bp, p);
3898
3899 /* If there are no more pending commands - clear SCHEDULED state */
3900 if (list_empty(&o->pending_cmds_head))
3901 o->clear_sched(o);
3902
3903 /* The below may be true iff there were no pending commands */
3904 if (!cnt)
3905 cnt = bnx2x_mcast_handle_current_cmd(bp, p, cmd, 0);
3906
3907 /* For 57710 every command has o->max_cmd_len length to ensure that
3908 * commands are done one at a time.
3909 */
3910 o->total_pending_num -= o->max_cmd_len;
3911
3912 /* send a ramrod */
3913
3914 WARN_ON(cnt > o->max_cmd_len);
3915
3916 /* Set ramrod header (in particular, a number of entries to update) */
3917 bnx2x_mcast_set_rdata_hdr_e1(bp, p, (u8)cnt);
3918
3919 /* update a registry: we need the registry contents to be always up
3920 * to date in order to be able to execute a RESTORE opcode. Here
3921 * we use the fact that for 57710 we sent one command at a time
3922 * hence we may take the registry update out of the command handling
3923 * and do it in a simpler way here.
3924 */
3925 rc = bnx2x_mcast_refresh_registry_e1(bp, o);
3926 if (rc)
3927 return rc;
3928
3929 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3930 * RAMROD_PENDING status immediately.
3931 */
3932 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3933 raw->clear_pending(raw);
3934 return 0;
3935 } else {
3936 /* No need for an explicit memory barrier here as long as we
3937 * ensure the ordering of writing to the SPQ element
3938 * and updating of the SPQ producer which involves a memory
3939 * read. If the memory read is removed we will have to put a
3940 * full memory barrier there (inside bnx2x_sp_post()).
3941 */
3942
3943 /* Send a ramrod */
3944 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_SET_MAC, raw->cid,
3945 U64_HI(raw->rdata_mapping),
3946 U64_LO(raw->rdata_mapping),
3947 ETH_CONNECTION_TYPE);
3948 if (rc)
3949 return rc;
3950
3951 /* Ramrod completion is pending */
3952 return 1;
3953 }
3954 }
3955
bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj * o)3956 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj *o)
3957 {
3958 return o->registry.exact_match.num_macs_set;
3959 }
3960
bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj * o)3961 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj *o)
3962 {
3963 return o->registry.aprox_match.num_bins_set;
3964 }
3965
bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj * o,int n)3966 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj *o,
3967 int n)
3968 {
3969 o->registry.exact_match.num_macs_set = n;
3970 }
3971
bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj * o,int n)3972 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj *o,
3973 int n)
3974 {
3975 o->registry.aprox_match.num_bins_set = n;
3976 }
3977
bnx2x_config_mcast(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,enum bnx2x_mcast_cmd cmd)3978 int bnx2x_config_mcast(struct bnx2x *bp,
3979 struct bnx2x_mcast_ramrod_params *p,
3980 enum bnx2x_mcast_cmd cmd)
3981 {
3982 struct bnx2x_mcast_obj *o = p->mcast_obj;
3983 struct bnx2x_raw_obj *r = &o->raw;
3984 int rc = 0, old_reg_size;
3985
3986 /* This is needed to recover number of currently configured mcast macs
3987 * in case of failure.
3988 */
3989 old_reg_size = o->get_registry_size(o);
3990
3991 /* Do some calculations and checks */
3992 rc = o->validate(bp, p, cmd);
3993 if (rc)
3994 return rc;
3995
3996 /* Return if there is no work to do */
3997 if ((!p->mcast_list_len) && (!o->check_sched(o)))
3998 return 0;
3999
4000 DP(BNX2X_MSG_SP, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
4001 o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
4002
4003 /* Enqueue the current command to the pending list if we can't complete
4004 * it in the current iteration
4005 */
4006 if (r->check_pending(r) ||
4007 ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
4008 rc = o->enqueue_cmd(bp, p->mcast_obj, p, cmd);
4009 if (rc < 0)
4010 goto error_exit1;
4011
4012 /* As long as the current command is in a command list we
4013 * don't need to handle it separately.
4014 */
4015 p->mcast_list_len = 0;
4016 }
4017
4018 if (!r->check_pending(r)) {
4019
4020 /* Set 'pending' state */
4021 r->set_pending(r);
4022
4023 /* Configure the new classification in the chip */
4024 rc = o->config_mcast(bp, p, cmd);
4025 if (rc < 0)
4026 goto error_exit2;
4027
4028 /* Wait for a ramrod completion if was requested */
4029 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4030 rc = o->wait_comp(bp, o);
4031 }
4032
4033 return rc;
4034
4035 error_exit2:
4036 r->clear_pending(r);
4037
4038 error_exit1:
4039 o->revert(bp, p, old_reg_size, cmd);
4040
4041 return rc;
4042 }
4043
bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj * o)4044 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj *o)
4045 {
4046 smp_mb__before_atomic();
4047 clear_bit(o->sched_state, o->raw.pstate);
4048 smp_mb__after_atomic();
4049 }
4050
bnx2x_mcast_set_sched(struct bnx2x_mcast_obj * o)4051 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj *o)
4052 {
4053 smp_mb__before_atomic();
4054 set_bit(o->sched_state, o->raw.pstate);
4055 smp_mb__after_atomic();
4056 }
4057
bnx2x_mcast_check_sched(struct bnx2x_mcast_obj * o)4058 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj *o)
4059 {
4060 return !!test_bit(o->sched_state, o->raw.pstate);
4061 }
4062
bnx2x_mcast_check_pending(struct bnx2x_mcast_obj * o)4063 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj *o)
4064 {
4065 return o->raw.check_pending(&o->raw) || o->check_sched(o);
4066 }
4067
bnx2x_init_mcast_obj(struct bnx2x * bp,struct bnx2x_mcast_obj * mcast_obj,u8 mcast_cl_id,u32 mcast_cid,u8 func_id,u8 engine_id,void * rdata,dma_addr_t rdata_mapping,int state,unsigned long * pstate,bnx2x_obj_type type)4068 void bnx2x_init_mcast_obj(struct bnx2x *bp,
4069 struct bnx2x_mcast_obj *mcast_obj,
4070 u8 mcast_cl_id, u32 mcast_cid, u8 func_id,
4071 u8 engine_id, void *rdata, dma_addr_t rdata_mapping,
4072 int state, unsigned long *pstate, bnx2x_obj_type type)
4073 {
4074 memset(mcast_obj, 0, sizeof(*mcast_obj));
4075
4076 bnx2x_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4077 rdata, rdata_mapping, state, pstate, type);
4078
4079 mcast_obj->engine_id = engine_id;
4080
4081 INIT_LIST_HEAD(&mcast_obj->pending_cmds_head);
4082
4083 mcast_obj->sched_state = BNX2X_FILTER_MCAST_SCHED;
4084 mcast_obj->check_sched = bnx2x_mcast_check_sched;
4085 mcast_obj->set_sched = bnx2x_mcast_set_sched;
4086 mcast_obj->clear_sched = bnx2x_mcast_clear_sched;
4087
4088 if (CHIP_IS_E1(bp)) {
4089 mcast_obj->config_mcast = bnx2x_mcast_setup_e1;
4090 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
4091 mcast_obj->hdl_restore =
4092 bnx2x_mcast_handle_restore_cmd_e1;
4093 mcast_obj->check_pending = bnx2x_mcast_check_pending;
4094
4095 if (CHIP_REV_IS_SLOW(bp))
4096 mcast_obj->max_cmd_len = BNX2X_MAX_EMUL_MULTI;
4097 else
4098 mcast_obj->max_cmd_len = BNX2X_MAX_MULTICAST;
4099
4100 mcast_obj->wait_comp = bnx2x_mcast_wait;
4101 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e1;
4102 mcast_obj->validate = bnx2x_mcast_validate_e1;
4103 mcast_obj->revert = bnx2x_mcast_revert_e1;
4104 mcast_obj->get_registry_size =
4105 bnx2x_mcast_get_registry_size_exact;
4106 mcast_obj->set_registry_size =
4107 bnx2x_mcast_set_registry_size_exact;
4108
4109 /* 57710 is the only chip that uses the exact match for mcast
4110 * at the moment.
4111 */
4112 INIT_LIST_HEAD(&mcast_obj->registry.exact_match.macs);
4113
4114 } else if (CHIP_IS_E1H(bp)) {
4115 mcast_obj->config_mcast = bnx2x_mcast_setup_e1h;
4116 mcast_obj->enqueue_cmd = NULL;
4117 mcast_obj->hdl_restore = NULL;
4118 mcast_obj->check_pending = bnx2x_mcast_check_pending;
4119
4120 /* 57711 doesn't send a ramrod, so it has unlimited credit
4121 * for one command.
4122 */
4123 mcast_obj->max_cmd_len = -1;
4124 mcast_obj->wait_comp = bnx2x_mcast_wait;
4125 mcast_obj->set_one_rule = NULL;
4126 mcast_obj->validate = bnx2x_mcast_validate_e1h;
4127 mcast_obj->revert = bnx2x_mcast_revert_e1h;
4128 mcast_obj->get_registry_size =
4129 bnx2x_mcast_get_registry_size_aprox;
4130 mcast_obj->set_registry_size =
4131 bnx2x_mcast_set_registry_size_aprox;
4132 } else {
4133 mcast_obj->config_mcast = bnx2x_mcast_setup_e2;
4134 mcast_obj->enqueue_cmd = bnx2x_mcast_enqueue_cmd;
4135 mcast_obj->hdl_restore =
4136 bnx2x_mcast_handle_restore_cmd_e2;
4137 mcast_obj->check_pending = bnx2x_mcast_check_pending;
4138 /* TODO: There should be a proper HSI define for this number!!!
4139 */
4140 mcast_obj->max_cmd_len = 16;
4141 mcast_obj->wait_comp = bnx2x_mcast_wait;
4142 mcast_obj->set_one_rule = bnx2x_mcast_set_one_rule_e2;
4143 mcast_obj->validate = bnx2x_mcast_validate_e2;
4144 mcast_obj->revert = bnx2x_mcast_revert_e2;
4145 mcast_obj->get_registry_size =
4146 bnx2x_mcast_get_registry_size_aprox;
4147 mcast_obj->set_registry_size =
4148 bnx2x_mcast_set_registry_size_aprox;
4149 }
4150 }
4151
4152 /*************************** Credit handling **********************************/
4153
4154 /**
4155 * atomic_add_ifless - add if the result is less than a given value.
4156 *
4157 * @v: pointer of type atomic_t
4158 * @a: the amount to add to v...
4159 * @u: ...if (v + a) is less than u.
4160 *
4161 * returns true if (v + a) was less than u, and false otherwise.
4162 *
4163 */
__atomic_add_ifless(atomic_t * v,int a,int u)4164 static inline bool __atomic_add_ifless(atomic_t *v, int a, int u)
4165 {
4166 int c, old;
4167
4168 c = atomic_read(v);
4169 for (;;) {
4170 if (unlikely(c + a >= u))
4171 return false;
4172
4173 old = atomic_cmpxchg((v), c, c + a);
4174 if (likely(old == c))
4175 break;
4176 c = old;
4177 }
4178
4179 return true;
4180 }
4181
4182 /**
4183 * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4184 *
4185 * @v: pointer of type atomic_t
4186 * @a: the amount to dec from v...
4187 * @u: ...if (v - a) is more or equal than u.
4188 *
4189 * returns true if (v - a) was more or equal than u, and false
4190 * otherwise.
4191 */
__atomic_dec_ifmoe(atomic_t * v,int a,int u)4192 static inline bool __atomic_dec_ifmoe(atomic_t *v, int a, int u)
4193 {
4194 int c, old;
4195
4196 c = atomic_read(v);
4197 for (;;) {
4198 if (unlikely(c - a < u))
4199 return false;
4200
4201 old = atomic_cmpxchg((v), c, c - a);
4202 if (likely(old == c))
4203 break;
4204 c = old;
4205 }
4206
4207 return true;
4208 }
4209
bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj * o,int cnt)4210 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj *o, int cnt)
4211 {
4212 bool rc;
4213
4214 smp_mb();
4215 rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4216 smp_mb();
4217
4218 return rc;
4219 }
4220
bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj * o,int cnt)4221 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj *o, int cnt)
4222 {
4223 bool rc;
4224
4225 smp_mb();
4226
4227 /* Don't let to refill if credit + cnt > pool_sz */
4228 rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4229
4230 smp_mb();
4231
4232 return rc;
4233 }
4234
bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj * o)4235 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj *o)
4236 {
4237 int cur_credit;
4238
4239 smp_mb();
4240 cur_credit = atomic_read(&o->credit);
4241
4242 return cur_credit;
4243 }
4244
bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj * o,int cnt)4245 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj *o,
4246 int cnt)
4247 {
4248 return true;
4249 }
4250
bnx2x_credit_pool_get_entry(struct bnx2x_credit_pool_obj * o,int * offset)4251 static bool bnx2x_credit_pool_get_entry(
4252 struct bnx2x_credit_pool_obj *o,
4253 int *offset)
4254 {
4255 int idx, vec, i;
4256
4257 *offset = -1;
4258
4259 /* Find "internal cam-offset" then add to base for this object... */
4260 for (vec = 0; vec < BNX2X_POOL_VEC_SIZE; vec++) {
4261
4262 /* Skip the current vector if there are no free entries in it */
4263 if (!o->pool_mirror[vec])
4264 continue;
4265
4266 /* If we've got here we are going to find a free entry */
4267 for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4268 i < BIT_VEC64_ELEM_SZ; idx++, i++)
4269
4270 if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4271 /* Got one!! */
4272 BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4273 *offset = o->base_pool_offset + idx;
4274 return true;
4275 }
4276 }
4277
4278 return false;
4279 }
4280
bnx2x_credit_pool_put_entry(struct bnx2x_credit_pool_obj * o,int offset)4281 static bool bnx2x_credit_pool_put_entry(
4282 struct bnx2x_credit_pool_obj *o,
4283 int offset)
4284 {
4285 if (offset < o->base_pool_offset)
4286 return false;
4287
4288 offset -= o->base_pool_offset;
4289
4290 if (offset >= o->pool_sz)
4291 return false;
4292
4293 /* Return the entry to the pool */
4294 BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4295
4296 return true;
4297 }
4298
bnx2x_credit_pool_put_entry_always_true(struct bnx2x_credit_pool_obj * o,int offset)4299 static bool bnx2x_credit_pool_put_entry_always_true(
4300 struct bnx2x_credit_pool_obj *o,
4301 int offset)
4302 {
4303 return true;
4304 }
4305
bnx2x_credit_pool_get_entry_always_true(struct bnx2x_credit_pool_obj * o,int * offset)4306 static bool bnx2x_credit_pool_get_entry_always_true(
4307 struct bnx2x_credit_pool_obj *o,
4308 int *offset)
4309 {
4310 *offset = -1;
4311 return true;
4312 }
4313 /**
4314 * bnx2x_init_credit_pool - initialize credit pool internals.
