1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "ctree.h"
10 #include "delayed-ref.h"
11 #include "transaction.h"
12 #include "qgroup.h"
13 #include "space-info.h"
14
15 struct kmem_cache *btrfs_delayed_ref_head_cachep;
16 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
17 struct kmem_cache *btrfs_delayed_data_ref_cachep;
18 struct kmem_cache *btrfs_delayed_extent_op_cachep;
19 /*
20 * delayed back reference update tracking. For subvolume trees
21 * we queue up extent allocations and backref maintenance for
22 * delayed processing. This avoids deep call chains where we
23 * add extents in the middle of btrfs_search_slot, and it allows
24 * us to buffer up frequently modified backrefs in an rb tree instead
25 * of hammering updates on the extent allocation tree.
26 */
27
btrfs_check_space_for_delayed_refs(struct btrfs_fs_info * fs_info)28 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
29 {
30 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
31 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
32 bool ret = false;
33 u64 reserved;
34
35 spin_lock(&global_rsv->lock);
36 reserved = global_rsv->reserved;
37 spin_unlock(&global_rsv->lock);
38
39 /*
40 * Since the global reserve is just kind of magic we don't really want
41 * to rely on it to save our bacon, so if our size is more than the
42 * delayed_refs_rsv and the global rsv then it's time to think about
43 * bailing.
44 */
45 spin_lock(&delayed_refs_rsv->lock);
46 reserved += delayed_refs_rsv->reserved;
47 if (delayed_refs_rsv->size >= reserved)
48 ret = true;
49 spin_unlock(&delayed_refs_rsv->lock);
50 return ret;
51 }
52
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans)53 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
54 {
55 u64 num_entries =
56 atomic_read(&trans->transaction->delayed_refs.num_entries);
57 u64 avg_runtime;
58 u64 val;
59
60 smp_mb();
61 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
62 val = num_entries * avg_runtime;
63 if (val >= NSEC_PER_SEC)
64 return 1;
65 if (val >= NSEC_PER_SEC / 2)
66 return 2;
67
68 return btrfs_check_space_for_delayed_refs(trans->fs_info);
69 }
70
71 /**
72 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
73 * @fs_info - the fs_info for our fs.
74 * @nr - the number of items to drop.
75 *
76 * This drops the delayed ref head's count from the delayed refs rsv and frees
77 * any excess reservation we had.
78 */
btrfs_delayed_refs_rsv_release(struct btrfs_fs_info * fs_info,int nr)79 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
80 {
81 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
82 u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
83 u64 released = 0;
84
85 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
86 if (released)
87 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
88 0, released, 0);
89 }
90
91 /*
92 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
93 * @trans - the trans that may have generated delayed refs
94 *
95 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
96 * it'll calculate the additional size and add it to the delayed_refs_rsv.
97 */
btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle * trans)98 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
99 {
100 struct btrfs_fs_info *fs_info = trans->fs_info;
101 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
102 u64 num_bytes;
103
104 if (!trans->delayed_ref_updates)
105 return;
106
107 num_bytes = btrfs_calc_insert_metadata_size(fs_info,
108 trans->delayed_ref_updates);
109 spin_lock(&delayed_rsv->lock);
110 delayed_rsv->size += num_bytes;
111 delayed_rsv->full = 0;
112 spin_unlock(&delayed_rsv->lock);
113 trans->delayed_ref_updates = 0;
114 }
115
116 /**
117 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
118 * @fs_info - the fs info for our fs.
119 * @src - the source block rsv to transfer from.
120 * @num_bytes - the number of bytes to transfer.
121 *
122 * This transfers up to the num_bytes amount from the src rsv to the
123 * delayed_refs_rsv. Any extra bytes are returned to the space info.
124 */
btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * src,u64 num_bytes)125 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
126 struct btrfs_block_rsv *src,
127 u64 num_bytes)
128 {
129 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
130 u64 to_free = 0;
131
132 spin_lock(&src->lock);
133 src->reserved -= num_bytes;
134 src->size -= num_bytes;
135 spin_unlock(&src->lock);
136
137 spin_lock(&delayed_refs_rsv->lock);
138 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
139 u64 delta = delayed_refs_rsv->size -
140 delayed_refs_rsv->reserved;
141 if (num_bytes > delta) {
142 to_free = num_bytes - delta;
143 num_bytes = delta;
144 }
145 } else {
146 to_free = num_bytes;
147 num_bytes = 0;
148 }
149
150 if (num_bytes)
151 delayed_refs_rsv->reserved += num_bytes;
152 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
153 delayed_refs_rsv->full = 1;
154 spin_unlock(&delayed_refs_rsv->lock);
155
156 if (num_bytes)
157 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
158 0, num_bytes, 1);
159 if (to_free)
160 btrfs_space_info_free_bytes_may_use(fs_info,
161 delayed_refs_rsv->space_info, to_free);
162 }
163
164 /**
165 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
166 * @fs_info - the fs_info for our fs.
