• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "ctree.h"
10 #include "delayed-ref.h"
11 #include "transaction.h"
12 #include "qgroup.h"
13 #include "space-info.h"
14 
15 struct kmem_cache *btrfs_delayed_ref_head_cachep;
16 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
17 struct kmem_cache *btrfs_delayed_data_ref_cachep;
18 struct kmem_cache *btrfs_delayed_extent_op_cachep;
19 /*
20  * delayed back reference update tracking.  For subvolume trees
21  * we queue up extent allocations and backref maintenance for
22  * delayed processing.   This avoids deep call chains where we
23  * add extents in the middle of btrfs_search_slot, and it allows
24  * us to buffer up frequently modified backrefs in an rb tree instead
25  * of hammering updates on the extent allocation tree.
26  */
27 
btrfs_check_space_for_delayed_refs(struct btrfs_fs_info * fs_info)28 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
29 {
30 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
31 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
32 	bool ret = false;
33 	u64 reserved;
34 
35 	spin_lock(&global_rsv->lock);
36 	reserved = global_rsv->reserved;
37 	spin_unlock(&global_rsv->lock);
38 
39 	/*
40 	 * Since the global reserve is just kind of magic we don't really want
41 	 * to rely on it to save our bacon, so if our size is more than the
42 	 * delayed_refs_rsv and the global rsv then it's time to think about
43 	 * bailing.
44 	 */
45 	spin_lock(&delayed_refs_rsv->lock);
46 	reserved += delayed_refs_rsv->reserved;
47 	if (delayed_refs_rsv->size >= reserved)
48 		ret = true;
49 	spin_unlock(&delayed_refs_rsv->lock);
50 	return ret;
51 }
52 
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans)53 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
54 {
55 	u64 num_entries =
56 		atomic_read(&trans->transaction->delayed_refs.num_entries);
57 	u64 avg_runtime;
58 	u64 val;
59 
60 	smp_mb();
61 	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
62 	val = num_entries * avg_runtime;
63 	if (val >= NSEC_PER_SEC)
64 		return 1;
65 	if (val >= NSEC_PER_SEC / 2)
66 		return 2;
67 
68 	return btrfs_check_space_for_delayed_refs(trans->fs_info);
69 }
70 
71 /**
72  * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
73  * @fs_info - the fs_info for our fs.
74  * @nr - the number of items to drop.
75  *
76  * This drops the delayed ref head's count from the delayed refs rsv and frees
77  * any excess reservation we had.
78  */
btrfs_delayed_refs_rsv_release(struct btrfs_fs_info * fs_info,int nr)79 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
80 {
81 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
82 	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
83 	u64 released = 0;
84 
85 	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
86 	if (released)
87 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
88 					      0, released, 0);
89 }
90 
91 /*
92  * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
93  * @trans - the trans that may have generated delayed refs
94  *
95  * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
96  * it'll calculate the additional size and add it to the delayed_refs_rsv.
97  */
btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle * trans)98 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
99 {
100 	struct btrfs_fs_info *fs_info = trans->fs_info;
101 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
102 	u64 num_bytes;
103 
104 	if (!trans->delayed_ref_updates)
105 		return;
106 
107 	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
108 						    trans->delayed_ref_updates);
109 	spin_lock(&delayed_rsv->lock);
110 	delayed_rsv->size += num_bytes;
111 	delayed_rsv->full = 0;
112 	spin_unlock(&delayed_rsv->lock);
113 	trans->delayed_ref_updates = 0;
114 }
115 
116 /**
117  * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
118  * @fs_info - the fs info for our fs.
119  * @src - the source block rsv to transfer from.
120  * @num_bytes - the number of bytes to transfer.
121  *
122  * This transfers up to the num_bytes amount from the src rsv to the
123  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
124  */
btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * src,u64 num_bytes)125 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
126 				       struct btrfs_block_rsv *src,
127 				       u64 num_bytes)
128 {
129 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
130 	u64 to_free = 0;
131 
132 	spin_lock(&src->lock);
133 	src->reserved -= num_bytes;
134 	src->size -= num_bytes;
135 	spin_unlock(&src->lock);
136 
137 	spin_lock(&delayed_refs_rsv->lock);
138 	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
139 		u64 delta = delayed_refs_rsv->size -
140 			delayed_refs_rsv->reserved;
141 		if (num_bytes > delta) {
142 			to_free = num_bytes - delta;
143 			num_bytes = delta;
144 		}
145 	} else {
146 		to_free = num_bytes;
147 		num_bytes = 0;
148 	}
149 
150 	if (num_bytes)
151 		delayed_refs_rsv->reserved += num_bytes;
152 	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
153 		delayed_refs_rsv->full = 1;
154 	spin_unlock(&delayed_refs_rsv->lock);
155 
156 	if (num_bytes)
157 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
158 					      0, num_bytes, 1);
159 	if (to_free)
160 		btrfs_space_info_free_bytes_may_use(fs_info,
161 				delayed_refs_rsv->space_info, to_free);
162 }
163 
164 /**
165  * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
166  * @fs_info - the fs_info for our fs.
167  * @flush - control how we can flush for this reservation.
168  *
169  * This will refill the delayed block_rsv up to 1 items size worth of space and
170  * will return -ENOSPC if we can't make the reservation.