4315 *
4316 * @p: credit pool
4317 * @base: Base entry in the CAM to use.
4318 * @credit: pool size.
4319 *
4320 * If base is negative no CAM entries handling will be performed.
4321 * If credit is negative pool operations will always succeed (unlimited pool).
4322 *
4323 */
bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj * p,int base,int credit)4324 void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj *p,
4325 int base, int credit)
4326 {
4327 /* Zero the object first */
4328 memset(p, 0, sizeof(*p));
4329
4330 /* Set the table to all 1s */
4331 memset(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4332
4333 /* Init a pool as full */
4334 atomic_set(&p->credit, credit);
4335
4336 /* The total poll size */
4337 p->pool_sz = credit;
4338
4339 p->base_pool_offset = base;
4340
4341 /* Commit the change */
4342 smp_mb();
4343
4344 p->check = bnx2x_credit_pool_check;
4345
4346 /* if pool credit is negative - disable the checks */
4347 if (credit >= 0) {
4348 p->put = bnx2x_credit_pool_put;
4349 p->get = bnx2x_credit_pool_get;
4350 p->put_entry = bnx2x_credit_pool_put_entry;
4351 p->get_entry = bnx2x_credit_pool_get_entry;
4352 } else {
4353 p->put = bnx2x_credit_pool_always_true;
4354 p->get = bnx2x_credit_pool_always_true;
4355 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4356 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4357 }
4358
4359 /* If base is negative - disable entries handling */
4360 if (base < 0) {
4361 p->put_entry = bnx2x_credit_pool_put_entry_always_true;
4362 p->get_entry = bnx2x_credit_pool_get_entry_always_true;
4363 }
4364 }
4365
bnx2x_init_mac_credit_pool(struct bnx2x * bp,struct bnx2x_credit_pool_obj * p,u8 func_id,u8 func_num)4366 void bnx2x_init_mac_credit_pool(struct bnx2x *bp,
4367 struct bnx2x_credit_pool_obj *p, u8 func_id,
4368 u8 func_num)
4369 {
4370 /* TODO: this will be defined in consts as well... */
4371 #define BNX2X_CAM_SIZE_EMUL 5
4372
4373 int cam_sz;
4374
4375 if (CHIP_IS_E1(bp)) {
4376 /* In E1, Multicast is saved in cam... */
4377 if (!CHIP_REV_IS_SLOW(bp))
4378 cam_sz = (MAX_MAC_CREDIT_E1 / 2) - BNX2X_MAX_MULTICAST;
4379 else
4380 cam_sz = BNX2X_CAM_SIZE_EMUL - BNX2X_MAX_EMUL_MULTI;
4381
4382 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4383
4384 } else if (CHIP_IS_E1H(bp)) {
4385 /* CAM credit is equaly divided between all active functions
4386 * on the PORT!.
4387 */
4388 if ((func_num > 0)) {
4389 if (!CHIP_REV_IS_SLOW(bp))
4390 cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4391 else
4392 cam_sz = BNX2X_CAM_SIZE_EMUL;
4393 bnx2x_init_credit_pool(p, func_id * cam_sz, cam_sz);
4394 } else {
4395 /* this should never happen! Block MAC operations. */
4396 bnx2x_init_credit_pool(p, 0, 0);
4397 }
4398
4399 } else {
4400
4401 /* CAM credit is equaly divided between all active functions
4402 * on the PATH.
4403 */
4404 if (func_num > 0) {
4405 if (!CHIP_REV_IS_SLOW(bp))
4406 cam_sz = PF_MAC_CREDIT_E2(bp, func_num);
4407 else
4408 cam_sz = BNX2X_CAM_SIZE_EMUL;
4409
4410 /* No need for CAM entries handling for 57712 and
4411 * newer.
4412 */
4413 bnx2x_init_credit_pool(p, -1, cam_sz);
4414 } else {
4415 /* this should never happen! Block MAC operations. */
4416 bnx2x_init_credit_pool(p, 0, 0);
4417 }
4418 }
4419 }
4420
bnx2x_init_vlan_credit_pool(struct bnx2x * bp,struct bnx2x_credit_pool_obj * p,u8 func_id,u8 func_num)4421 void bnx2x_init_vlan_credit_pool(struct bnx2x *bp,
4422 struct bnx2x_credit_pool_obj *p,
4423 u8 func_id,
4424 u8 func_num)
4425 {
4426 if (CHIP_IS_E1x(bp)) {
4427 /* There is no VLAN credit in HW on 57710 and 57711 only
4428 * MAC / MAC-VLAN can be set
4429 */
4430 bnx2x_init_credit_pool(p, 0, -1);
4431 } else {
4432 /* CAM credit is equally divided between all active functions
4433 * on the PATH.
4434 */
4435 if (func_num > 0) {
4436 int credit = PF_VLAN_CREDIT_E2(bp, func_num);
4437
4438 bnx2x_init_credit_pool(p, -1/*unused for E2*/, credit);
4439 } else
4440 /* this should never happen! Block VLAN operations. */
4441 bnx2x_init_credit_pool(p, 0, 0);
4442 }
4443 }
4444
4445 /****************** RSS Configuration ******************/
4446 /**
4447 * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4448 *
4449 * @bp: driver handle
4450 * @p: pointer to rss configuration
4451 *
4452 * Prints it when NETIF_MSG_IFUP debug level is configured.
4453 */
bnx2x_debug_print_ind_table(struct bnx2x * bp,struct bnx2x_config_rss_params * p)4454 static inline void bnx2x_debug_print_ind_table(struct bnx2x *bp,
4455 struct bnx2x_config_rss_params *p)
4456 {
4457 int i;
4458
4459 DP(BNX2X_MSG_SP, "Setting indirection table to:\n");
4460 DP(BNX2X_MSG_SP, "0x0000: ");
4461 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
4462 DP_CONT(BNX2X_MSG_SP, "0x%02x ", p->ind_table[i]);
4463
4464 /* Print 4 bytes in a line */
4465 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
4466 (((i + 1) & 0x3) == 0)) {
4467 DP_CONT(BNX2X_MSG_SP, "\n");
4468 DP(BNX2X_MSG_SP, "0x%04x: ", i + 1);
4469 }
4470 }
4471
4472 DP_CONT(BNX2X_MSG_SP, "\n");
4473 }
4474
4475 /**
4476 * bnx2x_setup_rss - configure RSS
4477 *
4478 * @bp: device handle
4479 * @p: rss configuration
4480 *
4481 * sends on UPDATE ramrod for that matter.
4482 */
bnx2x_setup_rss(struct bnx2x * bp,struct bnx2x_config_rss_params * p)4483 static int bnx2x_setup_rss(struct bnx2x *bp,
4484 struct bnx2x_config_rss_params *p)
4485 {
4486 struct bnx2x_rss_config_obj *o = p->rss_obj;
4487 struct bnx2x_raw_obj *r = &o->raw;
4488 struct eth_rss_update_ramrod_data *data =
4489 (struct eth_rss_update_ramrod_data *)(r->rdata);
4490 u16 caps = 0;
4491 u8 rss_mode = 0;
4492 int rc;
4493
4494 memset(data, 0, sizeof(*data));
4495
4496 DP(BNX2X_MSG_SP, "Configuring RSS\n");
4497
4498 /* Set an echo field */
4499 data->echo = cpu_to_le32((r->cid & BNX2X_SWCID_MASK) |
4500 (r->state << BNX2X_SWCID_SHIFT));
4501
4502 /* RSS mode */
4503 if (test_bit(BNX2X_RSS_MODE_DISABLED, &p->rss_flags))
4504 rss_mode = ETH_RSS_MODE_DISABLED;
4505 else if (test_bit(BNX2X_RSS_MODE_REGULAR, &p->rss_flags))
4506 rss_mode = ETH_RSS_MODE_REGULAR;
4507
4508 data->rss_mode = rss_mode;
4509
4510 DP(BNX2X_MSG_SP, "rss_mode=%d\n", rss_mode);
4511
4512 /* RSS capabilities */
4513 if (test_bit(BNX2X_RSS_IPV4, &p->rss_flags))
4514 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4515
4516 if (test_bit(BNX2X_RSS_IPV4_TCP, &p->rss_flags))
4517 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4518
4519 if (test_bit(BNX2X_RSS_IPV4_UDP, &p->rss_flags))
4520 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4521
4522 if (test_bit(BNX2X_RSS_IPV6, &p->rss_flags))
4523 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4524
4525 if (test_bit(BNX2X_RSS_IPV6_TCP, &p->rss_flags))
4526 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4527
4528 if (test_bit(BNX2X_RSS_IPV6_UDP, &p->rss_flags))
4529 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4530
4531 if (test_bit(BNX2X_RSS_IPV4_VXLAN, &p->rss_flags))
4532 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4533
4534 if (test_bit(BNX2X_RSS_IPV6_VXLAN, &p->rss_flags))
4535 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4536
4537 if (test_bit(BNX2X_RSS_TUNN_INNER_HDRS, &p->rss_flags))
4538 caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY;
4539
4540 /* RSS keys */
4541 if (test_bit(BNX2X_RSS_SET_SRCH, &p->rss_flags)) {
4542 u8 *dst = (u8 *)(data->rss_key) + sizeof(data->rss_key);
4543 const u8 *src = (const u8 *)p->rss_key;
4544 int i;
4545
4546 /* Apparently, bnx2x reads this array in reverse order
4547 * We need to byte swap rss_key to comply with Toeplitz specs.
4548 */
4549 for (i = 0; i < sizeof(data->rss_key); i++)
4550 *--dst = *src++;
4551
4552 caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4553 }
4554
4555 data->capabilities = cpu_to_le16(caps);
4556
4557 /* Hashing mask */
4558 data->rss_result_mask = p->rss_result_mask;
4559
4560 /* RSS engine ID */
4561 data->rss_engine_id = o->engine_id;
4562
4563 DP(BNX2X_MSG_SP, "rss_engine_id=%d\n", data->rss_engine_id);
4564
4565 /* Indirection table */
4566 memcpy(data->indirection_table, p->ind_table,
4567 T_ETH_INDIRECTION_TABLE_SIZE);
4568
4569 /* Remember the last configuration */
4570 memcpy(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4571
4572 /* Print the indirection table */
4573 if (netif_msg_ifup(bp))
4574 bnx2x_debug_print_ind_table(bp, p);
4575
4576 /* No need for an explicit memory barrier here as long as we
4577 * ensure the ordering of writing to the SPQ element
4578 * and updating of the SPQ producer which involves a memory
4579 * read. If the memory read is removed we will have to put a
4580 * full memory barrier there (inside bnx2x_sp_post()).
4581 */
4582
4583 /* Send a ramrod */
4584 rc = bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_RSS_UPDATE, r->cid,
4585 U64_HI(r->rdata_mapping),
4586 U64_LO(r->rdata_mapping),
4587 ETH_CONNECTION_TYPE);
4588
4589 if (rc < 0)
4590 return rc;
4591
4592 return 1;
4593 }
4594
bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj * rss_obj,u8 * ind_table)4595 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj *rss_obj,
4596 u8 *ind_table)
4597 {
4598 memcpy(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4599 }
4600
bnx2x_config_rss(struct bnx2x * bp,struct bnx2x_config_rss_params * p)4601 int bnx2x_config_rss(struct bnx2x *bp,
4602 struct bnx2x_config_rss_params *p)
4603 {
4604 int rc;
4605 struct bnx2x_rss_config_obj *o = p->rss_obj;
4606 struct bnx2x_raw_obj *r = &o->raw;
4607
4608 /* Do nothing if only driver cleanup was requested */
4609 if (test_bit(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4610 DP(BNX2X_MSG_SP, "Not configuring RSS ramrod_flags=%lx\n",
4611 p->ramrod_flags);
4612 return 0;
4613 }
4614
4615 r->set_pending(r);
4616
4617 rc = o->config_rss(bp, p);
4618 if (rc < 0) {
4619 r->clear_pending(r);
4620 return rc;
4621 }
4622
4623 if (test_bit(RAMROD_COMP_WAIT, &p->ramrod_flags))
4624 rc = r->wait_comp(bp, r);
4625
4626 return rc;
4627 }
4628
bnx2x_init_rss_config_obj(struct bnx2x * bp,struct bnx2x_rss_config_obj * rss_obj,u8 cl_id,u32 cid,u8 func_id,u8 engine_id,void * rdata,dma_addr_t rdata_mapping,int state,unsigned long * pstate,bnx2x_obj_type type)4629 void bnx2x_init_rss_config_obj(struct bnx2x *bp,
4630 struct bnx2x_rss_config_obj *rss_obj,
4631 u8 cl_id, u32 cid, u8 func_id, u8 engine_id,
4632 void *rdata, dma_addr_t rdata_mapping,
4633 int state, unsigned long *pstate,
4634 bnx2x_obj_type type)
4635 {
4636 bnx2x_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4637 rdata_mapping, state, pstate, type);
4638
4639 rss_obj->engine_id = engine_id;
4640 rss_obj->config_rss = bnx2x_setup_rss;
4641 }
4642
4643 /********************** Queue state object ***********************************/
4644
4645 /**
4646 * bnx2x_queue_state_change - perform Queue state change transition
4647 *
4648 * @bp: device handle
4649 * @params: parameters to perform the transition
4650 *
4651 * returns 0 in case of successfully completed transition, negative error
4652 * code in case of failure, positive (EBUSY) value if there is a completion
4653 * to that is still pending (possible only if RAMROD_COMP_WAIT is
4654 * not set in params->ramrod_flags for asynchronous commands).
