1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37
38 #undef SCRAMBLE_DELAYED_REFS
39
40
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_delayed_ref_node *node, u64 parent,
43 u64 root_objectid, u64 owner_objectid,
44 u64 owner_offset, int refs_to_drop,
45 struct btrfs_delayed_extent_op *extra_op);
46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
47 struct extent_buffer *leaf,
48 struct btrfs_extent_item *ei);
49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
50 u64 parent, u64 root_objectid,
51 u64 flags, u64 owner, u64 offset,
52 struct btrfs_key *ins, int ref_mod);
53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
54 struct btrfs_delayed_ref_node *node,
55 struct btrfs_delayed_extent_op *extent_op);
56 static int find_next_key(struct btrfs_path *path, int level,
57 struct btrfs_key *key);
58
block_group_bits(struct btrfs_block_group * cache,u64 bits)59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
60 {
61 return (cache->flags & bits) == bits;
62 }
63
btrfs_add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
65 u64 start, u64 num_bytes)
66 {
67 u64 end = start + num_bytes - 1;
68 set_extent_bits(&fs_info->excluded_extents, start, end,
69 EXTENT_UPTODATE);
70 return 0;
71 }
72
btrfs_free_excluded_extents(struct btrfs_block_group * cache)73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
74 {
75 struct btrfs_fs_info *fs_info = cache->fs_info;
76 u64 start, end;
77
78 start = cache->start;
79 end = start + cache->length - 1;
80
81 clear_extent_bits(&fs_info->excluded_extents, start, end,
82 EXTENT_UPTODATE);
83 }
84
85 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)86 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
87 {
88 int ret;
89 struct btrfs_key key;
90 struct btrfs_path *path;
91
92 path = btrfs_alloc_path();
93 if (!path)
94 return -ENOMEM;
95
96 key.objectid = start;
97 key.offset = len;
98 key.type = BTRFS_EXTENT_ITEM_KEY;
99 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
100 btrfs_free_path(path);
101 return ret;
102 }
103
104 /*
105 * helper function to lookup reference count and flags of a tree block.
106 *
107 * the head node for delayed ref is used to store the sum of all the
108 * reference count modifications queued up in the rbtree. the head
109 * node may also store the extent flags to set. This way you can check
110 * to see what the reference count and extent flags would be if all of
111 * the delayed refs are not processed.
112 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)113 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
114 struct btrfs_fs_info *fs_info, u64 bytenr,
115 u64 offset, int metadata, u64 *refs, u64 *flags)
116 {
117 struct btrfs_delayed_ref_head *head;
118 struct btrfs_delayed_ref_root *delayed_refs;
119 struct btrfs_path *path;
120 struct btrfs_extent_item *ei;
121 struct extent_buffer *leaf;
122 struct btrfs_key key;
123 u32 item_size;
124 u64 num_refs;
125 u64 extent_flags;
126 int ret;
127
128 /*
129 * If we don't have skinny metadata, don't bother doing anything
130 * different
131 */
132 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
133 offset = fs_info->nodesize;
134 metadata = 0;
135 }
136
137 path = btrfs_alloc_path();
138 if (!path)
139 return -ENOMEM;
140
141 if (!trans) {
142 path->skip_locking = 1;
143 path->search_commit_root = 1;
144 }
145
146 search_again:
147 key.objectid = bytenr;
148 key.offset = offset;
149 if (metadata)
150 key.type = BTRFS_METADATA_ITEM_KEY;
151 else
152 key.type = BTRFS_EXTENT_ITEM_KEY;
153
154 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
155 if (ret < 0)
156 goto out_free;
157
158 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
159 if (path->slots[0]) {
160 path->slots[0]--;
161 btrfs_item_key_to_cpu(path->nodes[0], &key,
162 path->slots[0]);
163 if (key.objectid == bytenr &&
164 key.type == BTRFS_EXTENT_ITEM_KEY &&
165 key.offset == fs_info->nodesize)
166 ret = 0;
167 }
168 }
169
170 if (ret == 0) {
171 leaf = path->nodes[0];
172 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
173 if (item_size >= sizeof(*ei)) {
174 ei = btrfs_item_ptr(leaf, path->slots[0],
175 struct btrfs_extent_item);
176 num_refs = btrfs_extent_refs(leaf, ei);
177 extent_flags = btrfs_extent_flags(leaf, ei);
178 } else {
179 ret = -EINVAL;
180 btrfs_print_v0_err(fs_info);
181 if (trans)
182 btrfs_abort_transaction(trans, ret);
183 else
184 btrfs_handle_fs_error(fs_info, ret, NULL);
185
186 goto out_free;
187 }
188
189 BUG_ON(num_refs == 0);
190 } else {
191 num_refs = 0;
192 extent_flags = 0;
193 ret = 0;
194 }
195
196 if (!trans)
197 goto out;
198
199 delayed_refs = &trans->transaction->delayed_refs;
200 spin_lock(&delayed_refs->lock);
201 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
202 if (head) {
203 if (!mutex_trylock(&head->mutex)) {
204 refcount_inc(&head->refs);
205 spin_unlock(&delayed_refs->lock);
206
207 btrfs_release_path(path);
208
209 /*
210 * Mutex was contended, block until it's released and try
211 * again
212 */
213 mutex_lock(&head->mutex);
214 mutex_unlock(&head->mutex);
215 btrfs_put_delayed_ref_head(head);
216 goto search_again;
217 }
218 spin_lock(&head->lock);
219 if (head->extent_op && head->extent_op->update_flags)
220 extent_flags |= head->extent_op->flags_to_set;
221 else
222 BUG_ON(num_refs == 0);
223
224 num_refs += head->ref_mod;
225 spin_unlock(&head->lock);
226 mutex_unlock(&head->mutex);
227 }
228 spin_unlock(&delayed_refs->lock);
229 out:
230 WARN_ON(num_refs == 0);
231 if (refs)
232 *refs = num_refs;
233 if (flags)
234 *flags = extent_flags;
235 out_free:
236 btrfs_free_path(path);
237 return ret;
238 }
239
240 /*
241 * Back reference rules. Back refs have three main goals:
242 *
243 * 1) differentiate between all holders of references to an extent so that
244 * when a reference is dropped we can make sure it was a valid reference
245 * before freeing the extent.
246 *
247 * 2) Provide enough information to quickly find the holders of an extent
248 * if we notice a given block is corrupted or bad.
249 *
250 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
251 * maintenance. This is actually the same as #2, but with a slightly
252 * different use case.
253 *
254 * There are two kinds of back refs. The implicit back refs is optimized
255 * for pointers in non-shared tree blocks. For a given pointer in a block,
256 * back refs of this kind provide information about the block's owner tree
257 * and the pointer's key. These information allow us to find the block by
258 * b-tree searching. The full back refs is for pointers in tree blocks not
259 * referenced by their owner trees. The location of tree block is recorded
260 * in the back refs. Actually the full back refs is generic, and can be
261 * used in all cases the implicit back refs is used. The major shortcoming
262 * of the full back refs is its overhead. Every time a tree block gets
263 * COWed, we have to update back refs entry for all pointers in it.
264 *
265 * For a newly allocated tree block, we use implicit back refs for
266 * pointers in it. This means most tree related operations only involve
267 * implicit back refs. For a tree block created in old transaction, the
268 * only way to drop a reference to it is COW it. So we can detect the
269 * event that tree block loses its owner tree's reference and do the
270 * back refs conversion.
271 *
272 * When a tree block is COWed through a tree, there are four cases:
273 *
274 * The reference count of the block is one and the tree is the block's
275 * owner tree. Nothing to do in this case.
276 *
277 * The reference count of the block is one and the tree is not the
278 * block's owner tree. In this case, full back refs is used for pointers
279 * in the block. Remove these full back refs, add implicit back refs for
280 * every pointers in the new block.
281 *
282 * The reference count of the block is greater than one and the tree is
283 * the block's owner tree. In this case, implicit back refs is used for
284 * pointers in the block. Add full back refs for every pointers in the
285 * block, increase lower level extents' reference counts. The original
286 * implicit back refs are entailed to the new block.
287 *
288 * The reference count of the block is greater than one and the tree is
289 * not the block's owner tree. Add implicit back refs for every pointer in
290 * the new block, increase lower level extents' reference count.
291 *
292 * Back Reference Key composing:
293 *
294 * The key objectid corresponds to the first byte in the extent,
295 * The key type is used to differentiate between types of back refs.
296 * There are different meanings of the key offset for different types
297 * of back refs.
298 *
299 * File extents can be referenced by:
300 *
301 * - multiple snapshots, subvolumes, or different generations in one subvol
302 * - different files inside a single subvolume
303 * - different offsets inside a file (bookend extents in file.c)
304 *
305 * The extent ref structure for the implicit back refs has fields for:
306 *
307 * - Objectid of the subvolume root
308 * - objectid of the file holding the reference
309 * - original offset in the file
310 * - how many bookend extents
311 *
312 * The key offset for the implicit back refs is hash of the first
313 * three fields.
314 *
315 * The extent ref structure for the full back refs has field for:
316 *
317 * - number of pointers in the tree leaf
318 *
319 * The key offset for the implicit back refs is the first byte of
320 * the tree leaf
321 *
322 * When a file extent is allocated, The implicit back refs is used.
323 * the fields are filled in:
324 *
325 * (root_key.objectid, inode objectid, offset in file, 1)
326 *
327 * When a file extent is removed file truncation, we find the
328 * corresponding implicit back refs and check the following fields:
329 *
330 * (btrfs_header_owner(leaf), inode objectid, offset in file)
331 *
332 * Btree extents can be referenced by:
333 *
334 * - Different subvolumes
335 *
336 * Both the implicit back refs and the full back refs for tree blocks
337 * only consist of key. The key offset for the implicit back refs is
338 * objectid of block's owner tree. The key offset for the full back refs
339 * is the first byte of parent block.
340 *
341 * When implicit back refs is used, information about the lowest key and
342 * level of the tree block are required. These information are stored in
343 * tree block info structure.
344 */
345
346 /*
347 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
348 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
349 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
350 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)351 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
352 struct btrfs_extent_inline_ref *iref,
353 enum btrfs_inline_ref_type is_data)
354 {
355 int type = btrfs_extent_inline_ref_type(eb, iref);
356 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
357
358 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
359 type == BTRFS_SHARED_BLOCK_REF_KEY ||
360 type == BTRFS_SHARED_DATA_REF_KEY ||
361 type == BTRFS_EXTENT_DATA_REF_KEY) {
362 if (is_data == BTRFS_REF_TYPE_BLOCK) {
363 if (type == BTRFS_TREE_BLOCK_REF_KEY)
364 return type;
365 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
366 ASSERT(eb->fs_info);
367 /*
368 * Every shared one has parent tree block,
369 * which must be aligned to sector size.
370 */
371 if (offset &&
372 IS_ALIGNED(offset, eb->fs_info->sectorsize))
373 return type;
374 }
375 } else if (is_data == BTRFS_REF_TYPE_DATA) {
376 if (type == BTRFS_EXTENT_DATA_REF_KEY)
377 return type;
378 if (type == BTRFS_SHARED_DATA_REF_KEY) {
379 ASSERT(eb->fs_info);
380 /*
381 * Every shared one has parent tree block,
382 * which must be aligned to sector size.