171  */
btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush)172 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
173 				  enum btrfs_reserve_flush_enum flush)
174 {
175 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
176 	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
177 	u64 num_bytes = 0;
178 	int ret = -ENOSPC;
179 
180 	spin_lock(&block_rsv->lock);
181 	if (block_rsv->reserved < block_rsv->size) {
182 		num_bytes = block_rsv->size - block_rsv->reserved;
183 		num_bytes = min(num_bytes, limit);
184 	}
185 	spin_unlock(&block_rsv->lock);
186 
187 	if (!num_bytes)
188 		return 0;
189 
190 	ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
191 					   num_bytes, flush);
192 	if (ret)
193 		return ret;
194 	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
195 	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
196 				      0, num_bytes, 1);
197 	return 0;
198 }
199 
200 /*
201  * compare two delayed tree backrefs with same bytenr and type
202  */
comp_tree_refs(struct btrfs_delayed_tree_ref * ref1,struct btrfs_delayed_tree_ref * ref2)203 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
204 			  struct btrfs_delayed_tree_ref *ref2)
205 {
206 	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
207 		if (ref1->root < ref2->root)
208 			return -1;
209 		if (ref1->root > ref2->root)
210 			return 1;
211 	} else {
212 		if (ref1->parent < ref2->parent)
213 			return -1;
214 		if (ref1->parent > ref2->parent)
215 			return 1;
216 	}
217 	return 0;
218 }
219 
220 /*
221  * compare two delayed data backrefs with same bytenr and type
222  */
comp_data_refs(struct btrfs_delayed_data_ref * ref1,struct btrfs_delayed_data_ref * ref2)223 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
224 			  struct btrfs_delayed_data_ref *ref2)
225 {
226 	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
227 		if (ref1->root < ref2->root)
228 			return -1;
229 		if (ref1->root > ref2->root)
230 			return 1;
231 		if (ref1->objectid < ref2->objectid)
232 			return -1;
233 		if (ref1->objectid > ref2->objectid)
234 			return 1;
235 		if (ref1->offset < ref2->offset)
236 			return -1;
237 		if (ref1->offset > ref2->offset)
238 			return 1;
239 	} else {
240 		if (ref1->parent < ref2->parent)
241 			return -1;
242 		if (ref1->parent > ref2->parent)
243 			return 1;
244 	}
245 	return 0;
246 }
247 
comp_refs(struct btrfs_delayed_ref_node * ref1,struct btrfs_delayed_ref_node * ref2,bool check_seq)248 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
249 		     struct btrfs_delayed_ref_node *ref2,
250 		     bool check_seq)
251 {
252 	int ret = 0;
253 
254 	if (ref1->type < ref2->type)
255 		return -1;
256 	if (ref1->type > ref2->type)
257 		return 1;
258 	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
259 	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
260 		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
261 				     btrfs_delayed_node_to_tree_ref(ref2));
262 	else
263 		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
264 				     btrfs_delayed_node_to_data_ref(ref2));
265 	if (ret)
266 		return ret;
267 	if (check_seq) {
268 		if (ref1->seq < ref2->seq)
269 			return -1;
270 		if (ref1->seq > ref2->seq)
271 			return 1;
272 	}
273 	return 0;
274 }
275 
276 /* insert a new ref to head ref rbtree */
htree_insert(struct rb_root_cached * root,struct rb_node * node)277 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
278 						   struct rb_node *node)
279 {
280 	struct rb_node **p = &root->rb_root.rb_node;
281 	struct rb_node *parent_node = NULL;
282 	struct btrfs_delayed_ref_head *entry;
283 	struct btrfs_delayed_ref_head *ins;
284 	u64 bytenr;
285 	bool leftmost = true;
286 
287 	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
288 	bytenr = ins->bytenr;
289 	while (*p) {
290 		parent_node = *p;
291 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
292 				 href_node);
293 
294 		if (bytenr < entry->bytenr) {
295 			p = &(*p)->rb_left;
296 		} else if (bytenr > entry->bytenr) {
297 			p = &(*p)->rb_right;
298 			leftmost = false;
299 		} else {
300 			return entry;
301 		}
302 	}
303 
304 	rb_link_node(node, parent_node, p);
305 	rb_insert_color_cached(node, root, leftmost);
306 	return NULL;
307 }
308 
tree_insert(struct rb_root_cached * root,struct btrfs_delayed_ref_node * ins)309 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
310 		struct btrfs_delayed_ref_node *ins)
311 {
312 	struct rb_node **p = &root->rb_root.rb_node;
313 	struct rb_node *node = &ins->ref_node;
314 	struct rb_node *parent_node = NULL;
315 	struct btrfs_delayed_ref_node *entry;
316 	bool leftmost = true;
317 
318 	while (*p) {
319 		int comp;
320 
321 		parent_node = *p;
322 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
323 				 ref_node);
324 		comp = comp_refs(ins, entry, true);
325 		if (comp < 0) {
326 			p = &(*p)->rb_left;
327 		} else if (comp > 0) {
328 			p = &(*p)->rb_right;
329 			leftmost = false;
330 		} else {
331 			return entry;
332 		}
333 	}
334 
335 	rb_link_node(node, parent_node, p);
336 	rb_insert_color_cached(node, root, leftmost);
337 	return NULL;
338 }
339 
find_first_ref_head(struct btrfs_delayed_ref_root * dr)340 static struct btrfs_delayed_ref_head *find_first_ref_head(
341 		struct btrfs_delayed_ref_root *dr)
342 {
343 	struct rb_node *n;
344 	struct btrfs_delayed_ref_head *entry;
345 
346 	n = rb_first_cached(&dr->href_root);
347 	if (!n)
348 		return NULL;
349 
350 	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
351 
352 	return entry;
353 }
354 
355 /*
356  * Find a head entry based on bytenr. This returns the delayed ref head if it
357  * was able to find one, or NULL if nothing was in that spot.  If return_bigger
358  * is given, the next bigger entry is returned if no exact match is found.
