• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 
38 #undef SCRAMBLE_DELAYED_REFS
39 
40 
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 			       struct btrfs_delayed_ref_node *node, u64 parent,
43 			       u64 root_objectid, u64 owner_objectid,
44 			       u64 owner_offset, int refs_to_drop,
45 			       struct btrfs_delayed_extent_op *extra_op);
46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
47 				    struct extent_buffer *leaf,
48 				    struct btrfs_extent_item *ei);
49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
50 				      u64 parent, u64 root_objectid,
51 				      u64 flags, u64 owner, u64 offset,
52 				      struct btrfs_key *ins, int ref_mod);
53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
54 				     struct btrfs_delayed_ref_node *node,
55 				     struct btrfs_delayed_extent_op *extent_op);
56 static int find_next_key(struct btrfs_path *path, int level,
57 			 struct btrfs_key *key);
58 
block_group_bits(struct btrfs_block_group * cache,u64 bits)59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
60 {
61 	return (cache->flags & bits) == bits;
62 }
63 
btrfs_add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
65 			      u64 start, u64 num_bytes)
66 {
67 	u64 end = start + num_bytes - 1;
68 	set_extent_bits(&fs_info->excluded_extents, start, end,
69 			EXTENT_UPTODATE);
70 	return 0;
71 }
72 
btrfs_free_excluded_extents(struct btrfs_block_group * cache)73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
74 {
75 	struct btrfs_fs_info *fs_info = cache->fs_info;
76 	u64 start, end;
77 
78 	start = cache->start;
79 	end = start + cache->length - 1;
80 
81 	clear_extent_bits(&fs_info->excluded_extents, start, end,
82 			  EXTENT_UPTODATE);
83 }
84 
85 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)86 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
87 {
88 	int ret;
89 	struct btrfs_key key;
90 	struct btrfs_path *path;
91 
92 	path = btrfs_alloc_path();
93 	if (!path)
94 		return -ENOMEM;
95 
96 	key.objectid = start;
97 	key.offset = len;
98 	key.type = BTRFS_EXTENT_ITEM_KEY;
99 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
100 	btrfs_free_path(path);
101 	return ret;
102 }
103 
104 /*
105  * helper function to lookup reference count and flags of a tree block.
106  *
107  * the head node for delayed ref is used to store the sum of all the
108  * reference count modifications queued up in the rbtree. the head
109  * node may also store the extent flags to set. This way you can check
110  * to see what the reference count and extent flags would be if all of
111  * the delayed refs are not processed.
112  */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)113 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
114 			     struct btrfs_fs_info *fs_info, u64 bytenr,
115 			     u64 offset, int metadata, u64 *refs, u64 *flags)
116 {
117 	struct btrfs_delayed_ref_head *head;
118 	struct btrfs_delayed_ref_root *delayed_refs;
119 	struct btrfs_path *path;
120 	struct btrfs_extent_item *ei;
121 	struct extent_buffer *leaf;
122 	struct btrfs_key key;
123 	u32 item_size;
124 	u64 num_refs;
125 	u64 extent_flags;
126 	int ret;
127 
128 	/*
129 	 * If we don't have skinny metadata, don't bother doing anything
130 	 * different
131 	 */
132 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
133 		offset = fs_info->nodesize;
134 		metadata = 0;
135 	}
136 
137 	path = btrfs_alloc_path();
138 	if (!path)
139 		return -ENOMEM;
140 
141 	if (!trans) {
142 		path->skip_locking = 1;
143 		path->search_commit_root = 1;
144 	}
145 
146 search_again:
147 	key.objectid = bytenr;
148 	key.offset = offset;
149 	if (metadata)
150 		key.type = BTRFS_METADATA_ITEM_KEY;
151 	else
152 		key.type = BTRFS_EXTENT_ITEM_KEY;
153 
154 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
155 	if (ret < 0)
156 		goto out_free;
157 
158 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
159 		if (path->slots[0]) {
160 			path->slots[0]--;
161 			btrfs_item_key_to_cpu(path->nodes[0], &key,
162 					      path->slots[0]);
163 			if (key.objectid == bytenr &&
164 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
165 			    key.offset == fs_info->nodesize)
166 				ret = 0;
167 		}
168 	}
169 
170 	if (ret == 0) {
171 		leaf = path->nodes[0];
172 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
173 		if (item_size >= sizeof(*ei)) {
174 			ei = btrfs_item_ptr(leaf, path->slots[0],
175 					    struct btrfs_extent_item);
176 			num_refs = btrfs_extent_refs(leaf, ei);
177 			extent_flags = btrfs_extent_flags(leaf, ei);
178 		} else {
179 			ret = -EINVAL;
180 			btrfs_print_v0_err(fs_info);
181 			if (trans)
182 				btrfs_abort_transaction(trans, ret);
183 			else
184 				btrfs_handle_fs_error(fs_info, ret, NULL);
185 
186 			goto out_free;
187 		}
188 
189 		BUG_ON(num_refs == 0);
190 	} else {
191 		num_refs = 0;
192 		extent_flags = 0;
193 		ret = 0;
194 	}
195 
196 	if (!trans)
197 		goto out;
198 
199 	delayed_refs = &trans->transaction->delayed_refs;
200 	spin_lock(&delayed_refs->lock);
201 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
202 	if (head) {
203 		if (!mutex_trylock(&head->mutex)) {
204 			refcount_inc(&head->refs);
205 			spin_unlock(&delayed_refs->lock);
206 
207 			btrfs_release_path(path);
208 
209 			/*
210 			 * Mutex was contended, block until it's released and try
211 			 * again
212 			 */
213 			mutex_lock(&head->mutex);
214 			mutex_unlock(&head->mutex);
215 			btrfs_put_delayed_ref_head(head);
216 			goto search_again;
217 		}
218 		spin_lock(&head->lock);
219 		if (head->extent_op && head->extent_op->update_flags)
220 			extent_flags |= head->extent_op->flags_to_set;
221 		else
222 			BUG_ON(num_refs == 0);
223 
224 		num_refs += head->ref_mod;
225 		spin_unlock(&head->lock);
226 		mutex_unlock(&head->mutex);
227 	}
228 	spin_unlock(&delayed_refs->lock);
229 out:
230 	WARN_ON(num_refs == 0);
231 	if (refs)
232 		*refs = num_refs;
233 	if (flags)
234 		*flags = extent_flags;
235 out_free:
236 	btrfs_free_path(path);
237 	return ret;
238 }
239 
240 /*
241  * Back reference rules.  Back refs have three main goals:
242  *
243  * 1) differentiate between all holders of references to an extent so that
244  *    when a reference is dropped we can make sure it was a valid reference
245  *    before freeing the extent.
246  *
247  * 2) Provide enough information to quickly find the holders of an extent
248  *    if we notice a given block is corrupted or bad.
249  *
250  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
251  *    maintenance.  This is actually the same as #2, but with a slightly
252  *    different use case.
253  *
254  * There are two kinds of back refs. The implicit back refs is optimized
255  * for pointers in non-shared tree blocks. For a given pointer in a block,
256  * back refs of this kind provide information about the block's owner tree
257  * and the pointer's key. These information allow us to find the block by
258  * b-tree searching. The full back refs is for pointers in tree blocks not
259  * referenced by their owner trees. The location of tree block is recorded
260  * in the back refs. Actually the full back refs is generic, and can be
261  * used in all cases the implicit back refs is used. The major shortcoming
262  * of the full back refs is its overhead. Every time a tree block gets
263  * COWed, we have to update back refs entry for all pointers in it.
264  *
265  * For a newly allocated tree block, we use implicit back refs for
266  * pointers in it. This means most tree related operations only involve
267  * implicit back refs. For a tree block created in old transaction, the
268  * only way to drop a reference to it is COW it. So we can detect the
269  * event that tree block loses its owner tree's reference and do the
270  * back refs conversion.
271  *
272  * When a tree block is COWed through a tree, there are four cases:
273  *
274  * The reference count of the block is one and the tree is the block's
275  * owner tree. Nothing to do in this case.
276  *
277  * The reference count of the block is one and the tree is not the
278  * block's owner tree. In this case, full back refs is used for pointers
279  * in the block. Remove these full back refs, add implicit back refs for
280  * every pointers in the new block.
281  *
282  * The reference count of the block is greater than one and the tree is
283  * the block's owner tree. In this case, implicit back refs is used for
284  * pointers in the block. Add full back refs for every pointers in the
285  * block, increase lower level extents' reference counts. The original
286  * implicit back refs are entailed to the new block.
287  *
288  * The reference count of the block is greater than one and the tree is
289  * not the block's owner tree. Add implicit back refs for every pointer in
290  * the new block, increase lower level extents' reference count.
291  *
292  * Back Reference Key composing:
293  *
294  * The key objectid corresponds to the first byte in the extent,
295  * The key type is used to differentiate between types of back refs.
296  * There are different meanings of the key offset for different types
297  * of back refs.
298  *
299  * File extents can be referenced by:
300  *
301  * - multiple snapshots, subvolumes, or different generations in one subvol
302  * - different files inside a single subvolume
303  * - different offsets inside a file (bookend extents in file.c)
304  *
305  * The extent ref structure for the implicit back refs has fields for:
306  *
307  * - Objectid of the subvolume root
308  * - objectid of the file holding the reference
309  * - original offset in the file
310  * - how many bookend extents
311  *
312  * The key offset for the implicit back refs is hash of the first
313  * three fields.
314  *
315  * The extent ref structure for the full back refs has field for:
316  *
317  * - number of pointers in the tree leaf
318  *
319  * The key offset for the implicit back refs is the first byte of
320  * the tree leaf
321  *
322  * When a file extent is allocated, The implicit back refs is used.
323  * the fields are filled in:
324  *
325  *     (root_key.objectid, inode objectid, offset in file, 1)
326  *
327  * When a file extent is removed file truncation, we find the
328  * corresponding implicit back refs and check the following fields:
329  *
330  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
331  *
332  * Btree extents can be referenced by:
333  *
334  * - Different subvolumes
335  *
336  * Both the implicit back refs and the full back refs for tree blocks
337  * only consist of key. The key offset for the implicit back refs is
338  * objectid of block's owner tree. The key offset for the full back refs
339  * is the first byte of parent block.
340  *
341  * When implicit back refs is used, information about the lowest key and
342  * level of the tree block are required. These information are stored in
343  * tree block info structure.
344  */
345 
346 /*
347  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
348  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
349  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
350  */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)351 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
352 				     struct btrfs_extent_inline_ref *iref,
353 				     enum btrfs_inline_ref_type is_data)
354 {
355 	int type = btrfs_extent_inline_ref_type(eb, iref);
356 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
357 
358 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
359 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
360 	    type == BTRFS_SHARED_DATA_REF_KEY ||
361 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
362 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
363 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
364 				return type;
365 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
366 				ASSERT(eb->fs_info);
367 				/*
368 				 * Every shared one has parent tree block,
369 				 * which must be aligned to sector size.
370 				 */
371 				if (offset &&
372 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
373 					return type;
374 			}
375 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
376 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
377 				return type;
378 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
379 				ASSERT(eb->fs_info);
380 				/*
381 				 * Every shared one has parent tree block,
382 				 * which must be aligned to sector size.
383 				 */
384 				if (offset &&
385 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
386 					return type;
387 			}
388 		} else {
389 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
390 			return type;
391 		}
392 	}
393 
394 	btrfs_print_leaf((struct extent_buffer *)eb);
395 	btrfs_err(eb->fs_info,
396 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
397 		  eb->start, (unsigned long)iref, type);
398 	WARN_ON(1);
399 
400 	return BTRFS_REF_TYPE_INVALID;
401 }
402 
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)403 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
404 {
405 	u32 high_crc = ~(u32)0;
406 	u32 low_crc = ~(u32)0;
407 	__le64 lenum;
408 
409 	lenum = cpu_to_le64(root_objectid);
410 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
411 	lenum = cpu_to_le64(owner);
412 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
413 	lenum = cpu_to_le64(offset);
414 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
415 
416 	return ((u64)high_crc << 31) ^ (u64)low_crc;
417 }
418 
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)419 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
420 				     struct btrfs_extent_data_ref *ref)
421 {
422 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
423 				    btrfs_extent_data_ref_objectid(leaf, ref),
424 				    btrfs_extent_data_ref_offset(leaf, ref));
425 }
426 
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)427 static int match_extent_data_ref(struct extent_buffer *leaf,
428 				 struct btrfs_extent_data_ref *ref,
429 				 u64 root_objectid, u64 owner, u64 offset)
430 {
431 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
432 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
433 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
434 		return 0;
435 	return 1;
436 }
437 
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)438 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
439 					   struct btrfs_path *path,
440 					   u64 bytenr, u64 parent,
441 					   u64 root_objectid,
442 					   u64 owner, u64 offset)
443 {
444 	struct btrfs_root *root = trans->fs_info->extent_root;
445 	struct btrfs_key key;
446 	struct btrfs_extent_data_ref *ref;
447 	struct extent_buffer *leaf;
448 	u32 nritems;
449 	int ret;
450 	int recow;
451 	int err = -ENOENT;
452 
453 	key.objectid = bytenr;
454 	if (parent) {
455 		key.type = BTRFS_SHARED_DATA_REF_KEY;
456 		key.offset = parent;
457 	} else {
458 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
459 		key.offset = hash_extent_data_ref(root_objectid,
460 						  owner, offset);
461 	}
462 again:
463 	recow = 0;
464 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
465 	if (ret < 0) {
466 		err = ret;
467 		goto fail;
468 	}
469 
470 	if (parent) {
471 		if (!ret)
472 			return 0;
473 		goto fail;
474 	}
475 
476 	leaf = path->nodes[0];
477 	nritems = btrfs_header_nritems(leaf);
478 	while (1) {
479 		if (path->slots[0] >= nritems) {
480 			ret = btrfs_next_leaf(root, path);
481 			if (ret < 0)
482 				err = ret;
483 			if (ret)
484 				goto fail;
485 
486 			leaf = path->nodes[0];
487 			nritems = btrfs_header_nritems(leaf);
488 			recow = 1;
489 		}
490 
491 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
492 		if (key.objectid != bytenr ||
493 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
494 			goto fail;
495 
496 		ref = btrfs_item_ptr(leaf, path->slots[0],
497 				     struct btrfs_extent_data_ref);
498 
499 		if (match_extent_data_ref(leaf, ref, root_objectid,
500 					  owner, offset)) {
501 			if (recow) {
502 				btrfs_release_path(path);
503 				goto again;
504 			}
505 			err = 0;
506 			break;
507 		}
508 		path->slots[0]++;
509 	}
510 fail:
511 	return err;
512 }
513 
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)514 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
515 					   struct btrfs_path *path,
516 					   u64 bytenr, u64 parent,
517 					   u64 root_objectid, u64 owner,
518 					   u64 offset, int refs_to_add)
519 {
520 	struct btrfs_root *root = trans->fs_info->extent_root;
521 	struct btrfs_key key;
522 	struct extent_buffer *leaf;
523 	u32 size;
524 	u32 num_refs;
525 	int ret;
526 
527 	key.objectid = bytenr;
528 	if (parent) {
529 		key.type = BTRFS_SHARED_DATA_REF_KEY;
530 		key.offset = parent;
531 		size = sizeof(struct btrfs_shared_data_ref);
532 	} else {
533 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
534 		key.offset = hash_extent_data_ref(root_objectid,
535 						  owner, offset);
536 		size = sizeof(struct btrfs_extent_data_ref);
537 	}
538 
539 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
540 	if (ret && ret != -EEXIST)
541 		goto fail;
542 
543 	leaf = path->nodes[0];
544 	if (parent) {
545 		struct btrfs_shared_data_ref *ref;
546 		ref = btrfs_item_ptr(leaf, path->slots[0],
547 				     struct btrfs_shared_data_ref);
548 		if (ret == 0) {
549 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
550 		} else {
551 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
552 			num_refs += refs_to_add;
553 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
554 		}
555 	} else {
556 		struct btrfs_extent_data_ref *ref;
557 		while (ret == -EEXIST) {
558 			ref = btrfs_item_ptr(leaf, path->slots[0],
559 					     struct btrfs_extent_data_ref);
560 			if (match_extent_data_ref(leaf, ref, root_objectid,
561 						  owner, offset))
562 				break;
563 			btrfs_release_path(path);
564 			key.offset++;
565 			ret = btrfs_insert_empty_item(trans, root, path, &key,
566 						      size);
567 			if (ret && ret != -EEXIST)
568 				goto fail;
569 
570 			leaf = path->nodes[0];
571 		}
572 		ref = btrfs_item_ptr(leaf, path->slots[0],
573 				     struct btrfs_extent_data_ref);
574 		if (ret == 0) {
575 			btrfs_set_extent_data_ref_root(leaf, ref,
576 						       root_objectid);
577 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
578 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
579 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
580 		} else {
581 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
582 			num_refs += refs_to_add;
583 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
584 		}
585 	}
586 	btrfs_mark_buffer_dirty(leaf);
587 	ret = 0;
588 fail:
589 	btrfs_release_path(path);
590 	return ret;
591 }
592 
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,int refs_to_drop,int * last_ref)593 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
594 					   struct btrfs_path *path,
595 					   int refs_to_drop, int *last_ref)
596 {
597 	struct btrfs_key key;
598 	struct btrfs_extent_data_ref *ref1 = NULL;
599 	struct btrfs_shared_data_ref *ref2 = NULL;
600 	struct extent_buffer *leaf;
601 	u32 num_refs = 0;
602 	int ret = 0;
603 
604 	leaf = path->nodes[0];
605 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
606 
607 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
608 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
609 				      struct btrfs_extent_data_ref);
610 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
611 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
612 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
613 				      struct btrfs_shared_data_ref);
614 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
615 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
616 		btrfs_print_v0_err(trans->fs_info);
617 		btrfs_abort_transaction(trans, -EINVAL);
618 		return -EINVAL;
619 	} else {
620 		BUG();
621 	}
622 
623 	BUG_ON(num_refs < refs_to_drop);
624 	num_refs -= refs_to_drop;
625 
626 	if (num_refs == 0) {
627 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
628 		*last_ref = 1;
629 	} else {
630 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
631 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
632 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
633 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
634 		btrfs_mark_buffer_dirty(leaf);
635 	}
636 	return ret;
637 }
638 
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)639 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
640 					  struct btrfs_extent_inline_ref *iref)
641 {
642 	struct btrfs_key key;
643 	struct extent_buffer *leaf;
644 	struct btrfs_extent_data_ref *ref1;
645 	struct btrfs_shared_data_ref *ref2;
646 	u32 num_refs = 0;
647 	int type;
648 
649 	leaf = path->nodes[0];
650 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
651 
652 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
653 	if (iref) {
654 		/*
655 		 * If type is invalid, we should have bailed out earlier than
656 		 * this call.
657 		 */
658 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
659 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
660 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
661 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
662 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
663 		} else {
664 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
665 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 		}
667 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
668 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
669 				      struct btrfs_extent_data_ref);
670 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
671 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
672 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
673 				      struct btrfs_shared_data_ref);
674 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
675 	} else {
676 		WARN_ON(1);
677 	}
678 	return num_refs;
679 }
680 
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)681 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
682 					  struct btrfs_path *path,
683 					  u64 bytenr, u64 parent,
684 					  u64 root_objectid)
685 {
686 	struct btrfs_root *root = trans->fs_info->extent_root;
687 	struct btrfs_key key;
688 	int ret;
689 
690 	key.objectid = bytenr;
691 	if (parent) {
692 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
693 		key.offset = parent;
694 	} else {
695 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
696 		key.offset = root_objectid;
697 	}
698 
699 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
700 	if (ret > 0)
701 		ret = -ENOENT;
702 	return ret;
703 }
704 
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)705 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
706 					  struct btrfs_path *path,
707 					  u64 bytenr, u64 parent,
708 					  u64 root_objectid)
709 {
710 	struct btrfs_key key;
711 	int ret;
712 
713 	key.objectid = bytenr;
714 	if (parent) {
715 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
716 		key.offset = parent;
717 	} else {
718 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
719 		key.offset = root_objectid;
720 	}
721 
722 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
723 				      path, &key, 0);
724 	btrfs_release_path(path);
725 	return ret;
726 }
727 
extent_ref_type(u64 parent,u64 owner)728 static inline int extent_ref_type(u64 parent, u64 owner)
729 {
730 	int type;
731 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
732 		if (parent > 0)
733 			type = BTRFS_SHARED_BLOCK_REF_KEY;
734 		else
735 			type = BTRFS_TREE_BLOCK_REF_KEY;
736 	} else {
737 		if (parent > 0)
738 			type = BTRFS_SHARED_DATA_REF_KEY;
739 		else
740 			type = BTRFS_EXTENT_DATA_REF_KEY;
741 	}
742 	return type;
743 }
744 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)745 static int find_next_key(struct btrfs_path *path, int level,
746 			 struct btrfs_key *key)
747 
748 {
749 	for (; level < BTRFS_MAX_LEVEL; level++) {
750 		if (!path->nodes[level])
751 			break;
752 		if (path->slots[level] + 1 >=
753 		    btrfs_header_nritems(path->nodes[level]))
754 			continue;
755 		if (level == 0)
756 			btrfs_item_key_to_cpu(path->nodes[level], key,
757 					      path->slots[level] + 1);
758 		else
759 			btrfs_node_key_to_cpu(path->nodes[level], key,
760 					      path->slots[level] + 1);
761 		return 0;
762 	}
763 	return 1;
764 }
765 
766 /*
767  * look for inline back ref. if back ref is found, *ref_ret is set
768  * to the address of inline back ref, and 0 is returned.
769  *
770  * if back ref isn't found, *ref_ret is set to the address where it
771  * should be inserted, and -ENOENT is returned.
772  *
773  * if insert is true and there are too many inline back refs, the path
774  * points to the extent item, and -EAGAIN is returned.
775  *
776  * NOTE: inline back refs are ordered in the same way that back ref
777  *	 items in the tree are ordered.
778  */
779 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)780 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
781 				 struct btrfs_path *path,
782 				 struct btrfs_extent_inline_ref **ref_ret,
783 				 u64 bytenr, u64 num_bytes,
784 				 u64 parent, u64 root_objectid,
785 				 u64 owner, u64 offset, int insert)
786 {
787 	struct btrfs_fs_info *fs_info = trans->fs_info;
788 	struct btrfs_root *root = fs_info->extent_root;
789 	struct btrfs_key key;
790 	struct extent_buffer *leaf;
791 	struct btrfs_extent_item *ei;
792 	struct btrfs_extent_inline_ref *iref;
793 	u64 flags;
794 	u64 item_size;
795 	unsigned long ptr;
796 	unsigned long end;
797 	int extra_size;
798 	int type;
799 	int want;
800 	int ret;
801 	int err = 0;
802 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
803 	int needed;
804 
805 	key.objectid = bytenr;
806 	key.type = BTRFS_EXTENT_ITEM_KEY;
807 	key.offset = num_bytes;
808 
809 	want = extent_ref_type(parent, owner);
810 	if (insert) {
811 		extra_size = btrfs_extent_inline_ref_size(want);
812 		path->keep_locks = 1;
813 	} else
814 		extra_size = -1;
815 
816 	/*
817 	 * Owner is our level, so we can just add one to get the level for the
818 	 * block we are interested in.