383 */
384 if (offset &&
385 IS_ALIGNED(offset, eb->fs_info->sectorsize))
386 return type;
387 }
388 } else {
389 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
390 return type;
391 }
392 }
393
394 btrfs_print_leaf((struct extent_buffer *)eb);
395 btrfs_err(eb->fs_info,
396 "eb %llu iref 0x%lx invalid extent inline ref type %d",
397 eb->start, (unsigned long)iref, type);
398 WARN_ON(1);
399
400 return BTRFS_REF_TYPE_INVALID;
401 }
402
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)403 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
404 {
405 u32 high_crc = ~(u32)0;
406 u32 low_crc = ~(u32)0;
407 __le64 lenum;
408
409 lenum = cpu_to_le64(root_objectid);
410 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
411 lenum = cpu_to_le64(owner);
412 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
413 lenum = cpu_to_le64(offset);
414 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
415
416 return ((u64)high_crc << 31) ^ (u64)low_crc;
417 }
418
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)419 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
420 struct btrfs_extent_data_ref *ref)
421 {
422 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
423 btrfs_extent_data_ref_objectid(leaf, ref),
424 btrfs_extent_data_ref_offset(leaf, ref));
425 }
426
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)427 static int match_extent_data_ref(struct extent_buffer *leaf,
428 struct btrfs_extent_data_ref *ref,
429 u64 root_objectid, u64 owner, u64 offset)
430 {
431 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
432 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
433 btrfs_extent_data_ref_offset(leaf, ref) != offset)
434 return 0;
435 return 1;
436 }
437
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)438 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
439 struct btrfs_path *path,
440 u64 bytenr, u64 parent,
441 u64 root_objectid,
442 u64 owner, u64 offset)
443 {
444 struct btrfs_root *root = trans->fs_info->extent_root;
445 struct btrfs_key key;
446 struct btrfs_extent_data_ref *ref;
447 struct extent_buffer *leaf;
448 u32 nritems;
449 int ret;
450 int recow;
451 int err = -ENOENT;
452
453 key.objectid = bytenr;
454 if (parent) {
455 key.type = BTRFS_SHARED_DATA_REF_KEY;
456 key.offset = parent;
457 } else {
458 key.type = BTRFS_EXTENT_DATA_REF_KEY;
459 key.offset = hash_extent_data_ref(root_objectid,
460 owner, offset);
461 }
462 again:
463 recow = 0;
464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
465 if (ret < 0) {
466 err = ret;
467 goto fail;
468 }
469
470 if (parent) {
471 if (!ret)
472 return 0;
473 goto fail;
474 }
475
476 leaf = path->nodes[0];
477 nritems = btrfs_header_nritems(leaf);
478 while (1) {
479 if (path->slots[0] >= nritems) {
480 ret = btrfs_next_leaf(root, path);
481 if (ret < 0)
482 err = ret;
483 if (ret)
484 goto fail;
485
486 leaf = path->nodes[0];
487 nritems = btrfs_header_nritems(leaf);
488 recow = 1;
489 }
490
491 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
492 if (key.objectid != bytenr ||
493 key.type != BTRFS_EXTENT_DATA_REF_KEY)
494 goto fail;
495
496 ref = btrfs_item_ptr(leaf, path->slots[0],
497 struct btrfs_extent_data_ref);
498
499 if (match_extent_data_ref(leaf, ref, root_objectid,
500 owner, offset)) {
501 if (recow) {
502 btrfs_release_path(path);
503 goto again;
504 }
505 err = 0;
506 break;
507 }
508 path->slots[0]++;
509 }
510 fail:
511 return err;
512 }
513
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)514 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
515 struct btrfs_path *path,
516 u64 bytenr, u64 parent,
517 u64 root_objectid, u64 owner,
518 u64 offset, int refs_to_add)
519 {
520 struct btrfs_root *root = trans->fs_info->extent_root;
521 struct btrfs_key key;
522 struct extent_buffer *leaf;
523 u32 size;
524 u32 num_refs;
525 int ret;
526
527 key.objectid = bytenr;
528 if (parent) {
529 key.type = BTRFS_SHARED_DATA_REF_KEY;
530 key.offset = parent;
531 size = sizeof(struct btrfs_shared_data_ref);
532 } else {
533 key.type = BTRFS_EXTENT_DATA_REF_KEY;
534 key.offset = hash_extent_data_ref(root_objectid,
535 owner, offset);
536 size = sizeof(struct btrfs_extent_data_ref);
537 }
538
539 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
540 if (ret && ret != -EEXIST)
541 goto fail;
542
543 leaf = path->nodes[0];
544 if (parent) {
545 struct btrfs_shared_data_ref *ref;
546 ref = btrfs_item_ptr(leaf, path->slots[0],
547 struct btrfs_shared_data_ref);
548 if (ret == 0) {
549 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
550 } else {
551 num_refs = btrfs_shared_data_ref_count(leaf, ref);
552 num_refs += refs_to_add;
553 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
554 }
555 } else {
556 struct btrfs_extent_data_ref *ref;
557 while (ret == -EEXIST) {
558 ref = btrfs_item_ptr(leaf, path->slots[0],
559 struct btrfs_extent_data_ref);
560 if (match_extent_data_ref(leaf, ref, root_objectid,
561 owner, offset))
562 break;
563 btrfs_release_path(path);
564 key.offset++;
565 ret = btrfs_insert_empty_item(trans, root, path, &key,
566 size);
567 if (ret && ret != -EEXIST)
568 goto fail;
569
570 leaf = path->nodes[0];
571 }
572 ref = btrfs_item_ptr(leaf, path->slots[0],
573 struct btrfs_extent_data_ref);
574 if (ret == 0) {
575 btrfs_set_extent_data_ref_root(leaf, ref,
576 root_objectid);
577 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
578 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
579 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
580 } else {
581 num_refs = btrfs_extent_data_ref_count(leaf, ref);
582 num_refs += refs_to_add;
583 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
584 }
585 }
586 btrfs_mark_buffer_dirty(leaf);
587 ret = 0;
588 fail:
589 btrfs_release_path(path);
590 return ret;
591 }
592
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,int refs_to_drop,int * last_ref)593 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
594 struct btrfs_path *path,
595 int refs_to_drop, int *last_ref)
596 {
597 struct btrfs_key key;
598 struct btrfs_extent_data_ref *ref1 = NULL;
599 struct btrfs_shared_data_ref *ref2 = NULL;
600 struct extent_buffer *leaf;
601 u32 num_refs = 0;
602 int ret = 0;
603
604 leaf = path->nodes[0];
605 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
606
607 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
608 ref1 = btrfs_item_ptr(leaf, path->slots[0],
609 struct btrfs_extent_data_ref);
610 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
611 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
612 ref2 = btrfs_item_ptr(leaf, path->slots[0],
613 struct btrfs_shared_data_ref);
614 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
615 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
616 btrfs_print_v0_err(trans->fs_info);
617 btrfs_abort_transaction(trans, -EINVAL);
618 return -EINVAL;
619 } else {
620 BUG();
621 }
622
623 BUG_ON(num_refs < refs_to_drop);
624 num_refs -= refs_to_drop;
625
626 if (num_refs == 0) {
627 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
628 *last_ref = 1;
629 } else {
630 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
631 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
632 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
633 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
634 btrfs_mark_buffer_dirty(leaf);
635 }
636 return ret;
637 }
638
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)639 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
640 struct btrfs_extent_inline_ref *iref)
641 {
642 struct btrfs_key key;
643 struct extent_buffer *leaf;
644 struct btrfs_extent_data_ref *ref1;
645 struct btrfs_shared_data_ref *ref2;
646 u32 num_refs = 0;
647 int type;
648
649 leaf = path->nodes[0];
650 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
651
652 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
653 if (iref) {
654 /*
655 * If type is invalid, we should have bailed out earlier than
656 * this call.
657 */
658 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
659 ASSERT(type != BTRFS_REF_TYPE_INVALID);
660 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
661 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
662 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
663 } else {
664 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
665 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 }
667 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
668 ref1 = btrfs_item_ptr(leaf, path->slots[0],
669 struct btrfs_extent_data_ref);
670 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
671 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
672 ref2 = btrfs_item_ptr(leaf, path->slots[0],
673 struct btrfs_shared_data_ref);
674 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
675 } else {
676 WARN_ON(1);
677 }
678 return num_refs;
679 }
680
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)681 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
682 struct btrfs_path *path,
683 u64 bytenr, u64 parent,
684 u64 root_objectid)
685 {
686 struct btrfs_root *root = trans->fs_info->extent_root;
687 struct btrfs_key key;
688 int ret;
689
690 key.objectid = bytenr;
691 if (parent) {
692 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
693 key.offset = parent;
694 } else {
695 key.type = BTRFS_TREE_BLOCK_REF_KEY;
696 key.offset = root_objectid;
697 }
698
699 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
700 if (ret > 0)
701 ret = -ENOENT;
702 return ret;
703 }
704
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)705 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
706 struct btrfs_path *path,
707 u64 bytenr, u64 parent,
708 u64 root_objectid)
709 {
710 struct btrfs_key key;
711 int ret;
712
713 key.objectid = bytenr;
714 if (parent) {
715 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
716 key.offset = parent;
717 } else {
718 key.type = BTRFS_TREE_BLOCK_REF_KEY;
719 key.offset = root_objectid;
720 }
721
722 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
723 path, &key, 0);
724 btrfs_release_path(path);
725 return ret;
726 }
727
extent_ref_type(u64 parent,u64 owner)728 static inline int extent_ref_type(u64 parent, u64 owner)
729 {
730 int type;
731 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
732 if (parent > 0)
733 type = BTRFS_SHARED_BLOCK_REF_KEY;
734 else
735 type = BTRFS_TREE_BLOCK_REF_KEY;
736 } else {
737 if (parent > 0)
738 type = BTRFS_SHARED_DATA_REF_KEY;
739 else
740 type = BTRFS_EXTENT_DATA_REF_KEY;
741 }
742 return type;
743 }
744
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)745 static int find_next_key(struct btrfs_path *path, int level,
746 struct btrfs_key *key)
747
748 {
749 for (; level < BTRFS_MAX_LEVEL; level++) {
750 if (!path->nodes[level])
751 break;
752 if (path->slots[level] + 1 >=
753 btrfs_header_nritems(path->nodes[level]))
754 continue;
755 if (level == 0)
756 btrfs_item_key_to_cpu(path->nodes[level], key,
757 path->slots[level] + 1);
758 else
759 btrfs_node_key_to_cpu(path->nodes[level], key,
760 path->slots[level] + 1);
761 return 0;
762 }
763 return 1;
764 }
765
766 /*
767 * look for inline back ref. if back ref is found, *ref_ret is set
768 * to the address of inline back ref, and 0 is returned.
769 *
770 * if back ref isn't found, *ref_ret is set to the address where it
771 * should be inserted, and -ENOENT is returned.
772 *
773 * if insert is true and there are too many inline back refs, the path
774 * points to the extent item, and -EAGAIN is returned.
775 *
776 * NOTE: inline back refs are ordered in the same way that back ref
777 * items in the tree are ordered.
778 */
779 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)780 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
781 struct btrfs_path *path,
782 struct btrfs_extent_inline_ref **ref_ret,
783 u64 bytenr, u64 num_bytes,
784 u64 parent, u64 root_objectid,
785 u64 owner, u64 offset, int insert)
786 {
787 struct btrfs_fs_info *fs_info = trans->fs_info;
788 struct btrfs_root *root = fs_info->extent_root;
789 struct btrfs_key key;
790 struct extent_buffer *leaf;
791 struct btrfs_extent_item *ei;
792 struct btrfs_extent_inline_ref *iref;
793 u64 flags;
794 u64 item_size;
795 unsigned long ptr;
796 unsigned long end;
797 int extra_size;
798 int type;
799 int want;
800 int ret;
801 int err = 0;
802 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
803 int needed;
804
805 key.objectid = bytenr;
806 key.type = BTRFS_EXTENT_ITEM_KEY;
807 key.offset = num_bytes;
808
809 want = extent_ref_type(parent, owner);
810 if (insert) {
811 extra_size = btrfs_extent_inline_ref_size(want);
812 path->keep_locks = 1;
813 } else
814 extra_size = -1;
815
816 /*
817 * Owner is our level, so we can just add one to get the level for the
818 * block we are interested in.
819 */
820 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
821 key.type = BTRFS_METADATA_ITEM_KEY;
822 key.offset = owner;
823 }
824
825 again:
826 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
827 if (ret < 0) {
828 err = ret;
829 goto out;
830 }
831
832 /*
833 * We may be a newly converted file system which still has the old fat
834 * extent entries for metadata, so try and see if we have one of those.
835 */
836 if (ret > 0 && skinny_metadata) {
837 skinny_metadata = false;
838 if (path->slots[0]) {
839 path->slots[0]--;
840 btrfs_item_key_to_cpu(path->nodes[0], &key,
841 path->slots[0]);
842 if (key.objectid == bytenr &&
843 key.type == BTRFS_EXTENT_ITEM_KEY &&
844 key.offset == num_bytes)
845 ret = 0;
846 }
847 if (ret) {
848 key.objectid = bytenr;
849 key.type = BTRFS_EXTENT_ITEM_KEY;
850 key.offset = num_bytes;
851 btrfs_release_path(path);
852 goto again;
853 }
854 }
855
856 if (ret && !insert) {
857 err = -ENOENT;
858 goto out;
859 } else if (WARN_ON(ret)) {
860 btrfs_print_leaf(path->nodes[0]);
861 btrfs_err(fs_info,
862 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
863 bytenr, num_bytes, parent, root_objectid, owner,
864 offset);
865 err = -EIO;
866 goto out;
867 }
868
869 leaf = path->nodes[0];
870 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
871 if (unlikely(item_size < sizeof(*ei))) {
872 err = -EINVAL;
873 btrfs_print_v0_err(fs_info);
874 btrfs_abort_transaction(trans, err);
875 goto out;
876 }
877
878 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
879 flags = btrfs_extent_flags(leaf, ei);
880
881 ptr = (unsigned long)(ei + 1);
882 end = (unsigned long)ei + item_size;
883
884 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
885 ptr += sizeof(struct btrfs_tree_block_info);
886 BUG_ON(ptr > end);
887 }
888
889 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
890 needed = BTRFS_REF_TYPE_DATA;
891 else
892 needed = BTRFS_REF_TYPE_BLOCK;
893
894 err = -ENOENT;
895 while (1) {
896 if (ptr >= end) {
897 WARN_ON(ptr > end);
898 break;
899 }
900 iref = (struct btrfs_extent_inline_ref *)ptr;
901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 if (type == BTRFS_REF_TYPE_INVALID) {
903 err = -EUCLEAN;
904 goto out;
905 }
906
907 if (want < type)
908 break;
909 if (want > type) {
910 ptr += btrfs_extent_inline_ref_size(type);
911 continue;
912 }
913
914 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915 struct btrfs_extent_data_ref *dref;
916 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917 if (match_extent_data_ref(leaf, dref, root_objectid,
918 owner, offset)) {
919 err = 0;
920 break;
921 }
922 if (hash_extent_data_ref_item(leaf, dref) <
923 hash_extent_data_ref(root_objectid, owner, offset))
924 break;
925 } else {
926 u64 ref_offset;
927 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928 if (parent > 0) {
929 if (parent == ref_offset) {
930 err = 0;
931 break;
932 }
933 if (ref_offset < parent)
934 break;
935 } else {
936 if (root_objectid == ref_offset) {
937 err = 0;
938 break;
939 }
940 if (ref_offset < root_objectid)
941 break;
942 }
943 }
944 ptr += btrfs_extent_inline_ref_size(type);
945 }
946 if (err == -ENOENT && insert) {
947 if (item_size + extra_size >=
948 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949 err = -EAGAIN;
950 goto out;
951 }
952 /*
953 * To add new inline back ref, we have to make sure
954 * there is no corresponding back ref item.