359  */
find_ref_head(struct btrfs_delayed_ref_root * dr,u64 bytenr,bool return_bigger)360 static struct btrfs_delayed_ref_head *find_ref_head(
361 		struct btrfs_delayed_ref_root *dr, u64 bytenr,
362 		bool return_bigger)
363 {
364 	struct rb_root *root = &dr->href_root.rb_root;
365 	struct rb_node *n;
366 	struct btrfs_delayed_ref_head *entry;
367 
368 	n = root->rb_node;
369 	entry = NULL;
370 	while (n) {
371 		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
372 
373 		if (bytenr < entry->bytenr)
374 			n = n->rb_left;
375 		else if (bytenr > entry->bytenr)
376 			n = n->rb_right;
377 		else
378 			return entry;
379 	}
380 	if (entry && return_bigger) {
381 		if (bytenr > entry->bytenr) {
382 			n = rb_next(&entry->href_node);
383 			if (!n)
384 				return NULL;
385 			entry = rb_entry(n, struct btrfs_delayed_ref_head,
386 					 href_node);
387 		}
388 		return entry;
389 	}
390 	return NULL;
391 }
392 
btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)393 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
394 			   struct btrfs_delayed_ref_head *head)
395 {
396 	lockdep_assert_held(&delayed_refs->lock);
397 	if (mutex_trylock(&head->mutex))
398 		return 0;
399 
400 	refcount_inc(&head->refs);
401 	spin_unlock(&delayed_refs->lock);
402 
403 	mutex_lock(&head->mutex);
404 	spin_lock(&delayed_refs->lock);
405 	if (RB_EMPTY_NODE(&head->href_node)) {
406 		mutex_unlock(&head->mutex);
407 		btrfs_put_delayed_ref_head(head);
408 		return -EAGAIN;
409 	}
410 	btrfs_put_delayed_ref_head(head);
411 	return 0;
412 }
413 
drop_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref)414 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
415 				    struct btrfs_delayed_ref_root *delayed_refs,
416 				    struct btrfs_delayed_ref_head *head,
417 				    struct btrfs_delayed_ref_node *ref)
418 {
419 	lockdep_assert_held(&head->lock);
420 	rb_erase_cached(&ref->ref_node, &head->ref_tree);
421 	RB_CLEAR_NODE(&ref->ref_node);
422 	if (!list_empty(&ref->add_list))
423 		list_del(&ref->add_list);
424 	ref->in_tree = 0;
425 	btrfs_put_delayed_ref(ref);
426 	atomic_dec(&delayed_refs->num_entries);
427 }
428 
merge_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref,u64 seq)429 static bool merge_ref(struct btrfs_trans_handle *trans,
430 		      struct btrfs_delayed_ref_root *delayed_refs,
431 		      struct btrfs_delayed_ref_head *head,
432 		      struct btrfs_delayed_ref_node *ref,
433 		      u64 seq)
434 {
435 	struct btrfs_delayed_ref_node *next;
436 	struct rb_node *node = rb_next(&ref->ref_node);
437 	bool done = false;
438 
439 	while (!done && node) {
440 		int mod;
441 
442 		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
443 		node = rb_next(node);
444 		if (seq && next->seq >= seq)
445 			break;
446 		if (comp_refs(ref, next, false))
447 			break;
448 
449 		if (ref->action == next->action) {
450 			mod = next->ref_mod;
451 		} else {
452 			if (ref->ref_mod < next->ref_mod) {
453 				swap(ref, next);
454 				done = true;
455 			}
456 			mod = -next->ref_mod;
457 		}
458 
459 		drop_delayed_ref(trans, delayed_refs, head, next);
460 		ref->ref_mod += mod;
461 		if (ref->ref_mod == 0) {
462 			drop_delayed_ref(trans, delayed_refs, head, ref);
463 			done = true;
464 		} else {
465 			/*
466 			 * Can't have multiples of the same ref on a tree block.