819 	 */
820 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
821 		key.type = BTRFS_METADATA_ITEM_KEY;
822 		key.offset = owner;
823 	}
824 
825 again:
826 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
827 	if (ret < 0) {
828 		err = ret;
829 		goto out;
830 	}
831 
832 	/*
833 	 * We may be a newly converted file system which still has the old fat
834 	 * extent entries for metadata, so try and see if we have one of those.
835 	 */
836 	if (ret > 0 && skinny_metadata) {
837 		skinny_metadata = false;
838 		if (path->slots[0]) {
839 			path->slots[0]--;
840 			btrfs_item_key_to_cpu(path->nodes[0], &key,
841 					      path->slots[0]);
842 			if (key.objectid == bytenr &&
843 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
844 			    key.offset == num_bytes)
845 				ret = 0;
846 		}
847 		if (ret) {
848 			key.objectid = bytenr;
849 			key.type = BTRFS_EXTENT_ITEM_KEY;
850 			key.offset = num_bytes;
851 			btrfs_release_path(path);
852 			goto again;
853 		}
854 	}
855 
856 	if (ret && !insert) {
857 		err = -ENOENT;
858 		goto out;
859 	} else if (WARN_ON(ret)) {
860 		btrfs_print_leaf(path->nodes[0]);
861 		btrfs_err(fs_info,
862 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
863 			  bytenr, num_bytes, parent, root_objectid, owner,
864 			  offset);
865 		err = -EIO;
866 		goto out;
867 	}
868 
869 	leaf = path->nodes[0];
870 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
871 	if (unlikely(item_size < sizeof(*ei))) {
872 		err = -EINVAL;
873 		btrfs_print_v0_err(fs_info);
874 		btrfs_abort_transaction(trans, err);
875 		goto out;
876 	}
877 
878 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
879 	flags = btrfs_extent_flags(leaf, ei);
880 
881 	ptr = (unsigned long)(ei + 1);
882 	end = (unsigned long)ei + item_size;
883 
884 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
885 		ptr += sizeof(struct btrfs_tree_block_info);
886 		BUG_ON(ptr > end);
887 	}
888 
889 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
890 		needed = BTRFS_REF_TYPE_DATA;
891 	else
892 		needed = BTRFS_REF_TYPE_BLOCK;
893 
894 	err = -ENOENT;
895 	while (1) {
896 		if (ptr >= end) {
897 			WARN_ON(ptr > end);
898 			break;
899 		}
900 		iref = (struct btrfs_extent_inline_ref *)ptr;
901 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 		if (type == BTRFS_REF_TYPE_INVALID) {
903 			err = -EUCLEAN;
904 			goto out;
905 		}
906 
907 		if (want < type)
908 			break;
909 		if (want > type) {
910 			ptr += btrfs_extent_inline_ref_size(type);
911 			continue;
912 		}
913 
914 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915 			struct btrfs_extent_data_ref *dref;
916 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917 			if (match_extent_data_ref(leaf, dref, root_objectid,
918 						  owner, offset)) {
919 				err = 0;
920 				break;
921 			}
922 			if (hash_extent_data_ref_item(leaf, dref) <
923 			    hash_extent_data_ref(root_objectid, owner, offset))
924 				break;
925 		} else {
926 			u64 ref_offset;
927 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928 			if (parent > 0) {
929 				if (parent == ref_offset) {
930 					err = 0;
931 					break;
932 				}
933 				if (ref_offset < parent)
934 					break;
935 			} else {
936 				if (root_objectid == ref_offset) {
937 					err = 0;
938 					break;
939 				}
940 				if (ref_offset < root_objectid)
941 					break;
942 			}
943 		}
944 		ptr += btrfs_extent_inline_ref_size(type);
945 	}
946 	if (err == -ENOENT && insert) {
947 		if (item_size + extra_size >=
948 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949 			err = -EAGAIN;
950 			goto out;
951 		}
952 		/*
953 		 * To add new inline back ref, we have to make sure
954 		 * there is no corresponding back ref item.
955 		 * For simplicity, we just do not add new inline back
956 		 * ref if there is any kind of item for this block
957 		 */
958 		if (find_next_key(path, 0, &key) == 0 &&
959 		    key.objectid == bytenr &&
960 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961 			err = -EAGAIN;
962 			goto out;
963 		}
964 	}
965 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 out:
967 	if (insert) {
968 		path->keep_locks = 0;
969 		btrfs_unlock_up_safe(path, 1);
970 	}
971 	return err;
972 }
973 
974 /*
975  * helper to add new inline back ref
976  */
977 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)978 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
979 				 struct btrfs_path *path,
980 				 struct btrfs_extent_inline_ref *iref,
981 				 u64 parent, u64 root_objectid,
982 				 u64 owner, u64 offset, int refs_to_add,
983 				 struct btrfs_delayed_extent_op *extent_op)
984 {
985 	struct extent_buffer *leaf;
986 	struct btrfs_extent_item *ei;
987 	unsigned long ptr;
988 	unsigned long end;
989 	unsigned long item_offset;
990 	u64 refs;
991 	int size;
992 	int type;
993 
994 	leaf = path->nodes[0];
995 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
996 	item_offset = (unsigned long)iref - (unsigned long)ei;
997 
998 	type = extent_ref_type(parent, owner);
999 	size = btrfs_extent_inline_ref_size(type);
1000 
1001 	btrfs_extend_item(path, size);
1002 
1003 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1004 	refs = btrfs_extent_refs(leaf, ei);
1005 	refs += refs_to_add;
1006 	btrfs_set_extent_refs(leaf, ei, refs);
1007 	if (extent_op)
1008 		__run_delayed_extent_op(extent_op, leaf, ei);
1009 
1010 	ptr = (unsigned long)ei + item_offset;
1011 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1012 	if (ptr < end - size)
1013 		memmove_extent_buffer(leaf, ptr + size, ptr,
1014 				      end - size - ptr);
1015 
1016 	iref = (struct btrfs_extent_inline_ref *)ptr;
1017 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1018 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1019 		struct btrfs_extent_data_ref *dref;
1020 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1021 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1022 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1023 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1024 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1025 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1026 		struct btrfs_shared_data_ref *sref;
1027 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1028 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1029 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1030 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1031 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1032 	} else {
1033 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1034 	}
1035 	btrfs_mark_buffer_dirty(leaf);
1036 }
1037 
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1038 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1039 				 struct btrfs_path *path,
1040 				 struct btrfs_extent_inline_ref **ref_ret,
1041 				 u64 bytenr, u64 num_bytes, u64 parent,
1042 				 u64 root_objectid, u64 owner, u64 offset)
1043 {
1044 	int ret;
1045 
1046 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1047 					   num_bytes, parent, root_objectid,
1048 					   owner, offset, 0);
1049 	if (ret != -ENOENT)
1050 		return ret;
1051 
1052 	btrfs_release_path(path);
1053 	*ref_ret = NULL;
1054 
1055 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1056 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1057 					    root_objectid);
1058 	} else {
1059 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1060 					     root_objectid, owner, offset);
1061 	}
1062 	return ret;
1063 }
1064 
1065 /*
1066  * helper to update/remove inline back ref
1067  */
1068 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1069 void update_inline_extent_backref(struct btrfs_path *path,
1070 				  struct btrfs_extent_inline_ref *iref,
1071 				  int refs_to_mod,
1072 				  struct btrfs_delayed_extent_op *extent_op,
1073 				  int *last_ref)
1074 {
1075 	struct extent_buffer *leaf = path->nodes[0];
1076 	struct btrfs_extent_item *ei;
1077 	struct btrfs_extent_data_ref *dref = NULL;
1078 	struct btrfs_shared_data_ref *sref = NULL;
1079 	unsigned long ptr;
1080 	unsigned long end;
1081 	u32 item_size;
1082 	int size;
1083 	int type;
1084 	u64 refs;
1085 
1086 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1087 	refs = btrfs_extent_refs(leaf, ei);
1088 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1089 	refs += refs_to_mod;
1090 	btrfs_set_extent_refs(leaf, ei, refs);
1091 	if (extent_op)
1092 		__run_delayed_extent_op(extent_op, leaf, ei);
1093 
1094 	/*
1095 	 * If type is invalid, we should have bailed out after
1096 	 * lookup_inline_extent_backref().
1097 	 */
1098 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1099 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1100 
1101 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1102 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1103 		refs = btrfs_extent_data_ref_count(leaf, dref);
1104 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1105 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1106 		refs = btrfs_shared_data_ref_count(leaf, sref);
1107 	} else {
1108 		refs = 1;
1109 		BUG_ON(refs_to_mod != -1);
1110 	}
1111 
1112 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1113 	refs += refs_to_mod;
1114 
1115 	if (refs > 0) {
1116 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1117 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1118 		else
1119 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1120 	} else {
1121 		*last_ref = 1;
1122 		size =  btrfs_extent_inline_ref_size(type);
1123 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1124 		ptr = (unsigned long)iref;
1125 		end = (unsigned long)ei + item_size;
1126 		if (ptr + size < end)
1127 			memmove_extent_buffer(leaf, ptr, ptr + size,
1128 					      end - ptr - size);
1129 		item_size -= size;
1130 		btrfs_truncate_item(path, item_size, 1);
1131 	}
1132 	btrfs_mark_buffer_dirty(leaf);
1133 }
1134 
1135 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1136 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1137 				 struct btrfs_path *path,
1138 				 u64 bytenr, u64 num_bytes, u64 parent,
1139 				 u64 root_objectid, u64 owner,
1140 				 u64 offset, int refs_to_add,
1141 				 struct btrfs_delayed_extent_op *extent_op)
1142 {
1143 	struct btrfs_extent_inline_ref *iref;
1144 	int ret;
1145 
1146 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1147 					   num_bytes, parent, root_objectid,
1148 					   owner, offset, 1);
1149 	if (ret == 0) {
1150 		/*
1151 		 * We're adding refs to a tree block we already own, this
1152 		 * should not happen at all.
1153 		 */
1154 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1155 			btrfs_crit(trans->fs_info,
1156 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1157 				   bytenr, num_bytes, root_objectid);
1158 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1159 				WARN_ON(1);
1160 				btrfs_crit(trans->fs_info,
1161 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1162 				btrfs_print_leaf(path->nodes[0]);
1163 			}
1164 			return -EUCLEAN;
1165 		}
1166 		update_inline_extent_backref(path, iref, refs_to_add,
1167 					     extent_op, NULL);
1168 	} else if (ret == -ENOENT) {
1169 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1170 					    root_objectid, owner, offset,
1171 					    refs_to_add, extent_op);
1172 		ret = 0;
1173 	}
1174 	return ret;
1175 }
1176 
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1177 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1178 				 struct btrfs_path *path,
1179 				 struct btrfs_extent_inline_ref *iref,
1180 				 int refs_to_drop, int is_data, int *last_ref)
1181 {
1182 	int ret = 0;
1183 
1184 	BUG_ON(!is_data && refs_to_drop != 1);
1185 	if (iref) {
1186 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1187 					     last_ref);
1188 	} else if (is_data) {
1189 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1190 					     last_ref);
1191 	} else {
1192 		*last_ref = 1;
1193 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1194 	}
1195 	return ret;
1196 }
1197 
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1198 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1199 			       u64 *discarded_bytes)
1200 {
1201 	int j, ret = 0;
1202 	u64 bytes_left, end;
1203 	u64 aligned_start = ALIGN(start, 1 << 9);
1204 
1205 	/* Adjust the range to be aligned to 512B sectors if necessary. */
1206 	if (start != aligned_start) {
1207 		len -= aligned_start - start;
1208 		len = round_down(len, 1 << 9);
1209 		start = aligned_start;
1210 	}
1211 
1212 	*discarded_bytes = 0;
1213 
1214 	if (!len)
1215 		return 0;
1216 
1217 	end = start + len;
1218 	bytes_left = len;
1219 
1220 	/* Skip any superblocks on this device. */
1221 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1222 		u64 sb_start = btrfs_sb_offset(j);
1223 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1224 		u64 size = sb_start - start;
1225 
1226 		if (!in_range(sb_start, start, bytes_left) &&
1227 		    !in_range(sb_end, start, bytes_left) &&
1228 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1229 			continue;
1230 
1231 		/*
1232 		 * Superblock spans beginning of range.  Adjust start and
1233 		 * try again.
1234 		 */
1235 		if (sb_start <= start) {
1236 			start += sb_end - start;
1237 			if (start > end) {
1238 				bytes_left = 0;
1239 				break;
1240 			}
1241 			bytes_left = end - start;
1242 			continue;
1243 		}
1244 
1245 		if (size) {
1246 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1247 						   GFP_NOFS, 0);
1248 			if (!ret)
1249 				*discarded_bytes += size;
1250 			else if (ret != -EOPNOTSUPP)
1251 				return ret;
1252 		}
1253 
1254 		start = sb_end;
1255 		if (start > end) {
1256 			bytes_left = 0;
1257 			break;
1258 		}
1259 		bytes_left = end - start;
1260 	}
1261 
1262 	if (bytes_left) {
1263 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1264 					   GFP_NOFS, 0);
1265 		if (!ret)
1266 			*discarded_bytes += bytes_left;
1267 	}
1268 	return ret;
1269 }
1270 
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1271 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1272 			 u64 num_bytes, u64 *actual_bytes)
1273 {
1274 	int ret = 0;
1275 	u64 discarded_bytes = 0;
1276 	u64 end = bytenr + num_bytes;
1277 	u64 cur = bytenr;
1278 	struct btrfs_bio *bbio = NULL;
1279 
1280 
1281 	/*
1282 	 * Avoid races with device replace and make sure our bbio has devices
1283 	 * associated to its stripes that don't go away while we are discarding.
1284 	 */
1285 	btrfs_bio_counter_inc_blocked(fs_info);
1286 	while (cur < end) {
1287 		struct btrfs_bio_stripe *stripe;
1288 		int i;
1289 
1290 		num_bytes = end - cur;
1291 		/* Tell the block device(s) that the sectors can be discarded */
1292 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1293 				      &num_bytes, &bbio, 0);
1294 		/*
1295 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1296 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1297 		 * thus we can't continue anyway.
1298 		 */
1299 		if (ret < 0)
1300 			goto out;
1301 
1302 		stripe = bbio->stripes;
1303 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1304 			u64 bytes;
1305 			struct request_queue *req_q;
1306 			struct btrfs_device *device = stripe->dev;
1307 
1308 			if (!device->bdev) {
1309 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1310 				continue;
1311 			}
1312 			req_q = bdev_get_queue(device->bdev);
1313 			if (!blk_queue_discard(req_q))
1314 				continue;
1315 
1316 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1317 				continue;
1318 
1319 			ret = btrfs_issue_discard(device->bdev,
1320 						  stripe->physical,
1321 						  stripe->length,
1322 						  &bytes);
1323 			if (!ret) {
1324 				discarded_bytes += bytes;
1325 			} else if (ret != -EOPNOTSUPP) {
1326 				/*
1327 				 * Logic errors or -ENOMEM, or -EIO, but
1328 				 * unlikely to happen.
1329 				 *
1330 				 * And since there are two loops, explicitly
1331 				 * go to out to avoid confusion.
1332 				 */
1333 				btrfs_put_bbio(bbio);
1334 				goto out;
1335 			}
1336 
1337 			/*
1338 			 * Just in case we get back EOPNOTSUPP for some reason,
1339 			 * just ignore the return value so we don't screw up
1340 			 * people calling discard_extent.
1341 			 */
1342 			ret = 0;
1343 		}
1344 		btrfs_put_bbio(bbio);
1345 		cur += num_bytes;
1346 	}
1347 out:
1348 	btrfs_bio_counter_dec(fs_info);
1349 
1350 	if (actual_bytes)
1351 		*actual_bytes = discarded_bytes;
1352 
1353 
1354 	if (ret == -EOPNOTSUPP)
1355 		ret = 0;
1356 	return ret;
1357 }
1358 
1359 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1360 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1361 			 struct btrfs_ref *generic_ref)
1362 {
1363 	struct btrfs_fs_info *fs_info = trans->fs_info;
1364 	int ret;
1365 
1366 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1367 	       generic_ref->action);
1368 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1369 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1370 
1371 	if (generic_ref->type == BTRFS_REF_METADATA)
1372 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1373 	else
1374 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1375 
1376 	btrfs_ref_tree_mod(fs_info, generic_ref);
1377 
1378 	return ret;
1379 }
1380 
1381 /*
1382  * __btrfs_inc_extent_ref - insert backreference for a given extent
1383  *
1384  * The counterpart is in __btrfs_free_extent(), with examples and more details
1385  * how it works.
1386  *
1387  * @trans:	    Handle of transaction
1388  *
1389  * @node:	    The delayed ref node used to get the bytenr/length for
1390  *		    extent whose references are incremented.
1391  *
1392  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1393  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1394  *		    bytenr of the parent block. Since new extents are always
1395  *		    created with indirect references, this will only be the case
1396  *		    when relocating a shared extent. In that case, root_objectid
1397  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1398  *		    be 0
1399  *
1400  * @root_objectid:  The id of the root where this modification has originated,
1401  *		    this can be either one of the well-known metadata trees or
1402  *		    the subvolume id which references this extent.
1403  *
1404  * @owner:	    For data extents it is the inode number of the owning file.
1405  *		    For metadata extents this parameter holds the level in the
1406  *		    tree of the extent.
1407  *
1408  * @offset:	    For metadata extents the offset is ignored and is currently
1409  *		    always passed as 0. For data extents it is the fileoffset
1410  *		    this extent belongs to.
1411  *
1412  * @refs_to_add     Number of references to add
1413  *
1414  * @extent_op       Pointer to a structure, holding information necessary when
1415  *                  updating a tree block's flags
1416  *
1417  */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1418 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1419 				  struct btrfs_delayed_ref_node *node,
1420 				  u64 parent, u64 root_objectid,
1421 				  u64 owner, u64 offset, int refs_to_add,
1422 				  struct btrfs_delayed_extent_op *extent_op)
1423 {
1424 	struct btrfs_path *path;
1425 	struct extent_buffer *leaf;
1426 	struct btrfs_extent_item *item;
1427 	struct btrfs_key key;
1428 	u64 bytenr = node->bytenr;
1429 	u64 num_bytes = node->num_bytes;
1430 	u64 refs;
1431 	int ret;
1432 
1433 	path = btrfs_alloc_path();
1434 	if (!path)
1435 		return -ENOMEM;
1436 
1437 	path->leave_spinning = 1;
1438 	/* this will setup the path even if it fails to insert the back ref */
1439 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1440 					   parent, root_objectid, owner,
1441 					   offset, refs_to_add, extent_op);
1442 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1443 		goto out;
1444 
1445 	/*
1446 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1447 	 * inline extent ref, so just update the reference count and add a
1448 	 * normal backref.
1449 	 */
1450 	leaf = path->nodes[0];
1451 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1452 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1453 	refs = btrfs_extent_refs(leaf, item);
1454 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1455 	if (extent_op)
1456 		__run_delayed_extent_op(extent_op, leaf, item);
1457 
1458 	btrfs_mark_buffer_dirty(leaf);
1459 	btrfs_release_path(path);
1460 
1461 	path->leave_spinning = 1;
1462 	/* now insert the actual backref */
1463 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1464 		BUG_ON(refs_to_add != 1);
1465 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1466 					    root_objectid);
1467 	} else {
1468 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1469 					     root_objectid, owner, offset,
1470 					     refs_to_add);
1471 	}
1472 	if (ret)
1473 		btrfs_abort_transaction(trans, ret);
1474 out:
1475 	btrfs_free_path(path);
1476 	return ret;
1477 }
1478 
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1479 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1480 				struct btrfs_delayed_ref_node *node,
1481 				struct btrfs_delayed_extent_op *extent_op,
1482 				int insert_reserved)
1483 {
1484 	int ret = 0;
1485 	struct btrfs_delayed_data_ref *ref;
1486 	struct btrfs_key ins;
1487 	u64 parent = 0;
1488 	u64 ref_root = 0;
1489 	u64 flags = 0;
1490 
1491 	ins.objectid = node->bytenr;
1492 	ins.offset = node->num_bytes;
1493 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1494 
1495 	ref = btrfs_delayed_node_to_data_ref(node);
1496 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1497 
1498 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1499 		parent = ref->parent;
1500 	ref_root = ref->root;
1501 
1502 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1503 		if (extent_op)
1504 			flags |= extent_op->flags_to_set;
1505 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1506 						 flags, ref->objectid,
1507 						 ref->offset, &ins,
1508 						 node->ref_mod);
1509 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1510 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1511 					     ref->objectid, ref->offset,
1512 					     node->ref_mod, extent_op);
1513 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1514 		ret = __btrfs_free_extent(trans, node, parent,
1515 					  ref_root, ref->objectid,
1516 					  ref->offset, node->ref_mod,
1517 					  extent_op);
1518 	} else {
1519 		BUG();
1520 	}
1521 	return ret;
1522 }
1523 
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1524 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1525 				    struct extent_buffer *leaf,
1526 				    struct btrfs_extent_item *ei)
1527 {
1528 	u64 flags = btrfs_extent_flags(leaf, ei);
1529 	if (extent_op->update_flags) {
1530 		flags |= extent_op->flags_to_set;
1531 		btrfs_set_extent_flags(leaf, ei, flags);
1532 	}
1533 
1534 	if (extent_op->update_key) {
1535 		struct btrfs_tree_block_info *bi;
1536 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1537 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1538 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1539 	}
1540 }
1541 
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1542 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1543 				 struct btrfs_delayed_ref_head *head,
1544 				 struct btrfs_delayed_extent_op *extent_op)
1545 {
1546 	struct btrfs_fs_info *fs_info = trans->fs_info;
1547 	struct btrfs_key key;
1548 	struct btrfs_path *path;
1549 	struct btrfs_extent_item *ei;
1550 	struct extent_buffer *leaf;
1551 	u32 item_size;
1552 	int ret;
1553 	int err = 0;
1554 	int metadata = !extent_op->is_data;
1555 
1556 	if (TRANS_ABORTED(trans))
1557 		return 0;
1558 
1559 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1560 		metadata = 0;
1561 
1562 	path = btrfs_alloc_path();
1563 	if (!path)
1564 		return -ENOMEM;
1565 
1566 	key.objectid = head->bytenr;
1567 
1568 	if (metadata) {
1569 		key.type = BTRFS_METADATA_ITEM_KEY;
1570 		key.offset = extent_op->level;
1571 	} else {
1572 		key.type = BTRFS_EXTENT_ITEM_KEY;
1573 		key.offset = head->num_bytes;
1574 	}
1575 
1576 again:
1577 	path->leave_spinning = 1;
1578 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1579 	if (ret < 0) {
1580 		err = ret;
1581 		goto out;
1582 	}
1583 	if (ret > 0) {
1584 		if (metadata) {
1585 			if (path->slots[0] > 0) {
1586 				path->slots[0]--;
1587 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1588 						      path->slots[0]);
1589 				if (key.objectid == head->bytenr &&
1590 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1591 				    key.offset == head->num_bytes)
1592 					ret = 0;
1593 			}
1594 			if (ret > 0) {
1595 				btrfs_release_path(path);
1596 				metadata = 0;
1597 
1598 				key.objectid = head->bytenr;
1599 				key.offset = head->num_bytes;
1600 				key.type = BTRFS_EXTENT_ITEM_KEY;
1601 				goto again;
1602 			}
1603 		} else {
1604 			err = -EIO;
1605 			goto out;
1606 		}
1607 	}
1608 
1609 	leaf = path->nodes[0];
1610 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1611 
1612 	if (unlikely(item_size < sizeof(*ei))) {
1613 		err = -EINVAL;
1614 		btrfs_print_v0_err(fs_info);
1615 		btrfs_abort_transaction(trans, err);
1616 		goto out;
1617 	}
1618 
1619 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1620 	__run_delayed_extent_op(extent_op, leaf, ei);
1621 
1622 	btrfs_mark_buffer_dirty(leaf);
1623 out:
1624 	btrfs_free_path(path);
1625 	return err;
1626 }
1627 
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1628 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1629 				struct btrfs_delayed_ref_node *node,
1630 				struct btrfs_delayed_extent_op *extent_op,
1631 				int insert_reserved)
1632 {
1633 	int ret = 0;
1634 	struct btrfs_delayed_tree_ref *ref;
1635 	u64 parent = 0;
1636 	u64 ref_root = 0;
1637 
1638 	ref = btrfs_delayed_node_to_tree_ref(node);
1639 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1640 
1641 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1642 		parent = ref->parent;
1643 	ref_root = ref->root;
1644 
1645 	if (unlikely(node->ref_mod != 1)) {
1646 		btrfs_err(trans->fs_info,
1647 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1648 			  node->bytenr, node->ref_mod, node->action, ref_root,
1649 			  parent);
1650 		return -EUCLEAN;
1651 	}
1652 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1653 		BUG_ON(!extent_op || !extent_op->update_flags);
1654 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1655 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1656 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1657 					     ref->level, 0, 1, extent_op);
1658 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1659 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1660 					  ref->level, 0, 1, extent_op);
1661 	} else {
1662 		BUG();
1663 	}
1664 	return ret;
1665 }
1666 
1667 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1668 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1669 			       struct btrfs_delayed_ref_node *node,
1670 			       struct btrfs_delayed_extent_op *extent_op,
1671 			       int insert_reserved)
1672 {
1673 	int ret = 0;
1674 
1675 	if (TRANS_ABORTED(trans)) {
1676 		if (insert_reserved)
1677 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1678 		return 0;
1679 	}
1680 
1681 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1682 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1683 		ret = run_delayed_tree_ref(trans, node, extent_op,
1684 					   insert_reserved);
1685 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1686 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1687 		ret = run_delayed_data_ref(trans, node, extent_op,
1688 					   insert_reserved);
1689 	else
1690 		BUG();
1691 	if (ret && insert_reserved)
1692 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1693 	if (ret < 0)
1694 		btrfs_err(trans->fs_info,
1695 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1696 			  node->bytenr, node->num_bytes, node->type,
1697 			  node->action, node->ref_mod, ret);
1698 	return ret;
1699 }
1700 
1701 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1702 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1703 {
1704 	struct btrfs_delayed_ref_node *ref;
1705 
1706 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1707 		return NULL;
1708 
1709 	/*
1710 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1711 	 * This is to prevent a ref count from going down to zero, which deletes
1712 	 * the extent item from the extent tree, when there still are references
1713 	 * to add, which would fail because they would not find the extent item.