167 * @flush - control how we can flush for this reservation.
168 *
169 * This will refill the delayed block_rsv up to 1 items size worth of space and
170 * will return -ENOSPC if we can't make the reservation.
171 */
btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush)172 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
173 enum btrfs_reserve_flush_enum flush)
174 {
175 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
176 u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
177 u64 num_bytes = 0;
178 int ret = -ENOSPC;
179
180 spin_lock(&block_rsv->lock);
181 if (block_rsv->reserved < block_rsv->size) {
182 num_bytes = block_rsv->size - block_rsv->reserved;
183 num_bytes = min(num_bytes, limit);
184 }
185 spin_unlock(&block_rsv->lock);
186
187 if (!num_bytes)
188 return 0;
189
190 ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
191 num_bytes, flush);
192 if (ret)
193 return ret;
194 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
195 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
196 0, num_bytes, 1);
197 return 0;
198 }
199
200 /*
201 * compare two delayed tree backrefs with same bytenr and type
202 */
comp_tree_refs(struct btrfs_delayed_tree_ref * ref1,struct btrfs_delayed_tree_ref * ref2)203 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
204 struct btrfs_delayed_tree_ref *ref2)
205 {
206 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
207 if (ref1->root < ref2->root)
208 return -1;
209 if (ref1->root > ref2->root)
210 return 1;
211 } else {
212 if (ref1->parent < ref2->parent)
213 return -1;
214 if (ref1->parent > ref2->parent)
215 return 1;
216 }
217 return 0;
218 }
219
220 /*
221 * compare two delayed data backrefs with same bytenr and type
222 */
comp_data_refs(struct btrfs_delayed_data_ref * ref1,struct btrfs_delayed_data_ref * ref2)223 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
224 struct btrfs_delayed_data_ref *ref2)
225 {
226 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
227 if (ref1->root < ref2->root)
228 return -1;
229 if (ref1->root > ref2->root)
230 return 1;
231 if (ref1->objectid < ref2->objectid)
232 return -1;
233 if (ref1->objectid > ref2->objectid)
234 return 1;
235 if (ref1->offset < ref2->offset)
236 return -1;
237 if (ref1->offset > ref2->offset)
238 return 1;
239 } else {
240 if (ref1->parent < ref2->parent)
241 return -1;
242 if (ref1->parent > ref2->parent)
243 return 1;
244 }
245 return 0;
246 }
247
comp_refs(struct btrfs_delayed_ref_node * ref1,struct btrfs_delayed_ref_node * ref2,bool check_seq)248 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
249 struct btrfs_delayed_ref_node *ref2,
250 bool check_seq)
251 {
252 int ret = 0;
253
254 if (ref1->type < ref2->type)
255 return -1;
256 if (ref1->type > ref2->type)
257 return 1;
258 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
259 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
260 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
261 btrfs_delayed_node_to_tree_ref(ref2));
262 else
263 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
264 btrfs_delayed_node_to_data_ref(ref2));
265 if (ret)
266 return ret;
267 if (check_seq) {
268 if (ref1->seq < ref2->seq)
269 return -1;
270 if (ref1->seq > ref2->seq)
271 return 1;
272 }
273 return 0;
274 }
275
276 /* insert a new ref to head ref rbtree */
htree_insert(struct rb_root_cached * root,struct rb_node * node)277 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
278 struct rb_node *node)
279 {
280 struct rb_node **p = &root->rb_root.rb_node;
281 struct rb_node *parent_node = NULL;
282 struct btrfs_delayed_ref_head *entry;
283 struct btrfs_delayed_ref_head *ins;
284 u64 bytenr;
285 bool leftmost = true;
286
287 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
288 bytenr = ins->bytenr;
289 while (*p) {
290 parent_node = *p;
291 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
292 href_node);
293
294 if (bytenr < entry->bytenr) {
295 p = &(*p)->rb_left;
296 } else if (bytenr > entry->bytenr) {
297 p = &(*p)->rb_right;
298 leftmost = false;
299 } else {
300 return entry;
301 }
302 }
303
304 rb_link_node(node, parent_node, p);
305 rb_insert_color_cached(node, root, leftmost);
306 return NULL;
307 }
308
tree_insert(struct rb_root_cached * root,struct btrfs_delayed_ref_node * ins)309 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
310 struct btrfs_delayed_ref_node *ins)
311 {
312 struct rb_node **p = &root->rb_root.rb_node;
313 struct rb_node *node = &ins->ref_node;
314 struct rb_node *parent_node = NULL;
315 struct btrfs_delayed_ref_node *entry;
316 bool leftmost = true;
317
318 while (*p) {
319 int comp;
320
321 parent_node = *p;
322 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
323 ref_node);
324 comp = comp_refs(ins, entry, true);
325 if (comp < 0) {
326 p = &(*p)->rb_left;
327 } else if (comp > 0) {
328 p = &(*p)->rb_right;
329 leftmost = false;
330 } else {
331 return entry;
332 }
333 }
334
335 rb_link_node(node, parent_node, p);
336 rb_insert_color_cached(node, root, leftmost);
337 return NULL;
338 }
339
find_first_ref_head(struct btrfs_delayed_ref_root * dr)340 static struct btrfs_delayed_ref_head *find_first_ref_head(
341 struct btrfs_delayed_ref_root *dr)
342 {
343 struct rb_node *n;
344 struct btrfs_delayed_ref_head *entry;
345
346 n = rb_first_cached(&dr->href_root);
347 if (!n)
348 return NULL;
349
350 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
351
352 return entry;
353 }
354
355 /*
356 * Find a head entry based on bytenr. This returns the delayed ref head if it
357 * was able to find one, or NULL if nothing was in that spot. If return_bigger
358 * is given, the next bigger entry is returned if no exact match is found.