4655 *
4656 */
bnx2x_queue_state_change(struct bnx2x * bp,struct bnx2x_queue_state_params * params)4657 int bnx2x_queue_state_change(struct bnx2x *bp,
4658 struct bnx2x_queue_state_params *params)
4659 {
4660 struct bnx2x_queue_sp_obj *o = params->q_obj;
4661 int rc, pending_bit;
4662 unsigned long *pending = &o->pending;
4663
4664 /* Check that the requested transition is legal */
4665 rc = o->check_transition(bp, o, params);
4666 if (rc) {
4667 BNX2X_ERR("check transition returned an error. rc %d\n", rc);
4668 return -EINVAL;
4669 }
4670
4671 /* Set "pending" bit */
4672 DP(BNX2X_MSG_SP, "pending bit was=%lx\n", o->pending);
4673 pending_bit = o->set_pending(o, params);
4674 DP(BNX2X_MSG_SP, "pending bit now=%lx\n", o->pending);
4675
4676 /* Don't send a command if only driver cleanup was requested */
4677 if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags))
4678 o->complete_cmd(bp, o, pending_bit);
4679 else {
4680 /* Send a ramrod */
4681 rc = o->send_cmd(bp, params);
4682 if (rc) {
4683 o->next_state = BNX2X_Q_STATE_MAX;
4684 clear_bit(pending_bit, pending);
4685 smp_mb__after_atomic();
4686 return rc;
4687 }
4688
4689 if (test_bit(RAMROD_COMP_WAIT, ¶ms->ramrod_flags)) {
4690 rc = o->wait_comp(bp, o, pending_bit);
4691 if (rc)
4692 return rc;
4693
4694 return 0;
4695 }
4696 }
4697
4698 return !!test_bit(pending_bit, pending);
4699 }
4700
bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj * obj,struct bnx2x_queue_state_params * params)4701 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj *obj,
4702 struct bnx2x_queue_state_params *params)
4703 {
4704 enum bnx2x_queue_cmd cmd = params->cmd, bit;
4705
4706 /* ACTIVATE and DEACTIVATE commands are implemented on top of
4707 * UPDATE command.
4708 */
4709 if ((cmd == BNX2X_Q_CMD_ACTIVATE) ||
4710 (cmd == BNX2X_Q_CMD_DEACTIVATE))
4711 bit = BNX2X_Q_CMD_UPDATE;
4712 else
4713 bit = cmd;
4714
4715 set_bit(bit, &obj->pending);
4716 return bit;
4717 }
4718
bnx2x_queue_wait_comp(struct bnx2x * bp,struct bnx2x_queue_sp_obj * o,enum bnx2x_queue_cmd cmd)4719 static int bnx2x_queue_wait_comp(struct bnx2x *bp,
4720 struct bnx2x_queue_sp_obj *o,
4721 enum bnx2x_queue_cmd cmd)
4722 {
4723 return bnx2x_state_wait(bp, cmd, &o->pending);
4724 }
4725
4726 /**
4727 * bnx2x_queue_comp_cmd - complete the state change command.
4728 *
4729 * @bp: device handle
4730 * @o: queue info
4731 * @cmd: command to exec
4732 *
4733 * Checks that the arrived completion is expected.
4734 */
bnx2x_queue_comp_cmd(struct bnx2x * bp,struct bnx2x_queue_sp_obj * o,enum bnx2x_queue_cmd cmd)4735 static int bnx2x_queue_comp_cmd(struct bnx2x *bp,
4736 struct bnx2x_queue_sp_obj *o,
4737 enum bnx2x_queue_cmd cmd)
4738 {
4739 unsigned long cur_pending = o->pending;
4740
4741 if (!test_and_clear_bit(cmd, &cur_pending)) {
4742 BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4743 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX],
4744 o->state, cur_pending, o->next_state);
4745 return -EINVAL;
4746 }
4747
4748 if (o->next_tx_only >= o->max_cos)
4749 /* >= because tx only must always be smaller than cos since the
4750 * primary connection supports COS 0
4751 */
4752 BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4753 o->next_tx_only, o->max_cos);
4754
4755 DP(BNX2X_MSG_SP,
4756 "Completing command %d for queue %d, setting state to %d\n",
4757 cmd, o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_state);
4758
4759 if (o->next_tx_only) /* print num tx-only if any exist */
4760 DP(BNX2X_MSG_SP, "primary cid %d: num tx-only cons %d\n",
4761 o->cids[BNX2X_PRIMARY_CID_INDEX], o->next_tx_only);
4762
4763 o->state = o->next_state;
4764 o->num_tx_only = o->next_tx_only;
4765 o->next_state = BNX2X_Q_STATE_MAX;
4766
4767 /* It's important that o->state and o->next_state are
4768 * updated before o->pending.
4769 */
4770 wmb();
4771
4772 clear_bit(cmd, &o->pending);
4773 smp_mb__after_atomic();
4774
4775 return 0;
4776 }
4777
bnx2x_q_fill_setup_data_e2(struct bnx2x * bp,struct bnx2x_queue_state_params * cmd_params,struct client_init_ramrod_data * data)4778 static void bnx2x_q_fill_setup_data_e2(struct bnx2x *bp,
4779 struct bnx2x_queue_state_params *cmd_params,
4780 struct client_init_ramrod_data *data)
4781 {
4782 struct bnx2x_queue_setup_params *params = &cmd_params->params.setup;
4783
4784 /* Rx data */
4785
4786 /* IPv6 TPA supported for E2 and above only */
4787 data->rx.tpa_en |= test_bit(BNX2X_Q_FLG_TPA_IPV6, ¶ms->flags) *
4788 CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4789 }
4790
bnx2x_q_fill_init_general_data(struct bnx2x * bp,struct bnx2x_queue_sp_obj * o,struct bnx2x_general_setup_params * params,struct client_init_general_data * gen_data,unsigned long * flags)4791 static void bnx2x_q_fill_init_general_data(struct bnx2x *bp,
4792 struct bnx2x_queue_sp_obj *o,
4793 struct bnx2x_general_setup_params *params,
4794 struct client_init_general_data *gen_data,
4795 unsigned long *flags)
4796 {
4797 gen_data->client_id = o->cl_id;
4798
4799 if (test_bit(BNX2X_Q_FLG_STATS, flags)) {
4800 gen_data->statistics_counter_id =
4801 params->stat_id;
4802 gen_data->statistics_en_flg = 1;
4803 gen_data->statistics_zero_flg =
4804 test_bit(BNX2X_Q_FLG_ZERO_STATS, flags);
4805 } else
4806 gen_data->statistics_counter_id =
4807 DISABLE_STATISTIC_COUNTER_ID_VALUE;
4808
4809 gen_data->is_fcoe_flg = test_bit(BNX2X_Q_FLG_FCOE, flags);
4810 gen_data->activate_flg = test_bit(BNX2X_Q_FLG_ACTIVE, flags);
4811 gen_data->sp_client_id = params->spcl_id;
4812 gen_data->mtu = cpu_to_le16(params->mtu);
4813 gen_data->func_id = o->func_id;
4814
4815 gen_data->cos = params->cos;
4816
4817 gen_data->traffic_type =
4818 test_bit(BNX2X_Q_FLG_FCOE, flags) ?
4819 LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4820
4821 gen_data->fp_hsi_ver = params->fp_hsi;
4822
4823 DP(BNX2X_MSG_SP, "flags: active %d, cos %d, stats en %d\n",
4824 gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4825 }
4826
bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj * o,struct bnx2x_txq_setup_params * params,struct client_init_tx_data * tx_data,unsigned long * flags)4827 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj *o,
4828 struct bnx2x_txq_setup_params *params,
4829 struct client_init_tx_data *tx_data,
4830 unsigned long *flags)
4831 {
4832 tx_data->enforce_security_flg =
4833 test_bit(BNX2X_Q_FLG_TX_SEC, flags);
4834 tx_data->default_vlan =
4835 cpu_to_le16(params->default_vlan);
4836 tx_data->default_vlan_flg =
4837 test_bit(BNX2X_Q_FLG_DEF_VLAN, flags);
4838 tx_data->tx_switching_flg =
4839 test_bit(BNX2X_Q_FLG_TX_SWITCH, flags);
4840 tx_data->anti_spoofing_flg =
4841 test_bit(BNX2X_Q_FLG_ANTI_SPOOF, flags);
4842 tx_data->force_default_pri_flg =
4843 test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, flags);
4844 tx_data->refuse_outband_vlan_flg =
4845 test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4846 tx_data->tunnel_lso_inc_ip_id =
4847 test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4848 tx_data->tunnel_non_lso_pcsum_location =
4849 test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4850 CSUM_ON_BD;
4851
4852 tx_data->tx_status_block_id = params->fw_sb_id;
4853 tx_data->tx_sb_index_number = params->sb_cq_index;
4854 tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4855
4856 tx_data->tx_bd_page_base.lo =
4857 cpu_to_le32(U64_LO(params->dscr_map));
4858 tx_data->tx_bd_page_base.hi =
4859 cpu_to_le32(U64_HI(params->dscr_map));
4860
4861 /* Don't configure any Tx switching mode during queue SETUP */
4862 tx_data->state = 0;
4863 }
4864
bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj * o,struct rxq_pause_params * params,struct client_init_rx_data * rx_data)4865 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj *o,
4866 struct rxq_pause_params *params,
4867 struct client_init_rx_data *rx_data)
4868 {
4869 /* flow control data */
4870 rx_data->cqe_pause_thr_low = cpu_to_le16(params->rcq_th_lo);
4871 rx_data->cqe_pause_thr_high = cpu_to_le16(params->rcq_th_hi);
4872 rx_data->bd_pause_thr_low = cpu_to_le16(params->bd_th_lo);
4873 rx_data->bd_pause_thr_high = cpu_to_le16(params->bd_th_hi);
4874 rx_data->sge_pause_thr_low = cpu_to_le16(params->sge_th_lo);
4875 rx_data->sge_pause_thr_high = cpu_to_le16(params->sge_th_hi);
4876 rx_data->rx_cos_mask = cpu_to_le16(params->pri_map);
4877 }
4878
bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj * o,struct bnx2x_rxq_setup_params * params,struct client_init_rx_data * rx_data,unsigned long * flags)4879 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj *o,
4880 struct bnx2x_rxq_setup_params *params,
4881 struct client_init_rx_data *rx_data,
4882 unsigned long *flags)
4883 {
4884 rx_data->tpa_en = test_bit(BNX2X_Q_FLG_TPA, flags) *
4885 CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4886 rx_data->tpa_en |= test_bit(BNX2X_Q_FLG_TPA_GRO, flags) *
4887 CLIENT_INIT_RX_DATA_TPA_MODE;
4888 rx_data->vmqueue_mode_en_flg = 0;
4889
4890 rx_data->cache_line_alignment_log_size =
4891 params->cache_line_log;
4892 rx_data->enable_dynamic_hc =
4893 test_bit(BNX2X_Q_FLG_DHC, flags);
4894 rx_data->max_sges_for_packet = params->max_sges_pkt;
4895 rx_data->client_qzone_id = params->cl_qzone_id;
4896 rx_data->max_agg_size = cpu_to_le16(params->tpa_agg_sz);
4897
4898 /* Always start in DROP_ALL mode */
4899 rx_data->state = cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4900 CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4901
4902 /* We don't set drop flags */
4903 rx_data->drop_ip_cs_err_flg = 0;
4904 rx_data->drop_tcp_cs_err_flg = 0;
4905 rx_data->drop_ttl0_flg = 0;
4906 rx_data->drop_udp_cs_err_flg = 0;
4907 rx_data->inner_vlan_removal_enable_flg =
4908 test_bit(BNX2X_Q_FLG_VLAN, flags);
4909 rx_data->outer_vlan_removal_enable_flg =
4910 test_bit(BNX2X_Q_FLG_OV, flags);
4911 rx_data->status_block_id = params->fw_sb_id;
4912 rx_data->rx_sb_index_number = params->sb_cq_index;
4913 rx_data->max_tpa_queues = params->max_tpa_queues;
4914 rx_data->max_bytes_on_bd = cpu_to_le16(params->buf_sz);
4915 rx_data->sge_buff_size = cpu_to_le16(params->sge_buf_sz);
4916 rx_data->bd_page_base.lo =
4917 cpu_to_le32(U64_LO(params->dscr_map));
4918 rx_data->bd_page_base.hi =
4919 cpu_to_le32(U64_HI(params->dscr_map));
4920 rx_data->sge_page_base.lo =
4921 cpu_to_le32(U64_LO(params->sge_map));
4922 rx_data->sge_page_base.hi =
4923 cpu_to_le32(U64_HI(params->sge_map));
4924 rx_data->cqe_page_base.lo =
4925 cpu_to_le32(U64_LO(params->rcq_map));
4926 rx_data->cqe_page_base.hi =
4927 cpu_to_le32(U64_HI(params->rcq_map));
4928 rx_data->is_leading_rss = test_bit(BNX2X_Q_FLG_LEADING_RSS, flags);
4929
4930 if (test_bit(BNX2X_Q_FLG_MCAST, flags)) {
4931 rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4932 rx_data->is_approx_mcast = 1;
4933 }
4934
4935 rx_data->rss_engine_id = params->rss_engine_id;
4936
4937 /* silent vlan removal */
4938 rx_data->silent_vlan_removal_flg =
4939 test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, flags);
4940 rx_data->silent_vlan_value =
4941 cpu_to_le16(params->silent_removal_value);
4942 rx_data->silent_vlan_mask =
4943 cpu_to_le16(params->silent_removal_mask);
4944 }
4945
4946 /* initialize the general, tx and rx parts of a queue object */
bnx2x_q_fill_setup_data_cmn(struct bnx2x * bp,struct bnx2x_queue_state_params * cmd_params,struct client_init_ramrod_data * data)4947 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x *bp,
4948 struct bnx2x_queue_state_params *cmd_params,
4949 struct client_init_ramrod_data *data)
4950 {
4951 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4952 &cmd_params->params.setup.gen_params,
4953 &data->general,