1714 	 */
1715 	if (!list_empty(&head->ref_add_list))
1716 		return list_first_entry(&head->ref_add_list,
1717 				struct btrfs_delayed_ref_node, add_list);
1718 
1719 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1720 		       struct btrfs_delayed_ref_node, ref_node);
1721 	ASSERT(list_empty(&ref->add_list));
1722 	return ref;
1723 }
1724 
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1725 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1726 				      struct btrfs_delayed_ref_head *head)
1727 {
1728 	spin_lock(&delayed_refs->lock);
1729 	head->processing = 0;
1730 	delayed_refs->num_heads_ready++;
1731 	spin_unlock(&delayed_refs->lock);
1732 	btrfs_delayed_ref_unlock(head);
1733 }
1734 
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1735 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1736 				struct btrfs_delayed_ref_head *head)
1737 {
1738 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1739 
1740 	if (!extent_op)
1741 		return NULL;
1742 
1743 	if (head->must_insert_reserved) {
1744 		head->extent_op = NULL;
1745 		btrfs_free_delayed_extent_op(extent_op);
1746 		return NULL;
1747 	}
1748 	return extent_op;
1749 }
1750 
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1751 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1752 				     struct btrfs_delayed_ref_head *head)
1753 {
1754 	struct btrfs_delayed_extent_op *extent_op;
1755 	int ret;
1756 
1757 	extent_op = cleanup_extent_op(head);
1758 	if (!extent_op)
1759 		return 0;
1760 	head->extent_op = NULL;
1761 	spin_unlock(&head->lock);
1762 	ret = run_delayed_extent_op(trans, head, extent_op);
1763 	btrfs_free_delayed_extent_op(extent_op);
1764 	return ret ? ret : 1;
1765 }
1766 
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1767 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1768 				  struct btrfs_delayed_ref_root *delayed_refs,
1769 				  struct btrfs_delayed_ref_head *head)
1770 {
1771 	int nr_items = 1;	/* Dropping this ref head update. */
1772 
1773 	/*
1774 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1775 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1776 	 */
1777 	if (head->total_ref_mod < 0 && head->is_data) {
1778 		spin_lock(&delayed_refs->lock);
1779 		delayed_refs->pending_csums -= head->num_bytes;
1780 		spin_unlock(&delayed_refs->lock);
1781 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1782 	}
1783 
1784 	/*
1785 	 * We were dropping refs, or had a new ref and dropped it, and thus must
1786 	 * adjust down our total_bytes_pinned, the space may or may not have
1787 	 * been pinned and so is accounted for properly in the pinned space by
1788 	 * now.
1789 	 */
1790 	if (head->total_ref_mod < 0 ||
1791 	    (head->total_ref_mod == 0 && head->must_insert_reserved)) {
1792 		u64 flags = btrfs_ref_head_to_space_flags(head);
1793 
1794 		btrfs_mod_total_bytes_pinned(fs_info, flags, -head->num_bytes);
1795 	}
1796 
1797 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1798 }
1799 
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1800 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1801 			    struct btrfs_delayed_ref_head *head)
1802 {
1803 
1804 	struct btrfs_fs_info *fs_info = trans->fs_info;
1805 	struct btrfs_delayed_ref_root *delayed_refs;
1806 	int ret;
1807 
1808 	delayed_refs = &trans->transaction->delayed_refs;
1809 
1810 	ret = run_and_cleanup_extent_op(trans, head);
1811 	if (ret < 0) {
1812 		unselect_delayed_ref_head(delayed_refs, head);
1813 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1814 		return ret;
1815 	} else if (ret) {
1816 		return ret;
1817 	}
1818 
1819 	/*
1820 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1821 	 * and then re-check to make sure nobody got added.
1822 	 */
1823 	spin_unlock(&head->lock);
1824 	spin_lock(&delayed_refs->lock);
1825 	spin_lock(&head->lock);
1826 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1827 		spin_unlock(&head->lock);
1828 		spin_unlock(&delayed_refs->lock);
1829 		return 1;
1830 	}
1831 	btrfs_delete_ref_head(delayed_refs, head);
1832 	spin_unlock(&head->lock);
1833 	spin_unlock(&delayed_refs->lock);
1834 
1835 	if (head->must_insert_reserved) {
1836 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1837 		if (head->is_data) {
1838 			ret = btrfs_del_csums(trans, fs_info->csum_root,
1839 					      head->bytenr, head->num_bytes);
1840 		}
1841 	}
1842 
1843 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1844 
1845 	trace_run_delayed_ref_head(fs_info, head, 0);
1846 	btrfs_delayed_ref_unlock(head);
1847 	btrfs_put_delayed_ref_head(head);
1848 	return ret;
1849 }
1850 
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1851 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1852 					struct btrfs_trans_handle *trans)
1853 {
1854 	struct btrfs_delayed_ref_root *delayed_refs =
1855 		&trans->transaction->delayed_refs;
1856 	struct btrfs_delayed_ref_head *head = NULL;
1857 	int ret;
1858 
1859 	spin_lock(&delayed_refs->lock);
1860 	head = btrfs_select_ref_head(delayed_refs);
1861 	if (!head) {
1862 		spin_unlock(&delayed_refs->lock);
1863 		return head;
1864 	}
1865 
1866 	/*
1867 	 * Grab the lock that says we are going to process all the refs for
1868 	 * this head
1869 	 */
1870 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1871 	spin_unlock(&delayed_refs->lock);
1872 
1873 	/*
1874 	 * We may have dropped the spin lock to get the head mutex lock, and
1875 	 * that might have given someone else time to free the head.  If that's
1876 	 * true, it has been removed from our list and we can move on.
1877 	 */
1878 	if (ret == -EAGAIN)
1879 		head = ERR_PTR(-EAGAIN);
1880 
1881 	return head;
1882 }
1883 
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,unsigned long * run_refs)1884 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1885 				    struct btrfs_delayed_ref_head *locked_ref,
1886 				    unsigned long *run_refs)
1887 {
1888 	struct btrfs_fs_info *fs_info = trans->fs_info;
1889 	struct btrfs_delayed_ref_root *delayed_refs;
1890 	struct btrfs_delayed_extent_op *extent_op;
1891 	struct btrfs_delayed_ref_node *ref;
1892 	int must_insert_reserved = 0;
1893 	int ret;
1894 
1895 	delayed_refs = &trans->transaction->delayed_refs;
1896 
1897 	lockdep_assert_held(&locked_ref->mutex);
1898 	lockdep_assert_held(&locked_ref->lock);
1899 
1900 	while ((ref = select_delayed_ref(locked_ref))) {
1901 		if (ref->seq &&
1902 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1903 			spin_unlock(&locked_ref->lock);
1904 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1905 			return -EAGAIN;
1906 		}
1907 
1908 		(*run_refs)++;
1909 		ref->in_tree = 0;
1910 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1911 		RB_CLEAR_NODE(&ref->ref_node);
1912 		if (!list_empty(&ref->add_list))
1913 			list_del(&ref->add_list);
1914 		/*
1915 		 * When we play the delayed ref, also correct the ref_mod on
1916 		 * head
1917 		 */
1918 		switch (ref->action) {
1919 		case BTRFS_ADD_DELAYED_REF:
1920 		case BTRFS_ADD_DELAYED_EXTENT:
1921 			locked_ref->ref_mod -= ref->ref_mod;
1922 			break;
1923 		case BTRFS_DROP_DELAYED_REF:
1924 			locked_ref->ref_mod += ref->ref_mod;
1925 			break;
1926 		default:
1927 			WARN_ON(1);
1928 		}
1929 		atomic_dec(&delayed_refs->num_entries);
1930 
1931 		/*
1932 		 * Record the must_insert_reserved flag before we drop the
1933 		 * spin lock.
1934 		 */
1935 		must_insert_reserved = locked_ref->must_insert_reserved;
1936 		locked_ref->must_insert_reserved = 0;
1937 
1938 		extent_op = locked_ref->extent_op;
1939 		locked_ref->extent_op = NULL;
1940 		spin_unlock(&locked_ref->lock);
1941 
1942 		ret = run_one_delayed_ref(trans, ref, extent_op,
1943 					  must_insert_reserved);
1944 
1945 		btrfs_free_delayed_extent_op(extent_op);
1946 		if (ret) {
1947 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1948 			btrfs_put_delayed_ref(ref);
1949 			return ret;
1950 		}
1951 
1952 		btrfs_put_delayed_ref(ref);
1953 		cond_resched();
1954 
1955 		spin_lock(&locked_ref->lock);
1956 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1957 	}
1958 
1959 	return 0;
1960 }
1961 
1962 /*
1963  * Returns 0 on success or if called with an already aborted transaction.
1964  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1965  */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)1966 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1967 					     unsigned long nr)
1968 {
1969 	struct btrfs_fs_info *fs_info = trans->fs_info;
1970 	struct btrfs_delayed_ref_root *delayed_refs;
1971 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1972 	ktime_t start = ktime_get();
1973 	int ret;
1974 	unsigned long count = 0;
1975 	unsigned long actual_count = 0;
1976 
1977 	delayed_refs = &trans->transaction->delayed_refs;
1978 	do {
1979 		if (!locked_ref) {
1980 			locked_ref = btrfs_obtain_ref_head(trans);
1981 			if (IS_ERR_OR_NULL(locked_ref)) {
1982 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1983 					continue;
1984 				} else {
1985 					break;
1986 				}
1987 			}
1988 			count++;
1989 		}
1990 		/*
1991 		 * We need to try and merge add/drops of the same ref since we
1992 		 * can run into issues with relocate dropping the implicit ref
1993 		 * and then it being added back again before the drop can
1994 		 * finish.  If we merged anything we need to re-loop so we can
1995 		 * get a good ref.
1996 		 * Or we can get node references of the same type that weren't
1997 		 * merged when created due to bumps in the tree mod seq, and
1998 		 * we need to merge them to prevent adding an inline extent
1999 		 * backref before dropping it (triggering a BUG_ON at
2000 		 * insert_inline_extent_backref()).
2001 		 */
2002 		spin_lock(&locked_ref->lock);
2003 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2004 
2005 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2006 						      &actual_count);
2007 		if (ret < 0 && ret != -EAGAIN) {
2008 			/*
2009 			 * Error, btrfs_run_delayed_refs_for_head already
2010 			 * unlocked everything so just bail out
2011 			 */
2012 			return ret;
2013 		} else if (!ret) {
2014 			/*
2015 			 * Success, perform the usual cleanup of a processed
2016 			 * head
2017 			 */
2018 			ret = cleanup_ref_head(trans, locked_ref);
2019 			if (ret > 0 ) {
2020 				/* We dropped our lock, we need to loop. */
2021 				ret = 0;
2022 				continue;
2023 			} else if (ret) {
2024 				return ret;
2025 			}
2026 		}
2027 
2028 		/*
2029 		 * Either success case or btrfs_run_delayed_refs_for_head
2030 		 * returned -EAGAIN, meaning we need to select another head
2031 		 */
2032 
2033 		locked_ref = NULL;
2034 		cond_resched();
2035 	} while ((nr != -1 && count < nr) || locked_ref);
2036 
2037 	/*
2038 	 * We don't want to include ref heads since we can have empty ref heads
2039 	 * and those will drastically skew our runtime down since we just do
2040 	 * accounting, no actual extent tree updates.
2041 	 */
2042 	if (actual_count > 0) {
2043 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2044 		u64 avg;
2045 
2046 		/*
2047 		 * We weigh the current average higher than our current runtime
2048 		 * to avoid large swings in the average.
2049 		 */
2050 		spin_lock(&delayed_refs->lock);
2051 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2052 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2053 		spin_unlock(&delayed_refs->lock);
2054 	}
2055 	return 0;
2056 }
2057 
2058 #ifdef SCRAMBLE_DELAYED_REFS
2059 /*
2060  * Normally delayed refs get processed in ascending bytenr order. This
2061  * correlates in most cases to the order added. To expose dependencies on this
2062  * order, we start to process the tree in the middle instead of the beginning
2063  */
find_middle(struct rb_root * root)2064 static u64 find_middle(struct rb_root *root)
2065 {
2066 	struct rb_node *n = root->rb_node;
2067 	struct btrfs_delayed_ref_node *entry;
2068 	int alt = 1;
2069 	u64 middle;
2070 	u64 first = 0, last = 0;
2071 
2072 	n = rb_first(root);
2073 	if (n) {
2074 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2075 		first = entry->bytenr;
2076 	}
2077 	n = rb_last(root);
2078 	if (n) {
2079 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2080 		last = entry->bytenr;
2081 	}
2082 	n = root->rb_node;
2083 
2084 	while (n) {
2085 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2086 		WARN_ON(!entry->in_tree);
2087 
2088 		middle = entry->bytenr;
2089 
2090 		if (alt)
2091 			n = n->rb_left;
2092 		else
2093 			n = n->rb_right;
2094 
2095 		alt = 1 - alt;
2096 	}
2097 	return middle;
2098 }
2099 #endif
2100 
2101 /*
2102  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2103  * would require to store the csums for that many bytes.
2104  */
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info * fs_info,u64 csum_bytes)2105 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2106 {
2107 	u64 csum_size;
2108 	u64 num_csums_per_leaf;
2109 	u64 num_csums;
2110 
2111 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2112 	num_csums_per_leaf = div64_u64(csum_size,
2113 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2114 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2115 	num_csums += num_csums_per_leaf - 1;
2116 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2117 	return num_csums;
2118 }
2119 
2120 /*
2121  * this starts processing the delayed reference count updates and
2122  * extent insertions we have queued up so far.  count can be
2123  * 0, which means to process everything in the tree at the start
2124  * of the run (but not newly added entries), or it can be some target
2125  * number you'd like to process.
2126  *
2127  * Returns 0 on success or if called with an aborted transaction
2128  * Returns <0 on error and aborts the transaction
2129  */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2130 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2131 			   unsigned long count)
2132 {
2133 	struct btrfs_fs_info *fs_info = trans->fs_info;
2134 	struct rb_node *node;
2135 	struct btrfs_delayed_ref_root *delayed_refs;
2136 	struct btrfs_delayed_ref_head *head;
2137 	int ret;
2138 	int run_all = count == (unsigned long)-1;
2139 
2140 	/* We'll clean this up in btrfs_cleanup_transaction */
2141 	if (TRANS_ABORTED(trans))
2142 		return 0;
2143 
2144 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2145 		return 0;
2146 
2147 	delayed_refs = &trans->transaction->delayed_refs;
2148 	if (count == 0)
2149 		count = atomic_read(&delayed_refs->num_entries) * 2;
2150 
2151 again:
2152 #ifdef SCRAMBLE_DELAYED_REFS
2153 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2154 #endif
2155 	ret = __btrfs_run_delayed_refs(trans, count);
2156 	if (ret < 0) {
2157 		btrfs_abort_transaction(trans, ret);
2158 		return ret;
2159 	}
2160 
2161 	if (run_all) {
2162 		btrfs_create_pending_block_groups(trans);
2163 
2164 		spin_lock(&delayed_refs->lock);
2165 		node = rb_first_cached(&delayed_refs->href_root);
2166 		if (!node) {
2167 			spin_unlock(&delayed_refs->lock);
2168 			goto out;
2169 		}
2170 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2171 				href_node);
2172 		refcount_inc(&head->refs);
2173 		spin_unlock(&delayed_refs->lock);
2174 
2175 		/* Mutex was contended, block until it's released and retry. */
2176 		mutex_lock(&head->mutex);
2177 		mutex_unlock(&head->mutex);
2178 
2179 		btrfs_put_delayed_ref_head(head);
2180 		cond_resched();
2181 		goto again;
2182 	}
2183 out:
2184 	return 0;
2185 }
2186 
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags,int level,int is_data)2187 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2188 				struct extent_buffer *eb, u64 flags,
2189 				int level, int is_data)
2190 {
2191 	struct btrfs_delayed_extent_op *extent_op;
2192 	int ret;
2193 
2194 	extent_op = btrfs_alloc_delayed_extent_op();
2195 	if (!extent_op)
2196 		return -ENOMEM;
2197 
2198 	extent_op->flags_to_set = flags;
2199 	extent_op->update_flags = true;
2200 	extent_op->update_key = false;
2201 	extent_op->is_data = is_data ? true : false;
2202 	extent_op->level = level;
2203 
2204 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2205 	if (ret)
2206 		btrfs_free_delayed_extent_op(extent_op);
2207 	return ret;
2208 }
2209 
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2210 static noinline int check_delayed_ref(struct btrfs_root *root,
2211 				      struct btrfs_path *path,
2212 				      u64 objectid, u64 offset, u64 bytenr)
2213 {
2214 	struct btrfs_delayed_ref_head *head;
2215 	struct btrfs_delayed_ref_node *ref;
2216 	struct btrfs_delayed_data_ref *data_ref;
2217 	struct btrfs_delayed_ref_root *delayed_refs;
2218 	struct btrfs_transaction *cur_trans;
2219 	struct rb_node *node;
2220 	int ret = 0;
2221 
2222 	spin_lock(&root->fs_info->trans_lock);
2223 	cur_trans = root->fs_info->running_transaction;
2224 	if (cur_trans)
2225 		refcount_inc(&cur_trans->use_count);
2226 	spin_unlock(&root->fs_info->trans_lock);
2227 	if (!cur_trans)
2228 		return 0;
2229 
2230 	delayed_refs = &cur_trans->delayed_refs;
2231 	spin_lock(&delayed_refs->lock);
2232 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2233 	if (!head) {
2234 		spin_unlock(&delayed_refs->lock);
2235 		btrfs_put_transaction(cur_trans);
2236 		return 0;
2237 	}
2238 
2239 	if (!mutex_trylock(&head->mutex)) {
2240 		refcount_inc(&head->refs);
2241 		spin_unlock(&delayed_refs->lock);
2242 
2243 		btrfs_release_path(path);
2244 
2245 		/*
2246 		 * Mutex was contended, block until it's released and let
2247 		 * caller try again
2248 		 */
2249 		mutex_lock(&head->mutex);
2250 		mutex_unlock(&head->mutex);
2251 		btrfs_put_delayed_ref_head(head);
2252 		btrfs_put_transaction(cur_trans);
2253 		return -EAGAIN;
2254 	}
2255 	spin_unlock(&delayed_refs->lock);
2256 
2257 	spin_lock(&head->lock);
2258 	/*
2259 	 * XXX: We should replace this with a proper search function in the
2260 	 * future.
2261 	 */
2262 	for (node = rb_first_cached(&head->ref_tree); node;
2263 	     node = rb_next(node)) {
2264 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2265 		/* If it's a shared ref we know a cross reference exists */
2266 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2267 			ret = 1;
2268 			break;
2269 		}
2270 
2271 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2272 
2273 		/*
2274 		 * If our ref doesn't match the one we're currently looking at
2275 		 * then we have a cross reference.