359 */
find_ref_head(struct btrfs_delayed_ref_root * dr,u64 bytenr,bool return_bigger)360 static struct btrfs_delayed_ref_head *find_ref_head(
361 struct btrfs_delayed_ref_root *dr, u64 bytenr,
362 bool return_bigger)
363 {
364 struct rb_root *root = &dr->href_root.rb_root;
365 struct rb_node *n;
366 struct btrfs_delayed_ref_head *entry;
367
368 n = root->rb_node;
369 entry = NULL;
370 while (n) {
371 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
372
373 if (bytenr < entry->bytenr)
374 n = n->rb_left;
375 else if (bytenr > entry->bytenr)
376 n = n->rb_right;
377 else
378 return entry;
379 }
380 if (entry && return_bigger) {
381 if (bytenr > entry->bytenr) {
382 n = rb_next(&entry->href_node);
383 if (!n)
384 return NULL;
385 entry = rb_entry(n, struct btrfs_delayed_ref_head,
386 href_node);
387 }
388 return entry;
389 }
390 return NULL;
391 }
392
btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)393 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
394 struct btrfs_delayed_ref_head *head)
395 {
396 lockdep_assert_held(&delayed_refs->lock);
397 if (mutex_trylock(&head->mutex))
398 return 0;
399
400 refcount_inc(&head->refs);
401 spin_unlock(&delayed_refs->lock);
402
403 mutex_lock(&head->mutex);
404 spin_lock(&delayed_refs->lock);
405 if (RB_EMPTY_NODE(&head->href_node)) {
406 mutex_unlock(&head->mutex);
407 btrfs_put_delayed_ref_head(head);
408 return -EAGAIN;
409 }
410 btrfs_put_delayed_ref_head(head);
411 return 0;
412 }
413
drop_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref)414 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
415 struct btrfs_delayed_ref_root *delayed_refs,
416 struct btrfs_delayed_ref_head *head,
417 struct btrfs_delayed_ref_node *ref)
418 {
419 lockdep_assert_held(&head->lock);
420 rb_erase_cached(&ref->ref_node, &head->ref_tree);
421 RB_CLEAR_NODE(&ref->ref_node);
422 if (!list_empty(&ref->add_list))
423 list_del(&ref->add_list);
424 ref->in_tree = 0;
425 btrfs_put_delayed_ref(ref);
426 atomic_dec(&delayed_refs->num_entries);
427 }
428
merge_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref,u64 seq)429 static bool merge_ref(struct btrfs_trans_handle *trans,
430 struct btrfs_delayed_ref_root *delayed_refs,
431 struct btrfs_delayed_ref_head *head,
432 struct btrfs_delayed_ref_node *ref,
433 u64 seq)
434 {
435 struct btrfs_delayed_ref_node *next;
436 struct rb_node *node = rb_next(&ref->ref_node);
437 bool done = false;
438
439 while (!done && node) {
440 int mod;
441
442 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
443 node = rb_next(node);
444 if (seq && next->seq >= seq)
445 break;
446 if (comp_refs(ref, next, false))
447 break;
448
449 if (ref->action == next->action) {
450 mod = next->ref_mod;
451 } else {
452 if (ref->ref_mod < next->ref_mod) {
453 swap(ref, next);
454 done = true;
455 }
456 mod = -next->ref_mod;
457 }
458
459 drop_delayed_ref(trans, delayed_refs, head, next);
460 ref->ref_mod += mod;
461 if (ref->ref_mod == 0) {
462 drop_delayed_ref(trans, delayed_refs, head, ref);
463 done = true;
464 } else {
465 /*
466 * Can't have multiples of the same ref on a tree block.