4954 &cmd_params->params.setup.flags);
4955
4956 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4957 &cmd_params->params.setup.txq_params,
4958 &data->tx,
4959 &cmd_params->params.setup.flags);
4960
4961 bnx2x_q_fill_init_rx_data(cmd_params->q_obj,
4962 &cmd_params->params.setup.rxq_params,
4963 &data->rx,
4964 &cmd_params->params.setup.flags);
4965
4966 bnx2x_q_fill_init_pause_data(cmd_params->q_obj,
4967 &cmd_params->params.setup.pause_params,
4968 &data->rx);
4969 }
4970
4971 /* initialize the general and tx parts of a tx-only queue object */
bnx2x_q_fill_setup_tx_only(struct bnx2x * bp,struct bnx2x_queue_state_params * cmd_params,struct tx_queue_init_ramrod_data * data)4972 static void bnx2x_q_fill_setup_tx_only(struct bnx2x *bp,
4973 struct bnx2x_queue_state_params *cmd_params,
4974 struct tx_queue_init_ramrod_data *data)
4975 {
4976 bnx2x_q_fill_init_general_data(bp, cmd_params->q_obj,
4977 &cmd_params->params.tx_only.gen_params,
4978 &data->general,
4979 &cmd_params->params.tx_only.flags);
4980
4981 bnx2x_q_fill_init_tx_data(cmd_params->q_obj,
4982 &cmd_params->params.tx_only.txq_params,
4983 &data->tx,
4984 &cmd_params->params.tx_only.flags);
4985
4986 DP(BNX2X_MSG_SP, "cid %d, tx bd page lo %x hi %x",
4987 cmd_params->q_obj->cids[0],
4988 data->tx.tx_bd_page_base.lo,
4989 data->tx.tx_bd_page_base.hi);
4990 }
4991
4992 /**
4993 * bnx2x_q_init - init HW/FW queue
4994 *
4995 * @bp: device handle
4996 * @params:
4997 *
4998 * HW/FW initial Queue configuration:
4999 * - HC: Rx and Tx
5000 * - CDU context validation
5001 *
5002 */
bnx2x_q_init(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5003 static inline int bnx2x_q_init(struct bnx2x *bp,
5004 struct bnx2x_queue_state_params *params)
5005 {
5006 struct bnx2x_queue_sp_obj *o = params->q_obj;
5007 struct bnx2x_queue_init_params *init = ¶ms->params.init;
5008 u16 hc_usec;
5009 u8 cos;
5010
5011 /* Tx HC configuration */
5012 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &o->type) &&
5013 test_bit(BNX2X_Q_FLG_HC, &init->tx.flags)) {
5014 hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
5015
5016 bnx2x_update_coalesce_sb_index(bp, init->tx.fw_sb_id,
5017 init->tx.sb_cq_index,
5018 !test_bit(BNX2X_Q_FLG_HC_EN, &init->tx.flags),
5019 hc_usec);
5020 }
5021
5022 /* Rx HC configuration */
5023 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &o->type) &&
5024 test_bit(BNX2X_Q_FLG_HC, &init->rx.flags)) {
5025 hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
5026
5027 bnx2x_update_coalesce_sb_index(bp, init->rx.fw_sb_id,
5028 init->rx.sb_cq_index,
5029 !test_bit(BNX2X_Q_FLG_HC_EN, &init->rx.flags),
5030 hc_usec);
5031 }
5032
5033 /* Set CDU context validation values */
5034 for (cos = 0; cos < o->max_cos; cos++) {
5035 DP(BNX2X_MSG_SP, "setting context validation. cid %d, cos %d\n",
5036 o->cids[cos], cos);
5037 DP(BNX2X_MSG_SP, "context pointer %p\n", init->cxts[cos]);
5038 bnx2x_set_ctx_validation(bp, init->cxts[cos], o->cids[cos]);
5039 }
5040
5041 /* As no ramrod is sent, complete the command immediately */
5042 o->complete_cmd(bp, o, BNX2X_Q_CMD_INIT);
5043
5044 smp_mb();
5045
5046 return 0;
5047 }
5048
bnx2x_q_send_setup_e1x(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5049 static inline int bnx2x_q_send_setup_e1x(struct bnx2x *bp,
5050 struct bnx2x_queue_state_params *params)
5051 {
5052 struct bnx2x_queue_sp_obj *o = params->q_obj;
5053 struct client_init_ramrod_data *rdata =
5054 (struct client_init_ramrod_data *)o->rdata;
5055 dma_addr_t data_mapping = o->rdata_mapping;
5056 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5057
5058 /* Clear the ramrod data */
5059 memset(rdata, 0, sizeof(*rdata));
5060
5061 /* Fill the ramrod data */
5062 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5063
5064 /* No need for an explicit memory barrier here as long as we
5065 * ensure the ordering of writing to the SPQ element
5066 * and updating of the SPQ producer which involves a memory
5067 * read. If the memory read is removed we will have to put a
5068 * full memory barrier there (inside bnx2x_sp_post()).
5069 */
5070 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5071 U64_HI(data_mapping),
5072 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5073 }
5074
bnx2x_q_send_setup_e2(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5075 static inline int bnx2x_q_send_setup_e2(struct bnx2x *bp,
5076 struct bnx2x_queue_state_params *params)
5077 {
5078 struct bnx2x_queue_sp_obj *o = params->q_obj;
5079 struct client_init_ramrod_data *rdata =
5080 (struct client_init_ramrod_data *)o->rdata;
5081 dma_addr_t data_mapping = o->rdata_mapping;
5082 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5083
5084 /* Clear the ramrod data */
5085 memset(rdata, 0, sizeof(*rdata));
5086
5087 /* Fill the ramrod data */
5088 bnx2x_q_fill_setup_data_cmn(bp, params, rdata);
5089 bnx2x_q_fill_setup_data_e2(bp, params, rdata);
5090
5091 /* No need for an explicit memory barrier here as long as we
5092 * ensure the ordering of writing to the SPQ element
5093 * and updating of the SPQ producer which involves a memory
5094 * read. If the memory read is removed we will have to put a
5095 * full memory barrier there (inside bnx2x_sp_post()).
5096 */
5097 return bnx2x_sp_post(bp, ramrod, o->cids[BNX2X_PRIMARY_CID_INDEX],
5098 U64_HI(data_mapping),
5099 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5100 }
5101
bnx2x_q_send_setup_tx_only(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5102 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x *bp,
5103 struct bnx2x_queue_state_params *params)
5104 {
5105 struct bnx2x_queue_sp_obj *o = params->q_obj;
5106 struct tx_queue_init_ramrod_data *rdata =
5107 (struct tx_queue_init_ramrod_data *)o->rdata;
5108 dma_addr_t data_mapping = o->rdata_mapping;
5109 int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5110 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
5111 ¶ms->params.tx_only;
5112 u8 cid_index = tx_only_params->cid_index;
5113
5114 if (cid_index >= o->max_cos) {
5115 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5116 o->cl_id, cid_index);
5117 return -EINVAL;
5118 }
5119
5120 DP(BNX2X_MSG_SP, "parameters received: cos: %d sp-id: %d\n",
5121 tx_only_params->gen_params.cos,
5122 tx_only_params->gen_params.spcl_id);
5123
5124 /* Clear the ramrod data */
5125 memset(rdata, 0, sizeof(*rdata));
5126
5127 /* Fill the ramrod data */
5128 bnx2x_q_fill_setup_tx_only(bp, params, rdata);
5129
5130 DP(BNX2X_MSG_SP, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5131 o->cids[cid_index], rdata->general.client_id,
5132 rdata->general.sp_client_id, rdata->general.cos);
5133
5134 /* No need for an explicit memory barrier here as long as we
5135 * ensure the ordering of writing to the SPQ element
5136 * and updating of the SPQ producer which involves a memory
5137 * read. If the memory read is removed we will have to put a
5138 * full memory barrier there (inside bnx2x_sp_post()).
5139 */
5140 return bnx2x_sp_post(bp, ramrod, o->cids[cid_index],
5141 U64_HI(data_mapping),
5142 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5143 }
5144
bnx2x_q_fill_update_data(struct bnx2x * bp,struct bnx2x_queue_sp_obj * obj,struct bnx2x_queue_update_params * params,struct client_update_ramrod_data * data)5145 static void bnx2x_q_fill_update_data(struct bnx2x *bp,
5146 struct bnx2x_queue_sp_obj *obj,
5147 struct bnx2x_queue_update_params *params,
5148 struct client_update_ramrod_data *data)
5149 {
5150 /* Client ID of the client to update */
5151 data->client_id = obj->cl_id;
5152
5153 /* Function ID of the client to update */
5154 data->func_id = obj->func_id;
5155
5156 /* Default VLAN value */
5157 data->default_vlan = cpu_to_le16(params->def_vlan);
5158
5159 /* Inner VLAN stripping */
5160 data->inner_vlan_removal_enable_flg =
5161 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM, ¶ms->update_flags);
5162 data->inner_vlan_removal_change_flg =
5163 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG,
5164 ¶ms->update_flags);
5165
5166 /* Outer VLAN stripping */
5167 data->outer_vlan_removal_enable_flg =
5168 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM, ¶ms->update_flags);
5169 data->outer_vlan_removal_change_flg =
5170 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG,
5171 ¶ms->update_flags);
5172
5173 /* Drop packets that have source MAC that doesn't belong to this
5174 * Queue.
5175 */
5176 data->anti_spoofing_enable_flg =
5177 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF, ¶ms->update_flags);
5178 data->anti_spoofing_change_flg =
5179 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG, ¶ms->update_flags);
5180
5181 /* Activate/Deactivate */
5182 data->activate_flg =
5183 test_bit(BNX2X_Q_UPDATE_ACTIVATE, ¶ms->update_flags);
5184 data->activate_change_flg =
5185 test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, ¶ms->update_flags);
5186
5187 /* Enable default VLAN */
5188 data->default_vlan_enable_flg =
5189 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, ¶ms->update_flags);
5190 data->default_vlan_change_flg =
5191 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
5192 ¶ms->update_flags);
5193
5194 /* silent vlan removal */
5195 data->silent_vlan_change_flg =
5196 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5197 ¶ms->update_flags);
5198 data->silent_vlan_removal_flg =
5199 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, ¶ms->update_flags);
5200 data->silent_vlan_value = cpu_to_le16(params->silent_removal_value);
5201 data->silent_vlan_mask = cpu_to_le16(params->silent_removal_mask);
5202
5203 /* tx switching */
5204 data->tx_switching_flg =
5205 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING, ¶ms->update_flags);
5206 data->tx_switching_change_flg =
5207 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
5208 ¶ms->update_flags);
5209
5210 /* PTP */
5211 data->handle_ptp_pkts_flg =
5212 test_bit(BNX2X_Q_UPDATE_PTP_PKTS, ¶ms->update_flags);
5213 data->handle_ptp_pkts_change_flg =
5214 test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, ¶ms->update_flags);
5215 }
5216
bnx2x_q_send_update(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5217 static inline int bnx2x_q_send_update(struct bnx2x *bp,
5218 struct bnx2x_queue_state_params *params)
5219 {
5220 struct bnx2x_queue_sp_obj *o = params->q_obj;
5221 struct client_update_ramrod_data *rdata =
5222 (struct client_update_ramrod_data *)o->rdata;
5223 dma_addr_t data_mapping = o->rdata_mapping;
5224 struct bnx2x_queue_update_params *update_params =
5225 ¶ms->params.update;
5226 u8 cid_index = update_params->cid_index;
5227
5228 if (cid_index >= o->max_cos) {
5229 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5230 o->cl_id, cid_index);
5231 return -EINVAL;
5232 }
5233
5234 /* Clear the ramrod data */
5235 memset(rdata, 0, sizeof(*rdata));
5236
5237 /* Fill the ramrod data */
5238 bnx2x_q_fill_update_data(bp, o, update_params, rdata);
5239
5240 /* No need for an explicit memory barrier here as long as we
5241 * ensure the ordering of writing to the SPQ element
5242 * and updating of the SPQ producer which involves a memory
5243 * read. If the memory read is removed we will have to put a
5244 * full memory barrier there (inside bnx2x_sp_post()).
5245 */
5246 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5247 o->cids[cid_index], U64_HI(data_mapping),
5248 U64_LO(data_mapping), ETH_CONNECTION_TYPE);
5249 }
5250
5251 /**
5252 * bnx2x_q_send_deactivate - send DEACTIVATE command
5253 *
5254 * @bp: device handle
5255 * @params:
5256 *
5257 * implemented using the UPDATE command.