955 * For simplicity, we just do not add new inline back
956 * ref if there is any kind of item for this block
957 */
958 if (find_next_key(path, 0, &key) == 0 &&
959 key.objectid == bytenr &&
960 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961 err = -EAGAIN;
962 goto out;
963 }
964 }
965 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 out:
967 if (insert) {
968 path->keep_locks = 0;
969 btrfs_unlock_up_safe(path, 1);
970 }
971 return err;
972 }
973
974 /*
975 * helper to add new inline back ref
976 */
977 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)978 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
979 struct btrfs_path *path,
980 struct btrfs_extent_inline_ref *iref,
981 u64 parent, u64 root_objectid,
982 u64 owner, u64 offset, int refs_to_add,
983 struct btrfs_delayed_extent_op *extent_op)
984 {
985 struct extent_buffer *leaf;
986 struct btrfs_extent_item *ei;
987 unsigned long ptr;
988 unsigned long end;
989 unsigned long item_offset;
990 u64 refs;
991 int size;
992 int type;
993
994 leaf = path->nodes[0];
995 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
996 item_offset = (unsigned long)iref - (unsigned long)ei;
997
998 type = extent_ref_type(parent, owner);
999 size = btrfs_extent_inline_ref_size(type);
1000
1001 btrfs_extend_item(path, size);
1002
1003 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1004 refs = btrfs_extent_refs(leaf, ei);
1005 refs += refs_to_add;
1006 btrfs_set_extent_refs(leaf, ei, refs);
1007 if (extent_op)
1008 __run_delayed_extent_op(extent_op, leaf, ei);
1009
1010 ptr = (unsigned long)ei + item_offset;
1011 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1012 if (ptr < end - size)
1013 memmove_extent_buffer(leaf, ptr + size, ptr,
1014 end - size - ptr);
1015
1016 iref = (struct btrfs_extent_inline_ref *)ptr;
1017 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1018 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1019 struct btrfs_extent_data_ref *dref;
1020 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1021 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1022 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1023 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1024 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1025 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1026 struct btrfs_shared_data_ref *sref;
1027 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1028 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1029 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1030 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1031 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1032 } else {
1033 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1034 }
1035 btrfs_mark_buffer_dirty(leaf);
1036 }
1037
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1038 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1039 struct btrfs_path *path,
1040 struct btrfs_extent_inline_ref **ref_ret,
1041 u64 bytenr, u64 num_bytes, u64 parent,
1042 u64 root_objectid, u64 owner, u64 offset)
1043 {
1044 int ret;
1045
1046 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1047 num_bytes, parent, root_objectid,
1048 owner, offset, 0);
1049 if (ret != -ENOENT)
1050 return ret;
1051
1052 btrfs_release_path(path);
1053 *ref_ret = NULL;
1054
1055 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1056 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1057 root_objectid);
1058 } else {
1059 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1060 root_objectid, owner, offset);
1061 }
1062 return ret;
1063 }
1064
1065 /*
1066 * helper to update/remove inline back ref
1067 */
1068 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1069 void update_inline_extent_backref(struct btrfs_path *path,
1070 struct btrfs_extent_inline_ref *iref,
1071 int refs_to_mod,
1072 struct btrfs_delayed_extent_op *extent_op,
1073 int *last_ref)
1074 {
1075 struct extent_buffer *leaf = path->nodes[0];
1076 struct btrfs_extent_item *ei;
1077 struct btrfs_extent_data_ref *dref = NULL;
1078 struct btrfs_shared_data_ref *sref = NULL;
1079 unsigned long ptr;
1080 unsigned long end;
1081 u32 item_size;
1082 int size;
1083 int type;
1084 u64 refs;
1085
1086 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1087 refs = btrfs_extent_refs(leaf, ei);
1088 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1089 refs += refs_to_mod;
1090 btrfs_set_extent_refs(leaf, ei, refs);
1091 if (extent_op)
1092 __run_delayed_extent_op(extent_op, leaf, ei);
1093
1094 /*
1095 * If type is invalid, we should have bailed out after
1096 * lookup_inline_extent_backref().
1097 */
1098 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1099 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1100
1101 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1102 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1103 refs = btrfs_extent_data_ref_count(leaf, dref);
1104 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1105 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1106 refs = btrfs_shared_data_ref_count(leaf, sref);
1107 } else {
1108 refs = 1;
1109 BUG_ON(refs_to_mod != -1);
1110 }
1111
1112 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1113 refs += refs_to_mod;
1114
1115 if (refs > 0) {
1116 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1117 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1118 else
1119 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1120 } else {
1121 *last_ref = 1;
1122 size = btrfs_extent_inline_ref_size(type);
1123 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1124 ptr = (unsigned long)iref;
1125 end = (unsigned long)ei + item_size;
1126 if (ptr + size < end)
1127 memmove_extent_buffer(leaf, ptr, ptr + size,
1128 end - ptr - size);
1129 item_size -= size;
1130 btrfs_truncate_item(path, item_size, 1);
1131 }
1132 btrfs_mark_buffer_dirty(leaf);
1133 }
1134
1135 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1136 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1137 struct btrfs_path *path,
1138 u64 bytenr, u64 num_bytes, u64 parent,
1139 u64 root_objectid, u64 owner,
1140 u64 offset, int refs_to_add,
1141 struct btrfs_delayed_extent_op *extent_op)
1142 {
1143 struct btrfs_extent_inline_ref *iref;
1144 int ret;
1145
1146 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1147 num_bytes, parent, root_objectid,
1148 owner, offset, 1);
1149 if (ret == 0) {
1150 /*
1151 * We're adding refs to a tree block we already own, this
1152 * should not happen at all.
1153 */
1154 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1155 btrfs_crit(trans->fs_info,
1156 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1157 bytenr, num_bytes, root_objectid);
1158 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1159 WARN_ON(1);
1160 btrfs_crit(trans->fs_info,
1161 "path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1162 btrfs_print_leaf(path->nodes[0]);
1163 }
1164 return -EUCLEAN;
1165 }
1166 update_inline_extent_backref(path, iref, refs_to_add,
1167 extent_op, NULL);
1168 } else if (ret == -ENOENT) {
1169 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1170 root_objectid, owner, offset,
1171 refs_to_add, extent_op);
1172 ret = 0;
1173 }
1174 return ret;
1175 }
1176
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1177 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1178 struct btrfs_path *path,
1179 struct btrfs_extent_inline_ref *iref,
1180 int refs_to_drop, int is_data, int *last_ref)
1181 {
1182 int ret = 0;
1183
1184 BUG_ON(!is_data && refs_to_drop != 1);
1185 if (iref) {
1186 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1187 last_ref);
1188 } else if (is_data) {
1189 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1190 last_ref);
1191 } else {
1192 *last_ref = 1;
1193 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1194 }
1195 return ret;
1196 }
1197
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1198 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1199 u64 *discarded_bytes)
1200 {
1201 int j, ret = 0;
1202 u64 bytes_left, end;
1203 u64 aligned_start = ALIGN(start, 1 << 9);
1204
1205 /* Adjust the range to be aligned to 512B sectors if necessary. */
1206 if (start != aligned_start) {
1207 len -= aligned_start - start;
1208 len = round_down(len, 1 << 9);
1209 start = aligned_start;
1210 }
1211
1212 *discarded_bytes = 0;
1213
1214 if (!len)
1215 return 0;
1216
1217 end = start + len;
1218 bytes_left = len;
1219
1220 /* Skip any superblocks on this device. */
1221 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1222 u64 sb_start = btrfs_sb_offset(j);
1223 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1224 u64 size = sb_start - start;
1225
1226 if (!in_range(sb_start, start, bytes_left) &&
1227 !in_range(sb_end, start, bytes_left) &&
1228 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1229 continue;
1230
1231 /*
1232 * Superblock spans beginning of range. Adjust start and
1233 * try again.
1234 */
1235 if (sb_start <= start) {
1236 start += sb_end - start;
1237 if (start > end) {
1238 bytes_left = 0;
1239 break;
1240 }
1241 bytes_left = end - start;
1242 continue;
1243 }
1244
1245 if (size) {
1246 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1247 GFP_NOFS, 0);
1248 if (!ret)
1249 *discarded_bytes += size;
1250 else if (ret != -EOPNOTSUPP)
1251 return ret;
1252 }
1253
1254 start = sb_end;
1255 if (start > end) {
1256 bytes_left = 0;
1257 break;
1258 }
1259 bytes_left = end - start;
1260 }
1261
1262 if (bytes_left) {
1263 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1264 GFP_NOFS, 0);
1265 if (!ret)
1266 *discarded_bytes += bytes_left;
1267 }
1268 return ret;
1269 }
1270
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1271 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1272 u64 num_bytes, u64 *actual_bytes)
1273 {
1274 int ret = 0;
1275 u64 discarded_bytes = 0;
1276 u64 end = bytenr + num_bytes;
1277 u64 cur = bytenr;
1278 struct btrfs_bio *bbio = NULL;
1279
1280
1281 /*
1282 * Avoid races with device replace and make sure our bbio has devices
1283 * associated to its stripes that don't go away while we are discarding.
1284 */
1285 btrfs_bio_counter_inc_blocked(fs_info);
1286 while (cur < end) {
1287 struct btrfs_bio_stripe *stripe;
1288 int i;
1289
1290 num_bytes = end - cur;
1291 /* Tell the block device(s) that the sectors can be discarded */
1292 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1293 &num_bytes, &bbio, 0);
1294 /*
1295 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1296 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1297 * thus we can't continue anyway.
1298 */
1299 if (ret < 0)
1300 goto out;
1301
1302 stripe = bbio->stripes;
1303 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1304 u64 bytes;
1305 struct request_queue *req_q;
1306 struct btrfs_device *device = stripe->dev;
1307
1308 if (!device->bdev) {
1309 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1310 continue;
1311 }
1312 req_q = bdev_get_queue(device->bdev);
1313 if (!blk_queue_discard(req_q))
1314 continue;
1315
1316 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1317 continue;
1318
1319 ret = btrfs_issue_discard(device->bdev,
1320 stripe->physical,
1321 stripe->length,
1322 &bytes);
1323 if (!ret) {
1324 discarded_bytes += bytes;
1325 } else if (ret != -EOPNOTSUPP) {
1326 /*
1327 * Logic errors or -ENOMEM, or -EIO, but
1328 * unlikely to happen.
1329 *
1330 * And since there are two loops, explicitly
1331 * go to out to avoid confusion.
1332 */
1333 btrfs_put_bbio(bbio);
1334 goto out;
1335 }
1336
1337 /*
1338 * Just in case we get back EOPNOTSUPP for some reason,
1339 * just ignore the return value so we don't screw up
1340 * people calling discard_extent.
1341 */
1342 ret = 0;
1343 }
1344 btrfs_put_bbio(bbio);
1345 cur += num_bytes;
1346 }
1347 out:
1348 btrfs_bio_counter_dec(fs_info);
1349
1350 if (actual_bytes)
1351 *actual_bytes = discarded_bytes;
1352
1353
1354 if (ret == -EOPNOTSUPP)
1355 ret = 0;
1356 return ret;
1357 }
1358
1359 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1360 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_ref *generic_ref)
1362 {
1363 struct btrfs_fs_info *fs_info = trans->fs_info;
1364 int ret;
1365
1366 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1367 generic_ref->action);
1368 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1369 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1370
1371 if (generic_ref->type == BTRFS_REF_METADATA)
1372 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1373 else
1374 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1375
1376 btrfs_ref_tree_mod(fs_info, generic_ref);
1377
1378 return ret;
1379 }
1380
1381 /*
1382 * __btrfs_inc_extent_ref - insert backreference for a given extent
1383 *
1384 * The counterpart is in __btrfs_free_extent(), with examples and more details
1385 * how it works.
1386 *
1387 * @trans: Handle of transaction
1388 *
1389 * @node: The delayed ref node used to get the bytenr/length for
1390 * extent whose references are incremented.
1391 *
1392 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1393 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1394 * bytenr of the parent block. Since new extents are always
1395 * created with indirect references, this will only be the case
1396 * when relocating a shared extent. In that case, root_objectid
1397 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1398 * be 0
1399 *
1400 * @root_objectid: The id of the root where this modification has originated,
1401 * this can be either one of the well-known metadata trees or
1402 * the subvolume id which references this extent.
1403 *
1404 * @owner: For data extents it is the inode number of the owning file.
1405 * For metadata extents this parameter holds the level in the
1406 * tree of the extent.
1407 *
1408 * @offset: For metadata extents the offset is ignored and is currently
1409 * always passed as 0. For data extents it is the fileoffset
1410 * this extent belongs to.
1411 *
1412 * @refs_to_add Number of references to add
1413 *
1414 * @extent_op Pointer to a structure, holding information necessary when
1415 * updating a tree block's flags
1416 *
1417 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1418 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1419 struct btrfs_delayed_ref_node *node,
1420 u64 parent, u64 root_objectid,
1421 u64 owner, u64 offset, int refs_to_add,
1422 struct btrfs_delayed_extent_op *extent_op)
1423 {
1424 struct btrfs_path *path;
1425 struct extent_buffer *leaf;
1426 struct btrfs_extent_item *item;
1427 struct btrfs_key key;
1428 u64 bytenr = node->bytenr;
1429 u64 num_bytes = node->num_bytes;
1430 u64 refs;
1431 int ret;
1432
1433 path = btrfs_alloc_path();
1434 if (!path)
1435 return -ENOMEM;
1436
1437 path->leave_spinning = 1;
1438 /* this will setup the path even if it fails to insert the back ref */
1439 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1440 parent, root_objectid, owner,
1441 offset, refs_to_add, extent_op);
1442 if ((ret < 0 && ret != -EAGAIN) || !ret)
1443 goto out;
1444
1445 /*
1446 * Ok we had -EAGAIN which means we didn't have space to insert and
1447 * inline extent ref, so just update the reference count and add a
1448 * normal backref.