2276 		 */
2277 		if (data_ref->root != root->root_key.objectid ||
2278 		    data_ref->objectid != objectid ||
2279 		    data_ref->offset != offset) {
2280 			ret = 1;
2281 			break;
2282 		}
2283 	}
2284 	spin_unlock(&head->lock);
2285 	mutex_unlock(&head->mutex);
2286 	btrfs_put_transaction(cur_trans);
2287 	return ret;
2288 }
2289 
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2290 static noinline int check_committed_ref(struct btrfs_root *root,
2291 					struct btrfs_path *path,
2292 					u64 objectid, u64 offset, u64 bytenr,
2293 					bool strict)
2294 {
2295 	struct btrfs_fs_info *fs_info = root->fs_info;
2296 	struct btrfs_root *extent_root = fs_info->extent_root;
2297 	struct extent_buffer *leaf;
2298 	struct btrfs_extent_data_ref *ref;
2299 	struct btrfs_extent_inline_ref *iref;
2300 	struct btrfs_extent_item *ei;
2301 	struct btrfs_key key;
2302 	u32 item_size;
2303 	int type;
2304 	int ret;
2305 
2306 	key.objectid = bytenr;
2307 	key.offset = (u64)-1;
2308 	key.type = BTRFS_EXTENT_ITEM_KEY;
2309 
2310 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2311 	if (ret < 0)
2312 		goto out;
2313 	BUG_ON(ret == 0); /* Corruption */
2314 
2315 	ret = -ENOENT;
2316 	if (path->slots[0] == 0)
2317 		goto out;
2318 
2319 	path->slots[0]--;
2320 	leaf = path->nodes[0];
2321 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2322 
2323 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2324 		goto out;
2325 
2326 	ret = 1;
2327 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2328 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329 
2330 	/* If extent item has more than 1 inline ref then it's shared */
2331 	if (item_size != sizeof(*ei) +
2332 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2333 		goto out;
2334 
2335 	/*
2336 	 * If extent created before last snapshot => it's shared unless the
2337 	 * snapshot has been deleted. Use the heuristic if strict is false.
2338 	 */
2339 	if (!strict &&
2340 	    (btrfs_extent_generation(leaf, ei) <=
2341 	     btrfs_root_last_snapshot(&root->root_item)))
2342 		goto out;
2343 
2344 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2345 
2346 	/* If this extent has SHARED_DATA_REF then it's shared */
2347 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2348 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2349 		goto out;
2350 
2351 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2352 	if (btrfs_extent_refs(leaf, ei) !=
2353 	    btrfs_extent_data_ref_count(leaf, ref) ||
2354 	    btrfs_extent_data_ref_root(leaf, ref) !=
2355 	    root->root_key.objectid ||
2356 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2357 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2358 		goto out;
2359 
2360 	ret = 0;
2361 out:
2362 	return ret;
2363 }
2364 
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict)2365 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2366 			  u64 bytenr, bool strict)
2367 {
2368 	struct btrfs_path *path;
2369 	int ret;
2370 
2371 	path = btrfs_alloc_path();
2372 	if (!path)
2373 		return -ENOMEM;
2374 
2375 	do {
2376 		ret = check_committed_ref(root, path, objectid,
2377 					  offset, bytenr, strict);
2378 		if (ret && ret != -ENOENT)
2379 			goto out;
2380 
2381 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2382 	} while (ret == -EAGAIN);
2383 
2384 out:
2385 	btrfs_free_path(path);
2386 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2387 		WARN_ON(ret > 0);
2388 	return ret;
2389 }
2390 
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2391 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2392 			   struct btrfs_root *root,
2393 			   struct extent_buffer *buf,
2394 			   int full_backref, int inc)
2395 {
2396 	struct btrfs_fs_info *fs_info = root->fs_info;
2397 	u64 bytenr;
2398 	u64 num_bytes;
2399 	u64 parent;
2400 	u64 ref_root;
2401 	u32 nritems;
2402 	struct btrfs_key key;
2403 	struct btrfs_file_extent_item *fi;
2404 	struct btrfs_ref generic_ref = { 0 };
2405 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2406 	int i;
2407 	int action;
2408 	int level;
2409 	int ret = 0;
2410 
2411 	if (btrfs_is_testing(fs_info))
2412 		return 0;
2413 
2414 	ref_root = btrfs_header_owner(buf);
2415 	nritems = btrfs_header_nritems(buf);
2416 	level = btrfs_header_level(buf);
2417 
2418 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2419 		return 0;
2420 
2421 	if (full_backref)
2422 		parent = buf->start;
2423 	else
2424 		parent = 0;
2425 	if (inc)
2426 		action = BTRFS_ADD_DELAYED_REF;
2427 	else
2428 		action = BTRFS_DROP_DELAYED_REF;
2429 
2430 	for (i = 0; i < nritems; i++) {
2431 		if (level == 0) {
2432 			btrfs_item_key_to_cpu(buf, &key, i);
2433 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2434 				continue;
2435 			fi = btrfs_item_ptr(buf, i,
2436 					    struct btrfs_file_extent_item);
2437 			if (btrfs_file_extent_type(buf, fi) ==
2438 			    BTRFS_FILE_EXTENT_INLINE)
2439 				continue;
2440 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2441 			if (bytenr == 0)
2442 				continue;
2443 
2444 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2445 			key.offset -= btrfs_file_extent_offset(buf, fi);
2446 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2447 					       num_bytes, parent);
2448 			generic_ref.real_root = root->root_key.objectid;
2449 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2450 					    key.offset);
2451 			generic_ref.skip_qgroup = for_reloc;
2452 			if (inc)
2453 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2454 			else
2455 				ret = btrfs_free_extent(trans, &generic_ref);
2456 			if (ret)
2457 				goto fail;
2458 		} else {
2459 			bytenr = btrfs_node_blockptr(buf, i);
2460 			num_bytes = fs_info->nodesize;
2461 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2462 					       num_bytes, parent);
2463 			generic_ref.real_root = root->root_key.objectid;
2464 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2465 			generic_ref.skip_qgroup = for_reloc;
2466 			if (inc)
2467 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2468 			else
2469 				ret = btrfs_free_extent(trans, &generic_ref);
2470 			if (ret)
2471 				goto fail;
2472 		}
2473 	}
2474 	return 0;
2475 fail:
2476 	return ret;
2477 }
2478 
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2479 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2480 		  struct extent_buffer *buf, int full_backref)
2481 {
2482 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2483 }
2484 
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2485 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2486 		  struct extent_buffer *buf, int full_backref)
2487 {
2488 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2489 }
2490 
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)2491 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2492 {
2493 	struct btrfs_block_group *block_group;
2494 	int readonly = 0;
2495 
2496 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
2497 	if (!block_group || block_group->ro)
2498 		readonly = 1;
2499 	if (block_group)
2500 		btrfs_put_block_group(block_group);
2501 	return readonly;
2502 }
2503 
get_alloc_profile_by_root(struct btrfs_root * root,int data)2504 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2505 {
2506 	struct btrfs_fs_info *fs_info = root->fs_info;
2507 	u64 flags;
2508 	u64 ret;
2509 
2510 	if (data)
2511 		flags = BTRFS_BLOCK_GROUP_DATA;
2512 	else if (root == fs_info->chunk_root)
2513 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2514 	else
2515 		flags = BTRFS_BLOCK_GROUP_METADATA;
2516 
2517 	ret = btrfs_get_alloc_profile(fs_info, flags);
2518 	return ret;
2519 }
2520 
first_logical_byte(struct btrfs_fs_info * fs_info,u64 search_start)2521 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2522 {
2523 	struct btrfs_block_group *cache;
2524 	u64 bytenr;
2525 
2526 	spin_lock(&fs_info->block_group_cache_lock);
2527 	bytenr = fs_info->first_logical_byte;
2528 	spin_unlock(&fs_info->block_group_cache_lock);
2529 
2530 	if (bytenr < (u64)-1)
2531 		return bytenr;
2532 
2533 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2534 	if (!cache)
2535 		return 0;
2536 
2537 	bytenr = cache->start;
2538 	btrfs_put_block_group(cache);
2539 
2540 	return bytenr;
2541 }
2542 
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2543 static int pin_down_extent(struct btrfs_trans_handle *trans,
2544 			   struct btrfs_block_group *cache,
2545 			   u64 bytenr, u64 num_bytes, int reserved)
2546 {
2547 	struct btrfs_fs_info *fs_info = cache->fs_info;
2548 
2549 	spin_lock(&cache->space_info->lock);
2550 	spin_lock(&cache->lock);
2551 	cache->pinned += num_bytes;
2552 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2553 					     num_bytes);
2554 	if (reserved) {
2555 		cache->reserved -= num_bytes;
2556 		cache->space_info->bytes_reserved -= num_bytes;
2557 	}
2558 	spin_unlock(&cache->lock);
2559 	spin_unlock(&cache->space_info->lock);
2560 
2561 	__btrfs_mod_total_bytes_pinned(cache->space_info, num_bytes);
2562 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2563 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2564 	return 0;
2565 }
2566 
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2567 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2568 		     u64 bytenr, u64 num_bytes, int reserved)
2569 {
2570 	struct btrfs_block_group *cache;
2571 
2572 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2573 	BUG_ON(!cache); /* Logic error */
2574 
2575 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2576 
2577 	btrfs_put_block_group(cache);
2578 	return 0;
2579 }
2580 
2581 /*
2582  * this function must be called within transaction
2583  */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2584 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2585 				    u64 bytenr, u64 num_bytes)
2586 {
2587 	struct btrfs_block_group *cache;
2588 	int ret;
2589 
2590 	btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes);
2591 
2592 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2593 	if (!cache)
2594 		return -EINVAL;
2595 
2596 	/*
2597 	 * pull in the free space cache (if any) so that our pin
2598 	 * removes the free space from the cache.  We have load_only set
2599 	 * to one because the slow code to read in the free extents does check
2600 	 * the pinned extents.
2601 	 */
2602 	btrfs_cache_block_group(cache, 1);
2603 
2604 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2605 
2606 	/* remove us from the free space cache (if we're there at all) */
2607 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2608 	btrfs_put_block_group(cache);
2609 	return ret;
2610 }
2611 
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2612 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2613 				   u64 start, u64 num_bytes)
2614 {
2615 	int ret;
2616 	struct btrfs_block_group *block_group;
2617 	struct btrfs_caching_control *caching_ctl;
2618 
2619 	block_group = btrfs_lookup_block_group(fs_info, start);
2620 	if (!block_group)
2621 		return -EINVAL;
2622 
2623 	btrfs_cache_block_group(block_group, 0);
2624 	caching_ctl = btrfs_get_caching_control(block_group);
2625 
2626 	if (!caching_ctl) {
2627 		/* Logic error */
2628 		BUG_ON(!btrfs_block_group_done(block_group));
2629 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
2630 	} else {
2631 		mutex_lock(&caching_ctl->mutex);
2632 
2633 		if (start >= caching_ctl->progress) {
2634 			ret = btrfs_add_excluded_extent(fs_info, start,
2635 							num_bytes);
2636 		} else if (start + num_bytes <= caching_ctl->progress) {
2637 			ret = btrfs_remove_free_space(block_group,
2638 						      start, num_bytes);
2639 		} else {
2640 			num_bytes = caching_ctl->progress - start;
2641 			ret = btrfs_remove_free_space(block_group,
2642 						      start, num_bytes);
2643 			if (ret)
2644 				goto out_lock;
2645 
2646 			num_bytes = (start + num_bytes) -
2647 				caching_ctl->progress;
2648 			start = caching_ctl->progress;
2649 			ret = btrfs_add_excluded_extent(fs_info, start,
2650 							num_bytes);
2651 		}
2652 out_lock:
2653 		mutex_unlock(&caching_ctl->mutex);
2654 		btrfs_put_caching_control(caching_ctl);
2655 	}
2656 	btrfs_put_block_group(block_group);
2657 	return ret;
2658 }
2659 
btrfs_exclude_logged_extents(struct extent_buffer * eb)2660 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2661 {
2662 	struct btrfs_fs_info *fs_info = eb->fs_info;
2663 	struct btrfs_file_extent_item *item;
2664 	struct btrfs_key key;
2665 	int found_type;
2666 	int i;
2667 	int ret = 0;
2668 
2669 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2670 		return 0;
2671 
2672 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2673 		btrfs_item_key_to_cpu(eb, &key, i);
2674 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2675 			continue;
2676 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2677 		found_type = btrfs_file_extent_type(eb, item);
2678 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2679 			continue;
2680 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2681 			continue;
2682 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2683 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2684 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2685 		if (ret)
2686 			break;
2687 	}
2688 
2689 	return ret;
2690 }
2691 
2692 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2693 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2694 {
2695 	atomic_inc(&bg->reservations);
2696 }
2697 
2698 /*
2699  * Returns the free cluster for the given space info and sets empty_cluster to
2700  * what it should be based on the mount options.
2701  */
2702 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2703 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2704 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2705 {
2706 	struct btrfs_free_cluster *ret = NULL;
2707 
2708 	*empty_cluster = 0;
2709 	if (btrfs_mixed_space_info(space_info))
2710 		return ret;
2711 
2712 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2713 		ret = &fs_info->meta_alloc_cluster;
2714 		if (btrfs_test_opt(fs_info, SSD))
2715 			*empty_cluster = SZ_2M;
2716 		else
2717 			*empty_cluster = SZ_64K;
2718 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2719 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2720 		*empty_cluster = SZ_2M;
2721 		ret = &fs_info->data_alloc_cluster;
2722 	}
2723 
2724 	return ret;
2725 }
2726 
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2727 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2728 			      u64 start, u64 end,
2729 			      const bool return_free_space)
2730 {
2731 	struct btrfs_block_group *cache = NULL;
2732 	struct btrfs_space_info *space_info;
2733 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2734 	struct btrfs_free_cluster *cluster = NULL;
2735 	u64 len;
2736 	u64 total_unpinned = 0;
2737 	u64 empty_cluster = 0;
2738 	bool readonly;
2739 
2740 	while (start <= end) {
2741 		readonly = false;
2742 		if (!cache ||
2743 		    start >= cache->start + cache->length) {
2744 			if (cache)
2745 				btrfs_put_block_group(cache);
2746 			total_unpinned = 0;
2747 			cache = btrfs_lookup_block_group(fs_info, start);
2748 			BUG_ON(!cache); /* Logic error */
2749 
2750 			cluster = fetch_cluster_info(fs_info,
2751 						     cache->space_info,
2752 						     &empty_cluster);
2753 			empty_cluster <<= 1;
2754 		}
2755 
2756 		len = cache->start + cache->length - start;
2757 		len = min(len, end + 1 - start);
2758 
2759 		if (start < cache->last_byte_to_unpin && return_free_space) {
2760 			u64 add_len = min(len, cache->last_byte_to_unpin - start);
2761 
2762 			btrfs_add_free_space(cache, start, add_len);
2763 		}
2764 
2765 		start += len;
2766 		total_unpinned += len;
2767 		space_info = cache->space_info;
2768 
2769 		/*
2770 		 * If this space cluster has been marked as fragmented and we've
2771 		 * unpinned enough in this block group to potentially allow a
2772 		 * cluster to be created inside of it go ahead and clear the
2773 		 * fragmented check.
2774 		 */
2775 		if (cluster && cluster->fragmented &&
2776 		    total_unpinned > empty_cluster) {
2777 			spin_lock(&cluster->lock);
2778 			cluster->fragmented = 0;
2779 			spin_unlock(&cluster->lock);
2780 		}
2781 
2782 		spin_lock(&space_info->lock);
2783 		spin_lock(&cache->lock);
2784 		cache->pinned -= len;
2785 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2786 		space_info->max_extent_size = 0;
2787 		__btrfs_mod_total_bytes_pinned(space_info, -len);
2788 		if (cache->ro) {
2789 			space_info->bytes_readonly += len;
2790 			readonly = true;
2791 		}
2792 		spin_unlock(&cache->lock);
2793 		if (!readonly && return_free_space &&
2794 		    global_rsv->space_info == space_info) {
2795 			u64 to_add = len;
2796 
2797 			spin_lock(&global_rsv->lock);
2798 			if (!global_rsv->full) {
2799 				to_add = min(len, global_rsv->size -
2800 					     global_rsv->reserved);
2801 				global_rsv->reserved += to_add;
2802 				btrfs_space_info_update_bytes_may_use(fs_info,
2803 						space_info, to_add);
2804 				if (global_rsv->reserved >= global_rsv->size)
2805 					global_rsv->full = 1;
2806 				len -= to_add;
2807 			}
2808 			spin_unlock(&global_rsv->lock);
2809 		}
2810 		/* Add to any tickets we may have */
2811 		if (!readonly && return_free_space && len)
2812 			btrfs_try_granting_tickets(fs_info, space_info);
2813 		spin_unlock(&space_info->lock);
2814 	}
2815 
2816 	if (cache)
2817 		btrfs_put_block_group(cache);
2818 	return 0;
2819 }
2820 
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2821 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2822 {
2823 	struct btrfs_fs_info *fs_info = trans->fs_info;
2824 	struct btrfs_block_group *block_group, *tmp;
2825 	struct list_head *deleted_bgs;
2826 	struct extent_io_tree *unpin;
2827 	u64 start;
2828 	u64 end;
2829 	int ret;
2830 
2831 	unpin = &trans->transaction->pinned_extents;
2832 
2833 	while (!TRANS_ABORTED(trans)) {
2834 		struct extent_state *cached_state = NULL;
2835 
2836 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2837 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2838 					    EXTENT_DIRTY, &cached_state);
2839 		if (ret) {
2840 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2841 			break;
2842 		}
2843 		if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
2844 			clear_extent_bits(&fs_info->excluded_extents, start,
2845 					  end, EXTENT_UPTODATE);
2846 
2847 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2848 			ret = btrfs_discard_extent(fs_info, start,
2849 						   end + 1 - start, NULL);
2850 
2851 		clear_extent_dirty(unpin, start, end, &cached_state);
2852 		unpin_extent_range(fs_info, start, end, true);
2853 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2854 		free_extent_state(cached_state);
2855 		cond_resched();
2856 	}
2857 
2858 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2859 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2860 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2861 	}
2862 
2863 	/*
2864 	 * Transaction is finished.  We don't need the lock anymore.  We
2865 	 * do need to clean up the block groups in case of a transaction
2866 	 * abort.
2867 	 */
2868 	deleted_bgs = &trans->transaction->deleted_bgs;
2869 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2870 		u64 trimmed = 0;
2871 
2872 		ret = -EROFS;
2873 		if (!TRANS_ABORTED(trans))
2874 			ret = btrfs_discard_extent(fs_info,
2875 						   block_group->start,
2876 						   block_group->length,
2877 						   &trimmed);
2878 
2879 		list_del_init(&block_group->bg_list);
2880 		btrfs_unfreeze_block_group(block_group);
2881 		btrfs_put_block_group(block_group);
2882 
2883 		if (ret) {
2884 			const char *errstr = btrfs_decode_error(ret);
2885 			btrfs_warn(fs_info,
2886 			   "discard failed while removing blockgroup: errno=%d %s",
2887 				   ret, errstr);
2888 		}
2889 	}
2890 
2891 	return 0;
2892 }
2893 
2894 /*
2895  * Drop one or more refs of @node.
2896  *
2897  * 1. Locate the extent refs.
2898  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2899  *    Locate it, then reduce the refs number or remove the ref line completely.
2900  *
2901  * 2. Update the refs count in EXTENT/METADATA_ITEM
2902  *
2903  * Inline backref case:
2904  *
2905  * in extent tree we have:
2906  *
2907  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2908  *		refs 2 gen 6 flags DATA
2909  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2910  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2911  *
2912  * This function gets called with:
2913  *
2914  *    node->bytenr = 13631488
2915  *    node->num_bytes = 1048576
2916  *    root_objectid = FS_TREE
2917  *    owner_objectid = 257
2918  *    owner_offset = 0
2919  *    refs_to_drop = 1
2920  *
2921  * Then we should get some like:
2922  *
2923  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2924  *		refs 1 gen 6 flags DATA
2925  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2926  *
2927  * Keyed backref case:
2928  *
2929  * in extent tree we have:
2930  *
2931  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2932  *		refs 754 gen 6 flags DATA
2933  *	[...]
2934  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2935  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2936  *
2937  * This function get called with:
2938  *
2939  *    node->bytenr = 13631488
2940  *    node->num_bytes = 1048576
2941  *    root_objectid = FS_TREE
2942  *    owner_objectid = 866
2943  *    owner_offset = 0
2944  *    refs_to_drop = 1
2945  *
2946  * Then we should get some like:
2947  *
2948  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2949  *		refs 753 gen 6 flags DATA
2950  *
2951  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2952  */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2953 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2954 			       struct btrfs_delayed_ref_node *node, u64 parent,
2955 			       u64 root_objectid, u64 owner_objectid,
2956 			       u64 owner_offset, int refs_to_drop,
2957 			       struct btrfs_delayed_extent_op *extent_op)
2958 {
2959 	struct btrfs_fs_info *info = trans->fs_info;
2960 	struct btrfs_key key;
2961 	struct btrfs_path *path;
2962 	struct btrfs_root *extent_root = info->extent_root;
2963 	struct extent_buffer *leaf;
2964 	struct btrfs_extent_item *ei;
2965 	struct btrfs_extent_inline_ref *iref;
2966 	int ret;
2967 	int is_data;
2968 	int extent_slot = 0;
2969 	int found_extent = 0;
2970 	int num_to_del = 1;
2971 	u32 item_size;
2972 	u64 refs;
2973 	u64 bytenr = node->bytenr;
2974 	u64 num_bytes = node->num_bytes;
2975 	int last_ref = 0;
2976 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2977 
2978 	path = btrfs_alloc_path();
2979 	if (!path)
2980 		return -ENOMEM;
2981 
2982 	path->leave_spinning = 1;
2983 
2984 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2985 
2986 	if (!is_data && refs_to_drop != 1) {
2987 		btrfs_crit(info,
2988 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2989 			   node->bytenr, refs_to_drop);
2990 		ret = -EINVAL;
2991 		btrfs_abort_transaction(trans, ret);
2992 		goto out;
2993 	}
2994 
2995 	if (is_data)
2996 		skinny_metadata = false;
2997 
2998 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2999 				    parent, root_objectid, owner_objectid,
3000 				    owner_offset);
3001 	if (ret == 0) {
3002 		/*
3003 		 * Either the inline backref or the SHARED_DATA_REF/
3004 		 * SHARED_BLOCK_REF is found
3005 		 *
3006 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3007 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3008 		 */
3009 		extent_slot = path->slots[0];
3010 		while (extent_slot >= 0) {
3011 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3012 					      extent_slot);
3013 			if (key.objectid != bytenr)
3014 				break;
3015 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3016 			    key.offset == num_bytes) {
3017 				found_extent = 1;
3018 				break;
3019 			}
3020 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3021 			    key.offset == owner_objectid) {
3022 				found_extent = 1;
3023 				break;
3024 			}
3025 
3026 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3027 			if (path->slots[0] - extent_slot > 5)
3028 				break;
3029 			extent_slot--;
3030 		}
3031 
3032 		if (!found_extent) {
3033 			if (iref) {
3034 				btrfs_crit(info,
3035 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3036 				btrfs_abort_transaction(trans, -EUCLEAN);
3037 				goto err_dump;
3038 			}
3039 			/* Must be SHARED_* item, remove the backref first */
3040 			ret = remove_extent_backref(trans, path, NULL,
3041 						    refs_to_drop,
3042 						    is_data, &last_ref);
3043 			if (ret) {
3044 				btrfs_abort_transaction(trans, ret);
3045 				goto out;
3046 			}
3047 			btrfs_release_path(path);
3048 			path->leave_spinning = 1;
3049 
3050 			/* Slow path to locate EXTENT/METADATA_ITEM */
3051 			key.objectid = bytenr;
3052 			key.type = BTRFS_EXTENT_ITEM_KEY;
3053 			key.offset = num_bytes;
3054 
3055 			if (!is_data && skinny_metadata) {
3056 				key.type = BTRFS_METADATA_ITEM_KEY;
3057 				key.offset = owner_objectid;
3058 			}
3059 
3060 			ret = btrfs_search_slot(trans, extent_root,
3061 						&key, path, -1, 1);
3062 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3063 				/*
3064 				 * Couldn't find our skinny metadata item,
3065 				 * see if we have ye olde extent item.