467 			 */
468 			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
469 				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
470 		}
471 	}
472 
473 	return done;
474 }
475 
btrfs_merge_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)476 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
477 			      struct btrfs_delayed_ref_root *delayed_refs,
478 			      struct btrfs_delayed_ref_head *head)
479 {
480 	struct btrfs_fs_info *fs_info = trans->fs_info;
481 	struct btrfs_delayed_ref_node *ref;
482 	struct rb_node *node;
483 	u64 seq = 0;
484 
485 	lockdep_assert_held(&head->lock);
486 
487 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
488 		return;
489 
490 	/* We don't have too many refs to merge for data. */
491 	if (head->is_data)
492 		return;
493 
494 	read_lock(&fs_info->tree_mod_log_lock);
495 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
496 		struct seq_list *elem;
497 
498 		elem = list_first_entry(&fs_info->tree_mod_seq_list,
499 					struct seq_list, list);
500 		seq = elem->seq;
501 	}
502 	read_unlock(&fs_info->tree_mod_log_lock);
503 
504 again:
505 	for (node = rb_first_cached(&head->ref_tree); node;
506 	     node = rb_next(node)) {
507 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
508 		if (seq && ref->seq >= seq)
509 			continue;
510 		if (merge_ref(trans, delayed_refs, head, ref, seq))
511 			goto again;
512 	}
513 }
514 
btrfs_check_delayed_seq(struct btrfs_fs_info * fs_info,u64 seq)515 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
516 {
517 	struct seq_list *elem;
518 	int ret = 0;
519 
520 	read_lock(&fs_info->tree_mod_log_lock);
521 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
522 		elem = list_first_entry(&fs_info->tree_mod_seq_list,
523 					struct seq_list, list);
524 		if (seq >= elem->seq) {
525 			btrfs_debug(fs_info,
526 				"holding back delayed_ref %#x.%x, lowest is %#x.%x",
527 				(u32)(seq >> 32), (u32)seq,
528 				(u32)(elem->seq >> 32), (u32)elem->seq);
529 			ret = 1;
530 		}
531 	}
532 
533 	read_unlock(&fs_info->tree_mod_log_lock);
534 	return ret;
535 }
536 
btrfs_select_ref_head(struct btrfs_delayed_ref_root * delayed_refs)537 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
538 		struct btrfs_delayed_ref_root *delayed_refs)
539 {
540 	struct btrfs_delayed_ref_head *head;
541 
542 again:
543 	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
544 			     true);
545 	if (!head && delayed_refs->run_delayed_start != 0) {
546 		delayed_refs->run_delayed_start = 0;
547 		head = find_first_ref_head(delayed_refs);
548 	}
549 	if (!head)
550 		return NULL;
551 
552 	while (head->processing) {
553 		struct rb_node *node;
554 
555 		node = rb_next(&head->href_node);
556 		if (!node) {
557 			if (delayed_refs->run_delayed_start == 0)
558 				return NULL;
559 			delayed_refs->run_delayed_start = 0;
560 			goto again;
561 		}
562 		head = rb_entry(node, struct btrfs_delayed_ref_head,
563 				href_node);
564 	}
565 
566 	head->processing = 1;
567 	WARN_ON(delayed_refs->num_heads_ready == 0);
568 	delayed_refs->num_heads_ready--;
569 	delayed_refs->run_delayed_start = head->bytenr +
570 		head->num_bytes;
571 	return head;
572 }
573 
btrfs_delete_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)574 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
575 			   struct btrfs_delayed_ref_head *head)
576 {
577 	lockdep_assert_held(&delayed_refs->lock);
578 	lockdep_assert_held(&head->lock);
579 
580 	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
581 	RB_CLEAR_NODE(&head->href_node);
582 	atomic_dec(&delayed_refs->num_entries);
583 	delayed_refs->num_heads--;
584 	if (head->processing == 0)
585 		delayed_refs->num_heads_ready--;
586 }
587 
588 /*
589  * Helper to insert the ref_node to the tail or merge with tail.
590  *
591  * Return 0 for insert.
592  * Return >0 for merge.
593  */
insert_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * root,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * ref)594 static int insert_delayed_ref(struct btrfs_trans_handle *trans,
595 			      struct btrfs_delayed_ref_root *root,
596 			      struct btrfs_delayed_ref_head *href,
597 			      struct btrfs_delayed_ref_node *ref)
598 {
599 	struct btrfs_delayed_ref_node *exist;
600 	int mod;
601 	int ret = 0;
602 
603 	spin_lock(&href->lock);
604 	exist = tree_insert(&href->ref_tree, ref);
605 	if (!exist)
606 		goto inserted;
607 
608 	/* Now we are sure we can merge */
609 	ret = 1;
610 	if (exist->action == ref->action) {
611 		mod = ref->ref_mod;
612 	} else {
613 		/* Need to change action */
614 		if (exist->ref_mod < ref->ref_mod) {
615 			exist->action = ref->action;
616 			mod = -exist->ref_mod;
617 			exist->ref_mod = ref->ref_mod;
618 			if (ref->action == BTRFS_ADD_DELAYED_REF)
619 				list_add_tail(&exist->add_list,
620 					      &href->ref_add_list);
621 			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
622 				ASSERT(!list_empty(&exist->add_list));
623 				list_del(&exist->add_list);
624 			} else {
625 				ASSERT(0);
626 			}
627 		} else
628 			mod = -ref->ref_mod;
629 	}
630 	exist->ref_mod += mod;
631 
632 	/* remove existing tail if its ref_mod is zero */
633 	if (exist->ref_mod == 0)
634 		drop_delayed_ref(trans, root, href, exist);
635 	spin_unlock(&href->lock);
636 	return ret;
637 inserted:
638 	if (ref->action == BTRFS_ADD_DELAYED_REF)
639 		list_add_tail(&ref->add_list, &href->ref_add_list);
640 	atomic_inc(&root->num_entries);
641 	spin_unlock(&href->lock);
642 	return ret;
643 }
644 
645 /*
646  * helper function to update the accounting in the head ref
647  * existing and update must have the same bytenr
648  */
update_existing_head_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * existing,struct btrfs_delayed_ref_head * update)649 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
650 			 struct btrfs_delayed_ref_head *existing,
651 			 struct btrfs_delayed_ref_head *update)
652 {
653 	struct btrfs_delayed_ref_root *delayed_refs =
654 		&trans->transaction->delayed_refs;
655 	struct btrfs_fs_info *fs_info = trans->fs_info;
656 	u64 flags = btrfs_ref_head_to_space_flags(existing);
657 	int old_ref_mod;
658 
659 	BUG_ON(existing->is_data != update->is_data);
660 
661 	spin_lock(&existing->lock);
662 	if (update->must_insert_reserved) {
663 		/* if the extent was freed and then
664 		 * reallocated before the delayed ref
665 		 * entries were processed, we can end up
666 		 * with an existing head ref without
667 		 * the must_insert_reserved flag set.