1449 */
1450 leaf = path->nodes[0];
1451 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1452 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1453 refs = btrfs_extent_refs(leaf, item);
1454 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1455 if (extent_op)
1456 __run_delayed_extent_op(extent_op, leaf, item);
1457
1458 btrfs_mark_buffer_dirty(leaf);
1459 btrfs_release_path(path);
1460
1461 path->leave_spinning = 1;
1462 /* now insert the actual backref */
1463 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1464 BUG_ON(refs_to_add != 1);
1465 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1466 root_objectid);
1467 } else {
1468 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1469 root_objectid, owner, offset,
1470 refs_to_add);
1471 }
1472 if (ret)
1473 btrfs_abort_transaction(trans, ret);
1474 out:
1475 btrfs_free_path(path);
1476 return ret;
1477 }
1478
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1479 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1480 struct btrfs_delayed_ref_node *node,
1481 struct btrfs_delayed_extent_op *extent_op,
1482 int insert_reserved)
1483 {
1484 int ret = 0;
1485 struct btrfs_delayed_data_ref *ref;
1486 struct btrfs_key ins;
1487 u64 parent = 0;
1488 u64 ref_root = 0;
1489 u64 flags = 0;
1490
1491 ins.objectid = node->bytenr;
1492 ins.offset = node->num_bytes;
1493 ins.type = BTRFS_EXTENT_ITEM_KEY;
1494
1495 ref = btrfs_delayed_node_to_data_ref(node);
1496 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1497
1498 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1499 parent = ref->parent;
1500 ref_root = ref->root;
1501
1502 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1503 if (extent_op)
1504 flags |= extent_op->flags_to_set;
1505 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1506 flags, ref->objectid,
1507 ref->offset, &ins,
1508 node->ref_mod);
1509 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1510 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1511 ref->objectid, ref->offset,
1512 node->ref_mod, extent_op);
1513 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1514 ret = __btrfs_free_extent(trans, node, parent,
1515 ref_root, ref->objectid,
1516 ref->offset, node->ref_mod,
1517 extent_op);
1518 } else {
1519 BUG();
1520 }
1521 return ret;
1522 }
1523
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1524 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1525 struct extent_buffer *leaf,
1526 struct btrfs_extent_item *ei)
1527 {
1528 u64 flags = btrfs_extent_flags(leaf, ei);
1529 if (extent_op->update_flags) {
1530 flags |= extent_op->flags_to_set;
1531 btrfs_set_extent_flags(leaf, ei, flags);
1532 }
1533
1534 if (extent_op->update_key) {
1535 struct btrfs_tree_block_info *bi;
1536 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1537 bi = (struct btrfs_tree_block_info *)(ei + 1);
1538 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1539 }
1540 }
1541
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1542 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1543 struct btrfs_delayed_ref_head *head,
1544 struct btrfs_delayed_extent_op *extent_op)
1545 {
1546 struct btrfs_fs_info *fs_info = trans->fs_info;
1547 struct btrfs_key key;
1548 struct btrfs_path *path;
1549 struct btrfs_extent_item *ei;
1550 struct extent_buffer *leaf;
1551 u32 item_size;
1552 int ret;
1553 int err = 0;
1554 int metadata = !extent_op->is_data;
1555
1556 if (TRANS_ABORTED(trans))
1557 return 0;
1558
1559 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1560 metadata = 0;
1561
1562 path = btrfs_alloc_path();
1563 if (!path)
1564 return -ENOMEM;
1565
1566 key.objectid = head->bytenr;
1567
1568 if (metadata) {
1569 key.type = BTRFS_METADATA_ITEM_KEY;
1570 key.offset = extent_op->level;
1571 } else {
1572 key.type = BTRFS_EXTENT_ITEM_KEY;
1573 key.offset = head->num_bytes;
1574 }
1575
1576 again:
1577 path->leave_spinning = 1;
1578 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1579 if (ret < 0) {
1580 err = ret;
1581 goto out;
1582 }
1583 if (ret > 0) {
1584 if (metadata) {
1585 if (path->slots[0] > 0) {
1586 path->slots[0]--;
1587 btrfs_item_key_to_cpu(path->nodes[0], &key,
1588 path->slots[0]);
1589 if (key.objectid == head->bytenr &&
1590 key.type == BTRFS_EXTENT_ITEM_KEY &&
1591 key.offset == head->num_bytes)
1592 ret = 0;
1593 }
1594 if (ret > 0) {
1595 btrfs_release_path(path);
1596 metadata = 0;
1597
1598 key.objectid = head->bytenr;
1599 key.offset = head->num_bytes;
1600 key.type = BTRFS_EXTENT_ITEM_KEY;
1601 goto again;
1602 }
1603 } else {
1604 err = -EIO;
1605 goto out;
1606 }
1607 }
1608
1609 leaf = path->nodes[0];
1610 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1611
1612 if (unlikely(item_size < sizeof(*ei))) {
1613 err = -EINVAL;
1614 btrfs_print_v0_err(fs_info);
1615 btrfs_abort_transaction(trans, err);
1616 goto out;
1617 }
1618
1619 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1620 __run_delayed_extent_op(extent_op, leaf, ei);
1621
1622 btrfs_mark_buffer_dirty(leaf);
1623 out:
1624 btrfs_free_path(path);
1625 return err;
1626 }
1627
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1628 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1629 struct btrfs_delayed_ref_node *node,
1630 struct btrfs_delayed_extent_op *extent_op,
1631 int insert_reserved)
1632 {
1633 int ret = 0;
1634 struct btrfs_delayed_tree_ref *ref;
1635 u64 parent = 0;
1636 u64 ref_root = 0;
1637
1638 ref = btrfs_delayed_node_to_tree_ref(node);
1639 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1640
1641 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1642 parent = ref->parent;
1643 ref_root = ref->root;
1644
1645 if (unlikely(node->ref_mod != 1)) {
1646 btrfs_err(trans->fs_info,
1647 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1648 node->bytenr, node->ref_mod, node->action, ref_root,
1649 parent);
1650 return -EUCLEAN;
1651 }
1652 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1653 BUG_ON(!extent_op || !extent_op->update_flags);
1654 ret = alloc_reserved_tree_block(trans, node, extent_op);
1655 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1656 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1657 ref->level, 0, 1, extent_op);
1658 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1659 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1660 ref->level, 0, 1, extent_op);
1661 } else {
1662 BUG();
1663 }
1664 return ret;
1665 }
1666
1667 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1668 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1669 struct btrfs_delayed_ref_node *node,
1670 struct btrfs_delayed_extent_op *extent_op,
1671 int insert_reserved)
1672 {
1673 int ret = 0;
1674
1675 if (TRANS_ABORTED(trans)) {
1676 if (insert_reserved)
1677 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1678 return 0;
1679 }
1680
1681 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1682 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1683 ret = run_delayed_tree_ref(trans, node, extent_op,
1684 insert_reserved);
1685 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1686 node->type == BTRFS_SHARED_DATA_REF_KEY)
1687 ret = run_delayed_data_ref(trans, node, extent_op,
1688 insert_reserved);
1689 else
1690 BUG();
1691 if (ret && insert_reserved)
1692 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1693 if (ret < 0)
1694 btrfs_err(trans->fs_info,
1695 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1696 node->bytenr, node->num_bytes, node->type,
1697 node->action, node->ref_mod, ret);
1698 return ret;
1699 }
1700
1701 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1702 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1703 {
1704 struct btrfs_delayed_ref_node *ref;
1705
1706 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1707 return NULL;
1708
1709 /*
1710 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1711 * This is to prevent a ref count from going down to zero, which deletes
1712 * the extent item from the extent tree, when there still are references
1713 * to add, which would fail because they would not find the extent item.
1714 */
1715 if (!list_empty(&head->ref_add_list))
1716 return list_first_entry(&head->ref_add_list,
1717 struct btrfs_delayed_ref_node, add_list);
1718
1719 ref = rb_entry(rb_first_cached(&head->ref_tree),
1720 struct btrfs_delayed_ref_node, ref_node);
1721 ASSERT(list_empty(&ref->add_list));
1722 return ref;
1723 }
1724
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1725 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1726 struct btrfs_delayed_ref_head *head)
1727 {
1728 spin_lock(&delayed_refs->lock);
1729 head->processing = 0;
1730 delayed_refs->num_heads_ready++;
1731 spin_unlock(&delayed_refs->lock);
1732 btrfs_delayed_ref_unlock(head);
1733 }
1734
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1735 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1736 struct btrfs_delayed_ref_head *head)
1737 {
1738 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1739
1740 if (!extent_op)
1741 return NULL;
1742
1743 if (head->must_insert_reserved) {
1744 head->extent_op = NULL;
1745 btrfs_free_delayed_extent_op(extent_op);
1746 return NULL;
1747 }
1748 return extent_op;
1749 }
1750
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1751 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1752 struct btrfs_delayed_ref_head *head)
1753 {
1754 struct btrfs_delayed_extent_op *extent_op;
1755 int ret;
1756
1757 extent_op = cleanup_extent_op(head);
1758 if (!extent_op)
1759 return 0;
1760 head->extent_op = NULL;
1761 spin_unlock(&head->lock);
1762 ret = run_delayed_extent_op(trans, head, extent_op);
1763 btrfs_free_delayed_extent_op(extent_op);
1764 return ret ? ret : 1;
1765 }
1766
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1767 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1768 struct btrfs_delayed_ref_root *delayed_refs,
1769 struct btrfs_delayed_ref_head *head)
1770 {
1771 int nr_items = 1; /* Dropping this ref head update. */
1772
1773 /*
1774 * We had csum deletions accounted for in our delayed refs rsv, we need
1775 * to drop the csum leaves for this update from our delayed_refs_rsv.
1776 */
1777 if (head->total_ref_mod < 0 && head->is_data) {
1778 spin_lock(&delayed_refs->lock);
1779 delayed_refs->pending_csums -= head->num_bytes;
1780 spin_unlock(&delayed_refs->lock);
1781 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1782 }
1783
1784 /*
1785 * We were dropping refs, or had a new ref and dropped it, and thus must
1786 * adjust down our total_bytes_pinned, the space may or may not have
1787 * been pinned and so is accounted for properly in the pinned space by
1788 * now.
1789 */
1790 if (head->total_ref_mod < 0 ||
1791 (head->total_ref_mod == 0 && head->must_insert_reserved)) {
1792 u64 flags = btrfs_ref_head_to_space_flags(head);
1793
1794 btrfs_mod_total_bytes_pinned(fs_info, flags, -head->num_bytes);
1795 }
1796
1797 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1798 }
1799
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1800 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1801 struct btrfs_delayed_ref_head *head)
1802 {
1803
1804 struct btrfs_fs_info *fs_info = trans->fs_info;
1805 struct btrfs_delayed_ref_root *delayed_refs;
1806 int ret;
1807
1808 delayed_refs = &trans->transaction->delayed_refs;
1809
1810 ret = run_and_cleanup_extent_op(trans, head);
1811 if (ret < 0) {
1812 unselect_delayed_ref_head(delayed_refs, head);
1813 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1814 return ret;
1815 } else if (ret) {
1816 return ret;
1817 }
1818
1819 /*
1820 * Need to drop our head ref lock and re-acquire the delayed ref lock
1821 * and then re-check to make sure nobody got added.
1822 */
1823 spin_unlock(&head->lock);
1824 spin_lock(&delayed_refs->lock);
1825 spin_lock(&head->lock);
1826 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1827 spin_unlock(&head->lock);
1828 spin_unlock(&delayed_refs->lock);
1829 return 1;
1830 }
1831 btrfs_delete_ref_head(delayed_refs, head);
1832 spin_unlock(&head->lock);
1833 spin_unlock(&delayed_refs->lock);
1834
1835 if (head->must_insert_reserved) {
1836 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1837 if (head->is_data) {
1838 ret = btrfs_del_csums(trans, fs_info->csum_root,
1839 head->bytenr, head->num_bytes);
1840 }
1841 }
1842
1843 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1844
1845 trace_run_delayed_ref_head(fs_info, head, 0);
1846 btrfs_delayed_ref_unlock(head);
1847 btrfs_put_delayed_ref_head(head);
1848 return ret;
1849 }
1850
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1851 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1852 struct btrfs_trans_handle *trans)
1853 {
1854 struct btrfs_delayed_ref_root *delayed_refs =
1855 &trans->transaction->delayed_refs;
1856 struct btrfs_delayed_ref_head *head = NULL;
1857 int ret;
1858
1859 spin_lock(&delayed_refs->lock);
1860 head = btrfs_select_ref_head(delayed_refs);
1861 if (!head) {
1862 spin_unlock(&delayed_refs->lock);
1863 return head;
1864 }
1865
1866 /*
1867 * Grab the lock that says we are going to process all the refs for
1868 * this head
1869 */
1870 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1871 spin_unlock(&delayed_refs->lock);
1872
1873 /*
1874 * We may have dropped the spin lock to get the head mutex lock, and
1875 * that might have given someone else time to free the head. If that's
1876 * true, it has been removed from our list and we can move on.
1877 */
1878 if (ret == -EAGAIN)
1879 head = ERR_PTR(-EAGAIN);
1880
1881 return head;
1882 }
1883
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,unsigned long * run_refs)1884 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1885 struct btrfs_delayed_ref_head *locked_ref,
1886 unsigned long *run_refs)
1887 {
1888 struct btrfs_fs_info *fs_info = trans->fs_info;
1889 struct btrfs_delayed_ref_root *delayed_refs;
1890 struct btrfs_delayed_extent_op *extent_op;
1891 struct btrfs_delayed_ref_node *ref;
1892 int must_insert_reserved = 0;
1893 int ret;
1894
1895 delayed_refs = &trans->transaction->delayed_refs;
1896
1897 lockdep_assert_held(&locked_ref->mutex);
1898 lockdep_assert_held(&locked_ref->lock);
1899
1900 while ((ref = select_delayed_ref(locked_ref))) {
1901 if (ref->seq &&
1902 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1903 spin_unlock(&locked_ref->lock);
1904 unselect_delayed_ref_head(delayed_refs, locked_ref);
1905 return -EAGAIN;
1906 }
1907
1908 (*run_refs)++;
1909 ref->in_tree = 0;
1910 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1911 RB_CLEAR_NODE(&ref->ref_node);
1912 if (!list_empty(&ref->add_list))
1913 list_del(&ref->add_list);
1914 /*
1915 * When we play the delayed ref, also correct the ref_mod on
1916 * head
1917 */
1918 switch (ref->action) {
1919 case BTRFS_ADD_DELAYED_REF:
1920 case BTRFS_ADD_DELAYED_EXTENT:
1921 locked_ref->ref_mod -= ref->ref_mod;
1922 break;
1923 case BTRFS_DROP_DELAYED_REF:
1924 locked_ref->ref_mod += ref->ref_mod;
1925 break;
1926 default:
1927 WARN_ON(1);
1928 }
1929 atomic_dec(&delayed_refs->num_entries);
1930
1931 /*
1932 * Record the must_insert_reserved flag before we drop the
1933 * spin lock.
1934 */
1935 must_insert_reserved = locked_ref->must_insert_reserved;
1936 locked_ref->must_insert_reserved = 0;
1937
1938 extent_op = locked_ref->extent_op;
1939 locked_ref->extent_op = NULL;
1940 spin_unlock(&locked_ref->lock);
1941
1942 ret = run_one_delayed_ref(trans, ref, extent_op,
1943 must_insert_reserved);
1944
1945 btrfs_free_delayed_extent_op(extent_op);
1946 if (ret) {
1947 unselect_delayed_ref_head(delayed_refs, locked_ref);
1948 btrfs_put_delayed_ref(ref);
1949 return ret;
1950 }
1951
1952 btrfs_put_delayed_ref(ref);
1953 cond_resched();
1954
1955 spin_lock(&locked_ref->lock);
1956 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1957 }
1958
1959 return 0;
1960 }
1961
1962 /*
1963 * Returns 0 on success or if called with an already aborted transaction.
1964 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1965 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)1966 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1967 unsigned long nr)
1968 {
1969 struct btrfs_fs_info *fs_info = trans->fs_info;
1970 struct btrfs_delayed_ref_root *delayed_refs;
1971 struct btrfs_delayed_ref_head *locked_ref = NULL;
1972 ktime_t start = ktime_get();
1973 int ret;
1974 unsigned long count = 0;
1975 unsigned long actual_count = 0;
1976
1977 delayed_refs = &trans->transaction->delayed_refs;
1978 do {
1979 if (!locked_ref) {
1980 locked_ref = btrfs_obtain_ref_head(trans);
1981 if (IS_ERR_OR_NULL(locked_ref)) {
1982 if (PTR_ERR(locked_ref) == -EAGAIN) {
1983 continue;
1984 } else {
1985 break;
1986 }
1987 }
1988 count++;
1989 }
1990 /*
1991 * We need to try and merge add/drops of the same ref since we
1992 * can run into issues with relocate dropping the implicit ref
1993 * and then it being added back again before the drop can
1994 * finish. If we merged anything we need to re-loop so we can
1995 * get a good ref.