3066 				 */
3067 				path->slots[0]--;
3068 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3069 						      path->slots[0]);
3070 				if (key.objectid == bytenr &&
3071 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3072 				    key.offset == num_bytes)
3073 					ret = 0;
3074 			}
3075 
3076 			if (ret > 0 && skinny_metadata) {
3077 				skinny_metadata = false;
3078 				key.objectid = bytenr;
3079 				key.type = BTRFS_EXTENT_ITEM_KEY;
3080 				key.offset = num_bytes;
3081 				btrfs_release_path(path);
3082 				ret = btrfs_search_slot(trans, extent_root,
3083 							&key, path, -1, 1);
3084 			}
3085 
3086 			if (ret) {
3087 				btrfs_err(info,
3088 					  "umm, got %d back from search, was looking for %llu",
3089 					  ret, bytenr);
3090 				if (ret > 0)
3091 					btrfs_print_leaf(path->nodes[0]);
3092 			}
3093 			if (ret < 0) {
3094 				btrfs_abort_transaction(trans, ret);
3095 				goto out;
3096 			}
3097 			extent_slot = path->slots[0];
3098 		}
3099 	} else if (WARN_ON(ret == -ENOENT)) {
3100 		btrfs_print_leaf(path->nodes[0]);
3101 		btrfs_err(info,
3102 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3103 			bytenr, parent, root_objectid, owner_objectid,
3104 			owner_offset);
3105 		btrfs_abort_transaction(trans, ret);
3106 		goto out;
3107 	} else {
3108 		btrfs_abort_transaction(trans, ret);
3109 		goto out;
3110 	}
3111 
3112 	leaf = path->nodes[0];
3113 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3114 	if (unlikely(item_size < sizeof(*ei))) {
3115 		ret = -EINVAL;
3116 		btrfs_print_v0_err(info);
3117 		btrfs_abort_transaction(trans, ret);
3118 		goto out;
3119 	}
3120 	ei = btrfs_item_ptr(leaf, extent_slot,
3121 			    struct btrfs_extent_item);
3122 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3123 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3124 		struct btrfs_tree_block_info *bi;
3125 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3126 			btrfs_crit(info,
3127 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3128 				   key.objectid, key.type, key.offset,
3129 				   owner_objectid, item_size,
3130 				   sizeof(*ei) + sizeof(*bi));
3131 			btrfs_abort_transaction(trans, -EUCLEAN);
3132 			goto err_dump;
3133 		}
3134 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3135 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3136 	}
3137 
3138 	refs = btrfs_extent_refs(leaf, ei);
3139 	if (refs < refs_to_drop) {
3140 		btrfs_crit(info,
3141 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3142 			  refs_to_drop, refs, bytenr);
3143 		btrfs_abort_transaction(trans, -EUCLEAN);
3144 		goto err_dump;
3145 	}
3146 	refs -= refs_to_drop;
3147 
3148 	if (refs > 0) {
3149 		if (extent_op)
3150 			__run_delayed_extent_op(extent_op, leaf, ei);
3151 		/*
3152 		 * In the case of inline back ref, reference count will
3153 		 * be updated by remove_extent_backref
3154 		 */
3155 		if (iref) {
3156 			if (!found_extent) {
3157 				btrfs_crit(info,
3158 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3159 				btrfs_abort_transaction(trans, -EUCLEAN);
3160 				goto err_dump;
3161 			}
3162 		} else {
3163 			btrfs_set_extent_refs(leaf, ei, refs);
3164 			btrfs_mark_buffer_dirty(leaf);
3165 		}
3166 		if (found_extent) {
3167 			ret = remove_extent_backref(trans, path, iref,
3168 						    refs_to_drop, is_data,
3169 						    &last_ref);
3170 			if (ret) {
3171 				btrfs_abort_transaction(trans, ret);
3172 				goto out;
3173 			}
3174 		}
3175 	} else {
3176 		/* In this branch refs == 1 */
3177 		if (found_extent) {
3178 			if (is_data && refs_to_drop !=
3179 			    extent_data_ref_count(path, iref)) {
3180 				btrfs_crit(info,
3181 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3182 					   extent_data_ref_count(path, iref),
3183 					   refs_to_drop);
3184 				btrfs_abort_transaction(trans, -EUCLEAN);
3185 				goto err_dump;
3186 			}
3187 			if (iref) {
3188 				if (path->slots[0] != extent_slot) {
3189 					btrfs_crit(info,
3190 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3191 						   key.objectid, key.type,
3192 						   key.offset);
3193 					btrfs_abort_transaction(trans, -EUCLEAN);
3194 					goto err_dump;
3195 				}
3196 			} else {
3197 				/*
3198 				 * No inline ref, we must be at SHARED_* item,
3199 				 * And it's single ref, it must be:
3200 				 * |	extent_slot	  ||extent_slot + 1|
3201 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3202 				 */
3203 				if (path->slots[0] != extent_slot + 1) {
3204 					btrfs_crit(info,
3205 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3206 					btrfs_abort_transaction(trans, -EUCLEAN);
3207 					goto err_dump;
3208 				}
3209 				path->slots[0] = extent_slot;
3210 				num_to_del = 2;
3211 			}
3212 		}
3213 
3214 		last_ref = 1;
3215 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3216 				      num_to_del);
3217 		if (ret) {
3218 			btrfs_abort_transaction(trans, ret);
3219 			goto out;
3220 		}
3221 		btrfs_release_path(path);
3222 
3223 		if (is_data) {
3224 			ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3225 					      num_bytes);
3226 			if (ret) {
3227 				btrfs_abort_transaction(trans, ret);
3228 				goto out;
3229 			}
3230 		}
3231 
3232 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3233 		if (ret) {
3234 			btrfs_abort_transaction(trans, ret);
3235 			goto out;
3236 		}
3237 
3238 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3239 		if (ret) {
3240 			btrfs_abort_transaction(trans, ret);
3241 			goto out;
3242 		}
3243 	}
3244 	btrfs_release_path(path);
3245 
3246 out:
3247 	btrfs_free_path(path);
3248 	return ret;
3249 err_dump:
3250 	/*
3251 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3252 	 * dump for debug build.
3253 	 */
3254 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3255 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3256 			   path->slots[0], extent_slot);
3257 		btrfs_print_leaf(path->nodes[0]);
3258 	}
3259 
3260 	btrfs_free_path(path);
3261 	return -EUCLEAN;
3262 }
3263 
3264 /*
3265  * when we free an block, it is possible (and likely) that we free the last
3266  * delayed ref for that extent as well.  This searches the delayed ref tree for
3267  * a given extent, and if there are no other delayed refs to be processed, it
3268  * removes it from the tree.
3269  */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3270 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3271 				      u64 bytenr)
3272 {
3273 	struct btrfs_delayed_ref_head *head;
3274 	struct btrfs_delayed_ref_root *delayed_refs;
3275 	int ret = 0;
3276 
3277 	delayed_refs = &trans->transaction->delayed_refs;
3278 	spin_lock(&delayed_refs->lock);
3279 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3280 	if (!head)
3281 		goto out_delayed_unlock;
3282 
3283 	spin_lock(&head->lock);
3284 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3285 		goto out;
3286 
3287 	if (cleanup_extent_op(head) != NULL)
3288 		goto out;
3289 
3290 	/*
3291 	 * waiting for the lock here would deadlock.  If someone else has it
3292 	 * locked they are already in the process of dropping it anyway
3293 	 */
3294 	if (!mutex_trylock(&head->mutex))
3295 		goto out;
3296 
3297 	btrfs_delete_ref_head(delayed_refs, head);
3298 	head->processing = 0;
3299 
3300 	spin_unlock(&head->lock);
3301 	spin_unlock(&delayed_refs->lock);
3302 
3303 	BUG_ON(head->extent_op);
3304 	if (head->must_insert_reserved)
3305 		ret = 1;
3306 
3307 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3308 	mutex_unlock(&head->mutex);
3309 	btrfs_put_delayed_ref_head(head);
3310 	return ret;
3311 out:
3312 	spin_unlock(&head->lock);
3313 
3314 out_delayed_unlock:
3315 	spin_unlock(&delayed_refs->lock);
3316 	return 0;
3317 }
3318 
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)3319 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3320 			   struct btrfs_root *root,
3321 			   struct extent_buffer *buf,
3322 			   u64 parent, int last_ref)
3323 {
3324 	struct btrfs_fs_info *fs_info = root->fs_info;
3325 	struct btrfs_ref generic_ref = { 0 };
3326 	int ret;
3327 
3328 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3329 			       buf->start, buf->len, parent);
3330 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3331 			    root->root_key.objectid);
3332 
3333 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3334 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3335 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3336 		BUG_ON(ret); /* -ENOMEM */
3337 	}
3338 
3339 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3340 		struct btrfs_block_group *cache;
3341 
3342 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3343 			ret = check_ref_cleanup(trans, buf->start);
3344 			if (!ret)
3345 				goto out;
3346 		}
3347 
3348 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3349 
3350 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3351 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3352 			btrfs_put_block_group(cache);
3353 			goto out;
3354 		}
3355 
3356 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3357 
3358 		btrfs_add_free_space(cache, buf->start, buf->len);
3359 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3360 		btrfs_put_block_group(cache);
3361 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3362 	}
3363 out:
3364 	if (last_ref) {
3365 		/*
3366 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3367 		 * matter anymore.
3368 		 */
3369 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3370 	}
3371 }
3372 
3373 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3374 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3375 {
3376 	struct btrfs_fs_info *fs_info = trans->fs_info;
3377 	int ret;
3378 
3379 	if (btrfs_is_testing(fs_info))
3380 		return 0;
3381 
3382 	/*
3383 	 * tree log blocks never actually go into the extent allocation
3384 	 * tree, just update pinning info and exit early.
3385 	 */
3386 	if ((ref->type == BTRFS_REF_METADATA &&
3387 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3388 	    (ref->type == BTRFS_REF_DATA &&
3389 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3390 		/* unlocks the pinned mutex */
3391 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3392 		ret = 0;
3393 	} else if (ref->type == BTRFS_REF_METADATA) {
3394 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3395 	} else {
3396 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3397 	}
3398 
3399 	if (!((ref->type == BTRFS_REF_METADATA &&
3400 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3401 	      (ref->type == BTRFS_REF_DATA &&
3402 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3403 		btrfs_ref_tree_mod(fs_info, ref);
3404 
3405 	return ret;
3406 }
3407 
3408 enum btrfs_loop_type {
3409 	LOOP_CACHING_NOWAIT,
3410 	LOOP_CACHING_WAIT,
3411 	LOOP_ALLOC_CHUNK,
3412 	LOOP_NO_EMPTY_SIZE,
3413 };
3414 
3415 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3416 btrfs_lock_block_group(struct btrfs_block_group *cache,
3417 		       int delalloc)
3418 {
3419 	if (delalloc)
3420 		down_read(&cache->data_rwsem);
3421 }
3422 
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3423 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3424 		       int delalloc)
3425 {
3426 	btrfs_get_block_group(cache);
3427 	if (delalloc)
3428 		down_read(&cache->data_rwsem);
3429 }
3430 
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3431 static struct btrfs_block_group *btrfs_lock_cluster(
3432 		   struct btrfs_block_group *block_group,
3433 		   struct btrfs_free_cluster *cluster,
3434 		   int delalloc)
3435 	__acquires(&cluster->refill_lock)
3436 {
3437 	struct btrfs_block_group *used_bg = NULL;
3438 
3439 	spin_lock(&cluster->refill_lock);
3440 	while (1) {
3441 		used_bg = cluster->block_group;
3442 		if (!used_bg)
3443 			return NULL;
3444 
3445 		if (used_bg == block_group)
3446 			return used_bg;
3447 
3448 		btrfs_get_block_group(used_bg);
3449 
3450 		if (!delalloc)
3451 			return used_bg;
3452 
3453 		if (down_read_trylock(&used_bg->data_rwsem))
3454 			return used_bg;
3455 
3456 		spin_unlock(&cluster->refill_lock);
3457 
3458 		/* We should only have one-level nested. */
3459 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3460 
3461 		spin_lock(&cluster->refill_lock);
3462 		if (used_bg == cluster->block_group)
3463 			return used_bg;
3464 
3465 		up_read(&used_bg->data_rwsem);
3466 		btrfs_put_block_group(used_bg);
3467 	}
3468 }
3469 
3470 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3471 btrfs_release_block_group(struct btrfs_block_group *cache,
3472 			 int delalloc)
3473 {
3474 	if (delalloc)
3475 		up_read(&cache->data_rwsem);
3476 	btrfs_put_block_group(cache);
3477 }
3478 
3479 enum btrfs_extent_allocation_policy {
3480 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3481 };
3482 
3483 /*
3484  * Structure used internally for find_free_extent() function.  Wraps needed
3485  * parameters.
3486  */
3487 struct find_free_extent_ctl {
3488 	/* Basic allocation info */
3489 	u64 num_bytes;
3490 	u64 empty_size;
3491 	u64 flags;
3492 	int delalloc;
3493 
3494 	/* Where to start the search inside the bg */
3495 	u64 search_start;
3496 
3497 	/* For clustered allocation */
3498 	u64 empty_cluster;
3499 	struct btrfs_free_cluster *last_ptr;
3500 	bool use_cluster;
3501 
3502 	bool have_caching_bg;
3503 	bool orig_have_caching_bg;
3504 
3505 	/* RAID index, converted from flags */
3506 	int index;
3507 
3508 	/*
3509 	 * Current loop number, check find_free_extent_update_loop() for details
3510 	 */
3511 	int loop;
3512 
3513 	/*
3514 	 * Whether we're refilling a cluster, if true we need to re-search
3515 	 * current block group but don't try to refill the cluster again.
3516 	 */
3517 	bool retry_clustered;
3518 
3519 	/*
3520 	 * Whether we're updating free space cache, if true we need to re-search
3521 	 * current block group but don't try updating free space cache again.
3522 	 */
3523 	bool retry_unclustered;
3524 
3525 	/* If current block group is cached */
3526 	int cached;
3527 
3528 	/* Max contiguous hole found */
3529 	u64 max_extent_size;
3530 
3531 	/* Total free space from free space cache, not always contiguous */
3532 	u64 total_free_space;
3533 
3534 	/* Found result */
3535 	u64 found_offset;
3536 
3537 	/* Hint where to start looking for an empty space */
3538 	u64 hint_byte;
3539 
3540 	/* Allocation policy */
3541 	enum btrfs_extent_allocation_policy policy;
3542 };
3543 
3544 
3545 /*
3546  * Helper function for find_free_extent().
3547  *
3548  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3549  * Return -EAGAIN to inform caller that we need to re-search this block group
3550  * Return >0 to inform caller that we find nothing
3551  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3552  */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3553 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3554 				      struct find_free_extent_ctl *ffe_ctl,
3555 				      struct btrfs_block_group **cluster_bg_ret)
3556 {
3557 	struct btrfs_block_group *cluster_bg;
3558 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3559 	u64 aligned_cluster;
3560 	u64 offset;
3561 	int ret;
3562 
3563 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3564 	if (!cluster_bg)
3565 		goto refill_cluster;
3566 	if (cluster_bg != bg && (cluster_bg->ro ||
3567 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3568 		goto release_cluster;
3569 
3570 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3571 			ffe_ctl->num_bytes, cluster_bg->start,
3572 			&ffe_ctl->max_extent_size);
3573 	if (offset) {
3574 		/* We have a block, we're done */
3575 		spin_unlock(&last_ptr->refill_lock);
3576 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3577 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3578 		*cluster_bg_ret = cluster_bg;
3579 		ffe_ctl->found_offset = offset;
3580 		return 0;
3581 	}
3582 	WARN_ON(last_ptr->block_group != cluster_bg);
3583 
3584 release_cluster:
3585 	/*
3586 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3587 	 * lets just skip it and let the allocator find whatever block it can
3588 	 * find. If we reach this point, we will have tried the cluster
3589 	 * allocator plenty of times and not have found anything, so we are
3590 	 * likely way too fragmented for the clustering stuff to find anything.
3591 	 *
3592 	 * However, if the cluster is taken from the current block group,
3593 	 * release the cluster first, so that we stand a better chance of
3594 	 * succeeding in the unclustered allocation.
3595 	 */
3596 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3597 		spin_unlock(&last_ptr->refill_lock);
3598 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3599 		return -ENOENT;
3600 	}
3601 
3602 	/* This cluster didn't work out, free it and start over */
3603 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3604 
3605 	if (cluster_bg != bg)
3606 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3607 
3608 refill_cluster:
3609 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3610 		spin_unlock(&last_ptr->refill_lock);
3611 		return -ENOENT;
3612 	}
3613 
3614 	aligned_cluster = max_t(u64,
3615 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3616 			bg->full_stripe_len);
3617 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3618 			ffe_ctl->num_bytes, aligned_cluster);
3619 	if (ret == 0) {
3620 		/* Now pull our allocation out of this cluster */
3621 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3622 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3623 				&ffe_ctl->max_extent_size);
3624 		if (offset) {
3625 			/* We found one, proceed */
3626 			spin_unlock(&last_ptr->refill_lock);
3627 			trace_btrfs_reserve_extent_cluster(bg,
3628 					ffe_ctl->search_start,
3629 					ffe_ctl->num_bytes);
3630 			ffe_ctl->found_offset = offset;
3631 			return 0;
3632 		}
3633 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3634 		   !ffe_ctl->retry_clustered) {
3635 		spin_unlock(&last_ptr->refill_lock);
3636 
3637 		ffe_ctl->retry_clustered = true;
3638 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3639 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3640 		return -EAGAIN;
3641 	}
3642 	/*
3643 	 * At this point we either didn't find a cluster or we weren't able to
3644 	 * allocate a block from our cluster.  Free the cluster we've been
3645 	 * trying to use, and go to the next block group.
3646 	 */
3647 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3648 	spin_unlock(&last_ptr->refill_lock);
3649 	return 1;
3650 }
3651 
3652 /*
3653  * Return >0 to inform caller that we find nothing
3654  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3655  * Return -EAGAIN to inform caller that we need to re-search this block group
3656  */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3657 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3658 					struct find_free_extent_ctl *ffe_ctl)
3659 {
3660 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3661 	u64 offset;
3662 
3663 	/*
3664 	 * We are doing an unclustered allocation, set the fragmented flag so
3665 	 * we don't bother trying to setup a cluster again until we get more
3666 	 * space.
3667 	 */
3668 	if (unlikely(last_ptr)) {
3669 		spin_lock(&last_ptr->lock);
3670 		last_ptr->fragmented = 1;
3671 		spin_unlock(&last_ptr->lock);
3672 	}
3673 	if (ffe_ctl->cached) {
3674 		struct btrfs_free_space_ctl *free_space_ctl;
3675 
3676 		free_space_ctl = bg->free_space_ctl;
3677 		spin_lock(&free_space_ctl->tree_lock);
3678 		if (free_space_ctl->free_space <
3679 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3680 		    ffe_ctl->empty_size) {
3681 			ffe_ctl->total_free_space = max_t(u64,
3682 					ffe_ctl->total_free_space,
3683 					free_space_ctl->free_space);
3684 			spin_unlock(&free_space_ctl->tree_lock);
3685 			return 1;
3686 		}
3687 		spin_unlock(&free_space_ctl->tree_lock);
3688 	}
3689 
3690 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3691 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3692 			&ffe_ctl->max_extent_size);
3693 
3694 	/*
3695 	 * If we didn't find a chunk, and we haven't failed on this block group
3696 	 * before, and this block group is in the middle of caching and we are
3697 	 * ok with waiting, then go ahead and wait for progress to be made, and
3698 	 * set @retry_unclustered to true.
3699 	 *
3700 	 * If @retry_unclustered is true then we've already waited on this
3701 	 * block group once and should move on to the next block group.
3702 	 */
3703 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3704 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3705 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3706 						      ffe_ctl->empty_size);
3707 		ffe_ctl->retry_unclustered = true;
3708 		return -EAGAIN;
3709 	} else if (!offset) {
3710 		return 1;
3711 	}
3712 	ffe_ctl->found_offset = offset;
3713 	return 0;
3714 }
3715 
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3716 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3717 				   struct find_free_extent_ctl *ffe_ctl,
3718 				   struct btrfs_block_group **bg_ret)
3719 {
3720 	int ret;
3721 
3722 	/* We want to try and use the cluster allocator, so lets look there */
3723 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3724 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3725 		if (ret >= 0 || ret == -EAGAIN)
3726 			return ret;
3727 		/* ret == -ENOENT case falls through */
3728 	}
3729 
3730 	return find_free_extent_unclustered(block_group, ffe_ctl);
3731 }
3732 
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3733 static int do_allocation(struct btrfs_block_group *block_group,
3734 			 struct find_free_extent_ctl *ffe_ctl,
3735 			 struct btrfs_block_group **bg_ret)
3736 {
3737 	switch (ffe_ctl->policy) {
3738 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3739 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3740 	default:
3741 		BUG();
3742 	}
3743 }
3744 
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3745 static void release_block_group(struct btrfs_block_group *block_group,
3746 				struct find_free_extent_ctl *ffe_ctl,
3747 				int delalloc)
3748 {
3749 	switch (ffe_ctl->policy) {
3750 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3751 		ffe_ctl->retry_clustered = false;
3752 		ffe_ctl->retry_unclustered = false;
3753 		break;
3754 	default:
3755 		BUG();
3756 	}
3757 
3758 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3759 	       ffe_ctl->index);
3760 	btrfs_release_block_group(block_group, delalloc);
3761 }
3762 
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3763 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3764 				   struct btrfs_key *ins)
3765 {
3766 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3767 
3768 	if (!ffe_ctl->use_cluster && last_ptr) {
3769 		spin_lock(&last_ptr->lock);
3770 		last_ptr->window_start = ins->objectid;
3771 		spin_unlock(&last_ptr->lock);
3772 	}
3773 }
3774 
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3775 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3776 			 struct btrfs_key *ins)
3777 {
3778 	switch (ffe_ctl->policy) {
3779 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3780 		found_extent_clustered(ffe_ctl, ins);
3781 		break;
3782 	default:
3783 		BUG();
3784 	}
3785 }
3786 
chunk_allocation_failed(struct find_free_extent_ctl * ffe_ctl)3787 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3788 {
3789 	switch (ffe_ctl->policy) {
3790 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3791 		/*
3792 		 * If we can't allocate a new chunk we've already looped through
3793 		 * at least once, move on to the NO_EMPTY_SIZE case.