668 		 * Set it again here
669 		 */
670 		existing->must_insert_reserved = update->must_insert_reserved;
671 
672 		/*
673 		 * update the num_bytes so we make sure the accounting
674 		 * is done correctly
675 		 */
676 		existing->num_bytes = update->num_bytes;
677 
678 	}
679 
680 	if (update->extent_op) {
681 		if (!existing->extent_op) {
682 			existing->extent_op = update->extent_op;
683 		} else {
684 			if (update->extent_op->update_key) {
685 				memcpy(&existing->extent_op->key,
686 				       &update->extent_op->key,
687 				       sizeof(update->extent_op->key));
688 				existing->extent_op->update_key = true;
689 			}
690 			if (update->extent_op->update_flags) {
691 				existing->extent_op->flags_to_set |=
692 					update->extent_op->flags_to_set;
693 				existing->extent_op->update_flags = true;
694 			}
695 			btrfs_free_delayed_extent_op(update->extent_op);
696 		}
697 	}
698 	/*
699 	 * update the reference mod on the head to reflect this new operation,
700 	 * only need the lock for this case cause we could be processing it
701 	 * currently, for refs we just added we know we're a-ok.
702 	 */
703 	old_ref_mod = existing->total_ref_mod;
704 	existing->ref_mod += update->ref_mod;
705 	existing->total_ref_mod += update->ref_mod;
706 
707 	/*
708 	 * If we are going to from a positive ref mod to a negative or vice
709 	 * versa we need to make sure to adjust pending_csums accordingly.
710 	 */
711 	if (existing->is_data) {
712 		u64 csum_leaves =
713 			btrfs_csum_bytes_to_leaves(fs_info,
714 						   existing->num_bytes);
715 
716 		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
717 			delayed_refs->pending_csums -= existing->num_bytes;
718 			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
719 		}
720 		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
721 			delayed_refs->pending_csums += existing->num_bytes;
722 			trans->delayed_ref_updates += csum_leaves;
723 		}
724 	}
725 
726 	/*
727 	 * This handles the following conditions:
728 	 *
729 	 * 1. We had a ref mod of 0 or more and went negative, indicating that
730 	 *    we may be freeing space, so add our space to the
731 	 *    total_bytes_pinned counter.
732 	 * 2. We were negative and went to 0 or positive, so no longer can say
733 	 *    that the space would be pinned, decrement our counter from the
734 	 *    total_bytes_pinned counter.
735 	 * 3. We are now at 0 and have ->must_insert_reserved set, which means
736 	 *    this was a new allocation and then we dropped it, and thus must
737 	 *    add our space to the total_bytes_pinned counter.
738 	 */
739 	if (existing->total_ref_mod < 0 && old_ref_mod >= 0)
740 		btrfs_mod_total_bytes_pinned(fs_info, flags, existing->num_bytes);
741 	else if (existing->total_ref_mod >= 0 && old_ref_mod < 0)
742 		btrfs_mod_total_bytes_pinned(fs_info, flags, -existing->num_bytes);
743 	else if (existing->total_ref_mod == 0 && existing->must_insert_reserved)
744 		btrfs_mod_total_bytes_pinned(fs_info, flags, existing->num_bytes);
745 
746 	spin_unlock(&existing->lock);
747 }
748 
init_delayed_ref_head(struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,u64 bytenr,u64 num_bytes,u64 ref_root,u64 reserved,int action,bool is_data,bool is_system)749 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
750 				  struct btrfs_qgroup_extent_record *qrecord,
751 				  u64 bytenr, u64 num_bytes, u64 ref_root,
752 				  u64 reserved, int action, bool is_data,
753 				  bool is_system)
754 {
755 	int count_mod = 1;
756 	int must_insert_reserved = 0;
757 
758 	/* If reserved is provided, it must be a data extent. */
759 	BUG_ON(!is_data && reserved);
760 
761 	/*
762 	 * The head node stores the sum of all the mods, so dropping a ref
763 	 * should drop the sum in the head node by one.