1996 * Or we can get node references of the same type that weren't
1997 * merged when created due to bumps in the tree mod seq, and
1998 * we need to merge them to prevent adding an inline extent
1999 * backref before dropping it (triggering a BUG_ON at
2000 * insert_inline_extent_backref()).
2001 */
2002 spin_lock(&locked_ref->lock);
2003 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2004
2005 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2006 &actual_count);
2007 if (ret < 0 && ret != -EAGAIN) {
2008 /*
2009 * Error, btrfs_run_delayed_refs_for_head already
2010 * unlocked everything so just bail out
2011 */
2012 return ret;
2013 } else if (!ret) {
2014 /*
2015 * Success, perform the usual cleanup of a processed
2016 * head
2017 */
2018 ret = cleanup_ref_head(trans, locked_ref);
2019 if (ret > 0 ) {
2020 /* We dropped our lock, we need to loop. */
2021 ret = 0;
2022 continue;
2023 } else if (ret) {
2024 return ret;
2025 }
2026 }
2027
2028 /*
2029 * Either success case or btrfs_run_delayed_refs_for_head
2030 * returned -EAGAIN, meaning we need to select another head
2031 */
2032
2033 locked_ref = NULL;
2034 cond_resched();
2035 } while ((nr != -1 && count < nr) || locked_ref);
2036
2037 /*
2038 * We don't want to include ref heads since we can have empty ref heads
2039 * and those will drastically skew our runtime down since we just do
2040 * accounting, no actual extent tree updates.
2041 */
2042 if (actual_count > 0) {
2043 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2044 u64 avg;
2045
2046 /*
2047 * We weigh the current average higher than our current runtime
2048 * to avoid large swings in the average.
2049 */
2050 spin_lock(&delayed_refs->lock);
2051 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2052 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2053 spin_unlock(&delayed_refs->lock);
2054 }
2055 return 0;
2056 }
2057
2058 #ifdef SCRAMBLE_DELAYED_REFS
2059 /*
2060 * Normally delayed refs get processed in ascending bytenr order. This
2061 * correlates in most cases to the order added. To expose dependencies on this
2062 * order, we start to process the tree in the middle instead of the beginning
2063 */
find_middle(struct rb_root * root)2064 static u64 find_middle(struct rb_root *root)
2065 {
2066 struct rb_node *n = root->rb_node;
2067 struct btrfs_delayed_ref_node *entry;
2068 int alt = 1;
2069 u64 middle;
2070 u64 first = 0, last = 0;
2071
2072 n = rb_first(root);
2073 if (n) {
2074 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2075 first = entry->bytenr;
2076 }
2077 n = rb_last(root);
2078 if (n) {
2079 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2080 last = entry->bytenr;
2081 }
2082 n = root->rb_node;
2083
2084 while (n) {
2085 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2086 WARN_ON(!entry->in_tree);
2087
2088 middle = entry->bytenr;
2089
2090 if (alt)
2091 n = n->rb_left;
2092 else
2093 n = n->rb_right;
2094
2095 alt = 1 - alt;
2096 }
2097 return middle;
2098 }
2099 #endif
2100
2101 /*
2102 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2103 * would require to store the csums for that many bytes.
2104 */
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info * fs_info,u64 csum_bytes)2105 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2106 {
2107 u64 csum_size;
2108 u64 num_csums_per_leaf;
2109 u64 num_csums;
2110
2111 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2112 num_csums_per_leaf = div64_u64(csum_size,
2113 (u64)btrfs_super_csum_size(fs_info->super_copy));
2114 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2115 num_csums += num_csums_per_leaf - 1;
2116 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2117 return num_csums;
2118 }
2119
2120 /*
2121 * this starts processing the delayed reference count updates and
2122 * extent insertions we have queued up so far. count can be
2123 * 0, which means to process everything in the tree at the start
2124 * of the run (but not newly added entries), or it can be some target
2125 * number you'd like to process.
2126 *
2127 * Returns 0 on success or if called with an aborted transaction
2128 * Returns <0 on error and aborts the transaction
2129 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2130 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2131 unsigned long count)
2132 {
2133 struct btrfs_fs_info *fs_info = trans->fs_info;
2134 struct rb_node *node;
2135 struct btrfs_delayed_ref_root *delayed_refs;
2136 struct btrfs_delayed_ref_head *head;
2137 int ret;
2138 int run_all = count == (unsigned long)-1;
2139
2140 /* We'll clean this up in btrfs_cleanup_transaction */
2141 if (TRANS_ABORTED(trans))
2142 return 0;
2143
2144 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2145 return 0;
2146
2147 delayed_refs = &trans->transaction->delayed_refs;
2148 if (count == 0)
2149 count = atomic_read(&delayed_refs->num_entries) * 2;
2150
2151 again:
2152 #ifdef SCRAMBLE_DELAYED_REFS
2153 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2154 #endif
2155 ret = __btrfs_run_delayed_refs(trans, count);
2156 if (ret < 0) {
2157 btrfs_abort_transaction(trans, ret);
2158 return ret;
2159 }
2160
2161 if (run_all) {
2162 btrfs_create_pending_block_groups(trans);
2163
2164 spin_lock(&delayed_refs->lock);
2165 node = rb_first_cached(&delayed_refs->href_root);
2166 if (!node) {
2167 spin_unlock(&delayed_refs->lock);
2168 goto out;
2169 }
2170 head = rb_entry(node, struct btrfs_delayed_ref_head,
2171 href_node);
2172 refcount_inc(&head->refs);
2173 spin_unlock(&delayed_refs->lock);
2174
2175 /* Mutex was contended, block until it's released and retry. */
2176 mutex_lock(&head->mutex);
2177 mutex_unlock(&head->mutex);
2178
2179 btrfs_put_delayed_ref_head(head);
2180 cond_resched();
2181 goto again;
2182 }
2183 out:
2184 return 0;
2185 }
2186
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags,int level,int is_data)2187 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2188 struct extent_buffer *eb, u64 flags,
2189 int level, int is_data)
2190 {
2191 struct btrfs_delayed_extent_op *extent_op;
2192 int ret;
2193
2194 extent_op = btrfs_alloc_delayed_extent_op();
2195 if (!extent_op)
2196 return -ENOMEM;
2197
2198 extent_op->flags_to_set = flags;
2199 extent_op->update_flags = true;
2200 extent_op->update_key = false;
2201 extent_op->is_data = is_data ? true : false;
2202 extent_op->level = level;
2203
2204 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2205 if (ret)
2206 btrfs_free_delayed_extent_op(extent_op);
2207 return ret;
2208 }
2209
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2210 static noinline int check_delayed_ref(struct btrfs_root *root,
2211 struct btrfs_path *path,
2212 u64 objectid, u64 offset, u64 bytenr)
2213 {
2214 struct btrfs_delayed_ref_head *head;
2215 struct btrfs_delayed_ref_node *ref;
2216 struct btrfs_delayed_data_ref *data_ref;
2217 struct btrfs_delayed_ref_root *delayed_refs;
2218 struct btrfs_transaction *cur_trans;
2219 struct rb_node *node;
2220 int ret = 0;
2221
2222 spin_lock(&root->fs_info->trans_lock);
2223 cur_trans = root->fs_info->running_transaction;
2224 if (cur_trans)
2225 refcount_inc(&cur_trans->use_count);
2226 spin_unlock(&root->fs_info->trans_lock);
2227 if (!cur_trans)
2228 return 0;
2229
2230 delayed_refs = &cur_trans->delayed_refs;
2231 spin_lock(&delayed_refs->lock);
2232 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2233 if (!head) {
2234 spin_unlock(&delayed_refs->lock);
2235 btrfs_put_transaction(cur_trans);
2236 return 0;
2237 }
2238
2239 if (!mutex_trylock(&head->mutex)) {
2240 refcount_inc(&head->refs);
2241 spin_unlock(&delayed_refs->lock);
2242
2243 btrfs_release_path(path);
2244
2245 /*
2246 * Mutex was contended, block until it's released and let
2247 * caller try again
2248 */
2249 mutex_lock(&head->mutex);
2250 mutex_unlock(&head->mutex);
2251 btrfs_put_delayed_ref_head(head);
2252 btrfs_put_transaction(cur_trans);
2253 return -EAGAIN;
2254 }
2255 spin_unlock(&delayed_refs->lock);
2256
2257 spin_lock(&head->lock);
2258 /*
2259 * XXX: We should replace this with a proper search function in the
2260 * future.
2261 */
2262 for (node = rb_first_cached(&head->ref_tree); node;
2263 node = rb_next(node)) {
2264 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2265 /* If it's a shared ref we know a cross reference exists */
2266 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2267 ret = 1;
2268 break;
2269 }
2270
2271 data_ref = btrfs_delayed_node_to_data_ref(ref);
2272
2273 /*
2274 * If our ref doesn't match the one we're currently looking at
2275 * then we have a cross reference.
2276 */
2277 if (data_ref->root != root->root_key.objectid ||
2278 data_ref->objectid != objectid ||
2279 data_ref->offset != offset) {
2280 ret = 1;
2281 break;
2282 }
2283 }
2284 spin_unlock(&head->lock);
2285 mutex_unlock(&head->mutex);
2286 btrfs_put_transaction(cur_trans);
2287 return ret;
2288 }
2289
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2290 static noinline int check_committed_ref(struct btrfs_root *root,
2291 struct btrfs_path *path,
2292 u64 objectid, u64 offset, u64 bytenr,
2293 bool strict)
2294 {
2295 struct btrfs_fs_info *fs_info = root->fs_info;
2296 struct btrfs_root *extent_root = fs_info->extent_root;
2297 struct extent_buffer *leaf;
2298 struct btrfs_extent_data_ref *ref;
2299 struct btrfs_extent_inline_ref *iref;
2300 struct btrfs_extent_item *ei;
2301 struct btrfs_key key;
2302 u32 item_size;
2303 int type;
2304 int ret;
2305
2306 key.objectid = bytenr;
2307 key.offset = (u64)-1;
2308 key.type = BTRFS_EXTENT_ITEM_KEY;
2309
2310 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2311 if (ret < 0)
2312 goto out;
2313 BUG_ON(ret == 0); /* Corruption */
2314
2315 ret = -ENOENT;
2316 if (path->slots[0] == 0)
2317 goto out;
2318
2319 path->slots[0]--;
2320 leaf = path->nodes[0];
2321 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2322
2323 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2324 goto out;
2325
2326 ret = 1;
2327 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2328 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329
2330 /* If extent item has more than 1 inline ref then it's shared */
2331 if (item_size != sizeof(*ei) +
2332 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2333 goto out;
2334
2335 /*
2336 * If extent created before last snapshot => it's shared unless the
2337 * snapshot has been deleted. Use the heuristic if strict is false.
2338 */
2339 if (!strict &&
2340 (btrfs_extent_generation(leaf, ei) <=
2341 btrfs_root_last_snapshot(&root->root_item)))
2342 goto out;
2343
2344 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2345
2346 /* If this extent has SHARED_DATA_REF then it's shared */
2347 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2348 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2349 goto out;
2350
2351 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2352 if (btrfs_extent_refs(leaf, ei) !=
2353 btrfs_extent_data_ref_count(leaf, ref) ||
2354 btrfs_extent_data_ref_root(leaf, ref) !=
2355 root->root_key.objectid ||
2356 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2357 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2358 goto out;
2359
2360 ret = 0;
2361 out:
2362 return ret;
2363 }
2364
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict)2365 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2366 u64 bytenr, bool strict)
2367 {
2368 struct btrfs_path *path;
2369 int ret;
2370
2371 path = btrfs_alloc_path();
2372 if (!path)
2373 return -ENOMEM;
2374
2375 do {
2376 ret = check_committed_ref(root, path, objectid,
2377 offset, bytenr, strict);
2378 if (ret && ret != -ENOENT)
2379 goto out;
2380
2381 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2382 } while (ret == -EAGAIN);
2383
2384 out:
2385 btrfs_free_path(path);
2386 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2387 WARN_ON(ret > 0);
2388 return ret;
2389 }
2390
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2391 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 struct extent_buffer *buf,
2394 int full_backref, int inc)
2395 {
2396 struct btrfs_fs_info *fs_info = root->fs_info;
2397 u64 bytenr;
2398 u64 num_bytes;
2399 u64 parent;
2400 u64 ref_root;
2401 u32 nritems;
2402 struct btrfs_key key;
2403 struct btrfs_file_extent_item *fi;
2404 struct btrfs_ref generic_ref = { 0 };
2405 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2406 int i;
2407 int action;
2408 int level;
2409 int ret = 0;
2410
2411 if (btrfs_is_testing(fs_info))
2412 return 0;
2413
2414 ref_root = btrfs_header_owner(buf);
2415 nritems = btrfs_header_nritems(buf);
2416 level = btrfs_header_level(buf);
2417
2418 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2419 return 0;
2420
2421 if (full_backref)
2422 parent = buf->start;
2423 else
2424 parent = 0;
2425 if (inc)
2426 action = BTRFS_ADD_DELAYED_REF;
2427 else
2428 action = BTRFS_DROP_DELAYED_REF;
2429
2430 for (i = 0; i < nritems; i++) {
2431 if (level == 0) {
2432 btrfs_item_key_to_cpu(buf, &key, i);
2433 if (key.type != BTRFS_EXTENT_DATA_KEY)
2434 continue;
2435 fi = btrfs_item_ptr(buf, i,
2436 struct btrfs_file_extent_item);
2437 if (btrfs_file_extent_type(buf, fi) ==
2438 BTRFS_FILE_EXTENT_INLINE)
2439 continue;
2440 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2441 if (bytenr == 0)
2442 continue;
2443
2444 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2445 key.offset -= btrfs_file_extent_offset(buf, fi);
2446 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2447 num_bytes, parent);
2448 generic_ref.real_root = root->root_key.objectid;
2449 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2450 key.offset);
2451 generic_ref.skip_qgroup = for_reloc;
2452 if (inc)
2453 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2454 else
2455 ret = btrfs_free_extent(trans, &generic_ref);
2456 if (ret)
2457 goto fail;
2458 } else {
2459 bytenr = btrfs_node_blockptr(buf, i);
2460 num_bytes = fs_info->nodesize;
2461 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2462 num_bytes, parent);
2463 generic_ref.real_root = root->root_key.objectid;
2464 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2465 generic_ref.skip_qgroup = for_reloc;
2466 if (inc)
2467 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2468 else
2469 ret = btrfs_free_extent(trans, &generic_ref);
2470 if (ret)
2471 goto fail;
2472 }
2473 }
2474 return 0;
2475 fail:
2476 return ret;
2477 }
2478
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2479 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2480 struct extent_buffer *buf, int full_backref)
2481 {
2482 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2483 }
2484
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2485 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2486 struct extent_buffer *buf, int full_backref)
2487 {
2488 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2489 }
2490
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)2491 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2492 {
2493 struct btrfs_block_group *block_group;
2494 int readonly = 0;
2495
2496 block_group = btrfs_lookup_block_group(fs_info, bytenr);
2497 if (!block_group || block_group->ro)
2498 readonly = 1;
2499 if (block_group)
2500 btrfs_put_block_group(block_group);
2501 return readonly;
2502 }
2503
get_alloc_profile_by_root(struct btrfs_root * root,int data)2504 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2505 {
2506 struct btrfs_fs_info *fs_info = root->fs_info;
2507 u64 flags;
2508 u64 ret;
2509
2510 if (data)
2511 flags = BTRFS_BLOCK_GROUP_DATA;
2512 else if (root == fs_info->chunk_root)
2513 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2514 else
2515 flags = BTRFS_BLOCK_GROUP_METADATA;
2516
2517 ret = btrfs_get_alloc_profile(fs_info, flags);
2518 return ret;
2519 }
2520
first_logical_byte(struct btrfs_fs_info * fs_info,u64 search_start)2521 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2522 {
2523 struct btrfs_block_group *cache;
2524 u64 bytenr;
2525
2526 spin_lock(&fs_info->block_group_cache_lock);
2527 bytenr = fs_info->first_logical_byte;
2528 spin_unlock(&fs_info->block_group_cache_lock);
2529
2530 if (bytenr < (u64)-1)
2531 return bytenr;
2532
2533 cache = btrfs_lookup_first_block_group(fs_info, search_start);
2534 if (!cache)
2535 return 0;
2536
2537 bytenr = cache->start;
2538 btrfs_put_block_group(cache);
2539
2540 return bytenr;
2541 }
2542
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2543 static int pin_down_extent(struct btrfs_trans_handle *trans,
2544 struct btrfs_block_group *cache,
2545 u64 bytenr, u64 num_bytes, int reserved)
2546 {
2547 struct btrfs_fs_info *fs_info = cache->fs_info;
2548
2549 spin_lock(&cache->space_info->lock);
2550 spin_lock(&cache->lock);
2551 cache->pinned += num_bytes;
2552 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2553 num_bytes);
2554 if (reserved) {
2555 cache->reserved -= num_bytes;
2556 cache->space_info->bytes_reserved -= num_bytes;
2557 }
2558 spin_unlock(&cache->lock);
2559 spin_unlock(&cache->space_info->lock);
2560
2561 __btrfs_mod_total_bytes_pinned(cache->space_info, num_bytes);
2562 set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2563 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2564 return 0;
2565 }
2566
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2567 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2568 u64 bytenr, u64 num_bytes, int reserved)
2569 {
2570 struct btrfs_block_group *cache;
2571
2572 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2573 BUG_ON(!cache); /* Logic error */
2574
2575 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2576
2577 btrfs_put_block_group(cache);
2578 return 0;
2579 }
2580
2581 /*
2582 * this function must be called within transaction
2583 */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2584 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2585 u64 bytenr, u64 num_bytes)
2586 {
2587 struct btrfs_block_group *cache;
2588 int ret;
2589
2590 btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes);
2591
2592 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2593 if (!cache)
2594 return -EINVAL;
2595
2596 /*
2597 * pull in the free space cache (if any) so that our pin
2598 * removes the free space from the cache. We have load_only set
2599 * to one because the slow code to read in the free extents does check
2600 * the pinned extents.