3794 		 */
3795 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3796 		return 0;
3797 	default:
3798 		BUG();
3799 	}
3800 }
3801 
3802 /*
3803  * Return >0 means caller needs to re-search for free extent
3804  * Return 0 means we have the needed free extent.
3805  * Return <0 means we failed to locate any free extent.
3806  */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)3807 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3808 					struct btrfs_key *ins,
3809 					struct find_free_extent_ctl *ffe_ctl,
3810 					bool full_search)
3811 {
3812 	struct btrfs_root *root = fs_info->extent_root;
3813 	int ret;
3814 
3815 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3816 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3817 		ffe_ctl->orig_have_caching_bg = true;
3818 
3819 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3820 	    ffe_ctl->have_caching_bg)
3821 		return 1;
3822 
3823 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3824 		return 1;
3825 
3826 	if (ins->objectid) {
3827 		found_extent(ffe_ctl, ins);
3828 		return 0;
3829 	}
3830 
3831 	/*
3832 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3833 	 *			caching kthreads as we move along
3834 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3835 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3836 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3837 	 *		       again
3838 	 */
3839 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3840 		ffe_ctl->index = 0;
3841 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3842 			/*
3843 			 * We want to skip the LOOP_CACHING_WAIT step if we
3844 			 * don't have any uncached bgs and we've already done a
3845 			 * full search through.
3846 			 */
3847 			if (ffe_ctl->orig_have_caching_bg || !full_search)
3848 				ffe_ctl->loop = LOOP_CACHING_WAIT;
3849 			else
3850 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3851 		} else {
3852 			ffe_ctl->loop++;
3853 		}
3854 
3855 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3856 			struct btrfs_trans_handle *trans;
3857 			int exist = 0;
3858 
3859 			trans = current->journal_info;
3860 			if (trans)
3861 				exist = 1;
3862 			else
3863 				trans = btrfs_join_transaction(root);
3864 
3865 			if (IS_ERR(trans)) {
3866 				ret = PTR_ERR(trans);
3867 				return ret;
3868 			}
3869 
3870 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3871 						CHUNK_ALLOC_FORCE);
3872 
3873 			/* Do not bail out on ENOSPC since we can do more. */
3874 			if (ret == -ENOSPC)
3875 				ret = chunk_allocation_failed(ffe_ctl);
3876 			else if (ret < 0)
3877 				btrfs_abort_transaction(trans, ret);
3878 			else
3879 				ret = 0;
3880 			if (!exist)
3881 				btrfs_end_transaction(trans);
3882 			if (ret)
3883 				return ret;
3884 		}
3885 
3886 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3887 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
3888 				return -ENOSPC;
3889 
3890 			/*
3891 			 * Don't loop again if we already have no empty_size and
3892 			 * no empty_cluster.
3893 			 */
3894 			if (ffe_ctl->empty_size == 0 &&
3895 			    ffe_ctl->empty_cluster == 0)
3896 				return -ENOSPC;
3897 			ffe_ctl->empty_size = 0;
3898 			ffe_ctl->empty_cluster = 0;
3899 		}
3900 		return 1;
3901 	}
3902 	return -ENOSPC;
3903 }
3904 
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)3905 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
3906 					struct find_free_extent_ctl *ffe_ctl,
3907 					struct btrfs_space_info *space_info,
3908 					struct btrfs_key *ins)
3909 {
3910 	/*
3911 	 * If our free space is heavily fragmented we may not be able to make
3912 	 * big contiguous allocations, so instead of doing the expensive search
3913 	 * for free space, simply return ENOSPC with our max_extent_size so we
3914 	 * can go ahead and search for a more manageable chunk.
3915 	 *
3916 	 * If our max_extent_size is large enough for our allocation simply
3917 	 * disable clustering since we will likely not be able to find enough
3918 	 * space to create a cluster and induce latency trying.
3919 	 */
3920 	if (space_info->max_extent_size) {
3921 		spin_lock(&space_info->lock);
3922 		if (space_info->max_extent_size &&
3923 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
3924 			ins->offset = space_info->max_extent_size;
3925 			spin_unlock(&space_info->lock);
3926 			return -ENOSPC;
3927 		} else if (space_info->max_extent_size) {
3928 			ffe_ctl->use_cluster = false;
3929 		}
3930 		spin_unlock(&space_info->lock);
3931 	}
3932 
3933 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
3934 					       &ffe_ctl->empty_cluster);
3935 	if (ffe_ctl->last_ptr) {
3936 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3937 
3938 		spin_lock(&last_ptr->lock);
3939 		if (last_ptr->block_group)
3940 			ffe_ctl->hint_byte = last_ptr->window_start;
3941 		if (last_ptr->fragmented) {
3942 			/*
3943 			 * We still set window_start so we can keep track of the
3944 			 * last place we found an allocation to try and save
3945 			 * some time.
3946 			 */
3947 			ffe_ctl->hint_byte = last_ptr->window_start;
3948 			ffe_ctl->use_cluster = false;
3949 		}
3950 		spin_unlock(&last_ptr->lock);
3951 	}
3952 
3953 	return 0;
3954 }
3955 
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)3956 static int prepare_allocation(struct btrfs_fs_info *fs_info,
3957 			      struct find_free_extent_ctl *ffe_ctl,
3958 			      struct btrfs_space_info *space_info,
3959 			      struct btrfs_key *ins)
3960 {
3961 	switch (ffe_ctl->policy) {
3962 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3963 		return prepare_allocation_clustered(fs_info, ffe_ctl,
3964 						    space_info, ins);
3965 	default:
3966 		BUG();
3967 	}
3968 }
3969 
3970 /*
3971  * walks the btree of allocated extents and find a hole of a given size.
3972  * The key ins is changed to record the hole:
3973  * ins->objectid == start position
3974  * ins->flags = BTRFS_EXTENT_ITEM_KEY
3975  * ins->offset == the size of the hole.
3976  * Any available blocks before search_start are skipped.
3977  *
3978  * If there is no suitable free space, we will record the max size of
3979  * the free space extent currently.
3980  *
3981  * The overall logic and call chain:
3982  *
3983  * find_free_extent()
3984  * |- Iterate through all block groups
3985  * |  |- Get a valid block group
3986  * |  |- Try to do clustered allocation in that block group
3987  * |  |- Try to do unclustered allocation in that block group
3988  * |  |- Check if the result is valid
3989  * |  |  |- If valid, then exit
3990  * |  |- Jump to next block group
3991  * |
3992  * |- Push harder to find free extents
3993  *    |- If not found, re-iterate all block groups
3994  */
find_free_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte_orig,struct btrfs_key * ins,u64 flags,int delalloc)3995 static noinline int find_free_extent(struct btrfs_root *root,
3996 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
3997 				u64 hint_byte_orig, struct btrfs_key *ins,
3998 				u64 flags, int delalloc)
3999 {
4000 	struct btrfs_fs_info *fs_info = root->fs_info;
4001 	int ret = 0;
4002 	int cache_block_group_error = 0;
4003 	struct btrfs_block_group *block_group = NULL;
4004 	struct find_free_extent_ctl ffe_ctl = {0};
4005 	struct btrfs_space_info *space_info;
4006 	bool full_search = false;
4007 
4008 	WARN_ON(num_bytes < fs_info->sectorsize);
4009 
4010 	ffe_ctl.num_bytes = num_bytes;
4011 	ffe_ctl.empty_size = empty_size;
4012 	ffe_ctl.flags = flags;
4013 	ffe_ctl.search_start = 0;
4014 	ffe_ctl.delalloc = delalloc;
4015 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
4016 	ffe_ctl.have_caching_bg = false;
4017 	ffe_ctl.orig_have_caching_bg = false;
4018 	ffe_ctl.found_offset = 0;
4019 	ffe_ctl.hint_byte = hint_byte_orig;
4020 	ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4021 
4022 	/* For clustered allocation */
4023 	ffe_ctl.retry_clustered = false;
4024 	ffe_ctl.retry_unclustered = false;
4025 	ffe_ctl.last_ptr = NULL;
4026 	ffe_ctl.use_cluster = true;
4027 
4028 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4029 	ins->objectid = 0;
4030 	ins->offset = 0;
4031 
4032 	trace_find_free_extent(root, num_bytes, empty_size, flags);
4033 
4034 	space_info = btrfs_find_space_info(fs_info, flags);
4035 	if (!space_info) {
4036 		btrfs_err(fs_info, "No space info for %llu", flags);
4037 		return -ENOSPC;
4038 	}
4039 
4040 	ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
4041 	if (ret < 0)
4042 		return ret;
4043 
4044 	ffe_ctl.search_start = max(ffe_ctl.search_start,
4045 				   first_logical_byte(fs_info, 0));
4046 	ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
4047 	if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
4048 		block_group = btrfs_lookup_block_group(fs_info,
4049 						       ffe_ctl.search_start);
4050 		/*
4051 		 * we don't want to use the block group if it doesn't match our
4052 		 * allocation bits, or if its not cached.
4053 		 *
4054 		 * However if we are re-searching with an ideal block group
4055 		 * picked out then we don't care that the block group is cached.
4056 		 */
4057 		if (block_group && block_group_bits(block_group, flags) &&
4058 		    block_group->cached != BTRFS_CACHE_NO) {
4059 			down_read(&space_info->groups_sem);
4060 			if (list_empty(&block_group->list) ||
4061 			    block_group->ro) {
4062 				/*
4063 				 * someone is removing this block group,
4064 				 * we can't jump into the have_block_group
4065 				 * target because our list pointers are not
4066 				 * valid
4067 				 */
4068 				btrfs_put_block_group(block_group);
4069 				up_read(&space_info->groups_sem);
4070 			} else {
4071 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4072 						block_group->flags);
4073 				btrfs_lock_block_group(block_group, delalloc);
4074 				goto have_block_group;
4075 			}
4076 		} else if (block_group) {
4077 			btrfs_put_block_group(block_group);
4078 		}
4079 	}
4080 search:
4081 	ffe_ctl.have_caching_bg = false;
4082 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4083 	    ffe_ctl.index == 0)
4084 		full_search = true;
4085 	down_read(&space_info->groups_sem);
4086 	list_for_each_entry(block_group,
4087 			    &space_info->block_groups[ffe_ctl.index], list) {
4088 		struct btrfs_block_group *bg_ret;
4089 
4090 		/* If the block group is read-only, we can skip it entirely. */
4091 		if (unlikely(block_group->ro))
4092 			continue;
4093 
4094 		btrfs_grab_block_group(block_group, delalloc);
4095 		ffe_ctl.search_start = block_group->start;
4096 
4097 		/*
4098 		 * this can happen if we end up cycling through all the
4099 		 * raid types, but we want to make sure we only allocate
4100 		 * for the proper type.
4101 		 */
4102 		if (!block_group_bits(block_group, flags)) {
4103 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4104 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4105 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4106 				BTRFS_BLOCK_GROUP_RAID10;
4107 
4108 			/*
4109 			 * if they asked for extra copies and this block group
4110 			 * doesn't provide them, bail.  This does allow us to
4111 			 * fill raid0 from raid1.
4112 			 */
4113 			if ((flags & extra) && !(block_group->flags & extra))
4114 				goto loop;
4115 
4116 			/*
4117 			 * This block group has different flags than we want.
4118 			 * It's possible that we have MIXED_GROUP flag but no
4119 			 * block group is mixed.  Just skip such block group.
4120 			 */
4121 			btrfs_release_block_group(block_group, delalloc);
4122 			continue;
4123 		}
4124 
4125 have_block_group:
4126 		ffe_ctl.cached = btrfs_block_group_done(block_group);
4127 		if (unlikely(!ffe_ctl.cached)) {
4128 			ffe_ctl.have_caching_bg = true;
4129 			ret = btrfs_cache_block_group(block_group, 0);
4130 
4131 			/*
4132 			 * If we get ENOMEM here or something else we want to
4133 			 * try other block groups, because it may not be fatal.
4134 			 * However if we can't find anything else we need to
4135 			 * save our return here so that we return the actual
4136 			 * error that caused problems, not ENOSPC.
4137 			 */
4138 			if (ret < 0) {
4139 				if (!cache_block_group_error)
4140 					cache_block_group_error = ret;
4141 				ret = 0;
4142 				goto loop;
4143 			}
4144 			ret = 0;
4145 		}
4146 
4147 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4148 			if (!cache_block_group_error)
4149 				cache_block_group_error = -EIO;
4150 			goto loop;
4151 		}
4152 
4153 		bg_ret = NULL;
4154 		ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4155 		if (ret == 0) {
4156 			if (bg_ret && bg_ret != block_group) {
4157 				btrfs_release_block_group(block_group, delalloc);
4158 				block_group = bg_ret;
4159 			}
4160 		} else if (ret == -EAGAIN) {
4161 			goto have_block_group;
4162 		} else if (ret > 0) {
4163 			goto loop;
4164 		}
4165 
4166 		/* Checks */
4167 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4168 					     fs_info->stripesize);
4169 
4170 		/* move on to the next group */
4171 		if (ffe_ctl.search_start + num_bytes >
4172 		    block_group->start + block_group->length) {
4173 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4174 					     num_bytes);
4175 			goto loop;
4176 		}
4177 
4178 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
4179 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4180 				ffe_ctl.search_start - ffe_ctl.found_offset);
4181 
4182 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4183 				num_bytes, delalloc);
4184 		if (ret == -EAGAIN) {
4185 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4186 					     num_bytes);
4187 			goto loop;
4188 		}
4189 		btrfs_inc_block_group_reservations(block_group);
4190 
4191 		/* we are all good, lets return */
4192 		ins->objectid = ffe_ctl.search_start;
4193 		ins->offset = num_bytes;
4194 
4195 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4196 					   num_bytes);
4197 		btrfs_release_block_group(block_group, delalloc);
4198 		break;
4199 loop:
4200 		release_block_group(block_group, &ffe_ctl, delalloc);
4201 		cond_resched();
4202 	}
4203 	up_read(&space_info->groups_sem);
4204 
4205 	ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4206 	if (ret > 0)
4207 		goto search;
4208 
4209 	if (ret == -ENOSPC && !cache_block_group_error) {
4210 		/*
4211 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4212 		 * any contiguous hole.
4213 		 */
4214 		if (!ffe_ctl.max_extent_size)
4215 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4216 		spin_lock(&space_info->lock);
4217 		space_info->max_extent_size = ffe_ctl.max_extent_size;
4218 		spin_unlock(&space_info->lock);
4219 		ins->offset = ffe_ctl.max_extent_size;
4220 	} else if (ret == -ENOSPC) {
4221 		ret = cache_block_group_error;
4222 	}
4223 	return ret;
4224 }
4225 
4226 /*
4227  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4228  *			  hole that is at least as big as @num_bytes.
4229  *
4230  * @root           -	The root that will contain this extent
4231  *
4232  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4233  *			is used for accounting purposes. This value differs
4234  *			from @num_bytes only in the case of compressed extents.
4235  *
4236  * @num_bytes      -	Number of bytes to allocate on-disk.
4237  *
4238  * @min_alloc_size -	Indicates the minimum amount of space that the
4239  *			allocator should try to satisfy. In some cases
4240  *			@num_bytes may be larger than what is required and if
4241  *			the filesystem is fragmented then allocation fails.
4242  *			However, the presence of @min_alloc_size gives a
4243  *			chance to try and satisfy the smaller allocation.
4244  *
4245  * @empty_size     -	A hint that you plan on doing more COW. This is the
4246  *			size in bytes the allocator should try to find free
4247  *			next to the block it returns.  This is just a hint and
4248  *			may be ignored by the allocator.
4249  *
4250  * @hint_byte      -	Hint to the allocator to start searching above the byte
4251  *			address passed. It might be ignored.
4252  *
4253  * @ins            -	This key is modified to record the found hole. It will
4254  *			have the following values:
4255  *			ins->objectid == start position
4256  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4257  *			ins->offset == the size of the hole.
4258  *
4259  * @is_data        -	Boolean flag indicating whether an extent is
4260  *			allocated for data (true) or metadata (false)
4261  *
4262  * @delalloc       -	Boolean flag indicating whether this allocation is for
4263  *			delalloc or not. If 'true' data_rwsem of block groups
4264  *			is going to be acquired.
4265  *
4266  *
4267  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4268  * case -ENOSPC is returned then @ins->offset will contain the size of the
4269  * largest available hole the allocator managed to find.
4270  */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4271 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4272 			 u64 num_bytes, u64 min_alloc_size,
4273 			 u64 empty_size, u64 hint_byte,
4274 			 struct btrfs_key *ins, int is_data, int delalloc)
4275 {
4276 	struct btrfs_fs_info *fs_info = root->fs_info;
4277 	bool final_tried = num_bytes == min_alloc_size;
4278 	u64 flags;
4279 	int ret;
4280 
4281 	flags = get_alloc_profile_by_root(root, is_data);
4282 again:
4283 	WARN_ON(num_bytes < fs_info->sectorsize);
4284 	ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
4285 			       hint_byte, ins, flags, delalloc);
4286 	if (!ret && !is_data) {
4287 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4288 	} else if (ret == -ENOSPC) {
4289 		if (!final_tried && ins->offset) {
4290 			num_bytes = min(num_bytes >> 1, ins->offset);
4291 			num_bytes = round_down(num_bytes,
4292 					       fs_info->sectorsize);
4293 			num_bytes = max(num_bytes, min_alloc_size);
4294 			ram_bytes = num_bytes;
4295 			if (num_bytes == min_alloc_size)
4296 				final_tried = true;
4297 			goto again;
4298 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4299 			struct btrfs_space_info *sinfo;
4300 
4301 			sinfo = btrfs_find_space_info(fs_info, flags);
4302 			btrfs_err(fs_info,
4303 				  "allocation failed flags %llu, wanted %llu",
4304 				  flags, num_bytes);
4305 			if (sinfo)
4306 				btrfs_dump_space_info(fs_info, sinfo,
4307 						      num_bytes, 1);
4308 		}
4309 	}
4310 
4311 	return ret;
4312 }
4313 
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4314 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4315 			       u64 start, u64 len, int delalloc)
4316 {
4317 	struct btrfs_block_group *cache;
4318 
4319 	cache = btrfs_lookup_block_group(fs_info, start);
4320 	if (!cache) {
4321 		btrfs_err(fs_info, "Unable to find block group for %llu",
4322 			  start);
4323 		return -ENOSPC;
4324 	}
4325 
4326 	btrfs_add_free_space(cache, start, len);
4327 	btrfs_free_reserved_bytes(cache, len, delalloc);
4328 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4329 
4330 	btrfs_put_block_group(cache);
4331 	return 0;
4332 }
4333 
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4334 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4335 			      u64 len)
4336 {
4337 	struct btrfs_block_group *cache;
4338 	int ret = 0;
4339 
4340 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4341 	if (!cache) {
4342 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4343 			  start);
4344 		return -ENOSPC;
4345 	}
4346 
4347 	ret = pin_down_extent(trans, cache, start, len, 1);
4348 	btrfs_put_block_group(cache);
4349 	return ret;
4350 }
4351 
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4352 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4353 				      u64 parent, u64 root_objectid,
4354 				      u64 flags, u64 owner, u64 offset,
4355 				      struct btrfs_key *ins, int ref_mod)
4356 {
4357 	struct btrfs_fs_info *fs_info = trans->fs_info;
4358 	int ret;
4359 	struct btrfs_extent_item *extent_item;
4360 	struct btrfs_extent_inline_ref *iref;
4361 	struct btrfs_path *path;
4362 	struct extent_buffer *leaf;
4363 	int type;
4364 	u32 size;
4365 
4366 	if (parent > 0)
4367 		type = BTRFS_SHARED_DATA_REF_KEY;
4368 	else
4369 		type = BTRFS_EXTENT_DATA_REF_KEY;
4370 
4371 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4372 
4373 	path = btrfs_alloc_path();
4374 	if (!path)
4375 		return -ENOMEM;
4376 
4377 	path->leave_spinning = 1;
4378 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4379 				      ins, size);
4380 	if (ret) {
4381 		btrfs_free_path(path);
4382 		return ret;
4383 	}
4384 
4385 	leaf = path->nodes[0];
4386 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4387 				     struct btrfs_extent_item);
4388 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4389 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4390 	btrfs_set_extent_flags(leaf, extent_item,
4391 			       flags | BTRFS_EXTENT_FLAG_DATA);
4392 
4393 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4394 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4395 	if (parent > 0) {
4396 		struct btrfs_shared_data_ref *ref;
4397 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4398 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4399 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4400 	} else {
4401 		struct btrfs_extent_data_ref *ref;
4402 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4403 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4404 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4405 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4406 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4407 	}
4408 
4409 	btrfs_mark_buffer_dirty(path->nodes[0]);
4410 	btrfs_free_path(path);
4411 
4412 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4413 	if (ret)
4414 		return ret;
4415 
4416 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4417 	if (ret) { /* -ENOENT, logic error */
4418 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4419 			ins->objectid, ins->offset);
4420 		BUG();
4421 	}
4422 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4423 	return ret;
4424 }
4425 
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4426 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4427 				     struct btrfs_delayed_ref_node *node,
4428 				     struct btrfs_delayed_extent_op *extent_op)
4429 {
4430 	struct btrfs_fs_info *fs_info = trans->fs_info;
4431 	int ret;
4432 	struct btrfs_extent_item *extent_item;
4433 	struct btrfs_key extent_key;
4434 	struct btrfs_tree_block_info *block_info;
4435 	struct btrfs_extent_inline_ref *iref;
4436 	struct btrfs_path *path;
4437 	struct extent_buffer *leaf;
4438 	struct btrfs_delayed_tree_ref *ref;
4439 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4440 	u64 num_bytes;
4441 	u64 flags = extent_op->flags_to_set;
4442 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4443 
4444 	ref = btrfs_delayed_node_to_tree_ref(node);
4445 
4446 	extent_key.objectid = node->bytenr;
4447 	if (skinny_metadata) {
4448 		extent_key.offset = ref->level;
4449 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4450 		num_bytes = fs_info->nodesize;
4451 	} else {
4452 		extent_key.offset = node->num_bytes;
4453 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4454 		size += sizeof(*block_info);
4455 		num_bytes = node->num_bytes;
4456 	}
4457 
4458 	path = btrfs_alloc_path();
4459 	if (!path)
4460 		return -ENOMEM;
4461 
4462 	path->leave_spinning = 1;
4463 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4464 				      &extent_key, size);
4465 	if (ret) {
4466 		btrfs_free_path(path);
4467 		return ret;
4468 	}
4469 
4470 	leaf = path->nodes[0];
4471 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4472 				     struct btrfs_extent_item);
4473 	btrfs_set_extent_refs(leaf, extent_item, 1);
4474 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4475 	btrfs_set_extent_flags(leaf, extent_item,
4476 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4477 
4478 	if (skinny_metadata) {
4479 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4480 	} else {
4481 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4482 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4483 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4484 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4485 	}
4486 
4487 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4488 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4489 		btrfs_set_extent_inline_ref_type(leaf, iref,
4490 						 BTRFS_SHARED_BLOCK_REF_KEY);
4491 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4492 	} else {
4493 		btrfs_set_extent_inline_ref_type(leaf, iref,
4494 						 BTRFS_TREE_BLOCK_REF_KEY);
4495 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4496 	}
4497 
4498 	btrfs_mark_buffer_dirty(leaf);
4499 	btrfs_free_path(path);
4500 
4501 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4502 					  num_bytes);
4503 	if (ret)
4504 		return ret;
4505 
4506 	ret = btrfs_update_block_group(trans, extent_key.objectid,
4507 				       fs_info->nodesize, 1);
4508 	if (ret) { /* -ENOENT, logic error */
4509 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4510 			extent_key.objectid, extent_key.offset);
4511 		BUG();
4512 	}
4513 
4514 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4515 					  fs_info->nodesize);
4516 	return ret;
4517 }
4518 
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4519 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4520 				     struct btrfs_root *root, u64 owner,
4521 				     u64 offset, u64 ram_bytes,
4522 				     struct btrfs_key *ins)
4523 {
4524 	struct btrfs_ref generic_ref = { 0 };
4525 
4526 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4527 
4528 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4529 			       ins->objectid, ins->offset, 0);
4530 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4531 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4532 
4533 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4534 }
4535 
4536 /*
4537  * this is used by the tree logging recovery code.  It records that
4538  * an extent has been allocated and makes sure to clear the free
4539  * space cache bits as well
4540  */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4541 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4542 				   u64 root_objectid, u64 owner, u64 offset,
4543 				   struct btrfs_key *ins)
4544 {
4545 	struct btrfs_fs_info *fs_info = trans->fs_info;
4546 	int ret;
4547 	struct btrfs_block_group *block_group;
4548 	struct btrfs_space_info *space_info;
4549 
4550 	/*
4551 	 * Mixed block groups will exclude before processing the log so we only
4552 	 * need to do the exclude dance if this fs isn't mixed.
