• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "inode-map.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 struct btrfs_dio_data {
61 	u64 reserve;
62 	loff_t length;
63 	ssize_t submitted;
64 	struct extent_changeset *data_reserved;
65 	bool sync;
66 };
67 
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_special_inode_operations;
71 static const struct inode_operations btrfs_file_inode_operations;
72 static const struct address_space_operations btrfs_aops;
73 static const struct file_operations btrfs_dir_file_operations;
74 
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80 
81 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
82 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
84 static noinline int cow_file_range(struct btrfs_inode *inode,
85 				   struct page *locked_page,
86 				   u64 start, u64 end, int *page_started,
87 				   unsigned long *nr_written, int unlock);
88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
89 				       u64 len, u64 orig_start, u64 block_start,
90 				       u64 block_len, u64 orig_block_len,
91 				       u64 ram_bytes, int compress_type,
92 				       int type);
93 
94 static void __endio_write_update_ordered(struct btrfs_inode *inode,
95 					 const u64 offset, const u64 bytes,
96 					 const bool uptodate);
97 
98 /*
99  * Cleanup all submitted ordered extents in specified range to handle errors
100  * from the btrfs_run_delalloc_range() callback.
101  *
102  * NOTE: caller must ensure that when an error happens, it can not call
103  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105  * to be released, which we want to happen only when finishing the ordered
106  * extent (btrfs_finish_ordered_io()).
107  */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct page * locked_page,u64 offset,u64 bytes)108 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
109 						 struct page *locked_page,
110 						 u64 offset, u64 bytes)
111 {
112 	unsigned long index = offset >> PAGE_SHIFT;
113 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
114 	u64 page_start = page_offset(locked_page);
115 	u64 page_end = page_start + PAGE_SIZE - 1;
116 
117 	struct page *page;
118 
119 	while (index <= end_index) {
120 		page = find_get_page(inode->vfs_inode.i_mapping, index);
121 		index++;
122 		if (!page)
123 			continue;
124 		ClearPagePrivate2(page);
125 		put_page(page);
126 	}
127 
128 	/*
129 	 * In case this page belongs to the delalloc range being instantiated
130 	 * then skip it, since the first page of a range is going to be
131 	 * properly cleaned up by the caller of run_delalloc_range
132 	 */
133 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 		offset += PAGE_SIZE;
135 		bytes -= PAGE_SIZE;
136 	}
137 
138 	return __endio_write_update_ordered(inode, offset, bytes, false);
139 }
140 
141 static int btrfs_dirty_inode(struct inode *inode);
142 
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)143 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
144 				     struct inode *inode,  struct inode *dir,
145 				     const struct qstr *qstr)
146 {
147 	int err;
148 
149 	err = btrfs_init_acl(trans, inode, dir);
150 	if (!err)
151 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
152 	return err;
153 }
154 
155 /*
156  * this does all the hard work for inserting an inline extent into
157  * the btree.  The caller should have done a btrfs_drop_extents so that
158  * no overlapping inline items exist in the btree
159  */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)160 static int insert_inline_extent(struct btrfs_trans_handle *trans,
161 				struct btrfs_path *path, int extent_inserted,
162 				struct btrfs_root *root, struct inode *inode,
163 				u64 start, size_t size, size_t compressed_size,
164 				int compress_type,
165 				struct page **compressed_pages)
166 {
167 	struct extent_buffer *leaf;
168 	struct page *page = NULL;
169 	char *kaddr;
170 	unsigned long ptr;
171 	struct btrfs_file_extent_item *ei;
172 	int ret;
173 	size_t cur_size = size;
174 	unsigned long offset;
175 
176 	ASSERT((compressed_size > 0 && compressed_pages) ||
177 	       (compressed_size == 0 && !compressed_pages));
178 
179 	if (compressed_size && compressed_pages)
180 		cur_size = compressed_size;
181 
182 	inode_add_bytes(inode, size);
183 
184 	if (!extent_inserted) {
185 		struct btrfs_key key;
186 		size_t datasize;
187 
188 		key.objectid = btrfs_ino(BTRFS_I(inode));
189 		key.offset = start;
190 		key.type = BTRFS_EXTENT_DATA_KEY;
191 
192 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
193 		path->leave_spinning = 1;
194 		ret = btrfs_insert_empty_item(trans, root, path, &key,
195 					      datasize);
196 		if (ret)
197 			goto fail;
198 	}
199 	leaf = path->nodes[0];
200 	ei = btrfs_item_ptr(leaf, path->slots[0],
201 			    struct btrfs_file_extent_item);
202 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
203 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
204 	btrfs_set_file_extent_encryption(leaf, ei, 0);
205 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
206 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
207 	ptr = btrfs_file_extent_inline_start(ei);
208 
209 	if (compress_type != BTRFS_COMPRESS_NONE) {
210 		struct page *cpage;
211 		int i = 0;
212 		while (compressed_size > 0) {
213 			cpage = compressed_pages[i];
214 			cur_size = min_t(unsigned long, compressed_size,
215 				       PAGE_SIZE);
216 
217 			kaddr = kmap_atomic(cpage);
218 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
219 			kunmap_atomic(kaddr);
220 
221 			i++;
222 			ptr += cur_size;
223 			compressed_size -= cur_size;
224 		}
225 		btrfs_set_file_extent_compression(leaf, ei,
226 						  compress_type);
227 	} else {
228 		page = find_get_page(inode->i_mapping,
229 				     start >> PAGE_SHIFT);
230 		btrfs_set_file_extent_compression(leaf, ei, 0);
231 		kaddr = kmap_atomic(page);
232 		offset = offset_in_page(start);
233 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
234 		kunmap_atomic(kaddr);
235 		put_page(page);
236 	}
237 	btrfs_mark_buffer_dirty(leaf);
238 	btrfs_release_path(path);
239 
240 	/*
241 	 * We align size to sectorsize for inline extents just for simplicity
242 	 * sake.
243 	 */
244 	size = ALIGN(size, root->fs_info->sectorsize);
245 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
246 	if (ret)
247 		goto fail;
248 
249 	/*
250 	 * we're an inline extent, so nobody can
251 	 * extend the file past i_size without locking
252 	 * a page we already have locked.
253 	 *
254 	 * We must do any isize and inode updates
255 	 * before we unlock the pages.  Otherwise we
256 	 * could end up racing with unlink.
257 	 */
258 	BTRFS_I(inode)->disk_i_size = inode->i_size;
259 	ret = btrfs_update_inode(trans, root, inode);
260 
261 fail:
262 	return ret;
263 }
264 
265 
266 /*
267  * conditionally insert an inline extent into the file.  This
268  * does the checks required to make sure the data is small enough
269  * to fit as an inline extent.
270  */
cow_file_range_inline(struct btrfs_inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)271 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
272 					  u64 end, size_t compressed_size,
273 					  int compress_type,
274 					  struct page **compressed_pages)
275 {
276 	struct btrfs_root *root = inode->root;
277 	struct btrfs_fs_info *fs_info = root->fs_info;
278 	struct btrfs_trans_handle *trans;
279 	u64 isize = i_size_read(&inode->vfs_inode);
280 	u64 actual_end = min(end + 1, isize);
281 	u64 inline_len = actual_end - start;
282 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
283 	u64 data_len = inline_len;
284 	int ret;
285 	struct btrfs_path *path;
286 	int extent_inserted = 0;
287 	u32 extent_item_size;
288 
289 	if (compressed_size)
290 		data_len = compressed_size;
291 
292 	if (start > 0 ||
293 	    actual_end > fs_info->sectorsize ||
294 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
295 	    (!compressed_size &&
296 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
297 	    end + 1 < isize ||
298 	    data_len > fs_info->max_inline) {
299 		return 1;
300 	}
301 
302 	path = btrfs_alloc_path();
303 	if (!path)
304 		return -ENOMEM;
305 
306 	trans = btrfs_join_transaction(root);
307 	if (IS_ERR(trans)) {
308 		btrfs_free_path(path);
309 		return PTR_ERR(trans);
310 	}
311 	trans->block_rsv = &inode->block_rsv;
312 
313 	if (compressed_size && compressed_pages)
314 		extent_item_size = btrfs_file_extent_calc_inline_size(
315 		   compressed_size);
316 	else
317 		extent_item_size = btrfs_file_extent_calc_inline_size(
318 		    inline_len);
319 
320 	ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
321 				   NULL, 1, 1, extent_item_size,
322 				   &extent_inserted);
323 	if (ret) {
324 		btrfs_abort_transaction(trans, ret);
325 		goto out;
326 	}
327 
328 	if (isize > actual_end)
329 		inline_len = min_t(u64, isize, actual_end);
330 	ret = insert_inline_extent(trans, path, extent_inserted,
331 				   root, &inode->vfs_inode, start,
332 				   inline_len, compressed_size,
333 				   compress_type, compressed_pages);
334 	if (ret && ret != -ENOSPC) {
335 		btrfs_abort_transaction(trans, ret);
336 		goto out;
337 	} else if (ret == -ENOSPC) {
338 		ret = 1;
339 		goto out;
340 	}
341 
342 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
343 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
344 out:
345 	/*
346 	 * Don't forget to free the reserved space, as for inlined extent
347 	 * it won't count as data extent, free them directly here.
348 	 * And at reserve time, it's always aligned to page size, so
349 	 * just free one page here.
350 	 */
351 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
352 	btrfs_free_path(path);
353 	btrfs_end_transaction(trans);
354 	return ret;
355 }
356 
357 struct async_extent {
358 	u64 start;
359 	u64 ram_size;
360 	u64 compressed_size;
361 	struct page **pages;
362 	unsigned long nr_pages;
363 	int compress_type;
364 	struct list_head list;
365 };
366 
367 struct async_chunk {
368 	struct inode *inode;
369 	struct page *locked_page;
370 	u64 start;
371 	u64 end;
372 	unsigned int write_flags;
373 	struct list_head extents;
374 	struct cgroup_subsys_state *blkcg_css;
375 	struct btrfs_work work;
376 	atomic_t *pending;
377 };
378 
379 struct async_cow {
380 	/* Number of chunks in flight; must be first in the structure */
381 	atomic_t num_chunks;
382 	struct async_chunk chunks[];
383 };
384 
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)385 static noinline int add_async_extent(struct async_chunk *cow,
386 				     u64 start, u64 ram_size,
387 				     u64 compressed_size,
388 				     struct page **pages,
389 				     unsigned long nr_pages,
390 				     int compress_type)
391 {
392 	struct async_extent *async_extent;
393 
394 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
395 	BUG_ON(!async_extent); /* -ENOMEM */
396 	async_extent->start = start;
397 	async_extent->ram_size = ram_size;
398 	async_extent->compressed_size = compressed_size;
399 	async_extent->pages = pages;
400 	async_extent->nr_pages = nr_pages;
401 	async_extent->compress_type = compress_type;
402 	list_add_tail(&async_extent->list, &cow->extents);
403 	return 0;
404 }
405 
406 /*
407  * Check if the inode has flags compatible with compression
408  */
inode_can_compress(struct btrfs_inode * inode)409 static inline bool inode_can_compress(struct btrfs_inode *inode)
410 {
411 	if (inode->flags & BTRFS_INODE_NODATACOW ||
412 	    inode->flags & BTRFS_INODE_NODATASUM)
413 		return false;
414 	return true;
415 }
416 
417 /*
418  * Check if the inode needs to be submitted to compression, based on mount
419  * options, defragmentation, properties or heuristics.
420  */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)421 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
422 				      u64 end)
423 {
424 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
425 
426 	if (!inode_can_compress(inode)) {
427 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
428 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
429 			btrfs_ino(inode));
430 		return 0;
431 	}
432 	/* force compress */
433 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
434 		return 1;
435 	/* defrag ioctl */
436 	if (inode->defrag_compress)
437 		return 1;
438 	/* bad compression ratios */
439 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
440 		return 0;
441 	if (btrfs_test_opt(fs_info, COMPRESS) ||
442 	    inode->flags & BTRFS_INODE_COMPRESS ||
443 	    inode->prop_compress)
444 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
445 	return 0;
446 }
447 
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)448 static inline void inode_should_defrag(struct btrfs_inode *inode,
449 		u64 start, u64 end, u64 num_bytes, u64 small_write)
450 {
451 	/* If this is a small write inside eof, kick off a defrag */
452 	if (num_bytes < small_write &&
453 	    (start > 0 || end + 1 < inode->disk_i_size))
454 		btrfs_add_inode_defrag(NULL, inode);
455 }
456 
457 /*
458  * we create compressed extents in two phases.  The first
459  * phase compresses a range of pages that have already been
460  * locked (both pages and state bits are locked).
461  *
462  * This is done inside an ordered work queue, and the compression
463  * is spread across many cpus.  The actual IO submission is step
464  * two, and the ordered work queue takes care of making sure that
465  * happens in the same order things were put onto the queue by
466  * writepages and friends.
467  *
468  * If this code finds it can't get good compression, it puts an
469  * entry onto the work queue to write the uncompressed bytes.  This
470  * makes sure that both compressed inodes and uncompressed inodes
471  * are written in the same order that the flusher thread sent them
472  * down.
473  */
compress_file_range(struct async_chunk * async_chunk)474 static noinline int compress_file_range(struct async_chunk *async_chunk)
475 {
476 	struct inode *inode = async_chunk->inode;
477 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
478 	u64 blocksize = fs_info->sectorsize;
479 	u64 start = async_chunk->start;
480 	u64 end = async_chunk->end;
481 	u64 actual_end;
482 	u64 i_size;
483 	int ret = 0;
484 	struct page **pages = NULL;
485 	unsigned long nr_pages;
486 	unsigned long total_compressed = 0;
487 	unsigned long total_in = 0;
488 	int i;
489 	int will_compress;
490 	int compress_type = fs_info->compress_type;
491 	int compressed_extents = 0;
492 	int redirty = 0;
493 
494 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
495 			SZ_16K);
496 
497 	/*
498 	 * We need to save i_size before now because it could change in between
499 	 * us evaluating the size and assigning it.  This is because we lock and
500 	 * unlock the page in truncate and fallocate, and then modify the i_size
501 	 * later on.
502 	 *
503 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
504 	 * does that for us.
505 	 */
506 	barrier();
507 	i_size = i_size_read(inode);
508 	barrier();
509 	actual_end = min_t(u64, i_size, end + 1);
510 again:
511 	will_compress = 0;
512 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
513 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
514 	nr_pages = min_t(unsigned long, nr_pages,
515 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
516 
517 	/*
518 	 * we don't want to send crud past the end of i_size through
519 	 * compression, that's just a waste of CPU time.  So, if the
520 	 * end of the file is before the start of our current
521 	 * requested range of bytes, we bail out to the uncompressed
522 	 * cleanup code that can deal with all of this.
523 	 *
524 	 * It isn't really the fastest way to fix things, but this is a
525 	 * very uncommon corner.
526 	 */
527 	if (actual_end <= start)
528 		goto cleanup_and_bail_uncompressed;
529 
530 	total_compressed = actual_end - start;
531 
532 	/*
533 	 * skip compression for a small file range(<=blocksize) that
534 	 * isn't an inline extent, since it doesn't save disk space at all.
535 	 */
536 	if (total_compressed <= blocksize &&
537 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
538 		goto cleanup_and_bail_uncompressed;
539 
540 	total_compressed = min_t(unsigned long, total_compressed,
541 			BTRFS_MAX_UNCOMPRESSED);
542 	total_in = 0;
543 	ret = 0;
544 
545 	/*
546 	 * we do compression for mount -o compress and when the
547 	 * inode has not been flagged as nocompress.  This flag can
548 	 * change at any time if we discover bad compression ratios.
549 	 */
550 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
551 		WARN_ON(pages);
552 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
553 		if (!pages) {
554 			/* just bail out to the uncompressed code */
555 			nr_pages = 0;
556 			goto cont;
557 		}
558 
559 		if (BTRFS_I(inode)->defrag_compress)
560 			compress_type = BTRFS_I(inode)->defrag_compress;
561 		else if (BTRFS_I(inode)->prop_compress)
562 			compress_type = BTRFS_I(inode)->prop_compress;
563 
564 		/*
565 		 * we need to call clear_page_dirty_for_io on each
566 		 * page in the range.  Otherwise applications with the file
567 		 * mmap'd can wander in and change the page contents while
568 		 * we are compressing them.
569 		 *
570 		 * If the compression fails for any reason, we set the pages
571 		 * dirty again later on.
572 		 *
573 		 * Note that the remaining part is redirtied, the start pointer
574 		 * has moved, the end is the original one.
575 		 */
576 		if (!redirty) {
577 			extent_range_clear_dirty_for_io(inode, start, end);
578 			redirty = 1;
579 		}
580 
581 		/* Compression level is applied here and only here */
582 		ret = btrfs_compress_pages(
583 			compress_type | (fs_info->compress_level << 4),
584 					   inode->i_mapping, start,
585 					   pages,
586 					   &nr_pages,
587 					   &total_in,
588 					   &total_compressed);
589 
590 		if (!ret) {
591 			unsigned long offset = offset_in_page(total_compressed);
592 			struct page *page = pages[nr_pages - 1];
593 			char *kaddr;
594 
595 			/* zero the tail end of the last page, we might be
596 			 * sending it down to disk
597 			 */
598 			if (offset) {
599 				kaddr = kmap_atomic(page);
600 				memset(kaddr + offset, 0,
601 				       PAGE_SIZE - offset);
602 				kunmap_atomic(kaddr);
603 			}
604 			will_compress = 1;
605 		}
606 	}
607 cont:
608 	if (start == 0) {
609 		/* lets try to make an inline extent */
610 		if (ret || total_in < actual_end) {
611 			/* we didn't compress the entire range, try
612 			 * to make an uncompressed inline extent.
613 			 */
614 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
615 						    0, BTRFS_COMPRESS_NONE,
616 						    NULL);
617 		} else {
618 			/* try making a compressed inline extent */
619 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
620 						    total_compressed,
621 						    compress_type, pages);
622 		}
623 		if (ret <= 0) {
624 			unsigned long clear_flags = EXTENT_DELALLOC |
625 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
626 				EXTENT_DO_ACCOUNTING;
627 			unsigned long page_error_op;
628 
629 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
630 
631 			/*
632 			 * inline extent creation worked or returned error,
633 			 * we don't need to create any more async work items.
634 			 * Unlock and free up our temp pages.
635 			 *
636 			 * We use DO_ACCOUNTING here because we need the
637 			 * delalloc_release_metadata to be done _after_ we drop
638 			 * our outstanding extent for clearing delalloc for this
639 			 * range.
640 			 */
641 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
642 						     NULL,
643 						     clear_flags,
644 						     PAGE_UNLOCK |
645 						     PAGE_CLEAR_DIRTY |
646 						     PAGE_SET_WRITEBACK |
647 						     page_error_op |
648 						     PAGE_END_WRITEBACK);
649 
650 			/*
651 			 * Ensure we only free the compressed pages if we have
652 			 * them allocated, as we can still reach here with
653 			 * inode_need_compress() == false.
654 			 */
655 			if (pages) {
656 				for (i = 0; i < nr_pages; i++) {
657 					WARN_ON(pages[i]->mapping);
658 					put_page(pages[i]);
659 				}
660 				kfree(pages);
661 			}
662 			return 0;
663 		}
664 	}
665 
666 	if (will_compress) {
667 		/*
668 		 * we aren't doing an inline extent round the compressed size
669 		 * up to a block size boundary so the allocator does sane
670 		 * things
671 		 */
672 		total_compressed = ALIGN(total_compressed, blocksize);
673 
674 		/*
675 		 * one last check to make sure the compression is really a
676 		 * win, compare the page count read with the blocks on disk,
677 		 * compression must free at least one sector size
678 		 */
679 		total_in = ALIGN(total_in, PAGE_SIZE);
680 		if (total_compressed + blocksize <= total_in) {
681 			compressed_extents++;
682 
683 			/*
684 			 * The async work queues will take care of doing actual
685 			 * allocation on disk for these compressed pages, and
686 			 * will submit them to the elevator.
687 			 */
688 			add_async_extent(async_chunk, start, total_in,
689 					total_compressed, pages, nr_pages,
690 					compress_type);
691 
692 			if (start + total_in < end) {
693 				start += total_in;
694 				pages = NULL;
695 				cond_resched();
696 				goto again;
697 			}
698 			return compressed_extents;
699 		}
700 	}
701 	if (pages) {
702 		/*
703 		 * the compression code ran but failed to make things smaller,
704 		 * free any pages it allocated and our page pointer array
705 		 */
706 		for (i = 0; i < nr_pages; i++) {
707 			WARN_ON(pages[i]->mapping);
708 			put_page(pages[i]);
709 		}
710 		kfree(pages);
711 		pages = NULL;
712 		total_compressed = 0;
713 		nr_pages = 0;
714 
715 		/* flag the file so we don't compress in the future */
716 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
717 		    !(BTRFS_I(inode)->prop_compress)) {
718 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
719 		}
720 	}
721 cleanup_and_bail_uncompressed:
722 	/*
723 	 * No compression, but we still need to write the pages in the file
724 	 * we've been given so far.  redirty the locked page if it corresponds
725 	 * to our extent and set things up for the async work queue to run
726 	 * cow_file_range to do the normal delalloc dance.
727 	 */
728 	if (async_chunk->locked_page &&
729 	    (page_offset(async_chunk->locked_page) >= start &&
730 	     page_offset(async_chunk->locked_page)) <= end) {
731 		__set_page_dirty_nobuffers(async_chunk->locked_page);
732 		/* unlocked later on in the async handlers */
733 	}
734 
735 	if (redirty)
736 		extent_range_redirty_for_io(inode, start, end);
737 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
738 			 BTRFS_COMPRESS_NONE);
739 	compressed_extents++;
740 
741 	return compressed_extents;
742 }
743 
free_async_extent_pages(struct async_extent * async_extent)744 static void free_async_extent_pages(struct async_extent *async_extent)
745 {
746 	int i;
747 
748 	if (!async_extent->pages)
749 		return;
750 
751 	for (i = 0; i < async_extent->nr_pages; i++) {
752 		WARN_ON(async_extent->pages[i]->mapping);
753 		put_page(async_extent->pages[i]);
754 	}
755 	kfree(async_extent->pages);
756 	async_extent->nr_pages = 0;
757 	async_extent->pages = NULL;
758 }
759 
760 /*
761  * phase two of compressed writeback.  This is the ordered portion
762  * of the code, which only gets called in the order the work was
763  * queued.  We walk all the async extents created by compress_file_range
764  * and send them down to the disk.
765  */
submit_compressed_extents(struct async_chunk * async_chunk)766 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
767 {
768 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
769 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
770 	struct async_extent *async_extent;
771 	u64 alloc_hint = 0;
772 	struct btrfs_key ins;
773 	struct extent_map *em;
774 	struct btrfs_root *root = inode->root;
775 	struct extent_io_tree *io_tree = &inode->io_tree;
776 	int ret = 0;
777 
778 again:
779 	while (!list_empty(&async_chunk->extents)) {
780 		async_extent = list_entry(async_chunk->extents.next,
781 					  struct async_extent, list);
782 		list_del(&async_extent->list);
783 
784 retry:
785 		lock_extent(io_tree, async_extent->start,
786 			    async_extent->start + async_extent->ram_size - 1);
787 		/* did the compression code fall back to uncompressed IO? */
788 		if (!async_extent->pages) {
789 			int page_started = 0;
790 			unsigned long nr_written = 0;
791 
792 			/* allocate blocks */
793 			ret = cow_file_range(inode, async_chunk->locked_page,
794 					     async_extent->start,
795 					     async_extent->start +
796 					     async_extent->ram_size - 1,
797 					     &page_started, &nr_written, 0);
798 
799 			/* JDM XXX */
800 
801 			/*
802 			 * if page_started, cow_file_range inserted an
803 			 * inline extent and took care of all the unlocking
804 			 * and IO for us.  Otherwise, we need to submit
805 			 * all those pages down to the drive.
806 			 */
807 			if (!page_started && !ret)
808 				extent_write_locked_range(&inode->vfs_inode,
809 						  async_extent->start,
810 						  async_extent->start +
811 						  async_extent->ram_size - 1,
812 						  WB_SYNC_ALL);
813 			else if (ret && async_chunk->locked_page)
814 				unlock_page(async_chunk->locked_page);
815 			kfree(async_extent);
816 			cond_resched();
817 			continue;
818 		}
819 
820 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
821 					   async_extent->compressed_size,
822 					   async_extent->compressed_size,
823 					   0, alloc_hint, &ins, 1, 1);
824 		if (ret) {
825 			free_async_extent_pages(async_extent);
826 
827 			if (ret == -ENOSPC) {
828 				unlock_extent(io_tree, async_extent->start,
829 					      async_extent->start +
830 					      async_extent->ram_size - 1);
831 
832 				/*
833 				 * we need to redirty the pages if we decide to
834 				 * fallback to uncompressed IO, otherwise we
835 				 * will not submit these pages down to lower
836 				 * layers.
837 				 */
838 				extent_range_redirty_for_io(&inode->vfs_inode,
839 						async_extent->start,
840 						async_extent->start +
841 						async_extent->ram_size - 1);
842 
843 				goto retry;
844 			}
845 			goto out_free;
846 		}
847 		/*
848 		 * here we're doing allocation and writeback of the
849 		 * compressed pages
850 		 */
851 		em = create_io_em(inode, async_extent->start,
852 				  async_extent->ram_size, /* len */
853 				  async_extent->start, /* orig_start */
854 				  ins.objectid, /* block_start */
855 				  ins.offset, /* block_len */
856 				  ins.offset, /* orig_block_len */
857 				  async_extent->ram_size, /* ram_bytes */
858 				  async_extent->compress_type,
859 				  BTRFS_ORDERED_COMPRESSED);
860 		if (IS_ERR(em))
861 			/* ret value is not necessary due to void function */
862 			goto out_free_reserve;
863 		free_extent_map(em);
864 
865 		ret = btrfs_add_ordered_extent_compress(inode,
866 						async_extent->start,
867 						ins.objectid,
868 						async_extent->ram_size,
869 						ins.offset,
870 						BTRFS_ORDERED_COMPRESSED,
871 						async_extent->compress_type);
872 		if (ret) {
873 			btrfs_drop_extent_cache(inode, async_extent->start,
874 						async_extent->start +
875 						async_extent->ram_size - 1, 0);
876 			goto out_free_reserve;
877 		}
878 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
879 
880 		/*
881 		 * clear dirty, set writeback and unlock the pages.
882 		 */
883 		extent_clear_unlock_delalloc(inode, async_extent->start,
884 				async_extent->start +
885 				async_extent->ram_size - 1,
886 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
887 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
888 				PAGE_SET_WRITEBACK);
889 		if (btrfs_submit_compressed_write(inode, async_extent->start,
890 				    async_extent->ram_size,
891 				    ins.objectid,
892 				    ins.offset, async_extent->pages,
893 				    async_extent->nr_pages,
894 				    async_chunk->write_flags,
895 				    async_chunk->blkcg_css)) {
896 			struct page *p = async_extent->pages[0];
897 			const u64 start = async_extent->start;
898 			const u64 end = start + async_extent->ram_size - 1;
899 
900 			p->mapping = inode->vfs_inode.i_mapping;
901 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
902 
903 			p->mapping = NULL;
904 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
905 						     PAGE_END_WRITEBACK |
906 						     PAGE_SET_ERROR);
907 			free_async_extent_pages(async_extent);
908 		}
909 		alloc_hint = ins.objectid + ins.offset;
910 		kfree(async_extent);
911 		cond_resched();
912 	}
913 	return;
914 out_free_reserve:
915 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
916 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
917 out_free:
918 	extent_clear_unlock_delalloc(inode, async_extent->start,
919 				     async_extent->start +
920 				     async_extent->ram_size - 1,
921 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
922 				     EXTENT_DELALLOC_NEW |
923 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
924 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
925 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
926 				     PAGE_SET_ERROR);
927 	free_async_extent_pages(async_extent);
928 	kfree(async_extent);
929 	goto again;
930 }
931 
get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)932 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
933 				      u64 num_bytes)
934 {
935 	struct extent_map_tree *em_tree = &inode->extent_tree;
936 	struct extent_map *em;
937 	u64 alloc_hint = 0;
938 
939 	read_lock(&em_tree->lock);
940 	em = search_extent_mapping(em_tree, start, num_bytes);
941 	if (em) {
942 		/*
943 		 * if block start isn't an actual block number then find the
944 		 * first block in this inode and use that as a hint.  If that
945 		 * block is also bogus then just don't worry about it.
946 		 */
947 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
948 			free_extent_map(em);
949 			em = search_extent_mapping(em_tree, 0, 0);
950 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
951 				alloc_hint = em->block_start;
952 			if (em)
953 				free_extent_map(em);
954 		} else {
955 			alloc_hint = em->block_start;
956 			free_extent_map(em);
957 		}
958 	}
959 	read_unlock(&em_tree->lock);
960 
961 	return alloc_hint;
962 }
963 
964 /*
965  * when extent_io.c finds a delayed allocation range in the file,
966  * the call backs end up in this code.  The basic idea is to
967  * allocate extents on disk for the range, and create ordered data structs
968  * in ram to track those extents.
969  *
970  * locked_page is the page that writepage had locked already.  We use
971  * it to make sure we don't do extra locks or unlocks.
972  *
973  * *page_started is set to one if we unlock locked_page and do everything
974  * required to start IO on it.  It may be clean and already done with
975  * IO when we return.
976  */
cow_file_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)977 static noinline int cow_file_range(struct btrfs_inode *inode,
978 				   struct page *locked_page,
979 				   u64 start, u64 end, int *page_started,
980 				   unsigned long *nr_written, int unlock)
981 {
982 	struct btrfs_root *root = inode->root;
983 	struct btrfs_fs_info *fs_info = root->fs_info;
984 	u64 alloc_hint = 0;
985 	u64 num_bytes;
986 	unsigned long ram_size;
987 	u64 cur_alloc_size = 0;
988 	u64 min_alloc_size;
989 	u64 blocksize = fs_info->sectorsize;
990 	struct btrfs_key ins;
991 	struct extent_map *em;
992 	unsigned clear_bits;
993 	unsigned long page_ops;
994 	bool extent_reserved = false;
995 	int ret = 0;
996 
997 	if (btrfs_is_free_space_inode(inode)) {
998 		ret = -EINVAL;
999 		goto out_unlock;
1000 	}
1001 
1002 	num_bytes = ALIGN(end - start + 1, blocksize);
1003 	num_bytes = max(blocksize,  num_bytes);
1004 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1005 
1006 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1007 
1008 	if (start == 0) {
1009 		/* lets try to make an inline extent */
1010 		ret = cow_file_range_inline(inode, start, end, 0,
1011 					    BTRFS_COMPRESS_NONE, NULL);
1012 		if (ret == 0) {
1013 			/*
1014 			 * We use DO_ACCOUNTING here because we need the
1015 			 * delalloc_release_metadata to be run _after_ we drop
1016 			 * our outstanding extent for clearing delalloc for this
1017 			 * range.
1018 			 */
1019 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1020 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1021 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1022 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1023 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1024 				     PAGE_END_WRITEBACK);
1025 			*nr_written = *nr_written +
1026 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1027 			*page_started = 1;
1028 			goto out;
1029 		} else if (ret < 0) {
1030 			goto out_unlock;
1031 		}
1032 	}
1033 
1034 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1035 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1036 
1037 	/*
1038 	 * Relocation relies on the relocated extents to have exactly the same
1039 	 * size as the original extents. Normally writeback for relocation data
1040 	 * extents follows a NOCOW path because relocation preallocates the
1041 	 * extents. However, due to an operation such as scrub turning a block
1042 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1043 	 * an extent allocated during COW has exactly the requested size and can
1044 	 * not be split into smaller extents, otherwise relocation breaks and
1045 	 * fails during the stage where it updates the bytenr of file extent
1046 	 * items.
1047 	 */
1048 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1049 		min_alloc_size = num_bytes;
1050 	else
1051 		min_alloc_size = fs_info->sectorsize;
1052 
1053 	while (num_bytes > 0) {
1054 		cur_alloc_size = num_bytes;
1055 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1056 					   min_alloc_size, 0, alloc_hint,
1057 					   &ins, 1, 1);
1058 		if (ret < 0)
1059 			goto out_unlock;
1060 		cur_alloc_size = ins.offset;
1061 		extent_reserved = true;
1062 
1063 		ram_size = ins.offset;
1064 		em = create_io_em(inode, start, ins.offset, /* len */
1065 				  start, /* orig_start */
1066 				  ins.objectid, /* block_start */
1067 				  ins.offset, /* block_len */
1068 				  ins.offset, /* orig_block_len */
1069 				  ram_size, /* ram_bytes */
1070 				  BTRFS_COMPRESS_NONE, /* compress_type */
1071 				  BTRFS_ORDERED_REGULAR /* type */);
1072 		if (IS_ERR(em)) {
1073 			ret = PTR_ERR(em);
1074 			goto out_reserve;
1075 		}
1076 		free_extent_map(em);
1077 
1078 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1079 					       ram_size, cur_alloc_size, 0);
1080 		if (ret)
1081 			goto out_drop_extent_cache;
1082 
1083 		if (root->root_key.objectid ==
1084 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1085 			ret = btrfs_reloc_clone_csums(inode, start,
1086 						      cur_alloc_size);
1087 			/*
1088 			 * Only drop cache here, and process as normal.
1089 			 *
1090 			 * We must not allow extent_clear_unlock_delalloc()
1091 			 * at out_unlock label to free meta of this ordered
1092 			 * extent, as its meta should be freed by
1093 			 * btrfs_finish_ordered_io().
1094 			 *
1095 			 * So we must continue until @start is increased to
1096 			 * skip current ordered extent.
1097 			 */
1098 			if (ret)
1099 				btrfs_drop_extent_cache(inode, start,
1100 						start + ram_size - 1, 0);
1101 		}
1102 
1103 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1104 
1105 		/* we're not doing compressed IO, don't unlock the first
1106 		 * page (which the caller expects to stay locked), don't
1107 		 * clear any dirty bits and don't set any writeback bits
1108 		 *
1109 		 * Do set the Private2 bit so we know this page was properly
1110 		 * setup for writepage
1111 		 */
1112 		page_ops = unlock ? PAGE_UNLOCK : 0;
1113 		page_ops |= PAGE_SET_PRIVATE2;
1114 
1115 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1116 					     locked_page,
1117 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1118 					     page_ops);
1119 		if (num_bytes < cur_alloc_size)
1120 			num_bytes = 0;
1121 		else
1122 			num_bytes -= cur_alloc_size;
1123 		alloc_hint = ins.objectid + ins.offset;
1124 		start += cur_alloc_size;
1125 		extent_reserved = false;
1126 
1127 		/*
1128 		 * btrfs_reloc_clone_csums() error, since start is increased
1129 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1130 		 * free metadata of current ordered extent, we're OK to exit.
1131 		 */
1132 		if (ret)
1133 			goto out_unlock;
1134 	}
1135 out:
1136 	return ret;
1137 
1138 out_drop_extent_cache:
1139 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1140 out_reserve:
1141 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1142 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1143 out_unlock:
1144 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1145 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1146 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1147 		PAGE_END_WRITEBACK;
1148 	/*
1149 	 * If we reserved an extent for our delalloc range (or a subrange) and
1150 	 * failed to create the respective ordered extent, then it means that
1151 	 * when we reserved the extent we decremented the extent's size from
1152 	 * the data space_info's bytes_may_use counter and incremented the
1153 	 * space_info's bytes_reserved counter by the same amount. We must make
1154 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1155 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1156 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1157 	 */
1158 	if (extent_reserved) {
1159 		extent_clear_unlock_delalloc(inode, start,
1160 					     start + cur_alloc_size - 1,
1161 					     locked_page,
1162 					     clear_bits,
1163 					     page_ops);
1164 		start += cur_alloc_size;
1165 		if (start >= end)
1166 			goto out;
1167 	}
1168 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1169 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1170 				     page_ops);
1171 	goto out;
1172 }
1173 
1174 /*
1175  * work queue call back to started compression on a file and pages
1176  */
async_cow_start(struct btrfs_work * work)1177 static noinline void async_cow_start(struct btrfs_work *work)
1178 {
1179 	struct async_chunk *async_chunk;
1180 	int compressed_extents;
1181 
1182 	async_chunk = container_of(work, struct async_chunk, work);
1183 
1184 	compressed_extents = compress_file_range(async_chunk);
1185 	if (compressed_extents == 0) {
1186 		btrfs_add_delayed_iput(async_chunk->inode);
1187 		async_chunk->inode = NULL;
1188 	}
1189 }
1190 
1191 /*
1192  * work queue call back to submit previously compressed pages
1193  */
async_cow_submit(struct btrfs_work * work)1194 static noinline void async_cow_submit(struct btrfs_work *work)
1195 {
1196 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1197 						     work);
1198 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1199 	unsigned long nr_pages;
1200 
1201 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1202 		PAGE_SHIFT;
1203 
1204 	/*
1205 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1206 	 * in which case we don't have anything to submit, yet we need to
1207 	 * always adjust ->async_delalloc_pages as its paired with the init
1208 	 * happening in cow_file_range_async
1209 	 */
1210 	if (async_chunk->inode)
1211 		submit_compressed_extents(async_chunk);
1212 
1213 	/* atomic_sub_return implies a barrier */
1214 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1215 	    5 * SZ_1M)
1216 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1217 }
1218 
async_cow_free(struct btrfs_work * work)1219 static noinline void async_cow_free(struct btrfs_work *work)
1220 {
1221 	struct async_chunk *async_chunk;
1222 
1223 	async_chunk = container_of(work, struct async_chunk, work);
1224 	if (async_chunk->inode)
1225 		btrfs_add_delayed_iput(async_chunk->inode);
1226 	if (async_chunk->blkcg_css)
1227 		css_put(async_chunk->blkcg_css);
1228 	/*
1229 	 * Since the pointer to 'pending' is at the beginning of the array of
1230 	 * async_chunk's, freeing it ensures the whole array has been freed.
1231 	 */
1232 	if (atomic_dec_and_test(async_chunk->pending))
1233 		kvfree(async_chunk->pending);
1234 }
1235 
cow_file_range_async(struct btrfs_inode * inode,struct writeback_control * wbc,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1236 static int cow_file_range_async(struct btrfs_inode *inode,
1237 				struct writeback_control *wbc,
1238 				struct page *locked_page,
1239 				u64 start, u64 end, int *page_started,
1240 				unsigned long *nr_written)
1241 {
1242 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1243 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1244 	struct async_cow *ctx;
1245 	struct async_chunk *async_chunk;
1246 	unsigned long nr_pages;
1247 	u64 cur_end;
1248 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1249 	int i;
1250 	bool should_compress;
1251 	unsigned nofs_flag;
1252 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1253 
1254 	unlock_extent(&inode->io_tree, start, end);
1255 
1256 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1257 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1258 		num_chunks = 1;
1259 		should_compress = false;
1260 	} else {
1261 		should_compress = true;
1262 	}
1263 
1264 	nofs_flag = memalloc_nofs_save();
1265 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1266 	memalloc_nofs_restore(nofs_flag);
1267 
1268 	if (!ctx) {
1269 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1270 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1271 			EXTENT_DO_ACCOUNTING;
1272 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1273 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1274 			PAGE_SET_ERROR;
1275 
1276 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1277 					     clear_bits, page_ops);
1278 		return -ENOMEM;
1279 	}
1280 
1281 	async_chunk = ctx->chunks;
1282 	atomic_set(&ctx->num_chunks, num_chunks);
1283 
1284 	for (i = 0; i < num_chunks; i++) {
1285 		if (should_compress)
1286 			cur_end = min(end, start + SZ_512K - 1);
1287 		else
1288 			cur_end = end;
1289 
1290 		/*
1291 		 * igrab is called higher up in the call chain, take only the
1292 		 * lightweight reference for the callback lifetime
1293 		 */
1294 		ihold(&inode->vfs_inode);
1295 		async_chunk[i].pending = &ctx->num_chunks;
1296 		async_chunk[i].inode = &inode->vfs_inode;
1297 		async_chunk[i].start = start;
1298 		async_chunk[i].end = cur_end;
1299 		async_chunk[i].write_flags = write_flags;
1300 		INIT_LIST_HEAD(&async_chunk[i].extents);
1301 
1302 		/*
1303 		 * The locked_page comes all the way from writepage and its
1304 		 * the original page we were actually given.  As we spread
1305 		 * this large delalloc region across multiple async_chunk
1306 		 * structs, only the first struct needs a pointer to locked_page
1307 		 *
1308 		 * This way we don't need racey decisions about who is supposed
1309 		 * to unlock it.
1310 		 */
1311 		if (locked_page) {
1312 			/*
1313 			 * Depending on the compressibility, the pages might or
1314 			 * might not go through async.  We want all of them to
1315 			 * be accounted against wbc once.  Let's do it here
1316 			 * before the paths diverge.  wbc accounting is used
1317 			 * only for foreign writeback detection and doesn't
1318 			 * need full accuracy.  Just account the whole thing
1319 			 * against the first page.
1320 			 */
1321 			wbc_account_cgroup_owner(wbc, locked_page,
1322 						 cur_end - start);
1323 			async_chunk[i].locked_page = locked_page;
1324 			locked_page = NULL;
1325 		} else {
1326 			async_chunk[i].locked_page = NULL;
1327 		}
1328 
1329 		if (blkcg_css != blkcg_root_css) {
1330 			css_get(blkcg_css);
1331 			async_chunk[i].blkcg_css = blkcg_css;
1332 		} else {
1333 			async_chunk[i].blkcg_css = NULL;
1334 		}
1335 
1336 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1337 				async_cow_submit, async_cow_free);
1338 
1339 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1340 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1341 
1342 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1343 
1344 		*nr_written += nr_pages;
1345 		start = cur_end + 1;
1346 	}
1347 	*page_started = 1;
1348 	return 0;
1349 }
1350 
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1351 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1352 					u64 bytenr, u64 num_bytes)
1353 {
1354 	int ret;
1355 	struct btrfs_ordered_sum *sums;
1356 	LIST_HEAD(list);
1357 
1358 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1359 				       bytenr + num_bytes - 1, &list, 0);
1360 	if (ret == 0 && list_empty(&list))
1361 		return 0;
1362 
1363 	while (!list_empty(&list)) {
1364 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1365 		list_del(&sums->list);
1366 		kfree(sums);
1367 	}
1368 	if (ret < 0)
1369 		return ret;
1370 	return 1;
1371 }
1372 
fallback_to_cow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1373 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1374 			   const u64 start, const u64 end,
1375 			   int *page_started, unsigned long *nr_written)
1376 {
1377 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1378 	const bool is_reloc_ino = (inode->root->root_key.objectid ==
1379 				   BTRFS_DATA_RELOC_TREE_OBJECTID);
1380 	const u64 range_bytes = end + 1 - start;
1381 	struct extent_io_tree *io_tree = &inode->io_tree;
1382 	u64 range_start = start;
1383 	u64 count;
1384 
1385 	/*
1386 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1387 	 * made we had not enough available data space and therefore we did not
1388 	 * reserve data space for it, since we though we could do NOCOW for the
1389 	 * respective file range (either there is prealloc extent or the inode
1390 	 * has the NOCOW bit set).