467 */
468 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
469 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
470 }
471 }
472
473 return done;
474 }
475
btrfs_merge_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)476 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
477 struct btrfs_delayed_ref_root *delayed_refs,
478 struct btrfs_delayed_ref_head *head)
479 {
480 struct btrfs_fs_info *fs_info = trans->fs_info;
481 struct btrfs_delayed_ref_node *ref;
482 struct rb_node *node;
483 u64 seq = 0;
484
485 lockdep_assert_held(&head->lock);
486
487 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
488 return;
489
490 /* We don't have too many refs to merge for data. */
491 if (head->is_data)
492 return;
493
494 read_lock(&fs_info->tree_mod_log_lock);
495 if (!list_empty(&fs_info->tree_mod_seq_list)) {
496 struct seq_list *elem;
497
498 elem = list_first_entry(&fs_info->tree_mod_seq_list,
499 struct seq_list, list);
500 seq = elem->seq;
501 }
502 read_unlock(&fs_info->tree_mod_log_lock);
503
504 again:
505 for (node = rb_first_cached(&head->ref_tree); node;
506 node = rb_next(node)) {
507 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
508 if (seq && ref->seq >= seq)
509 continue;
510 if (merge_ref(trans, delayed_refs, head, ref, seq))
511 goto again;
512 }
513 }
514
btrfs_check_delayed_seq(struct btrfs_fs_info * fs_info,u64 seq)515 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
516 {
517 struct seq_list *elem;
518 int ret = 0;
519
520 read_lock(&fs_info->tree_mod_log_lock);
521 if (!list_empty(&fs_info->tree_mod_seq_list)) {
522 elem = list_first_entry(&fs_info->tree_mod_seq_list,
523 struct seq_list, list);
524 if (seq >= elem->seq) {
525 btrfs_debug(fs_info,
526 "holding back delayed_ref %#x.%x, lowest is %#x.%x",
527 (u32)(seq >> 32), (u32)seq,
528 (u32)(elem->seq >> 32), (u32)elem->seq);
529 ret = 1;
530 }
531 }
532
533 read_unlock(&fs_info->tree_mod_log_lock);
534 return ret;
535 }
536
btrfs_select_ref_head(struct btrfs_delayed_ref_root * delayed_refs)537 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
538 struct btrfs_delayed_ref_root *delayed_refs)
539 {
540 struct btrfs_delayed_ref_head *head;
541
542 again:
543 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
544 true);
545 if (!head && delayed_refs->run_delayed_start != 0) {
546 delayed_refs->run_delayed_start = 0;
547 head = find_first_ref_head(delayed_refs);
548 }
549 if (!head)
550 return NULL;
551
552 while (head->processing) {
553 struct rb_node *node;
554
555 node = rb_next(&head->href_node);
556 if (!node) {
557 if (delayed_refs->run_delayed_start == 0)
558 return NULL;
559 delayed_refs->run_delayed_start = 0;
560 goto again;
561 }
562 head = rb_entry(node, struct btrfs_delayed_ref_head,
563 href_node);
564 }
565
566 head->processing = 1;
567 WARN_ON(delayed_refs->num_heads_ready == 0);
568 delayed_refs->num_heads_ready--;
569 delayed_refs->run_delayed_start = head->bytenr +
570 head->num_bytes;
571 return head;
572 }
573
btrfs_delete_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)574 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
575 struct btrfs_delayed_ref_head *head)
576 {
577 lockdep_assert_held(&delayed_refs->lock);
578 lockdep_assert_held(&head->lock);
579
580 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
581 RB_CLEAR_NODE(&head->href_node);
582 atomic_dec(&delayed_refs->num_entries);
583 delayed_refs->num_heads--;
584 if (head->processing == 0)
585 delayed_refs->num_heads_ready--;
586 }
587
588 /*
589 * Helper to insert the ref_node to the tail or merge with tail.
590 *
591 * Return 0 for insert.
592 * Return >0 for merge.
593 */
insert_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * root,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * ref)594 static int insert_delayed_ref(struct btrfs_trans_handle *trans,
595 struct btrfs_delayed_ref_root *root,
596 struct btrfs_delayed_ref_head *href,
597 struct btrfs_delayed_ref_node *ref)
598 {
599 struct btrfs_delayed_ref_node *exist;
600 int mod;
601 int ret = 0;
602
603 spin_lock(&href->lock);
604 exist = tree_insert(&href->ref_tree, ref);
605 if (!exist)
606 goto inserted;
607
608 /* Now we are sure we can merge */
609 ret = 1;
610 if (exist->action == ref->action) {
611 mod = ref->ref_mod;
612 } else {
613 /* Need to change action */
614 if (exist->ref_mod < ref->ref_mod) {
615 exist->action = ref->action;
616 mod = -exist->ref_mod;
617 exist->ref_mod = ref->ref_mod;
618 if (ref->action == BTRFS_ADD_DELAYED_REF)
619 list_add_tail(&exist->add_list,
620 &href->ref_add_list);
621 else if (ref->action == BTRFS_DROP_DELAYED_REF) {
622 ASSERT(!list_empty(&exist->add_list));
623 list_del(&exist->add_list);
624 } else {
625 ASSERT(0);
626 }
627 } else
628 mod = -ref->ref_mod;
629 }
630 exist->ref_mod += mod;
631
632 /* remove existing tail if its ref_mod is zero */
633 if (exist->ref_mod == 0)
634 drop_delayed_ref(trans, root, href, exist);
635 spin_unlock(&href->lock);
636 return ret;
637 inserted:
638 if (ref->action == BTRFS_ADD_DELAYED_REF)
639 list_add_tail(&ref->add_list, &href->ref_add_list);
640 atomic_inc(&root->num_entries);
641 spin_unlock(&href->lock);
642 return ret;
643 }
644
645 /*
646 * helper function to update the accounting in the head ref
647 * existing and update must have the same bytenr
648 */
update_existing_head_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * existing,struct btrfs_delayed_ref_head * update)649 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
650 struct btrfs_delayed_ref_head *existing,
651 struct btrfs_delayed_ref_head *update)
652 {
653 struct btrfs_delayed_ref_root *delayed_refs =
654 &trans->transaction->delayed_refs;
655 struct btrfs_fs_info *fs_info = trans->fs_info;
656 u64 flags = btrfs_ref_head_to_space_flags(existing);
657 int old_ref_mod;
658
659 BUG_ON(existing->is_data != update->is_data);
660
661 spin_lock(&existing->lock);
662 if (update->must_insert_reserved) {
663 /* if the extent was freed and then
664 * reallocated before the delayed ref
665 * entries were processed, we can end up
666 * with an existing head ref without
667 * the must_insert_reserved flag set.