5258 */
bnx2x_q_send_deactivate(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5259 static inline int bnx2x_q_send_deactivate(struct bnx2x *bp,
5260 struct bnx2x_queue_state_params *params)
5261 {
5262 struct bnx2x_queue_update_params *update = ¶ms->params.update;
5263
5264 memset(update, 0, sizeof(*update));
5265
5266 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5267
5268 return bnx2x_q_send_update(bp, params);
5269 }
5270
5271 /**
5272 * bnx2x_q_send_activate - send ACTIVATE command
5273 *
5274 * @bp: device handle
5275 * @params:
5276 *
5277 * implemented using the UPDATE command.
5278 */
bnx2x_q_send_activate(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5279 static inline int bnx2x_q_send_activate(struct bnx2x *bp,
5280 struct bnx2x_queue_state_params *params)
5281 {
5282 struct bnx2x_queue_update_params *update = ¶ms->params.update;
5283
5284 memset(update, 0, sizeof(*update));
5285
5286 __set_bit(BNX2X_Q_UPDATE_ACTIVATE, &update->update_flags);
5287 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5288
5289 return bnx2x_q_send_update(bp, params);
5290 }
5291
bnx2x_q_fill_update_tpa_data(struct bnx2x * bp,struct bnx2x_queue_sp_obj * obj,struct bnx2x_queue_update_tpa_params * params,struct tpa_update_ramrod_data * data)5292 static void bnx2x_q_fill_update_tpa_data(struct bnx2x *bp,
5293 struct bnx2x_queue_sp_obj *obj,
5294 struct bnx2x_queue_update_tpa_params *params,
5295 struct tpa_update_ramrod_data *data)
5296 {
5297 data->client_id = obj->cl_id;
5298 data->complete_on_both_clients = params->complete_on_both_clients;
5299 data->dont_verify_rings_pause_thr_flg =
5300 params->dont_verify_thr;
5301 data->max_agg_size = cpu_to_le16(params->max_agg_sz);
5302 data->max_sges_for_packet = params->max_sges_pkt;
5303 data->max_tpa_queues = params->max_tpa_queues;
5304 data->sge_buff_size = cpu_to_le16(params->sge_buff_sz);
5305 data->sge_page_base_hi = cpu_to_le32(U64_HI(params->sge_map));
5306 data->sge_page_base_lo = cpu_to_le32(U64_LO(params->sge_map));
5307 data->sge_pause_thr_high = cpu_to_le16(params->sge_pause_thr_high);
5308 data->sge_pause_thr_low = cpu_to_le16(params->sge_pause_thr_low);
5309 data->tpa_mode = params->tpa_mode;
5310 data->update_ipv4 = params->update_ipv4;
5311 data->update_ipv6 = params->update_ipv6;
5312 }
5313
bnx2x_q_send_update_tpa(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5314 static inline int bnx2x_q_send_update_tpa(struct bnx2x *bp,
5315 struct bnx2x_queue_state_params *params)
5316 {
5317 struct bnx2x_queue_sp_obj *o = params->q_obj;
5318 struct tpa_update_ramrod_data *rdata =
5319 (struct tpa_update_ramrod_data *)o->rdata;
5320 dma_addr_t data_mapping = o->rdata_mapping;
5321 struct bnx2x_queue_update_tpa_params *update_tpa_params =
5322 ¶ms->params.update_tpa;
5323 u16 type;
5324
5325 /* Clear the ramrod data */
5326 memset(rdata, 0, sizeof(*rdata));
5327
5328 /* Fill the ramrod data */
5329 bnx2x_q_fill_update_tpa_data(bp, o, update_tpa_params, rdata);
5330
5331 /* Add the function id inside the type, so that sp post function
5332 * doesn't automatically add the PF func-id, this is required
5333 * for operations done by PFs on behalf of their VFs
5334 */
5335 type = ETH_CONNECTION_TYPE |
5336 ((o->func_id) << SPE_HDR_FUNCTION_ID_SHIFT);
5337
5338 /* No need for an explicit memory barrier here as long as we
5339 * ensure the ordering of writing to the SPQ element
5340 * and updating of the SPQ producer which involves a memory
5341 * read. If the memory read is removed we will have to put a
5342 * full memory barrier there (inside bnx2x_sp_post()).
5343 */
5344 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5345 o->cids[BNX2X_PRIMARY_CID_INDEX],
5346 U64_HI(data_mapping),
5347 U64_LO(data_mapping), type);
5348 }
5349
bnx2x_q_send_halt(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5350 static inline int bnx2x_q_send_halt(struct bnx2x *bp,
5351 struct bnx2x_queue_state_params *params)
5352 {
5353 struct bnx2x_queue_sp_obj *o = params->q_obj;
5354
5355 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_HALT,
5356 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, o->cl_id,
5357 ETH_CONNECTION_TYPE);
5358 }
5359
bnx2x_q_send_cfc_del(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5360 static inline int bnx2x_q_send_cfc_del(struct bnx2x *bp,
5361 struct bnx2x_queue_state_params *params)
5362 {
5363 struct bnx2x_queue_sp_obj *o = params->q_obj;
5364 u8 cid_idx = params->params.cfc_del.cid_index;
5365
5366 if (cid_idx >= o->max_cos) {
5367 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5368 o->cl_id, cid_idx);
5369 return -EINVAL;
5370 }
5371
5372 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_CFC_DEL,
5373 o->cids[cid_idx], 0, 0, NONE_CONNECTION_TYPE);
5374 }
5375
bnx2x_q_send_terminate(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5376 static inline int bnx2x_q_send_terminate(struct bnx2x *bp,
5377 struct bnx2x_queue_state_params *params)
5378 {
5379 struct bnx2x_queue_sp_obj *o = params->q_obj;
5380 u8 cid_index = params->params.terminate.cid_index;
5381
5382 if (cid_index >= o->max_cos) {
5383 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5384 o->cl_id, cid_index);
5385 return -EINVAL;
5386 }
5387
5388 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_TERMINATE,
5389 o->cids[cid_index], 0, 0, ETH_CONNECTION_TYPE);
5390 }
5391
bnx2x_q_send_empty(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5392 static inline int bnx2x_q_send_empty(struct bnx2x *bp,
5393 struct bnx2x_queue_state_params *params)
5394 {
5395 struct bnx2x_queue_sp_obj *o = params->q_obj;
5396
5397 return bnx2x_sp_post(bp, RAMROD_CMD_ID_ETH_EMPTY,
5398 o->cids[BNX2X_PRIMARY_CID_INDEX], 0, 0,
5399 ETH_CONNECTION_TYPE);
5400 }
5401
bnx2x_queue_send_cmd_cmn(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5402 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x *bp,
5403 struct bnx2x_queue_state_params *params)
5404 {
5405 switch (params->cmd) {
5406 case BNX2X_Q_CMD_INIT:
5407 return bnx2x_q_init(bp, params);
5408 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5409 return bnx2x_q_send_setup_tx_only(bp, params);
5410 case BNX2X_Q_CMD_DEACTIVATE:
5411 return bnx2x_q_send_deactivate(bp, params);
5412 case BNX2X_Q_CMD_ACTIVATE:
5413 return bnx2x_q_send_activate(bp, params);
5414 case BNX2X_Q_CMD_UPDATE:
5415 return bnx2x_q_send_update(bp, params);
5416 case BNX2X_Q_CMD_UPDATE_TPA:
5417 return bnx2x_q_send_update_tpa(bp, params);
5418 case BNX2X_Q_CMD_HALT:
5419 return bnx2x_q_send_halt(bp, params);
5420 case BNX2X_Q_CMD_CFC_DEL:
5421 return bnx2x_q_send_cfc_del(bp, params);
5422 case BNX2X_Q_CMD_TERMINATE:
5423 return bnx2x_q_send_terminate(bp, params);
5424 case BNX2X_Q_CMD_EMPTY:
5425 return bnx2x_q_send_empty(bp, params);
5426 default:
5427 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5428 return -EINVAL;
5429 }
5430 }
5431
bnx2x_queue_send_cmd_e1x(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5432 static int bnx2x_queue_send_cmd_e1x(struct bnx2x *bp,
5433 struct bnx2x_queue_state_params *params)
5434 {
5435 switch (params->cmd) {
5436 case BNX2X_Q_CMD_SETUP:
5437 return bnx2x_q_send_setup_e1x(bp, params);
5438 case BNX2X_Q_CMD_INIT:
5439 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5440 case BNX2X_Q_CMD_DEACTIVATE:
5441 case BNX2X_Q_CMD_ACTIVATE:
5442 case BNX2X_Q_CMD_UPDATE:
5443 case BNX2X_Q_CMD_UPDATE_TPA:
5444 case BNX2X_Q_CMD_HALT:
5445 case BNX2X_Q_CMD_CFC_DEL:
5446 case BNX2X_Q_CMD_TERMINATE:
5447 case BNX2X_Q_CMD_EMPTY:
5448 return bnx2x_queue_send_cmd_cmn(bp, params);
5449 default:
5450 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5451 return -EINVAL;
5452 }
5453 }
5454
bnx2x_queue_send_cmd_e2(struct bnx2x * bp,struct bnx2x_queue_state_params * params)5455 static int bnx2x_queue_send_cmd_e2(struct bnx2x *bp,
5456 struct bnx2x_queue_state_params *params)
5457 {
5458 switch (params->cmd) {
5459 case BNX2X_Q_CMD_SETUP:
5460 return bnx2x_q_send_setup_e2(bp, params);
5461 case BNX2X_Q_CMD_INIT:
5462 case BNX2X_Q_CMD_SETUP_TX_ONLY:
5463 case BNX2X_Q_CMD_DEACTIVATE:
5464 case BNX2X_Q_CMD_ACTIVATE:
5465 case BNX2X_Q_CMD_UPDATE:
5466 case BNX2X_Q_CMD_UPDATE_TPA:
5467 case BNX2X_Q_CMD_HALT:
5468 case BNX2X_Q_CMD_CFC_DEL:
5469 case BNX2X_Q_CMD_TERMINATE:
5470 case BNX2X_Q_CMD_EMPTY:
5471 return bnx2x_queue_send_cmd_cmn(bp, params);
5472 default:
5473 BNX2X_ERR("Unknown command: %d\n", params->cmd);
5474 return -EINVAL;
5475 }
5476 }
5477
5478 /**
5479 * bnx2x_queue_chk_transition - check state machine of a regular Queue
5480 *
5481 * @bp: device handle
5482 * @o: queue info
5483 * @params: queue state
5484 *
5485 * (not Forwarding)
5486 * It both checks if the requested command is legal in a current
5487 * state and, if it's legal, sets a `next_state' in the object
5488 * that will be used in the completion flow to set the `state'
5489 * of the object.
5490 *
5491 * returns 0 if a requested command is a legal transition,
5492 * -EINVAL otherwise.
5493 */
bnx2x_queue_chk_transition(struct bnx2x * bp,struct bnx2x_queue_sp_obj * o,struct bnx2x_queue_state_params * params)5494 static int bnx2x_queue_chk_transition(struct bnx2x *bp,
5495 struct bnx2x_queue_sp_obj *o,
5496 struct bnx2x_queue_state_params *params)
5497 {
5498 enum bnx2x_q_state state = o->state, next_state = BNX2X_Q_STATE_MAX;
5499 enum bnx2x_queue_cmd cmd = params->cmd;
5500 struct bnx2x_queue_update_params *update_params =
5501 ¶ms->params.update;
5502 u8 next_tx_only = o->num_tx_only;
5503
5504 /* Forget all pending for completion commands if a driver only state
5505 * transition has been requested.
5506 */
5507 if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) {
5508 o->pending = 0;
5509 o->next_state = BNX2X_Q_STATE_MAX;
5510 }
5511
5512 /* Don't allow a next state transition if we are in the middle of
5513 * the previous one.
5514 */
5515 if (o->pending) {
5516 BNX2X_ERR("Blocking transition since pending was %lx\n",
5517 o->pending);
5518 return -EBUSY;
5519 }
5520
5521 switch (state) {
5522 case BNX2X_Q_STATE_RESET:
5523 if (cmd == BNX2X_Q_CMD_INIT)
5524 next_state = BNX2X_Q_STATE_INITIALIZED;
5525
5526 break;
5527 case BNX2X_Q_STATE_INITIALIZED:
5528 if (cmd == BNX2X_Q_CMD_SETUP) {
5529 if (test_bit(BNX2X_Q_FLG_ACTIVE,
5530 ¶ms->params.setup.flags))
5531 next_state = BNX2X_Q_STATE_ACTIVE;
5532 else
5533 next_state = BNX2X_Q_STATE_INACTIVE;
5534 }
5535
5536 break;
5537 case BNX2X_Q_STATE_ACTIVE:
5538 if (cmd == BNX2X_Q_CMD_DEACTIVATE)
5539 next_state = BNX2X_Q_STATE_INACTIVE;
5540
5541 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5542 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5543 next_state = BNX2X_Q_STATE_ACTIVE;
5544
5545 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5546 next_state = BNX2X_Q_STATE_MULTI_COS;
5547 next_tx_only = 1;
5548 }
5549
5550 else if (cmd == BNX2X_Q_CMD_HALT)
5551 next_state = BNX2X_Q_STATE_STOPPED;
5552
5553 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5554 /* If "active" state change is requested, update the
5555 * state accordingly.