1391 	 *
1392 	 * However when we need to fallback to COW mode (because for example the
1393 	 * block group for the corresponding extent was turned to RO mode by a
1394 	 * scrub or relocation) we need to do the following:
1395 	 *
1396 	 * 1) We increment the bytes_may_use counter of the data space info.
1397 	 *    If COW succeeds, it allocates a new data extent and after doing
1398 	 *    that it decrements the space info's bytes_may_use counter and
1399 	 *    increments its bytes_reserved counter by the same amount (we do
1400 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1401 	 *    bytes_may_use counter to compensate (when space is reserved at
1402 	 *    buffered write time, the bytes_may_use counter is incremented);
1403 	 *
1404 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1405 	 *    that if the COW path fails for any reason, it decrements (through
1406 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1407 	 *    data space info, which we incremented in the step above.
1408 	 *
1409 	 * If we need to fallback to cow and the inode corresponds to a free
1410 	 * space cache inode or an inode of the data relocation tree, we must
1411 	 * also increment bytes_may_use of the data space_info for the same
1412 	 * reason. Space caches and relocated data extents always get a prealloc
1413 	 * extent for them, however scrub or balance may have set the block
1414 	 * group that contains that extent to RO mode and therefore force COW
1415 	 * when starting writeback.
1416 	 */
1417 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1418 				 EXTENT_NORESERVE, 0);
1419 	if (count > 0 || is_space_ino || is_reloc_ino) {
1420 		u64 bytes = count;
1421 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1422 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1423 
1424 		if (is_space_ino || is_reloc_ino)
1425 			bytes = range_bytes;
1426 
1427 		spin_lock(&sinfo->lock);
1428 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1429 		spin_unlock(&sinfo->lock);
1430 
1431 		if (count > 0)
1432 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1433 					 0, 0, NULL);
1434 	}
1435 
1436 	return cow_file_range(inode, locked_page, start, end, page_started,
1437 			      nr_written, 1);
1438 }
1439 
1440 /*
1441  * when nowcow writeback call back.  This checks for snapshots or COW copies
1442  * of the extents that exist in the file, and COWs the file as required.
1443  *
1444  * If no cow copies or snapshots exist, we write directly to the existing
1445  * blocks on disk
1446  */
run_delalloc_nocow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,int force,unsigned long * nr_written)1447 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1448 				       struct page *locked_page,
1449 				       const u64 start, const u64 end,
1450 				       int *page_started, int force,
1451 				       unsigned long *nr_written)
1452 {
1453 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1454 	struct btrfs_root *root = inode->root;
1455 	struct btrfs_path *path;
1456 	u64 cow_start = (u64)-1;
1457 	u64 cur_offset = start;
1458 	int ret;
1459 	bool check_prev = true;
1460 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1461 	u64 ino = btrfs_ino(inode);
1462 	bool nocow = false;
1463 	u64 disk_bytenr = 0;
1464 
1465 	path = btrfs_alloc_path();
1466 	if (!path) {
1467 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1468 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1469 					     EXTENT_DO_ACCOUNTING |
1470 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1471 					     PAGE_CLEAR_DIRTY |
1472 					     PAGE_SET_WRITEBACK |
1473 					     PAGE_END_WRITEBACK);
1474 		return -ENOMEM;
1475 	}
1476 
1477 	while (1) {
1478 		struct btrfs_key found_key;
1479 		struct btrfs_file_extent_item *fi;
1480 		struct extent_buffer *leaf;
1481 		u64 extent_end;
1482 		u64 extent_offset;
1483 		u64 num_bytes = 0;
1484 		u64 disk_num_bytes;
1485 		u64 ram_bytes;
1486 		int extent_type;
1487 
1488 		nocow = false;
1489 
1490 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1491 					       cur_offset, 0);
1492 		if (ret < 0)
1493 			goto error;
1494 
1495 		/*
1496 		 * If there is no extent for our range when doing the initial
1497 		 * search, then go back to the previous slot as it will be the
1498 		 * one containing the search offset
1499 		 */
1500 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1501 			leaf = path->nodes[0];
1502 			btrfs_item_key_to_cpu(leaf, &found_key,
1503 					      path->slots[0] - 1);
1504 			if (found_key.objectid == ino &&
1505 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1506 				path->slots[0]--;
1507 		}
1508 		check_prev = false;
1509 next_slot:
1510 		/* Go to next leaf if we have exhausted the current one */
1511 		leaf = path->nodes[0];
1512 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1513 			ret = btrfs_next_leaf(root, path);
1514 			if (ret < 0) {
1515 				if (cow_start != (u64)-1)
1516 					cur_offset = cow_start;
1517 				goto error;
1518 			}
1519 			if (ret > 0)
1520 				break;
1521 			leaf = path->nodes[0];
1522 		}
1523 
1524 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1525 
1526 		/* Didn't find anything for our INO */
1527 		if (found_key.objectid > ino)
1528 			break;
1529 		/*
1530 		 * Keep searching until we find an EXTENT_ITEM or there are no
1531 		 * more extents for this inode
1532 		 */
1533 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1534 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1535 			path->slots[0]++;
1536 			goto next_slot;
1537 		}
1538 
1539 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1540 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1541 		    found_key.offset > end)
1542 			break;
1543 
1544 		/*
1545 		 * If the found extent starts after requested offset, then
1546 		 * adjust extent_end to be right before this extent begins
1547 		 */
1548 		if (found_key.offset > cur_offset) {
1549 			extent_end = found_key.offset;
1550 			extent_type = 0;
1551 			goto out_check;
1552 		}
1553 
1554 		/*
1555 		 * Found extent which begins before our range and potentially
1556 		 * intersect it
1557 		 */
1558 		fi = btrfs_item_ptr(leaf, path->slots[0],
1559 				    struct btrfs_file_extent_item);
1560 		extent_type = btrfs_file_extent_type(leaf, fi);
1561 
1562 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1563 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1564 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1565 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1566 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1567 			extent_end = found_key.offset +
1568 				btrfs_file_extent_num_bytes(leaf, fi);
1569 			disk_num_bytes =
1570 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1571 			/*
1572 			 * If the extent we got ends before our current offset,
1573 			 * skip to the next extent.
1574 			 */
1575 			if (extent_end <= cur_offset) {
1576 				path->slots[0]++;
1577 				goto next_slot;
1578 			}
1579 			/* Skip holes */
1580 			if (disk_bytenr == 0)
1581 				goto out_check;
1582 			/* Skip compressed/encrypted/encoded extents */
1583 			if (btrfs_file_extent_compression(leaf, fi) ||
1584 			    btrfs_file_extent_encryption(leaf, fi) ||
1585 			    btrfs_file_extent_other_encoding(leaf, fi))
1586 				goto out_check;
1587 			/*
1588 			 * If extent is created before the last volume's snapshot
1589 			 * this implies the extent is shared, hence we can't do
1590 			 * nocow. This is the same check as in
1591 			 * btrfs_cross_ref_exist but without calling
1592 			 * btrfs_search_slot.
1593 			 */
1594 			if (!freespace_inode &&
1595 			    btrfs_file_extent_generation(leaf, fi) <=
1596 			    btrfs_root_last_snapshot(&root->root_item))
1597 				goto out_check;
1598 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1599 				goto out_check;
1600 			/* If extent is RO, we must COW it */
1601 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1602 				goto out_check;
1603 			ret = btrfs_cross_ref_exist(root, ino,
1604 						    found_key.offset -
1605 						    extent_offset, disk_bytenr, false);
1606 			if (ret) {
1607 				/*
1608 				 * ret could be -EIO if the above fails to read
1609 				 * metadata.
1610 				 */
1611 				if (ret < 0) {
1612 					if (cow_start != (u64)-1)
1613 						cur_offset = cow_start;
1614 					goto error;
1615 				}
1616 
1617 				WARN_ON_ONCE(freespace_inode);
1618 				goto out_check;
1619 			}
1620 			disk_bytenr += extent_offset;
1621 			disk_bytenr += cur_offset - found_key.offset;
1622 			num_bytes = min(end + 1, extent_end) - cur_offset;
1623 			/*
1624 			 * If there are pending snapshots for this root, we
1625 			 * fall into common COW way
1626 			 */
1627 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1628 				goto out_check;
1629 			/*
1630 			 * force cow if csum exists in the range.
1631 			 * this ensure that csum for a given extent are
1632 			 * either valid or do not exist.
1633 			 */
1634 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1635 						  num_bytes);
1636 			if (ret) {
1637 				/*
1638 				 * ret could be -EIO if the above fails to read
1639 				 * metadata.
1640 				 */
1641 				if (ret < 0) {
1642 					if (cow_start != (u64)-1)
1643 						cur_offset = cow_start;
1644 					goto error;
1645 				}
1646 				WARN_ON_ONCE(freespace_inode);
1647 				goto out_check;
1648 			}
1649 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1650 				goto out_check;
1651 			nocow = true;
1652 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1653 			extent_end = found_key.offset + ram_bytes;
1654 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1655 			/* Skip extents outside of our requested range */
1656 			if (extent_end <= start) {
1657 				path->slots[0]++;
1658 				goto next_slot;
1659 			}
1660 		} else {
1661 			/* If this triggers then we have a memory corruption */
1662 			BUG();
1663 		}
1664 out_check:
1665 		/*
1666 		 * If nocow is false then record the beginning of the range
1667 		 * that needs to be COWed
1668 		 */
1669 		if (!nocow) {
1670 			if (cow_start == (u64)-1)
1671 				cow_start = cur_offset;
1672 			cur_offset = extent_end;
1673 			if (cur_offset > end)
1674 				break;
1675 			path->slots[0]++;
1676 			goto next_slot;
1677 		}
1678 
1679 		btrfs_release_path(path);
1680 
1681 		/*
1682 		 * COW range from cow_start to found_key.offset - 1. As the key
1683 		 * will contain the beginning of the first extent that can be
1684 		 * NOCOW, following one which needs to be COW'ed
1685 		 */
1686 		if (cow_start != (u64)-1) {
1687 			ret = fallback_to_cow(inode, locked_page,
1688 					      cow_start, found_key.offset - 1,
1689 					      page_started, nr_written);
1690 			if (ret)
1691 				goto error;
1692 			cow_start = (u64)-1;
1693 		}
1694 
1695 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1696 			u64 orig_start = found_key.offset - extent_offset;
1697 			struct extent_map *em;
1698 
1699 			em = create_io_em(inode, cur_offset, num_bytes,
1700 					  orig_start,
1701 					  disk_bytenr, /* block_start */
1702 					  num_bytes, /* block_len */
1703 					  disk_num_bytes, /* orig_block_len */
1704 					  ram_bytes, BTRFS_COMPRESS_NONE,
1705 					  BTRFS_ORDERED_PREALLOC);
1706 			if (IS_ERR(em)) {
1707 				ret = PTR_ERR(em);
1708 				goto error;
1709 			}
1710 			free_extent_map(em);
1711 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1712 						       disk_bytenr, num_bytes,
1713 						       num_bytes,
1714 						       BTRFS_ORDERED_PREALLOC);
1715 			if (ret) {
1716 				btrfs_drop_extent_cache(inode, cur_offset,
1717 							cur_offset + num_bytes - 1,
1718 							0);
1719 				goto error;
1720 			}
1721 		} else {
1722 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1723 						       disk_bytenr, num_bytes,
1724 						       num_bytes,
1725 						       BTRFS_ORDERED_NOCOW);
1726 			if (ret)
1727 				goto error;
1728 		}
1729 
1730 		if (nocow)
1731 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1732 		nocow = false;
1733 
1734 		if (root->root_key.objectid ==
1735 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1736 			/*
1737 			 * Error handled later, as we must prevent
1738 			 * extent_clear_unlock_delalloc() in error handler
1739 			 * from freeing metadata of created ordered extent.
1740 			 */
1741 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1742 						      num_bytes);
1743 
1744 		extent_clear_unlock_delalloc(inode, cur_offset,
1745 					     cur_offset + num_bytes - 1,
1746 					     locked_page, EXTENT_LOCKED |
1747 					     EXTENT_DELALLOC |
1748 					     EXTENT_CLEAR_DATA_RESV,
1749 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1750 
1751 		cur_offset = extent_end;
1752 
1753 		/*
1754 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1755 		 * handler, as metadata for created ordered extent will only
1756 		 * be freed by btrfs_finish_ordered_io().
1757 		 */
1758 		if (ret)
1759 			goto error;
1760 		if (cur_offset > end)
1761 			break;
1762 	}
1763 	btrfs_release_path(path);
1764 
1765 	if (cur_offset <= end && cow_start == (u64)-1)
1766 		cow_start = cur_offset;
1767 
1768 	if (cow_start != (u64)-1) {
1769 		cur_offset = end;
1770 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1771 				      page_started, nr_written);
1772 		if (ret)
1773 			goto error;
1774 	}
1775 
1776 error:
1777 	if (nocow)
1778 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1779 
1780 	if (ret && cur_offset < end)
1781 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1782 					     locked_page, EXTENT_LOCKED |
1783 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1784 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1785 					     PAGE_CLEAR_DIRTY |
1786 					     PAGE_SET_WRITEBACK |
1787 					     PAGE_END_WRITEBACK);
1788 	btrfs_free_path(path);
1789 	return ret;
1790 }
1791 
need_force_cow(struct btrfs_inode * inode,u64 start,u64 end)1792 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1793 {
1794 
1795 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1796 	    !(inode->flags & BTRFS_INODE_PREALLOC))
1797 		return 0;
1798 
1799 	/*
1800 	 * @defrag_bytes is a hint value, no spinlock held here,
1801 	 * if is not zero, it means the file is defragging.
1802 	 * Force cow if given extent needs to be defragged.
1803 	 */
1804 	if (inode->defrag_bytes &&
1805 	    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1806 		return 1;
1807 
1808 	return 0;
1809 }
1810 
1811 /*
1812  * Function to process delayed allocation (create CoW) for ranges which are
1813  * being touched for the first time.
1814  */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1815 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1816 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1817 		struct writeback_control *wbc)
1818 {
1819 	int ret;
1820 	int force_cow = need_force_cow(inode, start, end);
1821 
1822 	if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1823 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1824 					 page_started, 1, nr_written);
1825 	} else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1826 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1827 					 page_started, 0, nr_written);
1828 	} else if (!inode_can_compress(inode) ||
1829 		   !inode_need_compress(inode, start, end)) {
1830 		ret = cow_file_range(inode, locked_page, start, end,
1831 				     page_started, nr_written, 1);
1832 	} else {
1833 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1834 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1835 					   page_started, nr_written);
1836 	}
1837 	if (ret)
1838 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1839 					      end - start + 1);
1840 	return ret;
1841 }
1842 
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)1843 void btrfs_split_delalloc_extent(struct inode *inode,
1844 				 struct extent_state *orig, u64 split)
1845 {
1846 	u64 size;
1847 
1848 	/* not delalloc, ignore it */
1849 	if (!(orig->state & EXTENT_DELALLOC))
1850 		return;
1851 
1852 	size = orig->end - orig->start + 1;
1853 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1854 		u32 num_extents;
1855 		u64 new_size;
1856 
1857 		/*
1858 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1859 		 * applies here, just in reverse.
1860 		 */
1861 		new_size = orig->end - split + 1;
1862 		num_extents = count_max_extents(new_size);
1863 		new_size = split - orig->start;
1864 		num_extents += count_max_extents(new_size);
1865 		if (count_max_extents(size) >= num_extents)
1866 			return;
1867 	}
1868 
1869 	spin_lock(&BTRFS_I(inode)->lock);
1870 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1871 	spin_unlock(&BTRFS_I(inode)->lock);
1872 }
1873 
1874 /*
1875  * Handle merged delayed allocation extents so we can keep track of new extents
1876  * that are just merged onto old extents, such as when we are doing sequential
1877  * writes, so we can properly account for the metadata space we'll need.
1878  */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)1879 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1880 				 struct extent_state *other)
1881 {
1882 	u64 new_size, old_size;
1883 	u32 num_extents;
1884 
1885 	/* not delalloc, ignore it */
1886 	if (!(other->state & EXTENT_DELALLOC))
1887 		return;
1888 
1889 	if (new->start > other->start)
1890 		new_size = new->end - other->start + 1;
1891 	else
1892 		new_size = other->end - new->start + 1;
1893 
1894 	/* we're not bigger than the max, unreserve the space and go */
1895 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1896 		spin_lock(&BTRFS_I(inode)->lock);
1897 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1898 		spin_unlock(&BTRFS_I(inode)->lock);
1899 		return;
1900 	}
1901 
1902 	/*
1903 	 * We have to add up either side to figure out how many extents were
1904 	 * accounted for before we merged into one big extent.  If the number of
1905 	 * extents we accounted for is <= the amount we need for the new range
1906 	 * then we can return, otherwise drop.  Think of it like this
1907 	 *
1908 	 * [ 4k][MAX_SIZE]
1909 	 *
1910 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1911 	 * need 2 outstanding extents, on one side we have 1 and the other side
1912 	 * we have 1 so they are == and we can return.  But in this case
1913 	 *
1914 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1915 	 *
1916 	 * Each range on their own accounts for 2 extents, but merged together
1917 	 * they are only 3 extents worth of accounting, so we need to drop in
1918 	 * this case.
1919 	 */
1920 	old_size = other->end - other->start + 1;
1921 	num_extents = count_max_extents(old_size);
1922 	old_size = new->end - new->start + 1;
1923 	num_extents += count_max_extents(old_size);
1924 	if (count_max_extents(new_size) >= num_extents)
1925 		return;
1926 
1927 	spin_lock(&BTRFS_I(inode)->lock);
1928 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1929 	spin_unlock(&BTRFS_I(inode)->lock);
1930 }
1931 
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1932 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1933 				      struct inode *inode)
1934 {
1935 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1936 
1937 	spin_lock(&root->delalloc_lock);
1938 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1939 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1940 			      &root->delalloc_inodes);
1941 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1942 			&BTRFS_I(inode)->runtime_flags);
1943 		root->nr_delalloc_inodes++;
1944 		if (root->nr_delalloc_inodes == 1) {
1945 			spin_lock(&fs_info->delalloc_root_lock);
1946 			BUG_ON(!list_empty(&root->delalloc_root));
1947 			list_add_tail(&root->delalloc_root,
1948 				      &fs_info->delalloc_roots);
1949 			spin_unlock(&fs_info->delalloc_root_lock);
1950 		}
1951 	}
1952 	spin_unlock(&root->delalloc_lock);
1953 }
1954 
1955 
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1956 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1957 				struct btrfs_inode *inode)
1958 {
1959 	struct btrfs_fs_info *fs_info = root->fs_info;
1960 
1961 	if (!list_empty(&inode->delalloc_inodes)) {
1962 		list_del_init(&inode->delalloc_inodes);
1963 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1964 			  &inode->runtime_flags);
1965 		root->nr_delalloc_inodes--;
1966 		if (!root->nr_delalloc_inodes) {
1967 			ASSERT(list_empty(&root->delalloc_inodes));
1968 			spin_lock(&fs_info->delalloc_root_lock);
1969 			BUG_ON(list_empty(&root->delalloc_root));
1970 			list_del_init(&root->delalloc_root);
1971 			spin_unlock(&fs_info->delalloc_root_lock);
1972 		}
1973 	}
1974 }
1975 
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1976 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1977 				     struct btrfs_inode *inode)
1978 {
1979 	spin_lock(&root->delalloc_lock);
1980 	__btrfs_del_delalloc_inode(root, inode);
1981 	spin_unlock(&root->delalloc_lock);
1982 }
1983 
1984 /*
1985  * Properly track delayed allocation bytes in the inode and to maintain the
1986  * list of inodes that have pending delalloc work to be done.
1987  */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,unsigned * bits)1988 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1989 			       unsigned *bits)
1990 {
1991 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1992 
1993 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1994 		WARN_ON(1);
1995 	/*
1996 	 * set_bit and clear bit hooks normally require _irqsave/restore
1997 	 * but in this case, we are only testing for the DELALLOC
1998 	 * bit, which is only set or cleared with irqs on
1999 	 */
2000 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2001 		struct btrfs_root *root = BTRFS_I(inode)->root;
2002 		u64 len = state->end + 1 - state->start;
2003 		u32 num_extents = count_max_extents(len);
2004 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2005 
2006 		spin_lock(&BTRFS_I(inode)->lock);
2007 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2008 		spin_unlock(&BTRFS_I(inode)->lock);
2009 
2010 		/* For sanity tests */
2011 		if (btrfs_is_testing(fs_info))
2012 			return;
2013 
2014 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2015 					 fs_info->delalloc_batch);
2016 		spin_lock(&BTRFS_I(inode)->lock);
2017 		BTRFS_I(inode)->delalloc_bytes += len;
2018 		if (*bits & EXTENT_DEFRAG)
2019 			BTRFS_I(inode)->defrag_bytes += len;
2020 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2021 					 &BTRFS_I(inode)->runtime_flags))
2022 			btrfs_add_delalloc_inodes(root, inode);
2023 		spin_unlock(&BTRFS_I(inode)->lock);
2024 	}
2025 
2026 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2027 	    (*bits & EXTENT_DELALLOC_NEW)) {
2028 		spin_lock(&BTRFS_I(inode)->lock);
2029 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2030 			state->start;
2031 		spin_unlock(&BTRFS_I(inode)->lock);
2032 	}
2033 }
2034 
2035 /*
2036  * Once a range is no longer delalloc this function ensures that proper
2037  * accounting happens.
2038  */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,unsigned * bits)2039 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2040 				 struct extent_state *state, unsigned *bits)
2041 {
2042 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2043 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2044 	u64 len = state->end + 1 - state->start;
2045 	u32 num_extents = count_max_extents(len);
2046 
2047 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2048 		spin_lock(&inode->lock);
2049 		inode->defrag_bytes -= len;
2050 		spin_unlock(&inode->lock);
2051 	}
2052 
2053 	/*
2054 	 * set_bit and clear bit hooks normally require _irqsave/restore
2055 	 * but in this case, we are only testing for the DELALLOC
2056 	 * bit, which is only set or cleared with irqs on
2057 	 */
2058 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2059 		struct btrfs_root *root = inode->root;
2060 		bool do_list = !btrfs_is_free_space_inode(inode);
2061 
2062 		spin_lock(&inode->lock);
2063 		btrfs_mod_outstanding_extents(inode, -num_extents);
2064 		spin_unlock(&inode->lock);
2065 
2066 		/*
2067 		 * We don't reserve metadata space for space cache inodes so we
2068 		 * don't need to call delalloc_release_metadata if there is an
2069 		 * error.
2070 		 */
2071 		if (*bits & EXTENT_CLEAR_META_RESV &&
2072 		    root != fs_info->tree_root)
2073 			btrfs_delalloc_release_metadata(inode, len, false);
2074 
2075 		/* For sanity tests. */
2076 		if (btrfs_is_testing(fs_info))
2077 			return;
2078 
2079 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2080 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2081 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2082 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2083 
2084 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2085 					 fs_info->delalloc_batch);
2086 		spin_lock(&inode->lock);
2087 		inode->delalloc_bytes -= len;
2088 		if (do_list && inode->delalloc_bytes == 0 &&
2089 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2090 					&inode->runtime_flags))
2091 			btrfs_del_delalloc_inode(root, inode);
2092 		spin_unlock(&inode->lock);
2093 	}
2094 
2095 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2096 	    (*bits & EXTENT_DELALLOC_NEW)) {
2097 		spin_lock(&inode->lock);
2098 		ASSERT(inode->new_delalloc_bytes >= len);
2099 		inode->new_delalloc_bytes -= len;
2100 		spin_unlock(&inode->lock);
2101 	}
2102 }
2103 
2104 /*
2105  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2106  * in a chunk's stripe. This function ensures that bios do not span a
2107  * stripe/chunk
2108  *
2109  * @page - The page we are about to add to the bio
2110  * @size - size we want to add to the bio
2111  * @bio - bio we want to ensure is smaller than a stripe
2112  * @bio_flags - flags of the bio
2113  *
2114  * return 1 if page cannot be added to the bio
2115  * return 0 if page can be added to the bio
2116  * return error otherwise
2117  */
btrfs_bio_fits_in_stripe(struct page * page,size_t size,struct bio * bio,unsigned long bio_flags)2118 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2119 			     unsigned long bio_flags)
2120 {
2121 	struct inode *inode = page->mapping->host;
2122 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2123 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2124 	u64 length = 0;
2125 	u64 map_length;
2126 	int ret;
2127 	struct btrfs_io_geometry geom;
2128 
2129 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2130 		return 0;
2131 
2132 	length = bio->bi_iter.bi_size;
2133 	map_length = length;
2134 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2135 				    &geom);
2136 	if (ret < 0)
2137 		return ret;
2138 
2139 	if (geom.len < length + size)
2140 		return 1;
2141 	return 0;
2142 }
2143 
2144 /*
2145  * in order to insert checksums into the metadata in large chunks,
2146  * we wait until bio submission time.   All the pages in the bio are
2147  * checksummed and sums are attached onto the ordered extent record.
2148  *
2149  * At IO completion time the cums attached on the ordered extent record
2150  * are inserted into the btree
2151  */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)2152 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2153 				    u64 bio_offset)
2154 {
2155 	struct inode *inode = private_data;
2156 
2157 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2158 }
2159 
2160 /*
2161  * extent_io.c submission hook. This does the right thing for csum calculation
2162  * on write, or reading the csums from the tree before a read.
2163  *
2164  * Rules about async/sync submit,
2165  * a) read:				sync submit
2166  *
2167  * b) write without checksum:		sync submit
2168  *
2169  * c) write with checksum:
2170  *    c-1) if bio is issued by fsync:	sync submit
2171  *         (sync_writers != 0)
2172  *
2173  *    c-2) if root is reloc root:	sync submit
2174  *         (only in case of buffered IO)
2175  *
2176  *    c-3) otherwise:			async submit
2177  */
btrfs_submit_data_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)2178 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2179 				   int mirror_num, unsigned long bio_flags)
2180 
2181 {
2182 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2183 	struct btrfs_root *root = BTRFS_I(inode)->root;
2184 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2185 	blk_status_t ret = 0;
2186 	int skip_sum;
2187 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2188 
2189 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2190 
2191 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2192 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2193 
2194 	if (bio_op(bio) != REQ_OP_WRITE) {
2195 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2196 		if (ret)
2197 			goto out;
2198 
2199 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2200 			ret = btrfs_submit_compressed_read(inode, bio,
2201 							   mirror_num,
2202 							   bio_flags);
2203 			goto out;
2204 		} else if (!skip_sum) {
2205 			ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2206 			if (ret)
2207 				goto out;
2208 		}
2209 		goto mapit;
2210 	} else if (async && !skip_sum) {
2211 		/* csum items have already been cloned */
2212 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2213 			goto mapit;
2214 		/* we're doing a write, do the async checksumming */
2215 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2216 					  0, inode, btrfs_submit_bio_start);
2217 		goto out;
2218 	} else if (!skip_sum) {
2219 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2220 		if (ret)
2221 			goto out;
2222 	}
2223 
2224 mapit:
2225 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2226 
2227 out:
2228 	if (ret) {
2229 		bio->bi_status = ret;
2230 		bio_endio(bio);
2231 	}
2232 	return ret;
2233 }
2234 
2235 /*
2236  * given a list of ordered sums record them in the inode.  This happens
2237  * at IO completion time based on sums calculated at bio submission time.
2238  */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2239 static int add_pending_csums(struct btrfs_trans_handle *trans,
2240 			     struct list_head *list)
2241 {
2242 	struct btrfs_ordered_sum *sum;
2243 	int ret;
2244 
2245 	list_for_each_entry(sum, list, list) {
2246 		trans->adding_csums = true;
2247 		ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2248 		trans->adding_csums = false;
2249 		if (ret)
2250 			return ret;
2251 	}
2252 	return 0;
2253 }
2254 
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2255 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2256 					 const u64 start,
2257 					 const u64 len,
2258 					 struct extent_state **cached_state)
2259 {
2260 	u64 search_start = start;
2261 	const u64 end = start + len - 1;
2262 
2263 	while (search_start < end) {
2264 		const u64 search_len = end - search_start + 1;
2265 		struct extent_map *em;
2266 		u64 em_len;
2267 		int ret = 0;
2268 
2269 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2270 		if (IS_ERR(em))
2271 			return PTR_ERR(em);
2272 
2273 		if (em->block_start != EXTENT_MAP_HOLE)
2274 			goto next;
2275 
2276 		em_len = em->len;
2277 		if (em->start < search_start)
2278 			em_len -= search_start - em->start;
2279 		if (em_len > search_len)
2280 			em_len = search_len;
2281 
2282 		ret = set_extent_bit(&inode->io_tree, search_start,
2283 				     search_start + em_len - 1,
2284 				     EXTENT_DELALLOC_NEW,
2285 				     NULL, cached_state, GFP_NOFS);
2286 next:
2287 		search_start = extent_map_end(em);
2288 		free_extent_map(em);
2289 		if (ret)
2290 			return ret;
2291 	}
2292 	return 0;
2293 }
2294 
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2295 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2296 			      unsigned int extra_bits,
2297 			      struct extent_state **cached_state)
2298 {
2299 	WARN_ON(PAGE_ALIGNED(end));
2300 
2301 	if (start >= i_size_read(&inode->vfs_inode) &&
2302 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2303 		/*
2304 		 * There can't be any extents following eof in this case so just
2305 		 * set the delalloc new bit for the range directly.
2306 		 */
2307 		extra_bits |= EXTENT_DELALLOC_NEW;
2308 	} else {
2309 		int ret;
2310 
2311 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2312 						    end + 1 - start,
2313 						    cached_state);
2314 		if (ret)
2315 			return ret;
2316 	}
2317 
2318 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2319 				   cached_state);
2320 }
2321 
2322 /* see btrfs_writepage_start_hook for details on why this is required */
2323 struct btrfs_writepage_fixup {
2324 	struct page *page;
2325 	struct inode *inode;
2326 	struct btrfs_work work;
2327 };
2328 
btrfs_writepage_fixup_worker(struct btrfs_work * work)2329 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2330 {
2331 	struct btrfs_writepage_fixup *fixup;
2332 	struct btrfs_ordered_extent *ordered;
2333 	struct extent_state *cached_state = NULL;
2334 	struct extent_changeset *data_reserved = NULL;
2335 	struct page *page;
2336 	struct btrfs_inode *inode;
2337 	u64 page_start;
2338 	u64 page_end;
2339 	int ret = 0;
2340 	bool free_delalloc_space = true;
2341 
2342 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2343 	page = fixup->page;
2344 	inode = BTRFS_I(fixup->inode);
2345 	page_start = page_offset(page);
2346 	page_end = page_offset(page) + PAGE_SIZE - 1;
2347 
2348 	/*
2349 	 * This is similar to page_mkwrite, we need to reserve the space before
2350 	 * we take the page lock.
2351 	 */
2352 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2353 					   PAGE_SIZE);
2354 again:
2355 	lock_page(page);
2356 
2357 	/*
2358 	 * Before we queued this fixup, we took a reference on the page.
2359 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2360 	 * address space.
2361 	 */
2362 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2363 		/*
2364 		 * Unfortunately this is a little tricky, either
2365 		 *
2366 		 * 1) We got here and our page had already been dealt with and
2367 		 *    we reserved our space, thus ret == 0, so we need to just
2368 		 *    drop our space reservation and bail.  This can happen the
2369 		 *    first time we come into the fixup worker, or could happen
2370 		 *    while waiting for the ordered extent.
2371 		 * 2) Our page was already dealt with, but we happened to get an
2372 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2373 		 *    this case we obviously don't have anything to release, but
2374 		 *    because the page was already dealt with we don't want to
2375 		 *    mark the page with an error, so make sure we're resetting
2376 		 *    ret to 0.  This is why we have this check _before_ the ret
2377 		 *    check, because we do not want to have a surprise ENOSPC
2378 		 *    when the page was already properly dealt with.
2379 		 */
2380 		if (!ret) {
2381 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2382 			btrfs_delalloc_release_space(inode, data_reserved,
2383 						     page_start, PAGE_SIZE,
2384 						     true);
2385 		}
2386 		ret = 0;
2387 		goto out_page;
2388 	}
2389 
2390 	/*
2391 	 * We can't mess with the page state unless it is locked, so now that
2392 	 * it is locked bail if we failed to make our space reservation.
2393 	 */
2394 	if (ret)
2395 		goto out_page;
2396 
2397 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2398 
2399 	/* already ordered? We're done */
2400 	if (PagePrivate2(page))
2401 		goto out_reserved;
2402 
2403 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2404 	if (ordered) {
2405 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2406 				     &cached_state);
2407 		unlock_page(page);
2408 		btrfs_start_ordered_extent(ordered, 1);
2409 		btrfs_put_ordered_extent(ordered);
2410 		goto again;
2411 	}
2412 
2413 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2414 					&cached_state);
2415 	if (ret)
2416 		goto out_reserved;
2417 
2418 	/*
2419 	 * Everything went as planned, we're now the owner of a dirty page with
2420 	 * delayed allocation bits set and space reserved for our COW
2421 	 * destination.
2422 	 *
2423 	 * The page was dirty when we started, nothing should have cleaned it.
2424 	 */
2425 	BUG_ON(!PageDirty(page));
2426 	free_delalloc_space = false;
2427 out_reserved:
2428 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2429 	if (free_delalloc_space)
2430 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2431 					     PAGE_SIZE, true);
2432 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2433 			     &cached_state);
2434 out_page:
2435 	if (ret) {
2436 		/*
2437 		 * We hit ENOSPC or other errors.  Update the mapping and page
2438 		 * to reflect the errors and clean the page.
2439 		 */
2440 		mapping_set_error(page->mapping, ret);
2441 		end_extent_writepage(page, ret, page_start, page_end);
2442 		clear_page_dirty_for_io(page);
2443 		SetPageError(page);
2444 	}
2445 	ClearPageChecked(page);
2446 	unlock_page(page);
2447 	put_page(page);
2448 	kfree(fixup);
2449 	extent_changeset_free(data_reserved);
2450 	/*
2451 	 * As a precaution, do a delayed iput in case it would be the last iput
2452 	 * that could need flushing space. Recursing back to fixup worker would
2453 	 * deadlock.
2454 	 */
2455 	btrfs_add_delayed_iput(&inode->vfs_inode);
2456 }
2457 
2458 /*
2459  * There are a few paths in the higher layers of the kernel that directly
2460  * set the page dirty bit without asking the filesystem if it is a
2461  * good idea.  This causes problems because we want to make sure COW
2462  * properly happens and the data=ordered rules are followed.
2463  *
2464  * In our case any range that doesn't have the ORDERED bit set
2465  * hasn't been properly setup for IO.  We kick off an async process
2466  * to fix it up.  The async helper will wait for ordered extents, set
2467  * the delalloc bit and make it safe to write the page.
2468  */
btrfs_writepage_cow_fixup(struct page * page,u64 start,u64 end)2469 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2470 {
2471 	struct inode *inode = page->mapping->host;
2472 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2473 	struct btrfs_writepage_fixup *fixup;
2474 
2475 	/* this page is properly in the ordered list */
2476 	if (TestClearPagePrivate2(page))
2477 		return 0;
2478 
2479 	/*
2480 	 * PageChecked is set below when we create a fixup worker for this page,
2481 	 * don't try to create another one if we're already PageChecked()
2482 	 *
2483 	 * The extent_io writepage code will redirty the page if we send back
2484 	 * EAGAIN.
2485 	 */
2486 	if (PageChecked(page))
2487 		return -EAGAIN;
2488 
2489 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2490 	if (!fixup)
2491 		return -EAGAIN;
2492 
2493 	/*
2494 	 * We are already holding a reference to this inode from
2495 	 * write_cache_pages.  We need to hold it because the space reservation
2496 	 * takes place outside of the page lock, and we can't trust
2497 	 * page->mapping outside of the page lock.
2498 	 */
2499 	ihold(inode);
2500 	SetPageChecked(page);
2501 	get_page(page);
2502 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2503 	fixup->page = page;
2504 	fixup->inode = inode;
2505 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2506 
2507 	return -EAGAIN;
2508 }
2509 
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,u64 qgroup_reserved)2510 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2511 				       struct btrfs_inode *inode, u64 file_pos,
2512 				       struct btrfs_file_extent_item *stack_fi,
2513 				       u64 qgroup_reserved)
2514 {
2515 	struct btrfs_root *root = inode->root;
2516 	struct btrfs_path *path;
2517 	struct extent_buffer *leaf;
2518 	struct btrfs_key ins;
2519 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2520 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2521 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2522 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2523 	int extent_inserted = 0;
2524 	int ret;
2525 
2526 	path = btrfs_alloc_path();
2527 	if (!path)
2528 		return -ENOMEM;
2529 
2530 	/*
2531 	 * we may be replacing one extent in the tree with another.
2532 	 * The new extent is pinned in the extent map, and we don't want
2533 	 * to drop it from the cache until it is completely in the btree.
2534 	 *
2535 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2536 	 * the caller is expected to unpin it and allow it to be merged
2537 	 * with the others.
2538 	 */
2539 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2540 				   file_pos + num_bytes, NULL, 0,
2541 				   1, sizeof(*stack_fi), &extent_inserted);
2542 	if (ret)
2543 		goto out;
2544 
2545 	if (!extent_inserted) {
2546 		ins.objectid = btrfs_ino(inode);
2547 		ins.offset = file_pos;
2548 		ins.type = BTRFS_EXTENT_DATA_KEY;
2549 
2550 		path->leave_spinning = 1;
2551 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2552 					      sizeof(*stack_fi));
2553 		if (ret)
2554 			goto out;
2555 	}
2556 	leaf = path->nodes[0];
2557 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2558 	write_extent_buffer(leaf, stack_fi,
2559 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2560 			sizeof(struct btrfs_file_extent_item));
2561 
2562 	btrfs_mark_buffer_dirty(leaf);
2563 	btrfs_release_path(path);
2564 
2565 	inode_add_bytes(&inode->vfs_inode, num_bytes);
2566 
2567 	ins.objectid = disk_bytenr;
2568 	ins.offset = disk_num_bytes;
2569 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2570 
2571 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2572 	if (ret)
2573 		goto out;
2574 
2575 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2576 					       file_pos, qgroup_reserved, &ins);
2577 out:
2578 	btrfs_free_path(path);
2579 
2580 	return ret;
2581 }
2582 
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2583 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2584 					 u64 start, u64 len)
2585 {
2586 	struct btrfs_block_group *cache;
2587 
2588 	cache = btrfs_lookup_block_group(fs_info, start);
2589 	ASSERT(cache);
2590 
2591 	spin_lock(&cache->lock);
2592 	cache->delalloc_bytes -= len;
2593 	spin_unlock(&cache->lock);
2594 
2595 	btrfs_put_block_group(cache);
2596 }
2597 
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)2598 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2599 					     struct btrfs_ordered_extent *oe)
2600 {
2601 	struct btrfs_file_extent_item stack_fi;
2602 	u64 logical_len;
2603 
2604 	memset(&stack_fi, 0, sizeof(stack_fi));
2605 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2606 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2607 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2608 						   oe->disk_num_bytes);
2609 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2610 		logical_len = oe->truncated_len;
2611 	else
2612 		logical_len = oe->num_bytes;
2613 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2614 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2615 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2616 	/* Encryption and other encoding is reserved and all 0 */
2617 
2618 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2619 					   oe->file_offset, &stack_fi,
2620 					   oe->qgroup_rsv);
2621 }
2622 
2623 /*
2624  * As ordered data IO finishes, this gets called so we can finish
2625  * an ordered extent if the range of bytes in the file it covers are
2626  * fully written.