668 * Set it again here
669 */
670 existing->must_insert_reserved = update->must_insert_reserved;
671
672 /*
673 * update the num_bytes so we make sure the accounting
674 * is done correctly
675 */
676 existing->num_bytes = update->num_bytes;
677
678 }
679
680 if (update->extent_op) {
681 if (!existing->extent_op) {
682 existing->extent_op = update->extent_op;
683 } else {
684 if (update->extent_op->update_key) {
685 memcpy(&existing->extent_op->key,
686 &update->extent_op->key,
687 sizeof(update->extent_op->key));
688 existing->extent_op->update_key = true;
689 }
690 if (update->extent_op->update_flags) {
691 existing->extent_op->flags_to_set |=
692 update->extent_op->flags_to_set;
693 existing->extent_op->update_flags = true;
694 }
695 btrfs_free_delayed_extent_op(update->extent_op);
696 }
697 }
698 /*
699 * update the reference mod on the head to reflect this new operation,
700 * only need the lock for this case cause we could be processing it
701 * currently, for refs we just added we know we're a-ok.
702 */
703 old_ref_mod = existing->total_ref_mod;
704 existing->ref_mod += update->ref_mod;
705 existing->total_ref_mod += update->ref_mod;
706
707 /*
708 * If we are going to from a positive ref mod to a negative or vice
709 * versa we need to make sure to adjust pending_csums accordingly.
710 */
711 if (existing->is_data) {
712 u64 csum_leaves =
713 btrfs_csum_bytes_to_leaves(fs_info,
714 existing->num_bytes);
715
716 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
717 delayed_refs->pending_csums -= existing->num_bytes;
718 btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
719 }
720 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
721 delayed_refs->pending_csums += existing->num_bytes;
722 trans->delayed_ref_updates += csum_leaves;
723 }
724 }
725
726 /*
727 * This handles the following conditions:
728 *
729 * 1. We had a ref mod of 0 or more and went negative, indicating that
730 * we may be freeing space, so add our space to the
731 * total_bytes_pinned counter.
732 * 2. We were negative and went to 0 or positive, so no longer can say
733 * that the space would be pinned, decrement our counter from the
734 * total_bytes_pinned counter.
735 * 3. We are now at 0 and have ->must_insert_reserved set, which means
736 * this was a new allocation and then we dropped it, and thus must
737 * add our space to the total_bytes_pinned counter.
738 */
739 if (existing->total_ref_mod < 0 && old_ref_mod >= 0)
740 btrfs_mod_total_bytes_pinned(fs_info, flags, existing->num_bytes);
741 else if (existing->total_ref_mod >= 0 && old_ref_mod < 0)
742 btrfs_mod_total_bytes_pinned(fs_info, flags, -existing->num_bytes);
743 else if (existing->total_ref_mod == 0 && existing->must_insert_reserved)
744 btrfs_mod_total_bytes_pinned(fs_info, flags, existing->num_bytes);
745
746 spin_unlock(&existing->lock);
747 }
748
init_delayed_ref_head(struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,u64 bytenr,u64 num_bytes,u64 ref_root,u64 reserved,int action,bool is_data,bool is_system)749 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
750 struct btrfs_qgroup_extent_record *qrecord,
751 u64 bytenr, u64 num_bytes, u64 ref_root,
752 u64 reserved, int action, bool is_data,
753 bool is_system)
754 {
755 int count_mod = 1;
756 int must_insert_reserved = 0;
757
758 /* If reserved is provided, it must be a data extent. */
759 BUG_ON(!is_data && reserved);
760
761 /*
762 * The head node stores the sum of all the mods, so dropping a ref
763 * should drop the sum in the head node by one.