764 	 */
765 	if (action == BTRFS_UPDATE_DELAYED_HEAD)
766 		count_mod = 0;
767 	else if (action == BTRFS_DROP_DELAYED_REF)
768 		count_mod = -1;
769 
770 	/*
771 	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
772 	 * accounting when the extent is finally added, or if a later
773 	 * modification deletes the delayed ref without ever inserting the
774 	 * extent into the extent allocation tree.  ref->must_insert_reserved
775 	 * is the flag used to record that accounting mods are required.
776 	 *
777 	 * Once we record must_insert_reserved, switch the action to
778 	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
779 	 */
780 	if (action == BTRFS_ADD_DELAYED_EXTENT)
781 		must_insert_reserved = 1;
782 	else
783 		must_insert_reserved = 0;
784 
785 	refcount_set(&head_ref->refs, 1);
786 	head_ref->bytenr = bytenr;
787 	head_ref->num_bytes = num_bytes;
788 	head_ref->ref_mod = count_mod;
789 	head_ref->must_insert_reserved = must_insert_reserved;
790 	head_ref->is_data = is_data;
791 	head_ref->is_system = is_system;
792 	head_ref->ref_tree = RB_ROOT_CACHED;
793 	INIT_LIST_HEAD(&head_ref->ref_add_list);
794 	RB_CLEAR_NODE(&head_ref->href_node);
795 	head_ref->processing = 0;
796 	head_ref->total_ref_mod = count_mod;
797 	spin_lock_init(&head_ref->lock);
798 	mutex_init(&head_ref->mutex);
799 
800 	if (qrecord) {
801 		if (ref_root && reserved) {
802 			qrecord->data_rsv = reserved;
803 			qrecord->data_rsv_refroot = ref_root;
804 		}
805 		qrecord->bytenr = bytenr;
806 		qrecord->num_bytes = num_bytes;
807 		qrecord->old_roots = NULL;
808 	}
809 }
810 
811 /*
812  * helper function to actually insert a head node into the rbtree.
813  * this does all the dirty work in terms of maintaining the correct
814  * overall modification count.
815  */
816 static noinline struct btrfs_delayed_ref_head *
add_delayed_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,int action,int * qrecord_inserted_ret)817 add_delayed_ref_head(struct btrfs_trans_handle *trans,
818 		     struct btrfs_delayed_ref_head *head_ref,
819 		     struct btrfs_qgroup_extent_record *qrecord,
820 		     int action, int *qrecord_inserted_ret)
821 {
822 	struct btrfs_delayed_ref_head *existing;
823 	struct btrfs_delayed_ref_root *delayed_refs;
824 	int qrecord_inserted = 0;
825 
826 	delayed_refs = &trans->transaction->delayed_refs;
827 
828 	/* Record qgroup extent info if provided */
829 	if (qrecord) {
830 		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
831 					delayed_refs, qrecord))
832 			kfree(qrecord);
833 		else
834 			qrecord_inserted = 1;
835 	}
836 
837 	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
838 
839 	existing = htree_insert(&delayed_refs->href_root,
840 				&head_ref->href_node);
841 	if (existing) {
842 		update_existing_head_ref(trans, existing, head_ref);
843 		/*
844 		 * we've updated the existing ref, free the newly
845 		 * allocated ref
846 		 */
847 		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
848 		head_ref = existing;
849 	} else {
850 		u64 flags = btrfs_ref_head_to_space_flags(head_ref);
851 
852 		if (head_ref->is_data && head_ref->ref_mod < 0) {
853 			delayed_refs->pending_csums += head_ref->num_bytes;
854 			trans->delayed_ref_updates +=
855 				btrfs_csum_bytes_to_leaves(trans->fs_info,
856 							   head_ref->num_bytes);
857 		}
858 		if (head_ref->ref_mod < 0)
859 			btrfs_mod_total_bytes_pinned(trans->fs_info, flags,
860 						     head_ref->num_bytes);
861 		delayed_refs->num_heads++;
862 		delayed_refs->num_heads_ready++;
863 		atomic_inc(&delayed_refs->num_entries);
864 		trans->delayed_ref_updates++;
865 	}
866 	if (qrecord_inserted_ret)
867 		*qrecord_inserted_ret = qrecord_inserted;
868 
869 	return head_ref;
870 }
871 
872 /*
873  * init_delayed_ref_common - Initialize the structure which represents a
874  *			     modification to a an extent.
875  *
876  * @fs_info:    Internal to the mounted filesystem mount structure.
877  *
878  * @ref:	The structure which is going to be initialized.
879  *
880  * @bytenr:	The logical address of the extent for which a modification is
881  *		going to be recorded.
882  *
883  * @num_bytes:  Size of the extent whose modification is being recorded.
884  *
885  * @ref_root:	The id of the root where this modification has originated, this
886  *		can be either one of the well-known metadata trees or the
887  *		subvolume id which references this extent.