2627  */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2628 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2629 {
2630 	struct inode *inode = ordered_extent->inode;
2631 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2632 	struct btrfs_root *root = BTRFS_I(inode)->root;
2633 	struct btrfs_trans_handle *trans = NULL;
2634 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2635 	struct extent_state *cached_state = NULL;
2636 	u64 start, end;
2637 	int compress_type = 0;
2638 	int ret = 0;
2639 	u64 logical_len = ordered_extent->num_bytes;
2640 	bool freespace_inode;
2641 	bool truncated = false;
2642 	bool range_locked = false;
2643 	bool clear_new_delalloc_bytes = false;
2644 	bool clear_reserved_extent = true;
2645 	unsigned int clear_bits;
2646 
2647 	start = ordered_extent->file_offset;
2648 	end = start + ordered_extent->num_bytes - 1;
2649 
2650 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2651 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2652 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2653 		clear_new_delalloc_bytes = true;
2654 
2655 	freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2656 
2657 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2658 		ret = -EIO;
2659 		goto out;
2660 	}
2661 
2662 	btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2663 
2664 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2665 		truncated = true;
2666 		logical_len = ordered_extent->truncated_len;
2667 		/* Truncated the entire extent, don't bother adding */
2668 		if (!logical_len)
2669 			goto out;
2670 	}
2671 
2672 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2673 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2674 
2675 		btrfs_inode_safe_disk_i_size_write(inode, 0);
2676 		if (freespace_inode)
2677 			trans = btrfs_join_transaction_spacecache(root);
2678 		else
2679 			trans = btrfs_join_transaction(root);
2680 		if (IS_ERR(trans)) {
2681 			ret = PTR_ERR(trans);
2682 			trans = NULL;
2683 			goto out;
2684 		}
2685 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2686 		ret = btrfs_update_inode_fallback(trans, root, inode);
2687 		if (ret) /* -ENOMEM or corruption */
2688 			btrfs_abort_transaction(trans, ret);
2689 		goto out;
2690 	}
2691 
2692 	range_locked = true;
2693 	lock_extent_bits(io_tree, start, end, &cached_state);
2694 
2695 	if (freespace_inode)
2696 		trans = btrfs_join_transaction_spacecache(root);
2697 	else
2698 		trans = btrfs_join_transaction(root);
2699 	if (IS_ERR(trans)) {
2700 		ret = PTR_ERR(trans);
2701 		trans = NULL;
2702 		goto out;
2703 	}
2704 
2705 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2706 
2707 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2708 		compress_type = ordered_extent->compress_type;
2709 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2710 		BUG_ON(compress_type);
2711 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2712 						ordered_extent->file_offset,
2713 						ordered_extent->file_offset +
2714 						logical_len);
2715 	} else {
2716 		BUG_ON(root == fs_info->tree_root);
2717 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2718 		if (!ret) {
2719 			clear_reserved_extent = false;
2720 			btrfs_release_delalloc_bytes(fs_info,
2721 						ordered_extent->disk_bytenr,
2722 						ordered_extent->disk_num_bytes);
2723 		}
2724 	}
2725 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2726 			   ordered_extent->file_offset,
2727 			   ordered_extent->num_bytes, trans->transid);
2728 	if (ret < 0) {
2729 		btrfs_abort_transaction(trans, ret);
2730 		goto out;
2731 	}
2732 
2733 	ret = add_pending_csums(trans, &ordered_extent->list);
2734 	if (ret) {
2735 		btrfs_abort_transaction(trans, ret);
2736 		goto out;
2737 	}
2738 
2739 	btrfs_inode_safe_disk_i_size_write(inode, 0);
2740 	ret = btrfs_update_inode_fallback(trans, root, inode);
2741 	if (ret) { /* -ENOMEM or corruption */
2742 		btrfs_abort_transaction(trans, ret);
2743 		goto out;
2744 	}
2745 	ret = 0;
2746 out:
2747 	clear_bits = EXTENT_DEFRAG;
2748 	if (range_locked)
2749 		clear_bits |= EXTENT_LOCKED;
2750 	if (clear_new_delalloc_bytes)
2751 		clear_bits |= EXTENT_DELALLOC_NEW;
2752 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2753 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2754 			 &cached_state);
2755 
2756 	if (trans)
2757 		btrfs_end_transaction(trans);
2758 
2759 	if (ret || truncated) {
2760 		u64 unwritten_start = start;
2761 
2762 		/*
2763 		 * If we failed to finish this ordered extent for any reason we
2764 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
2765 		 * extent, and mark the inode with the error if it wasn't
2766 		 * already set.  Any error during writeback would have already
2767 		 * set the mapping error, so we need to set it if we're the ones
2768 		 * marking this ordered extent as failed.
2769 		 */
2770 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
2771 					     &ordered_extent->flags))
2772 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
2773 
2774 		if (truncated)
2775 			unwritten_start += logical_len;
2776 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2777 
2778 		/* Drop the cache for the part of the extent we didn't write. */
2779 		btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2780 
2781 		/*
2782 		 * If the ordered extent had an IOERR or something else went
2783 		 * wrong we need to return the space for this ordered extent
2784 		 * back to the allocator.  We only free the extent in the
2785 		 * truncated case if we didn't write out the extent at all.
2786 		 *
2787 		 * If we made it past insert_reserved_file_extent before we
2788 		 * errored out then we don't need to do this as the accounting
2789 		 * has already been done.
2790 		 */
2791 		if ((ret || !logical_len) &&
2792 		    clear_reserved_extent &&
2793 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2794 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2795 			/*
2796 			 * Discard the range before returning it back to the
2797 			 * free space pool
2798 			 */
2799 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2800 				btrfs_discard_extent(fs_info,
2801 						ordered_extent->disk_bytenr,
2802 						ordered_extent->disk_num_bytes,
2803 						NULL);
2804 			btrfs_free_reserved_extent(fs_info,
2805 					ordered_extent->disk_bytenr,
2806 					ordered_extent->disk_num_bytes, 1);
2807 		}
2808 	}
2809 
2810 	/*
2811 	 * This needs to be done to make sure anybody waiting knows we are done
2812 	 * updating everything for this ordered extent.
2813 	 */
2814 	btrfs_remove_ordered_extent(BTRFS_I(inode), ordered_extent);
2815 
2816 	/* once for us */
2817 	btrfs_put_ordered_extent(ordered_extent);
2818 	/* once for the tree */
2819 	btrfs_put_ordered_extent(ordered_extent);
2820 
2821 	return ret;
2822 }
2823 
finish_ordered_fn(struct btrfs_work * work)2824 static void finish_ordered_fn(struct btrfs_work *work)
2825 {
2826 	struct btrfs_ordered_extent *ordered_extent;
2827 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2828 	btrfs_finish_ordered_io(ordered_extent);
2829 }
2830 
btrfs_writepage_endio_finish_ordered(struct page * page,u64 start,u64 end,int uptodate)2831 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2832 					  u64 end, int uptodate)
2833 {
2834 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2835 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2836 	struct btrfs_ordered_extent *ordered_extent = NULL;
2837 	struct btrfs_workqueue *wq;
2838 
2839 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2840 
2841 	ClearPagePrivate2(page);
2842 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2843 					    end - start + 1, uptodate))
2844 		return;
2845 
2846 	if (btrfs_is_free_space_inode(inode))
2847 		wq = fs_info->endio_freespace_worker;
2848 	else
2849 		wq = fs_info->endio_write_workers;
2850 
2851 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2852 	btrfs_queue_work(wq, &ordered_extent->work);
2853 }
2854 
check_data_csum(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)2855 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2856 			   int icsum, struct page *page, int pgoff, u64 start,
2857 			   size_t len)
2858 {
2859 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2860 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2861 	char *kaddr;
2862 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2863 	u8 *csum_expected;
2864 	u8 csum[BTRFS_CSUM_SIZE];
2865 
2866 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2867 
2868 	kaddr = kmap_atomic(page);
2869 	shash->tfm = fs_info->csum_shash;
2870 
2871 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2872 
2873 	if (memcmp(csum, csum_expected, csum_size))
2874 		goto zeroit;
2875 
2876 	kunmap_atomic(kaddr);
2877 	return 0;
2878 zeroit:
2879 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2880 				    io_bio->mirror_num);
2881 	if (io_bio->device)
2882 		btrfs_dev_stat_inc_and_print(io_bio->device,
2883 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
2884 	memset(kaddr + pgoff, 1, len);
2885 	flush_dcache_page(page);
2886 	kunmap_atomic(kaddr);
2887 	return -EIO;
2888 }
2889 
2890 /*
2891  * when reads are done, we need to check csums to verify the data is correct
2892  * if there's a match, we allow the bio to finish.  If not, the code in
2893  * extent_io.c will try to find good copies for us.
2894  */
btrfs_verify_data_csum(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)2895 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u64 phy_offset,
2896 			   struct page *page, u64 start, u64 end, int mirror)
2897 {
2898 	size_t offset = start - page_offset(page);
2899 	struct inode *inode = page->mapping->host;
2900 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2901 	struct btrfs_root *root = BTRFS_I(inode)->root;
2902 
2903 	if (PageChecked(page)) {
2904 		ClearPageChecked(page);
2905 		return 0;
2906 	}
2907 
2908 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2909 		return 0;
2910 
2911 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2912 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2913 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2914 		return 0;
2915 	}
2916 
2917 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2918 	return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2919 			       (size_t)(end - start + 1));
2920 }
2921 
2922 /*
2923  * btrfs_add_delayed_iput - perform a delayed iput on @inode
2924  *
2925  * @inode: The inode we want to perform iput on
2926  *
2927  * This function uses the generic vfs_inode::i_count to track whether we should
2928  * just decrement it (in case it's > 1) or if this is the last iput then link
2929  * the inode to the delayed iput machinery. Delayed iputs are processed at
2930  * transaction commit time/superblock commit/cleaner kthread.
2931  */
btrfs_add_delayed_iput(struct inode * inode)2932 void btrfs_add_delayed_iput(struct inode *inode)
2933 {
2934 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2935 	struct btrfs_inode *binode = BTRFS_I(inode);
2936 
2937 	if (atomic_add_unless(&inode->i_count, -1, 1))
2938 		return;
2939 
2940 	atomic_inc(&fs_info->nr_delayed_iputs);
2941 	spin_lock(&fs_info->delayed_iput_lock);
2942 	ASSERT(list_empty(&binode->delayed_iput));
2943 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2944 	spin_unlock(&fs_info->delayed_iput_lock);
2945 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2946 		wake_up_process(fs_info->cleaner_kthread);
2947 }
2948 
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)2949 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2950 				    struct btrfs_inode *inode)
2951 {
2952 	list_del_init(&inode->delayed_iput);
2953 	spin_unlock(&fs_info->delayed_iput_lock);
2954 	iput(&inode->vfs_inode);
2955 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2956 		wake_up(&fs_info->delayed_iputs_wait);
2957 	spin_lock(&fs_info->delayed_iput_lock);
2958 }
2959 
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)2960 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2961 				   struct btrfs_inode *inode)
2962 {
2963 	if (!list_empty(&inode->delayed_iput)) {
2964 		spin_lock(&fs_info->delayed_iput_lock);
2965 		if (!list_empty(&inode->delayed_iput))
2966 			run_delayed_iput_locked(fs_info, inode);
2967 		spin_unlock(&fs_info->delayed_iput_lock);
2968 	}
2969 }
2970 
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)2971 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2972 {
2973 
2974 	spin_lock(&fs_info->delayed_iput_lock);
2975 	while (!list_empty(&fs_info->delayed_iputs)) {
2976 		struct btrfs_inode *inode;
2977 
2978 		inode = list_first_entry(&fs_info->delayed_iputs,
2979 				struct btrfs_inode, delayed_iput);
2980 		run_delayed_iput_locked(fs_info, inode);
2981 		cond_resched_lock(&fs_info->delayed_iput_lock);
2982 	}
2983 	spin_unlock(&fs_info->delayed_iput_lock);
2984 }
2985 
2986 /**
2987  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2988  * @fs_info - the fs_info for this fs
2989  * @return - EINTR if we were killed, 0 if nothing's pending
2990  *
2991  * This will wait on any delayed iputs that are currently running with KILLABLE
2992  * set.  Once they are all done running we will return, unless we are killed in
2993  * which case we return EINTR. This helps in user operations like fallocate etc
2994  * that might get blocked on the iputs.
2995  */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)2996 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2997 {
2998 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2999 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3000 	if (ret)
3001 		return -EINTR;
3002 	return 0;
3003 }
3004 
3005 /*
3006  * This creates an orphan entry for the given inode in case something goes wrong
3007  * in the middle of an unlink.
3008  */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3009 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3010 		     struct btrfs_inode *inode)
3011 {
3012 	int ret;
3013 
3014 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3015 	if (ret && ret != -EEXIST) {
3016 		btrfs_abort_transaction(trans, ret);
3017 		return ret;
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 /*
3024  * We have done the delete so we can go ahead and remove the orphan item for
3025  * this particular inode.
3026  */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3027 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3028 			    struct btrfs_inode *inode)
3029 {
3030 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3031 }
3032 
3033 /*
3034  * this cleans up any orphans that may be left on the list from the last use
3035  * of this root.
3036  */
btrfs_orphan_cleanup(struct btrfs_root * root)3037 int btrfs_orphan_cleanup(struct btrfs_root *root)
3038 {
3039 	struct btrfs_fs_info *fs_info = root->fs_info;
3040 	struct btrfs_path *path;
3041 	struct extent_buffer *leaf;
3042 	struct btrfs_key key, found_key;
3043 	struct btrfs_trans_handle *trans;
3044 	struct inode *inode;
3045 	u64 last_objectid = 0;
3046 	int ret = 0, nr_unlink = 0;
3047 
3048 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3049 		return 0;
3050 
3051 	path = btrfs_alloc_path();
3052 	if (!path) {
3053 		ret = -ENOMEM;
3054 		goto out;
3055 	}
3056 	path->reada = READA_BACK;
3057 
3058 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3059 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3060 	key.offset = (u64)-1;
3061 
3062 	while (1) {
3063 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3064 		if (ret < 0)
3065 			goto out;
3066 
3067 		/*
3068 		 * if ret == 0 means we found what we were searching for, which
3069 		 * is weird, but possible, so only screw with path if we didn't
3070 		 * find the key and see if we have stuff that matches
3071 		 */
3072 		if (ret > 0) {
3073 			ret = 0;
3074 			if (path->slots[0] == 0)
3075 				break;
3076 			path->slots[0]--;
3077 		}
3078 
3079 		/* pull out the item */
3080 		leaf = path->nodes[0];
3081 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3082 
3083 		/* make sure the item matches what we want */
3084 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3085 			break;
3086 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3087 			break;
3088 
3089 		/* release the path since we're done with it */
3090 		btrfs_release_path(path);
3091 
3092 		/*
3093 		 * this is where we are basically btrfs_lookup, without the
3094 		 * crossing root thing.  we store the inode number in the
3095 		 * offset of the orphan item.
3096 		 */
3097 
3098 		if (found_key.offset == last_objectid) {
3099 			btrfs_err(fs_info,
3100 				  "Error removing orphan entry, stopping orphan cleanup");
3101 			ret = -EINVAL;
3102 			goto out;
3103 		}
3104 
3105 		last_objectid = found_key.offset;
3106 
3107 		found_key.objectid = found_key.offset;
3108 		found_key.type = BTRFS_INODE_ITEM_KEY;
3109 		found_key.offset = 0;
3110 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3111 		ret = PTR_ERR_OR_ZERO(inode);
3112 		if (ret && ret != -ENOENT)
3113 			goto out;
3114 
3115 		if (ret == -ENOENT && root == fs_info->tree_root) {
3116 			struct btrfs_root *dead_root;
3117 			int is_dead_root = 0;
3118 
3119 			/*
3120 			 * this is an orphan in the tree root. Currently these
3121 			 * could come from 2 sources:
3122 			 *  a) a snapshot deletion in progress
3123 			 *  b) a free space cache inode
3124 			 * We need to distinguish those two, as the snapshot
3125 			 * orphan must not get deleted.
3126 			 * find_dead_roots already ran before us, so if this
3127 			 * is a snapshot deletion, we should find the root
3128 			 * in the fs_roots radix tree.
3129 			 */
3130 
3131 			spin_lock(&fs_info->fs_roots_radix_lock);
3132 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3133 							 (unsigned long)found_key.objectid);
3134 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3135 				is_dead_root = 1;
3136 			spin_unlock(&fs_info->fs_roots_radix_lock);
3137 
3138 			if (is_dead_root) {
3139 				/* prevent this orphan from being found again */
3140 				key.offset = found_key.objectid - 1;
3141 				continue;
3142 			}
3143 
3144 		}
3145 
3146 		/*
3147 		 * If we have an inode with links, there are a couple of
3148 		 * possibilities. Old kernels (before v3.12) used to create an
3149 		 * orphan item for truncate indicating that there were possibly
3150 		 * extent items past i_size that needed to be deleted. In v3.12,
3151 		 * truncate was changed to update i_size in sync with the extent
3152 		 * items, but the (useless) orphan item was still created. Since
3153 		 * v4.18, we don't create the orphan item for truncate at all.
3154 		 *
3155 		 * So, this item could mean that we need to do a truncate, but
3156 		 * only if this filesystem was last used on a pre-v3.12 kernel
3157 		 * and was not cleanly unmounted. The odds of that are quite
3158 		 * slim, and it's a pain to do the truncate now, so just delete
3159 		 * the orphan item.
3160 		 *
3161 		 * It's also possible that this orphan item was supposed to be
3162 		 * deleted but wasn't. The inode number may have been reused,
3163 		 * but either way, we can delete the orphan item.
3164 		 */
3165 		if (ret == -ENOENT || inode->i_nlink) {
3166 			if (!ret)
3167 				iput(inode);
3168 			trans = btrfs_start_transaction(root, 1);
3169 			if (IS_ERR(trans)) {
3170 				ret = PTR_ERR(trans);
3171 				goto out;
3172 			}
3173 			btrfs_debug(fs_info, "auto deleting %Lu",
3174 				    found_key.objectid);
3175 			ret = btrfs_del_orphan_item(trans, root,
3176 						    found_key.objectid);
3177 			btrfs_end_transaction(trans);
3178 			if (ret)
3179 				goto out;
3180 			continue;
3181 		}
3182 
3183 		nr_unlink++;
3184 
3185 		/* this will do delete_inode and everything for us */
3186 		iput(inode);
3187 	}
3188 	/* release the path since we're done with it */
3189 	btrfs_release_path(path);
3190 
3191 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3192 
3193 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3194 		trans = btrfs_join_transaction(root);
3195 		if (!IS_ERR(trans))
3196 			btrfs_end_transaction(trans);
3197 	}
3198 
3199 	if (nr_unlink)
3200 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3201 
3202 out:
3203 	if (ret)
3204 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3205 	btrfs_free_path(path);
3206 	return ret;
3207 }
3208 
3209 /*
3210  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3211  * don't find any xattrs, we know there can't be any acls.
3212  *
3213  * slot is the slot the inode is in, objectid is the objectid of the inode
3214  */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3215 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3216 					  int slot, u64 objectid,
3217 					  int *first_xattr_slot)
3218 {
3219 	u32 nritems = btrfs_header_nritems(leaf);
3220 	struct btrfs_key found_key;
3221 	static u64 xattr_access = 0;
3222 	static u64 xattr_default = 0;
3223 	int scanned = 0;
3224 
3225 	if (!xattr_access) {
3226 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3227 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3228 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3229 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3230 	}
3231 
3232 	slot++;
3233 	*first_xattr_slot = -1;
3234 	while (slot < nritems) {
3235 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3236 
3237 		/* we found a different objectid, there must not be acls */
3238 		if (found_key.objectid != objectid)
3239 			return 0;
3240 
3241 		/* we found an xattr, assume we've got an acl */
3242 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3243 			if (*first_xattr_slot == -1)
3244 				*first_xattr_slot = slot;
3245 			if (found_key.offset == xattr_access ||
3246 			    found_key.offset == xattr_default)
3247 				return 1;
3248 		}
3249 
3250 		/*
3251 		 * we found a key greater than an xattr key, there can't
3252 		 * be any acls later on
3253 		 */
3254 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3255 			return 0;
3256 
3257 		slot++;
3258 		scanned++;
3259 
3260 		/*
3261 		 * it goes inode, inode backrefs, xattrs, extents,
3262 		 * so if there are a ton of hard links to an inode there can
3263 		 * be a lot of backrefs.  Don't waste time searching too hard,
3264 		 * this is just an optimization
3265 		 */
3266 		if (scanned >= 8)
3267 			break;
3268 	}
3269 	/* we hit the end of the leaf before we found an xattr or
3270 	 * something larger than an xattr.  We have to assume the inode
3271 	 * has acls
3272 	 */
3273 	if (*first_xattr_slot == -1)
3274 		*first_xattr_slot = slot;
3275 	return 1;
3276 }
3277 
3278 /*
3279  * read an inode from the btree into the in-memory inode
3280  */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3281 static int btrfs_read_locked_inode(struct inode *inode,
3282 				   struct btrfs_path *in_path)
3283 {
3284 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3285 	struct btrfs_path *path = in_path;
3286 	struct extent_buffer *leaf;
3287 	struct btrfs_inode_item *inode_item;
3288 	struct btrfs_root *root = BTRFS_I(inode)->root;
3289 	struct btrfs_key location;
3290 	unsigned long ptr;
3291 	int maybe_acls;
3292 	u32 rdev;
3293 	int ret;
3294 	bool filled = false;
3295 	int first_xattr_slot;
3296 
3297 	ret = btrfs_fill_inode(inode, &rdev);
3298 	if (!ret)
3299 		filled = true;
3300 
3301 	if (!path) {
3302 		path = btrfs_alloc_path();
3303 		if (!path)
3304 			return -ENOMEM;
3305 	}
3306 
3307 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3308 
3309 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3310 	if (ret) {
3311 		if (path != in_path)
3312 			btrfs_free_path(path);
3313 		return ret;
3314 	}
3315 
3316 	leaf = path->nodes[0];
3317 
3318 	if (filled)
3319 		goto cache_index;
3320 
3321 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3322 				    struct btrfs_inode_item);
3323 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3324 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3325 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3326 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3327 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3328 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3329 			round_up(i_size_read(inode), fs_info->sectorsize));
3330 
3331 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3332 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3333 
3334 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3335 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3336 
3337 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3338 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3339 
3340 	BTRFS_I(inode)->i_otime.tv_sec =
3341 		btrfs_timespec_sec(leaf, &inode_item->otime);
3342 	BTRFS_I(inode)->i_otime.tv_nsec =
3343 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3344 
3345 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3346 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3347 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3348 
3349 	inode_set_iversion_queried(inode,
3350 				   btrfs_inode_sequence(leaf, inode_item));
3351 	inode->i_generation = BTRFS_I(inode)->generation;
3352 	inode->i_rdev = 0;
3353 	rdev = btrfs_inode_rdev(leaf, inode_item);
3354 
3355 	BTRFS_I(inode)->index_cnt = (u64)-1;
3356 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3357 
3358 cache_index:
3359 	/*
3360 	 * If we were modified in the current generation and evicted from memory
3361 	 * and then re-read we need to do a full sync since we don't have any
3362 	 * idea about which extents were modified before we were evicted from
3363 	 * cache.
3364 	 *
3365 	 * This is required for both inode re-read from disk and delayed inode
3366 	 * in delayed_nodes_tree.
3367 	 */
3368 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3369 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3370 			&BTRFS_I(inode)->runtime_flags);
3371 
3372 	/*
3373 	 * We don't persist the id of the transaction where an unlink operation
3374 	 * against the inode was last made. So here we assume the inode might
3375 	 * have been evicted, and therefore the exact value of last_unlink_trans
3376 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3377 	 * between the inode and its parent if the inode is fsync'ed and the log
3378 	 * replayed. For example, in the scenario:
3379 	 *
3380 	 * touch mydir/foo
3381 	 * ln mydir/foo mydir/bar
3382 	 * sync
3383 	 * unlink mydir/bar
3384 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3385 	 * xfs_io -c fsync mydir/foo
3386 	 * <power failure>
3387 	 * mount fs, triggers fsync log replay
3388 	 *
3389 	 * We must make sure that when we fsync our inode foo we also log its
3390 	 * parent inode, otherwise after log replay the parent still has the
3391 	 * dentry with the "bar" name but our inode foo has a link count of 1
3392 	 * and doesn't have an inode ref with the name "bar" anymore.
3393 	 *
3394 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3395 	 * but it guarantees correctness at the expense of occasional full
3396 	 * transaction commits on fsync if our inode is a directory, or if our
3397 	 * inode is not a directory, logging its parent unnecessarily.
3398 	 */
3399 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3400 
3401 	/*
3402 	 * Same logic as for last_unlink_trans. We don't persist the generation
3403 	 * of the last transaction where this inode was used for a reflink
3404 	 * operation, so after eviction and reloading the inode we must be
3405 	 * pessimistic and assume the last transaction that modified the inode.
3406 	 */
3407 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3408 
3409 	path->slots[0]++;
3410 	if (inode->i_nlink != 1 ||
3411 	    path->slots[0] >= btrfs_header_nritems(leaf))
3412 		goto cache_acl;
3413 
3414 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3415 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3416 		goto cache_acl;
3417 
3418 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3419 	if (location.type == BTRFS_INODE_REF_KEY) {
3420 		struct btrfs_inode_ref *ref;
3421 
3422 		ref = (struct btrfs_inode_ref *)ptr;
3423 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3424 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3425 		struct btrfs_inode_extref *extref;
3426 
3427 		extref = (struct btrfs_inode_extref *)ptr;
3428 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3429 								     extref);
3430 	}
3431 cache_acl:
3432 	/*
3433 	 * try to precache a NULL acl entry for files that don't have
3434 	 * any xattrs or acls
3435 	 */
3436 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3437 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3438 	if (first_xattr_slot != -1) {
3439 		path->slots[0] = first_xattr_slot;
3440 		ret = btrfs_load_inode_props(inode, path);
3441 		if (ret)
3442 			btrfs_err(fs_info,
3443 				  "error loading props for ino %llu (root %llu): %d",
3444 				  btrfs_ino(BTRFS_I(inode)),
3445 				  root->root_key.objectid, ret);
3446 	}
3447 	if (path != in_path)
3448 		btrfs_free_path(path);
3449 
3450 	if (!maybe_acls)
3451 		cache_no_acl(inode);
3452 
3453 	switch (inode->i_mode & S_IFMT) {
3454 	case S_IFREG:
3455 		inode->i_mapping->a_ops = &btrfs_aops;
3456 		inode->i_fop = &btrfs_file_operations;
3457 		inode->i_op = &btrfs_file_inode_operations;
3458 		break;
3459 	case S_IFDIR:
3460 		inode->i_fop = &btrfs_dir_file_operations;
3461 		inode->i_op = &btrfs_dir_inode_operations;
3462 		break;
3463 	case S_IFLNK:
3464 		inode->i_op = &btrfs_symlink_inode_operations;
3465 		inode_nohighmem(inode);
3466 		inode->i_mapping->a_ops = &btrfs_aops;
3467 		break;
3468 	default:
3469 		inode->i_op = &btrfs_special_inode_operations;
3470 		init_special_inode(inode, inode->i_mode, rdev);
3471 		break;
3472 	}
3473 
3474 	btrfs_sync_inode_flags_to_i_flags(inode);
3475 	return 0;
3476 }
3477 
3478 /*
3479  * given a leaf and an inode, copy the inode fields into the leaf
3480  */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3481 static void fill_inode_item(struct btrfs_trans_handle *trans,
3482 			    struct extent_buffer *leaf,
3483 			    struct btrfs_inode_item *item,
3484 			    struct inode *inode)
3485 {
3486 	struct btrfs_map_token token;
3487 
3488 	btrfs_init_map_token(&token, leaf);
3489 
3490 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3491 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3492 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3493 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3494 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3495 
3496 	btrfs_set_token_timespec_sec(&token, &item->atime,
3497 				     inode->i_atime.tv_sec);
3498 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3499 				      inode->i_atime.tv_nsec);
3500 
3501 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3502 				     inode->i_mtime.tv_sec);
3503 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3504 				      inode->i_mtime.tv_nsec);
3505 
3506 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3507 				     inode->i_ctime.tv_sec);
3508 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3509 				      inode->i_ctime.tv_nsec);
3510 
3511 	btrfs_set_token_timespec_sec(&token, &item->otime,
3512 				     BTRFS_I(inode)->i_otime.tv_sec);
3513 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3514 				      BTRFS_I(inode)->i_otime.tv_nsec);
3515 
3516 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3517 	btrfs_set_token_inode_generation(&token, item,
3518 					 BTRFS_I(inode)->generation);
3519 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3520 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3521 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3522 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3523 	btrfs_set_token_inode_block_group(&token, item, 0);
3524 }
3525 
3526 /*
3527  * copy everything in the in-memory inode into the btree.
3528  */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3529 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3530 				struct btrfs_root *root, struct inode *inode)
3531 {
3532 	struct btrfs_inode_item *inode_item;
3533 	struct btrfs_path *path;
3534 	struct extent_buffer *leaf;
3535 	int ret;
3536 
3537 	path = btrfs_alloc_path();
3538 	if (!path)
3539 		return -ENOMEM;
3540 
3541 	path->leave_spinning = 1;
3542 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3543 				 1);
3544 	if (ret) {
3545 		if (ret > 0)
3546 			ret = -ENOENT;
3547 		goto failed;
3548 	}
3549 
3550 	leaf = path->nodes[0];
3551 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3552 				    struct btrfs_inode_item);
3553 
3554 	fill_inode_item(trans, leaf, inode_item, inode);
3555 	btrfs_mark_buffer_dirty(leaf);
3556 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3557 	ret = 0;
3558 failed:
3559 	btrfs_free_path(path);
3560 	return ret;
3561 }
3562 
3563 /*
3564  * copy everything in the in-memory inode into the btree.
3565  */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3566 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3567 				struct btrfs_root *root, struct inode *inode)
3568 {
3569 	struct btrfs_fs_info *fs_info = root->fs_info;
3570 	int ret;
3571 
3572 	/*
3573 	 * If the inode is a free space inode, we can deadlock during commit
3574 	 * if we put it into the delayed code.
3575 	 *
3576 	 * The data relocation inode should also be directly updated
3577 	 * without delay
3578 	 */
3579 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3580 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3581 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3582 		btrfs_update_root_times(trans, root);
3583 
3584 		ret = btrfs_delayed_update_inode(trans, root, inode);
3585 		if (!ret)
3586 			btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3587 		return ret;
3588 	}
3589 
3590 	return btrfs_update_inode_item(trans, root, inode);
3591 }
3592 
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3593 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3594 					 struct btrfs_root *root,
3595 					 struct inode *inode)
3596 {
3597 	int ret;
3598 
3599 	ret = btrfs_update_inode(trans, root, inode);
3600 	if (ret == -ENOSPC)
3601 		return btrfs_update_inode_item(trans, root, inode);
3602 	return ret;
3603 }
3604 
3605 /*
3606  * unlink helper that gets used here in inode.c and in the tree logging
3607  * recovery code.  It remove a link in a directory with a given name, and
3608  * also drops the back refs in the inode to the directory
3609  */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3610 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3611 				struct btrfs_root *root,
3612 				struct btrfs_inode *dir,
3613 				struct btrfs_inode *inode,
3614 				const char *name, int name_len)
3615 {
3616 	struct btrfs_fs_info *fs_info = root->fs_info;
3617 	struct btrfs_path *path;
3618 	int ret = 0;
3619 	struct btrfs_dir_item *di;
3620 	u64 index;
3621 	u64 ino = btrfs_ino(inode);
3622 	u64 dir_ino = btrfs_ino(dir);
3623 
3624 	path = btrfs_alloc_path();
3625 	if (!path) {
3626 		ret = -ENOMEM;
3627 		goto out;
3628 	}
3629 
3630 	path->leave_spinning = 1;
3631 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3632 				    name, name_len, -1);
3633 	if (IS_ERR_OR_NULL(di)) {
3634 		ret = di ? PTR_ERR(di) : -ENOENT;
3635 		goto err;
3636 	}
3637 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3638 	if (ret)
3639 		goto err;
3640 	btrfs_release_path(path);
3641 
3642 	/*
3643 	 * If we don't have dir index, we have to get it by looking up
3644 	 * the inode ref, since we get the inode ref, remove it directly,
3645 	 * it is unnecessary to do delayed deletion.
3646 	 *
3647 	 * But if we have dir index, needn't search inode ref to get it.
3648 	 * Since the inode ref is close to the inode item, it is better
3649 	 * that we delay to delete it, and just do this deletion when
3650 	 * we update the inode item.
3651 	 */
3652 	if (inode->dir_index) {
3653 		ret = btrfs_delayed_delete_inode_ref(inode);
3654 		if (!ret) {
3655 			index = inode->dir_index;
3656 			goto skip_backref;
3657 		}
3658 	}
3659 
3660 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3661 				  dir_ino, &index);
3662 	if (ret) {
3663 		btrfs_info(fs_info,
3664 			"failed to delete reference to %.*s, inode %llu parent %llu",
3665 			name_len, name, ino, dir_ino);
3666 		btrfs_abort_transaction(trans, ret);
3667 		goto err;
3668 	}
3669 skip_backref:
3670 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3671 	if (ret) {
3672 		btrfs_abort_transaction(trans, ret);
3673 		goto err;
3674 	}
3675 
3676 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3677 			dir_ino);
3678 	if (ret != 0 && ret != -ENOENT) {
3679 		btrfs_abort_transaction(trans, ret);
3680 		goto err;
3681 	}
3682 
3683 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3684 			index);
3685 	if (ret == -ENOENT)
3686 		ret = 0;
3687 	else if (ret)
3688 		btrfs_abort_transaction(trans, ret);
3689 
3690 	/*
3691 	 * If we have a pending delayed iput we could end up with the final iput
3692 	 * being run in btrfs-cleaner context.  If we have enough of these built
3693 	 * up we can end up burning a lot of time in btrfs-cleaner without any
3694 	 * way to throttle the unlinks.  Since we're currently holding a ref on
3695 	 * the inode we can run the delayed iput here without any issues as the
3696 	 * final iput won't be done until after we drop the ref we're currently
3697 	 * holding.
3698 	 */
3699 	btrfs_run_delayed_iput(fs_info, inode);
3700 err:
3701 	btrfs_free_path(path);
3702 	if (ret)
3703 		goto out;
3704 
3705 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3706 	inode_inc_iversion(&inode->vfs_inode);
3707 	inode_inc_iversion(&dir->vfs_inode);
3708 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3709 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3710 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3711 out:
3712 	return ret;
3713 }
3714 
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3715 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3716 		       struct btrfs_root *root,
3717 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3718 		       const char *name, int name_len)
3719 {
3720 	int ret;
3721 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3722 	if (!ret) {
3723 		drop_nlink(&inode->vfs_inode);
3724 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3725 	}
3726 	return ret;
3727 }
3728 
3729 /*
3730  * helper to start transaction for unlink and rmdir.
3731  *
3732  * unlink and rmdir are special in btrfs, they do not always free space, so
3733  * if we cannot make our reservations the normal way try and see if there is
3734  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3735  * allow the unlink to occur.
3736  */
__unlink_start_trans(struct inode * dir)3737 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3738 {
3739 	struct btrfs_root *root = BTRFS_I(dir)->root;
3740 
3741 	/*
3742 	 * 1 for the possible orphan item
3743 	 * 1 for the dir item
3744 	 * 1 for the dir index
3745 	 * 1 for the inode ref
3746 	 * 1 for the inode
3747 	 */
3748 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
3749 }
3750 
btrfs_unlink(struct inode * dir,struct dentry * dentry)3751 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3752 {
3753 	struct btrfs_root *root = BTRFS_I(dir)->root;
3754 	struct btrfs_trans_handle *trans;
3755 	struct inode *inode = d_inode(dentry);
3756 	int ret;
3757 
3758 	trans = __unlink_start_trans(dir);
3759 	if (IS_ERR(trans))
3760 		return PTR_ERR(trans);
3761 
3762 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3763 			0);
3764 
3765 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3766 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3767 			dentry->d_name.len);
3768 	if (ret)
3769 		goto out;
3770 
3771 	if (inode->i_nlink == 0) {
3772 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3773 		if (ret)
3774 			goto out;
3775 	}
3776 
3777 out:
3778 	btrfs_end_transaction(trans);
3779 	btrfs_btree_balance_dirty(root->fs_info);
3780 	return ret;
3781 }
3782 
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)3783 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3784 			       struct inode *dir, struct dentry *dentry)
3785 {
3786 	struct btrfs_root *root = BTRFS_I(dir)->root;
3787 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3788 	struct btrfs_path *path;
3789 	struct extent_buffer *leaf;
3790 	struct btrfs_dir_item *di;
3791 	struct btrfs_key key;
3792 	const char *name = dentry->d_name.name;
3793 	int name_len = dentry->d_name.len;
3794 	u64 index;
3795 	int ret;
3796 	u64 objectid;
3797 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3798 
3799 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3800 		objectid = inode->root->root_key.objectid;
3801 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3802 		objectid = inode->location.objectid;
3803 	} else {
3804 		WARN_ON(1);
3805 		return -EINVAL;
3806 	}
3807 
3808 	path = btrfs_alloc_path();
3809 	if (!path)
3810 		return -ENOMEM;
3811 
3812 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3813 				   name, name_len, -1);
3814 	if (IS_ERR_OR_NULL(di)) {
3815 		ret = di ? PTR_ERR(di) : -ENOENT;
3816 		goto out;
3817 	}
3818 
3819 	leaf = path->nodes[0];
3820 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3821 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3822 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3823 	if (ret) {
3824 		btrfs_abort_transaction(trans, ret);
3825 		goto out;
3826 	}
3827 	btrfs_release_path(path);
3828 
3829 	/*
3830 	 * This is a placeholder inode for a subvolume we didn't have a
3831 	 * reference to at the time of the snapshot creation.  In the meantime
3832 	 * we could have renamed the real subvol link into our snapshot, so
3833 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3834 	 * Instead simply lookup the dir_index_item for this entry so we can
3835 	 * remove it.  Otherwise we know we have a ref to the root and we can
3836 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3837 	 */
3838 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3839 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3840 						 name, name_len);
3841 		if (IS_ERR_OR_NULL(di)) {
3842 			if (!di)
3843 				ret = -ENOENT;
3844 			else
3845 				ret = PTR_ERR(di);
3846 			btrfs_abort_transaction(trans, ret);
3847 			goto out;
3848 		}
3849 
3850 		leaf = path->nodes[0];
3851 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3852 		index = key.offset;
3853 		btrfs_release_path(path);
3854 	} else {
3855 		ret = btrfs_del_root_ref(trans, objectid,
3856 					 root->root_key.objectid, dir_ino,
3857 					 &index, name, name_len);
3858 		if (ret) {
3859 			btrfs_abort_transaction(trans, ret);
3860 			goto out;
3861 		}
3862 	}
3863 
3864 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3865 	if (ret) {
3866 		btrfs_abort_transaction(trans, ret);
3867 		goto out;
3868 	}
3869 
3870 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3871 	inode_inc_iversion(dir);
3872 	dir->i_mtime = dir->i_ctime = current_time(dir);
3873 	ret = btrfs_update_inode_fallback(trans, root, dir);
3874 	if (ret)
3875 		btrfs_abort_transaction(trans, ret);
3876 out:
3877 	btrfs_free_path(path);
3878 	return ret;
3879 }
3880 
3881 /*
3882  * Helper to check if the subvolume references other subvolumes or if it's
3883  * default.
3884  */
may_destroy_subvol(struct btrfs_root * root)3885 static noinline int may_destroy_subvol(struct btrfs_root *root)
3886 {
3887 	struct btrfs_fs_info *fs_info = root->fs_info;
3888 	struct btrfs_path *path;
3889 	struct btrfs_dir_item *di;
3890 	struct btrfs_key key;
3891 	u64 dir_id;
3892 	int ret;
3893 
3894 	path = btrfs_alloc_path();
3895 	if (!path)
3896 		return -ENOMEM;
3897 
3898 	/* Make sure this root isn't set as the default subvol */
3899 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3900 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3901 				   dir_id, "default", 7, 0);
3902 	if (di && !IS_ERR(di)) {
3903 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3904 		if (key.objectid == root->root_key.objectid) {
3905 			ret = -EPERM;
3906 			btrfs_err(fs_info,
3907 				  "deleting default subvolume %llu is not allowed",
3908 				  key.objectid);
3909 			goto out;
3910 		}
3911 		btrfs_release_path(path);
3912 	}
3913 
3914 	key.objectid = root->root_key.objectid;
3915 	key.type = BTRFS_ROOT_REF_KEY;
3916 	key.offset = (u64)-1;
3917 
3918 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3919 	if (ret < 0)
3920 		goto out;
3921 	BUG_ON(ret == 0);
3922 
3923 	ret = 0;
3924 	if (path->slots[0] > 0) {
3925 		path->slots[0]--;
3926 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3927 		if (key.objectid == root->root_key.objectid &&
3928 		    key.type == BTRFS_ROOT_REF_KEY)
3929 			ret = -ENOTEMPTY;
3930 	}
3931 out:
3932 	btrfs_free_path(path);
3933 	return ret;
3934 }
3935 
3936 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)3937 static void btrfs_prune_dentries(struct btrfs_root *root)
3938 {
3939 	struct btrfs_fs_info *fs_info = root->fs_info;
3940 	struct rb_node *node;
3941 	struct rb_node *prev;
3942 	struct btrfs_inode *entry;
3943 	struct inode *inode;
3944 	u64 objectid = 0;
3945 
3946 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3947 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3948 
3949 	spin_lock(&root->inode_lock);
3950 again:
3951 	node = root->inode_tree.rb_node;
3952 	prev = NULL;
3953 	while (node) {
3954 		prev = node;
3955 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3956 
3957 		if (objectid < btrfs_ino(entry))
3958 			node = node->rb_left;
3959 		else if (objectid > btrfs_ino(entry))
3960 			node = node->rb_right;
3961 		else
3962 			break;
3963 	}
3964 	if (!node) {
3965 		while (prev) {
3966 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3967 			if (objectid <= btrfs_ino(entry)) {
3968 				node = prev;
3969 				break;
3970 			}
3971 			prev = rb_next(prev);
3972 		}
3973 	}
3974 	while (node) {
3975 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3976 		objectid = btrfs_ino(entry) + 1;
3977 		inode = igrab(&entry->vfs_inode);
3978 		if (inode) {
3979 			spin_unlock(&root->inode_lock);
3980 			if (atomic_read(&inode->i_count) > 1)
3981 				d_prune_aliases(inode);
3982 			/*
3983 			 * btrfs_drop_inode will have it removed from the inode
3984 			 * cache when its usage count hits zero.
3985 			 */
3986 			iput(inode);
3987 			cond_resched();
3988 			spin_lock(&root->inode_lock);
3989 			goto again;
3990 		}
3991 
3992 		if (cond_resched_lock(&root->inode_lock))
3993 			goto again;
3994 
3995 		node = rb_next(node);
3996 	}
3997 	spin_unlock(&root->inode_lock);
3998 }
3999 
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4000 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4001 {
4002 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4003 	struct btrfs_root *root = BTRFS_I(dir)->root;
4004 	struct inode *inode = d_inode(dentry);
4005 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4006 	struct btrfs_trans_handle *trans;
4007 	struct btrfs_block_rsv block_rsv;
4008 	u64 root_flags;
4009 	int ret;
4010 
4011 	down_write(&fs_info->subvol_sem);
4012 
4013 	/*
4014 	 * Don't allow to delete a subvolume with send in progress. This is
4015 	 * inside the inode lock so the error handling that has to drop the bit
4016 	 * again is not run concurrently.