764 */
765 if (action == BTRFS_UPDATE_DELAYED_HEAD)
766 count_mod = 0;
767 else if (action == BTRFS_DROP_DELAYED_REF)
768 count_mod = -1;
769
770 /*
771 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
772 * accounting when the extent is finally added, or if a later
773 * modification deletes the delayed ref without ever inserting the
774 * extent into the extent allocation tree. ref->must_insert_reserved
775 * is the flag used to record that accounting mods are required.
776 *
777 * Once we record must_insert_reserved, switch the action to
778 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
779 */
780 if (action == BTRFS_ADD_DELAYED_EXTENT)
781 must_insert_reserved = 1;
782 else
783 must_insert_reserved = 0;
784
785 refcount_set(&head_ref->refs, 1);
786 head_ref->bytenr = bytenr;
787 head_ref->num_bytes = num_bytes;
788 head_ref->ref_mod = count_mod;
789 head_ref->must_insert_reserved = must_insert_reserved;
790 head_ref->is_data = is_data;
791 head_ref->is_system = is_system;
792 head_ref->ref_tree = RB_ROOT_CACHED;
793 INIT_LIST_HEAD(&head_ref->ref_add_list);
794 RB_CLEAR_NODE(&head_ref->href_node);
795 head_ref->processing = 0;
796 head_ref->total_ref_mod = count_mod;
797 spin_lock_init(&head_ref->lock);
798 mutex_init(&head_ref->mutex);
799
800 if (qrecord) {
801 if (ref_root && reserved) {
802 qrecord->data_rsv = reserved;
803 qrecord->data_rsv_refroot = ref_root;
804 }
805 qrecord->bytenr = bytenr;
806 qrecord->num_bytes = num_bytes;
807 qrecord->old_roots = NULL;
808 }
809 }
810
811 /*
812 * helper function to actually insert a head node into the rbtree.
813 * this does all the dirty work in terms of maintaining the correct
814 * overall modification count.
815 */
816 static noinline struct btrfs_delayed_ref_head *
add_delayed_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,int action,int * qrecord_inserted_ret)817 add_delayed_ref_head(struct btrfs_trans_handle *trans,
818 struct btrfs_delayed_ref_head *head_ref,
819 struct btrfs_qgroup_extent_record *qrecord,
820 int action, int *qrecord_inserted_ret)
821 {
822 struct btrfs_delayed_ref_head *existing;
823 struct btrfs_delayed_ref_root *delayed_refs;
824 int qrecord_inserted = 0;
825
826 delayed_refs = &trans->transaction->delayed_refs;
827
828 /* Record qgroup extent info if provided */
829 if (qrecord) {
830 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
831 delayed_refs, qrecord))
832 kfree(qrecord);
833 else
834 qrecord_inserted = 1;
835 }
836
837 trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
838
839 existing = htree_insert(&delayed_refs->href_root,
840 &head_ref->href_node);
841 if (existing) {
842 update_existing_head_ref(trans, existing, head_ref);
843 /*
844 * we've updated the existing ref, free the newly
845 * allocated ref
846 */
847 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
848 head_ref = existing;
849 } else {
850 u64 flags = btrfs_ref_head_to_space_flags(head_ref);
851
852 if (head_ref->is_data && head_ref->ref_mod < 0) {
853 delayed_refs->pending_csums += head_ref->num_bytes;
854 trans->delayed_ref_updates +=
855 btrfs_csum_bytes_to_leaves(trans->fs_info,
856 head_ref->num_bytes);
857 }
858 if (head_ref->ref_mod < 0)
859 btrfs_mod_total_bytes_pinned(trans->fs_info, flags,
860 head_ref->num_bytes);
861 delayed_refs->num_heads++;
862 delayed_refs->num_heads_ready++;
863 atomic_inc(&delayed_refs->num_entries);
864 trans->delayed_ref_updates++;
865 }
866 if (qrecord_inserted_ret)
867 *qrecord_inserted_ret = qrecord_inserted;
868
869 return head_ref;
870 }
871
872 /*
873 * init_delayed_ref_common - Initialize the structure which represents a
874 * modification to a an extent.
875 *
876 * @fs_info: Internal to the mounted filesystem mount structure.
877 *
878 * @ref: The structure which is going to be initialized.
879 *
880 * @bytenr: The logical address of the extent for which a modification is
881 * going to be recorded.
882 *
883 * @num_bytes: Size of the extent whose modification is being recorded.
884 *
885 * @ref_root: The id of the root where this modification has originated, this
886 * can be either one of the well-known metadata trees or the
887 * subvolume id which references this extent.