888  *
889  * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
890  *		BTRFS_ADD_DELAYED_EXTENT
891  *
892  * @ref_type:	Holds the type of the extent which is being recorded, can be
893  *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
894  *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
895  *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
896  */
init_delayed_ref_common(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * ref,u64 bytenr,u64 num_bytes,u64 ref_root,int action,u8 ref_type)897 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
898 				    struct btrfs_delayed_ref_node *ref,
899 				    u64 bytenr, u64 num_bytes, u64 ref_root,
900 				    int action, u8 ref_type)
901 {
902 	u64 seq = 0;
903 
904 	if (action == BTRFS_ADD_DELAYED_EXTENT)
905 		action = BTRFS_ADD_DELAYED_REF;
906 
907 	if (is_fstree(ref_root))
908 		seq = atomic64_read(&fs_info->tree_mod_seq);
909 
910 	refcount_set(&ref->refs, 1);
911 	ref->bytenr = bytenr;
912 	ref->num_bytes = num_bytes;
913 	ref->ref_mod = 1;
914 	ref->action = action;
915 	ref->is_head = 0;
916 	ref->in_tree = 1;
917 	ref->seq = seq;
918 	ref->type = ref_type;
919 	RB_CLEAR_NODE(&ref->ref_node);
920 	INIT_LIST_HEAD(&ref->add_list);
921 }
922 
923 /*
924  * add a delayed tree ref.  This does all of the accounting required
925  * to make sure the delayed ref is eventually processed before this
926  * transaction commits.
927  */
btrfs_add_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,struct btrfs_delayed_extent_op * extent_op)928 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
929 			       struct btrfs_ref *generic_ref,
930 			       struct btrfs_delayed_extent_op *extent_op)
931 {
932 	struct btrfs_fs_info *fs_info = trans->fs_info;
933 	struct btrfs_delayed_tree_ref *ref;
934 	struct btrfs_delayed_ref_head *head_ref;
935 	struct btrfs_delayed_ref_root *delayed_refs;
936 	struct btrfs_qgroup_extent_record *record = NULL;
937 	int qrecord_inserted;
938 	bool is_system;
939 	int action = generic_ref->action;
940 	int level = generic_ref->tree_ref.level;
941 	int ret;
942 	u64 bytenr = generic_ref->bytenr;
943 	u64 num_bytes = generic_ref->len;
944 	u64 parent = generic_ref->parent;
945 	u8 ref_type;
946 
947 	is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
948 
949 	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
950 	BUG_ON(extent_op && extent_op->is_data);
951 	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
952 	if (!ref)
953 		return -ENOMEM;
954 
955 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
956 	if (!head_ref) {
957 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
958 		return -ENOMEM;
959 	}
960 
961 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
962 	    is_fstree(generic_ref->real_root) &&
963 	    is_fstree(generic_ref->tree_ref.root) &&
964 	    !generic_ref->skip_qgroup) {
965 		record = kzalloc(sizeof(*record), GFP_NOFS);
966 		if (!record) {
967 			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
968 			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
969 			return -ENOMEM;
970 		}
971 	}
972 
973 	if (parent)
974 		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
975 	else
976 		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
977 
978 	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
979 				generic_ref->tree_ref.root, action, ref_type);
980 	ref->root = generic_ref->tree_ref.root;
981 	ref->parent = parent;
982 	ref->level = level;
983 
984 	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
985 			      generic_ref->tree_ref.root, 0, action, false,
986 			      is_system);
987 	head_ref->extent_op = extent_op;
988 
989 	delayed_refs = &trans->transaction->delayed_refs;
990 	spin_lock(&delayed_refs->lock);
991 
992 	/*
993 	 * insert both the head node and the new ref without dropping
994 	 * the spin lock
995 	 */
996 	head_ref = add_delayed_ref_head(trans, head_ref, record,
997 					action, &qrecord_inserted);
998 
999 	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1000 	spin_unlock(&delayed_refs->lock);
1001 
1002 	/*
1003 	 * Need to update the delayed_refs_rsv with any changes we may have
1004 	 * made.
1005 	 */
1006 	btrfs_update_delayed_refs_rsv(trans);
1007 
1008 	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
1009 				   action == BTRFS_ADD_DELAYED_EXTENT ?