4017 	 */
4018 	spin_lock(&dest->root_item_lock);
4019 	if (dest->send_in_progress) {
4020 		spin_unlock(&dest->root_item_lock);
4021 		btrfs_warn(fs_info,
4022 			   "attempt to delete subvolume %llu during send",
4023 			   dest->root_key.objectid);
4024 		ret = -EPERM;
4025 		goto out_up_write;
4026 	}
4027 	if (atomic_read(&dest->nr_swapfiles)) {
4028 		spin_unlock(&dest->root_item_lock);
4029 		btrfs_warn(fs_info,
4030 			   "attempt to delete subvolume %llu with active swapfile",
4031 			   root->root_key.objectid);
4032 		ret = -EPERM;
4033 		goto out_up_write;
4034 	}
4035 	root_flags = btrfs_root_flags(&dest->root_item);
4036 	btrfs_set_root_flags(&dest->root_item,
4037 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4038 	spin_unlock(&dest->root_item_lock);
4039 
4040 	ret = may_destroy_subvol(dest);
4041 	if (ret)
4042 		goto out_undead;
4043 
4044 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4045 	/*
4046 	 * One for dir inode,
4047 	 * two for dir entries,
4048 	 * two for root ref/backref.
4049 	 */
4050 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4051 	if (ret)
4052 		goto out_undead;
4053 
4054 	trans = btrfs_start_transaction(root, 0);
4055 	if (IS_ERR(trans)) {
4056 		ret = PTR_ERR(trans);
4057 		goto out_release;
4058 	}
4059 	trans->block_rsv = &block_rsv;
4060 	trans->bytes_reserved = block_rsv.size;
4061 
4062 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4063 
4064 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4065 	if (ret) {
4066 		btrfs_abort_transaction(trans, ret);
4067 		goto out_end_trans;
4068 	}
4069 
4070 	btrfs_record_root_in_trans(trans, dest);
4071 
4072 	memset(&dest->root_item.drop_progress, 0,
4073 		sizeof(dest->root_item.drop_progress));
4074 	dest->root_item.drop_level = 0;
4075 	btrfs_set_root_refs(&dest->root_item, 0);
4076 
4077 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4078 		ret = btrfs_insert_orphan_item(trans,
4079 					fs_info->tree_root,
4080 					dest->root_key.objectid);
4081 		if (ret) {
4082 			btrfs_abort_transaction(trans, ret);
4083 			goto out_end_trans;
4084 		}
4085 	}
4086 
4087 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4088 				  BTRFS_UUID_KEY_SUBVOL,
4089 				  dest->root_key.objectid);
4090 	if (ret && ret != -ENOENT) {
4091 		btrfs_abort_transaction(trans, ret);
4092 		goto out_end_trans;
4093 	}
4094 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4095 		ret = btrfs_uuid_tree_remove(trans,
4096 					  dest->root_item.received_uuid,
4097 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4098 					  dest->root_key.objectid);
4099 		if (ret && ret != -ENOENT) {
4100 			btrfs_abort_transaction(trans, ret);
4101 			goto out_end_trans;
4102 		}
4103 	}
4104 
4105 	free_anon_bdev(dest->anon_dev);
4106 	dest->anon_dev = 0;
4107 out_end_trans:
4108 	trans->block_rsv = NULL;
4109 	trans->bytes_reserved = 0;
4110 	ret = btrfs_end_transaction(trans);
4111 	inode->i_flags |= S_DEAD;
4112 out_release:
4113 	btrfs_subvolume_release_metadata(root, &block_rsv);
4114 out_undead:
4115 	if (ret) {
4116 		spin_lock(&dest->root_item_lock);
4117 		root_flags = btrfs_root_flags(&dest->root_item);
4118 		btrfs_set_root_flags(&dest->root_item,
4119 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4120 		spin_unlock(&dest->root_item_lock);
4121 	}
4122 out_up_write:
4123 	up_write(&fs_info->subvol_sem);
4124 	if (!ret) {
4125 		d_invalidate(dentry);
4126 		btrfs_prune_dentries(dest);
4127 		ASSERT(dest->send_in_progress == 0);
4128 
4129 		/* the last ref */
4130 		if (dest->ino_cache_inode) {
4131 			iput(dest->ino_cache_inode);
4132 			dest->ino_cache_inode = NULL;
4133 		}
4134 	}
4135 
4136 	return ret;
4137 }
4138 
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4139 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4140 {
4141 	struct inode *inode = d_inode(dentry);
4142 	int err = 0;
4143 	struct btrfs_root *root = BTRFS_I(dir)->root;
4144 	struct btrfs_trans_handle *trans;
4145 	u64 last_unlink_trans;
4146 
4147 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4148 		return -ENOTEMPTY;
4149 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4150 		return btrfs_delete_subvolume(dir, dentry);
4151 
4152 	trans = __unlink_start_trans(dir);
4153 	if (IS_ERR(trans))
4154 		return PTR_ERR(trans);
4155 
4156 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4157 		err = btrfs_unlink_subvol(trans, dir, dentry);
4158 		goto out;
4159 	}
4160 
4161 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4162 	if (err)
4163 		goto out;
4164 
4165 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4166 
4167 	/* now the directory is empty */
4168 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4169 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4170 			dentry->d_name.len);
4171 	if (!err) {
4172 		btrfs_i_size_write(BTRFS_I(inode), 0);
4173 		/*
4174 		 * Propagate the last_unlink_trans value of the deleted dir to
4175 		 * its parent directory. This is to prevent an unrecoverable
4176 		 * log tree in the case we do something like this:
4177 		 * 1) create dir foo
4178 		 * 2) create snapshot under dir foo
4179 		 * 3) delete the snapshot
4180 		 * 4) rmdir foo
4181 		 * 5) mkdir foo
4182 		 * 6) fsync foo or some file inside foo
4183 		 */
4184 		if (last_unlink_trans >= trans->transid)
4185 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4186 	}
4187 out:
4188 	btrfs_end_transaction(trans);
4189 	btrfs_btree_balance_dirty(root->fs_info);
4190 
4191 	return err;
4192 }
4193 
4194 /*
4195  * Return this if we need to call truncate_block for the last bit of the
4196  * truncate.
4197  */
4198 #define NEED_TRUNCATE_BLOCK 1
4199 
4200 /*
4201  * this can truncate away extent items, csum items and directory items.
4202  * It starts at a high offset and removes keys until it can't find
4203  * any higher than new_size
4204  *
4205  * csum items that cross the new i_size are truncated to the new size
4206  * as well.
4207  *
4208  * min_type is the minimum key type to truncate down to.  If set to 0, this
4209  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4210  */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4211 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4212 			       struct btrfs_root *root,
4213 			       struct inode *inode,
4214 			       u64 new_size, u32 min_type)
4215 {
4216 	struct btrfs_fs_info *fs_info = root->fs_info;
4217 	struct btrfs_path *path;
4218 	struct extent_buffer *leaf;
4219 	struct btrfs_file_extent_item *fi;
4220 	struct btrfs_key key;
4221 	struct btrfs_key found_key;
4222 	u64 extent_start = 0;
4223 	u64 extent_num_bytes = 0;
4224 	u64 extent_offset = 0;
4225 	u64 item_end = 0;
4226 	u64 last_size = new_size;
4227 	u32 found_type = (u8)-1;
4228 	int found_extent;
4229 	int del_item;
4230 	int pending_del_nr = 0;
4231 	int pending_del_slot = 0;
4232 	int extent_type = -1;
4233 	int ret;
4234 	u64 ino = btrfs_ino(BTRFS_I(inode));
4235 	u64 bytes_deleted = 0;
4236 	bool be_nice = false;
4237 	bool should_throttle = false;
4238 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4239 	struct extent_state *cached_state = NULL;
4240 
4241 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4242 
4243 	/*
4244 	 * For non-free space inodes and non-shareable roots, we want to back
4245 	 * off from time to time.  This means all inodes in subvolume roots,
4246 	 * reloc roots, and data reloc roots.
4247 	 */
4248 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4249 	    test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4250 		be_nice = true;
4251 
4252 	path = btrfs_alloc_path();
4253 	if (!path)
4254 		return -ENOMEM;
4255 	path->reada = READA_BACK;
4256 
4257 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4258 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4259 				 &cached_state);
4260 
4261 		/*
4262 		 * We want to drop from the next block forward in case this
4263 		 * new size is not block aligned since we will be keeping the
4264 		 * last block of the extent just the way it is.
4265 		 */
4266 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4267 					fs_info->sectorsize),
4268 					(u64)-1, 0);
4269 	}
4270 
4271 	/*
4272 	 * This function is also used to drop the items in the log tree before
4273 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4274 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4275 	 * items.
4276 	 */
4277 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4278 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4279 
4280 	key.objectid = ino;
4281 	key.offset = (u64)-1;
4282 	key.type = (u8)-1;
4283 
4284 search_again:
4285 	/*
4286 	 * with a 16K leaf size and 128MB extents, you can actually queue
4287 	 * up a huge file in a single leaf.  Most of the time that
4288 	 * bytes_deleted is > 0, it will be huge by the time we get here
4289 	 */
4290 	if (be_nice && bytes_deleted > SZ_32M &&
4291 	    btrfs_should_end_transaction(trans)) {
4292 		ret = -EAGAIN;
4293 		goto out;
4294 	}
4295 
4296 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4297 	if (ret < 0)
4298 		goto out;
4299 
4300 	if (ret > 0) {
4301 		ret = 0;
4302 		/* there are no items in the tree for us to truncate, we're
4303 		 * done
4304 		 */
4305 		if (path->slots[0] == 0)
4306 			goto out;
4307 		path->slots[0]--;
4308 	}
4309 
4310 	while (1) {
4311 		u64 clear_start = 0, clear_len = 0;
4312 
4313 		fi = NULL;
4314 		leaf = path->nodes[0];
4315 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4316 		found_type = found_key.type;
4317 
4318 		if (found_key.objectid != ino)
4319 			break;
4320 
4321 		if (found_type < min_type)
4322 			break;
4323 
4324 		item_end = found_key.offset;
4325 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4326 			fi = btrfs_item_ptr(leaf, path->slots[0],
4327 					    struct btrfs_file_extent_item);
4328 			extent_type = btrfs_file_extent_type(leaf, fi);
4329 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4330 				item_end +=
4331 				    btrfs_file_extent_num_bytes(leaf, fi);
4332 
4333 				trace_btrfs_truncate_show_fi_regular(
4334 					BTRFS_I(inode), leaf, fi,
4335 					found_key.offset);
4336 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4337 				item_end += btrfs_file_extent_ram_bytes(leaf,
4338 									fi);
4339 
4340 				trace_btrfs_truncate_show_fi_inline(
4341 					BTRFS_I(inode), leaf, fi, path->slots[0],
4342 					found_key.offset);
4343 			}
4344 			item_end--;
4345 		}
4346 		if (found_type > min_type) {
4347 			del_item = 1;
4348 		} else {
4349 			if (item_end < new_size)
4350 				break;
4351 			if (found_key.offset >= new_size)
4352 				del_item = 1;
4353 			else
4354 				del_item = 0;
4355 		}
4356 		found_extent = 0;
4357 		/* FIXME, shrink the extent if the ref count is only 1 */
4358 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4359 			goto delete;
4360 
4361 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4362 			u64 num_dec;
4363 
4364 			clear_start = found_key.offset;
4365 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4366 			if (!del_item) {
4367 				u64 orig_num_bytes =
4368 					btrfs_file_extent_num_bytes(leaf, fi);
4369 				extent_num_bytes = ALIGN(new_size -
4370 						found_key.offset,
4371 						fs_info->sectorsize);
4372 				clear_start = ALIGN(new_size, fs_info->sectorsize);
4373 				btrfs_set_file_extent_num_bytes(leaf, fi,
4374 							 extent_num_bytes);
4375 				num_dec = (orig_num_bytes -
4376 					   extent_num_bytes);
4377 				if (test_bit(BTRFS_ROOT_SHAREABLE,
4378 					     &root->state) &&
4379 				    extent_start != 0)
4380 					inode_sub_bytes(inode, num_dec);
4381 				btrfs_mark_buffer_dirty(leaf);
4382 			} else {
4383 				extent_num_bytes =
4384 					btrfs_file_extent_disk_num_bytes(leaf,
4385 									 fi);
4386 				extent_offset = found_key.offset -
4387 					btrfs_file_extent_offset(leaf, fi);
4388 
4389 				/* FIXME blocksize != 4096 */
4390 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4391 				if (extent_start != 0) {
4392 					found_extent = 1;
4393 					if (test_bit(BTRFS_ROOT_SHAREABLE,
4394 						     &root->state))
4395 						inode_sub_bytes(inode, num_dec);
4396 				}
4397 			}
4398 			clear_len = num_dec;
4399 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4400 			/*
4401 			 * we can't truncate inline items that have had
4402 			 * special encodings
4403 			 */
4404 			if (!del_item &&
4405 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4406 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4407 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4408 				u32 size = (u32)(new_size - found_key.offset);
4409 
4410 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4411 				size = btrfs_file_extent_calc_inline_size(size);
4412 				btrfs_truncate_item(path, size, 1);
4413 			} else if (!del_item) {
4414 				/*
4415 				 * We have to bail so the last_size is set to
4416 				 * just before this extent.
4417 				 */
4418 				ret = NEED_TRUNCATE_BLOCK;
4419 				break;
4420 			} else {
4421 				/*
4422 				 * Inline extents are special, we just treat
4423 				 * them as a full sector worth in the file
4424 				 * extent tree just for simplicity sake.
4425 				 */
4426 				clear_len = fs_info->sectorsize;
4427 			}
4428 
4429 			if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4430 				inode_sub_bytes(inode, item_end + 1 - new_size);
4431 		}
4432 delete:
4433 		/*
4434 		 * We use btrfs_truncate_inode_items() to clean up log trees for
4435 		 * multiple fsyncs, and in this case we don't want to clear the
4436 		 * file extent range because it's just the log.
4437 		 */
4438 		if (root == BTRFS_I(inode)->root) {
4439 			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4440 						  clear_start, clear_len);
4441 			if (ret) {
4442 				btrfs_abort_transaction(trans, ret);
4443 				break;
4444 			}
4445 		}
4446 
4447 		if (del_item)
4448 			last_size = found_key.offset;
4449 		else
4450 			last_size = new_size;
4451 		if (del_item) {
4452 			if (!pending_del_nr) {
4453 				/* no pending yet, add ourselves */
4454 				pending_del_slot = path->slots[0];
4455 				pending_del_nr = 1;
4456 			} else if (pending_del_nr &&
4457 				   path->slots[0] + 1 == pending_del_slot) {
4458 				/* hop on the pending chunk */
4459 				pending_del_nr++;
4460 				pending_del_slot = path->slots[0];
4461 			} else {
4462 				BUG();
4463 			}
4464 		} else {
4465 			break;
4466 		}
4467 		should_throttle = false;
4468 
4469 		if (found_extent &&
4470 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4471 			struct btrfs_ref ref = { 0 };
4472 
4473 			bytes_deleted += extent_num_bytes;
4474 
4475 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4476 					extent_start, extent_num_bytes, 0);
4477 			ref.real_root = root->root_key.objectid;
4478 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4479 					ino, extent_offset);
4480 			ret = btrfs_free_extent(trans, &ref);
4481 			if (ret) {
4482 				btrfs_abort_transaction(trans, ret);
4483 				break;
4484 			}
4485 			if (be_nice) {
4486 				if (btrfs_should_throttle_delayed_refs(trans))
4487 					should_throttle = true;
4488 			}
4489 		}
4490 
4491 		if (found_type == BTRFS_INODE_ITEM_KEY)
4492 			break;
4493 
4494 		if (path->slots[0] == 0 ||
4495 		    path->slots[0] != pending_del_slot ||
4496 		    should_throttle) {
4497 			if (pending_del_nr) {
4498 				ret = btrfs_del_items(trans, root, path,
4499 						pending_del_slot,
4500 						pending_del_nr);
4501 				if (ret) {
4502 					btrfs_abort_transaction(trans, ret);
4503 					break;
4504 				}
4505 				pending_del_nr = 0;
4506 			}
4507 			btrfs_release_path(path);
4508 
4509 			/*
4510 			 * We can generate a lot of delayed refs, so we need to
4511 			 * throttle every once and a while and make sure we're
4512 			 * adding enough space to keep up with the work we are
4513 			 * generating.  Since we hold a transaction here we
4514 			 * can't flush, and we don't want to FLUSH_LIMIT because
4515 			 * we could have generated too many delayed refs to
4516 			 * actually allocate, so just bail if we're short and
4517 			 * let the normal reservation dance happen higher up.
4518 			 */
4519 			if (should_throttle) {
4520 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4521 							BTRFS_RESERVE_NO_FLUSH);
4522 				if (ret) {
4523 					ret = -EAGAIN;
4524 					break;
4525 				}
4526 			}
4527 			goto search_again;
4528 		} else {
4529 			path->slots[0]--;
4530 		}
4531 	}
4532 out:
4533 	if (ret >= 0 && pending_del_nr) {
4534 		int err;
4535 
4536 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4537 				      pending_del_nr);
4538 		if (err) {
4539 			btrfs_abort_transaction(trans, err);
4540 			ret = err;
4541 		}
4542 	}
4543 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4544 		ASSERT(last_size >= new_size);
4545 		if (!ret && last_size > new_size)
4546 			last_size = new_size;
4547 		btrfs_inode_safe_disk_i_size_write(inode, last_size);
4548 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4549 				     (u64)-1, &cached_state);
4550 	}
4551 
4552 	btrfs_free_path(path);
4553 	return ret;
4554 }
4555 
4556 /*
4557  * btrfs_truncate_block - read, zero a chunk and write a block
4558  * @inode - inode that we're zeroing
4559  * @from - the offset to start zeroing
4560  * @len - the length to zero, 0 to zero the entire range respective to the
4561  *	offset
4562  * @front - zero up to the offset instead of from the offset on
4563  *
4564  * This will find the block for the "from" offset and cow the block and zero the
4565  * part we want to zero.  This is used with truncate and hole punching.
4566  */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4567 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4568 			int front)
4569 {
4570 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4571 	struct address_space *mapping = inode->i_mapping;
4572 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4573 	struct btrfs_ordered_extent *ordered;
4574 	struct extent_state *cached_state = NULL;
4575 	struct extent_changeset *data_reserved = NULL;
4576 	char *kaddr;
4577 	bool only_release_metadata = false;
4578 	u32 blocksize = fs_info->sectorsize;
4579 	pgoff_t index = from >> PAGE_SHIFT;
4580 	unsigned offset = from & (blocksize - 1);
4581 	struct page *page;
4582 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4583 	size_t write_bytes = blocksize;
4584 	int ret = 0;
4585 	u64 block_start;
4586 	u64 block_end;
4587 
4588 	if (IS_ALIGNED(offset, blocksize) &&
4589 	    (!len || IS_ALIGNED(len, blocksize)))
4590 		goto out;
4591 
4592 	block_start = round_down(from, blocksize);
4593 	block_end = block_start + blocksize - 1;
4594 
4595 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4596 					  block_start, blocksize);
4597 	if (ret < 0) {
4598 		if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4599 					   &write_bytes) > 0) {
4600 			/* For nocow case, no need to reserve data space */
4601 			only_release_metadata = true;
4602 		} else {
4603 			goto out;
4604 		}
4605 	}
4606 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4607 	if (ret < 0) {
4608 		if (!only_release_metadata)
4609 			btrfs_free_reserved_data_space(BTRFS_I(inode),
4610 					data_reserved, block_start, blocksize);
4611 		goto out;
4612 	}
4613 again:
4614 	page = find_or_create_page(mapping, index, mask);
4615 	if (!page) {
4616 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4617 					     block_start, blocksize, true);
4618 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4619 		ret = -ENOMEM;
4620 		goto out;
4621 	}
4622 
4623 	if (!PageUptodate(page)) {
4624 		ret = btrfs_readpage(NULL, page);
4625 		lock_page(page);
4626 		if (page->mapping != mapping) {
4627 			unlock_page(page);
4628 			put_page(page);
4629 			goto again;
4630 		}
4631 		if (!PageUptodate(page)) {
4632 			ret = -EIO;
4633 			goto out_unlock;
4634 		}
4635 	}
4636 	wait_on_page_writeback(page);
4637 
4638 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4639 	set_page_extent_mapped(page);
4640 
4641 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
4642 	if (ordered) {
4643 		unlock_extent_cached(io_tree, block_start, block_end,
4644 				     &cached_state);
4645 		unlock_page(page);
4646 		put_page(page);
4647 		btrfs_start_ordered_extent(ordered, 1);
4648 		btrfs_put_ordered_extent(ordered);
4649 		goto again;
4650 	}
4651 
4652 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4653 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4654 			 0, 0, &cached_state);
4655 
4656 	ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
4657 					&cached_state);
4658 	if (ret) {
4659 		unlock_extent_cached(io_tree, block_start, block_end,
4660 				     &cached_state);
4661 		goto out_unlock;
4662 	}
4663 
4664 	if (offset != blocksize) {
4665 		if (!len)
4666 			len = blocksize - offset;
4667 		kaddr = kmap(page);
4668 		if (front)
4669 			memset(kaddr + (block_start - page_offset(page)),
4670 				0, offset);
4671 		else
4672 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4673 				0, len);
4674 		flush_dcache_page(page);
4675 		kunmap(page);
4676 	}
4677 	ClearPageChecked(page);
4678 	set_page_dirty(page);
4679 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4680 
4681 	if (only_release_metadata)
4682 		set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4683 				block_end, EXTENT_NORESERVE, NULL, NULL,
4684 				GFP_NOFS);
4685 
4686 out_unlock:
4687 	if (ret) {
4688 		if (only_release_metadata)
4689 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
4690 					blocksize, true);
4691 		else
4692 			btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4693 					block_start, blocksize, true);
4694 	}
4695 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4696 	unlock_page(page);
4697 	put_page(page);
4698 out:
4699 	if (only_release_metadata)
4700 		btrfs_check_nocow_unlock(BTRFS_I(inode));
4701 	extent_changeset_free(data_reserved);
4702 	return ret;
4703 }
4704 
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)4705 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4706 			     u64 offset, u64 len)
4707 {
4708 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4709 	struct btrfs_trans_handle *trans;
4710 	int ret;
4711 
4712 	/*
4713 	 * Still need to make sure the inode looks like it's been updated so
4714 	 * that any holes get logged if we fsync.
4715 	 */
4716 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4717 		BTRFS_I(inode)->last_trans = fs_info->generation;
4718 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4719 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4720 		return 0;
4721 	}
4722 
4723 	/*
4724 	 * 1 - for the one we're dropping
4725 	 * 1 - for the one we're adding
4726 	 * 1 - for updating the inode.
4727 	 */
4728 	trans = btrfs_start_transaction(root, 3);
4729 	if (IS_ERR(trans))
4730 		return PTR_ERR(trans);
4731 
4732 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4733 	if (ret) {
4734 		btrfs_abort_transaction(trans, ret);
4735 		btrfs_end_transaction(trans);
4736 		return ret;
4737 	}
4738 
4739 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4740 			offset, 0, 0, len, 0, len, 0, 0, 0);
4741 	if (ret)
4742 		btrfs_abort_transaction(trans, ret);
4743 	else
4744 		btrfs_update_inode(trans, root, inode);
4745 	btrfs_end_transaction(trans);
4746 	return ret;
4747 }
4748 
4749 /*
4750  * This function puts in dummy file extents for the area we're creating a hole
4751  * for.  So if we are truncating this file to a larger size we need to insert
4752  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4753  * the range between oldsize and size
4754  */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)4755 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4756 {
4757 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4758 	struct btrfs_root *root = BTRFS_I(inode)->root;
4759 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4760 	struct extent_map *em = NULL;
4761 	struct extent_state *cached_state = NULL;
4762 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4763 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4764 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4765 	u64 last_byte;
4766 	u64 cur_offset;
4767 	u64 hole_size;
4768 	int err = 0;
4769 
4770 	/*
4771 	 * If our size started in the middle of a block we need to zero out the
4772 	 * rest of the block before we expand the i_size, otherwise we could
4773 	 * expose stale data.
4774 	 */
4775 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4776 	if (err)
4777 		return err;
4778 
4779 	if (size <= hole_start)
4780 		return 0;
4781 
4782 	btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
4783 					   block_end - 1, &cached_state);
4784 	cur_offset = hole_start;
4785 	while (1) {
4786 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4787 				      block_end - cur_offset);
4788 		if (IS_ERR(em)) {
4789 			err = PTR_ERR(em);
4790 			em = NULL;
4791 			break;
4792 		}
4793 		last_byte = min(extent_map_end(em), block_end);
4794 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4795 		hole_size = last_byte - cur_offset;
4796 
4797 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4798 			struct extent_map *hole_em;
4799 
4800 			err = maybe_insert_hole(root, inode, cur_offset,
4801 						hole_size);
4802 			if (err)
4803 				break;
4804 
4805 			err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4806 							cur_offset, hole_size);
4807 			if (err)
4808 				break;
4809 
4810 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4811 						cur_offset + hole_size - 1, 0);
4812 			hole_em = alloc_extent_map();
4813 			if (!hole_em) {
4814 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4815 					&BTRFS_I(inode)->runtime_flags);
4816 				goto next;
4817 			}
4818 			hole_em->start = cur_offset;
4819 			hole_em->len = hole_size;
4820 			hole_em->orig_start = cur_offset;
4821 
4822 			hole_em->block_start = EXTENT_MAP_HOLE;
4823 			hole_em->block_len = 0;
4824 			hole_em->orig_block_len = 0;
4825 			hole_em->ram_bytes = hole_size;
4826 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4827 			hole_em->generation = fs_info->generation;
4828 
4829 			while (1) {
4830 				write_lock(&em_tree->lock);
4831 				err = add_extent_mapping(em_tree, hole_em, 1);
4832 				write_unlock(&em_tree->lock);
4833 				if (err != -EEXIST)
4834 					break;
4835 				btrfs_drop_extent_cache(BTRFS_I(inode),
4836 							cur_offset,
4837 							cur_offset +
4838 							hole_size - 1, 0);
4839 			}
4840 			free_extent_map(hole_em);
4841 		} else {
4842 			err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4843 							cur_offset, hole_size);
4844 			if (err)
4845 				break;
4846 		}
4847 next:
4848 		free_extent_map(em);
4849 		em = NULL;
4850 		cur_offset = last_byte;
4851 		if (cur_offset >= block_end)
4852 			break;
4853 	}
4854 	free_extent_map(em);
4855 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4856 	return err;
4857 }
4858 
btrfs_setsize(struct inode * inode,struct iattr * attr)4859 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4860 {
4861 	struct btrfs_root *root = BTRFS_I(inode)->root;
4862 	struct btrfs_trans_handle *trans;
4863 	loff_t oldsize = i_size_read(inode);
4864 	loff_t newsize = attr->ia_size;
4865 	int mask = attr->ia_valid;
4866 	int ret;
4867 
4868 	/*
4869 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4870 	 * special case where we need to update the times despite not having
4871 	 * these flags set.  For all other operations the VFS set these flags
4872 	 * explicitly if it wants a timestamp update.
4873 	 */
4874 	if (newsize != oldsize) {
4875 		inode_inc_iversion(inode);
4876 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4877 			inode->i_ctime = inode->i_mtime =
4878 				current_time(inode);
4879 	}
4880 
4881 	if (newsize > oldsize) {
4882 		/*
4883 		 * Don't do an expanding truncate while snapshotting is ongoing.
4884 		 * This is to ensure the snapshot captures a fully consistent
4885 		 * state of this file - if the snapshot captures this expanding
4886 		 * truncation, it must capture all writes that happened before
4887 		 * this truncation.
4888 		 */
4889 		btrfs_drew_write_lock(&root->snapshot_lock);
4890 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4891 		if (ret) {
4892 			btrfs_drew_write_unlock(&root->snapshot_lock);
4893 			return ret;
4894 		}
4895 
4896 		trans = btrfs_start_transaction(root, 1);
4897 		if (IS_ERR(trans)) {
4898 			btrfs_drew_write_unlock(&root->snapshot_lock);
4899 			return PTR_ERR(trans);
4900 		}
4901 
4902 		i_size_write(inode, newsize);
4903 		btrfs_inode_safe_disk_i_size_write(inode, 0);
4904 		pagecache_isize_extended(inode, oldsize, newsize);
4905 		ret = btrfs_update_inode(trans, root, inode);
4906 		btrfs_drew_write_unlock(&root->snapshot_lock);
4907 		btrfs_end_transaction(trans);
4908 	} else {
4909 
4910 		/*
4911 		 * We're truncating a file that used to have good data down to
4912 		 * zero. Make sure any new writes to the file get on disk
4913 		 * on close.
4914 		 */
4915 		if (newsize == 0)
4916 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
4917 				&BTRFS_I(inode)->runtime_flags);
4918 
4919 		truncate_setsize(inode, newsize);
4920 
4921 		inode_dio_wait(inode);
4922 
4923 		ret = btrfs_truncate(inode, newsize == oldsize);
4924 		if (ret && inode->i_nlink) {
4925 			int err;
4926 
4927 			/*
4928 			 * Truncate failed, so fix up the in-memory size. We
4929 			 * adjusted disk_i_size down as we removed extents, so
4930 			 * wait for disk_i_size to be stable and then update the
4931 			 * in-memory size to match.
4932 			 */
4933 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4934 			if (err)
4935 				return err;
4936 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4937 		}
4938 	}
4939 
4940 	return ret;
4941 }
4942 
btrfs_setattr(struct dentry * dentry,struct iattr * attr)4943 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4944 {
4945 	struct inode *inode = d_inode(dentry);
4946 	struct btrfs_root *root = BTRFS_I(inode)->root;
4947 	int err;
4948 
4949 	if (btrfs_root_readonly(root))
4950 		return -EROFS;
4951 
4952 	err = setattr_prepare(dentry, attr);
4953 	if (err)
4954 		return err;
4955 
4956 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4957 		err = btrfs_setsize(inode, attr);
4958 		if (err)
4959 			return err;
4960 	}
4961 
4962 	if (attr->ia_valid) {
4963 		setattr_copy(inode, attr);
4964 		inode_inc_iversion(inode);
4965 		err = btrfs_dirty_inode(inode);
4966 
4967 		if (!err && attr->ia_valid & ATTR_MODE)
4968 			err = posix_acl_chmod(inode, inode->i_mode);
4969 	}
4970 
4971 	return err;
4972 }
4973 
4974 /*
4975  * While truncating the inode pages during eviction, we get the VFS calling
4976  * btrfs_invalidatepage() against each page of the inode. This is slow because
4977  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4978  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4979  * extent_state structures over and over, wasting lots of time.
4980  *
4981  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4982  * those expensive operations on a per page basis and do only the ordered io
4983  * finishing, while we release here the extent_map and extent_state structures,
4984  * without the excessive merging and splitting.
4985  */
evict_inode_truncate_pages(struct inode * inode)4986 static void evict_inode_truncate_pages(struct inode *inode)
4987 {
4988 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4989 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4990 	struct rb_node *node;
4991 
4992 	ASSERT(inode->i_state & I_FREEING);
4993 	truncate_inode_pages_final(&inode->i_data);
4994 
4995 	write_lock(&map_tree->lock);
4996 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
4997 		struct extent_map *em;
4998 
4999 		node = rb_first_cached(&map_tree->map);
5000 		em = rb_entry(node, struct extent_map, rb_node);
5001 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5002 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5003 		remove_extent_mapping(map_tree, em);
5004 		free_extent_map(em);
5005 		if (need_resched()) {
5006 			write_unlock(&map_tree->lock);
5007 			cond_resched();
5008 			write_lock(&map_tree->lock);
5009 		}
5010 	}
5011 	write_unlock(&map_tree->lock);
5012 
5013 	/*
5014 	 * Keep looping until we have no more ranges in the io tree.
5015 	 * We can have ongoing bios started by readahead that have
5016 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5017 	 * still in progress (unlocked the pages in the bio but did not yet
5018 	 * unlocked the ranges in the io tree). Therefore this means some
5019 	 * ranges can still be locked and eviction started because before
5020 	 * submitting those bios, which are executed by a separate task (work
5021 	 * queue kthread), inode references (inode->i_count) were not taken
5022 	 * (which would be dropped in the end io callback of each bio).
5023 	 * Therefore here we effectively end up waiting for those bios and
5024 	 * anyone else holding locked ranges without having bumped the inode's
5025 	 * reference count - if we don't do it, when they access the inode's
5026 	 * io_tree to unlock a range it may be too late, leading to an
5027 	 * use-after-free issue.
5028 	 */
5029 	spin_lock(&io_tree->lock);
5030 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5031 		struct extent_state *state;
5032 		struct extent_state *cached_state = NULL;
5033 		u64 start;
5034 		u64 end;
5035 		unsigned state_flags;
5036 
5037 		node = rb_first(&io_tree->state);
5038 		state = rb_entry(node, struct extent_state, rb_node);
5039 		start = state->start;
5040 		end = state->end;
5041 		state_flags = state->state;
5042 		spin_unlock(&io_tree->lock);
5043 
5044 		lock_extent_bits(io_tree, start, end, &cached_state);
5045 
5046 		/*
5047 		 * If still has DELALLOC flag, the extent didn't reach disk,
5048 		 * and its reserved space won't be freed by delayed_ref.
5049 		 * So we need to free its reserved space here.
5050 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5051 		 *
5052 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5053 		 */
5054 		if (state_flags & EXTENT_DELALLOC)
5055 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5056 					       end - start + 1);
5057 
5058 		clear_extent_bit(io_tree, start, end,
5059 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5060 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5061 				 &cached_state);
5062 
5063 		cond_resched();
5064 		spin_lock(&io_tree->lock);
5065 	}
5066 	spin_unlock(&io_tree->lock);
5067 }
5068 
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5069 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5070 							struct btrfs_block_rsv *rsv)
5071 {
5072 	struct btrfs_fs_info *fs_info = root->fs_info;
5073 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5074 	struct btrfs_trans_handle *trans;
5075 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5076 	int ret;
5077 
5078 	/*
5079 	 * Eviction should be taking place at some place safe because of our
5080 	 * delayed iputs.  However the normal flushing code will run delayed
5081 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5082 	 *
5083 	 * We reserve the delayed_refs_extra here again because we can't use
5084 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5085 	 * above.  We reserve our extra bit here because we generate a ton of
5086 	 * delayed refs activity by truncating.
5087 	 *
5088 	 * If we cannot make our reservation we'll attempt to steal from the
5089 	 * global reserve, because we really want to be able to free up space.
5090 	 */
5091 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5092 				     BTRFS_RESERVE_FLUSH_EVICT);
5093 	if (ret) {
5094 		/*
5095 		 * Try to steal from the global reserve if there is space for
5096 		 * it.
5097 		 */
5098 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5099 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5100 			btrfs_warn(fs_info,
5101 				   "could not allocate space for delete; will truncate on mount");
5102 			return ERR_PTR(-ENOSPC);
5103 		}
5104 		delayed_refs_extra = 0;
5105 	}
5106 
5107 	trans = btrfs_join_transaction(root);
5108 	if (IS_ERR(trans))
5109 		return trans;
5110 
5111 	if (delayed_refs_extra) {
5112 		trans->block_rsv = &fs_info->trans_block_rsv;
5113 		trans->bytes_reserved = delayed_refs_extra;
5114 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5115 					delayed_refs_extra, 1);
5116 	}
5117 	return trans;
5118 }
5119 
btrfs_evict_inode(struct inode * inode)5120 void btrfs_evict_inode(struct inode *inode)
5121 {
5122 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5123 	struct btrfs_trans_handle *trans;
5124 	struct btrfs_root *root = BTRFS_I(inode)->root;
5125 	struct btrfs_block_rsv *rsv;
5126 	int ret;
5127 
5128 	trace_btrfs_inode_evict(inode);
5129 
5130 	if (!root) {
5131 		clear_inode(inode);
5132 		return;
5133 	}
5134 
5135 	evict_inode_truncate_pages(inode);
5136 
5137 	if (inode->i_nlink &&
5138 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5139 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5140 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5141 		goto no_delete;
5142 
5143 	if (is_bad_inode(inode))
5144 		goto no_delete;
5145 
5146 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5147 
5148 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5149 		goto no_delete;
5150 
5151 	if (inode->i_nlink > 0) {
5152 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5153 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5154 		goto no_delete;
5155 	}
5156 
5157 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5158 	if (ret)
5159 		goto no_delete;
5160 
5161 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5162 	if (!rsv)
5163 		goto no_delete;
5164 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5165 	rsv->failfast = 1;
5166 
5167 	btrfs_i_size_write(BTRFS_I(inode), 0);
5168 
5169 	while (1) {
5170 		trans = evict_refill_and_join(root, rsv);
5171 		if (IS_ERR(trans))
5172 			goto free_rsv;
5173 
5174 		trans->block_rsv = rsv;
5175 
5176 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5177 		trans->block_rsv = &fs_info->trans_block_rsv;
5178 		btrfs_end_transaction(trans);
5179 		btrfs_btree_balance_dirty(fs_info);
5180 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5181 			goto free_rsv;
5182 		else if (!ret)
5183 			break;
5184 	}
5185 
5186 	/*
5187 	 * Errors here aren't a big deal, it just means we leave orphan items in
5188 	 * the tree. They will be cleaned up on the next mount. If the inode
5189 	 * number gets reused, cleanup deletes the orphan item without doing
5190 	 * anything, and unlink reuses the existing orphan item.
5191 	 *
5192 	 * If it turns out that we are dropping too many of these, we might want
5193 	 * to add a mechanism for retrying these after a commit.
5194 	 */
5195 	trans = evict_refill_and_join(root, rsv);
5196 	if (!IS_ERR(trans)) {
5197 		trans->block_rsv = rsv;
5198 		btrfs_orphan_del(trans, BTRFS_I(inode));
5199 		trans->block_rsv = &fs_info->trans_block_rsv;
5200 		btrfs_end_transaction(trans);
5201 	}
5202 
5203 	if (!(root == fs_info->tree_root ||
5204 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5205 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5206 
5207 free_rsv:
5208 	btrfs_free_block_rsv(fs_info, rsv);
5209 no_delete:
5210 	/*
5211 	 * If we didn't successfully delete, the orphan item will still be in
5212 	 * the tree and we'll retry on the next mount. Again, we might also want
5213 	 * to retry these periodically in the future.
5214 	 */
5215 	btrfs_remove_delayed_node(BTRFS_I(inode));
5216 	clear_inode(inode);
5217 }
5218 
5219 /*
5220  * Return the key found in the dir entry in the location pointer, fill @type
5221  * with BTRFS_FT_*, and return 0.
5222  *
5223  * If no dir entries were found, returns -ENOENT.
5224  * If found a corrupted location in dir entry, returns -EUCLEAN.
5225  */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5226 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5227 			       struct btrfs_key *location, u8 *type)
5228 {
5229 	const char *name = dentry->d_name.name;
5230 	int namelen = dentry->d_name.len;
5231 	struct btrfs_dir_item *di;
5232 	struct btrfs_path *path;
5233 	struct btrfs_root *root = BTRFS_I(dir)->root;
5234 	int ret = 0;
5235 
5236 	path = btrfs_alloc_path();
5237 	if (!path)
5238 		return -ENOMEM;
5239 
5240 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5241 			name, namelen, 0);
5242 	if (IS_ERR_OR_NULL(di)) {
5243 		ret = di ? PTR_ERR(di) : -ENOENT;
5244 		goto out;
5245 	}
5246 
5247 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5248 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5249 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5250 		ret = -EUCLEAN;
5251 		btrfs_warn(root->fs_info,
5252 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5253 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5254 			   location->objectid, location->type, location->offset);
5255 	}
5256 	if (!ret)
5257 		*type = btrfs_dir_type(path->nodes[0], di);
5258 out:
5259 	btrfs_free_path(path);
5260 	return ret;
5261 }
5262 
5263 /*
5264  * when we hit a tree root in a directory, the btrfs part of the inode
5265  * needs to be changed to reflect the root directory of the tree root.  This
5266  * is kind of like crossing a mount point.
5267  */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5268 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5269 				    struct inode *dir,
5270 				    struct dentry *dentry,
5271 				    struct btrfs_key *location,
5272 				    struct btrfs_root **sub_root)
5273 {
5274 	struct btrfs_path *path;
5275 	struct btrfs_root *new_root;
5276 	struct btrfs_root_ref *ref;
5277 	struct extent_buffer *leaf;
5278 	struct btrfs_key key;
5279 	int ret;
5280 	int err = 0;
5281 
5282 	path = btrfs_alloc_path();
5283 	if (!path) {
5284 		err = -ENOMEM;
5285 		goto out;
5286 	}
5287 
5288 	err = -ENOENT;
5289 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5290 	key.type = BTRFS_ROOT_REF_KEY;
5291 	key.offset = location->objectid;
5292 
5293 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5294 	if (ret) {
5295 		if (ret < 0)
5296 			err = ret;
5297 		goto out;
5298 	}
5299 
5300 	leaf = path->nodes[0];
5301 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5302 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5303 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5304 		goto out;
5305 
5306 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5307 				   (unsigned long)(ref + 1),
5308 				   dentry->d_name.len);
5309 	if (ret)
5310 		goto out;
5311 
5312 	btrfs_release_path(path);
5313 
5314 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5315 	if (IS_ERR(new_root)) {
5316 		err = PTR_ERR(new_root);
5317 		goto out;
5318 	}
5319 
5320 	*sub_root = new_root;
5321 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5322 	location->type = BTRFS_INODE_ITEM_KEY;
5323 	location->offset = 0;
5324 	err = 0;
5325 out:
5326 	btrfs_free_path(path);
5327 	return err;
5328 }
5329 
inode_tree_add(struct inode * inode)5330 static void inode_tree_add(struct inode *inode)
5331 {
5332 	struct btrfs_root *root = BTRFS_I(inode)->root;
5333 	struct btrfs_inode *entry;
5334 	struct rb_node **p;
5335 	struct rb_node *parent;
5336 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5337 	u64 ino = btrfs_ino(BTRFS_I(inode));
5338 
5339 	if (inode_unhashed(inode))
5340 		return;
5341 	parent = NULL;
5342 	spin_lock(&root->inode_lock);
5343 	p = &root->inode_tree.rb_node;
5344 	while (*p) {
5345 		parent = *p;
5346 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5347 
5348 		if (ino < btrfs_ino(entry))
5349 			p = &parent->rb_left;
5350 		else if (ino > btrfs_ino(entry))
5351 			p = &parent->rb_right;
5352 		else {
5353 			WARN_ON(!(entry->vfs_inode.i_state &
5354 				  (I_WILL_FREE | I_FREEING)));
5355 			rb_replace_node(parent, new, &root->inode_tree);
5356 			RB_CLEAR_NODE(parent);
5357 			spin_unlock(&root->inode_lock);
5358 			return;
5359 		}
5360 	}
5361 	rb_link_node(new, parent, p);
5362 	rb_insert_color(new, &root->inode_tree);
5363 	spin_unlock(&root->inode_lock);
5364 }
5365 
inode_tree_del(struct btrfs_inode * inode)5366 static void inode_tree_del(struct btrfs_inode *inode)
5367 {
5368 	struct btrfs_root *root = inode->root;
5369 	int empty = 0;
5370 
5371 	spin_lock(&root->inode_lock);
5372 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5373 		rb_erase(&inode->rb_node, &root->inode_tree);
5374 		RB_CLEAR_NODE(&inode->rb_node);
5375 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5376 	}
5377 	spin_unlock(&root->inode_lock);
5378 
5379 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5380 		spin_lock(&root->inode_lock);
5381 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5382 		spin_unlock(&root->inode_lock);
5383 		if (empty)
5384 			btrfs_add_dead_root(root);
5385 	}
5386 }
5387 
5388 
btrfs_init_locked_inode(struct inode * inode,void * p)5389 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5390 {
5391 	struct btrfs_iget_args *args = p;
5392 
5393 	inode->i_ino = args->ino;
5394 	BTRFS_I(inode)->location.objectid = args->ino;
5395 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5396 	BTRFS_I(inode)->location.offset = 0;
5397 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5398 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5399 	return 0;
5400 }
5401 
btrfs_find_actor(struct inode * inode,void * opaque)5402 static int btrfs_find_actor(struct inode *inode, void *opaque)
5403 {
5404 	struct btrfs_iget_args *args = opaque;
5405 
5406 	return args->ino == BTRFS_I(inode)->location.objectid &&
5407 		args->root == BTRFS_I(inode)->root;
5408 }
5409 
btrfs_iget_locked(struct super_block * s,u64 ino,struct btrfs_root * root)5410 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5411 				       struct btrfs_root *root)
5412 {
5413 	struct inode *inode;
5414 	struct btrfs_iget_args args;
5415 	unsigned long hashval = btrfs_inode_hash(ino, root);
5416 
5417 	args.ino = ino;
5418 	args.root = root;
5419 
5420 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5421 			     btrfs_init_locked_inode,
5422 			     (void *)&args);
5423 	return inode;
5424 }
5425 
5426 /*
5427  * Get an inode object given its inode number and corresponding root.