888 *
889 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
890 * BTRFS_ADD_DELAYED_EXTENT
891 *
892 * @ref_type: Holds the type of the extent which is being recorded, can be
893 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
894 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
895 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent
896 */
init_delayed_ref_common(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * ref,u64 bytenr,u64 num_bytes,u64 ref_root,int action,u8 ref_type)897 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
898 struct btrfs_delayed_ref_node *ref,
899 u64 bytenr, u64 num_bytes, u64 ref_root,
900 int action, u8 ref_type)
901 {
902 u64 seq = 0;
903
904 if (action == BTRFS_ADD_DELAYED_EXTENT)
905 action = BTRFS_ADD_DELAYED_REF;
906
907 if (is_fstree(ref_root))
908 seq = atomic64_read(&fs_info->tree_mod_seq);
909
910 refcount_set(&ref->refs, 1);
911 ref->bytenr = bytenr;
912 ref->num_bytes = num_bytes;
913 ref->ref_mod = 1;
914 ref->action = action;
915 ref->is_head = 0;
916 ref->in_tree = 1;
917 ref->seq = seq;
918 ref->type = ref_type;
919 RB_CLEAR_NODE(&ref->ref_node);
920 INIT_LIST_HEAD(&ref->add_list);
921 }
922
923 /*
924 * add a delayed tree ref. This does all of the accounting required
925 * to make sure the delayed ref is eventually processed before this
926 * transaction commits.
927 */
btrfs_add_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,struct btrfs_delayed_extent_op * extent_op)928 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
929 struct btrfs_ref *generic_ref,
930 struct btrfs_delayed_extent_op *extent_op)
931 {
932 struct btrfs_fs_info *fs_info = trans->fs_info;
933 struct btrfs_delayed_tree_ref *ref;
934 struct btrfs_delayed_ref_head *head_ref;
935 struct btrfs_delayed_ref_root *delayed_refs;
936 struct btrfs_qgroup_extent_record *record = NULL;
937 int qrecord_inserted;
938 bool is_system;
939 int action = generic_ref->action;
940 int level = generic_ref->tree_ref.level;
941 int ret;
942 u64 bytenr = generic_ref->bytenr;
943 u64 num_bytes = generic_ref->len;
944 u64 parent = generic_ref->parent;
945 u8 ref_type;
946
947 is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
948
949 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
950 BUG_ON(extent_op && extent_op->is_data);
951 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
952 if (!ref)
953 return -ENOMEM;
954
955 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
956 if (!head_ref) {
957 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
958 return -ENOMEM;
959 }
960
961 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
962 is_fstree(generic_ref->real_root) &&
963 is_fstree(generic_ref->tree_ref.root) &&
964 !generic_ref->skip_qgroup) {
965 record = kzalloc(sizeof(*record), GFP_NOFS);
966 if (!record) {
967 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
968 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
969 return -ENOMEM;
970 }
971 }
972
973 if (parent)
974 ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
975 else
976 ref_type = BTRFS_TREE_BLOCK_REF_KEY;
977
978 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
979 generic_ref->tree_ref.root, action, ref_type);
980 ref->root = generic_ref->tree_ref.root;
981 ref->parent = parent;
982 ref->level = level;
983
984 init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
985 generic_ref->tree_ref.root, 0, action, false,
986 is_system);
987 head_ref->extent_op = extent_op;
988
989 delayed_refs = &trans->transaction->delayed_refs;
990 spin_lock(&delayed_refs->lock);
991
992 /*
993 * insert both the head node and the new ref without dropping
994 * the spin lock
995 */
996 head_ref = add_delayed_ref_head(trans, head_ref, record,
997 action, &qrecord_inserted);
998
999 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1000 spin_unlock(&delayed_refs->lock);
1001
1002 /*
1003 * Need to update the delayed_refs_rsv with any changes we may have
1004 * made.
1005 */
1006 btrfs_update_delayed_refs_rsv(trans);
1007
1008 trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
1009 action == BTRFS_ADD_DELAYED_EXTENT ?
1010 BTRFS_ADD_DELAYED_REF : action);
1011 if (ret > 0)
1012 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1013
1014 if (qrecord_inserted)
1015 btrfs_qgroup_trace_extent_post(fs_info, record);
1016
1017 return 0;
1018 }
1019
1020 /*
1021 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1022 */
btrfs_add_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,u64 reserved)1023 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1024 struct btrfs_ref *generic_ref,
1025 u64 reserved)
1026 {
1027 struct btrfs_fs_info *fs_info = trans->fs_info;
1028 struct btrfs_delayed_data_ref *ref;
1029 struct btrfs_delayed_ref_head *head_ref;
1030 struct btrfs_delayed_ref_root *delayed_refs;
1031 struct btrfs_qgroup_extent_record *record = NULL;
1032 int qrecord_inserted;
1033 int action = generic_ref->action;
1034 int ret;
1035 u64 bytenr = generic_ref->bytenr;
1036 u64 num_bytes = generic_ref->len;
1037 u64 parent = generic_ref->parent;
1038 u64 ref_root = generic_ref->data_ref.ref_root;
1039 u64 owner = generic_ref->data_ref.ino;
1040 u64 offset = generic_ref->data_ref.offset;
1041 u8 ref_type;
1042
1043 ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1044 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1045 if (!ref)
1046 return -ENOMEM;
1047
1048 if (parent)
1049 ref_type = BTRFS_SHARED_DATA_REF_KEY;
1050 else
1051 ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1052 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1053 ref_root, action, ref_type);
1054 ref->root = ref_root;
1055 ref->parent = parent;
1056 ref->objectid = owner;
1057 ref->offset = offset;
1058
1059
1060 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1061 if (!head_ref) {
1062 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1063 return -ENOMEM;
1064 }
1065
1066 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1067 is_fstree(ref_root) &&
1068 is_fstree(generic_ref->real_root) &&
1069 !generic_ref->skip_qgroup) {
1070 record = kzalloc(sizeof(*record), GFP_NOFS);
1071 if (!record) {
1072 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1073 kmem_cache_free(btrfs_delayed_ref_head_cachep,
1074 head_ref);
1075 return -ENOMEM;
1076 }
1077 }
1078
1079 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1080 reserved, action, true, false);
1081 head_ref->extent_op = NULL;
1082
1083 delayed_refs = &trans->transaction->delayed_refs;
1084 spin_lock(&delayed_refs->lock);
1085
1086 /*
1087 * insert both the head node and the new ref without dropping
1088 * the spin lock
1089 */
1090 head_ref = add_delayed_ref_head(trans, head_ref, record,
1091 action, &qrecord_inserted);
1092
1093 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1094 spin_unlock(&delayed_refs->lock);
1095
1096 /*
1097 * Need to update the delayed_refs_rsv with any changes we may have
1098 * made.