2601 */
2602 btrfs_cache_block_group(cache, 1);
2603
2604 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2605
2606 /* remove us from the free space cache (if we're there at all) */
2607 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2608 btrfs_put_block_group(cache);
2609 return ret;
2610 }
2611
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2612 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2613 u64 start, u64 num_bytes)
2614 {
2615 int ret;
2616 struct btrfs_block_group *block_group;
2617 struct btrfs_caching_control *caching_ctl;
2618
2619 block_group = btrfs_lookup_block_group(fs_info, start);
2620 if (!block_group)
2621 return -EINVAL;
2622
2623 btrfs_cache_block_group(block_group, 0);
2624 caching_ctl = btrfs_get_caching_control(block_group);
2625
2626 if (!caching_ctl) {
2627 /* Logic error */
2628 BUG_ON(!btrfs_block_group_done(block_group));
2629 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2630 } else {
2631 mutex_lock(&caching_ctl->mutex);
2632
2633 if (start >= caching_ctl->progress) {
2634 ret = btrfs_add_excluded_extent(fs_info, start,
2635 num_bytes);
2636 } else if (start + num_bytes <= caching_ctl->progress) {
2637 ret = btrfs_remove_free_space(block_group,
2638 start, num_bytes);
2639 } else {
2640 num_bytes = caching_ctl->progress - start;
2641 ret = btrfs_remove_free_space(block_group,
2642 start, num_bytes);
2643 if (ret)
2644 goto out_lock;
2645
2646 num_bytes = (start + num_bytes) -
2647 caching_ctl->progress;
2648 start = caching_ctl->progress;
2649 ret = btrfs_add_excluded_extent(fs_info, start,
2650 num_bytes);
2651 }
2652 out_lock:
2653 mutex_unlock(&caching_ctl->mutex);
2654 btrfs_put_caching_control(caching_ctl);
2655 }
2656 btrfs_put_block_group(block_group);
2657 return ret;
2658 }
2659
btrfs_exclude_logged_extents(struct extent_buffer * eb)2660 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2661 {
2662 struct btrfs_fs_info *fs_info = eb->fs_info;
2663 struct btrfs_file_extent_item *item;
2664 struct btrfs_key key;
2665 int found_type;
2666 int i;
2667 int ret = 0;
2668
2669 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2670 return 0;
2671
2672 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2673 btrfs_item_key_to_cpu(eb, &key, i);
2674 if (key.type != BTRFS_EXTENT_DATA_KEY)
2675 continue;
2676 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2677 found_type = btrfs_file_extent_type(eb, item);
2678 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2679 continue;
2680 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2681 continue;
2682 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2683 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2684 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2685 if (ret)
2686 break;
2687 }
2688
2689 return ret;
2690 }
2691
2692 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2693 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2694 {
2695 atomic_inc(&bg->reservations);
2696 }
2697
2698 /*
2699 * Returns the free cluster for the given space info and sets empty_cluster to
2700 * what it should be based on the mount options.
2701 */
2702 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2703 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2704 struct btrfs_space_info *space_info, u64 *empty_cluster)
2705 {
2706 struct btrfs_free_cluster *ret = NULL;
2707
2708 *empty_cluster = 0;
2709 if (btrfs_mixed_space_info(space_info))
2710 return ret;
2711
2712 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2713 ret = &fs_info->meta_alloc_cluster;
2714 if (btrfs_test_opt(fs_info, SSD))
2715 *empty_cluster = SZ_2M;
2716 else
2717 *empty_cluster = SZ_64K;
2718 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2719 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2720 *empty_cluster = SZ_2M;
2721 ret = &fs_info->data_alloc_cluster;
2722 }
2723
2724 return ret;
2725 }
2726
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2727 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2728 u64 start, u64 end,
2729 const bool return_free_space)
2730 {
2731 struct btrfs_block_group *cache = NULL;
2732 struct btrfs_space_info *space_info;
2733 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2734 struct btrfs_free_cluster *cluster = NULL;
2735 u64 len;
2736 u64 total_unpinned = 0;
2737 u64 empty_cluster = 0;
2738 bool readonly;
2739
2740 while (start <= end) {
2741 readonly = false;
2742 if (!cache ||
2743 start >= cache->start + cache->length) {
2744 if (cache)
2745 btrfs_put_block_group(cache);
2746 total_unpinned = 0;
2747 cache = btrfs_lookup_block_group(fs_info, start);
2748 BUG_ON(!cache); /* Logic error */
2749
2750 cluster = fetch_cluster_info(fs_info,
2751 cache->space_info,
2752 &empty_cluster);
2753 empty_cluster <<= 1;
2754 }
2755
2756 len = cache->start + cache->length - start;
2757 len = min(len, end + 1 - start);
2758
2759 if (start < cache->last_byte_to_unpin && return_free_space) {
2760 u64 add_len = min(len, cache->last_byte_to_unpin - start);
2761
2762 btrfs_add_free_space(cache, start, add_len);
2763 }
2764
2765 start += len;
2766 total_unpinned += len;
2767 space_info = cache->space_info;
2768
2769 /*
2770 * If this space cluster has been marked as fragmented and we've
2771 * unpinned enough in this block group to potentially allow a
2772 * cluster to be created inside of it go ahead and clear the
2773 * fragmented check.
2774 */
2775 if (cluster && cluster->fragmented &&
2776 total_unpinned > empty_cluster) {
2777 spin_lock(&cluster->lock);
2778 cluster->fragmented = 0;
2779 spin_unlock(&cluster->lock);
2780 }
2781
2782 spin_lock(&space_info->lock);
2783 spin_lock(&cache->lock);
2784 cache->pinned -= len;
2785 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2786 space_info->max_extent_size = 0;
2787 __btrfs_mod_total_bytes_pinned(space_info, -len);
2788 if (cache->ro) {
2789 space_info->bytes_readonly += len;
2790 readonly = true;
2791 }
2792 spin_unlock(&cache->lock);
2793 if (!readonly && return_free_space &&
2794 global_rsv->space_info == space_info) {
2795 u64 to_add = len;
2796
2797 spin_lock(&global_rsv->lock);
2798 if (!global_rsv->full) {
2799 to_add = min(len, global_rsv->size -
2800 global_rsv->reserved);
2801 global_rsv->reserved += to_add;
2802 btrfs_space_info_update_bytes_may_use(fs_info,
2803 space_info, to_add);
2804 if (global_rsv->reserved >= global_rsv->size)
2805 global_rsv->full = 1;
2806 len -= to_add;
2807 }
2808 spin_unlock(&global_rsv->lock);
2809 }
2810 /* Add to any tickets we may have */
2811 if (!readonly && return_free_space && len)
2812 btrfs_try_granting_tickets(fs_info, space_info);
2813 spin_unlock(&space_info->lock);
2814 }
2815
2816 if (cache)
2817 btrfs_put_block_group(cache);
2818 return 0;
2819 }
2820
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2821 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2822 {
2823 struct btrfs_fs_info *fs_info = trans->fs_info;
2824 struct btrfs_block_group *block_group, *tmp;
2825 struct list_head *deleted_bgs;
2826 struct extent_io_tree *unpin;
2827 u64 start;
2828 u64 end;
2829 int ret;
2830
2831 unpin = &trans->transaction->pinned_extents;
2832
2833 while (!TRANS_ABORTED(trans)) {
2834 struct extent_state *cached_state = NULL;
2835
2836 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2837 ret = find_first_extent_bit(unpin, 0, &start, &end,
2838 EXTENT_DIRTY, &cached_state);
2839 if (ret) {
2840 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2841 break;
2842 }
2843 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
2844 clear_extent_bits(&fs_info->excluded_extents, start,
2845 end, EXTENT_UPTODATE);
2846
2847 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2848 ret = btrfs_discard_extent(fs_info, start,
2849 end + 1 - start, NULL);
2850
2851 clear_extent_dirty(unpin, start, end, &cached_state);
2852 unpin_extent_range(fs_info, start, end, true);
2853 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2854 free_extent_state(cached_state);
2855 cond_resched();
2856 }
2857
2858 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2859 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2860 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2861 }
2862
2863 /*
2864 * Transaction is finished. We don't need the lock anymore. We
2865 * do need to clean up the block groups in case of a transaction
2866 * abort.
2867 */
2868 deleted_bgs = &trans->transaction->deleted_bgs;
2869 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2870 u64 trimmed = 0;
2871
2872 ret = -EROFS;
2873 if (!TRANS_ABORTED(trans))
2874 ret = btrfs_discard_extent(fs_info,
2875 block_group->start,
2876 block_group->length,
2877 &trimmed);
2878
2879 list_del_init(&block_group->bg_list);
2880 btrfs_unfreeze_block_group(block_group);
2881 btrfs_put_block_group(block_group);
2882
2883 if (ret) {
2884 const char *errstr = btrfs_decode_error(ret);
2885 btrfs_warn(fs_info,
2886 "discard failed while removing blockgroup: errno=%d %s",
2887 ret, errstr);
2888 }
2889 }
2890
2891 return 0;
2892 }
2893
2894 /*
2895 * Drop one or more refs of @node.
2896 *
2897 * 1. Locate the extent refs.
2898 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2899 * Locate it, then reduce the refs number or remove the ref line completely.
2900 *
2901 * 2. Update the refs count in EXTENT/METADATA_ITEM
2902 *
2903 * Inline backref case:
2904 *
2905 * in extent tree we have:
2906 *
2907 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2908 * refs 2 gen 6 flags DATA
2909 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2910 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2911 *
2912 * This function gets called with:
2913 *
2914 * node->bytenr = 13631488
2915 * node->num_bytes = 1048576
2916 * root_objectid = FS_TREE
2917 * owner_objectid = 257
2918 * owner_offset = 0
2919 * refs_to_drop = 1
2920 *
2921 * Then we should get some like:
2922 *
2923 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2924 * refs 1 gen 6 flags DATA
2925 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2926 *
2927 * Keyed backref case:
2928 *
2929 * in extent tree we have:
2930 *
2931 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2932 * refs 754 gen 6 flags DATA
2933 * [...]