5428  * Path can be preallocated to prevent recursing back to iget through
5429  * allocator. NULL is also valid but may require an additional allocation
5430  * later.
5431  */
btrfs_iget_path(struct super_block * s,u64 ino,struct btrfs_root * root,struct btrfs_path * path)5432 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5433 			      struct btrfs_root *root, struct btrfs_path *path)
5434 {
5435 	struct inode *inode;
5436 
5437 	inode = btrfs_iget_locked(s, ino, root);
5438 	if (!inode)
5439 		return ERR_PTR(-ENOMEM);
5440 
5441 	if (inode->i_state & I_NEW) {
5442 		int ret;
5443 
5444 		ret = btrfs_read_locked_inode(inode, path);
5445 		if (!ret) {
5446 			inode_tree_add(inode);
5447 			unlock_new_inode(inode);
5448 		} else {
5449 			iget_failed(inode);
5450 			/*
5451 			 * ret > 0 can come from btrfs_search_slot called by
5452 			 * btrfs_read_locked_inode, this means the inode item
5453 			 * was not found.
5454 			 */
5455 			if (ret > 0)
5456 				ret = -ENOENT;
5457 			inode = ERR_PTR(ret);
5458 		}
5459 	}
5460 
5461 	return inode;
5462 }
5463 
btrfs_iget(struct super_block * s,u64 ino,struct btrfs_root * root)5464 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5465 {
5466 	return btrfs_iget_path(s, ino, root, NULL);
5467 }
5468 
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5469 static struct inode *new_simple_dir(struct super_block *s,
5470 				    struct btrfs_key *key,
5471 				    struct btrfs_root *root)
5472 {
5473 	struct inode *inode = new_inode(s);
5474 
5475 	if (!inode)
5476 		return ERR_PTR(-ENOMEM);
5477 
5478 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5479 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5480 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5481 
5482 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5483 	/*
5484 	 * We only need lookup, the rest is read-only and there's no inode
5485 	 * associated with the dentry
5486 	 */
5487 	inode->i_op = &simple_dir_inode_operations;
5488 	inode->i_opflags &= ~IOP_XATTR;
5489 	inode->i_fop = &simple_dir_operations;
5490 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5491 	inode->i_mtime = current_time(inode);
5492 	inode->i_atime = inode->i_mtime;
5493 	inode->i_ctime = inode->i_mtime;
5494 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5495 
5496 	return inode;
5497 }
5498 
btrfs_inode_type(struct inode * inode)5499 static inline u8 btrfs_inode_type(struct inode *inode)
5500 {
5501 	/*
5502 	 * Compile-time asserts that generic FT_* types still match
5503 	 * BTRFS_FT_* types
5504 	 */
5505 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5506 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5507 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5508 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5509 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5510 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5511 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5512 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5513 
5514 	return fs_umode_to_ftype(inode->i_mode);
5515 }
5516 
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5517 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5518 {
5519 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5520 	struct inode *inode;
5521 	struct btrfs_root *root = BTRFS_I(dir)->root;
5522 	struct btrfs_root *sub_root = root;
5523 	struct btrfs_key location;
5524 	u8 di_type = 0;
5525 	int ret = 0;
5526 
5527 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5528 		return ERR_PTR(-ENAMETOOLONG);
5529 
5530 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5531 	if (ret < 0)
5532 		return ERR_PTR(ret);
5533 
5534 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5535 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5536 		if (IS_ERR(inode))
5537 			return inode;
5538 
5539 		/* Do extra check against inode mode with di_type */
5540 		if (btrfs_inode_type(inode) != di_type) {
5541 			btrfs_crit(fs_info,
5542 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5543 				  inode->i_mode, btrfs_inode_type(inode),
5544 				  di_type);
5545 			iput(inode);
5546 			return ERR_PTR(-EUCLEAN);
5547 		}
5548 		return inode;
5549 	}
5550 
5551 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5552 				       &location, &sub_root);
5553 	if (ret < 0) {
5554 		if (ret != -ENOENT)
5555 			inode = ERR_PTR(ret);
5556 		else
5557 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5558 	} else {
5559 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5560 	}
5561 	if (root != sub_root)
5562 		btrfs_put_root(sub_root);
5563 
5564 	if (!IS_ERR(inode) && root != sub_root) {
5565 		down_read(&fs_info->cleanup_work_sem);
5566 		if (!sb_rdonly(inode->i_sb))
5567 			ret = btrfs_orphan_cleanup(sub_root);
5568 		up_read(&fs_info->cleanup_work_sem);
5569 		if (ret) {
5570 			iput(inode);
5571 			inode = ERR_PTR(ret);
5572 		}
5573 	}
5574 
5575 	return inode;
5576 }
5577 
btrfs_dentry_delete(const struct dentry * dentry)5578 static int btrfs_dentry_delete(const struct dentry *dentry)
5579 {
5580 	struct btrfs_root *root;
5581 	struct inode *inode = d_inode(dentry);
5582 
5583 	if (!inode && !IS_ROOT(dentry))
5584 		inode = d_inode(dentry->d_parent);
5585 
5586 	if (inode) {
5587 		root = BTRFS_I(inode)->root;
5588 		if (btrfs_root_refs(&root->root_item) == 0)
5589 			return 1;
5590 
5591 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5592 			return 1;
5593 	}
5594 	return 0;
5595 }
5596 
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5597 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5598 				   unsigned int flags)
5599 {
5600 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5601 
5602 	if (inode == ERR_PTR(-ENOENT))
5603 		inode = NULL;
5604 	return d_splice_alias(inode, dentry);
5605 }
5606 
5607 /*
5608  * All this infrastructure exists because dir_emit can fault, and we are holding
5609  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5610  * our information into that, and then dir_emit from the buffer.  This is
5611  * similar to what NFS does, only we don't keep the buffer around in pagecache
5612  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5613  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5614  * tree lock.
5615  */
btrfs_opendir(struct inode * inode,struct file * file)5616 static int btrfs_opendir(struct inode *inode, struct file *file)
5617 {
5618 	struct btrfs_file_private *private;
5619 
5620 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5621 	if (!private)
5622 		return -ENOMEM;
5623 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5624 	if (!private->filldir_buf) {
5625 		kfree(private);
5626 		return -ENOMEM;
5627 	}
5628 	file->private_data = private;
5629 	return 0;
5630 }
5631 
5632 struct dir_entry {
5633 	u64 ino;
5634 	u64 offset;
5635 	unsigned type;
5636 	int name_len;
5637 };
5638 
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5639 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5640 {
5641 	while (entries--) {
5642 		struct dir_entry *entry = addr;
5643 		char *name = (char *)(entry + 1);
5644 
5645 		ctx->pos = get_unaligned(&entry->offset);
5646 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5647 					 get_unaligned(&entry->ino),
5648 					 get_unaligned(&entry->type)))
5649 			return 1;
5650 		addr += sizeof(struct dir_entry) +
5651 			get_unaligned(&entry->name_len);
5652 		ctx->pos++;
5653 	}
5654 	return 0;
5655 }
5656 
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5657 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5658 {
5659 	struct inode *inode = file_inode(file);
5660 	struct btrfs_root *root = BTRFS_I(inode)->root;
5661 	struct btrfs_file_private *private = file->private_data;
5662 	struct btrfs_dir_item *di;
5663 	struct btrfs_key key;
5664 	struct btrfs_key found_key;
5665 	struct btrfs_path *path;
5666 	void *addr;
5667 	struct list_head ins_list;
5668 	struct list_head del_list;
5669 	int ret;
5670 	struct extent_buffer *leaf;
5671 	int slot;
5672 	char *name_ptr;
5673 	int name_len;
5674 	int entries = 0;
5675 	int total_len = 0;
5676 	bool put = false;
5677 	struct btrfs_key location;
5678 
5679 	if (!dir_emit_dots(file, ctx))
5680 		return 0;
5681 
5682 	path = btrfs_alloc_path();
5683 	if (!path)
5684 		return -ENOMEM;
5685 
5686 	addr = private->filldir_buf;
5687 	path->reada = READA_FORWARD;
5688 
5689 	INIT_LIST_HEAD(&ins_list);
5690 	INIT_LIST_HEAD(&del_list);
5691 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5692 
5693 again:
5694 	key.type = BTRFS_DIR_INDEX_KEY;
5695 	key.offset = ctx->pos;
5696 	key.objectid = btrfs_ino(BTRFS_I(inode));
5697 
5698 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5699 	if (ret < 0)
5700 		goto err;
5701 
5702 	while (1) {
5703 		struct dir_entry *entry;
5704 
5705 		leaf = path->nodes[0];
5706 		slot = path->slots[0];
5707 		if (slot >= btrfs_header_nritems(leaf)) {
5708 			ret = btrfs_next_leaf(root, path);
5709 			if (ret < 0)
5710 				goto err;
5711 			else if (ret > 0)
5712 				break;
5713 			continue;
5714 		}
5715 
5716 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5717 
5718 		if (found_key.objectid != key.objectid)
5719 			break;
5720 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5721 			break;
5722 		if (found_key.offset < ctx->pos)
5723 			goto next;
5724 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5725 			goto next;
5726 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5727 		name_len = btrfs_dir_name_len(leaf, di);
5728 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5729 		    PAGE_SIZE) {
5730 			btrfs_release_path(path);
5731 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5732 			if (ret)
5733 				goto nopos;
5734 			addr = private->filldir_buf;
5735 			entries = 0;
5736 			total_len = 0;
5737 			goto again;
5738 		}
5739 
5740 		entry = addr;
5741 		put_unaligned(name_len, &entry->name_len);
5742 		name_ptr = (char *)(entry + 1);
5743 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5744 				   name_len);
5745 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5746 				&entry->type);
5747 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5748 		put_unaligned(location.objectid, &entry->ino);
5749 		put_unaligned(found_key.offset, &entry->offset);
5750 		entries++;
5751 		addr += sizeof(struct dir_entry) + name_len;
5752 		total_len += sizeof(struct dir_entry) + name_len;
5753 next:
5754 		path->slots[0]++;
5755 	}
5756 	btrfs_release_path(path);
5757 
5758 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5759 	if (ret)
5760 		goto nopos;
5761 
5762 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5763 	if (ret)
5764 		goto nopos;
5765 
5766 	/*
5767 	 * Stop new entries from being returned after we return the last
5768 	 * entry.
5769 	 *
5770 	 * New directory entries are assigned a strictly increasing
5771 	 * offset.  This means that new entries created during readdir
5772 	 * are *guaranteed* to be seen in the future by that readdir.
5773 	 * This has broken buggy programs which operate on names as
5774 	 * they're returned by readdir.  Until we re-use freed offsets
5775 	 * we have this hack to stop new entries from being returned
5776 	 * under the assumption that they'll never reach this huge
5777 	 * offset.
5778 	 *
5779 	 * This is being careful not to overflow 32bit loff_t unless the
5780 	 * last entry requires it because doing so has broken 32bit apps
5781 	 * in the past.
5782 	 */
5783 	if (ctx->pos >= INT_MAX)
5784 		ctx->pos = LLONG_MAX;
5785 	else
5786 		ctx->pos = INT_MAX;
5787 nopos:
5788 	ret = 0;
5789 err:
5790 	if (put)
5791 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5792 	btrfs_free_path(path);
5793 	return ret;
5794 }
5795 
5796 /*
5797  * This is somewhat expensive, updating the tree every time the
5798  * inode changes.  But, it is most likely to find the inode in cache.
5799  * FIXME, needs more benchmarking...there are no reasons other than performance
5800  * to keep or drop this code.
5801  */
btrfs_dirty_inode(struct inode * inode)5802 static int btrfs_dirty_inode(struct inode *inode)
5803 {
5804 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5805 	struct btrfs_root *root = BTRFS_I(inode)->root;
5806 	struct btrfs_trans_handle *trans;
5807 	int ret;
5808 
5809 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5810 		return 0;
5811 
5812 	trans = btrfs_join_transaction(root);
5813 	if (IS_ERR(trans))
5814 		return PTR_ERR(trans);
5815 
5816 	ret = btrfs_update_inode(trans, root, inode);
5817 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
5818 		/* whoops, lets try again with the full transaction */
5819 		btrfs_end_transaction(trans);
5820 		trans = btrfs_start_transaction(root, 1);
5821 		if (IS_ERR(trans))
5822 			return PTR_ERR(trans);
5823 
5824 		ret = btrfs_update_inode(trans, root, inode);
5825 	}
5826 	btrfs_end_transaction(trans);
5827 	if (BTRFS_I(inode)->delayed_node)
5828 		btrfs_balance_delayed_items(fs_info);
5829 
5830 	return ret;
5831 }
5832 
5833 /*
5834  * This is a copy of file_update_time.  We need this so we can return error on
5835  * ENOSPC for updating the inode in the case of file write and mmap writes.
5836  */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)5837 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5838 			     int flags)
5839 {
5840 	struct btrfs_root *root = BTRFS_I(inode)->root;
5841 	bool dirty = flags & ~S_VERSION;
5842 
5843 	if (btrfs_root_readonly(root))
5844 		return -EROFS;
5845 
5846 	if (flags & S_VERSION)
5847 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5848 	if (flags & S_CTIME)
5849 		inode->i_ctime = *now;
5850 	if (flags & S_MTIME)
5851 		inode->i_mtime = *now;
5852 	if (flags & S_ATIME)
5853 		inode->i_atime = *now;
5854 	return dirty ? btrfs_dirty_inode(inode) : 0;
5855 }
5856 
5857 /*
5858  * find the highest existing sequence number in a directory
5859  * and then set the in-memory index_cnt variable to reflect
5860  * free sequence numbers
5861  */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5862 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5863 {
5864 	struct btrfs_root *root = inode->root;
5865 	struct btrfs_key key, found_key;
5866 	struct btrfs_path *path;
5867 	struct extent_buffer *leaf;
5868 	int ret;
5869 
5870 	key.objectid = btrfs_ino(inode);
5871 	key.type = BTRFS_DIR_INDEX_KEY;
5872 	key.offset = (u64)-1;
5873 
5874 	path = btrfs_alloc_path();
5875 	if (!path)
5876 		return -ENOMEM;
5877 
5878 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5879 	if (ret < 0)
5880 		goto out;
5881 	/* FIXME: we should be able to handle this */
5882 	if (ret == 0)
5883 		goto out;
5884 	ret = 0;
5885 
5886 	/*
5887 	 * MAGIC NUMBER EXPLANATION:
5888 	 * since we search a directory based on f_pos we have to start at 2
5889 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5890 	 * else has to start at 2
5891 	 */
5892 	if (path->slots[0] == 0) {
5893 		inode->index_cnt = 2;
5894 		goto out;
5895 	}
5896 
5897 	path->slots[0]--;
5898 
5899 	leaf = path->nodes[0];
5900 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5901 
5902 	if (found_key.objectid != btrfs_ino(inode) ||
5903 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5904 		inode->index_cnt = 2;
5905 		goto out;
5906 	}
5907 
5908 	inode->index_cnt = found_key.offset + 1;
5909 out:
5910 	btrfs_free_path(path);
5911 	return ret;
5912 }
5913 
5914 /*
5915  * helper to find a free sequence number in a given directory.  This current
5916  * code is very simple, later versions will do smarter things in the btree
5917  */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)5918 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5919 {
5920 	int ret = 0;
5921 
5922 	if (dir->index_cnt == (u64)-1) {
5923 		ret = btrfs_inode_delayed_dir_index_count(dir);
5924 		if (ret) {
5925 			ret = btrfs_set_inode_index_count(dir);
5926 			if (ret)
5927 				return ret;
5928 		}
5929 	}
5930 
5931 	*index = dir->index_cnt;
5932 	dir->index_cnt++;
5933 
5934 	return ret;
5935 }
5936 
btrfs_insert_inode_locked(struct inode * inode)5937 static int btrfs_insert_inode_locked(struct inode *inode)
5938 {
5939 	struct btrfs_iget_args args;
5940 
5941 	args.ino = BTRFS_I(inode)->location.objectid;
5942 	args.root = BTRFS_I(inode)->root;
5943 
5944 	return insert_inode_locked4(inode,
5945 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5946 		   btrfs_find_actor, &args);
5947 }
5948 
5949 /*
5950  * Inherit flags from the parent inode.
5951  *
5952  * Currently only the compression flags and the cow flags are inherited.
5953  */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)5954 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5955 {
5956 	unsigned int flags;
5957 
5958 	if (!dir)
5959 		return;
5960 
5961 	flags = BTRFS_I(dir)->flags;
5962 
5963 	if (flags & BTRFS_INODE_NOCOMPRESS) {
5964 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5965 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5966 	} else if (flags & BTRFS_INODE_COMPRESS) {
5967 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5968 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5969 	}
5970 
5971 	if (flags & BTRFS_INODE_NODATACOW) {
5972 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5973 		if (S_ISREG(inode->i_mode))
5974 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5975 	}
5976 
5977 	btrfs_sync_inode_flags_to_i_flags(inode);
5978 }
5979 
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)5980 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5981 				     struct btrfs_root *root,
5982 				     struct inode *dir,
5983 				     const char *name, int name_len,
5984 				     u64 ref_objectid, u64 objectid,
5985 				     umode_t mode, u64 *index)
5986 {
5987 	struct btrfs_fs_info *fs_info = root->fs_info;
5988 	struct inode *inode;
5989 	struct btrfs_inode_item *inode_item;
5990 	struct btrfs_key *location;
5991 	struct btrfs_path *path;
5992 	struct btrfs_inode_ref *ref;
5993 	struct btrfs_key key[2];
5994 	u32 sizes[2];
5995 	int nitems = name ? 2 : 1;
5996 	unsigned long ptr;
5997 	unsigned int nofs_flag;
5998 	int ret;
5999 
6000 	path = btrfs_alloc_path();
6001 	if (!path)
6002 		return ERR_PTR(-ENOMEM);
6003 
6004 	nofs_flag = memalloc_nofs_save();
6005 	inode = new_inode(fs_info->sb);
6006 	memalloc_nofs_restore(nofs_flag);
6007 	if (!inode) {
6008 		btrfs_free_path(path);
6009 		return ERR_PTR(-ENOMEM);
6010 	}
6011 
6012 	/*
6013 	 * O_TMPFILE, set link count to 0, so that after this point,
6014 	 * we fill in an inode item with the correct link count.
6015 	 */
6016 	if (!name)
6017 		set_nlink(inode, 0);
6018 
6019 	/*
6020 	 * we have to initialize this early, so we can reclaim the inode
6021 	 * number if we fail afterwards in this function.
6022 	 */
6023 	inode->i_ino = objectid;
6024 
6025 	if (dir && name) {
6026 		trace_btrfs_inode_request(dir);
6027 
6028 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6029 		if (ret) {
6030 			btrfs_free_path(path);
6031 			iput(inode);
6032 			return ERR_PTR(ret);
6033 		}
6034 	} else if (dir) {
6035 		*index = 0;
6036 	}
6037 	/*
6038 	 * index_cnt is ignored for everything but a dir,
6039 	 * btrfs_set_inode_index_count has an explanation for the magic
6040 	 * number
6041 	 */
6042 	BTRFS_I(inode)->index_cnt = 2;
6043 	BTRFS_I(inode)->dir_index = *index;
6044 	BTRFS_I(inode)->root = btrfs_grab_root(root);
6045 	BTRFS_I(inode)->generation = trans->transid;
6046 	inode->i_generation = BTRFS_I(inode)->generation;
6047 
6048 	/*
6049 	 * We could have gotten an inode number from somebody who was fsynced
6050 	 * and then removed in this same transaction, so let's just set full
6051 	 * sync since it will be a full sync anyway and this will blow away the
6052 	 * old info in the log.
6053 	 */
6054 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6055 
6056 	key[0].objectid = objectid;
6057 	key[0].type = BTRFS_INODE_ITEM_KEY;
6058 	key[0].offset = 0;
6059 
6060 	sizes[0] = sizeof(struct btrfs_inode_item);
6061 
6062 	if (name) {
6063 		/*
6064 		 * Start new inodes with an inode_ref. This is slightly more
6065 		 * efficient for small numbers of hard links since they will
6066 		 * be packed into one item. Extended refs will kick in if we
6067 		 * add more hard links than can fit in the ref item.
6068 		 */
6069 		key[1].objectid = objectid;
6070 		key[1].type = BTRFS_INODE_REF_KEY;
6071 		key[1].offset = ref_objectid;
6072 
6073 		sizes[1] = name_len + sizeof(*ref);
6074 	}
6075 
6076 	location = &BTRFS_I(inode)->location;
6077 	location->objectid = objectid;
6078 	location->offset = 0;
6079 	location->type = BTRFS_INODE_ITEM_KEY;
6080 
6081 	ret = btrfs_insert_inode_locked(inode);
6082 	if (ret < 0) {
6083 		iput(inode);
6084 		goto fail;
6085 	}
6086 
6087 	path->leave_spinning = 1;
6088 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6089 	if (ret != 0)
6090 		goto fail_unlock;
6091 
6092 	inode_init_owner(inode, dir, mode);
6093 	inode_set_bytes(inode, 0);
6094 
6095 	inode->i_mtime = current_time(inode);
6096 	inode->i_atime = inode->i_mtime;
6097 	inode->i_ctime = inode->i_mtime;
6098 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6099 
6100 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6101 				  struct btrfs_inode_item);
6102 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6103 			     sizeof(*inode_item));
6104 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6105 
6106 	if (name) {
6107 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6108 				     struct btrfs_inode_ref);
6109 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6110 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6111 		ptr = (unsigned long)(ref + 1);
6112 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6113 	}
6114 
6115 	btrfs_mark_buffer_dirty(path->nodes[0]);
6116 	btrfs_free_path(path);
6117 
6118 	btrfs_inherit_iflags(inode, dir);
6119 
6120 	if (S_ISREG(mode)) {
6121 		if (btrfs_test_opt(fs_info, NODATASUM))
6122 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6123 		if (btrfs_test_opt(fs_info, NODATACOW))
6124 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6125 				BTRFS_INODE_NODATASUM;
6126 	}
6127 
6128 	inode_tree_add(inode);
6129 
6130 	trace_btrfs_inode_new(inode);
6131 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6132 
6133 	btrfs_update_root_times(trans, root);
6134 
6135 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6136 	if (ret)
6137 		btrfs_err(fs_info,
6138 			  "error inheriting props for ino %llu (root %llu): %d",
6139 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6140 
6141 	return inode;
6142 
6143 fail_unlock:
6144 	discard_new_inode(inode);
6145 fail:
6146 	if (dir && name)
6147 		BTRFS_I(dir)->index_cnt--;
6148 	btrfs_free_path(path);
6149 	return ERR_PTR(ret);
6150 }
6151 
6152 /*
6153  * utility function to add 'inode' into 'parent_inode' with
6154  * a give name and a given sequence number.
6155  * if 'add_backref' is true, also insert a backref from the
6156  * inode to the parent directory.
6157  */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6158 int btrfs_add_link(struct btrfs_trans_handle *trans,
6159 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6160 		   const char *name, int name_len, int add_backref, u64 index)
6161 {
6162 	int ret = 0;
6163 	struct btrfs_key key;
6164 	struct btrfs_root *root = parent_inode->root;
6165 	u64 ino = btrfs_ino(inode);
6166 	u64 parent_ino = btrfs_ino(parent_inode);
6167 
6168 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6169 		memcpy(&key, &inode->root->root_key, sizeof(key));
6170 	} else {
6171 		key.objectid = ino;
6172 		key.type = BTRFS_INODE_ITEM_KEY;
6173 		key.offset = 0;
6174 	}
6175 
6176 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6177 		ret = btrfs_add_root_ref(trans, key.objectid,
6178 					 root->root_key.objectid, parent_ino,
6179 					 index, name, name_len);
6180 	} else if (add_backref) {
6181 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6182 					     parent_ino, index);
6183 	}
6184 
6185 	/* Nothing to clean up yet */
6186 	if (ret)
6187 		return ret;
6188 
6189 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6190 				    btrfs_inode_type(&inode->vfs_inode), index);
6191 	if (ret == -EEXIST || ret == -EOVERFLOW)
6192 		goto fail_dir_item;
6193 	else if (ret) {
6194 		btrfs_abort_transaction(trans, ret);
6195 		return ret;
6196 	}
6197 
6198 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6199 			   name_len * 2);
6200 	inode_inc_iversion(&parent_inode->vfs_inode);
6201 	/*
6202 	 * If we are replaying a log tree, we do not want to update the mtime
6203 	 * and ctime of the parent directory with the current time, since the
6204 	 * log replay procedure is responsible for setting them to their correct
6205 	 * values (the ones it had when the fsync was done).
6206 	 */
6207 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6208 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6209 
6210 		parent_inode->vfs_inode.i_mtime = now;
6211 		parent_inode->vfs_inode.i_ctime = now;
6212 	}
6213 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6214 	if (ret)
6215 		btrfs_abort_transaction(trans, ret);
6216 	return ret;
6217 
6218 fail_dir_item:
6219 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6220 		u64 local_index;
6221 		int err;
6222 		err = btrfs_del_root_ref(trans, key.objectid,
6223 					 root->root_key.objectid, parent_ino,
6224 					 &local_index, name, name_len);
6225 		if (err)
6226 			btrfs_abort_transaction(trans, err);
6227 	} else if (add_backref) {
6228 		u64 local_index;
6229 		int err;
6230 
6231 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6232 					  ino, parent_ino, &local_index);
6233 		if (err)
6234 			btrfs_abort_transaction(trans, err);
6235 	}
6236 
6237 	/* Return the original error code */
6238 	return ret;
6239 }
6240 
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6241 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6242 			    struct btrfs_inode *dir, struct dentry *dentry,
6243 			    struct btrfs_inode *inode, int backref, u64 index)
6244 {
6245 	int err = btrfs_add_link(trans, dir, inode,
6246 				 dentry->d_name.name, dentry->d_name.len,
6247 				 backref, index);
6248 	if (err > 0)
6249 		err = -EEXIST;
6250 	return err;
6251 }
6252 
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6253 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6254 			umode_t mode, dev_t rdev)
6255 {
6256 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6257 	struct btrfs_trans_handle *trans;
6258 	struct btrfs_root *root = BTRFS_I(dir)->root;
6259 	struct inode *inode = NULL;
6260 	int err;
6261 	u64 objectid;
6262 	u64 index = 0;
6263 
6264 	/*
6265 	 * 2 for inode item and ref
6266 	 * 2 for dir items
6267 	 * 1 for xattr if selinux is on
6268 	 */
6269 	trans = btrfs_start_transaction(root, 5);
6270 	if (IS_ERR(trans))
6271 		return PTR_ERR(trans);
6272 
6273 	err = btrfs_find_free_objectid(root, &objectid);
6274 	if (err)
6275 		goto out_unlock;
6276 
6277 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6278 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6279 			mode, &index);
6280 	if (IS_ERR(inode)) {
6281 		err = PTR_ERR(inode);
6282 		inode = NULL;
6283 		goto out_unlock;
6284 	}
6285 
6286 	/*
6287 	* If the active LSM wants to access the inode during
6288 	* d_instantiate it needs these. Smack checks to see
6289 	* if the filesystem supports xattrs by looking at the
6290 	* ops vector.
6291 	*/
6292 	inode->i_op = &btrfs_special_inode_operations;
6293 	init_special_inode(inode, inode->i_mode, rdev);
6294 
6295 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6296 	if (err)
6297 		goto out_unlock;
6298 
6299 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6300 			0, index);
6301 	if (err)
6302 		goto out_unlock;
6303 
6304 	btrfs_update_inode(trans, root, inode);
6305 	d_instantiate_new(dentry, inode);
6306 
6307 out_unlock:
6308 	btrfs_end_transaction(trans);
6309 	btrfs_btree_balance_dirty(fs_info);
6310 	if (err && inode) {
6311 		inode_dec_link_count(inode);
6312 		discard_new_inode(inode);
6313 	}
6314 	return err;
6315 }
6316 
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6317 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6318 			umode_t mode, bool excl)
6319 {
6320 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6321 	struct btrfs_trans_handle *trans;
6322 	struct btrfs_root *root = BTRFS_I(dir)->root;
6323 	struct inode *inode = NULL;
6324 	int err;
6325 	u64 objectid;
6326 	u64 index = 0;
6327 
6328 	/*
6329 	 * 2 for inode item and ref
6330 	 * 2 for dir items
6331 	 * 1 for xattr if selinux is on
6332 	 */
6333 	trans = btrfs_start_transaction(root, 5);
6334 	if (IS_ERR(trans))
6335 		return PTR_ERR(trans);
6336 
6337 	err = btrfs_find_free_objectid(root, &objectid);
6338 	if (err)
6339 		goto out_unlock;
6340 
6341 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6342 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6343 			mode, &index);
6344 	if (IS_ERR(inode)) {
6345 		err = PTR_ERR(inode);
6346 		inode = NULL;
6347 		goto out_unlock;
6348 	}
6349 	/*
6350 	* If the active LSM wants to access the inode during
6351 	* d_instantiate it needs these. Smack checks to see
6352 	* if the filesystem supports xattrs by looking at the
6353 	* ops vector.
6354 	*/
6355 	inode->i_fop = &btrfs_file_operations;
6356 	inode->i_op = &btrfs_file_inode_operations;
6357 	inode->i_mapping->a_ops = &btrfs_aops;
6358 
6359 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6360 	if (err)
6361 		goto out_unlock;
6362 
6363 	err = btrfs_update_inode(trans, root, inode);
6364 	if (err)
6365 		goto out_unlock;
6366 
6367 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6368 			0, index);
6369 	if (err)
6370 		goto out_unlock;
6371 
6372 	d_instantiate_new(dentry, inode);
6373 
6374 out_unlock:
6375 	btrfs_end_transaction(trans);
6376 	if (err && inode) {
6377 		inode_dec_link_count(inode);
6378 		discard_new_inode(inode);
6379 	}
6380 	btrfs_btree_balance_dirty(fs_info);
6381 	return err;
6382 }
6383 
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6384 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6385 		      struct dentry *dentry)
6386 {
6387 	struct btrfs_trans_handle *trans = NULL;
6388 	struct btrfs_root *root = BTRFS_I(dir)->root;
6389 	struct inode *inode = d_inode(old_dentry);
6390 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6391 	u64 index;
6392 	int err;
6393 	int drop_inode = 0;
6394 
6395 	/* do not allow sys_link's with other subvols of the same device */
6396 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6397 		return -EXDEV;
6398 
6399 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6400 		return -EMLINK;
6401 
6402 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6403 	if (err)
6404 		goto fail;
6405 
6406 	/*
6407 	 * 2 items for inode and inode ref
6408 	 * 2 items for dir items
6409 	 * 1 item for parent inode
6410 	 * 1 item for orphan item deletion if O_TMPFILE
6411 	 */
6412 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6413 	if (IS_ERR(trans)) {
6414 		err = PTR_ERR(trans);
6415 		trans = NULL;
6416 		goto fail;
6417 	}
6418 
6419 	/* There are several dir indexes for this inode, clear the cache. */
6420 	BTRFS_I(inode)->dir_index = 0ULL;
6421 	inc_nlink(inode);
6422 	inode_inc_iversion(inode);
6423 	inode->i_ctime = current_time(inode);
6424 	ihold(inode);
6425 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6426 
6427 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6428 			1, index);
6429 
6430 	if (err) {
6431 		drop_inode = 1;
6432 	} else {
6433 		struct dentry *parent = dentry->d_parent;
6434 
6435 		err = btrfs_update_inode(trans, root, inode);
6436 		if (err)
6437 			goto fail;
6438 		if (inode->i_nlink == 1) {
6439 			/*
6440 			 * If new hard link count is 1, it's a file created
6441 			 * with open(2) O_TMPFILE flag.
6442 			 */
6443 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6444 			if (err)
6445 				goto fail;
6446 		}
6447 		d_instantiate(dentry, inode);
6448 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6449 	}
6450 
6451 fail:
6452 	if (trans)
6453 		btrfs_end_transaction(trans);
6454 	if (drop_inode) {
6455 		inode_dec_link_count(inode);
6456 		iput(inode);
6457 	}
6458 	btrfs_btree_balance_dirty(fs_info);
6459 	return err;
6460 }
6461 
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6462 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6463 {
6464 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6465 	struct inode *inode = NULL;
6466 	struct btrfs_trans_handle *trans;
6467 	struct btrfs_root *root = BTRFS_I(dir)->root;
6468 	int err = 0;
6469 	u64 objectid = 0;
6470 	u64 index = 0;
6471 
6472 	/*
6473 	 * 2 items for inode and ref
6474 	 * 2 items for dir items
6475 	 * 1 for xattr if selinux is on
6476 	 */
6477 	trans = btrfs_start_transaction(root, 5);
6478 	if (IS_ERR(trans))
6479 		return PTR_ERR(trans);
6480 
6481 	err = btrfs_find_free_objectid(root, &objectid);
6482 	if (err)
6483 		goto out_fail;
6484 
6485 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6486 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6487 			S_IFDIR | mode, &index);
6488 	if (IS_ERR(inode)) {
6489 		err = PTR_ERR(inode);
6490 		inode = NULL;
6491 		goto out_fail;
6492 	}
6493 
6494 	/* these must be set before we unlock the inode */
6495 	inode->i_op = &btrfs_dir_inode_operations;
6496 	inode->i_fop = &btrfs_dir_file_operations;
6497 
6498 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6499 	if (err)
6500 		goto out_fail;
6501 
6502 	btrfs_i_size_write(BTRFS_I(inode), 0);
6503 	err = btrfs_update_inode(trans, root, inode);
6504 	if (err)
6505 		goto out_fail;
6506 
6507 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6508 			dentry->d_name.name,
6509 			dentry->d_name.len, 0, index);
6510 	if (err)
6511 		goto out_fail;
6512 
6513 	d_instantiate_new(dentry, inode);
6514 
6515 out_fail:
6516 	btrfs_end_transaction(trans);
6517 	if (err && inode) {
6518 		inode_dec_link_count(inode);
6519 		discard_new_inode(inode);
6520 	}
6521 	btrfs_btree_balance_dirty(fs_info);
6522 	return err;
6523 }
6524 
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6525 static noinline int uncompress_inline(struct btrfs_path *path,
6526 				      struct page *page,
6527 				      size_t pg_offset, u64 extent_offset,
6528 				      struct btrfs_file_extent_item *item)
6529 {
6530 	int ret;
6531 	struct extent_buffer *leaf = path->nodes[0];
6532 	char *tmp;
6533 	size_t max_size;
6534 	unsigned long inline_size;
6535 	unsigned long ptr;
6536 	int compress_type;
6537 
6538 	WARN_ON(pg_offset != 0);
6539 	compress_type = btrfs_file_extent_compression(leaf, item);
6540 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6541 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6542 					btrfs_item_nr(path->slots[0]));
6543 	tmp = kmalloc(inline_size, GFP_NOFS);
6544 	if (!tmp)
6545 		return -ENOMEM;
6546 	ptr = btrfs_file_extent_inline_start(item);
6547 
6548 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6549 
6550 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6551 	ret = btrfs_decompress(compress_type, tmp, page,
6552 			       extent_offset, inline_size, max_size);
6553 
6554 	/*
6555 	 * decompression code contains a memset to fill in any space between the end
6556 	 * of the uncompressed data and the end of max_size in case the decompressed
6557 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6558 	 * the end of an inline extent and the beginning of the next block, so we
6559 	 * cover that region here.
6560 	 */
6561 
6562 	if (max_size + pg_offset < PAGE_SIZE) {
6563 		char *map = kmap(page);
6564 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6565 		kunmap(page);
6566 	}
6567 	kfree(tmp);
6568 	return ret;
6569 }
6570 
6571 /**
6572  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6573  * @inode:	file to search in
6574  * @page:	page to read extent data into if the extent is inline
6575  * @pg_offset:	offset into @page to copy to
6576  * @start:	file offset
6577  * @len:	length of range starting at @start
6578  *
6579  * This returns the first &struct extent_map which overlaps with the given
6580  * range, reading it from the B-tree and caching it if necessary. Note that
6581  * there may be more extents which overlap the given range after the returned
6582  * extent_map.
6583  *
6584  * If @page is not NULL and the extent is inline, this also reads the extent
6585  * data directly into the page and marks the extent up to date in the io_tree.
6586  *
6587  * Return: ERR_PTR on error, non-NULL extent_map on success.
6588  */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len)6589 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6590 				    struct page *page, size_t pg_offset,
6591 				    u64 start, u64 len)
6592 {
6593 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6594 	int ret = 0;
6595 	u64 extent_start = 0;
6596 	u64 extent_end = 0;
6597 	u64 objectid = btrfs_ino(inode);
6598 	int extent_type = -1;
6599 	struct btrfs_path *path = NULL;
6600 	struct btrfs_root *root = inode->root;
6601 	struct btrfs_file_extent_item *item;
6602 	struct extent_buffer *leaf;
6603 	struct btrfs_key found_key;
6604 	struct extent_map *em = NULL;
6605 	struct extent_map_tree *em_tree = &inode->extent_tree;
6606 	struct extent_io_tree *io_tree = &inode->io_tree;
6607 
6608 	read_lock(&em_tree->lock);
6609 	em = lookup_extent_mapping(em_tree, start, len);
6610 	read_unlock(&em_tree->lock);
6611 
6612 	if (em) {
6613 		if (em->start > start || em->start + em->len <= start)
6614 			free_extent_map(em);
6615 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6616 			free_extent_map(em);
6617 		else
6618 			goto out;
6619 	}
6620 	em = alloc_extent_map();
6621 	if (!em) {
6622 		ret = -ENOMEM;
6623 		goto out;
6624 	}
6625 	em->start = EXTENT_MAP_HOLE;
6626 	em->orig_start = EXTENT_MAP_HOLE;
6627 	em->len = (u64)-1;
6628 	em->block_len = (u64)-1;
6629 
6630 	path = btrfs_alloc_path();
6631 	if (!path) {
6632 		ret = -ENOMEM;
6633 		goto out;
6634 	}
6635 
6636 	/* Chances are we'll be called again, so go ahead and do readahead */
6637 	path->reada = READA_FORWARD;
6638 
6639 	/*
6640 	 * Unless we're going to uncompress the inline extent, no sleep would
6641 	 * happen.
6642 	 */
6643 	path->leave_spinning = 1;
6644 
6645 	path->recurse = btrfs_is_free_space_inode(inode);
6646 
6647 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6648 	if (ret < 0) {
6649 		goto out;
6650 	} else if (ret > 0) {
6651 		if (path->slots[0] == 0)
6652 			goto not_found;
6653 		path->slots[0]--;
6654 		ret = 0;
6655 	}
6656 
6657 	leaf = path->nodes[0];
6658 	item = btrfs_item_ptr(leaf, path->slots[0],
6659 			      struct btrfs_file_extent_item);
6660 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6661 	if (found_key.objectid != objectid ||
6662 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6663 		/*
6664 		 * If we backup past the first extent we want to move forward
6665 		 * and see if there is an extent in front of us, otherwise we'll
6666 		 * say there is a hole for our whole search range which can
6667 		 * cause problems.