5556 */
5557 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5558 &update_params->update_flags) &&
5559 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5560 &update_params->update_flags))
5561 next_state = BNX2X_Q_STATE_INACTIVE;
5562 else
5563 next_state = BNX2X_Q_STATE_ACTIVE;
5564 }
5565
5566 break;
5567 case BNX2X_Q_STATE_MULTI_COS:
5568 if (cmd == BNX2X_Q_CMD_TERMINATE)
5569 next_state = BNX2X_Q_STATE_MCOS_TERMINATED;
5570
5571 else if (cmd == BNX2X_Q_CMD_SETUP_TX_ONLY) {
5572 next_state = BNX2X_Q_STATE_MULTI_COS;
5573 next_tx_only = o->num_tx_only + 1;
5574 }
5575
5576 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5577 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5578 next_state = BNX2X_Q_STATE_MULTI_COS;
5579
5580 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5581 /* If "active" state change is requested, update the
5582 * state accordingly.
5583 */
5584 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5585 &update_params->update_flags) &&
5586 !test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5587 &update_params->update_flags))
5588 next_state = BNX2X_Q_STATE_INACTIVE;
5589 else
5590 next_state = BNX2X_Q_STATE_MULTI_COS;
5591 }
5592
5593 break;
5594 case BNX2X_Q_STATE_MCOS_TERMINATED:
5595 if (cmd == BNX2X_Q_CMD_CFC_DEL) {
5596 next_tx_only = o->num_tx_only - 1;
5597 if (next_tx_only == 0)
5598 next_state = BNX2X_Q_STATE_ACTIVE;
5599 else
5600 next_state = BNX2X_Q_STATE_MULTI_COS;
5601 }
5602
5603 break;
5604 case BNX2X_Q_STATE_INACTIVE:
5605 if (cmd == BNX2X_Q_CMD_ACTIVATE)
5606 next_state = BNX2X_Q_STATE_ACTIVE;
5607
5608 else if ((cmd == BNX2X_Q_CMD_EMPTY) ||
5609 (cmd == BNX2X_Q_CMD_UPDATE_TPA))
5610 next_state = BNX2X_Q_STATE_INACTIVE;
5611
5612 else if (cmd == BNX2X_Q_CMD_HALT)
5613 next_state = BNX2X_Q_STATE_STOPPED;
5614
5615 else if (cmd == BNX2X_Q_CMD_UPDATE) {
5616 /* If "active" state change is requested, update the
5617 * state accordingly.
5618 */
5619 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG,
5620 &update_params->update_flags) &&
5621 test_bit(BNX2X_Q_UPDATE_ACTIVATE,
5622 &update_params->update_flags)){
5623 if (o->num_tx_only == 0)
5624 next_state = BNX2X_Q_STATE_ACTIVE;
5625 else /* tx only queues exist for this queue */
5626 next_state = BNX2X_Q_STATE_MULTI_COS;
5627 } else
5628 next_state = BNX2X_Q_STATE_INACTIVE;
5629 }
5630
5631 break;
5632 case BNX2X_Q_STATE_STOPPED:
5633 if (cmd == BNX2X_Q_CMD_TERMINATE)
5634 next_state = BNX2X_Q_STATE_TERMINATED;
5635
5636 break;
5637 case BNX2X_Q_STATE_TERMINATED:
5638 if (cmd == BNX2X_Q_CMD_CFC_DEL)
5639 next_state = BNX2X_Q_STATE_RESET;
5640
5641 break;
5642 default:
5643 BNX2X_ERR("Illegal state: %d\n", state);
5644 }
5645
5646 /* Transition is assured */
5647 if (next_state != BNX2X_Q_STATE_MAX) {
5648 DP(BNX2X_MSG_SP, "Good state transition: %d(%d)->%d\n",
5649 state, cmd, next_state);
5650 o->next_state = next_state;
5651 o->next_tx_only = next_tx_only;
5652 return 0;
5653 }
5654
5655 DP(BNX2X_MSG_SP, "Bad state transition request: %d %d\n", state, cmd);
5656
5657 return -EINVAL;
5658 }
5659
bnx2x_init_queue_obj(struct bnx2x * bp,struct bnx2x_queue_sp_obj * obj,u8 cl_id,u32 * cids,u8 cid_cnt,u8 func_id,void * rdata,dma_addr_t rdata_mapping,unsigned long type)5660 void bnx2x_init_queue_obj(struct bnx2x *bp,
5661 struct bnx2x_queue_sp_obj *obj,
5662 u8 cl_id, u32 *cids, u8 cid_cnt, u8 func_id,
5663 void *rdata,
5664 dma_addr_t rdata_mapping, unsigned long type)
5665 {
5666 memset(obj, 0, sizeof(*obj));
5667
5668 /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5669 BUG_ON(BNX2X_MULTI_TX_COS < cid_cnt);
5670
5671 memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5672 obj->max_cos = cid_cnt;
5673 obj->cl_id = cl_id;
5674 obj->func_id = func_id;
5675 obj->rdata = rdata;
5676 obj->rdata_mapping = rdata_mapping;
5677 obj->type = type;
5678 obj->next_state = BNX2X_Q_STATE_MAX;
5679
5680 if (CHIP_IS_E1x(bp))
5681 obj->send_cmd = bnx2x_queue_send_cmd_e1x;
5682 else
5683 obj->send_cmd = bnx2x_queue_send_cmd_e2;
5684
5685 obj->check_transition = bnx2x_queue_chk_transition;
5686
5687 obj->complete_cmd = bnx2x_queue_comp_cmd;
5688 obj->wait_comp = bnx2x_queue_wait_comp;
5689 obj->set_pending = bnx2x_queue_set_pending;
5690 }
5691
5692 /* return a queue object's logical state*/
bnx2x_get_q_logical_state(struct bnx2x * bp,struct bnx2x_queue_sp_obj * obj)5693 int bnx2x_get_q_logical_state(struct bnx2x *bp,
5694 struct bnx2x_queue_sp_obj *obj)
5695 {
5696 switch (obj->state) {
5697 case BNX2X_Q_STATE_ACTIVE:
5698 case BNX2X_Q_STATE_MULTI_COS:
5699 return BNX2X_Q_LOGICAL_STATE_ACTIVE;
5700 case BNX2X_Q_STATE_RESET:
5701 case BNX2X_Q_STATE_INITIALIZED:
5702 case BNX2X_Q_STATE_MCOS_TERMINATED:
5703 case BNX2X_Q_STATE_INACTIVE:
5704 case BNX2X_Q_STATE_STOPPED:
5705 case BNX2X_Q_STATE_TERMINATED:
5706 case BNX2X_Q_STATE_FLRED:
5707 return BNX2X_Q_LOGICAL_STATE_STOPPED;
5708 default:
5709 return -EINVAL;
5710 }
5711 }
5712
5713 /********************** Function state object *********************************/
bnx2x_func_get_state(struct bnx2x * bp,struct bnx2x_func_sp_obj * o)5714 enum bnx2x_func_state bnx2x_func_get_state(struct bnx2x *bp,
5715 struct bnx2x_func_sp_obj *o)
5716 {
5717 /* in the middle of transaction - return INVALID state */
5718 if (o->pending)
5719 return BNX2X_F_STATE_MAX;
5720
5721 /* unsure the order of reading of o->pending and o->state
5722 * o->pending should be read first
5723 */
5724 rmb();
5725
5726 return o->state;
5727 }
5728
bnx2x_func_wait_comp(struct bnx2x * bp,struct bnx2x_func_sp_obj * o,enum bnx2x_func_cmd cmd)5729 static int bnx2x_func_wait_comp(struct bnx2x *bp,
5730 struct bnx2x_func_sp_obj *o,
5731 enum bnx2x_func_cmd cmd)
5732 {
5733 return bnx2x_state_wait(bp, cmd, &o->pending);
5734 }
5735
5736 /**
5737 * bnx2x_func_state_change_comp - complete the state machine transition
5738 *
5739 * @bp: device handle
5740 * @o: function info
5741 * @cmd: more info
5742 *
5743 * Called on state change transition. Completes the state
5744 * machine transition only - no HW interaction.
5745 */
bnx2x_func_state_change_comp(struct bnx2x * bp,struct bnx2x_func_sp_obj * o,enum bnx2x_func_cmd cmd)5746 static inline int bnx2x_func_state_change_comp(struct bnx2x *bp,
5747 struct bnx2x_func_sp_obj *o,
5748 enum bnx2x_func_cmd cmd)
5749 {
5750 unsigned long cur_pending = o->pending;
5751
5752 if (!test_and_clear_bit(cmd, &cur_pending)) {
5753 BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5754 cmd, BP_FUNC(bp), o->state,
5755 cur_pending, o->next_state);
5756 return -EINVAL;
5757 }
5758
5759 DP(BNX2X_MSG_SP,
5760 "Completing command %d for func %d, setting state to %d\n",
5761 cmd, BP_FUNC(bp), o->next_state);
5762
5763 o->state = o->next_state;
5764 o->next_state = BNX2X_F_STATE_MAX;
5765
5766 /* It's important that o->state and o->next_state are
5767 * updated before o->pending.
5768 */
5769 wmb();
5770
5771 clear_bit(cmd, &o->pending);
5772 smp_mb__after_atomic();
5773
5774 return 0;
5775 }
5776
5777 /**
5778 * bnx2x_func_comp_cmd - complete the state change command
5779 *
5780 * @bp: device handle
5781 * @o: function info
5782 * @cmd: more info
5783 *
5784 * Checks that the arrived completion is expected.
5785 */
bnx2x_func_comp_cmd(struct bnx2x * bp,struct bnx2x_func_sp_obj * o,enum bnx2x_func_cmd cmd)5786 static int bnx2x_func_comp_cmd(struct bnx2x *bp,
5787 struct bnx2x_func_sp_obj *o,
5788 enum bnx2x_func_cmd cmd)
5789 {
5790 /* Complete the state machine part first, check if it's a
5791 * legal completion.
5792 */
5793 int rc = bnx2x_func_state_change_comp(bp, o, cmd);
5794 return rc;
5795 }
5796
5797 /**
5798 * bnx2x_func_chk_transition - perform function state machine transition
5799 *
5800 * @bp: device handle
5801 * @o: function info
5802 * @params: state parameters
5803 *
5804 * It both checks if the requested command is legal in a current
5805 * state and, if it's legal, sets a `next_state' in the object
5806 * that will be used in the completion flow to set the `state'
5807 * of the object.
5808 *
5809 * returns 0 if a requested command is a legal transition,
5810 * -EINVAL otherwise.
5811 */
bnx2x_func_chk_transition(struct bnx2x * bp,struct bnx2x_func_sp_obj * o,struct bnx2x_func_state_params * params)5812 static int bnx2x_func_chk_transition(struct bnx2x *bp,
5813 struct bnx2x_func_sp_obj *o,
5814 struct bnx2x_func_state_params *params)
5815 {
5816 enum bnx2x_func_state state = o->state, next_state = BNX2X_F_STATE_MAX;
5817 enum bnx2x_func_cmd cmd = params->cmd;
5818
5819 /* Forget all pending for completion commands if a driver only state
5820 * transition has been requested.
5821 */
5822 if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) {
5823 o->pending = 0;
5824 o->next_state = BNX2X_F_STATE_MAX;
5825 }
5826
5827 /* Don't allow a next state transition if we are in the middle of
5828 * the previous one.
5829 */
5830 if (o->pending)
5831 return -EBUSY;
5832
5833 switch (state) {
5834 case BNX2X_F_STATE_RESET:
5835 if (cmd == BNX2X_F_CMD_HW_INIT)
5836 next_state = BNX2X_F_STATE_INITIALIZED;
5837
5838 break;
5839 case BNX2X_F_STATE_INITIALIZED:
5840 if (cmd == BNX2X_F_CMD_START)
5841 next_state = BNX2X_F_STATE_STARTED;
5842
5843 else if (cmd == BNX2X_F_CMD_HW_RESET)
5844 next_state = BNX2X_F_STATE_RESET;
5845
5846 break;
5847 case BNX2X_F_STATE_STARTED:
5848 if (cmd == BNX2X_F_CMD_STOP)
5849 next_state = BNX2X_F_STATE_INITIALIZED;
5850 /* afex ramrods can be sent only in started mode, and only
5851 * if not pending for function_stop ramrod completion
5852 * for these events - next state remained STARTED.
5853 */
5854 else if ((cmd == BNX2X_F_CMD_AFEX_UPDATE) &&
5855 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5856 next_state = BNX2X_F_STATE_STARTED;
5857
5858 else if ((cmd == BNX2X_F_CMD_AFEX_VIFLISTS) &&
5859 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5860 next_state = BNX2X_F_STATE_STARTED;
5861
5862 /* Switch_update ramrod can be sent in either started or
5863 * tx_stopped state, and it doesn't change the state.
5864 */
5865 else if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5866 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5867 next_state = BNX2X_F_STATE_STARTED;
5868
5869 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5870 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5871 next_state = BNX2X_F_STATE_STARTED;
5872
5873 else if (cmd == BNX2X_F_CMD_TX_STOP)
5874 next_state = BNX2X_F_STATE_TX_STOPPED;
5875
5876 break;
5877 case BNX2X_F_STATE_TX_STOPPED:
5878 if ((cmd == BNX2X_F_CMD_SWITCH_UPDATE) &&
5879 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5880 next_state = BNX2X_F_STATE_TX_STOPPED;
5881
5882 else if ((cmd == BNX2X_F_CMD_SET_TIMESYNC) &&
5883 (!test_bit(BNX2X_F_CMD_STOP, &o->pending)))
5884 next_state = BNX2X_F_STATE_TX_STOPPED;
5885
5886 else if (cmd == BNX2X_F_CMD_TX_START)
5887 next_state = BNX2X_F_STATE_STARTED;
5888
5889 break;
5890 default:
5891 BNX2X_ERR("Unknown state: %d\n", state);
5892 }
5893
5894 /* Transition is assured */
5895 if (next_state != BNX2X_F_STATE_MAX) {
5896 DP(BNX2X_MSG_SP, "Good function state transition: %d(%d)->%d\n",
5897 state, cmd, next_state);
5898 o->next_state = next_state;
5899 return 0;
5900 }
5901
5902 DP(BNX2X_MSG_SP, "Bad function state transition request: %d %d\n",
5903 state, cmd);
5904
5905 return -EINVAL;
5906 }
5907
5908 /**
5909 * bnx2x_func_init_func - performs HW init at function stage
5910 *
5911 * @bp: device handle
5912 * @drv:
5913 *
5914 * Init HW when the current phase is
5915 * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5916 * HW blocks.