2934 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2935 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2936 *
2937 * This function get called with:
2938 *
2939 * node->bytenr = 13631488
2940 * node->num_bytes = 1048576
2941 * root_objectid = FS_TREE
2942 * owner_objectid = 866
2943 * owner_offset = 0
2944 * refs_to_drop = 1
2945 *
2946 * Then we should get some like:
2947 *
2948 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2949 * refs 753 gen 6 flags DATA
2950 *
2951 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2952 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2953 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2954 struct btrfs_delayed_ref_node *node, u64 parent,
2955 u64 root_objectid, u64 owner_objectid,
2956 u64 owner_offset, int refs_to_drop,
2957 struct btrfs_delayed_extent_op *extent_op)
2958 {
2959 struct btrfs_fs_info *info = trans->fs_info;
2960 struct btrfs_key key;
2961 struct btrfs_path *path;
2962 struct btrfs_root *extent_root = info->extent_root;
2963 struct extent_buffer *leaf;
2964 struct btrfs_extent_item *ei;
2965 struct btrfs_extent_inline_ref *iref;
2966 int ret;
2967 int is_data;
2968 int extent_slot = 0;
2969 int found_extent = 0;
2970 int num_to_del = 1;
2971 u32 item_size;
2972 u64 refs;
2973 u64 bytenr = node->bytenr;
2974 u64 num_bytes = node->num_bytes;
2975 int last_ref = 0;
2976 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2977
2978 path = btrfs_alloc_path();
2979 if (!path)
2980 return -ENOMEM;
2981
2982 path->leave_spinning = 1;
2983
2984 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2985
2986 if (!is_data && refs_to_drop != 1) {
2987 btrfs_crit(info,
2988 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2989 node->bytenr, refs_to_drop);
2990 ret = -EINVAL;
2991 btrfs_abort_transaction(trans, ret);
2992 goto out;
2993 }
2994
2995 if (is_data)
2996 skinny_metadata = false;
2997
2998 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2999 parent, root_objectid, owner_objectid,
3000 owner_offset);
3001 if (ret == 0) {
3002 /*
3003 * Either the inline backref or the SHARED_DATA_REF/
3004 * SHARED_BLOCK_REF is found
3005 *
3006 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3007 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3008 */
3009 extent_slot = path->slots[0];
3010 while (extent_slot >= 0) {
3011 btrfs_item_key_to_cpu(path->nodes[0], &key,
3012 extent_slot);
3013 if (key.objectid != bytenr)
3014 break;
3015 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3016 key.offset == num_bytes) {
3017 found_extent = 1;
3018 break;
3019 }
3020 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3021 key.offset == owner_objectid) {
3022 found_extent = 1;
3023 break;
3024 }
3025
3026 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
3027 if (path->slots[0] - extent_slot > 5)
3028 break;
3029 extent_slot--;
3030 }
3031
3032 if (!found_extent) {
3033 if (iref) {
3034 btrfs_crit(info,
3035 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3036 btrfs_abort_transaction(trans, -EUCLEAN);
3037 goto err_dump;
3038 }
3039 /* Must be SHARED_* item, remove the backref first */
3040 ret = remove_extent_backref(trans, path, NULL,
3041 refs_to_drop,
3042 is_data, &last_ref);
3043 if (ret) {
3044 btrfs_abort_transaction(trans, ret);
3045 goto out;
3046 }
3047 btrfs_release_path(path);
3048 path->leave_spinning = 1;
3049
3050 /* Slow path to locate EXTENT/METADATA_ITEM */
3051 key.objectid = bytenr;
3052 key.type = BTRFS_EXTENT_ITEM_KEY;
3053 key.offset = num_bytes;
3054
3055 if (!is_data && skinny_metadata) {
3056 key.type = BTRFS_METADATA_ITEM_KEY;
3057 key.offset = owner_objectid;
3058 }
3059
3060 ret = btrfs_search_slot(trans, extent_root,
3061 &key, path, -1, 1);
3062 if (ret > 0 && skinny_metadata && path->slots[0]) {
3063 /*
3064 * Couldn't find our skinny metadata item,
3065 * see if we have ye olde extent item.
3066 */
3067 path->slots[0]--;
3068 btrfs_item_key_to_cpu(path->nodes[0], &key,
3069 path->slots[0]);
3070 if (key.objectid == bytenr &&
3071 key.type == BTRFS_EXTENT_ITEM_KEY &&
3072 key.offset == num_bytes)
3073 ret = 0;
3074 }
3075
3076 if (ret > 0 && skinny_metadata) {
3077 skinny_metadata = false;
3078 key.objectid = bytenr;
3079 key.type = BTRFS_EXTENT_ITEM_KEY;
3080 key.offset = num_bytes;
3081 btrfs_release_path(path);
3082 ret = btrfs_search_slot(trans, extent_root,
3083 &key, path, -1, 1);
3084 }
3085
3086 if (ret) {
3087 btrfs_err(info,
3088 "umm, got %d back from search, was looking for %llu",
3089 ret, bytenr);
3090 if (ret > 0)
3091 btrfs_print_leaf(path->nodes[0]);
3092 }
3093 if (ret < 0) {
3094 btrfs_abort_transaction(trans, ret);
3095 goto out;
3096 }
3097 extent_slot = path->slots[0];
3098 }
3099 } else if (WARN_ON(ret == -ENOENT)) {
3100 btrfs_print_leaf(path->nodes[0]);
3101 btrfs_err(info,
3102 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3103 bytenr, parent, root_objectid, owner_objectid,
3104 owner_offset);
3105 btrfs_abort_transaction(trans, ret);
3106 goto out;
3107 } else {
3108 btrfs_abort_transaction(trans, ret);
3109 goto out;
3110 }
3111
3112 leaf = path->nodes[0];
3113 item_size = btrfs_item_size_nr(leaf, extent_slot);
3114 if (unlikely(item_size < sizeof(*ei))) {
3115 ret = -EINVAL;
3116 btrfs_print_v0_err(info);
3117 btrfs_abort_transaction(trans, ret);
3118 goto out;
3119 }
3120 ei = btrfs_item_ptr(leaf, extent_slot,
3121 struct btrfs_extent_item);
3122 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3123 key.type == BTRFS_EXTENT_ITEM_KEY) {
3124 struct btrfs_tree_block_info *bi;
3125 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3126 btrfs_crit(info,
3127 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3128 key.objectid, key.type, key.offset,
3129 owner_objectid, item_size,
3130 sizeof(*ei) + sizeof(*bi));
3131 btrfs_abort_transaction(trans, -EUCLEAN);
3132 goto err_dump;
3133 }
3134 bi = (struct btrfs_tree_block_info *)(ei + 1);
3135 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3136 }
3137
3138 refs = btrfs_extent_refs(leaf, ei);
3139 if (refs < refs_to_drop) {
3140 btrfs_crit(info,
3141 "trying to drop %d refs but we only have %llu for bytenr %llu",
3142 refs_to_drop, refs, bytenr);
3143 btrfs_abort_transaction(trans, -EUCLEAN);
3144 goto err_dump;
3145 }
3146 refs -= refs_to_drop;
3147
3148 if (refs > 0) {
3149 if (extent_op)
3150 __run_delayed_extent_op(extent_op, leaf, ei);
3151 /*
3152 * In the case of inline back ref, reference count will
3153 * be updated by remove_extent_backref
3154 */
3155 if (iref) {
3156 if (!found_extent) {
3157 btrfs_crit(info,
3158 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3159 btrfs_abort_transaction(trans, -EUCLEAN);
3160 goto err_dump;
3161 }
3162 } else {
3163 btrfs_set_extent_refs(leaf, ei, refs);
3164 btrfs_mark_buffer_dirty(leaf);
3165 }
3166 if (found_extent) {
3167 ret = remove_extent_backref(trans, path, iref,
3168 refs_to_drop, is_data,
3169 &last_ref);
3170 if (ret) {
3171 btrfs_abort_transaction(trans, ret);
3172 goto out;
3173 }
3174 }
3175 } else {
3176 /* In this branch refs == 1 */
3177 if (found_extent) {
3178 if (is_data && refs_to_drop !=
3179 extent_data_ref_count(path, iref)) {
3180 btrfs_crit(info,
3181 "invalid refs_to_drop, current refs %u refs_to_drop %u",
3182 extent_data_ref_count(path, iref),
3183 refs_to_drop);
3184 btrfs_abort_transaction(trans, -EUCLEAN);
3185 goto err_dump;
3186 }
3187 if (iref) {
3188 if (path->slots[0] != extent_slot) {
3189 btrfs_crit(info,
3190 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3191 key.objectid, key.type,
3192 key.offset);
3193 btrfs_abort_transaction(trans, -EUCLEAN);
3194 goto err_dump;
3195 }
3196 } else {
3197 /*
3198 * No inline ref, we must be at SHARED_* item,
3199 * And it's single ref, it must be:
3200 * | extent_slot ||extent_slot + 1|
3201 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3202 */
3203 if (path->slots[0] != extent_slot + 1) {
3204 btrfs_crit(info,
3205 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3206 btrfs_abort_transaction(trans, -EUCLEAN);
3207 goto err_dump;
3208 }
3209 path->slots[0] = extent_slot;
3210 num_to_del = 2;
3211 }
3212 }
3213
3214 last_ref = 1;
3215 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3216 num_to_del);
3217 if (ret) {
3218 btrfs_abort_transaction(trans, ret);
3219 goto out;
3220 }
3221 btrfs_release_path(path);
3222
3223 if (is_data) {
3224 ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3225 num_bytes);
3226 if (ret) {
3227 btrfs_abort_transaction(trans, ret);
3228 goto out;
3229 }
3230 }
3231
3232 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3233 if (ret) {
3234 btrfs_abort_transaction(trans, ret);
3235 goto out;
3236 }
3237
3238 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3239 if (ret) {
3240 btrfs_abort_transaction(trans, ret);
3241 goto out;
3242 }
3243 }
3244 btrfs_release_path(path);
3245
3246 out:
3247 btrfs_free_path(path);
3248 return ret;
3249 err_dump:
3250 /*
3251 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3252 * dump for debug build.
3253 */
3254 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3255 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3256 path->slots[0], extent_slot);
3257 btrfs_print_leaf(path->nodes[0]);
3258 }
3259
3260 btrfs_free_path(path);
3261 return -EUCLEAN;
3262 }
3263
3264 /*
3265 * when we free an block, it is possible (and likely) that we free the last
3266 * delayed ref for that extent as well. This searches the delayed ref tree for
3267 * a given extent, and if there are no other delayed refs to be processed, it
3268 * removes it from the tree.
3269 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3270 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3271 u64 bytenr)
3272 {
3273 struct btrfs_delayed_ref_head *head;
3274 struct btrfs_delayed_ref_root *delayed_refs;
3275 int ret = 0;
3276
3277 delayed_refs = &trans->transaction->delayed_refs;
3278 spin_lock(&delayed_refs->lock);
3279 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3280 if (!head)
3281 goto out_delayed_unlock;
3282
3283 spin_lock(&head->lock);
3284 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3285 goto out;
3286
3287 if (cleanup_extent_op(head) != NULL)
3288 goto out;
3289
3290 /*
3291 * waiting for the lock here would deadlock. If someone else has it
3292 * locked they are already in the process of dropping it anyway
3293 */
3294 if (!mutex_trylock(&head->mutex))
3295 goto out;
3296
3297 btrfs_delete_ref_head(delayed_refs, head);
3298 head->processing = 0;
3299
3300 spin_unlock(&head->lock);
3301 spin_unlock(&delayed_refs->lock);
3302
3303 BUG_ON(head->extent_op);
3304 if (head->must_insert_reserved)
3305 ret = 1;
3306
3307 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3308 mutex_unlock(&head->mutex);
3309 btrfs_put_delayed_ref_head(head);
3310 return ret;
3311 out:
3312 spin_unlock(&head->lock);
3313
3314 out_delayed_unlock:
3315 spin_unlock(&delayed_refs->lock);
3316 return 0;
3317 }
3318
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)3319 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3320 struct btrfs_root *root,
3321 struct extent_buffer *buf,
3322 u64 parent, int last_ref)
3323 {
3324 struct btrfs_fs_info *fs_info = root->fs_info;
3325 struct btrfs_ref generic_ref = { 0 };
3326 int ret;
3327
3328 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3329 buf->start, buf->len, parent);
3330 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3331 root->root_key.objectid);
3332
3333 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3334 btrfs_ref_tree_mod(fs_info, &generic_ref);
3335 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3336 BUG_ON(ret); /* -ENOMEM */
3337 }
3338
3339 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3340 struct btrfs_block_group *cache;
3341
3342 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3343 ret = check_ref_cleanup(trans, buf->start);
3344 if (!ret)
3345 goto out;
3346 }
3347
3348 cache = btrfs_lookup_block_group(fs_info, buf->start);
3349
3350 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3351 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3352 btrfs_put_block_group(cache);
3353 goto out;
3354 }
3355
3356 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3357
3358 btrfs_add_free_space(cache, buf->start, buf->len);
3359 btrfs_free_reserved_bytes(cache, buf->len, 0);
3360 btrfs_put_block_group(cache);
3361 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3362 }
3363 out:
3364 if (last_ref) {
3365 /*
3366 * Deleting the buffer, clear the corrupt flag since it doesn't
3367 * matter anymore.
3368 */
3369 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3370 }
3371 }
3372
3373 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3374 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3375 {
3376 struct btrfs_fs_info *fs_info = trans->fs_info;
3377 int ret;
3378
3379 if (btrfs_is_testing(fs_info))
3380 return 0;
3381
3382 /*
3383 * tree log blocks never actually go into the extent allocation
3384 * tree, just update pinning info and exit early.
3385 */
3386 if ((ref->type == BTRFS_REF_METADATA &&
3387 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3388 (ref->type == BTRFS_REF_DATA &&
3389 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3390 /* unlocks the pinned mutex */
3391 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3392 ret = 0;
3393 } else if (ref->type == BTRFS_REF_METADATA) {
3394 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3395 } else {
3396 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3397 }
3398
3399 if (!((ref->type == BTRFS_REF_METADATA &&
3400 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3401 (ref->type == BTRFS_REF_DATA &&
3402 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3403 btrfs_ref_tree_mod(fs_info, ref);
3404
3405 return ret;
3406 }
3407
3408 enum btrfs_loop_type {
3409 LOOP_CACHING_NOWAIT,
3410 LOOP_CACHING_WAIT,
3411 LOOP_ALLOC_CHUNK,
3412 LOOP_NO_EMPTY_SIZE,
3413 };
3414
3415 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3416 btrfs_lock_block_group(struct btrfs_block_group *cache,
3417 int delalloc)
3418 {
3419 if (delalloc)
3420 down_read(&cache->data_rwsem);
3421 }
3422
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3423 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3424 int delalloc)
3425 {
3426 btrfs_get_block_group(cache);
3427 if (delalloc)
3428 down_read(&cache->data_rwsem);
3429 }
3430
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3431 static struct btrfs_block_group *btrfs_lock_cluster(
3432 struct btrfs_block_group *block_group,
3433 struct btrfs_free_cluster *cluster,
3434 int delalloc)
3435 __acquires(&cluster->refill_lock)
3436 {
3437 struct btrfs_block_group *used_bg = NULL;
3438
3439 spin_lock(&cluster->refill_lock);
3440 while (1) {
3441 used_bg = cluster->block_group;
3442 if (!used_bg)
3443 return NULL;
3444
3445 if (used_bg == block_group)
3446 return used_bg;
3447
3448 btrfs_get_block_group(used_bg);
3449
3450 if (!delalloc)
3451 return used_bg;
3452
3453 if (down_read_trylock(&used_bg->data_rwsem))
3454 return used_bg;
3455
3456 spin_unlock(&cluster->refill_lock);
3457
3458 /* We should only have one-level nested. */
3459 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3460
3461 spin_lock(&cluster->refill_lock);
3462 if (used_bg == cluster->block_group)
3463 return used_bg;
3464
3465 up_read(&used_bg->data_rwsem);
3466 btrfs_put_block_group(used_bg);
3467 }
3468 }
3469
3470 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3471 btrfs_release_block_group(struct btrfs_block_group *cache,
3472 int delalloc)
3473 {
3474 if (delalloc)
3475 up_read(&cache->data_rwsem);
3476 btrfs_put_block_group(cache);
3477 }
3478
3479 enum btrfs_extent_allocation_policy {
3480 BTRFS_EXTENT_ALLOC_CLUSTERED,
3481 };
3482
3483 /*
3484 * Structure used internally for find_free_extent() function. Wraps needed
3485 * parameters.