6668 		 */
6669 		extent_end = start;
6670 		goto next;
6671 	}
6672 
6673 	extent_type = btrfs_file_extent_type(leaf, item);
6674 	extent_start = found_key.offset;
6675 	extent_end = btrfs_file_extent_end(path);
6676 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6677 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6678 		/* Only regular file could have regular/prealloc extent */
6679 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6680 			ret = -EUCLEAN;
6681 			btrfs_crit(fs_info,
6682 		"regular/prealloc extent found for non-regular inode %llu",
6683 				   btrfs_ino(inode));
6684 			goto out;
6685 		}
6686 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6687 						       extent_start);
6688 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6689 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6690 						      path->slots[0],
6691 						      extent_start);
6692 	}
6693 next:
6694 	if (start >= extent_end) {
6695 		path->slots[0]++;
6696 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6697 			ret = btrfs_next_leaf(root, path);
6698 			if (ret < 0)
6699 				goto out;
6700 			else if (ret > 0)
6701 				goto not_found;
6702 
6703 			leaf = path->nodes[0];
6704 		}
6705 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6706 		if (found_key.objectid != objectid ||
6707 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6708 			goto not_found;
6709 		if (start + len <= found_key.offset)
6710 			goto not_found;
6711 		if (start > found_key.offset)
6712 			goto next;
6713 
6714 		/* New extent overlaps with existing one */
6715 		em->start = start;
6716 		em->orig_start = start;
6717 		em->len = found_key.offset - start;
6718 		em->block_start = EXTENT_MAP_HOLE;
6719 		goto insert;
6720 	}
6721 
6722 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6723 
6724 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6725 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6726 		goto insert;
6727 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6728 		unsigned long ptr;
6729 		char *map;
6730 		size_t size;
6731 		size_t extent_offset;
6732 		size_t copy_size;
6733 
6734 		if (!page)
6735 			goto out;
6736 
6737 		size = btrfs_file_extent_ram_bytes(leaf, item);
6738 		extent_offset = page_offset(page) + pg_offset - extent_start;
6739 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6740 				  size - extent_offset);
6741 		em->start = extent_start + extent_offset;
6742 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6743 		em->orig_block_len = em->len;
6744 		em->orig_start = em->start;
6745 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6746 
6747 		btrfs_set_path_blocking(path);
6748 		if (!PageUptodate(page)) {
6749 			if (btrfs_file_extent_compression(leaf, item) !=
6750 			    BTRFS_COMPRESS_NONE) {
6751 				ret = uncompress_inline(path, page, pg_offset,
6752 							extent_offset, item);
6753 				if (ret)
6754 					goto out;
6755 			} else {
6756 				map = kmap(page);
6757 				read_extent_buffer(leaf, map + pg_offset, ptr,
6758 						   copy_size);
6759 				if (pg_offset + copy_size < PAGE_SIZE) {
6760 					memset(map + pg_offset + copy_size, 0,
6761 					       PAGE_SIZE - pg_offset -
6762 					       copy_size);
6763 				}
6764 				kunmap(page);
6765 			}
6766 			flush_dcache_page(page);
6767 		}
6768 		set_extent_uptodate(io_tree, em->start,
6769 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6770 		goto insert;
6771 	}
6772 not_found:
6773 	em->start = start;
6774 	em->orig_start = start;
6775 	em->len = len;
6776 	em->block_start = EXTENT_MAP_HOLE;
6777 insert:
6778 	ret = 0;
6779 	btrfs_release_path(path);
6780 	if (em->start > start || extent_map_end(em) <= start) {
6781 		btrfs_err(fs_info,
6782 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6783 			  em->start, em->len, start, len);
6784 		ret = -EIO;
6785 		goto out;
6786 	}
6787 
6788 	write_lock(&em_tree->lock);
6789 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6790 	write_unlock(&em_tree->lock);
6791 out:
6792 	btrfs_free_path(path);
6793 
6794 	trace_btrfs_get_extent(root, inode, em);
6795 
6796 	if (ret) {
6797 		free_extent_map(em);
6798 		return ERR_PTR(ret);
6799 	}
6800 	return em;
6801 }
6802 
btrfs_get_extent_fiemap(struct btrfs_inode * inode,u64 start,u64 len)6803 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6804 					   u64 start, u64 len)
6805 {
6806 	struct extent_map *em;
6807 	struct extent_map *hole_em = NULL;
6808 	u64 delalloc_start = start;
6809 	u64 end;
6810 	u64 delalloc_len;
6811 	u64 delalloc_end;
6812 	int err = 0;
6813 
6814 	em = btrfs_get_extent(inode, NULL, 0, start, len);
6815 	if (IS_ERR(em))
6816 		return em;
6817 	/*
6818 	 * If our em maps to:
6819 	 * - a hole or
6820 	 * - a pre-alloc extent,
6821 	 * there might actually be delalloc bytes behind it.
6822 	 */
6823 	if (em->block_start != EXTENT_MAP_HOLE &&
6824 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6825 		return em;
6826 	else
6827 		hole_em = em;
6828 
6829 	/* check to see if we've wrapped (len == -1 or similar) */
6830 	end = start + len;
6831 	if (end < start)
6832 		end = (u64)-1;
6833 	else
6834 		end -= 1;
6835 
6836 	em = NULL;
6837 
6838 	/* ok, we didn't find anything, lets look for delalloc */
6839 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6840 				 end, len, EXTENT_DELALLOC, 1);
6841 	delalloc_end = delalloc_start + delalloc_len;
6842 	if (delalloc_end < delalloc_start)
6843 		delalloc_end = (u64)-1;
6844 
6845 	/*
6846 	 * We didn't find anything useful, return the original results from
6847 	 * get_extent()
6848 	 */
6849 	if (delalloc_start > end || delalloc_end <= start) {
6850 		em = hole_em;
6851 		hole_em = NULL;
6852 		goto out;
6853 	}
6854 
6855 	/*
6856 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
6857 	 * the start they passed in
6858 	 */
6859 	delalloc_start = max(start, delalloc_start);
6860 	delalloc_len = delalloc_end - delalloc_start;
6861 
6862 	if (delalloc_len > 0) {
6863 		u64 hole_start;
6864 		u64 hole_len;
6865 		const u64 hole_end = extent_map_end(hole_em);
6866 
6867 		em = alloc_extent_map();
6868 		if (!em) {
6869 			err = -ENOMEM;
6870 			goto out;
6871 		}
6872 
6873 		ASSERT(hole_em);
6874 		/*
6875 		 * When btrfs_get_extent can't find anything it returns one
6876 		 * huge hole
6877 		 *
6878 		 * Make sure what it found really fits our range, and adjust to
6879 		 * make sure it is based on the start from the caller
6880 		 */
6881 		if (hole_end <= start || hole_em->start > end) {
6882 		       free_extent_map(hole_em);
6883 		       hole_em = NULL;
6884 		} else {
6885 		       hole_start = max(hole_em->start, start);
6886 		       hole_len = hole_end - hole_start;
6887 		}
6888 
6889 		if (hole_em && delalloc_start > hole_start) {
6890 			/*
6891 			 * Our hole starts before our delalloc, so we have to
6892 			 * return just the parts of the hole that go until the
6893 			 * delalloc starts
6894 			 */
6895 			em->len = min(hole_len, delalloc_start - hole_start);
6896 			em->start = hole_start;
6897 			em->orig_start = hole_start;
6898 			/*
6899 			 * Don't adjust block start at all, it is fixed at
6900 			 * EXTENT_MAP_HOLE
6901 			 */
6902 			em->block_start = hole_em->block_start;
6903 			em->block_len = hole_len;
6904 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6905 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6906 		} else {
6907 			/*
6908 			 * Hole is out of passed range or it starts after
6909 			 * delalloc range
6910 			 */
6911 			em->start = delalloc_start;
6912 			em->len = delalloc_len;
6913 			em->orig_start = delalloc_start;
6914 			em->block_start = EXTENT_MAP_DELALLOC;
6915 			em->block_len = delalloc_len;
6916 		}
6917 	} else {
6918 		return hole_em;
6919 	}
6920 out:
6921 
6922 	free_extent_map(hole_em);
6923 	if (err) {
6924 		free_extent_map(em);
6925 		return ERR_PTR(err);
6926 	}
6927 	return em;
6928 }
6929 
btrfs_create_dio_extent(struct btrfs_inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)6930 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6931 						  const u64 start,
6932 						  const u64 len,
6933 						  const u64 orig_start,
6934 						  const u64 block_start,
6935 						  const u64 block_len,
6936 						  const u64 orig_block_len,
6937 						  const u64 ram_bytes,
6938 						  const int type)
6939 {
6940 	struct extent_map *em = NULL;
6941 	int ret;
6942 
6943 	if (type != BTRFS_ORDERED_NOCOW) {
6944 		em = create_io_em(inode, start, len, orig_start, block_start,
6945 				  block_len, orig_block_len, ram_bytes,
6946 				  BTRFS_COMPRESS_NONE, /* compress_type */
6947 				  type);
6948 		if (IS_ERR(em))
6949 			goto out;
6950 	}
6951 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6952 					   block_len, type);
6953 	if (ret) {
6954 		if (em) {
6955 			free_extent_map(em);
6956 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
6957 		}
6958 		em = ERR_PTR(ret);
6959 	}
6960  out:
6961 
6962 	return em;
6963 }
6964 
btrfs_new_extent_direct(struct btrfs_inode * inode,u64 start,u64 len)6965 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6966 						  u64 start, u64 len)
6967 {
6968 	struct btrfs_root *root = inode->root;
6969 	struct btrfs_fs_info *fs_info = root->fs_info;
6970 	struct extent_map *em;
6971 	struct btrfs_key ins;
6972 	u64 alloc_hint;
6973 	int ret;
6974 
6975 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6976 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6977 				   0, alloc_hint, &ins, 1, 1);
6978 	if (ret)
6979 		return ERR_PTR(ret);
6980 
6981 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6982 				     ins.objectid, ins.offset, ins.offset,
6983 				     ins.offset, BTRFS_ORDERED_REGULAR);
6984 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6985 	if (IS_ERR(em))
6986 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6987 					   1);
6988 
6989 	return em;
6990 }
6991 
6992 /*
6993  * Check if we can do nocow write into the range [@offset, @offset + @len)
6994  *
6995  * @offset:	File offset
6996  * @len:	The length to write, will be updated to the nocow writeable
6997  *		range
6998  * @orig_start:	(optional) Return the original file offset of the file extent
6999  * @orig_len:	(optional) Return the original on-disk length of the file extent
7000  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7001  * @strict:	if true, omit optimizations that might force us into unnecessary
7002  *		cow. e.g., don't trust generation number.
7003  *
7004  * This function will flush ordered extents in the range to ensure proper
7005  * nocow checks for (nowait == false) case.
7006  *
7007  * Return:
7008  * >0	and update @len if we can do nocow write
7009  *  0	if we can't do nocow write
7010  * <0	if error happened
7011  *
7012  * NOTE: This only checks the file extents, caller is responsible to wait for
7013  *	 any ordered extents.
7014  */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool strict)7015 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7016 			      u64 *orig_start, u64 *orig_block_len,
7017 			      u64 *ram_bytes, bool strict)
7018 {
7019 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7020 	struct btrfs_path *path;
7021 	int ret;
7022 	struct extent_buffer *leaf;
7023 	struct btrfs_root *root = BTRFS_I(inode)->root;
7024 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7025 	struct btrfs_file_extent_item *fi;
7026 	struct btrfs_key key;
7027 	u64 disk_bytenr;
7028 	u64 backref_offset;
7029 	u64 extent_end;
7030 	u64 num_bytes;
7031 	int slot;
7032 	int found_type;
7033 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7034 
7035 	path = btrfs_alloc_path();
7036 	if (!path)
7037 		return -ENOMEM;
7038 
7039 	ret = btrfs_lookup_file_extent(NULL, root, path,
7040 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7041 	if (ret < 0)
7042 		goto out;
7043 
7044 	slot = path->slots[0];
7045 	if (ret == 1) {
7046 		if (slot == 0) {
7047 			/* can't find the item, must cow */
7048 			ret = 0;
7049 			goto out;
7050 		}
7051 		slot--;
7052 	}
7053 	ret = 0;
7054 	leaf = path->nodes[0];
7055 	btrfs_item_key_to_cpu(leaf, &key, slot);
7056 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7057 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7058 		/* not our file or wrong item type, must cow */
7059 		goto out;
7060 	}
7061 
7062 	if (key.offset > offset) {
7063 		/* Wrong offset, must cow */
7064 		goto out;
7065 	}
7066 
7067 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7068 	found_type = btrfs_file_extent_type(leaf, fi);
7069 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7070 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7071 		/* not a regular extent, must cow */
7072 		goto out;
7073 	}
7074 
7075 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7076 		goto out;
7077 
7078 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7079 	if (extent_end <= offset)
7080 		goto out;
7081 
7082 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7083 	if (disk_bytenr == 0)
7084 		goto out;
7085 
7086 	if (btrfs_file_extent_compression(leaf, fi) ||
7087 	    btrfs_file_extent_encryption(leaf, fi) ||
7088 	    btrfs_file_extent_other_encoding(leaf, fi))
7089 		goto out;
7090 
7091 	/*
7092 	 * Do the same check as in btrfs_cross_ref_exist but without the
7093 	 * unnecessary search.
7094 	 */
7095 	if (!strict &&
7096 	    (btrfs_file_extent_generation(leaf, fi) <=
7097 	     btrfs_root_last_snapshot(&root->root_item)))
7098 		goto out;
7099 
7100 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7101 
7102 	if (orig_start) {
7103 		*orig_start = key.offset - backref_offset;
7104 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7105 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7106 	}
7107 
7108 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7109 		goto out;
7110 
7111 	num_bytes = min(offset + *len, extent_end) - offset;
7112 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7113 		u64 range_end;
7114 
7115 		range_end = round_up(offset + num_bytes,
7116 				     root->fs_info->sectorsize) - 1;
7117 		ret = test_range_bit(io_tree, offset, range_end,
7118 				     EXTENT_DELALLOC, 0, NULL);
7119 		if (ret) {
7120 			ret = -EAGAIN;
7121 			goto out;
7122 		}
7123 	}
7124 
7125 	btrfs_release_path(path);
7126 
7127 	/*
7128 	 * look for other files referencing this extent, if we
7129 	 * find any we must cow
7130 	 */
7131 
7132 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7133 				    key.offset - backref_offset, disk_bytenr,
7134 				    strict);
7135 	if (ret) {
7136 		ret = 0;
7137 		goto out;
7138 	}
7139 
7140 	/*
7141 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7142 	 * in this extent we are about to write.  If there
7143 	 * are any csums in that range we have to cow in order
7144 	 * to keep the csums correct
7145 	 */
7146 	disk_bytenr += backref_offset;
7147 	disk_bytenr += offset - key.offset;
7148 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7149 		goto out;
7150 	/*
7151 	 * all of the above have passed, it is safe to overwrite this extent
7152 	 * without cow
7153 	 */
7154 	*len = num_bytes;
7155 	ret = 1;
7156 out:
7157 	btrfs_free_path(path);
7158 	return ret;
7159 }
7160 
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,bool writing)7161 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7162 			      struct extent_state **cached_state, bool writing)
7163 {
7164 	struct btrfs_ordered_extent *ordered;
7165 	int ret = 0;
7166 
7167 	while (1) {
7168 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7169 				 cached_state);
7170 		/*
7171 		 * We're concerned with the entire range that we're going to be
7172 		 * doing DIO to, so we need to make sure there's no ordered
7173 		 * extents in this range.
7174 		 */
7175 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7176 						     lockend - lockstart + 1);
7177 
7178 		/*
7179 		 * We need to make sure there are no buffered pages in this
7180 		 * range either, we could have raced between the invalidate in
7181 		 * generic_file_direct_write and locking the extent.  The
7182 		 * invalidate needs to happen so that reads after a write do not
7183 		 * get stale data.
7184 		 */
7185 		if (!ordered &&
7186 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7187 							 lockstart, lockend)))
7188 			break;
7189 
7190 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7191 				     cached_state);
7192 
7193 		if (ordered) {
7194 			/*
7195 			 * If we are doing a DIO read and the ordered extent we
7196 			 * found is for a buffered write, we can not wait for it
7197 			 * to complete and retry, because if we do so we can
7198 			 * deadlock with concurrent buffered writes on page
7199 			 * locks. This happens only if our DIO read covers more
7200 			 * than one extent map, if at this point has already
7201 			 * created an ordered extent for a previous extent map
7202 			 * and locked its range in the inode's io tree, and a
7203 			 * concurrent write against that previous extent map's
7204 			 * range and this range started (we unlock the ranges
7205 			 * in the io tree only when the bios complete and
7206 			 * buffered writes always lock pages before attempting
7207 			 * to lock range in the io tree).
7208 			 */
7209 			if (writing ||
7210 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7211 				btrfs_start_ordered_extent(ordered, 1);
7212 			else
7213 				ret = -ENOTBLK;
7214 			btrfs_put_ordered_extent(ordered);
7215 		} else {
7216 			/*
7217 			 * We could trigger writeback for this range (and wait
7218 			 * for it to complete) and then invalidate the pages for
7219 			 * this range (through invalidate_inode_pages2_range()),
7220 			 * but that can lead us to a deadlock with a concurrent
7221 			 * call to readahead (a buffered read or a defrag call
7222 			 * triggered a readahead) on a page lock due to an
7223 			 * ordered dio extent we created before but did not have
7224 			 * yet a corresponding bio submitted (whence it can not
7225 			 * complete), which makes readahead wait for that
7226 			 * ordered extent to complete while holding a lock on
7227 			 * that page.
7228 			 */
7229 			ret = -ENOTBLK;
7230 		}
7231 
7232 		if (ret)
7233 			break;
7234 
7235 		cond_resched();
7236 	}
7237 
7238 	return ret;
7239 }
7240 
7241 /* The callers of this must take lock_extent() */
create_io_em(struct btrfs_inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7242 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7243 				       u64 len, u64 orig_start, u64 block_start,
7244 				       u64 block_len, u64 orig_block_len,
7245 				       u64 ram_bytes, int compress_type,
7246 				       int type)
7247 {
7248 	struct extent_map_tree *em_tree;
7249 	struct extent_map *em;
7250 	int ret;
7251 
7252 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7253 	       type == BTRFS_ORDERED_COMPRESSED ||
7254 	       type == BTRFS_ORDERED_NOCOW ||
7255 	       type == BTRFS_ORDERED_REGULAR);
7256 
7257 	em_tree = &inode->extent_tree;
7258 	em = alloc_extent_map();
7259 	if (!em)
7260 		return ERR_PTR(-ENOMEM);
7261 
7262 	em->start = start;
7263 	em->orig_start = orig_start;
7264 	em->len = len;
7265 	em->block_len = block_len;
7266 	em->block_start = block_start;
7267 	em->orig_block_len = orig_block_len;
7268 	em->ram_bytes = ram_bytes;
7269 	em->generation = -1;
7270 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7271 	if (type == BTRFS_ORDERED_PREALLOC) {
7272 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7273 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7274 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7275 		em->compress_type = compress_type;
7276 	}
7277 
7278 	do {
7279 		btrfs_drop_extent_cache(inode, em->start,
7280 					em->start + em->len - 1, 0);
7281 		write_lock(&em_tree->lock);
7282 		ret = add_extent_mapping(em_tree, em, 1);
7283 		write_unlock(&em_tree->lock);
7284 		/*
7285 		 * The caller has taken lock_extent(), who could race with us
7286 		 * to add em?
7287 		 */
7288 	} while (ret == -EEXIST);
7289 
7290 	if (ret) {
7291 		free_extent_map(em);
7292 		return ERR_PTR(ret);
7293 	}
7294 
7295 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7296 	return em;
7297 }
7298 
7299 
btrfs_get_blocks_direct_write(struct extent_map ** map,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7300 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7301 					 struct inode *inode,
7302 					 struct btrfs_dio_data *dio_data,
7303 					 u64 start, u64 len)
7304 {
7305 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7306 	struct extent_map *em = *map;
7307 	int ret = 0;
7308 
7309 	/*
7310 	 * We don't allocate a new extent in the following cases
7311 	 *
7312 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7313 	 * existing extent.
7314 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7315 	 * just use the extent.
7316 	 *
7317 	 */
7318 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7319 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7320 	     em->block_start != EXTENT_MAP_HOLE)) {
7321 		int type;
7322 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7323 
7324 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7325 			type = BTRFS_ORDERED_PREALLOC;
7326 		else
7327 			type = BTRFS_ORDERED_NOCOW;
7328 		len = min(len, em->len - (start - em->start));
7329 		block_start = em->block_start + (start - em->start);
7330 
7331 		if (can_nocow_extent(inode, start, &len, &orig_start,
7332 				     &orig_block_len, &ram_bytes, false) == 1 &&
7333 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7334 			struct extent_map *em2;
7335 
7336 			em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7337 						      orig_start, block_start,
7338 						      len, orig_block_len,
7339 						      ram_bytes, type);
7340 			btrfs_dec_nocow_writers(fs_info, block_start);
7341 			if (type == BTRFS_ORDERED_PREALLOC) {
7342 				free_extent_map(em);
7343 				*map = em = em2;
7344 			}
7345 
7346 			if (em2 && IS_ERR(em2)) {
7347 				ret = PTR_ERR(em2);
7348 				goto out;
7349 			}
7350 			/*
7351 			 * For inode marked NODATACOW or extent marked PREALLOC,
7352 			 * use the existing or preallocated extent, so does not
7353 			 * need to adjust btrfs_space_info's bytes_may_use.
7354 			 */
7355 			btrfs_free_reserved_data_space_noquota(fs_info, len);
7356 			goto skip_cow;
7357 		}
7358 	}
7359 
7360 	/* this will cow the extent */
7361 	free_extent_map(em);
7362 	*map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7363 	if (IS_ERR(em)) {
7364 		ret = PTR_ERR(em);
7365 		goto out;
7366 	}
7367 
7368 	len = min(len, em->len - (start - em->start));
7369 
7370 skip_cow:
7371 	/*
7372 	 * Need to update the i_size under the extent lock so buffered
7373 	 * readers will get the updated i_size when we unlock.
7374 	 */
7375 	if (start + len > i_size_read(inode))
7376 		i_size_write(inode, start + len);
7377 
7378 	dio_data->reserve -= len;
7379 out:
7380 	return ret;
7381 }
7382 
btrfs_dio_iomap_begin(struct inode * inode,loff_t start,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)7383 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7384 		loff_t length, unsigned int flags, struct iomap *iomap,
7385 		struct iomap *srcmap)
7386 {
7387 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7388 	struct extent_map *em;
7389 	struct extent_state *cached_state = NULL;
7390 	struct btrfs_dio_data *dio_data = NULL;
7391 	u64 lockstart, lockend;
7392 	const bool write = !!(flags & IOMAP_WRITE);
7393 	int ret = 0;
7394 	u64 len = length;
7395 	bool unlock_extents = false;
7396 	bool sync = (current->journal_info == BTRFS_DIO_SYNC_STUB);
7397 
7398 	/*
7399 	 * We used current->journal_info here to see if we were sync, but
7400 	 * there's a lot of tests in the enospc machinery to not do flushing if
7401 	 * we have a journal_info set, so we need to clear this out and re-set
7402 	 * it in iomap_end.
7403 	 */
7404 	ASSERT(current->journal_info == NULL ||
7405 	       current->journal_info == BTRFS_DIO_SYNC_STUB);
7406 	current->journal_info = NULL;
7407 
7408 	if (!write)
7409 		len = min_t(u64, len, fs_info->sectorsize);
7410 
7411 	lockstart = start;
7412 	lockend = start + len - 1;
7413 
7414 	/*
7415 	 * The generic stuff only does filemap_write_and_wait_range, which
7416 	 * isn't enough if we've written compressed pages to this area, so we
7417 	 * need to flush the dirty pages again to make absolutely sure that any
7418 	 * outstanding dirty pages are on disk.
7419 	 */
7420 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7421 		     &BTRFS_I(inode)->runtime_flags)) {
7422 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
7423 					       start + length - 1);
7424 		if (ret)
7425 			return ret;
7426 	}
7427 
7428 	dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7429 	if (!dio_data)
7430 		return -ENOMEM;
7431 
7432 	dio_data->sync = sync;
7433 	dio_data->length = length;
7434 	if (write) {
7435 		dio_data->reserve = round_up(length, fs_info->sectorsize);
7436 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7437 				&dio_data->data_reserved,
7438 				start, dio_data->reserve);
7439 		if (ret) {
7440 			extent_changeset_free(dio_data->data_reserved);
7441 			kfree(dio_data);
7442 			return ret;
7443 		}
7444 	}
7445 	iomap->private = dio_data;
7446 
7447 
7448 	/*
7449 	 * If this errors out it's because we couldn't invalidate pagecache for
7450 	 * this range and we need to fallback to buffered.
7451 	 */
7452 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7453 		ret = -ENOTBLK;
7454 		goto err;
7455 	}
7456 
7457 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7458 	if (IS_ERR(em)) {
7459 		ret = PTR_ERR(em);
7460 		goto unlock_err;
7461 	}
7462 
7463 	/*
7464 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7465 	 * io.  INLINE is special, and we could probably kludge it in here, but
7466 	 * it's still buffered so for safety lets just fall back to the generic
7467 	 * buffered path.
7468 	 *
7469 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7470 	 * decompress it, so there will be buffering required no matter what we
7471 	 * do, so go ahead and fallback to buffered.
7472 	 *
7473 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7474 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7475 	 * the generic code.
7476 	 */
7477 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7478 	    em->block_start == EXTENT_MAP_INLINE) {
7479 		free_extent_map(em);
7480 		/*
7481 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7482 		 * fallback to buffered IO. This is not only because we can
7483 		 * block with buffered IO (no support for NOWAIT semantics at
7484 		 * the moment) but also to avoid returning short reads to user
7485 		 * space - this happens if we were able to read some data from
7486 		 * previous non-compressed extents and then when we fallback to
7487 		 * buffered IO, at btrfs_file_read_iter() by calling
7488 		 * filemap_read(), we fail to fault in pages for the read buffer,
7489 		 * in which case filemap_read() returns a short read (the number
7490 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7491 		 */
7492 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7493 		goto unlock_err;
7494 	}
7495 
7496 	len = min(len, em->len - (start - em->start));
7497 	if (write) {
7498 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7499 						    start, len);
7500 		if (ret < 0)
7501 			goto unlock_err;
7502 		unlock_extents = true;
7503 		/* Recalc len in case the new em is smaller than requested */
7504 		len = min(len, em->len - (start - em->start));
7505 	} else {
7506 		/*
7507 		 * We need to unlock only the end area that we aren't using.
7508 		 * The rest is going to be unlocked by the endio routine.
7509 		 */
7510 		lockstart = start + len;
7511 		if (lockstart < lockend)
7512 			unlock_extents = true;
7513 	}
7514 
7515 	if (unlock_extents)
7516 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7517 				     lockstart, lockend, &cached_state);
7518 	else
7519 		free_extent_state(cached_state);
7520 
7521 	/*
7522 	 * Translate extent map information to iomap.
7523 	 * We trim the extents (and move the addr) even though iomap code does
7524 	 * that, since we have locked only the parts we are performing I/O in.
7525 	 */
7526 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7527 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7528 		iomap->addr = IOMAP_NULL_ADDR;
7529 		iomap->type = IOMAP_HOLE;
7530 	} else {
7531 		iomap->addr = em->block_start + (start - em->start);
7532 		iomap->type = IOMAP_MAPPED;
7533 	}
7534 	iomap->offset = start;
7535 	iomap->bdev = fs_info->fs_devices->latest_bdev;
7536 	iomap->length = len;
7537 
7538 	free_extent_map(em);
7539 
7540 	return 0;
7541 
7542 unlock_err:
7543 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7544 			     &cached_state);
7545 err:
7546 	if (dio_data) {
7547 		btrfs_delalloc_release_space(BTRFS_I(inode),
7548 				dio_data->data_reserved, start,
7549 				dio_data->reserve, true);
7550 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7551 		extent_changeset_free(dio_data->data_reserved);
7552 		kfree(dio_data);
7553 	}
7554 	return ret;
7555 }
7556 
btrfs_dio_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned int flags,struct iomap * iomap)7557 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7558 		ssize_t written, unsigned int flags, struct iomap *iomap)
7559 {
7560 	int ret = 0;
7561 	struct btrfs_dio_data *dio_data = iomap->private;
7562 	size_t submitted = dio_data->submitted;
7563 	const bool write = !!(flags & IOMAP_WRITE);
7564 
7565 	if (!write && (iomap->type == IOMAP_HOLE)) {
7566 		/* If reading from a hole, unlock and return */
7567 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7568 		goto out;
7569 	}
7570 
7571 	if (submitted < length) {
7572 		pos += submitted;
7573 		length -= submitted;
7574 		if (write)
7575 			__endio_write_update_ordered(BTRFS_I(inode), pos,
7576 					length, false);
7577 		else
7578 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7579 				      pos + length - 1);
7580 		ret = -ENOTBLK;
7581 	}
7582 
7583 	if (write) {
7584 		if (dio_data->reserve)
7585 			btrfs_delalloc_release_space(BTRFS_I(inode),
7586 					dio_data->data_reserved, pos,
7587 					dio_data->reserve, true);
7588 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7589 		extent_changeset_free(dio_data->data_reserved);
7590 	}
7591 out:
7592 	/*
7593 	 * We're all done, we can re-set the current->journal_info now safely
7594 	 * for our endio.
7595 	 */
7596 	if (dio_data->sync) {
7597 		ASSERT(current->journal_info == NULL);
7598 		current->journal_info = BTRFS_DIO_SYNC_STUB;
7599 	}
7600 	kfree(dio_data);
7601 	iomap->private = NULL;
7602 
7603 	return ret;
7604 }
7605 
btrfs_dio_private_put(struct btrfs_dio_private * dip)7606 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7607 {
7608 	/*
7609 	 * This implies a barrier so that stores to dio_bio->bi_status before
7610 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7611 	 */
7612 	if (!refcount_dec_and_test(&dip->refs))
7613 		return;
7614 
7615 	if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7616 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7617 					     dip->logical_offset,
7618 					     dip->bytes,
7619 					     !dip->dio_bio->bi_status);
7620 	} else {
7621 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7622 			      dip->logical_offset,
7623 			      dip->logical_offset + dip->bytes - 1);
7624 	}
7625 
7626 	bio_endio(dip->dio_bio);
7627 	kfree(dip);
7628 }
7629 
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)7630 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7631 					  int mirror_num,
7632 					  unsigned long bio_flags)
7633 {
7634 	struct btrfs_dio_private *dip = bio->bi_private;
7635 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7636 	blk_status_t ret;
7637 
7638 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7639 
7640 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7641 	if (ret)
7642 		return ret;
7643 
7644 	refcount_inc(&dip->refs);
7645 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7646 	if (ret)
7647 		refcount_dec(&dip->refs);
7648 	return ret;
7649 }
7650 
btrfs_check_read_dio_bio(struct inode * inode,struct btrfs_io_bio * io_bio,const bool uptodate)7651 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7652 					     struct btrfs_io_bio *io_bio,
7653 					     const bool uptodate)
7654 {
7655 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7656 	const u32 sectorsize = fs_info->sectorsize;
7657 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7658 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7659 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7660 	struct bio_vec bvec;
7661 	struct bvec_iter iter;
7662 	u64 start = io_bio->logical;
7663 	int icsum = 0;
7664 	blk_status_t err = BLK_STS_OK;
7665 
7666 	__bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7667 		unsigned int i, nr_sectors, pgoff;
7668 
7669 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7670 		pgoff = bvec.bv_offset;
7671 		for (i = 0; i < nr_sectors; i++) {
7672 			ASSERT(pgoff < PAGE_SIZE);
7673 			if (uptodate &&
7674 			    (!csum || !check_data_csum(inode, io_bio, icsum,
7675 						       bvec.bv_page, pgoff,
7676 						       start, sectorsize))) {
7677 				clean_io_failure(fs_info, failure_tree, io_tree,
7678 						 start, bvec.bv_page,
7679 						 btrfs_ino(BTRFS_I(inode)),
7680 						 pgoff);
7681 			} else {
7682 				blk_status_t status;
7683 
7684 				status = btrfs_submit_read_repair(inode,
7685 							&io_bio->bio,
7686 							start - io_bio->logical,
7687 							bvec.bv_page, pgoff,
7688 							start,
7689 							start + sectorsize - 1,
7690 							io_bio->mirror_num,
7691 							submit_dio_repair_bio);
7692 				if (status)
7693 					err = status;
7694 			}
7695 			start += sectorsize;
7696 			icsum++;
7697 			pgoff += sectorsize;
7698 		}
7699 	}
7700 	return err;
7701 }
7702 
__endio_write_update_ordered(struct btrfs_inode * inode,const u64 offset,const u64 bytes,const bool uptodate)7703 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7704 					 const u64 offset, const u64 bytes,
7705 					 const bool uptodate)
7706 {
7707 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7708 	struct btrfs_ordered_extent *ordered = NULL;
7709 	struct btrfs_workqueue *wq;
7710 	u64 ordered_offset = offset;
7711 	u64 ordered_bytes = bytes;
7712 	u64 last_offset;
7713 
7714 	if (btrfs_is_free_space_inode(inode))
7715 		wq = fs_info->endio_freespace_worker;
7716 	else
7717 		wq = fs_info->endio_write_workers;
7718 
7719 	while (ordered_offset < offset + bytes) {
7720 		last_offset = ordered_offset;
7721 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7722 							 &ordered_offset,
7723 							 ordered_bytes,
7724 							 uptodate)) {
7725 			btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7726 					NULL);
7727 			btrfs_queue_work(wq, &ordered->work);
7728 		}
7729 		/*
7730 		 * If btrfs_dec_test_ordered_pending does not find any ordered
7731 		 * extent in the range, we can exit.
7732 		 */
7733 		if (ordered_offset == last_offset)
7734 			return;
7735 		/*
7736 		 * Our bio might span multiple ordered extents. In this case
7737 		 * we keep going until we have accounted the whole dio.
7738 		 */
7739 		if (ordered_offset < offset + bytes) {
7740 			ordered_bytes = offset + bytes - ordered_offset;
7741 			ordered = NULL;
7742 		}
7743 	}
7744 }
7745 
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)7746 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7747 				    struct bio *bio, u64 offset)
7748 {
7749 	struct inode *inode = private_data;
7750 
7751 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
7752 }
7753 
btrfs_end_dio_bio(struct bio * bio)7754 static void btrfs_end_dio_bio(struct bio *bio)
7755 {
7756 	struct btrfs_dio_private *dip = bio->bi_private;
7757 	blk_status_t err = bio->bi_status;
7758 
7759 	if (err)
7760 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7761 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7762 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7763 			   bio->bi_opf,
7764 			   (unsigned long long)bio->bi_iter.bi_sector,
7765 			   bio->bi_iter.bi_size, err);
7766 
7767 	if (bio_op(bio) == REQ_OP_READ) {
7768 		err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7769 					       !err);
7770 	}
7771 
7772 	if (err)
7773 		dip->dio_bio->bi_status = err;
7774 
7775 	bio_put(bio);
7776 	btrfs_dio_private_put(dip);
7777 }
7778 
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)7779 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7780 		struct inode *inode, u64 file_offset, int async_submit)
7781 {
7782 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7783 	struct btrfs_dio_private *dip = bio->bi_private;
7784 	bool write = bio_op(bio) == REQ_OP_WRITE;
7785 	blk_status_t ret;
7786 
7787 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
7788 	if (async_submit)
7789 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7790 
7791 	if (!write) {
7792 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7793 		if (ret)
7794 			goto err;
7795 	}
7796 
7797 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7798 		goto map;
7799 
7800 	if (write && async_submit) {
7801 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7802 					  file_offset, inode,
7803 					  btrfs_submit_bio_start_direct_io);
7804 		goto err;
7805 	} else if (write) {
7806 		/*
7807 		 * If we aren't doing async submit, calculate the csum of the
7808 		 * bio now.
7809 		 */
7810 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7811 		if (ret)
7812 			goto err;
7813 	} else {
7814 		u64 csum_offset;
7815 
7816 		csum_offset = file_offset - dip->logical_offset;
7817 		csum_offset >>= inode->i_sb->s_blocksize_bits;
7818 		csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7819 		btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7820 	}
7821 map:
7822 	ret = btrfs_map_bio(fs_info, bio, 0);
7823 err:
7824 	return ret;
7825 }
7826 
7827 /*
7828  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7829  * or ordered extents whether or not we submit any bios.
7830  */
btrfs_create_dio_private(struct bio * dio_bio,struct inode * inode,loff_t file_offset)7831 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7832 							  struct inode *inode,
7833 							  loff_t file_offset)
7834 {
7835 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7836 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7837 	size_t dip_size;
7838 	struct btrfs_dio_private *dip;
7839 
7840 	dip_size = sizeof(*dip);
7841 	if (!write && csum) {
7842 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7843 		const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7844 		size_t nblocks;
7845 
7846 		nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7847 		dip_size += csum_size * nblocks;
7848 	}
7849 
7850 	dip = kzalloc(dip_size, GFP_NOFS);
7851 	if (!dip)
7852 		return NULL;
7853 
7854 	dip->inode = inode;
7855 	dip->logical_offset = file_offset;
7856 	dip->bytes = dio_bio->bi_iter.bi_size;
7857 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7858 	dip->dio_bio = dio_bio;
7859 	refcount_set(&dip->refs, 1);
7860 	return dip;
7861 }
7862 
btrfs_submit_direct(struct inode * inode,struct iomap * iomap,struct bio * dio_bio,loff_t file_offset)7863 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
7864 		struct bio *dio_bio, loff_t file_offset)
7865 {
7866 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7867 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7868 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7869 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7870 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
7871 	struct btrfs_dio_private *dip;
7872 	struct bio *bio;
7873 	u64 start_sector;
7874 	int async_submit = 0;
7875 	u64 submit_len;
7876 	int clone_offset = 0;
7877 	int clone_len;
7878 	int ret;
7879 	blk_status_t status;
7880 	struct btrfs_io_geometry geom;
7881 	struct btrfs_dio_data *dio_data = iomap->private;
7882 
7883 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7884 	if (!dip) {
7885 		if (!write) {
7886 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7887 				file_offset + dio_bio->bi_iter.bi_size - 1);
7888 		}
7889 		dio_bio->bi_status = BLK_STS_RESOURCE;
7890 		bio_endio(dio_bio);
7891 		return BLK_QC_T_NONE;
7892 	}
7893 
7894 	if (!write && csum) {
7895 		/*
7896 		 * Load the csums up front to reduce csum tree searches and
7897 		 * contention when submitting bios.
7898 		 */
7899 		status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7900 					       dip->csums);
7901 		if (status != BLK_STS_OK)
7902 			goto out_err;
7903 	}
7904 
7905 	start_sector = dio_bio->bi_iter.bi_sector;
7906 	submit_len = dio_bio->bi_iter.bi_size;
7907 
7908 	do {
7909 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7910 					    start_sector << 9, submit_len,
7911 					    &geom);
7912 		if (ret) {
7913 			status = errno_to_blk_status(ret);
7914 			goto out_err;
7915 		}
7916 		ASSERT(geom.len <= INT_MAX);
7917 
7918 		clone_len = min_t(int, submit_len, geom.len);
7919 
7920 		/*
7921 		 * This will never fail as it's passing GPF_NOFS and
7922 		 * the allocation is backed by btrfs_bioset.
7923 		 */
7924 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7925 		bio->bi_private = dip;
7926 		bio->bi_end_io = btrfs_end_dio_bio;
7927 		btrfs_io_bio(bio)->logical = file_offset;
7928 
7929 		ASSERT(submit_len >= clone_len);
7930 		submit_len -= clone_len;
7931 
7932 		/*
7933 		 * Increase the count before we submit the bio so we know
7934 		 * the end IO handler won't happen before we increase the
7935 		 * count. Otherwise, the dip might get freed before we're
7936 		 * done setting it up.
7937 		 *
7938 		 * We transfer the initial reference to the last bio, so we
7939 		 * don't need to increment the reference count for the last one.
7940 		 */
7941 		if (submit_len > 0) {
7942 			refcount_inc(&dip->refs);
7943 			/*
7944 			 * If we are submitting more than one bio, submit them
7945 			 * all asynchronously. The exception is RAID 5 or 6, as
7946 			 * asynchronous checksums make it difficult to collect
7947 			 * full stripe writes.
7948 			 */
7949 			if (!raid56)
7950 				async_submit = 1;
7951 		}
7952 
7953 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
7954 						async_submit);
7955 		if (status) {
7956 			bio_put(bio);
7957 			if (submit_len > 0)
7958 				refcount_dec(&dip->refs);
7959 			goto out_err;
7960 		}
7961 
7962 		dio_data->submitted += clone_len;
7963 		clone_offset += clone_len;
7964 		start_sector += clone_len >> 9;
7965 		file_offset += clone_len;
7966 	} while (submit_len > 0);
7967 	return BLK_QC_T_NONE;
7968 
7969 out_err:
7970 	dip->dio_bio->bi_status = status;
7971 	btrfs_dio_private_put(dip);
7972 	return BLK_QC_T_NONE;
7973 }
7974 
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)7975 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7976 			       const struct iov_iter *iter, loff_t offset)
7977 {
7978 	int seg;
7979 	int i;
7980 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
7981 	ssize_t retval = -EINVAL;
7982 
7983 	if (offset & blocksize_mask)
7984 		goto out;
7985 
7986 	if (iov_iter_alignment(iter) & blocksize_mask)
7987 		goto out;
7988 
7989 	/* If this is a write we don't need to check anymore */
7990 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7991 		return 0;
7992 	/*
7993 	 * Check to make sure we don't have duplicate iov_base's in this
7994 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
7995 	 * when reading back.
7996 	 */
7997 	for (seg = 0; seg < iter->nr_segs; seg++) {
7998 		for (i = seg + 1; i < iter->nr_segs; i++) {
7999 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8000 				goto out;
8001 		}
8002 	}
8003 	retval = 0;
8004 out:
8005 	return retval;
8006 }
8007 
btrfs_maybe_fsync_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)8008 static inline int btrfs_maybe_fsync_end_io(struct kiocb *iocb, ssize_t size,
8009 					   int error, unsigned flags)
8010 {
8011 	/*
8012 	 * Now if we're still in the context of our submitter we know we can't
8013 	 * safely run generic_write_sync(), so clear our flag here so that the
8014 	 * caller knows to follow up with a sync.