5917 */
bnx2x_func_init_func(struct bnx2x * bp,const struct bnx2x_func_sp_drv_ops * drv)5918 static inline int bnx2x_func_init_func(struct bnx2x *bp,
5919 const struct bnx2x_func_sp_drv_ops *drv)
5920 {
5921 return drv->init_hw_func(bp);
5922 }
5923
5924 /**
5925 * bnx2x_func_init_port - performs HW init at port stage
5926 *
5927 * @bp: device handle
5928 * @drv:
5929 *
5930 * Init HW when the current phase is
5931 * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5932 * FUNCTION-only HW blocks.
5933 *
5934 */
bnx2x_func_init_port(struct bnx2x * bp,const struct bnx2x_func_sp_drv_ops * drv)5935 static inline int bnx2x_func_init_port(struct bnx2x *bp,
5936 const struct bnx2x_func_sp_drv_ops *drv)
5937 {
5938 int rc = drv->init_hw_port(bp);
5939 if (rc)
5940 return rc;
5941
5942 return bnx2x_func_init_func(bp, drv);
5943 }
5944
5945 /**
5946 * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5947 *
5948 * @bp: device handle
5949 * @drv:
5950 *
5951 * Init HW when the current phase is
5952 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5953 * PORT-only and FUNCTION-only HW blocks.
5954 */
bnx2x_func_init_cmn_chip(struct bnx2x * bp,const struct bnx2x_func_sp_drv_ops * drv)5955 static inline int bnx2x_func_init_cmn_chip(struct bnx2x *bp,
5956 const struct bnx2x_func_sp_drv_ops *drv)
5957 {
5958 int rc = drv->init_hw_cmn_chip(bp);
5959 if (rc)
5960 return rc;
5961
5962 return bnx2x_func_init_port(bp, drv);
5963 }
5964
5965 /**
5966 * bnx2x_func_init_cmn - performs HW init at common stage
5967 *
5968 * @bp: device handle
5969 * @drv:
5970 *
5971 * Init HW when the current phase is
5972 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5973 * PORT-only and FUNCTION-only HW blocks.
5974 */
bnx2x_func_init_cmn(struct bnx2x * bp,const struct bnx2x_func_sp_drv_ops * drv)5975 static inline int bnx2x_func_init_cmn(struct bnx2x *bp,
5976 const struct bnx2x_func_sp_drv_ops *drv)
5977 {
5978 int rc = drv->init_hw_cmn(bp);
5979 if (rc)
5980 return rc;
5981
5982 return bnx2x_func_init_port(bp, drv);
5983 }
5984
bnx2x_func_hw_init(struct bnx2x * bp,struct bnx2x_func_state_params * params)5985 static int bnx2x_func_hw_init(struct bnx2x *bp,
5986 struct bnx2x_func_state_params *params)
5987 {
5988 u32 load_code = params->params.hw_init.load_phase;
5989 struct bnx2x_func_sp_obj *o = params->f_obj;
5990 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
5991 int rc = 0;
5992
5993 DP(BNX2X_MSG_SP, "function %d load_code %x\n",
5994 BP_ABS_FUNC(bp), load_code);
5995
5996 /* Prepare buffers for unzipping the FW */
5997 rc = drv->gunzip_init(bp);
5998 if (rc)
5999 return rc;
6000
6001 /* Prepare FW */
6002 rc = drv->init_fw(bp);
6003 if (rc) {
6004 BNX2X_ERR("Error loading firmware\n");
6005 goto init_err;
6006 }
6007
6008 /* Handle the beginning of COMMON_XXX pases separately... */
6009 switch (load_code) {
6010 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6011 rc = bnx2x_func_init_cmn_chip(bp, drv);
6012 if (rc)
6013 goto init_err;
6014
6015 break;
6016 case FW_MSG_CODE_DRV_LOAD_COMMON:
6017 rc = bnx2x_func_init_cmn(bp, drv);
6018 if (rc)
6019 goto init_err;
6020
6021 break;
6022 case FW_MSG_CODE_DRV_LOAD_PORT:
6023 rc = bnx2x_func_init_port(bp, drv);
6024 if (rc)
6025 goto init_err;
6026
6027 break;
6028 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6029 rc = bnx2x_func_init_func(bp, drv);
6030 if (rc)
6031 goto init_err;
6032
6033 break;
6034 default:
6035 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6036 rc = -EINVAL;
6037 }
6038
6039 init_err:
6040 drv->gunzip_end(bp);
6041
6042 /* In case of success, complete the command immediately: no ramrods
6043 * have been sent.
6044 */
6045 if (!rc)
6046 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_INIT);
6047
6048 return rc;
6049 }
6050
6051 /**
6052 * bnx2x_func_reset_func - reset HW at function stage
6053 *
6054 * @bp: device handle
6055 * @drv:
6056 *
6057 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6058 * FUNCTION-only HW blocks.
6059 */
bnx2x_func_reset_func(struct bnx2x * bp,const struct bnx2x_func_sp_drv_ops * drv)6060 static inline void bnx2x_func_reset_func(struct bnx2x *bp,
6061 const struct bnx2x_func_sp_drv_ops *drv)
6062 {
6063 drv->reset_hw_func(bp);
6064 }
6065
6066 /**
6067 * bnx2x_func_reset_port - reset HW at port stage
6068 *
6069 * @bp: device handle
6070 * @drv:
6071 *
6072 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6073 * FUNCTION-only and PORT-only HW blocks.
6074 *
6075 * !!!IMPORTANT!!!
6076 *
6077 * It's important to call reset_port before reset_func() as the last thing
6078 * reset_func does is pf_disable() thus disabling PGLUE_B, which
6079 * makes impossible any DMAE transactions.
6080 */
bnx2x_func_reset_port(struct bnx2x * bp,const struct bnx2x_func_sp_drv_ops * drv)6081 static inline void bnx2x_func_reset_port(struct bnx2x *bp,
6082 const struct bnx2x_func_sp_drv_ops *drv)
6083 {
6084 drv->reset_hw_port(bp);
6085 bnx2x_func_reset_func(bp, drv);
6086 }
6087
6088 /**
6089 * bnx2x_func_reset_cmn - reset HW at common stage
6090 *
6091 * @bp: device handle
6092 * @drv:
6093 *
6094 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6095 * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6096 * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6097 */
bnx2x_func_reset_cmn(struct bnx2x * bp,const struct bnx2x_func_sp_drv_ops * drv)6098 static inline void bnx2x_func_reset_cmn(struct bnx2x *bp,
6099 const struct bnx2x_func_sp_drv_ops *drv)
6100 {
6101 bnx2x_func_reset_port(bp, drv);
6102 drv->reset_hw_cmn(bp);
6103 }
6104
bnx2x_func_hw_reset(struct bnx2x * bp,struct bnx2x_func_state_params * params)6105 static inline int bnx2x_func_hw_reset(struct bnx2x *bp,
6106 struct bnx2x_func_state_params *params)
6107 {
6108 u32 reset_phase = params->params.hw_reset.reset_phase;
6109 struct bnx2x_func_sp_obj *o = params->f_obj;
6110 const struct bnx2x_func_sp_drv_ops *drv = o->drv;
6111
6112 DP(BNX2X_MSG_SP, "function %d reset_phase %x\n", BP_ABS_FUNC(bp),
6113 reset_phase);
6114
6115 switch (reset_phase) {
6116 case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6117 bnx2x_func_reset_cmn(bp, drv);
6118 break;
6119 case FW_MSG_CODE_DRV_UNLOAD_PORT:
6120 bnx2x_func_reset_port(bp, drv);
6121 break;
6122 case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6123 bnx2x_func_reset_func(bp, drv);
6124 break;
6125 default:
6126 BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
6127 reset_phase);
6128 break;
6129 }
6130
6131 /* Complete the command immediately: no ramrods have been sent. */
6132 o->complete_cmd(bp, o, BNX2X_F_CMD_HW_RESET);
6133
6134 return 0;
6135 }
6136
bnx2x_func_send_start(struct bnx2x * bp,struct bnx2x_func_state_params * params)6137 static inline int bnx2x_func_send_start(struct bnx2x *bp,
6138 struct bnx2x_func_state_params *params)
6139 {
6140 struct bnx2x_func_sp_obj *o = params->f_obj;
6141 struct function_start_data *rdata =
6142 (struct function_start_data *)o->rdata;
6143 dma_addr_t data_mapping = o->rdata_mapping;
6144 struct bnx2x_func_start_params *start_params = ¶ms->params.start;
6145
6146 memset(rdata, 0, sizeof(*rdata));
6147
6148 /* Fill the ramrod data with provided parameters */
6149 rdata->function_mode = (u8)start_params->mf_mode;
6150 rdata->sd_vlan_tag = cpu_to_le16(start_params->sd_vlan_tag);
6151 rdata->path_id = BP_PATH(bp);
6152 rdata->network_cos_mode = start_params->network_cos_mode;
6153 rdata->dmae_cmd_id = BNX2X_FW_DMAE_C;
6154
6155 rdata->vxlan_dst_port = cpu_to_le16(start_params->vxlan_dst_port);
6156 rdata->geneve_dst_port = cpu_to_le16(start_params->geneve_dst_port);
6157 rdata->inner_clss_l2gre = start_params->inner_clss_l2gre;
6158 rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve;
6159 rdata->inner_clss_vxlan = start_params->inner_clss_vxlan;
6160 rdata->inner_rss = start_params->inner_rss;
6161
6162 rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6163 if (start_params->class_fail_ethtype) {
6164 rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6165 rdata->sd_accept_mf_clss_fail_ethtype =
6166 cpu_to_le16(start_params->class_fail_ethtype);
6167 }
6168
6169 rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6170 rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6171 if (start_params->sd_vlan_eth_type)
6172 rdata->sd_vlan_eth_type =
6173 cpu_to_le16(start_params->sd_vlan_eth_type);
6174 else
6175 rdata->sd_vlan_eth_type =
6176 cpu_to_le16(0x8100);
6177
6178 rdata->no_added_tags = start_params->no_added_tags;
6179
6180 rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid;
6181 if (rdata->c2s_pri_tt_valid) {
6182 memcpy(rdata->c2s_pri_trans_table.val,
6183 start_params->c2s_pri,
6184 MAX_VLAN_PRIORITIES);
6185 rdata->c2s_pri_default = start_params->c2s_pri_default;
6186 }
6187 /* No need for an explicit memory barrier here as long we would
6188 * need to ensure the ordering of writing to the SPQ element
6189 * and updating of the SPQ producer which involves a memory
6190 * read and we will have to put a full memory barrier there
6191 * (inside bnx2x_sp_post()).
6192 */
6193
6194 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6195 U64_HI(data_mapping),
6196 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6197 }
6198
bnx2x_func_send_switch_update(struct bnx2x * bp,struct bnx2x_func_state_params * params)6199 static inline int bnx2x_func_send_switch_update(struct bnx2x *bp,
6200 struct bnx2x_func_state_params *params)
6201 {
6202 struct bnx2x_func_sp_obj *o = params->f_obj;
6203 struct function_update_data *rdata =
6204 (struct function_update_data *)o->rdata;
6205 dma_addr_t data_mapping = o->rdata_mapping;
6206 struct bnx2x_func_switch_update_params *switch_update_params =
6207 ¶ms->params.switch_update;
6208
6209 memset(rdata, 0, sizeof(*rdata));
6210
6211 /* Fill the ramrod data with provided parameters */
6212 if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6213 &switch_update_params->changes)) {
6214 rdata->tx_switch_suspend_change_flg = 1;
6215 rdata->tx_switch_suspend =
6216 test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
6217 &switch_update_params->changes);
6218 }
6219
6220 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
6221 &switch_update_params->changes)) {
6222 rdata->sd_vlan_tag_change_flg = 1;
6223 rdata->sd_vlan_tag =
6224 cpu_to_le16(switch_update_params->vlan);
6225 }
6226
6227 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6228 &switch_update_params->changes)) {
6229 rdata->sd_vlan_eth_type_change_flg = 1;
6230 rdata->sd_vlan_eth_type =
6231 cpu_to_le16(switch_update_params->vlan_eth_type);
6232 }
6233
6234 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6235 &switch_update_params->changes)) {
6236 rdata->sd_vlan_force_pri_change_flg = 1;
6237 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6238 &switch_update_params->changes))
6239 rdata->sd_vlan_force_pri_flg = 1;
6240 rdata->sd_vlan_force_pri_flg =
6241 switch_update_params->vlan_force_prio;
6242 }
6243
6244 if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
6245 &switch_update_params->changes)) {
6246 rdata->update_tunn_cfg_flg = 1;
6247 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE,
6248 &switch_update_params->changes))
6249 rdata->inner_clss_l2gre = 1;
6250 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN,
6251 &switch_update_params->changes))
6252 rdata->inner_clss_vxlan = 1;
6253 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE,
6254 &switch_update_params->changes))
6255 rdata->inner_clss_l2geneve = 1;
6256 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
6257 &switch_update_params->changes))
6258 rdata->inner_rss = 1;
6259 rdata->vxlan_dst_port =
6260 cpu_to_le16(switch_update_params->vxlan_dst_port);
6261 rdata->geneve_dst_port =
6262 cpu_to_le16(switch_update_params->geneve_dst_port);
6263 }
6264
6265 rdata->echo = SWITCH_UPDATE;
6266
6267 /* No need for an explicit memory barrier here as long as we
6268 * ensure the ordering of writing to the SPQ element
6269 * and updating of the SPQ producer which involves a memory
6270 * read. If the memory read is removed we will have to put a
6271 * full memory barrier there (inside bnx2x_sp_post()).