1010 				   BTRFS_ADD_DELAYED_REF : action);
1011 	if (ret > 0)
1012 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1013 
1014 	if (qrecord_inserted)
1015 		btrfs_qgroup_trace_extent_post(fs_info, record);
1016 
1017 	return 0;
1018 }
1019 
1020 /*
1021  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1022  */
btrfs_add_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,u64 reserved)1023 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1024 			       struct btrfs_ref *generic_ref,
1025 			       u64 reserved)
1026 {
1027 	struct btrfs_fs_info *fs_info = trans->fs_info;
1028 	struct btrfs_delayed_data_ref *ref;
1029 	struct btrfs_delayed_ref_head *head_ref;
1030 	struct btrfs_delayed_ref_root *delayed_refs;
1031 	struct btrfs_qgroup_extent_record *record = NULL;
1032 	int qrecord_inserted;
1033 	int action = generic_ref->action;
1034 	int ret;
1035 	u64 bytenr = generic_ref->bytenr;
1036 	u64 num_bytes = generic_ref->len;
1037 	u64 parent = generic_ref->parent;
1038 	u64 ref_root = generic_ref->data_ref.ref_root;
1039 	u64 owner = generic_ref->data_ref.ino;
1040 	u64 offset = generic_ref->data_ref.offset;
1041 	u8 ref_type;
1042 
1043 	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1044 	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1045 	if (!ref)
1046 		return -ENOMEM;
1047 
1048 	if (parent)
1049 	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1050 	else
1051 	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1052 	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1053 				ref_root, action, ref_type);
1054 	ref->root = ref_root;
1055 	ref->parent = parent;
1056 	ref->objectid = owner;
1057 	ref->offset = offset;
1058 
1059 
1060 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1061 	if (!head_ref) {
1062 		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1063 		return -ENOMEM;
1064 	}
1065 
1066 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1067 	    is_fstree(ref_root) &&
1068 	    is_fstree(generic_ref->real_root) &&
1069 	    !generic_ref->skip_qgroup) {
1070 		record = kzalloc(sizeof(*record), GFP_NOFS);
1071 		if (!record) {
1072 			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1073 			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1074 					head_ref);
1075 			return -ENOMEM;
1076 		}
1077 	}
1078 
1079 	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1080 			      reserved, action, true, false);
1081 	head_ref->extent_op = NULL;
1082 
1083 	delayed_refs = &trans->transaction->delayed_refs;
1084 	spin_lock(&delayed_refs->lock);
1085 
1086 	/*
1087 	 * insert both the head node and the new ref without dropping
1088 	 * the spin lock
1089 	 */
1090 	head_ref = add_delayed_ref_head(trans, head_ref, record,
1091 					action, &qrecord_inserted);
1092 
1093 	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1094 	spin_unlock(&delayed_refs->lock);
1095 
1096 	/*
1097 	 * Need to update the delayed_refs_rsv with any changes we may have
1098 	 * made.
1099 	 */
1100 	btrfs_update_delayed_refs_rsv(trans);
1101 
1102 	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1103 				   action == BTRFS_ADD_DELAYED_EXTENT ?
1104 				   BTRFS_ADD_DELAYED_REF : action);
1105 	if (ret > 0)
1106 		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1107 
1108 
1109 	if (qrecord_inserted)
1110 		return btrfs_qgroup_trace_extent_post(fs_info, record);
1111 	return 0;
1112 }
1113 
btrfs_add_delayed_extent_op(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,struct btrfs_delayed_extent_op * extent_op)1114 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1115 				u64 bytenr, u64 num_bytes,
1116 				struct btrfs_delayed_extent_op *extent_op)
1117 {
1118 	struct btrfs_delayed_ref_head *head_ref;
1119 	struct btrfs_delayed_ref_root *delayed_refs;
1120 
1121 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1122 	if (!head_ref)
1123 		return -ENOMEM;
1124 
1125 	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1126 			      BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1127 			      false);
1128 	head_ref->extent_op = extent_op;
1129 
1130 	delayed_refs = &trans->transaction->delayed_refs;
1131 	spin_lock(&delayed_refs->lock);
1132 
1133 	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1134 			     NULL);
1135 
1136 	spin_unlock(&delayed_refs->lock);
1137 
1138 	/*
1139 	 * Need to update the delayed_refs_rsv with any changes we may have
1140 	 * made.
1141 	 */
1142 	btrfs_update_delayed_refs_rsv(trans);
1143 	return 0;
1144 }
1145 
1146 /*
1147  * This does a simple search for the head node for a given extent.  Returns the
1148  * head node if found, or NULL if not.
1149  */
1150 struct btrfs_delayed_ref_head *
btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,u64 bytenr)1151 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1152 {
1153 	lockdep_assert_held(&delayed_refs->lock);
1154 
1155 	return find_ref_head(delayed_refs, bytenr, false);
1156 }
1157 
btrfs_delayed_ref_exit(void)1158 void __cold btrfs_delayed_ref_exit(void)
1159 {
1160 	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1161 	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1162 	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1163 	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1164 }
1165 
btrfs_delayed_ref_init(void)1166 int __init btrfs_delayed_ref_init(void)
1167 {
1168 	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1169 				"btrfs_delayed_ref_head",
1170 				sizeof(struct btrfs_delayed_ref_head), 0,
1171 				SLAB_MEM_SPREAD, NULL);
1172 	if (!btrfs_delayed_ref_head_cachep)
1173 		goto fail;
1174 
1175 	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1176 				"btrfs_delayed_tree_ref",
1177 				sizeof(struct btrfs_delayed_tree_ref), 0,
1178 				SLAB_MEM_SPREAD, NULL);
1179 	if (!btrfs_delayed_tree_ref_cachep)
1180 		goto fail;
1181 
1182 	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1183 				"btrfs_delayed_data_ref",
1184 				sizeof(struct btrfs_delayed_data_ref), 0,
1185 				SLAB_MEM_SPREAD, NULL);
1186 	if (!btrfs_delayed_data_ref_cachep)
1187 		goto fail;
1188 
1189 	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1190 				"btrfs_delayed_extent_op",
1191 				sizeof(struct btrfs_delayed_extent_op), 0,
1192 				SLAB_MEM_SPREAD, NULL);
1193 	if (!btrfs_delayed_extent_op_cachep)
1194 		goto fail;
1195 
1196 	return 0;
1197 fail:
1198 	btrfs_delayed_ref_exit();
1199 	return -ENOMEM;
1200 }
1201