8015 	 */
8016 	if (current->journal_info == BTRFS_DIO_SYNC_STUB) {
8017 		current->journal_info = NULL;
8018 		return error;
8019 	}
8020 
8021 	if (error)
8022 		return error;
8023 
8024 	if (size) {
8025 		iocb->ki_flags |= IOCB_DSYNC;
8026 		return generic_write_sync(iocb, size);
8027 	}
8028 
8029 	return 0;
8030 }
8031 
8032 static const struct iomap_ops btrfs_dio_iomap_ops = {
8033 	.iomap_begin            = btrfs_dio_iomap_begin,
8034 	.iomap_end              = btrfs_dio_iomap_end,
8035 };
8036 
8037 static const struct iomap_dio_ops btrfs_dio_ops = {
8038 	.submit_io		= btrfs_submit_direct,
8039 };
8040 
8041 static const struct iomap_dio_ops btrfs_sync_dops = {
8042 	.submit_io		= btrfs_submit_direct,
8043 	.end_io			= btrfs_maybe_fsync_end_io,
8044 };
8045 
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8046 ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8047 {
8048 	struct file *file = iocb->ki_filp;
8049 	struct inode *inode = file->f_mapping->host;
8050 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8051 	struct extent_changeset *data_reserved = NULL;
8052 	loff_t offset = iocb->ki_pos;
8053 	size_t count = 0;
8054 	bool relock = false;
8055 	ssize_t ret;
8056 
8057 	if (check_direct_IO(fs_info, iter, offset)) {
8058 		ASSERT(current->journal_info == NULL ||
8059 		       current->journal_info == BTRFS_DIO_SYNC_STUB);
8060 		current->journal_info = NULL;
8061 		return 0;
8062 	}
8063 
8064 	count = iov_iter_count(iter);
8065 	if (iov_iter_rw(iter) == WRITE) {
8066 		/*
8067 		 * If the write DIO is beyond the EOF, we need update
8068 		 * the isize, but it is protected by i_mutex. So we can
8069 		 * not unlock the i_mutex at this case.
8070 		 */
8071 		if (offset + count <= inode->i_size) {
8072 			inode_unlock(inode);
8073 			relock = true;
8074 		}
8075 		down_read(&BTRFS_I(inode)->dio_sem);
8076 	}
8077 
8078 	/*
8079 	 * We have are actually a sync iocb, so we need our fancy endio to know
8080 	 * if we need to sync.
8081 	 */
8082 	if (current->journal_info)
8083 		ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
8084 				   &btrfs_sync_dops, is_sync_kiocb(iocb));
8085 	else
8086 		ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
8087 				   &btrfs_dio_ops, is_sync_kiocb(iocb));
8088 
8089 	if (ret == -ENOTBLK)
8090 		ret = 0;
8091 
8092 	if (iov_iter_rw(iter) == WRITE)
8093 		up_read(&BTRFS_I(inode)->dio_sem);
8094 
8095 	if (relock)
8096 		inode_lock(inode);
8097 
8098 	extent_changeset_free(data_reserved);
8099 	return ret;
8100 }
8101 
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)8102 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8103 			u64 start, u64 len)
8104 {
8105 	int	ret;
8106 
8107 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8108 	if (ret)
8109 		return ret;
8110 
8111 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8112 }
8113 
btrfs_readpage(struct file * file,struct page * page)8114 int btrfs_readpage(struct file *file, struct page *page)
8115 {
8116 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8117 	u64 start = page_offset(page);
8118 	u64 end = start + PAGE_SIZE - 1;
8119 	unsigned long bio_flags = 0;
8120 	struct bio *bio = NULL;
8121 	int ret;
8122 
8123 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8124 
8125 	ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8126 	if (bio)
8127 		ret = submit_one_bio(bio, 0, bio_flags);
8128 	return ret;
8129 }
8130 
btrfs_writepage(struct page * page,struct writeback_control * wbc)8131 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8132 {
8133 	struct inode *inode = page->mapping->host;
8134 	int ret;
8135 
8136 	if (current->flags & PF_MEMALLOC) {
8137 		redirty_page_for_writepage(wbc, page);
8138 		unlock_page(page);
8139 		return 0;
8140 	}
8141 
8142 	/*
8143 	 * If we are under memory pressure we will call this directly from the
8144 	 * VM, we need to make sure we have the inode referenced for the ordered
8145 	 * extent.  If not just return like we didn't do anything.
8146 	 */
8147 	if (!igrab(inode)) {
8148 		redirty_page_for_writepage(wbc, page);
8149 		return AOP_WRITEPAGE_ACTIVATE;
8150 	}
8151 	ret = extent_write_full_page(page, wbc);
8152 	btrfs_add_delayed_iput(inode);
8153 	return ret;
8154 }
8155 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8156 static int btrfs_writepages(struct address_space *mapping,
8157 			    struct writeback_control *wbc)
8158 {
8159 	return extent_writepages(mapping, wbc);
8160 }
8161 
btrfs_readahead(struct readahead_control * rac)8162 static void btrfs_readahead(struct readahead_control *rac)
8163 {
8164 	extent_readahead(rac);
8165 }
8166 
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8167 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8168 {
8169 	int ret = try_release_extent_mapping(page, gfp_flags);
8170 	if (ret == 1)
8171 		detach_page_private(page);
8172 	return ret;
8173 }
8174 
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8175 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8176 {
8177 	if (PageWriteback(page) || PageDirty(page))
8178 		return 0;
8179 	return __btrfs_releasepage(page, gfp_flags);
8180 }
8181 
8182 #ifdef CONFIG_MIGRATION
btrfs_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)8183 static int btrfs_migratepage(struct address_space *mapping,
8184 			     struct page *newpage, struct page *page,
8185 			     enum migrate_mode mode)
8186 {
8187 	int ret;
8188 
8189 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8190 	if (ret != MIGRATEPAGE_SUCCESS)
8191 		return ret;
8192 
8193 	if (page_has_private(page))
8194 		attach_page_private(newpage, detach_page_private(page));
8195 
8196 	if (PagePrivate2(page)) {
8197 		ClearPagePrivate2(page);
8198 		SetPagePrivate2(newpage);
8199 	}
8200 
8201 	if (mode != MIGRATE_SYNC_NO_COPY)
8202 		migrate_page_copy(newpage, page);
8203 	else
8204 		migrate_page_states(newpage, page);
8205 	return MIGRATEPAGE_SUCCESS;
8206 }
8207 #endif
8208 
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8209 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8210 				 unsigned int length)
8211 {
8212 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8213 	struct extent_io_tree *tree = &inode->io_tree;
8214 	struct btrfs_ordered_extent *ordered;
8215 	struct extent_state *cached_state = NULL;
8216 	u64 page_start = page_offset(page);
8217 	u64 page_end = page_start + PAGE_SIZE - 1;
8218 	u64 start;
8219 	u64 end;
8220 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8221 
8222 	/*
8223 	 * we have the page locked, so new writeback can't start,
8224 	 * and the dirty bit won't be cleared while we are here.
8225 	 *
8226 	 * Wait for IO on this page so that we can safely clear
8227 	 * the PagePrivate2 bit and do ordered accounting
8228 	 */
8229 	wait_on_page_writeback(page);
8230 
8231 	/*
8232 	 * For subpage case, we have call sites like
8233 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8234 	 * sectorsize.
8235 	 * If the range doesn't cover the full page, we don't need to and
8236 	 * shouldn't clear page extent mapped, as page->private can still
8237 	 * record subpage dirty bits for other part of the range.
8238 	 *
8239 	 * For cases that can invalidate the full even the range doesn't
8240 	 * cover the full page, like invalidating the last page, we're
8241 	 * still safe to wait for ordered extent to finish.
8242 	 */
8243 	if (!(offset == 0 && length == PAGE_SIZE)) {
8244 		btrfs_releasepage(page, GFP_NOFS);
8245 		return;
8246 	}
8247 
8248 	if (!inode_evicting)
8249 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8250 
8251 	start = page_start;
8252 again:
8253 	ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8254 	if (ordered) {
8255 		end = min(page_end,
8256 			  ordered->file_offset + ordered->num_bytes - 1);
8257 		/*
8258 		 * IO on this page will never be started, so we need
8259 		 * to account for any ordered extents now
8260 		 */
8261 		if (!inode_evicting)
8262 			clear_extent_bit(tree, start, end,
8263 					 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8264 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8265 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8266 		/*
8267 		 * whoever cleared the private bit is responsible
8268 		 * for the finish_ordered_io
8269 		 */
8270 		if (TestClearPagePrivate2(page)) {
8271 			struct btrfs_ordered_inode_tree *tree;
8272 			u64 new_len;
8273 
8274 			tree = &inode->ordered_tree;
8275 
8276 			spin_lock_irq(&tree->lock);
8277 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8278 			new_len = start - ordered->file_offset;
8279 			if (new_len < ordered->truncated_len)
8280 				ordered->truncated_len = new_len;
8281 			spin_unlock_irq(&tree->lock);
8282 
8283 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8284 							   start,
8285 							   end - start + 1, 1))
8286 				btrfs_finish_ordered_io(ordered);
8287 		}
8288 		btrfs_put_ordered_extent(ordered);
8289 		if (!inode_evicting) {
8290 			cached_state = NULL;
8291 			lock_extent_bits(tree, start, end,
8292 					 &cached_state);
8293 		}
8294 
8295 		start = end + 1;
8296 		if (start < page_end)
8297 			goto again;
8298 	}
8299 
8300 	/*
8301 	 * Qgroup reserved space handler
8302 	 * Page here will be either
8303 	 * 1) Already written to disk or ordered extent already submitted
8304 	 *    Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8305 	 *    Qgroup will be handled by its qgroup_record then.
8306 	 *    btrfs_qgroup_free_data() call will do nothing here.
8307 	 *
8308 	 * 2) Not written to disk yet
8309 	 *    Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8310 	 *    bit of its io_tree, and free the qgroup reserved data space.
8311 	 *    Since the IO will never happen for this page.
8312 	 */
8313 	btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8314 	if (!inode_evicting) {
8315 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8316 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8317 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8318 				 &cached_state);
8319 
8320 		__btrfs_releasepage(page, GFP_NOFS);
8321 	}
8322 
8323 	ClearPageChecked(page);
8324 	detach_page_private(page);
8325 }
8326 
8327 /*
8328  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8329  * called from a page fault handler when a page is first dirtied. Hence we must
8330  * be careful to check for EOF conditions here. We set the page up correctly
8331  * for a written page which means we get ENOSPC checking when writing into
8332  * holes and correct delalloc and unwritten extent mapping on filesystems that
8333  * support these features.
8334  *
8335  * We are not allowed to take the i_mutex here so we have to play games to
8336  * protect against truncate races as the page could now be beyond EOF.  Because
8337  * truncate_setsize() writes the inode size before removing pages, once we have
8338  * the page lock we can determine safely if the page is beyond EOF. If it is not
8339  * beyond EOF, then the page is guaranteed safe against truncation until we
8340  * unlock the page.
8341  */
btrfs_page_mkwrite(struct vm_fault * vmf)8342 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8343 {
8344 	struct page *page = vmf->page;
8345 	struct inode *inode = file_inode(vmf->vma->vm_file);
8346 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8347 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8348 	struct btrfs_ordered_extent *ordered;
8349 	struct extent_state *cached_state = NULL;
8350 	struct extent_changeset *data_reserved = NULL;
8351 	char *kaddr;
8352 	unsigned long zero_start;
8353 	loff_t size;
8354 	vm_fault_t ret;
8355 	int ret2;
8356 	int reserved = 0;
8357 	u64 reserved_space;
8358 	u64 page_start;
8359 	u64 page_end;
8360 	u64 end;
8361 
8362 	reserved_space = PAGE_SIZE;
8363 
8364 	sb_start_pagefault(inode->i_sb);
8365 	page_start = page_offset(page);
8366 	page_end = page_start + PAGE_SIZE - 1;
8367 	end = page_end;
8368 
8369 	/*
8370 	 * Reserving delalloc space after obtaining the page lock can lead to
8371 	 * deadlock. For example, if a dirty page is locked by this function
8372 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8373 	 * dirty page write out, then the btrfs_writepage() function could
8374 	 * end up waiting indefinitely to get a lock on the page currently
8375 	 * being processed by btrfs_page_mkwrite() function.
8376 	 */
8377 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8378 					    page_start, reserved_space);
8379 	if (!ret2) {
8380 		ret2 = file_update_time(vmf->vma->vm_file);
8381 		reserved = 1;
8382 	}
8383 	if (ret2) {
8384 		ret = vmf_error(ret2);
8385 		if (reserved)
8386 			goto out;
8387 		goto out_noreserve;
8388 	}
8389 
8390 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8391 again:
8392 	lock_page(page);
8393 	size = i_size_read(inode);
8394 
8395 	if ((page->mapping != inode->i_mapping) ||
8396 	    (page_start >= size)) {
8397 		/* page got truncated out from underneath us */
8398 		goto out_unlock;
8399 	}
8400 	wait_on_page_writeback(page);
8401 
8402 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8403 	set_page_extent_mapped(page);
8404 
8405 	/*
8406 	 * we can't set the delalloc bits if there are pending ordered
8407 	 * extents.  Drop our locks and wait for them to finish
8408 	 */
8409 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8410 			PAGE_SIZE);
8411 	if (ordered) {
8412 		unlock_extent_cached(io_tree, page_start, page_end,
8413 				     &cached_state);
8414 		unlock_page(page);
8415 		btrfs_start_ordered_extent(ordered, 1);
8416 		btrfs_put_ordered_extent(ordered);
8417 		goto again;
8418 	}
8419 
8420 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8421 		reserved_space = round_up(size - page_start,
8422 					  fs_info->sectorsize);
8423 		if (reserved_space < PAGE_SIZE) {
8424 			end = page_start + reserved_space - 1;
8425 			btrfs_delalloc_release_space(BTRFS_I(inode),
8426 					data_reserved, page_start,
8427 					PAGE_SIZE - reserved_space, true);
8428 		}
8429 	}
8430 
8431 	/*
8432 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8433 	 * faulted in, but write(2) could also dirty a page and set delalloc
8434 	 * bits, thus in this case for space account reason, we still need to
8435 	 * clear any delalloc bits within this page range since we have to
8436 	 * reserve data&meta space before lock_page() (see above comments).
8437 	 */
8438 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8439 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8440 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8441 
8442 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8443 					&cached_state);
8444 	if (ret2) {
8445 		unlock_extent_cached(io_tree, page_start, page_end,
8446 				     &cached_state);
8447 		ret = VM_FAULT_SIGBUS;
8448 		goto out_unlock;
8449 	}
8450 
8451 	/* page is wholly or partially inside EOF */
8452 	if (page_start + PAGE_SIZE > size)
8453 		zero_start = offset_in_page(size);
8454 	else
8455 		zero_start = PAGE_SIZE;
8456 
8457 	if (zero_start != PAGE_SIZE) {
8458 		kaddr = kmap(page);
8459 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8460 		flush_dcache_page(page);
8461 		kunmap(page);
8462 	}
8463 	ClearPageChecked(page);
8464 	set_page_dirty(page);
8465 	SetPageUptodate(page);
8466 
8467 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8468 
8469 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8470 
8471 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8472 	sb_end_pagefault(inode->i_sb);
8473 	extent_changeset_free(data_reserved);
8474 	return VM_FAULT_LOCKED;
8475 
8476 out_unlock:
8477 	unlock_page(page);
8478 out:
8479 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8480 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8481 				     reserved_space, (ret != 0));
8482 out_noreserve:
8483 	sb_end_pagefault(inode->i_sb);
8484 	extent_changeset_free(data_reserved);
8485 	return ret;
8486 }
8487 
btrfs_truncate(struct inode * inode,bool skip_writeback)8488 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8489 {
8490 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8491 	struct btrfs_root *root = BTRFS_I(inode)->root;
8492 	struct btrfs_block_rsv *rsv;
8493 	int ret;
8494 	struct btrfs_trans_handle *trans;
8495 	u64 mask = fs_info->sectorsize - 1;
8496 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8497 
8498 	if (!skip_writeback) {
8499 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8500 					       (u64)-1);
8501 		if (ret)
8502 			return ret;
8503 	}
8504 
8505 	/*
8506 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8507 	 * things going on here:
8508 	 *
8509 	 * 1) We need to reserve space to update our inode.
8510 	 *
8511 	 * 2) We need to have something to cache all the space that is going to
8512 	 * be free'd up by the truncate operation, but also have some slack
8513 	 * space reserved in case it uses space during the truncate (thank you
8514 	 * very much snapshotting).
8515 	 *
8516 	 * And we need these to be separate.  The fact is we can use a lot of
8517 	 * space doing the truncate, and we have no earthly idea how much space
8518 	 * we will use, so we need the truncate reservation to be separate so it
8519 	 * doesn't end up using space reserved for updating the inode.  We also
8520 	 * need to be able to stop the transaction and start a new one, which
8521 	 * means we need to be able to update the inode several times, and we
8522 	 * have no idea of knowing how many times that will be, so we can't just
8523 	 * reserve 1 item for the entirety of the operation, so that has to be
8524 	 * done separately as well.
8525 	 *
8526 	 * So that leaves us with
8527 	 *
8528 	 * 1) rsv - for the truncate reservation, which we will steal from the
8529 	 * transaction reservation.
8530 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8531 	 * updating the inode.
8532 	 */
8533 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8534 	if (!rsv)
8535 		return -ENOMEM;
8536 	rsv->size = min_size;
8537 	rsv->failfast = 1;
8538 
8539 	/*
8540 	 * 1 for the truncate slack space
8541 	 * 1 for updating the inode.
8542 	 */
8543 	trans = btrfs_start_transaction(root, 2);
8544 	if (IS_ERR(trans)) {
8545 		ret = PTR_ERR(trans);
8546 		goto out;
8547 	}
8548 
8549 	/* Migrate the slack space for the truncate to our reserve */
8550 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8551 				      min_size, false);
8552 	BUG_ON(ret);
8553 
8554 	/*
8555 	 * So if we truncate and then write and fsync we normally would just
8556 	 * write the extents that changed, which is a problem if we need to
8557 	 * first truncate that entire inode.  So set this flag so we write out
8558 	 * all of the extents in the inode to the sync log so we're completely
8559 	 * safe.
8560 	 */
8561 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8562 	trans->block_rsv = rsv;
8563 
8564 	while (1) {
8565 		ret = btrfs_truncate_inode_items(trans, root, inode,
8566 						 inode->i_size,
8567 						 BTRFS_EXTENT_DATA_KEY);
8568 		trans->block_rsv = &fs_info->trans_block_rsv;
8569 		if (ret != -ENOSPC && ret != -EAGAIN)
8570 			break;
8571 
8572 		ret = btrfs_update_inode(trans, root, inode);
8573 		if (ret)
8574 			break;
8575 
8576 		btrfs_end_transaction(trans);
8577 		btrfs_btree_balance_dirty(fs_info);
8578 
8579 		trans = btrfs_start_transaction(root, 2);
8580 		if (IS_ERR(trans)) {
8581 			ret = PTR_ERR(trans);
8582 			trans = NULL;
8583 			break;
8584 		}
8585 
8586 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8587 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8588 					      rsv, min_size, false);
8589 		BUG_ON(ret);	/* shouldn't happen */
8590 		trans->block_rsv = rsv;
8591 	}
8592 
8593 	/*
8594 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8595 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8596 	 * we've truncated everything except the last little bit, and can do
8597 	 * btrfs_truncate_block and then update the disk_i_size.
8598 	 */
8599 	if (ret == NEED_TRUNCATE_BLOCK) {
8600 		btrfs_end_transaction(trans);
8601 		btrfs_btree_balance_dirty(fs_info);
8602 
8603 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8604 		if (ret)
8605 			goto out;
8606 		trans = btrfs_start_transaction(root, 1);
8607 		if (IS_ERR(trans)) {
8608 			ret = PTR_ERR(trans);
8609 			goto out;
8610 		}
8611 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8612 	}
8613 
8614 	if (trans) {
8615 		int ret2;
8616 
8617 		trans->block_rsv = &fs_info->trans_block_rsv;
8618 		ret2 = btrfs_update_inode(trans, root, inode);
8619 		if (ret2 && !ret)
8620 			ret = ret2;
8621 
8622 		ret2 = btrfs_end_transaction(trans);
8623 		if (ret2 && !ret)
8624 			ret = ret2;
8625 		btrfs_btree_balance_dirty(fs_info);
8626 	}
8627 out:
8628 	btrfs_free_block_rsv(fs_info, rsv);
8629 
8630 	return ret;
8631 }
8632 
8633 /*
8634  * create a new subvolume directory/inode (helper for the ioctl).
8635  */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)8636 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8637 			     struct btrfs_root *new_root,
8638 			     struct btrfs_root *parent_root,
8639 			     u64 new_dirid)
8640 {
8641 	struct inode *inode;
8642 	int err;
8643 	u64 index = 0;
8644 
8645 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8646 				new_dirid, new_dirid,
8647 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8648 				&index);
8649 	if (IS_ERR(inode))
8650 		return PTR_ERR(inode);
8651 	inode->i_op = &btrfs_dir_inode_operations;
8652 	inode->i_fop = &btrfs_dir_file_operations;
8653 
8654 	set_nlink(inode, 1);
8655 	btrfs_i_size_write(BTRFS_I(inode), 0);
8656 	unlock_new_inode(inode);
8657 
8658 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8659 	if (err)
8660 		btrfs_err(new_root->fs_info,
8661 			  "error inheriting subvolume %llu properties: %d",
8662 			  new_root->root_key.objectid, err);
8663 
8664 	err = btrfs_update_inode(trans, new_root, inode);
8665 
8666 	iput(inode);
8667 	return err;
8668 }
8669 
btrfs_alloc_inode(struct super_block * sb)8670 struct inode *btrfs_alloc_inode(struct super_block *sb)
8671 {
8672 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8673 	struct btrfs_inode *ei;
8674 	struct inode *inode;
8675 
8676 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8677 	if (!ei)
8678 		return NULL;
8679 
8680 	ei->root = NULL;
8681 	ei->generation = 0;
8682 	ei->last_trans = 0;
8683 	ei->last_sub_trans = 0;
8684 	ei->logged_trans = 0;
8685 	ei->delalloc_bytes = 0;
8686 	ei->new_delalloc_bytes = 0;
8687 	ei->defrag_bytes = 0;
8688 	ei->disk_i_size = 0;
8689 	ei->flags = 0;
8690 	ei->csum_bytes = 0;
8691 	ei->index_cnt = (u64)-1;
8692 	ei->dir_index = 0;
8693 	ei->last_unlink_trans = 0;
8694 	ei->last_reflink_trans = 0;
8695 	ei->last_log_commit = 0;
8696 
8697 	spin_lock_init(&ei->lock);
8698 	ei->outstanding_extents = 0;
8699 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8700 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8701 					      BTRFS_BLOCK_RSV_DELALLOC);
8702 	ei->runtime_flags = 0;
8703 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8704 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8705 
8706 	ei->delayed_node = NULL;
8707 
8708 	ei->i_otime.tv_sec = 0;
8709 	ei->i_otime.tv_nsec = 0;
8710 
8711 	inode = &ei->vfs_inode;
8712 	extent_map_tree_init(&ei->extent_tree);
8713 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8714 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8715 			    IO_TREE_INODE_IO_FAILURE, inode);
8716 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8717 			    IO_TREE_INODE_FILE_EXTENT, inode);
8718 	ei->io_tree.track_uptodate = true;
8719 	ei->io_failure_tree.track_uptodate = true;
8720 	atomic_set(&ei->sync_writers, 0);
8721 	mutex_init(&ei->log_mutex);
8722 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8723 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8724 	INIT_LIST_HEAD(&ei->delayed_iput);
8725 	RB_CLEAR_NODE(&ei->rb_node);
8726 	init_rwsem(&ei->dio_sem);
8727 
8728 	return inode;
8729 }
8730 
8731 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)8732 void btrfs_test_destroy_inode(struct inode *inode)
8733 {
8734 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8735 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8736 }
8737 #endif
8738 
btrfs_free_inode(struct inode * inode)8739 void btrfs_free_inode(struct inode *inode)
8740 {
8741 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8742 }
8743 
btrfs_destroy_inode(struct inode * vfs_inode)8744 void btrfs_destroy_inode(struct inode *vfs_inode)
8745 {
8746 	struct btrfs_ordered_extent *ordered;
8747 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8748 	struct btrfs_root *root = inode->root;
8749 
8750 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8751 	WARN_ON(vfs_inode->i_data.nrpages);
8752 	WARN_ON(inode->block_rsv.reserved);
8753 	WARN_ON(inode->block_rsv.size);
8754 	WARN_ON(inode->outstanding_extents);
8755 	WARN_ON(inode->delalloc_bytes);
8756 	WARN_ON(inode->new_delalloc_bytes);
8757 	WARN_ON(inode->csum_bytes);
8758 	WARN_ON(inode->defrag_bytes);
8759 
8760 	/*
8761 	 * This can happen where we create an inode, but somebody else also
8762 	 * created the same inode and we need to destroy the one we already
8763 	 * created.
8764 	 */
8765 	if (!root)
8766 		return;
8767 
8768 	while (1) {
8769 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8770 		if (!ordered)
8771 			break;
8772 		else {
8773 			btrfs_err(root->fs_info,
8774 				  "found ordered extent %llu %llu on inode cleanup",
8775 				  ordered->file_offset, ordered->num_bytes);
8776 			btrfs_remove_ordered_extent(inode, ordered);
8777 			btrfs_put_ordered_extent(ordered);
8778 			btrfs_put_ordered_extent(ordered);
8779 		}
8780 	}
8781 	btrfs_qgroup_check_reserved_leak(inode);
8782 	inode_tree_del(inode);
8783 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8784 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8785 	btrfs_put_root(inode->root);
8786 }
8787 
btrfs_drop_inode(struct inode * inode)8788 int btrfs_drop_inode(struct inode *inode)
8789 {
8790 	struct btrfs_root *root = BTRFS_I(inode)->root;
8791 
8792 	if (root == NULL)
8793 		return 1;
8794 
8795 	/* the snap/subvol tree is on deleting */
8796 	if (btrfs_root_refs(&root->root_item) == 0)
8797 		return 1;
8798 	else
8799 		return generic_drop_inode(inode);
8800 }
8801 
init_once(void * foo)8802 static void init_once(void *foo)
8803 {
8804 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8805 
8806 	inode_init_once(&ei->vfs_inode);
8807 }
8808 
btrfs_destroy_cachep(void)8809 void __cold btrfs_destroy_cachep(void)
8810 {
8811 	/*
8812 	 * Make sure all delayed rcu free inodes are flushed before we
8813 	 * destroy cache.
8814 	 */
8815 	rcu_barrier();
8816 	kmem_cache_destroy(btrfs_inode_cachep);
8817 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8818 	kmem_cache_destroy(btrfs_path_cachep);
8819 	kmem_cache_destroy(btrfs_free_space_cachep);
8820 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8821 }
8822 
btrfs_init_cachep(void)8823 int __init btrfs_init_cachep(void)
8824 {
8825 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8826 			sizeof(struct btrfs_inode), 0,
8827 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8828 			init_once);
8829 	if (!btrfs_inode_cachep)
8830 		goto fail;
8831 
8832 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8833 			sizeof(struct btrfs_trans_handle), 0,
8834 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8835 	if (!btrfs_trans_handle_cachep)
8836 		goto fail;
8837 
8838 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8839 			sizeof(struct btrfs_path), 0,
8840 			SLAB_MEM_SPREAD, NULL);
8841 	if (!btrfs_path_cachep)
8842 		goto fail;
8843 
8844 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8845 			sizeof(struct btrfs_free_space), 0,
8846 			SLAB_MEM_SPREAD, NULL);
8847 	if (!btrfs_free_space_cachep)
8848 		goto fail;
8849 
8850 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8851 							PAGE_SIZE, PAGE_SIZE,
8852 							SLAB_MEM_SPREAD, NULL);
8853 	if (!btrfs_free_space_bitmap_cachep)
8854 		goto fail;
8855 
8856 	return 0;
8857 fail:
8858 	btrfs_destroy_cachep();
8859 	return -ENOMEM;
8860 }
8861 
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)8862 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8863 			 u32 request_mask, unsigned int flags)
8864 {
8865 	u64 delalloc_bytes;
8866 	struct inode *inode = d_inode(path->dentry);
8867 	u32 blocksize = inode->i_sb->s_blocksize;
8868 	u32 bi_flags = BTRFS_I(inode)->flags;
8869 
8870 	stat->result_mask |= STATX_BTIME;
8871 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8872 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8873 	if (bi_flags & BTRFS_INODE_APPEND)
8874 		stat->attributes |= STATX_ATTR_APPEND;
8875 	if (bi_flags & BTRFS_INODE_COMPRESS)
8876 		stat->attributes |= STATX_ATTR_COMPRESSED;
8877 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8878 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8879 	if (bi_flags & BTRFS_INODE_NODUMP)
8880 		stat->attributes |= STATX_ATTR_NODUMP;
8881 
8882 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8883 				  STATX_ATTR_COMPRESSED |
8884 				  STATX_ATTR_IMMUTABLE |
8885 				  STATX_ATTR_NODUMP);
8886 
8887 	generic_fillattr(inode, stat);
8888 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8889 
8890 	spin_lock(&BTRFS_I(inode)->lock);
8891 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8892 	spin_unlock(&BTRFS_I(inode)->lock);
8893 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8894 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8895 	return 0;
8896 }
8897 
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8898 static int btrfs_rename_exchange(struct inode *old_dir,
8899 			      struct dentry *old_dentry,
8900 			      struct inode *new_dir,
8901 			      struct dentry *new_dentry)
8902 {
8903 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8904 	struct btrfs_trans_handle *trans;
8905 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8906 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8907 	struct inode *new_inode = new_dentry->d_inode;
8908 	struct inode *old_inode = old_dentry->d_inode;
8909 	struct timespec64 ctime = current_time(old_inode);
8910 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8911 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8912 	u64 old_idx = 0;
8913 	u64 new_idx = 0;
8914 	int ret;
8915 	int ret2;
8916 	bool root_log_pinned = false;
8917 	bool dest_log_pinned = false;
8918 	bool need_abort = false;
8919 
8920 	/*
8921 	 * For non-subvolumes allow exchange only within one subvolume, in the
8922 	 * same inode namespace. Two subvolumes (represented as directory) can
8923 	 * be exchanged as they're a logical link and have a fixed inode number.
8924 	 */
8925 	if (root != dest &&
8926 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8927 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8928 		return -EXDEV;
8929 
8930 	/* close the race window with snapshot create/destroy ioctl */
8931 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8932 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8933 		down_read(&fs_info->subvol_sem);
8934 
8935 	/*
8936 	 * We want to reserve the absolute worst case amount of items.  So if
8937 	 * both inodes are subvols and we need to unlink them then that would
8938 	 * require 4 item modifications, but if they are both normal inodes it
8939 	 * would require 5 item modifications, so we'll assume their normal
8940 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8941 	 * should cover the worst case number of items we'll modify.
8942 	 */
8943 	trans = btrfs_start_transaction(root, 12);
8944 	if (IS_ERR(trans)) {
8945 		ret = PTR_ERR(trans);
8946 		goto out_notrans;
8947 	}
8948 
8949 	if (dest != root)
8950 		btrfs_record_root_in_trans(trans, dest);
8951 
8952 	/*
8953 	 * We need to find a free sequence number both in the source and
8954 	 * in the destination directory for the exchange.
8955 	 */
8956 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8957 	if (ret)
8958 		goto out_fail;
8959 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8960 	if (ret)
8961 		goto out_fail;
8962 
8963 	BTRFS_I(old_inode)->dir_index = 0ULL;
8964 	BTRFS_I(new_inode)->dir_index = 0ULL;
8965 
8966 	/* Reference for the source. */
8967 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8968 		/* force full log commit if subvolume involved. */
8969 		btrfs_set_log_full_commit(trans);
8970 	} else {
8971 		ret = btrfs_insert_inode_ref(trans, dest,
8972 					     new_dentry->d_name.name,
8973 					     new_dentry->d_name.len,
8974 					     old_ino,
8975 					     btrfs_ino(BTRFS_I(new_dir)),
8976 					     old_idx);
8977 		if (ret)
8978 			goto out_fail;
8979 		need_abort = true;
8980 	}
8981 
8982 	/* And now for the dest. */
8983 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8984 		/* force full log commit if subvolume involved. */
8985 		btrfs_set_log_full_commit(trans);
8986 	} else {
8987 		ret = btrfs_insert_inode_ref(trans, root,
8988 					     old_dentry->d_name.name,
8989 					     old_dentry->d_name.len,
8990 					     new_ino,
8991 					     btrfs_ino(BTRFS_I(old_dir)),
8992 					     new_idx);
8993 		if (ret) {
8994 			if (need_abort)
8995 				btrfs_abort_transaction(trans, ret);
8996 			goto out_fail;
8997 		}
8998 	}
8999 
9000 	/* Update inode version and ctime/mtime. */
9001 	inode_inc_iversion(old_dir);
9002 	inode_inc_iversion(new_dir);
9003 	inode_inc_iversion(old_inode);
9004 	inode_inc_iversion(new_inode);
9005 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9006 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9007 	old_inode->i_ctime = ctime;
9008 	new_inode->i_ctime = ctime;
9009 
9010 	if (old_dentry->d_parent != new_dentry->d_parent) {
9011 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9012 				BTRFS_I(old_inode), 1);
9013 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9014 				BTRFS_I(new_inode), 1);
9015 	}
9016 
9017 	/*
9018 	 * Now pin the logs of the roots. We do it to ensure that no other task
9019 	 * can sync the logs while we are in progress with the rename, because
9020 	 * that could result in an inconsistency in case any of the inodes that
9021 	 * are part of this rename operation were logged before.
9022 	 *
9023 	 * We pin the logs even if at this precise moment none of the inodes was
9024 	 * logged before. This is because right after we checked for that, some
9025 	 * other task fsyncing some other inode not involved with this rename
9026 	 * operation could log that one of our inodes exists.
9027 	 *
9028 	 * We don't need to pin the logs before the above calls to
9029 	 * btrfs_insert_inode_ref(), since those don't ever need to change a log.
9030 	 */
9031 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9032 		btrfs_pin_log_trans(root);
9033 		root_log_pinned = true;
9034 	}
9035 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID) {
9036 		btrfs_pin_log_trans(dest);
9037 		dest_log_pinned = true;
9038 	}
9039 
9040 	/* src is a subvolume */
9041 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9042 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9043 	} else { /* src is an inode */
9044 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9045 					   BTRFS_I(old_dentry->d_inode),
9046 					   old_dentry->d_name.name,
9047 					   old_dentry->d_name.len);
9048 		if (!ret)
9049 			ret = btrfs_update_inode(trans, root, old_inode);
9050 	}
9051 	if (ret) {
9052 		btrfs_abort_transaction(trans, ret);
9053 		goto out_fail;
9054 	}
9055 
9056 	/* dest is a subvolume */
9057 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9058 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9059 	} else { /* dest is an inode */
9060 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9061 					   BTRFS_I(new_dentry->d_inode),
9062 					   new_dentry->d_name.name,
9063 					   new_dentry->d_name.len);
9064 		if (!ret)
9065 			ret = btrfs_update_inode(trans, dest, new_inode);
9066 	}
9067 	if (ret) {
9068 		btrfs_abort_transaction(trans, ret);
9069 		goto out_fail;
9070 	}
9071 
9072 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9073 			     new_dentry->d_name.name,
9074 			     new_dentry->d_name.len, 0, old_idx);
9075 	if (ret) {
9076 		btrfs_abort_transaction(trans, ret);
9077 		goto out_fail;
9078 	}
9079 
9080 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9081 			     old_dentry->d_name.name,
9082 			     old_dentry->d_name.len, 0, new_idx);
9083 	if (ret) {
9084 		btrfs_abort_transaction(trans, ret);
9085 		goto out_fail;
9086 	}
9087 
9088 	if (old_inode->i_nlink == 1)
9089 		BTRFS_I(old_inode)->dir_index = old_idx;
9090 	if (new_inode->i_nlink == 1)
9091 		BTRFS_I(new_inode)->dir_index = new_idx;
9092 
9093 	if (root_log_pinned) {
9094 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9095 				   new_dentry->d_parent);
9096 		btrfs_end_log_trans(root);
9097 		root_log_pinned = false;
9098 	}
9099 	if (dest_log_pinned) {
9100 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9101 				   old_dentry->d_parent);
9102 		btrfs_end_log_trans(dest);
9103 		dest_log_pinned = false;
9104 	}
9105 out_fail:
9106 	/*
9107 	 * If we have pinned a log and an error happened, we unpin tasks
9108 	 * trying to sync the log and force them to fallback to a transaction
9109 	 * commit if the log currently contains any of the inodes involved in
9110 	 * this rename operation (to ensure we do not persist a log with an
9111 	 * inconsistent state for any of these inodes or leading to any
9112 	 * inconsistencies when replayed). If the transaction was aborted, the
9113 	 * abortion reason is propagated to userspace when attempting to commit
9114 	 * the transaction. If the log does not contain any of these inodes, we
9115 	 * allow the tasks to sync it.
9116 	 */
9117 	if (ret && (root_log_pinned || dest_log_pinned)) {
9118 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9119 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9120 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9121 		    (new_inode &&
9122 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9123 			btrfs_set_log_full_commit(trans);
9124 
9125 		if (root_log_pinned) {
9126 			btrfs_end_log_trans(root);
9127 			root_log_pinned = false;
9128 		}
9129 		if (dest_log_pinned) {
9130 			btrfs_end_log_trans(dest);
9131 			dest_log_pinned = false;
9132 		}
9133 	}
9134 	ret2 = btrfs_end_transaction(trans);
9135 	ret = ret ? ret : ret2;
9136 out_notrans:
9137 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9138 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9139 		up_read(&fs_info->subvol_sem);
9140 
9141 	return ret;
9142 }
9143 
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9144 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9145 				     struct btrfs_root *root,
9146 				     struct inode *dir,
9147 				     struct dentry *dentry)
9148 {
9149 	int ret;
9150 	struct inode *inode;
9151 	u64 objectid;
9152 	u64 index;
9153 
9154 	ret = btrfs_find_free_objectid(root, &objectid);
9155 	if (ret)
9156 		return ret;
9157 
9158 	inode = btrfs_new_inode(trans, root, dir,
9159 				dentry->d_name.name,
9160 				dentry->d_name.len,
9161 				btrfs_ino(BTRFS_I(dir)),
9162 				objectid,
9163 				S_IFCHR | WHITEOUT_MODE,
9164 				&index);
9165 
9166 	if (IS_ERR(inode)) {
9167 		ret = PTR_ERR(inode);
9168 		return ret;
9169 	}
9170 
9171 	inode->i_op = &btrfs_special_inode_operations;
9172 	init_special_inode(inode, inode->i_mode,
9173 		WHITEOUT_DEV);
9174 
9175 	ret = btrfs_init_inode_security(trans, inode, dir,
9176 				&dentry->d_name);
9177 	if (ret)
9178 		goto out;
9179 
9180 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9181 				BTRFS_I(inode), 0, index);
9182 	if (ret)
9183 		goto out;
9184 
9185 	ret = btrfs_update_inode(trans, root, inode);
9186 out:
9187 	unlock_new_inode(inode);
9188 	if (ret)
9189 		inode_dec_link_count(inode);
9190 	iput(inode);
9191 
9192 	return ret;
9193 }
9194 
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9195 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9196 			   struct inode *new_dir, struct dentry *new_dentry,
9197 			   unsigned int flags)
9198 {
9199 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9200 	struct btrfs_trans_handle *trans;
9201 	unsigned int trans_num_items;
9202 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9203 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9204 	struct inode *new_inode = d_inode(new_dentry);
9205 	struct inode *old_inode = d_inode(old_dentry);
9206 	u64 index = 0;
9207 	int ret;
9208 	int ret2;
9209 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9210 	bool log_pinned = false;
9211 
9212 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9213 		return -EPERM;
9214 
9215 	/* we only allow rename subvolume link between subvolumes */
9216 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9217 		return -EXDEV;
9218 
9219 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9220 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9221 		return -ENOTEMPTY;
9222 
9223 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9224 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9225 		return -ENOTEMPTY;
9226 
9227 
9228 	/* check for collisions, even if the  name isn't there */
9229 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9230 			     new_dentry->d_name.name,
9231 			     new_dentry->d_name.len);
9232 
9233 	if (ret) {
9234 		if (ret == -EEXIST) {
9235 			/* we shouldn't get
9236 			 * eexist without a new_inode */
9237 			if (WARN_ON(!new_inode)) {
9238 				return ret;
9239 			}
9240 		} else {
9241 			/* maybe -EOVERFLOW */
9242 			return ret;
9243 		}
9244 	}
9245 	ret = 0;
9246 
9247 	/*
9248 	 * we're using rename to replace one file with another.  Start IO on it
9249 	 * now so  we don't add too much work to the end of the transaction
9250 	 */
9251 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9252 		filemap_flush(old_inode->i_mapping);
9253 
9254 	/* close the racy window with snapshot create/destroy ioctl */
9255 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9256 		down_read(&fs_info->subvol_sem);
9257 	/*
9258 	 * We want to reserve the absolute worst case amount of items.  So if
9259 	 * both inodes are subvols and we need to unlink them then that would
9260 	 * require 4 item modifications, but if they are both normal inodes it
9261 	 * would require 5 item modifications, so we'll assume they are normal
9262 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9263 	 * should cover the worst case number of items we'll modify.
9264 	 * If our rename has the whiteout flag, we need more 5 units for the
9265 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9266 	 * when selinux is enabled).
9267 	 */
9268 	trans_num_items = 11;
9269 	if (flags & RENAME_WHITEOUT)
9270 		trans_num_items += 5;
9271 	trans = btrfs_start_transaction(root, trans_num_items);
9272 	if (IS_ERR(trans)) {
9273 		ret = PTR_ERR(trans);
9274 		goto out_notrans;
9275 	}
9276 
9277 	if (dest != root)
9278 		btrfs_record_root_in_trans(trans, dest);
9279 
9280 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9281 	if (ret)
9282 		goto out_fail;
9283 
9284 	BTRFS_I(old_inode)->dir_index = 0ULL;
9285 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9286 		/* force full log commit if subvolume involved. */
9287 		btrfs_set_log_full_commit(trans);
9288 	} else {
9289 		ret = btrfs_insert_inode_ref(trans, dest,
9290 					     new_dentry->d_name.name,
9291 					     new_dentry->d_name.len,
9292 					     old_ino,
9293 					     btrfs_ino(BTRFS_I(new_dir)), index);
9294 		if (ret)
9295 			goto out_fail;
9296 	}
9297 
9298 	inode_inc_iversion(old_dir);
9299 	inode_inc_iversion(new_dir);
9300 	inode_inc_iversion(old_inode);
9301 	old_dir->i_ctime = old_dir->i_mtime =
9302 	new_dir->i_ctime = new_dir->i_mtime =
9303 	old_inode->i_ctime = current_time(old_dir);
9304 
9305 	if (old_dentry->d_parent != new_dentry->d_parent)
9306 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9307 				BTRFS_I(old_inode), 1);
9308 
9309 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9310 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9311 	} else {
9312 		/*
9313 		 * Now pin the log. We do it to ensure that no other task can
9314 		 * sync the log while we are in progress with the rename, as
9315 		 * that could result in an inconsistency in case any of the
9316 		 * inodes that are part of this rename operation were logged
9317 		 * before.