6272 */
6273 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6274 U64_HI(data_mapping),
6275 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6276 }
6277
bnx2x_func_send_afex_update(struct bnx2x * bp,struct bnx2x_func_state_params * params)6278 static inline int bnx2x_func_send_afex_update(struct bnx2x *bp,
6279 struct bnx2x_func_state_params *params)
6280 {
6281 struct bnx2x_func_sp_obj *o = params->f_obj;
6282 struct function_update_data *rdata =
6283 (struct function_update_data *)o->afex_rdata;
6284 dma_addr_t data_mapping = o->afex_rdata_mapping;
6285 struct bnx2x_func_afex_update_params *afex_update_params =
6286 ¶ms->params.afex_update;
6287
6288 memset(rdata, 0, sizeof(*rdata));
6289
6290 /* Fill the ramrod data with provided parameters */
6291 rdata->vif_id_change_flg = 1;
6292 rdata->vif_id = cpu_to_le16(afex_update_params->vif_id);
6293 rdata->afex_default_vlan_change_flg = 1;
6294 rdata->afex_default_vlan =
6295 cpu_to_le16(afex_update_params->afex_default_vlan);
6296 rdata->allowed_priorities_change_flg = 1;
6297 rdata->allowed_priorities = afex_update_params->allowed_priorities;
6298 rdata->echo = AFEX_UPDATE;
6299
6300 /* No need for an explicit memory barrier here as long as we
6301 * ensure the ordering of writing to the SPQ element
6302 * and updating of the SPQ producer which involves a memory
6303 * read. If the memory read is removed we will have to put a
6304 * full memory barrier there (inside bnx2x_sp_post()).
6305 */
6306 DP(BNX2X_MSG_SP,
6307 "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6308 rdata->vif_id,
6309 rdata->afex_default_vlan, rdata->allowed_priorities);
6310
6311 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6312 U64_HI(data_mapping),
6313 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6314 }
6315
6316 static
bnx2x_func_send_afex_viflists(struct bnx2x * bp,struct bnx2x_func_state_params * params)6317 inline int bnx2x_func_send_afex_viflists(struct bnx2x *bp,
6318 struct bnx2x_func_state_params *params)
6319 {
6320 struct bnx2x_func_sp_obj *o = params->f_obj;
6321 struct afex_vif_list_ramrod_data *rdata =
6322 (struct afex_vif_list_ramrod_data *)o->afex_rdata;
6323 struct bnx2x_func_afex_viflists_params *afex_vif_params =
6324 ¶ms->params.afex_viflists;
6325 u64 *p_rdata = (u64 *)rdata;
6326
6327 memset(rdata, 0, sizeof(*rdata));
6328
6329 /* Fill the ramrod data with provided parameters */
6330 rdata->vif_list_index = cpu_to_le16(afex_vif_params->vif_list_index);
6331 rdata->func_bit_map = afex_vif_params->func_bit_map;
6332 rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6333 rdata->func_to_clear = afex_vif_params->func_to_clear;
6334
6335 /* send in echo type of sub command */
6336 rdata->echo = afex_vif_params->afex_vif_list_command;
6337
6338 /* No need for an explicit memory barrier here as long we would
6339 * need to ensure the ordering of writing to the SPQ element
6340 * and updating of the SPQ producer which involves a memory
6341 * read and we will have to put a full memory barrier there
6342 * (inside bnx2x_sp_post()).
6343 */
6344
6345 DP(BNX2X_MSG_SP, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6346 rdata->afex_vif_list_command, rdata->vif_list_index,
6347 rdata->func_bit_map, rdata->func_to_clear);
6348
6349 /* this ramrod sends data directly and not through DMA mapping */
6350 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6351 U64_HI(*p_rdata), U64_LO(*p_rdata),
6352 NONE_CONNECTION_TYPE);
6353 }
6354
bnx2x_func_send_stop(struct bnx2x * bp,struct bnx2x_func_state_params * params)6355 static inline int bnx2x_func_send_stop(struct bnx2x *bp,
6356 struct bnx2x_func_state_params *params)
6357 {
6358 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0, 0,
6359 NONE_CONNECTION_TYPE);
6360 }
6361
bnx2x_func_send_tx_stop(struct bnx2x * bp,struct bnx2x_func_state_params * params)6362 static inline int bnx2x_func_send_tx_stop(struct bnx2x *bp,
6363 struct bnx2x_func_state_params *params)
6364 {
6365 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0, 0,
6366 NONE_CONNECTION_TYPE);
6367 }
bnx2x_func_send_tx_start(struct bnx2x * bp,struct bnx2x_func_state_params * params)6368 static inline int bnx2x_func_send_tx_start(struct bnx2x *bp,
6369 struct bnx2x_func_state_params *params)
6370 {
6371 struct bnx2x_func_sp_obj *o = params->f_obj;
6372 struct flow_control_configuration *rdata =
6373 (struct flow_control_configuration *)o->rdata;
6374 dma_addr_t data_mapping = o->rdata_mapping;
6375 struct bnx2x_func_tx_start_params *tx_start_params =
6376 ¶ms->params.tx_start;
6377 int i;
6378
6379 memset(rdata, 0, sizeof(*rdata));
6380
6381 rdata->dcb_enabled = tx_start_params->dcb_enabled;
6382 rdata->dcb_version = tx_start_params->dcb_version;
6383 rdata->dont_add_pri_0_en = tx_start_params->dont_add_pri_0_en;
6384
6385 for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6386 rdata->traffic_type_to_priority_cos[i] =
6387 tx_start_params->traffic_type_to_priority_cos[i];
6388
6389 for (i = 0; i < MAX_TRAFFIC_TYPES; i++)
6390 rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i];
6391 /* No need for an explicit memory barrier here as long as we
6392 * ensure the ordering of writing to the SPQ element
6393 * and updating of the SPQ producer which involves a memory
6394 * read. If the memory read is removed we will have to put a
6395 * full memory barrier there (inside bnx2x_sp_post()).
6396 */
6397 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6398 U64_HI(data_mapping),
6399 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6400 }
6401
6402 static inline
bnx2x_func_send_set_timesync(struct bnx2x * bp,struct bnx2x_func_state_params * params)6403 int bnx2x_func_send_set_timesync(struct bnx2x *bp,
6404 struct bnx2x_func_state_params *params)
6405 {
6406 struct bnx2x_func_sp_obj *o = params->f_obj;
6407 struct set_timesync_ramrod_data *rdata =
6408 (struct set_timesync_ramrod_data *)o->rdata;
6409 dma_addr_t data_mapping = o->rdata_mapping;
6410 struct bnx2x_func_set_timesync_params *set_timesync_params =
6411 ¶ms->params.set_timesync;
6412
6413 memset(rdata, 0, sizeof(*rdata));
6414
6415 /* Fill the ramrod data with provided parameters */
6416 rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6417 rdata->offset_cmd = set_timesync_params->offset_cmd;
6418 rdata->add_sub_drift_adjust_value =
6419 set_timesync_params->add_sub_drift_adjust_value;
6420 rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6421 rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6422 rdata->offset_delta.lo =
6423 cpu_to_le32(U64_LO(set_timesync_params->offset_delta));
6424 rdata->offset_delta.hi =
6425 cpu_to_le32(U64_HI(set_timesync_params->offset_delta));
6426
6427 DP(BNX2X_MSG_SP, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6428 rdata->drift_adjust_cmd, rdata->offset_cmd,
6429 rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6430 rdata->drift_adjust_period, rdata->offset_delta.lo,
6431 rdata->offset_delta.hi);
6432
6433 return bnx2x_sp_post(bp, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6434 U64_HI(data_mapping),
6435 U64_LO(data_mapping), NONE_CONNECTION_TYPE);
6436 }
6437
bnx2x_func_send_cmd(struct bnx2x * bp,struct bnx2x_func_state_params * params)6438 static int bnx2x_func_send_cmd(struct bnx2x *bp,
6439 struct bnx2x_func_state_params *params)
6440 {
6441 switch (params->cmd) {
6442 case BNX2X_F_CMD_HW_INIT:
6443 return bnx2x_func_hw_init(bp, params);
6444 case BNX2X_F_CMD_START:
6445 return bnx2x_func_send_start(bp, params);
6446 case BNX2X_F_CMD_STOP:
6447 return bnx2x_func_send_stop(bp, params);
6448 case BNX2X_F_CMD_HW_RESET:
6449 return bnx2x_func_hw_reset(bp, params);
6450 case BNX2X_F_CMD_AFEX_UPDATE:
6451 return bnx2x_func_send_afex_update(bp, params);
6452 case BNX2X_F_CMD_AFEX_VIFLISTS:
6453 return bnx2x_func_send_afex_viflists(bp, params);
6454 case BNX2X_F_CMD_TX_STOP:
6455 return bnx2x_func_send_tx_stop(bp, params);
6456 case BNX2X_F_CMD_TX_START:
6457 return bnx2x_func_send_tx_start(bp, params);
6458 case BNX2X_F_CMD_SWITCH_UPDATE:
6459 return bnx2x_func_send_switch_update(bp, params);
6460 case BNX2X_F_CMD_SET_TIMESYNC:
6461 return bnx2x_func_send_set_timesync(bp, params);
6462 default:
6463 BNX2X_ERR("Unknown command: %d\n", params->cmd);
6464 return -EINVAL;
6465 }
6466 }
6467
bnx2x_init_func_obj(struct bnx2x * bp,struct bnx2x_func_sp_obj * obj,void * rdata,dma_addr_t rdata_mapping,void * afex_rdata,dma_addr_t afex_rdata_mapping,struct bnx2x_func_sp_drv_ops * drv_iface)6468 void bnx2x_init_func_obj(struct bnx2x *bp,
6469 struct bnx2x_func_sp_obj *obj,
6470 void *rdata, dma_addr_t rdata_mapping,
6471 void *afex_rdata, dma_addr_t afex_rdata_mapping,
6472 struct bnx2x_func_sp_drv_ops *drv_iface)
6473 {
6474 memset(obj, 0, sizeof(*obj));
6475
6476 mutex_init(&obj->one_pending_mutex);
6477
6478 obj->rdata = rdata;
6479 obj->rdata_mapping = rdata_mapping;
6480 obj->afex_rdata = afex_rdata;
6481 obj->afex_rdata_mapping = afex_rdata_mapping;
6482 obj->send_cmd = bnx2x_func_send_cmd;
6483 obj->check_transition = bnx2x_func_chk_transition;
6484 obj->complete_cmd = bnx2x_func_comp_cmd;
6485 obj->wait_comp = bnx2x_func_wait_comp;
6486
6487 obj->drv = drv_iface;
6488 }
6489
6490 /**
6491 * bnx2x_func_state_change - perform Function state change transition
6492 *
6493 * @bp: device handle
6494 * @params: parameters to perform the transaction
6495 *
6496 * returns 0 in case of successfully completed transition,
6497 * negative error code in case of failure, positive
6498 * (EBUSY) value if there is a completion to that is
6499 * still pending (possible only if RAMROD_COMP_WAIT is
6500 * not set in params->ramrod_flags for asynchronous
6501 * commands).
6502 */
bnx2x_func_state_change(struct bnx2x * bp,struct bnx2x_func_state_params * params)6503 int bnx2x_func_state_change(struct bnx2x *bp,
6504 struct bnx2x_func_state_params *params)
6505 {
6506 struct bnx2x_func_sp_obj *o = params->f_obj;
6507 int rc, cnt = 300;
6508 enum bnx2x_func_cmd cmd = params->cmd;
6509 unsigned long *pending = &o->pending;
6510
6511 mutex_lock(&o->one_pending_mutex);
6512
6513 /* Check that the requested transition is legal */
6514 rc = o->check_transition(bp, o, params);
6515 if ((rc == -EBUSY) &&
6516 (test_bit(RAMROD_RETRY, ¶ms->ramrod_flags))) {
6517 while ((rc == -EBUSY) && (--cnt > 0)) {
6518 mutex_unlock(&o->one_pending_mutex);
6519 msleep(10);
6520 mutex_lock(&o->one_pending_mutex);
6521 rc = o->check_transition(bp, o, params);
6522 }
6523 if (rc == -EBUSY) {
6524 mutex_unlock(&o->one_pending_mutex);
6525 BNX2X_ERR("timeout waiting for previous ramrod completion\n");
6526 return rc;
6527 }
6528 } else if (rc) {
6529 mutex_unlock(&o->one_pending_mutex);
6530 return rc;
6531 }
6532
6533 /* Set "pending" bit */
6534 set_bit(cmd, pending);
6535
6536 /* Don't send a command if only driver cleanup was requested */
6537 if (test_bit(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) {
6538 bnx2x_func_state_change_comp(bp, o, cmd);
6539 mutex_unlock(&o->one_pending_mutex);
6540 } else {
6541 /* Send a ramrod */
6542 rc = o->send_cmd(bp, params);
6543
6544 mutex_unlock(&o->one_pending_mutex);
6545
6546 if (rc) {
6547 o->next_state = BNX2X_F_STATE_MAX;
6548 clear_bit(cmd, pending);
6549 smp_mb__after_atomic();
6550 return rc;
6551 }
6552
6553 if (test_bit(RAMROD_COMP_WAIT, ¶ms->ramrod_flags)) {
6554 rc = o->wait_comp(bp, o, cmd);
6555 if (rc)
6556 return rc;
6557
6558 return 0;
6559 }
6560 }
6561
6562 return !!test_bit(cmd, pending);
6563 }
6564