4553 	 */
4554 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4555 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4556 					      ins->offset);
4557 		if (ret)
4558 			return ret;
4559 	}
4560 
4561 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4562 	if (!block_group)
4563 		return -EINVAL;
4564 
4565 	space_info = block_group->space_info;
4566 	spin_lock(&space_info->lock);
4567 	spin_lock(&block_group->lock);
4568 	space_info->bytes_reserved += ins->offset;
4569 	block_group->reserved += ins->offset;
4570 	spin_unlock(&block_group->lock);
4571 	spin_unlock(&space_info->lock);
4572 
4573 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4574 					 offset, ins, 1);
4575 	if (ret)
4576 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4577 	btrfs_put_block_group(block_group);
4578 	return ret;
4579 }
4580 
4581 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4582 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4583 		      u64 bytenr, int level, u64 owner,
4584 		      enum btrfs_lock_nesting nest)
4585 {
4586 	struct btrfs_fs_info *fs_info = root->fs_info;
4587 	struct extent_buffer *buf;
4588 
4589 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
4590 	if (IS_ERR(buf))
4591 		return buf;
4592 
4593 	/*
4594 	 * Extra safety check in case the extent tree is corrupted and extent
4595 	 * allocator chooses to use a tree block which is already used and
4596 	 * locked.
4597 	 */
4598 	if (buf->lock_owner == current->pid) {
4599 		btrfs_err_rl(fs_info,
4600 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4601 			buf->start, btrfs_header_owner(buf), current->pid);
4602 		free_extent_buffer(buf);
4603 		return ERR_PTR(-EUCLEAN);
4604 	}
4605 
4606 	btrfs_set_buffer_lockdep_class(owner, buf, level);
4607 	__btrfs_tree_lock(buf, nest);
4608 	btrfs_clean_tree_block(buf);
4609 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4610 
4611 	btrfs_set_lock_blocking_write(buf);
4612 	set_extent_buffer_uptodate(buf);
4613 
4614 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4615 	btrfs_set_header_level(buf, level);
4616 	btrfs_set_header_bytenr(buf, buf->start);
4617 	btrfs_set_header_generation(buf, trans->transid);
4618 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4619 	btrfs_set_header_owner(buf, owner);
4620 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4621 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4622 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4623 		buf->log_index = root->log_transid % 2;
4624 		/*
4625 		 * we allow two log transactions at a time, use different
4626 		 * EXTENT bit to differentiate dirty pages.
4627 		 */
4628 		if (buf->log_index == 0)
4629 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4630 					buf->start + buf->len - 1, GFP_NOFS);
4631 		else
4632 			set_extent_new(&root->dirty_log_pages, buf->start,
4633 					buf->start + buf->len - 1);
4634 	} else {
4635 		buf->log_index = -1;
4636 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4637 			 buf->start + buf->len - 1, GFP_NOFS);
4638 	}
4639 	trans->dirty = true;
4640 	/* this returns a buffer locked for blocking */
4641 	return buf;
4642 }
4643 
4644 /*
4645  * finds a free extent and does all the dirty work required for allocation
4646  * returns the tree buffer or an ERR_PTR on error.
4647  */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4648 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4649 					     struct btrfs_root *root,
4650 					     u64 parent, u64 root_objectid,
4651 					     const struct btrfs_disk_key *key,
4652 					     int level, u64 hint,
4653 					     u64 empty_size,
4654 					     enum btrfs_lock_nesting nest)
4655 {
4656 	struct btrfs_fs_info *fs_info = root->fs_info;
4657 	struct btrfs_key ins;
4658 	struct btrfs_block_rsv *block_rsv;
4659 	struct extent_buffer *buf;
4660 	struct btrfs_delayed_extent_op *extent_op;
4661 	struct btrfs_ref generic_ref = { 0 };
4662 	u64 flags = 0;
4663 	int ret;
4664 	u32 blocksize = fs_info->nodesize;
4665 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4666 
4667 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4668 	if (btrfs_is_testing(fs_info)) {
4669 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4670 					    level, root_objectid, nest);
4671 		if (!IS_ERR(buf))
4672 			root->alloc_bytenr += blocksize;
4673 		return buf;
4674 	}
4675 #endif
4676 
4677 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4678 	if (IS_ERR(block_rsv))
4679 		return ERR_CAST(block_rsv);
4680 
4681 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4682 				   empty_size, hint, &ins, 0, 0);
4683 	if (ret)
4684 		goto out_unuse;
4685 
4686 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4687 				    root_objectid, nest);
4688 	if (IS_ERR(buf)) {
4689 		ret = PTR_ERR(buf);
4690 		goto out_free_reserved;
4691 	}
4692 
4693 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4694 		if (parent == 0)
4695 			parent = ins.objectid;
4696 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4697 	} else
4698 		BUG_ON(parent > 0);
4699 
4700 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4701 		extent_op = btrfs_alloc_delayed_extent_op();
4702 		if (!extent_op) {
4703 			ret = -ENOMEM;
4704 			goto out_free_buf;
4705 		}
4706 		if (key)
4707 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4708 		else
4709 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4710 		extent_op->flags_to_set = flags;
4711 		extent_op->update_key = skinny_metadata ? false : true;
4712 		extent_op->update_flags = true;
4713 		extent_op->is_data = false;
4714 		extent_op->level = level;
4715 
4716 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4717 				       ins.objectid, ins.offset, parent);
4718 		generic_ref.real_root = root->root_key.objectid;
4719 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4720 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4721 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4722 		if (ret)
4723 			goto out_free_delayed;
4724 	}
4725 	return buf;
4726 
4727 out_free_delayed:
4728 	btrfs_free_delayed_extent_op(extent_op);
4729 out_free_buf:
4730 	btrfs_tree_unlock(buf);
4731 	free_extent_buffer(buf);
4732 out_free_reserved:
4733 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4734 out_unuse:
4735 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4736 	return ERR_PTR(ret);
4737 }
4738 
4739 struct walk_control {
4740 	u64 refs[BTRFS_MAX_LEVEL];
4741 	u64 flags[BTRFS_MAX_LEVEL];
4742 	struct btrfs_key update_progress;
4743 	struct btrfs_key drop_progress;
4744 	int drop_level;
4745 	int stage;
4746 	int level;
4747 	int shared_level;
4748 	int update_ref;
4749 	int keep_locks;
4750 	int reada_slot;
4751 	int reada_count;
4752 	int restarted;
4753 };
4754 
4755 #define DROP_REFERENCE	1
4756 #define UPDATE_BACKREF	2
4757 
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)4758 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4759 				     struct btrfs_root *root,
4760 				     struct walk_control *wc,
4761 				     struct btrfs_path *path)
4762 {
4763 	struct btrfs_fs_info *fs_info = root->fs_info;
4764 	u64 bytenr;
4765 	u64 generation;
4766 	u64 refs;
4767 	u64 flags;
4768 	u32 nritems;
4769 	struct btrfs_key key;
4770 	struct extent_buffer *eb;
4771 	int ret;
4772 	int slot;
4773 	int nread = 0;
4774 
4775 	if (path->slots[wc->level] < wc->reada_slot) {
4776 		wc->reada_count = wc->reada_count * 2 / 3;
4777 		wc->reada_count = max(wc->reada_count, 2);
4778 	} else {
4779 		wc->reada_count = wc->reada_count * 3 / 2;
4780 		wc->reada_count = min_t(int, wc->reada_count,
4781 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4782 	}
4783 
4784 	eb = path->nodes[wc->level];
4785 	nritems = btrfs_header_nritems(eb);
4786 
4787 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4788 		if (nread >= wc->reada_count)
4789 			break;
4790 
4791 		cond_resched();
4792 		bytenr = btrfs_node_blockptr(eb, slot);
4793 		generation = btrfs_node_ptr_generation(eb, slot);
4794 
4795 		if (slot == path->slots[wc->level])
4796 			goto reada;
4797 
4798 		if (wc->stage == UPDATE_BACKREF &&
4799 		    generation <= root->root_key.offset)
4800 			continue;
4801 
4802 		/* We don't lock the tree block, it's OK to be racy here */
4803 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4804 					       wc->level - 1, 1, &refs,
4805 					       &flags);
4806 		/* We don't care about errors in readahead. */
4807 		if (ret < 0)
4808 			continue;
4809 		BUG_ON(refs == 0);
4810 
4811 		if (wc->stage == DROP_REFERENCE) {
4812 			if (refs == 1)
4813 				goto reada;
4814 
4815 			if (wc->level == 1 &&
4816 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4817 				continue;
4818 			if (!wc->update_ref ||
4819 			    generation <= root->root_key.offset)
4820 				continue;
4821 			btrfs_node_key_to_cpu(eb, &key, slot);
4822 			ret = btrfs_comp_cpu_keys(&key,
4823 						  &wc->update_progress);
4824 			if (ret < 0)
4825 				continue;
4826 		} else {
4827 			if (wc->level == 1 &&
4828 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4829 				continue;
4830 		}
4831 reada:
4832 		readahead_tree_block(fs_info, bytenr);
4833 		nread++;
4834 	}
4835 	wc->reada_slot = slot;
4836 }
4837 
4838 /*
4839  * helper to process tree block while walking down the tree.
4840  *
4841  * when wc->stage == UPDATE_BACKREF, this function updates
4842  * back refs for pointers in the block.
4843  *
4844  * NOTE: return value 1 means we should stop walking down.
4845  */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)4846 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4847 				   struct btrfs_root *root,
4848 				   struct btrfs_path *path,
4849 				   struct walk_control *wc, int lookup_info)
4850 {
4851 	struct btrfs_fs_info *fs_info = root->fs_info;
4852 	int level = wc->level;
4853 	struct extent_buffer *eb = path->nodes[level];
4854 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4855 	int ret;
4856 
4857 	if (wc->stage == UPDATE_BACKREF &&
4858 	    btrfs_header_owner(eb) != root->root_key.objectid)
4859 		return 1;
4860 
4861 	/*
4862 	 * when reference count of tree block is 1, it won't increase
4863 	 * again. once full backref flag is set, we never clear it.
4864 	 */
4865 	if (lookup_info &&
4866 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4867 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4868 		BUG_ON(!path->locks[level]);
4869 		ret = btrfs_lookup_extent_info(trans, fs_info,
4870 					       eb->start, level, 1,
4871 					       &wc->refs[level],
4872 					       &wc->flags[level]);
4873 		BUG_ON(ret == -ENOMEM);
4874 		if (ret)
4875 			return ret;
4876 		BUG_ON(wc->refs[level] == 0);
4877 	}
4878 
4879 	if (wc->stage == DROP_REFERENCE) {
4880 		if (wc->refs[level] > 1)
4881 			return 1;
4882 
4883 		if (path->locks[level] && !wc->keep_locks) {
4884 			btrfs_tree_unlock_rw(eb, path->locks[level]);
4885 			path->locks[level] = 0;
4886 		}
4887 		return 0;
4888 	}
4889 
4890 	/* wc->stage == UPDATE_BACKREF */
4891 	if (!(wc->flags[level] & flag)) {
4892 		BUG_ON(!path->locks[level]);
4893 		ret = btrfs_inc_ref(trans, root, eb, 1);
4894 		BUG_ON(ret); /* -ENOMEM */
4895 		ret = btrfs_dec_ref(trans, root, eb, 0);
4896 		BUG_ON(ret); /* -ENOMEM */
4897 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
4898 						  btrfs_header_level(eb), 0);
4899 		BUG_ON(ret); /* -ENOMEM */
4900 		wc->flags[level] |= flag;
4901 	}
4902 
4903 	/*
4904 	 * the block is shared by multiple trees, so it's not good to
4905 	 * keep the tree lock
4906 	 */
4907 	if (path->locks[level] && level > 0) {
4908 		btrfs_tree_unlock_rw(eb, path->locks[level]);
4909 		path->locks[level] = 0;
4910 	}
4911 	return 0;
4912 }
4913 
4914 /*
4915  * This is used to verify a ref exists for this root to deal with a bug where we
4916  * would have a drop_progress key that hadn't been updated properly.
4917  */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)4918 static int check_ref_exists(struct btrfs_trans_handle *trans,
4919 			    struct btrfs_root *root, u64 bytenr, u64 parent,
4920 			    int level)
4921 {
4922 	struct btrfs_path *path;
4923 	struct btrfs_extent_inline_ref *iref;
4924 	int ret;
4925 
4926 	path = btrfs_alloc_path();
4927 	if (!path)
4928 		return -ENOMEM;
4929 
4930 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
4931 				    root->fs_info->nodesize, parent,
4932 				    root->root_key.objectid, level, 0);
4933 	btrfs_free_path(path);
4934 	if (ret == -ENOENT)
4935 		return 0;
4936 	if (ret < 0)
4937 		return ret;
4938 	return 1;
4939 }
4940 
4941 /*
4942  * helper to process tree block pointer.
4943  *
4944  * when wc->stage == DROP_REFERENCE, this function checks
4945  * reference count of the block pointed to. if the block
4946  * is shared and we need update back refs for the subtree
4947  * rooted at the block, this function changes wc->stage to
4948  * UPDATE_BACKREF. if the block is shared and there is no
4949  * need to update back, this function drops the reference
4950  * to the block.
4951  *
4952  * NOTE: return value 1 means we should stop walking down.
4953  */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)4954 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4955 				 struct btrfs_root *root,
4956 				 struct btrfs_path *path,
4957 				 struct walk_control *wc, int *lookup_info)
4958 {
4959 	struct btrfs_fs_info *fs_info = root->fs_info;
4960 	u64 bytenr;
4961 	u64 generation;
4962 	u64 parent;
4963 	struct btrfs_key key;
4964 	struct btrfs_key first_key;
4965 	struct btrfs_ref ref = { 0 };
4966 	struct extent_buffer *next;
4967 	int level = wc->level;
4968 	int reada = 0;
4969 	int ret = 0;
4970 	bool need_account = false;
4971 
4972 	generation = btrfs_node_ptr_generation(path->nodes[level],
4973 					       path->slots[level]);
4974 	/*
4975 	 * if the lower level block was created before the snapshot
4976 	 * was created, we know there is no need to update back refs
4977 	 * for the subtree
4978 	 */
4979 	if (wc->stage == UPDATE_BACKREF &&
4980 	    generation <= root->root_key.offset) {
4981 		*lookup_info = 1;
4982 		return 1;
4983 	}
4984 
4985 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4986 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4987 			      path->slots[level]);
4988 
4989 	next = find_extent_buffer(fs_info, bytenr);
4990 	if (!next) {
4991 		next = btrfs_find_create_tree_block(fs_info, bytenr);
4992 		if (IS_ERR(next))
4993 			return PTR_ERR(next);
4994 
4995 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4996 					       level - 1);
4997 		reada = 1;
4998 	}
4999 	btrfs_tree_lock(next);
5000 	btrfs_set_lock_blocking_write(next);
5001 
5002 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5003 				       &wc->refs[level - 1],
5004 				       &wc->flags[level - 1]);
5005 	if (ret < 0)
5006 		goto out_unlock;
5007 
5008 	if (unlikely(wc->refs[level - 1] == 0)) {
5009 		btrfs_err(fs_info, "Missing references.");
5010 		ret = -EIO;
5011 		goto out_unlock;
5012 	}
5013 	*lookup_info = 0;
5014 
5015 	if (wc->stage == DROP_REFERENCE) {
5016 		if (wc->refs[level - 1] > 1) {
5017 			need_account = true;
5018 			if (level == 1 &&
5019 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5020 				goto skip;
5021 
5022 			if (!wc->update_ref ||
5023 			    generation <= root->root_key.offset)
5024 				goto skip;
5025 
5026 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5027 					      path->slots[level]);
5028 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5029 			if (ret < 0)
5030 				goto skip;
5031 
5032 			wc->stage = UPDATE_BACKREF;
5033 			wc->shared_level = level - 1;
5034 		}
5035 	} else {
5036 		if (level == 1 &&
5037 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5038 			goto skip;
5039 	}
5040 
5041 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5042 		btrfs_tree_unlock(next);
5043 		free_extent_buffer(next);
5044 		next = NULL;
5045 		*lookup_info = 1;
5046 	}
5047 
5048 	if (!next) {
5049 		if (reada && level == 1)
5050 			reada_walk_down(trans, root, wc, path);
5051 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
5052 				       &first_key);
5053 		if (IS_ERR(next)) {
5054 			return PTR_ERR(next);
5055 		} else if (!extent_buffer_uptodate(next)) {
5056 			free_extent_buffer(next);
5057 			return -EIO;
5058 		}
5059 		btrfs_tree_lock(next);
5060 		btrfs_set_lock_blocking_write(next);
5061 	}
5062 
5063 	level--;
5064 	ASSERT(level == btrfs_header_level(next));
5065 	if (level != btrfs_header_level(next)) {
5066 		btrfs_err(root->fs_info, "mismatched level");
5067 		ret = -EIO;
5068 		goto out_unlock;
5069 	}
5070 	path->nodes[level] = next;
5071 	path->slots[level] = 0;
5072 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5073 	wc->level = level;
5074 	if (wc->level == 1)
5075 		wc->reada_slot = 0;
5076 	return 0;
5077 skip:
5078 	wc->refs[level - 1] = 0;
5079 	wc->flags[level - 1] = 0;
5080 	if (wc->stage == DROP_REFERENCE) {
5081 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5082 			parent = path->nodes[level]->start;
5083 		} else {
5084 			ASSERT(root->root_key.objectid ==
5085 			       btrfs_header_owner(path->nodes[level]));
5086 			if (root->root_key.objectid !=
5087 			    btrfs_header_owner(path->nodes[level])) {
5088 				btrfs_err(root->fs_info,
5089 						"mismatched block owner");
5090 				ret = -EIO;
5091 				goto out_unlock;
5092 			}
5093 			parent = 0;
5094 		}
5095 
5096 		/*
5097 		 * If we had a drop_progress we need to verify the refs are set
5098 		 * as expected.  If we find our ref then we know that from here
5099 		 * on out everything should be correct, and we can clear the
5100 		 * ->restarted flag.
5101 		 */
5102 		if (wc->restarted) {
5103 			ret = check_ref_exists(trans, root, bytenr, parent,
5104 					       level - 1);
5105 			if (ret < 0)
5106 				goto out_unlock;
5107 			if (ret == 0)
5108 				goto no_delete;
5109 			ret = 0;
5110 			wc->restarted = 0;
5111 		}
5112 
5113 		/*
5114 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5115 		 * already accounted them at merge time (replace_path),
5116 		 * thus we could skip expensive subtree trace here.
5117 		 */
5118 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5119 		    need_account) {
5120 			ret = btrfs_qgroup_trace_subtree(trans, next,
5121 							 generation, level - 1);
5122 			if (ret) {
5123 				btrfs_err_rl(fs_info,
5124 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5125 					     ret);
5126 			}
5127 		}
5128 
5129 		/*
5130 		 * We need to update the next key in our walk control so we can
5131 		 * update the drop_progress key accordingly.  We don't care if
5132 		 * find_next_key doesn't find a key because that means we're at
5133 		 * the end and are going to clean up now.
5134 		 */
5135 		wc->drop_level = level;
5136 		find_next_key(path, level, &wc->drop_progress);
5137 
5138 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5139 				       fs_info->nodesize, parent);
5140 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5141 		ret = btrfs_free_extent(trans, &ref);
5142 		if (ret)
5143 			goto out_unlock;
5144 	}
5145 no_delete:
5146 	*lookup_info = 1;
5147 	ret = 1;
5148 
5149 out_unlock:
5150 	btrfs_tree_unlock(next);
5151 	free_extent_buffer(next);
5152 
5153 	return ret;
5154 }
5155 
5156 /*
5157  * helper to process tree block while walking up the tree.
5158  *
5159  * when wc->stage == DROP_REFERENCE, this function drops
5160  * reference count on the block.
5161  *
5162  * when wc->stage == UPDATE_BACKREF, this function changes
5163  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5164  * to UPDATE_BACKREF previously while processing the block.
5165  *
5166  * NOTE: return value 1 means we should stop walking up.
5167  */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5168 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5169 				 struct btrfs_root *root,
5170 				 struct btrfs_path *path,
5171 				 struct walk_control *wc)
5172 {
5173 	struct btrfs_fs_info *fs_info = root->fs_info;
5174 	int ret;
5175 	int level = wc->level;
5176 	struct extent_buffer *eb = path->nodes[level];
5177 	u64 parent = 0;
5178 
5179 	if (wc->stage == UPDATE_BACKREF) {
5180 		BUG_ON(wc->shared_level < level);
5181 		if (level < wc->shared_level)
5182 			goto out;
5183 
5184 		ret = find_next_key(path, level + 1, &wc->update_progress);
5185 		if (ret > 0)
5186 			wc->update_ref = 0;
5187 
5188 		wc->stage = DROP_REFERENCE;
5189 		wc->shared_level = -1;
5190 		path->slots[level] = 0;
5191 
5192 		/*
5193 		 * check reference count again if the block isn't locked.