1099 */
1100 btrfs_update_delayed_refs_rsv(trans);
1101
1102 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1103 action == BTRFS_ADD_DELAYED_EXTENT ?
1104 BTRFS_ADD_DELAYED_REF : action);
1105 if (ret > 0)
1106 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1107
1108
1109 if (qrecord_inserted)
1110 return btrfs_qgroup_trace_extent_post(fs_info, record);
1111 return 0;
1112 }
1113
btrfs_add_delayed_extent_op(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,struct btrfs_delayed_extent_op * extent_op)1114 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1115 u64 bytenr, u64 num_bytes,
1116 struct btrfs_delayed_extent_op *extent_op)
1117 {
1118 struct btrfs_delayed_ref_head *head_ref;
1119 struct btrfs_delayed_ref_root *delayed_refs;
1120
1121 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1122 if (!head_ref)
1123 return -ENOMEM;
1124
1125 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1126 BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1127 false);
1128 head_ref->extent_op = extent_op;
1129
1130 delayed_refs = &trans->transaction->delayed_refs;
1131 spin_lock(&delayed_refs->lock);
1132
1133 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1134 NULL);
1135
1136 spin_unlock(&delayed_refs->lock);
1137
1138 /*
1139 * Need to update the delayed_refs_rsv with any changes we may have
1140 * made.
1141 */
1142 btrfs_update_delayed_refs_rsv(trans);
1143 return 0;
1144 }
1145
1146 /*
1147 * This does a simple search for the head node for a given extent. Returns the
1148 * head node if found, or NULL if not.
1149 */
1150 struct btrfs_delayed_ref_head *
btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,u64 bytenr)1151 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1152 {
1153 lockdep_assert_held(&delayed_refs->lock);
1154
1155 return find_ref_head(delayed_refs, bytenr, false);
1156 }
1157
btrfs_delayed_ref_exit(void)1158 void __cold btrfs_delayed_ref_exit(void)
1159 {
1160 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1161 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1162 kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1163 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1164 }
1165
btrfs_delayed_ref_init(void)1166 int __init btrfs_delayed_ref_init(void)
1167 {
1168 btrfs_delayed_ref_head_cachep = kmem_cache_create(
1169 "btrfs_delayed_ref_head",
1170 sizeof(struct btrfs_delayed_ref_head), 0,
1171 SLAB_MEM_SPREAD, NULL);
1172 if (!btrfs_delayed_ref_head_cachep)
1173 goto fail;
1174
1175 btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1176 "btrfs_delayed_tree_ref",
1177 sizeof(struct btrfs_delayed_tree_ref), 0,
1178 SLAB_MEM_SPREAD, NULL);
1179 if (!btrfs_delayed_tree_ref_cachep)
1180 goto fail;
1181
1182 btrfs_delayed_data_ref_cachep = kmem_cache_create(
1183 "btrfs_delayed_data_ref",
1184 sizeof(struct btrfs_delayed_data_ref), 0,
1185 SLAB_MEM_SPREAD, NULL);
1186 if (!btrfs_delayed_data_ref_cachep)
1187 goto fail;
1188
1189 btrfs_delayed_extent_op_cachep = kmem_cache_create(
1190 "btrfs_delayed_extent_op",
1191 sizeof(struct btrfs_delayed_extent_op), 0,
1192 SLAB_MEM_SPREAD, NULL);
1193 if (!btrfs_delayed_extent_op_cachep)
1194 goto fail;
1195
1196 return 0;
1197 fail:
1198 btrfs_delayed_ref_exit();
1199 return -ENOMEM;
1200 }
1201