9318 		 *
9319 		 * We pin the log even if at this precise moment none of the
9320 		 * inodes was logged before. This is because right after we
9321 		 * checked for that, some other task fsyncing some other inode
9322 		 * not involved with this rename operation could log that one of
9323 		 * our inodes exists.
9324 		 *
9325 		 * We don't need to pin the logs before the above call to
9326 		 * btrfs_insert_inode_ref(), since that does not need to change
9327 		 * a log.
9328 		 */
9329 		btrfs_pin_log_trans(root);
9330 		log_pinned = true;
9331 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9332 					BTRFS_I(d_inode(old_dentry)),
9333 					old_dentry->d_name.name,
9334 					old_dentry->d_name.len);
9335 		if (!ret)
9336 			ret = btrfs_update_inode(trans, root, old_inode);
9337 	}
9338 	if (ret) {
9339 		btrfs_abort_transaction(trans, ret);
9340 		goto out_fail;
9341 	}
9342 
9343 	if (new_inode) {
9344 		inode_inc_iversion(new_inode);
9345 		new_inode->i_ctime = current_time(new_inode);
9346 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9347 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9348 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9349 			BUG_ON(new_inode->i_nlink == 0);
9350 		} else {
9351 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9352 						 BTRFS_I(d_inode(new_dentry)),
9353 						 new_dentry->d_name.name,
9354 						 new_dentry->d_name.len);
9355 		}
9356 		if (!ret && new_inode->i_nlink == 0)
9357 			ret = btrfs_orphan_add(trans,
9358 					BTRFS_I(d_inode(new_dentry)));
9359 		if (ret) {
9360 			btrfs_abort_transaction(trans, ret);
9361 			goto out_fail;
9362 		}
9363 	}
9364 
9365 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9366 			     new_dentry->d_name.name,
9367 			     new_dentry->d_name.len, 0, index);
9368 	if (ret) {
9369 		btrfs_abort_transaction(trans, ret);
9370 		goto out_fail;
9371 	}
9372 
9373 	if (old_inode->i_nlink == 1)
9374 		BTRFS_I(old_inode)->dir_index = index;
9375 
9376 	if (log_pinned) {
9377 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9378 				   new_dentry->d_parent);
9379 		btrfs_end_log_trans(root);
9380 		log_pinned = false;
9381 	}
9382 
9383 	if (flags & RENAME_WHITEOUT) {
9384 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9385 						old_dentry);
9386 
9387 		if (ret) {
9388 			btrfs_abort_transaction(trans, ret);
9389 			goto out_fail;
9390 		}
9391 	}
9392 out_fail:
9393 	/*
9394 	 * If we have pinned the log and an error happened, we unpin tasks
9395 	 * trying to sync the log and force them to fallback to a transaction
9396 	 * commit if the log currently contains any of the inodes involved in
9397 	 * this rename operation (to ensure we do not persist a log with an
9398 	 * inconsistent state for any of these inodes or leading to any
9399 	 * inconsistencies when replayed). If the transaction was aborted, the
9400 	 * abortion reason is propagated to userspace when attempting to commit
9401 	 * the transaction. If the log does not contain any of these inodes, we
9402 	 * allow the tasks to sync it.
9403 	 */
9404 	if (ret && log_pinned) {
9405 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9406 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9407 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9408 		    (new_inode &&
9409 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9410 			btrfs_set_log_full_commit(trans);
9411 
9412 		btrfs_end_log_trans(root);
9413 		log_pinned = false;
9414 	}
9415 	ret2 = btrfs_end_transaction(trans);
9416 	ret = ret ? ret : ret2;
9417 out_notrans:
9418 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9419 		up_read(&fs_info->subvol_sem);
9420 
9421 	return ret;
9422 }
9423 
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9424 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9425 			 struct inode *new_dir, struct dentry *new_dentry,
9426 			 unsigned int flags)
9427 {
9428 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9429 		return -EINVAL;
9430 
9431 	if (flags & RENAME_EXCHANGE)
9432 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9433 					  new_dentry);
9434 
9435 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9436 }
9437 
9438 struct btrfs_delalloc_work {
9439 	struct inode *inode;
9440 	struct completion completion;
9441 	struct list_head list;
9442 	struct btrfs_work work;
9443 };
9444 
btrfs_run_delalloc_work(struct btrfs_work * work)9445 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9446 {
9447 	struct btrfs_delalloc_work *delalloc_work;
9448 	struct inode *inode;
9449 
9450 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9451 				     work);
9452 	inode = delalloc_work->inode;
9453 	filemap_flush(inode->i_mapping);
9454 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9455 				&BTRFS_I(inode)->runtime_flags))
9456 		filemap_flush(inode->i_mapping);
9457 
9458 	iput(inode);
9459 	complete(&delalloc_work->completion);
9460 }
9461 
btrfs_alloc_delalloc_work(struct inode * inode)9462 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9463 {
9464 	struct btrfs_delalloc_work *work;
9465 
9466 	work = kmalloc(sizeof(*work), GFP_NOFS);
9467 	if (!work)
9468 		return NULL;
9469 
9470 	init_completion(&work->completion);
9471 	INIT_LIST_HEAD(&work->list);
9472 	work->inode = inode;
9473 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9474 
9475 	return work;
9476 }
9477 
9478 /*
9479  * some fairly slow code that needs optimization. This walks the list
9480  * of all the inodes with pending delalloc and forces them to disk.
9481  */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)9482 static int start_delalloc_inodes(struct btrfs_root *root,
9483 				 struct writeback_control *wbc, bool snapshot,
9484 				 bool in_reclaim_context)
9485 {
9486 	struct btrfs_inode *binode;
9487 	struct inode *inode;
9488 	struct btrfs_delalloc_work *work, *next;
9489 	struct list_head works;
9490 	struct list_head splice;
9491 	int ret = 0;
9492 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9493 
9494 	INIT_LIST_HEAD(&works);
9495 	INIT_LIST_HEAD(&splice);
9496 
9497 	mutex_lock(&root->delalloc_mutex);
9498 	spin_lock(&root->delalloc_lock);
9499 	list_splice_init(&root->delalloc_inodes, &splice);
9500 	while (!list_empty(&splice)) {
9501 		binode = list_entry(splice.next, struct btrfs_inode,
9502 				    delalloc_inodes);
9503 
9504 		list_move_tail(&binode->delalloc_inodes,
9505 			       &root->delalloc_inodes);
9506 
9507 		if (in_reclaim_context &&
9508 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9509 			continue;
9510 
9511 		inode = igrab(&binode->vfs_inode);
9512 		if (!inode) {
9513 			cond_resched_lock(&root->delalloc_lock);
9514 			continue;
9515 		}
9516 		spin_unlock(&root->delalloc_lock);
9517 
9518 		if (snapshot)
9519 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9520 				&binode->runtime_flags);
9521 		if (full_flush) {
9522 			work = btrfs_alloc_delalloc_work(inode);
9523 			if (!work) {
9524 				iput(inode);
9525 				ret = -ENOMEM;
9526 				goto out;
9527 			}
9528 			list_add_tail(&work->list, &works);
9529 			btrfs_queue_work(root->fs_info->flush_workers,
9530 					 &work->work);
9531 		} else {
9532 			ret = sync_inode(inode, wbc);
9533 			if (!ret &&
9534 			    test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9535 				     &BTRFS_I(inode)->runtime_flags))
9536 				ret = sync_inode(inode, wbc);
9537 			btrfs_add_delayed_iput(inode);
9538 			if (ret || wbc->nr_to_write <= 0)
9539 				goto out;
9540 		}
9541 		cond_resched();
9542 		spin_lock(&root->delalloc_lock);
9543 	}
9544 	spin_unlock(&root->delalloc_lock);
9545 
9546 out:
9547 	list_for_each_entry_safe(work, next, &works, list) {
9548 		list_del_init(&work->list);
9549 		wait_for_completion(&work->completion);
9550 		kfree(work);
9551 	}
9552 
9553 	if (!list_empty(&splice)) {
9554 		spin_lock(&root->delalloc_lock);
9555 		list_splice_tail(&splice, &root->delalloc_inodes);
9556 		spin_unlock(&root->delalloc_lock);
9557 	}
9558 	mutex_unlock(&root->delalloc_mutex);
9559 	return ret;
9560 }
9561 
btrfs_start_delalloc_snapshot(struct btrfs_root * root)9562 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9563 {
9564 	struct writeback_control wbc = {
9565 		.nr_to_write = LONG_MAX,
9566 		.sync_mode = WB_SYNC_NONE,
9567 		.range_start = 0,
9568 		.range_end = LLONG_MAX,
9569 	};
9570 	struct btrfs_fs_info *fs_info = root->fs_info;
9571 
9572 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9573 		return -EROFS;
9574 
9575 	return start_delalloc_inodes(root, &wbc, true, false);
9576 }
9577 
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,u64 nr,bool in_reclaim_context)9578 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr,
9579 			       bool in_reclaim_context)
9580 {
9581 	struct writeback_control wbc = {
9582 		.nr_to_write = (nr == U64_MAX) ? LONG_MAX : (unsigned long)nr,
9583 		.sync_mode = WB_SYNC_NONE,
9584 		.range_start = 0,
9585 		.range_end = LLONG_MAX,
9586 	};
9587 	struct btrfs_root *root;
9588 	struct list_head splice;
9589 	int ret;
9590 
9591 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9592 		return -EROFS;
9593 
9594 	INIT_LIST_HEAD(&splice);
9595 
9596 	mutex_lock(&fs_info->delalloc_root_mutex);
9597 	spin_lock(&fs_info->delalloc_root_lock);
9598 	list_splice_init(&fs_info->delalloc_roots, &splice);
9599 	while (!list_empty(&splice) && nr) {
9600 		/*
9601 		 * Reset nr_to_write here so we know that we're doing a full
9602 		 * flush.
9603 		 */
9604 		if (nr == U64_MAX)
9605 			wbc.nr_to_write = LONG_MAX;
9606 
9607 		root = list_first_entry(&splice, struct btrfs_root,
9608 					delalloc_root);
9609 		root = btrfs_grab_root(root);
9610 		BUG_ON(!root);
9611 		list_move_tail(&root->delalloc_root,
9612 			       &fs_info->delalloc_roots);
9613 		spin_unlock(&fs_info->delalloc_root_lock);
9614 
9615 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9616 		btrfs_put_root(root);
9617 		if (ret < 0 || wbc.nr_to_write <= 0)
9618 			goto out;
9619 		spin_lock(&fs_info->delalloc_root_lock);
9620 	}
9621 	spin_unlock(&fs_info->delalloc_root_lock);
9622 
9623 	ret = 0;
9624 out:
9625 	if (!list_empty(&splice)) {
9626 		spin_lock(&fs_info->delalloc_root_lock);
9627 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9628 		spin_unlock(&fs_info->delalloc_root_lock);
9629 	}
9630 	mutex_unlock(&fs_info->delalloc_root_mutex);
9631 	return ret;
9632 }
9633 
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)9634 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9635 			 const char *symname)
9636 {
9637 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9638 	struct btrfs_trans_handle *trans;
9639 	struct btrfs_root *root = BTRFS_I(dir)->root;
9640 	struct btrfs_path *path;
9641 	struct btrfs_key key;
9642 	struct inode *inode = NULL;
9643 	int err;
9644 	u64 objectid;
9645 	u64 index = 0;
9646 	int name_len;
9647 	int datasize;
9648 	unsigned long ptr;
9649 	struct btrfs_file_extent_item *ei;
9650 	struct extent_buffer *leaf;
9651 
9652 	name_len = strlen(symname);
9653 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9654 		return -ENAMETOOLONG;
9655 
9656 	/*
9657 	 * 2 items for inode item and ref
9658 	 * 2 items for dir items
9659 	 * 1 item for updating parent inode item
9660 	 * 1 item for the inline extent item
9661 	 * 1 item for xattr if selinux is on
9662 	 */
9663 	trans = btrfs_start_transaction(root, 7);
9664 	if (IS_ERR(trans))
9665 		return PTR_ERR(trans);
9666 
9667 	err = btrfs_find_free_objectid(root, &objectid);
9668 	if (err)
9669 		goto out_unlock;
9670 
9671 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9672 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9673 				objectid, S_IFLNK|S_IRWXUGO, &index);
9674 	if (IS_ERR(inode)) {
9675 		err = PTR_ERR(inode);
9676 		inode = NULL;
9677 		goto out_unlock;
9678 	}
9679 
9680 	/*
9681 	* If the active LSM wants to access the inode during
9682 	* d_instantiate it needs these. Smack checks to see
9683 	* if the filesystem supports xattrs by looking at the
9684 	* ops vector.
9685 	*/
9686 	inode->i_fop = &btrfs_file_operations;
9687 	inode->i_op = &btrfs_file_inode_operations;
9688 	inode->i_mapping->a_ops = &btrfs_aops;
9689 
9690 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9691 	if (err)
9692 		goto out_unlock;
9693 
9694 	path = btrfs_alloc_path();
9695 	if (!path) {
9696 		err = -ENOMEM;
9697 		goto out_unlock;
9698 	}
9699 	key.objectid = btrfs_ino(BTRFS_I(inode));
9700 	key.offset = 0;
9701 	key.type = BTRFS_EXTENT_DATA_KEY;
9702 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9703 	err = btrfs_insert_empty_item(trans, root, path, &key,
9704 				      datasize);
9705 	if (err) {
9706 		btrfs_free_path(path);
9707 		goto out_unlock;
9708 	}
9709 	leaf = path->nodes[0];
9710 	ei = btrfs_item_ptr(leaf, path->slots[0],
9711 			    struct btrfs_file_extent_item);
9712 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9713 	btrfs_set_file_extent_type(leaf, ei,
9714 				   BTRFS_FILE_EXTENT_INLINE);
9715 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9716 	btrfs_set_file_extent_compression(leaf, ei, 0);
9717 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9718 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9719 
9720 	ptr = btrfs_file_extent_inline_start(ei);
9721 	write_extent_buffer(leaf, symname, ptr, name_len);
9722 	btrfs_mark_buffer_dirty(leaf);
9723 	btrfs_free_path(path);
9724 
9725 	inode->i_op = &btrfs_symlink_inode_operations;
9726 	inode_nohighmem(inode);
9727 	inode_set_bytes(inode, name_len);
9728 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9729 	err = btrfs_update_inode(trans, root, inode);
9730 	/*
9731 	 * Last step, add directory indexes for our symlink inode. This is the
9732 	 * last step to avoid extra cleanup of these indexes if an error happens
9733 	 * elsewhere above.
9734 	 */
9735 	if (!err)
9736 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9737 				BTRFS_I(inode), 0, index);
9738 	if (err)
9739 		goto out_unlock;
9740 
9741 	d_instantiate_new(dentry, inode);
9742 
9743 out_unlock:
9744 	btrfs_end_transaction(trans);
9745 	if (err && inode) {
9746 		inode_dec_link_count(inode);
9747 		discard_new_inode(inode);
9748 	}
9749 	btrfs_btree_balance_dirty(fs_info);
9750 	return err;
9751 }
9752 
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct inode * inode,struct btrfs_key * ins,u64 file_offset)9753 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9754 				       struct btrfs_trans_handle *trans_in,
9755 				       struct inode *inode, struct btrfs_key *ins,
9756 				       u64 file_offset)
9757 {
9758 	struct btrfs_file_extent_item stack_fi;
9759 	struct btrfs_replace_extent_info extent_info;
9760 	struct btrfs_trans_handle *trans = trans_in;
9761 	struct btrfs_path *path;
9762 	u64 start = ins->objectid;
9763 	u64 len = ins->offset;
9764 	int ret;
9765 
9766 	memset(&stack_fi, 0, sizeof(stack_fi));
9767 
9768 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9769 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9770 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9771 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9772 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9773 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9774 	/* Encryption and other encoding is reserved and all 0 */
9775 
9776 	ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9777 	if (ret < 0)
9778 		return ERR_PTR(ret);
9779 
9780 	if (trans) {
9781 		ret = insert_reserved_file_extent(trans, BTRFS_I(inode),
9782 						  file_offset, &stack_fi, ret);
9783 		if (ret)
9784 			return ERR_PTR(ret);
9785 		return trans;
9786 	}
9787 
9788 	extent_info.disk_offset = start;
9789 	extent_info.disk_len = len;
9790 	extent_info.data_offset = 0;
9791 	extent_info.data_len = len;
9792 	extent_info.file_offset = file_offset;
9793 	extent_info.extent_buf = (char *)&stack_fi;
9794 	extent_info.is_new_extent = true;
9795 	extent_info.qgroup_reserved = ret;
9796 	extent_info.insertions = 0;
9797 
9798 	path = btrfs_alloc_path();
9799 	if (!path)
9800 		return ERR_PTR(-ENOMEM);
9801 
9802 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9803 				     file_offset + len - 1, &extent_info,
9804 				     &trans);
9805 	btrfs_free_path(path);
9806 	if (ret)
9807 		return ERR_PTR(ret);
9808 
9809 	return trans;
9810 }
9811 
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9812 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9813 				       u64 start, u64 num_bytes, u64 min_size,
9814 				       loff_t actual_len, u64 *alloc_hint,
9815 				       struct btrfs_trans_handle *trans)
9816 {
9817 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9818 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9819 	struct extent_map *em;
9820 	struct btrfs_root *root = BTRFS_I(inode)->root;
9821 	struct btrfs_key ins;
9822 	u64 cur_offset = start;
9823 	u64 clear_offset = start;
9824 	u64 i_size;
9825 	u64 cur_bytes;
9826 	u64 last_alloc = (u64)-1;
9827 	int ret = 0;
9828 	bool own_trans = true;
9829 	u64 end = start + num_bytes - 1;
9830 
9831 	if (trans)
9832 		own_trans = false;
9833 	while (num_bytes > 0) {
9834 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9835 		cur_bytes = max(cur_bytes, min_size);
9836 		/*
9837 		 * If we are severely fragmented we could end up with really
9838 		 * small allocations, so if the allocator is returning small
9839 		 * chunks lets make its job easier by only searching for those
9840 		 * sized chunks.
9841 		 */
9842 		cur_bytes = min(cur_bytes, last_alloc);
9843 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9844 				min_size, 0, *alloc_hint, &ins, 1, 0);
9845 		if (ret)
9846 			break;
9847 
9848 		/*
9849 		 * We've reserved this space, and thus converted it from
9850 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9851 		 * from here on out we will only need to clear our reservation
9852 		 * for the remaining unreserved area, so advance our
9853 		 * clear_offset by our extent size.
9854 		 */
9855 		clear_offset += ins.offset;
9856 
9857 		last_alloc = ins.offset;
9858 		trans = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
9859 		/*
9860 		 * Now that we inserted the prealloc extent we can finally
9861 		 * decrement the number of reservations in the block group.
9862 		 * If we did it before, we could race with relocation and have
9863 		 * relocation miss the reserved extent, making it fail later.
9864 		 */
9865 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9866 		if (IS_ERR(trans)) {
9867 			ret = PTR_ERR(trans);
9868 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9869 						   ins.offset, 0);
9870 			break;
9871 		}
9872 
9873 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9874 					cur_offset + ins.offset -1, 0);
9875 
9876 		em = alloc_extent_map();
9877 		if (!em) {
9878 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9879 				&BTRFS_I(inode)->runtime_flags);
9880 			goto next;
9881 		}
9882 
9883 		em->start = cur_offset;
9884 		em->orig_start = cur_offset;
9885 		em->len = ins.offset;
9886 		em->block_start = ins.objectid;
9887 		em->block_len = ins.offset;
9888 		em->orig_block_len = ins.offset;
9889 		em->ram_bytes = ins.offset;
9890 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9891 		em->generation = trans->transid;
9892 
9893 		while (1) {
9894 			write_lock(&em_tree->lock);
9895 			ret = add_extent_mapping(em_tree, em, 1);
9896 			write_unlock(&em_tree->lock);
9897 			if (ret != -EEXIST)
9898 				break;
9899 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9900 						cur_offset + ins.offset - 1,
9901 						0);
9902 		}
9903 		free_extent_map(em);
9904 next:
9905 		num_bytes -= ins.offset;
9906 		cur_offset += ins.offset;
9907 		*alloc_hint = ins.objectid + ins.offset;
9908 
9909 		inode_inc_iversion(inode);
9910 		inode->i_ctime = current_time(inode);
9911 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9912 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9913 		    (actual_len > inode->i_size) &&
9914 		    (cur_offset > inode->i_size)) {
9915 			if (cur_offset > actual_len)
9916 				i_size = actual_len;
9917 			else
9918 				i_size = cur_offset;
9919 			i_size_write(inode, i_size);
9920 			btrfs_inode_safe_disk_i_size_write(inode, 0);
9921 		}
9922 
9923 		ret = btrfs_update_inode(trans, root, inode);
9924 
9925 		if (ret) {
9926 			btrfs_abort_transaction(trans, ret);
9927 			if (own_trans)
9928 				btrfs_end_transaction(trans);
9929 			break;
9930 		}
9931 
9932 		if (own_trans) {
9933 			btrfs_end_transaction(trans);
9934 			trans = NULL;
9935 		}
9936 	}
9937 	if (clear_offset < end)
9938 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9939 			end - clear_offset + 1);
9940 	return ret;
9941 }
9942 
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9943 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9944 			      u64 start, u64 num_bytes, u64 min_size,
9945 			      loff_t actual_len, u64 *alloc_hint)
9946 {
9947 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9948 					   min_size, actual_len, alloc_hint,
9949 					   NULL);
9950 }
9951 
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9952 int btrfs_prealloc_file_range_trans(struct inode *inode,
9953 				    struct btrfs_trans_handle *trans, int mode,
9954 				    u64 start, u64 num_bytes, u64 min_size,
9955 				    loff_t actual_len, u64 *alloc_hint)
9956 {
9957 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9958 					   min_size, actual_len, alloc_hint, trans);
9959 }
9960 
btrfs_set_page_dirty(struct page * page)9961 static int btrfs_set_page_dirty(struct page *page)
9962 {
9963 	return __set_page_dirty_nobuffers(page);
9964 }
9965 
btrfs_permission(struct inode * inode,int mask)9966 static int btrfs_permission(struct inode *inode, int mask)
9967 {
9968 	struct btrfs_root *root = BTRFS_I(inode)->root;
9969 	umode_t mode = inode->i_mode;
9970 
9971 	if (mask & MAY_WRITE &&
9972 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9973 		if (btrfs_root_readonly(root))
9974 			return -EROFS;
9975 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9976 			return -EACCES;
9977 	}
9978 	return generic_permission(inode, mask);
9979 }
9980 
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)9981 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9982 {
9983 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9984 	struct btrfs_trans_handle *trans;
9985 	struct btrfs_root *root = BTRFS_I(dir)->root;
9986 	struct inode *inode = NULL;
9987 	u64 objectid;
9988 	u64 index;
9989 	int ret = 0;
9990 
9991 	/*
9992 	 * 5 units required for adding orphan entry
9993 	 */
9994 	trans = btrfs_start_transaction(root, 5);
9995 	if (IS_ERR(trans))
9996 		return PTR_ERR(trans);
9997 
9998 	ret = btrfs_find_free_objectid(root, &objectid);
9999 	if (ret)
10000 		goto out;
10001 
10002 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10003 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10004 	if (IS_ERR(inode)) {
10005 		ret = PTR_ERR(inode);
10006 		inode = NULL;
10007 		goto out;
10008 	}
10009 
10010 	inode->i_fop = &btrfs_file_operations;
10011 	inode->i_op = &btrfs_file_inode_operations;
10012 
10013 	inode->i_mapping->a_ops = &btrfs_aops;
10014 
10015 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10016 	if (ret)
10017 		goto out;
10018 
10019 	ret = btrfs_update_inode(trans, root, inode);
10020 	if (ret)
10021 		goto out;
10022 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10023 	if (ret)
10024 		goto out;
10025 
10026 	/*
10027 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10028 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10029 	 * through:
10030 	 *
10031 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10032 	 */
10033 	set_nlink(inode, 1);
10034 	d_tmpfile(dentry, inode);
10035 	unlock_new_inode(inode);
10036 	mark_inode_dirty(inode);
10037 out:
10038 	btrfs_end_transaction(trans);
10039 	if (ret && inode)
10040 		discard_new_inode(inode);
10041 	btrfs_btree_balance_dirty(fs_info);
10042 	return ret;
10043 }
10044 
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)10045 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10046 {
10047 	struct inode *inode = tree->private_data;
10048 	unsigned long index = start >> PAGE_SHIFT;
10049 	unsigned long end_index = end >> PAGE_SHIFT;
10050 	struct page *page;
10051 
10052 	while (index <= end_index) {
10053 		page = find_get_page(inode->i_mapping, index);
10054 		ASSERT(page); /* Pages should be in the extent_io_tree */
10055 		set_page_writeback(page);
10056 		put_page(page);
10057 		index++;
10058 	}
10059 }
10060 
10061 #ifdef CONFIG_SWAP
10062 /*
10063  * Add an entry indicating a block group or device which is pinned by a
10064  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10065  * negative errno on failure.
10066  */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10067 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10068 				  bool is_block_group)
10069 {
10070 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10071 	struct btrfs_swapfile_pin *sp, *entry;
10072 	struct rb_node **p;
10073 	struct rb_node *parent = NULL;
10074 
10075 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10076 	if (!sp)
10077 		return -ENOMEM;
10078 	sp->ptr = ptr;
10079 	sp->inode = inode;
10080 	sp->is_block_group = is_block_group;
10081 	sp->bg_extent_count = 1;
10082 
10083 	spin_lock(&fs_info->swapfile_pins_lock);
10084 	p = &fs_info->swapfile_pins.rb_node;
10085 	while (*p) {
10086 		parent = *p;
10087 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10088 		if (sp->ptr < entry->ptr ||
10089 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10090 			p = &(*p)->rb_left;
10091 		} else if (sp->ptr > entry->ptr ||
10092 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10093 			p = &(*p)->rb_right;
10094 		} else {
10095 			if (is_block_group)
10096 				entry->bg_extent_count++;
10097 			spin_unlock(&fs_info->swapfile_pins_lock);
10098 			kfree(sp);
10099 			return 1;
10100 		}
10101 	}
10102 	rb_link_node(&sp->node, parent, p);
10103 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10104 	spin_unlock(&fs_info->swapfile_pins_lock);
10105 	return 0;
10106 }
10107 
10108 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10109 static void btrfs_free_swapfile_pins(struct inode *inode)
10110 {
10111 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10112 	struct btrfs_swapfile_pin *sp;
10113 	struct rb_node *node, *next;
10114 
10115 	spin_lock(&fs_info->swapfile_pins_lock);
10116 	node = rb_first(&fs_info->swapfile_pins);
10117 	while (node) {
10118 		next = rb_next(node);
10119 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10120 		if (sp->inode == inode) {
10121 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10122 			if (sp->is_block_group) {
10123 				btrfs_dec_block_group_swap_extents(sp->ptr,
10124 							   sp->bg_extent_count);
10125 				btrfs_put_block_group(sp->ptr);
10126 			}
10127 			kfree(sp);
10128 		}
10129 		node = next;
10130 	}
10131 	spin_unlock(&fs_info->swapfile_pins_lock);
10132 }
10133 
10134 struct btrfs_swap_info {
10135 	u64 start;
10136 	u64 block_start;
10137 	u64 block_len;
10138 	u64 lowest_ppage;
10139 	u64 highest_ppage;
10140 	unsigned long nr_pages;
10141 	int nr_extents;
10142 };
10143 
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10144 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10145 				 struct btrfs_swap_info *bsi)
10146 {
10147 	unsigned long nr_pages;
10148 	unsigned long max_pages;
10149 	u64 first_ppage, first_ppage_reported, next_ppage;
10150 	int ret;
10151 
10152 	/*
10153 	 * Our swapfile may have had its size extended after the swap header was
10154 	 * written. In that case activating the swapfile should not go beyond
10155 	 * the max size set in the swap header.
10156 	 */
10157 	if (bsi->nr_pages >= sis->max)
10158 		return 0;
10159 
10160 	max_pages = sis->max - bsi->nr_pages;
10161 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10162 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10163 				PAGE_SIZE) >> PAGE_SHIFT;
10164 
10165 	if (first_ppage >= next_ppage)
10166 		return 0;
10167 	nr_pages = next_ppage - first_ppage;
10168 	nr_pages = min(nr_pages, max_pages);
10169 
10170 	first_ppage_reported = first_ppage;
10171 	if (bsi->start == 0)
10172 		first_ppage_reported++;
10173 	if (bsi->lowest_ppage > first_ppage_reported)
10174 		bsi->lowest_ppage = first_ppage_reported;
10175 	if (bsi->highest_ppage < (next_ppage - 1))
10176 		bsi->highest_ppage = next_ppage - 1;
10177 
10178 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10179 	if (ret < 0)
10180 		return ret;
10181 	bsi->nr_extents += ret;
10182 	bsi->nr_pages += nr_pages;
10183 	return 0;
10184 }
10185 
btrfs_swap_deactivate(struct file * file)10186 static void btrfs_swap_deactivate(struct file *file)
10187 {
10188 	struct inode *inode = file_inode(file);
10189 
10190 	btrfs_free_swapfile_pins(inode);
10191 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10192 }
10193 
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10194 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10195 			       sector_t *span)
10196 {
10197 	struct inode *inode = file_inode(file);
10198 	struct btrfs_root *root = BTRFS_I(inode)->root;
10199 	struct btrfs_fs_info *fs_info = root->fs_info;
10200 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10201 	struct extent_state *cached_state = NULL;
10202 	struct extent_map *em = NULL;
10203 	struct btrfs_device *device = NULL;
10204 	struct btrfs_swap_info bsi = {
10205 		.lowest_ppage = (sector_t)-1ULL,
10206 	};
10207 	int ret = 0;
10208 	u64 isize;
10209 	u64 start;
10210 
10211 	/*
10212 	 * If the swap file was just created, make sure delalloc is done. If the
10213 	 * file changes again after this, the user is doing something stupid and
10214 	 * we don't really care.
10215 	 */
10216 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10217 	if (ret)
10218 		return ret;
10219 
10220 	/*
10221 	 * The inode is locked, so these flags won't change after we check them.
10222 	 */
10223 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10224 		btrfs_warn(fs_info, "swapfile must not be compressed");
10225 		return -EINVAL;
10226 	}
10227 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10228 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10229 		return -EINVAL;
10230 	}
10231 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10232 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10233 		return -EINVAL;
10234 	}
10235 
10236 	/*
10237 	 * Balance or device remove/replace/resize can move stuff around from
10238 	 * under us. The exclop protection makes sure they aren't running/won't
10239 	 * run concurrently while we are mapping the swap extents, and
10240 	 * fs_info->swapfile_pins prevents them from running while the swap
10241 	 * file is active and moving the extents. Note that this also prevents
10242 	 * a concurrent device add which isn't actually necessary, but it's not
10243 	 * really worth the trouble to allow it.
10244 	 */
10245 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10246 		btrfs_warn(fs_info,
10247 	   "cannot activate swapfile while exclusive operation is running");
10248 		return -EBUSY;
10249 	}
10250 
10251 	/*
10252 	 * Prevent snapshot creation while we are activating the swap file.
10253 	 * We do not want to race with snapshot creation. If snapshot creation
10254 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10255 	 * completes before the first write into the swap file after it is
10256 	 * activated, than that write would fallback to COW.
10257 	 */
10258 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10259 		btrfs_exclop_finish(fs_info);
10260 		btrfs_warn(fs_info,
10261 	   "cannot activate swapfile because snapshot creation is in progress");
10262 		return -EINVAL;
10263 	}
10264 	/*
10265 	 * Snapshots can create extents which require COW even if NODATACOW is
10266 	 * set. We use this counter to prevent snapshots. We must increment it
10267 	 * before walking the extents because we don't want a concurrent
10268 	 * snapshot to run after we've already checked the extents.
10269 	 *
10270 	 * It is possible that subvolume is marked for deletion but still not
10271 	 * removed yet. To prevent this race, we check the root status before
10272 	 * activating the swapfile.
10273 	 */
10274 	spin_lock(&root->root_item_lock);
10275 	if (btrfs_root_dead(root)) {
10276 		spin_unlock(&root->root_item_lock);
10277 
10278 		btrfs_exclop_finish(fs_info);
10279 		btrfs_warn(fs_info,
10280 		"cannot activate swapfile because subvolume %llu is being deleted",
10281 			root->root_key.objectid);
10282 		return -EPERM;
10283 	}
10284 	atomic_inc(&root->nr_swapfiles);
10285 	spin_unlock(&root->root_item_lock);
10286 
10287 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10288 
10289 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10290 	start = 0;
10291 	while (start < isize) {
10292 		u64 logical_block_start, physical_block_start;
10293 		struct btrfs_block_group *bg;
10294 		u64 len = isize - start;
10295 
10296 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10297 		if (IS_ERR(em)) {
10298 			ret = PTR_ERR(em);
10299 			goto out;
10300 		}
10301 
10302 		if (em->block_start == EXTENT_MAP_HOLE) {
10303 			btrfs_warn(fs_info, "swapfile must not have holes");
10304 			ret = -EINVAL;
10305 			goto out;
10306 		}
10307 		if (em->block_start == EXTENT_MAP_INLINE) {
10308 			/*
10309 			 * It's unlikely we'll ever actually find ourselves
10310 			 * here, as a file small enough to fit inline won't be
10311 			 * big enough to store more than the swap header, but in
10312 			 * case something changes in the future, let's catch it
10313 			 * here rather than later.
10314 			 */
10315 			btrfs_warn(fs_info, "swapfile must not be inline");
10316 			ret = -EINVAL;
10317 			goto out;
10318 		}
10319 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10320 			btrfs_warn(fs_info, "swapfile must not be compressed");
10321 			ret = -EINVAL;
10322 			goto out;
10323 		}
10324 
10325 		logical_block_start = em->block_start + (start - em->start);
10326 		len = min(len, em->len - (start - em->start));
10327 		free_extent_map(em);
10328 		em = NULL;
10329 
10330 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10331 		if (ret < 0) {
10332 			goto out;
10333 		} else if (ret) {
10334 			ret = 0;
10335 		} else {
10336 			btrfs_warn(fs_info,
10337 				   "swapfile must not be copy-on-write");
10338 			ret = -EINVAL;
10339 			goto out;
10340 		}
10341 
10342 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10343 		if (IS_ERR(em)) {
10344 			ret = PTR_ERR(em);
10345 			goto out;
10346 		}
10347 
10348 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10349 			btrfs_warn(fs_info,
10350 				   "swapfile must have single data profile");
10351 			ret = -EINVAL;
10352 			goto out;
10353 		}
10354 
10355 		if (device == NULL) {
10356 			device = em->map_lookup->stripes[0].dev;
10357 			ret = btrfs_add_swapfile_pin(inode, device, false);
10358 			if (ret == 1)
10359 				ret = 0;
10360 			else if (ret)
10361 				goto out;
10362 		} else if (device != em->map_lookup->stripes[0].dev) {
10363 			btrfs_warn(fs_info, "swapfile must be on one device");
10364 			ret = -EINVAL;
10365 			goto out;
10366 		}
10367 
10368 		physical_block_start = (em->map_lookup->stripes[0].physical +
10369 					(logical_block_start - em->start));
10370 		len = min(len, em->len - (logical_block_start - em->start));
10371 		free_extent_map(em);
10372 		em = NULL;
10373 
10374 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10375 		if (!bg) {
10376 			btrfs_warn(fs_info,
10377 			   "could not find block group containing swapfile");
10378 			ret = -EINVAL;
10379 			goto out;
10380 		}
10381 
10382 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10383 			btrfs_warn(fs_info,
10384 			   "block group for swapfile at %llu is read-only%s",
10385 			   bg->start,
10386 			   atomic_read(&fs_info->scrubs_running) ?
10387 				       " (scrub running)" : "");
10388 			btrfs_put_block_group(bg);
10389 			ret = -EINVAL;
10390 			goto out;
10391 		}
10392 
10393 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10394 		if (ret) {
10395 			btrfs_put_block_group(bg);
10396 			if (ret == 1)
10397 				ret = 0;
10398 			else
10399 				goto out;
10400 		}
10401 
10402 		if (bsi.block_len &&
10403 		    bsi.block_start + bsi.block_len == physical_block_start) {
10404 			bsi.block_len += len;
10405 		} else {
10406 			if (bsi.block_len) {
10407 				ret = btrfs_add_swap_extent(sis, &bsi);
10408 				if (ret)
10409 					goto out;
10410 			}
10411 			bsi.start = start;
10412 			bsi.block_start = physical_block_start;
10413 			bsi.block_len = len;
10414 		}
10415 
10416 		start += len;
10417 	}
10418 
10419 	if (bsi.block_len)
10420 		ret = btrfs_add_swap_extent(sis, &bsi);
10421 
10422 out:
10423 	if (!IS_ERR_OR_NULL(em))
10424 		free_extent_map(em);
10425 
10426 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10427 
10428 	if (ret)
10429 		btrfs_swap_deactivate(file);
10430 
10431 	btrfs_drew_write_unlock(&root->snapshot_lock);
10432 
10433 	btrfs_exclop_finish(fs_info);
10434 
10435 	if (ret)
10436 		return ret;
10437 
10438 	if (device)
10439 		sis->bdev = device->bdev;
10440 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10441 	sis->max = bsi.nr_pages;
10442 	sis->pages = bsi.nr_pages - 1;
10443 	sis->highest_bit = bsi.nr_pages - 1;
10444 	return bsi.nr_extents;
10445 }
10446 #else
btrfs_swap_deactivate(struct file * file)10447 static void btrfs_swap_deactivate(struct file *file)
10448 {
10449 }
10450 
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10451 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10452 			       sector_t *span)
10453 {
10454 	return -EOPNOTSUPP;
10455 }
10456 #endif
10457 
10458 static const struct inode_operations btrfs_dir_inode_operations = {
10459 	.getattr	= btrfs_getattr,
10460 	.lookup		= btrfs_lookup,
10461 	.create		= btrfs_create,
10462 	.unlink		= btrfs_unlink,
10463 	.link		= btrfs_link,
10464 	.mkdir		= btrfs_mkdir,
10465 	.rmdir		= btrfs_rmdir,
10466 	.rename		= btrfs_rename2,
10467 	.symlink	= btrfs_symlink,
10468 	.setattr	= btrfs_setattr,
10469 	.mknod		= btrfs_mknod,
10470 	.listxattr	= btrfs_listxattr,
10471 	.permission	= btrfs_permission,
10472 	.get_acl	= btrfs_get_acl,
10473 	.set_acl	= btrfs_set_acl,
10474 	.update_time	= btrfs_update_time,
10475 	.tmpfile        = btrfs_tmpfile,
10476 };
10477 
10478 static const struct file_operations btrfs_dir_file_operations = {
10479 	.llseek		= generic_file_llseek,
10480 	.read		= generic_read_dir,
10481 	.iterate_shared	= btrfs_real_readdir,
10482 	.open		= btrfs_opendir,
10483 	.unlocked_ioctl	= btrfs_ioctl,
10484 #ifdef CONFIG_COMPAT
10485 	.compat_ioctl	= btrfs_compat_ioctl,
10486 #endif
10487 	.release        = btrfs_release_file,
10488 	.fsync		= btrfs_sync_file,
10489 };
10490 
10491 /*
10492  * btrfs doesn't support the bmap operation because swapfiles
10493  * use bmap to make a mapping of extents in the file.  They assume
10494  * these extents won't change over the life of the file and they
10495  * use the bmap result to do IO directly to the drive.
10496  *
10497  * the btrfs bmap call would return logical addresses that aren't
10498  * suitable for IO and they also will change frequently as COW
10499  * operations happen.  So, swapfile + btrfs == corruption.
10500  *
10501  * For now we're avoiding this by dropping bmap.
10502  */
10503 static const struct address_space_operations btrfs_aops = {
10504 	.readpage	= btrfs_readpage,
10505 	.writepage	= btrfs_writepage,
10506 	.writepages	= btrfs_writepages,
10507 	.readahead	= btrfs_readahead,
10508 	.direct_IO	= noop_direct_IO,
10509 	.invalidatepage = btrfs_invalidatepage,
10510 	.releasepage	= btrfs_releasepage,
10511 #ifdef CONFIG_MIGRATION
10512 	.migratepage	= btrfs_migratepage,
10513 #endif
10514 	.set_page_dirty	= btrfs_set_page_dirty,
10515 	.error_remove_page = generic_error_remove_page,
10516 	.swap_activate	= btrfs_swap_activate,
10517 	.swap_deactivate = btrfs_swap_deactivate,
10518 };
10519 
10520 static const struct inode_operations btrfs_file_inode_operations = {
10521 	.getattr	= btrfs_getattr,
10522 	.setattr	= btrfs_setattr,
10523 	.listxattr      = btrfs_listxattr,
10524 	.permission	= btrfs_permission,
10525 	.fiemap		= btrfs_fiemap,
10526 	.get_acl	= btrfs_get_acl,
10527 	.set_acl	= btrfs_set_acl,
10528 	.update_time	= btrfs_update_time,
10529 };
10530 static const struct inode_operations btrfs_special_inode_operations = {
10531 	.getattr	= btrfs_getattr,
10532 	.setattr	= btrfs_setattr,
10533 	.permission	= btrfs_permission,
10534 	.listxattr	= btrfs_listxattr,
10535 	.get_acl	= btrfs_get_acl,
10536 	.set_acl	= btrfs_set_acl,
10537 	.update_time	= btrfs_update_time,
10538 };
10539 static const struct inode_operations btrfs_symlink_inode_operations = {
10540 	.get_link	= page_get_link,
10541 	.getattr	= btrfs_getattr,
10542 	.setattr	= btrfs_setattr,
10543 	.permission	= btrfs_permission,
10544 	.listxattr	= btrfs_listxattr,
10545 	.update_time	= btrfs_update_time,
10546 };
10547 
10548 const struct dentry_operations btrfs_dentry_operations = {
10549 	.d_delete	= btrfs_dentry_delete,
10550 };
10551