5194 		 * we should start walking down the tree again if reference
5195 		 * count is one.
5196 		 */
5197 		if (!path->locks[level]) {
5198 			BUG_ON(level == 0);
5199 			btrfs_tree_lock(eb);
5200 			btrfs_set_lock_blocking_write(eb);
5201 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5202 
5203 			ret = btrfs_lookup_extent_info(trans, fs_info,
5204 						       eb->start, level, 1,
5205 						       &wc->refs[level],
5206 						       &wc->flags[level]);
5207 			if (ret < 0) {
5208 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5209 				path->locks[level] = 0;
5210 				return ret;
5211 			}
5212 			BUG_ON(wc->refs[level] == 0);
5213 			if (wc->refs[level] == 1) {
5214 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5215 				path->locks[level] = 0;
5216 				return 1;
5217 			}
5218 		}
5219 	}
5220 
5221 	/* wc->stage == DROP_REFERENCE */
5222 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5223 
5224 	if (wc->refs[level] == 1) {
5225 		if (level == 0) {
5226 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5227 				ret = btrfs_dec_ref(trans, root, eb, 1);
5228 			else
5229 				ret = btrfs_dec_ref(trans, root, eb, 0);
5230 			BUG_ON(ret); /* -ENOMEM */
5231 			if (is_fstree(root->root_key.objectid)) {
5232 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5233 				if (ret) {
5234 					btrfs_err_rl(fs_info,
5235 	"error %d accounting leaf items, quota is out of sync, rescan required",
5236 					     ret);
5237 				}
5238 			}
5239 		}
5240 		/* make block locked assertion in btrfs_clean_tree_block happy */
5241 		if (!path->locks[level] &&
5242 		    btrfs_header_generation(eb) == trans->transid) {
5243 			btrfs_tree_lock(eb);
5244 			btrfs_set_lock_blocking_write(eb);
5245 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5246 		}
5247 		btrfs_clean_tree_block(eb);
5248 	}
5249 
5250 	if (eb == root->node) {
5251 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5252 			parent = eb->start;
5253 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5254 			goto owner_mismatch;
5255 	} else {
5256 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5257 			parent = path->nodes[level + 1]->start;
5258 		else if (root->root_key.objectid !=
5259 			 btrfs_header_owner(path->nodes[level + 1]))
5260 			goto owner_mismatch;
5261 	}
5262 
5263 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5264 out:
5265 	wc->refs[level] = 0;
5266 	wc->flags[level] = 0;
5267 	return 0;
5268 
5269 owner_mismatch:
5270 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5271 		     btrfs_header_owner(eb), root->root_key.objectid);
5272 	return -EUCLEAN;
5273 }
5274 
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5275 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5276 				   struct btrfs_root *root,
5277 				   struct btrfs_path *path,
5278 				   struct walk_control *wc)
5279 {
5280 	int level = wc->level;
5281 	int lookup_info = 1;
5282 	int ret;
5283 
5284 	while (level >= 0) {
5285 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5286 		if (ret > 0)
5287 			break;
5288 
5289 		if (level == 0)
5290 			break;
5291 
5292 		if (path->slots[level] >=
5293 		    btrfs_header_nritems(path->nodes[level]))
5294 			break;
5295 
5296 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5297 		if (ret > 0) {
5298 			path->slots[level]++;
5299 			continue;
5300 		} else if (ret < 0)
5301 			return ret;
5302 		level = wc->level;
5303 	}
5304 	return 0;
5305 }
5306 
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5307 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5308 				 struct btrfs_root *root,
5309 				 struct btrfs_path *path,
5310 				 struct walk_control *wc, int max_level)
5311 {
5312 	int level = wc->level;
5313 	int ret;
5314 
5315 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5316 	while (level < max_level && path->nodes[level]) {
5317 		wc->level = level;
5318 		if (path->slots[level] + 1 <
5319 		    btrfs_header_nritems(path->nodes[level])) {
5320 			path->slots[level]++;
5321 			return 0;
5322 		} else {
5323 			ret = walk_up_proc(trans, root, path, wc);
5324 			if (ret > 0)
5325 				return 0;
5326 			if (ret < 0)
5327 				return ret;
5328 
5329 			if (path->locks[level]) {
5330 				btrfs_tree_unlock_rw(path->nodes[level],
5331 						     path->locks[level]);
5332 				path->locks[level] = 0;
5333 			}
5334 			free_extent_buffer(path->nodes[level]);
5335 			path->nodes[level] = NULL;
5336 			level++;
5337 		}
5338 	}
5339 	return 1;
5340 }
5341 
5342 /*
5343  * drop a subvolume tree.
5344  *
5345  * this function traverses the tree freeing any blocks that only
5346  * referenced by the tree.
5347  *
5348  * when a shared tree block is found. this function decreases its
5349  * reference count by one. if update_ref is true, this function
5350  * also make sure backrefs for the shared block and all lower level
5351  * blocks are properly updated.
5352  *
5353  * If called with for_reloc == 0, may exit early with -EAGAIN
5354  */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5355 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5356 {
5357 	struct btrfs_fs_info *fs_info = root->fs_info;
5358 	struct btrfs_path *path;
5359 	struct btrfs_trans_handle *trans;
5360 	struct btrfs_root *tree_root = fs_info->tree_root;
5361 	struct btrfs_root_item *root_item = &root->root_item;
5362 	struct walk_control *wc;
5363 	struct btrfs_key key;
5364 	int err = 0;
5365 	int ret;
5366 	int level;
5367 	bool root_dropped = false;
5368 
5369 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5370 
5371 	path = btrfs_alloc_path();
5372 	if (!path) {
5373 		err = -ENOMEM;
5374 		goto out;
5375 	}
5376 
5377 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5378 	if (!wc) {
5379 		btrfs_free_path(path);
5380 		err = -ENOMEM;
5381 		goto out;
5382 	}
5383 
5384 	/*
5385 	 * Use join to avoid potential EINTR from transaction start. See
5386 	 * wait_reserve_ticket and the whole reservation callchain.
5387 	 */
5388 	if (for_reloc)
5389 		trans = btrfs_join_transaction(tree_root);
5390 	else
5391 		trans = btrfs_start_transaction(tree_root, 0);
5392 	if (IS_ERR(trans)) {
5393 		err = PTR_ERR(trans);
5394 		goto out_free;
5395 	}
5396 
5397 	err = btrfs_run_delayed_items(trans);
5398 	if (err)
5399 		goto out_end_trans;
5400 
5401 	/*
5402 	 * This will help us catch people modifying the fs tree while we're
5403 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5404 	 * dropped as we unlock the root node and parent nodes as we walk down
5405 	 * the tree, assuming nothing will change.  If something does change
5406 	 * then we'll have stale information and drop references to blocks we've
5407 	 * already dropped.
5408 	 */
5409 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5410 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5411 		level = btrfs_header_level(root->node);
5412 		path->nodes[level] = btrfs_lock_root_node(root);
5413 		btrfs_set_lock_blocking_write(path->nodes[level]);
5414 		path->slots[level] = 0;
5415 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5416 		memset(&wc->update_progress, 0,
5417 		       sizeof(wc->update_progress));
5418 	} else {
5419 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5420 		memcpy(&wc->update_progress, &key,
5421 		       sizeof(wc->update_progress));
5422 
5423 		level = root_item->drop_level;
5424 		BUG_ON(level == 0);
5425 		path->lowest_level = level;
5426 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5427 		path->lowest_level = 0;
5428 		if (ret < 0) {
5429 			err = ret;
5430 			goto out_end_trans;
5431 		}
5432 		WARN_ON(ret > 0);
5433 
5434 		/*
5435 		 * unlock our path, this is safe because only this
5436 		 * function is allowed to delete this snapshot
5437 		 */
5438 		btrfs_unlock_up_safe(path, 0);
5439 
5440 		level = btrfs_header_level(root->node);
5441 		while (1) {
5442 			btrfs_tree_lock(path->nodes[level]);
5443 			btrfs_set_lock_blocking_write(path->nodes[level]);
5444 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5445 
5446 			ret = btrfs_lookup_extent_info(trans, fs_info,
5447 						path->nodes[level]->start,
5448 						level, 1, &wc->refs[level],
5449 						&wc->flags[level]);
5450 			if (ret < 0) {
5451 				err = ret;
5452 				goto out_end_trans;
5453 			}
5454 			BUG_ON(wc->refs[level] == 0);
5455 
5456 			if (level == root_item->drop_level)
5457 				break;
5458 
5459 			btrfs_tree_unlock(path->nodes[level]);
5460 			path->locks[level] = 0;
5461 			WARN_ON(wc->refs[level] != 1);
5462 			level--;
5463 		}
5464 	}
5465 
5466 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5467 	wc->level = level;
5468 	wc->shared_level = -1;
5469 	wc->stage = DROP_REFERENCE;
5470 	wc->update_ref = update_ref;
5471 	wc->keep_locks = 0;
5472 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5473 
5474 	while (1) {
5475 
5476 		ret = walk_down_tree(trans, root, path, wc);
5477 		if (ret < 0) {
5478 			err = ret;
5479 			break;
5480 		}
5481 
5482 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5483 		if (ret < 0) {
5484 			err = ret;
5485 			break;
5486 		}
5487 
5488 		if (ret > 0) {
5489 			BUG_ON(wc->stage != DROP_REFERENCE);
5490 			break;
5491 		}
5492 
5493 		if (wc->stage == DROP_REFERENCE) {
5494 			wc->drop_level = wc->level;
5495 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5496 					      &wc->drop_progress,
5497 					      path->slots[wc->drop_level]);
5498 		}
5499 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5500 				      &wc->drop_progress);
5501 		root_item->drop_level = wc->drop_level;
5502 
5503 		BUG_ON(wc->level == 0);
5504 		if (btrfs_should_end_transaction(trans) ||
5505 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5506 			ret = btrfs_update_root(trans, tree_root,
5507 						&root->root_key,
5508 						root_item);
5509 			if (ret) {
5510 				btrfs_abort_transaction(trans, ret);
5511 				err = ret;
5512 				goto out_end_trans;
5513 			}
5514 
5515 			btrfs_end_transaction_throttle(trans);
5516 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5517 				btrfs_debug(fs_info,
5518 					    "drop snapshot early exit");
5519 				err = -EAGAIN;
5520 				goto out_free;
5521 			}
5522 
5523 		       /*
5524 			* Use join to avoid potential EINTR from transaction
5525 			* start. See wait_reserve_ticket and the whole
5526 			* reservation callchain.
5527 			*/
5528 			if (for_reloc)
5529 				trans = btrfs_join_transaction(tree_root);
5530 			else
5531 				trans = btrfs_start_transaction(tree_root, 0);
5532 			if (IS_ERR(trans)) {
5533 				err = PTR_ERR(trans);
5534 				goto out_free;
5535 			}
5536 		}
5537 	}
5538 	btrfs_release_path(path);
5539 	if (err)
5540 		goto out_end_trans;
5541 
5542 	ret = btrfs_del_root(trans, &root->root_key);
5543 	if (ret) {
5544 		btrfs_abort_transaction(trans, ret);
5545 		err = ret;
5546 		goto out_end_trans;
5547 	}
5548 
5549 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5550 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5551 				      NULL, NULL);
5552 		if (ret < 0) {
5553 			btrfs_abort_transaction(trans, ret);
5554 			err = ret;
5555 			goto out_end_trans;
5556 		} else if (ret > 0) {
5557 			/* if we fail to delete the orphan item this time
5558 			 * around, it'll get picked up the next time.
5559 			 *
5560 			 * The most common failure here is just -ENOENT.
5561 			 */
5562 			btrfs_del_orphan_item(trans, tree_root,
5563 					      root->root_key.objectid);
5564 		}
5565 	}
5566 
5567 	/*
5568 	 * This subvolume is going to be completely dropped, and won't be
5569 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5570 	 * commit transaction time.  So free it here manually.
5571 	 */
5572 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5573 	btrfs_qgroup_free_meta_all_pertrans(root);
5574 
5575 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5576 		btrfs_add_dropped_root(trans, root);
5577 	else
5578 		btrfs_put_root(root);
5579 	root_dropped = true;
5580 out_end_trans:
5581 	btrfs_end_transaction_throttle(trans);
5582 out_free:
5583 	kfree(wc);
5584 	btrfs_free_path(path);
5585 out:
5586 	/*
5587 	 * So if we need to stop dropping the snapshot for whatever reason we
5588 	 * need to make sure to add it back to the dead root list so that we
5589 	 * keep trying to do the work later.  This also cleans up roots if we
5590 	 * don't have it in the radix (like when we recover after a power fail
5591 	 * or unmount) so we don't leak memory.
5592 	 */
5593 	if (!for_reloc && !root_dropped)
5594 		btrfs_add_dead_root(root);
5595 	return err;
5596 }
5597 
5598 /*
5599  * drop subtree rooted at tree block 'node'.
5600  *
5601  * NOTE: this function will unlock and release tree block 'node'
5602  * only used by relocation code
5603  */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5604 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5605 			struct btrfs_root *root,
5606 			struct extent_buffer *node,
5607 			struct extent_buffer *parent)
5608 {
5609 	struct btrfs_fs_info *fs_info = root->fs_info;
5610 	struct btrfs_path *path;
5611 	struct walk_control *wc;
5612 	int level;
5613 	int parent_level;
5614 	int ret = 0;
5615 	int wret;
5616 
5617 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5618 
5619 	path = btrfs_alloc_path();
5620 	if (!path)
5621 		return -ENOMEM;
5622 
5623 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5624 	if (!wc) {
5625 		btrfs_free_path(path);
5626 		return -ENOMEM;
5627 	}
5628 
5629 	btrfs_assert_tree_locked(parent);
5630 	parent_level = btrfs_header_level(parent);
5631 	atomic_inc(&parent->refs);
5632 	path->nodes[parent_level] = parent;
5633 	path->slots[parent_level] = btrfs_header_nritems(parent);
5634 
5635 	btrfs_assert_tree_locked(node);
5636 	level = btrfs_header_level(node);
5637 	path->nodes[level] = node;
5638 	path->slots[level] = 0;
5639 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5640 
5641 	wc->refs[parent_level] = 1;
5642 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5643 	wc->level = level;
5644 	wc->shared_level = -1;
5645 	wc->stage = DROP_REFERENCE;
5646 	wc->update_ref = 0;
5647 	wc->keep_locks = 1;
5648 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5649 
5650 	while (1) {
5651 		wret = walk_down_tree(trans, root, path, wc);
5652 		if (wret < 0) {
5653 			ret = wret;
5654 			break;
5655 		}
5656 
5657 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5658 		if (wret < 0)
5659 			ret = wret;
5660 		if (wret != 0)
5661 			break;
5662 	}
5663 
5664 	kfree(wc);
5665 	btrfs_free_path(path);
5666 	return ret;
5667 }
5668 
5669 /*
5670  * helper to account the unused space of all the readonly block group in the
5671  * space_info. takes mirrors into account.
5672  */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)5673 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5674 {
5675 	struct btrfs_block_group *block_group;
5676 	u64 free_bytes = 0;
5677 	int factor;
5678 
5679 	/* It's df, we don't care if it's racy */
5680 	if (list_empty(&sinfo->ro_bgs))
5681 		return 0;
5682 
5683 	spin_lock(&sinfo->lock);
5684 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5685 		spin_lock(&block_group->lock);
5686 
5687 		if (!block_group->ro) {
5688 			spin_unlock(&block_group->lock);
5689 			continue;
5690 		}
5691 
5692 		factor = btrfs_bg_type_to_factor(block_group->flags);
5693 		free_bytes += (block_group->length -
5694 			       block_group->used) * factor;
5695 
5696 		spin_unlock(&block_group->lock);
5697 	}
5698 	spin_unlock(&sinfo->lock);
5699 
5700 	return free_bytes;
5701 }
5702 
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)5703 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5704 				   u64 start, u64 end)
5705 {
5706 	return unpin_extent_range(fs_info, start, end, false);
5707 }
5708 
5709 /*
5710  * It used to be that old block groups would be left around forever.
5711  * Iterating over them would be enough to trim unused space.  Since we
5712  * now automatically remove them, we also need to iterate over unallocated
5713  * space.
5714  *
5715  * We don't want a transaction for this since the discard may take a
5716  * substantial amount of time.  We don't require that a transaction be
5717  * running, but we do need to take a running transaction into account
5718  * to ensure that we're not discarding chunks that were released or
5719  * allocated in the current transaction.
5720  *
5721  * Holding the chunks lock will prevent other threads from allocating
5722  * or releasing chunks, but it won't prevent a running transaction
5723  * from committing and releasing the memory that the pending chunks
5724  * list head uses.  For that, we need to take a reference to the
5725  * transaction and hold the commit root sem.  We only need to hold
5726  * it while performing the free space search since we have already
5727  * held back allocations.
5728  */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)5729 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5730 {
5731 	u64 start = SZ_1M, len = 0, end = 0;
5732 	int ret;
5733 
5734 	*trimmed = 0;
5735 
5736 	/* Discard not supported = nothing to do. */
5737 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5738 		return 0;
5739 
5740 	/* Not writable = nothing to do. */
5741 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5742 		return 0;
5743 
5744 	/* No free space = nothing to do. */
5745 	if (device->total_bytes <= device->bytes_used)
5746 		return 0;
5747 
5748 	ret = 0;
5749 
5750 	while (1) {
5751 		struct btrfs_fs_info *fs_info = device->fs_info;
5752 		u64 bytes;
5753 
5754 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5755 		if (ret)
5756 			break;
5757 
5758 		find_first_clear_extent_bit(&device->alloc_state, start,
5759 					    &start, &end,
5760 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5761 
5762 		/* Check if there are any CHUNK_* bits left */
5763 		if (start > device->total_bytes) {
5764 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5765 			btrfs_warn_in_rcu(fs_info,
5766 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5767 					  start, end - start + 1,
5768 					  rcu_str_deref(device->name),
5769 					  device->total_bytes);
5770 			mutex_unlock(&fs_info->chunk_mutex);
5771 			ret = 0;
5772 			break;
5773 		}
5774 
5775 		/* Ensure we skip the reserved area in the first 1M */
5776 		start = max_t(u64, start, SZ_1M);
5777 
5778 		/*
5779 		 * If find_first_clear_extent_bit find a range that spans the
5780 		 * end of the device it will set end to -1, in this case it's up
5781 		 * to the caller to trim the value to the size of the device.
5782 		 */
5783 		end = min(end, device->total_bytes - 1);
5784 
5785 		len = end - start + 1;
5786 
5787 		/* We didn't find any extents */
5788 		if (!len) {
5789 			mutex_unlock(&fs_info->chunk_mutex);
5790 			ret = 0;
5791 			break;
5792 		}
5793 
5794 		ret = btrfs_issue_discard(device->bdev, start, len,
5795 					  &bytes);
5796 		if (!ret)
5797 			set_extent_bits(&device->alloc_state, start,
5798 					start + bytes - 1,
5799 					CHUNK_TRIMMED);
5800 		mutex_unlock(&fs_info->chunk_mutex);
5801 
5802 		if (ret)
5803 			break;
5804 
5805 		start += len;
5806 		*trimmed += bytes;
5807 
5808 		if (fatal_signal_pending(current)) {
5809 			ret = -ERESTARTSYS;
5810 			break;
5811 		}
5812 
5813 		cond_resched();
5814 	}
5815 
5816 	return ret;
5817 }
5818 
5819 /*
5820  * Trim the whole filesystem by:
5821  * 1) trimming the free space in each block group
5822  * 2) trimming the unallocated space on each device
5823  *
5824  * This will also continue trimming even if a block group or device encounters
5825  * an error.  The return value will be the last error, or 0 if nothing bad
5826  * happens.
5827  */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)5828 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5829 {
5830 	struct btrfs_block_group *cache = NULL;
5831 	struct btrfs_device *device;
5832 	struct list_head *devices;
5833 	u64 group_trimmed;
5834 	u64 range_end = U64_MAX;
5835 	u64 start;
5836 	u64 end;
5837 	u64 trimmed = 0;
5838 	u64 bg_failed = 0;
5839 	u64 dev_failed = 0;
5840 	int bg_ret = 0;
5841 	int dev_ret = 0;
5842 	int ret = 0;
5843 
5844 	/*
5845 	 * Check range overflow if range->len is set.
5846 	 * The default range->len is U64_MAX.
5847 	 */
5848 	if (range->len != U64_MAX &&
5849 	    check_add_overflow(range->start, range->len, &range_end))
5850 		return -EINVAL;
5851 
5852 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5853 	for (; cache; cache = btrfs_next_block_group(cache)) {
5854 		if (cache->start >= range_end) {
5855 			btrfs_put_block_group(cache);
5856 			break;
5857 		}
5858 
5859 		start = max(range->start, cache->start);
5860 		end = min(range_end, cache->start + cache->length);
5861 
5862 		if (end - start >= range->minlen) {
5863 			if (!btrfs_block_group_done(cache)) {
5864 				ret = btrfs_cache_block_group(cache, 0);
5865 				if (ret) {
5866 					bg_failed++;
5867 					bg_ret = ret;
5868 					continue;
5869 				}
5870 				ret = btrfs_wait_block_group_cache_done(cache);
5871 				if (ret) {
5872 					bg_failed++;
5873 					bg_ret = ret;
5874 					continue;
5875 				}
5876 			}
5877 			ret = btrfs_trim_block_group(cache,
5878 						     &group_trimmed,
5879 						     start,
5880 						     end,
5881 						     range->minlen);
5882 
5883 			trimmed += group_trimmed;
5884 			if (ret) {
5885 				bg_failed++;
5886 				bg_ret = ret;
5887 				continue;
5888 			}
5889 		}
5890 	}
5891 
5892 	if (bg_failed)
5893 		btrfs_warn(fs_info,
5894 			"failed to trim %llu block group(s), last error %d",
5895 			bg_failed, bg_ret);
5896 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5897 	devices = &fs_info->fs_devices->devices;
5898 	list_for_each_entry(device, devices, dev_list) {
5899 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
5900 			continue;
5901 
5902 		ret = btrfs_trim_free_extents(device, &group_trimmed);
5903 		if (ret) {
5904 			dev_failed++;
5905 			dev_ret = ret;
5906 			break;
5907 		}
5908 
5909 		trimmed += group_trimmed;
5910 	}
5911 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5912 
5913 	if (dev_failed)
5914 		btrfs_warn(fs_info,
5915 			"failed to trim %llu device(s), last error %d",
5916 			dev_failed, dev_ret);
5917 	range->len = trimmed;
5918 	if (bg_ret)
5919 		return bg_ret;
5920 	return dev_ret;
5921 }
5922