3486 */
3487 struct find_free_extent_ctl {
3488 /* Basic allocation info */
3489 u64 num_bytes;
3490 u64 empty_size;
3491 u64 flags;
3492 int delalloc;
3493
3494 /* Where to start the search inside the bg */
3495 u64 search_start;
3496
3497 /* For clustered allocation */
3498 u64 empty_cluster;
3499 struct btrfs_free_cluster *last_ptr;
3500 bool use_cluster;
3501
3502 bool have_caching_bg;
3503 bool orig_have_caching_bg;
3504
3505 /* RAID index, converted from flags */
3506 int index;
3507
3508 /*
3509 * Current loop number, check find_free_extent_update_loop() for details
3510 */
3511 int loop;
3512
3513 /*
3514 * Whether we're refilling a cluster, if true we need to re-search
3515 * current block group but don't try to refill the cluster again.
3516 */
3517 bool retry_clustered;
3518
3519 /*
3520 * Whether we're updating free space cache, if true we need to re-search
3521 * current block group but don't try updating free space cache again.
3522 */
3523 bool retry_unclustered;
3524
3525 /* If current block group is cached */
3526 int cached;
3527
3528 /* Max contiguous hole found */
3529 u64 max_extent_size;
3530
3531 /* Total free space from free space cache, not always contiguous */
3532 u64 total_free_space;
3533
3534 /* Found result */
3535 u64 found_offset;
3536
3537 /* Hint where to start looking for an empty space */
3538 u64 hint_byte;
3539
3540 /* Allocation policy */
3541 enum btrfs_extent_allocation_policy policy;
3542 };
3543
3544
3545 /*
3546 * Helper function for find_free_extent().
3547 *
3548 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3549 * Return -EAGAIN to inform caller that we need to re-search this block group
3550 * Return >0 to inform caller that we find nothing
3551 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3552 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3553 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3554 struct find_free_extent_ctl *ffe_ctl,
3555 struct btrfs_block_group **cluster_bg_ret)
3556 {
3557 struct btrfs_block_group *cluster_bg;
3558 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3559 u64 aligned_cluster;
3560 u64 offset;
3561 int ret;
3562
3563 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3564 if (!cluster_bg)
3565 goto refill_cluster;
3566 if (cluster_bg != bg && (cluster_bg->ro ||
3567 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3568 goto release_cluster;
3569
3570 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3571 ffe_ctl->num_bytes, cluster_bg->start,
3572 &ffe_ctl->max_extent_size);
3573 if (offset) {
3574 /* We have a block, we're done */
3575 spin_unlock(&last_ptr->refill_lock);
3576 trace_btrfs_reserve_extent_cluster(cluster_bg,
3577 ffe_ctl->search_start, ffe_ctl->num_bytes);
3578 *cluster_bg_ret = cluster_bg;
3579 ffe_ctl->found_offset = offset;
3580 return 0;
3581 }
3582 WARN_ON(last_ptr->block_group != cluster_bg);
3583
3584 release_cluster:
3585 /*
3586 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3587 * lets just skip it and let the allocator find whatever block it can
3588 * find. If we reach this point, we will have tried the cluster
3589 * allocator plenty of times and not have found anything, so we are
3590 * likely way too fragmented for the clustering stuff to find anything.
3591 *
3592 * However, if the cluster is taken from the current block group,
3593 * release the cluster first, so that we stand a better chance of
3594 * succeeding in the unclustered allocation.
3595 */
3596 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3597 spin_unlock(&last_ptr->refill_lock);
3598 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3599 return -ENOENT;
3600 }
3601
3602 /* This cluster didn't work out, free it and start over */
3603 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3604
3605 if (cluster_bg != bg)
3606 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3607
3608 refill_cluster:
3609 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3610 spin_unlock(&last_ptr->refill_lock);
3611 return -ENOENT;
3612 }
3613
3614 aligned_cluster = max_t(u64,
3615 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3616 bg->full_stripe_len);
3617 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3618 ffe_ctl->num_bytes, aligned_cluster);
3619 if (ret == 0) {
3620 /* Now pull our allocation out of this cluster */
3621 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3622 ffe_ctl->num_bytes, ffe_ctl->search_start,
3623 &ffe_ctl->max_extent_size);
3624 if (offset) {
3625 /* We found one, proceed */
3626 spin_unlock(&last_ptr->refill_lock);
3627 trace_btrfs_reserve_extent_cluster(bg,
3628 ffe_ctl->search_start,
3629 ffe_ctl->num_bytes);
3630 ffe_ctl->found_offset = offset;
3631 return 0;
3632 }
3633 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3634 !ffe_ctl->retry_clustered) {
3635 spin_unlock(&last_ptr->refill_lock);
3636
3637 ffe_ctl->retry_clustered = true;
3638 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3639 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3640 return -EAGAIN;
3641 }
3642 /*
3643 * At this point we either didn't find a cluster or we weren't able to
3644 * allocate a block from our cluster. Free the cluster we've been
3645 * trying to use, and go to the next block group.
3646 */
3647 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3648 spin_unlock(&last_ptr->refill_lock);
3649 return 1;
3650 }
3651
3652 /*
3653 * Return >0 to inform caller that we find nothing
3654 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3655 * Return -EAGAIN to inform caller that we need to re-search this block group
3656 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3657 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3658 struct find_free_extent_ctl *ffe_ctl)
3659 {
3660 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3661 u64 offset;
3662
3663 /*
3664 * We are doing an unclustered allocation, set the fragmented flag so
3665 * we don't bother trying to setup a cluster again until we get more
3666 * space.
3667 */
3668 if (unlikely(last_ptr)) {
3669 spin_lock(&last_ptr->lock);
3670 last_ptr->fragmented = 1;
3671 spin_unlock(&last_ptr->lock);
3672 }
3673 if (ffe_ctl->cached) {
3674 struct btrfs_free_space_ctl *free_space_ctl;
3675
3676 free_space_ctl = bg->free_space_ctl;
3677 spin_lock(&free_space_ctl->tree_lock);
3678 if (free_space_ctl->free_space <
3679 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3680 ffe_ctl->empty_size) {
3681 ffe_ctl->total_free_space = max_t(u64,
3682 ffe_ctl->total_free_space,
3683 free_space_ctl->free_space);
3684 spin_unlock(&free_space_ctl->tree_lock);
3685 return 1;
3686 }
3687 spin_unlock(&free_space_ctl->tree_lock);
3688 }
3689
3690 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3691 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3692 &ffe_ctl->max_extent_size);
3693
3694 /*
3695 * If we didn't find a chunk, and we haven't failed on this block group
3696 * before, and this block group is in the middle of caching and we are
3697 * ok with waiting, then go ahead and wait for progress to be made, and
3698 * set @retry_unclustered to true.
3699 *
3700 * If @retry_unclustered is true then we've already waited on this
3701 * block group once and should move on to the next block group.
3702 */
3703 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3704 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3705 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3706 ffe_ctl->empty_size);
3707 ffe_ctl->retry_unclustered = true;
3708 return -EAGAIN;
3709 } else if (!offset) {
3710 return 1;
3711 }
3712 ffe_ctl->found_offset = offset;
3713 return 0;
3714 }
3715
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3716 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3717 struct find_free_extent_ctl *ffe_ctl,
3718 struct btrfs_block_group **bg_ret)
3719 {
3720 int ret;
3721
3722 /* We want to try and use the cluster allocator, so lets look there */
3723 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3724 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3725 if (ret >= 0 || ret == -EAGAIN)
3726 return ret;
3727 /* ret == -ENOENT case falls through */
3728 }
3729
3730 return find_free_extent_unclustered(block_group, ffe_ctl);
3731 }
3732
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3733 static int do_allocation(struct btrfs_block_group *block_group,
3734 struct find_free_extent_ctl *ffe_ctl,
3735 struct btrfs_block_group **bg_ret)
3736 {
3737 switch (ffe_ctl->policy) {
3738 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3739 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3740 default:
3741 BUG();
3742 }
3743 }
3744
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3745 static void release_block_group(struct btrfs_block_group *block_group,
3746 struct find_free_extent_ctl *ffe_ctl,
3747 int delalloc)
3748 {
3749 switch (ffe_ctl->policy) {
3750 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3751 ffe_ctl->retry_clustered = false;
3752 ffe_ctl->retry_unclustered = false;
3753 break;
3754 default:
3755 BUG();
3756 }
3757
3758 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3759 ffe_ctl->index);
3760 btrfs_release_block_group(block_group, delalloc);
3761 }
3762
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3763 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3764 struct btrfs_key *ins)
3765 {
3766 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3767
3768 if (!ffe_ctl->use_cluster && last_ptr) {
3769 spin_lock(&last_ptr->lock);
3770 last_ptr->window_start = ins->objectid;
3771 spin_unlock(&last_ptr->lock);
3772 }
3773 }
3774
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3775 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3776 struct btrfs_key *ins)
3777 {
3778 switch (ffe_ctl->policy) {
3779 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3780 found_extent_clustered(ffe_ctl, ins);
3781 break;
3782 default:
3783 BUG();
3784 }
3785 }
3786
chunk_allocation_failed(struct find_free_extent_ctl * ffe_ctl)3787 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3788 {
3789 switch (ffe_ctl->policy) {
3790 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3791 /*
3792 * If we can't allocate a new chunk we've already looped through
3793 * at least once, move on to the NO_EMPTY_SIZE case.
3794 */
3795 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3796 return 0;
3797 default:
3798 BUG();
3799 }
3800 }
3801
3802 /*
3803 * Return >0 means caller needs to re-search for free extent
3804 * Return 0 means we have the needed free extent.
3805 * Return <0 means we failed to locate any free extent.
3806 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)3807 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3808 struct btrfs_key *ins,
3809 struct find_free_extent_ctl *ffe_ctl,
3810 bool full_search)
3811 {
3812 struct btrfs_root *root = fs_info->extent_root;
3813 int ret;
3814
3815 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3816 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3817 ffe_ctl->orig_have_caching_bg = true;
3818
3819 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3820 ffe_ctl->have_caching_bg)
3821 return 1;
3822
3823 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3824 return 1;
3825
3826 if (ins->objectid) {
3827 found_extent(ffe_ctl, ins);
3828 return 0;
3829 }
3830
3831 /*
3832 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3833 * caching kthreads as we move along
3834 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3835 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3836 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3837 * again
3838 */
3839 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3840 ffe_ctl->index = 0;
3841 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3842 /*
3843 * We want to skip the LOOP_CACHING_WAIT step if we
3844 * don't have any uncached bgs and we've already done a
3845 * full search through.
3846 */
3847 if (ffe_ctl->orig_have_caching_bg || !full_search)
3848 ffe_ctl->loop = LOOP_CACHING_WAIT;
3849 else
3850 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3851 } else {
3852 ffe_ctl->loop++;
3853 }
3854
3855 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3856 struct btrfs_trans_handle *trans;
3857 int exist = 0;
3858
3859 trans = current->journal_info;
3860 if (trans)
3861 exist = 1;
3862 else
3863 trans = btrfs_join_transaction(root);
3864
3865 if (IS_ERR(trans)) {
3866 ret = PTR_ERR(trans);
3867 return ret;
3868 }
3869
3870 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3871 CHUNK_ALLOC_FORCE);
3872
3873 /* Do not bail out on ENOSPC since we can do more. */
3874 if (ret == -ENOSPC)
3875 ret = chunk_allocation_failed(ffe_ctl);
3876 else if (ret < 0)
3877 btrfs_abort_transaction(trans, ret);
3878 else
3879 ret = 0;
3880 if (!exist)
3881 btrfs_end_transaction(trans);
3882 if (ret)
3883 return ret;
3884 }
3885
3886 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3887 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
3888 return -ENOSPC;
3889
3890 /*
3891 * Don't loop again if we already have no empty_size and
3892 * no empty_cluster.
3893 */
3894 if (ffe_ctl->empty_size == 0 &&
3895 ffe_ctl->empty_cluster == 0)
3896 return -ENOSPC;
3897 ffe_ctl->empty_size = 0;
3898 ffe_ctl->empty_cluster = 0;
3899 }
3900 return 1;
3901 }
3902 return -ENOSPC;
3903 }
3904
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)3905 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
3906 struct find_free_extent_ctl *ffe_ctl,
3907 struct btrfs_space_info *space_info,
3908 struct btrfs_key *ins)
3909 {
3910 /*
3911 * If our free space is heavily fragmented we may not be able to make
3912 * big contiguous allocations, so instead of doing the expensive search
3913 * for free space, simply return ENOSPC with our max_extent_size so we
3914 * can go ahead and search for a more manageable chunk.
3915 *
3916 * If our max_extent_size is large enough for our allocation simply
3917 * disable clustering since we will likely not be able to find enough
3918 * space to create a cluster and induce latency trying.
3919 */
3920 if (space_info->max_extent_size) {
3921 spin_lock(&space_info->lock);
3922 if (space_info->max_extent_size &&
3923 ffe_ctl->num_bytes > space_info->max_extent_size) {
3924 ins->offset = space_info->max_extent_size;
3925 spin_unlock(&space_info->lock);
3926 return -ENOSPC;
3927 } else if (space_info->max_extent_size) {
3928 ffe_ctl->use_cluster = false;
3929 }
3930 spin_unlock(&space_info->lock);
3931 }
3932
3933 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
3934 &ffe_ctl->empty_cluster);
3935 if (ffe_ctl->last_ptr) {
3936 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3937
3938 spin_lock(&last_ptr->lock);
3939 if (last_ptr->block_group)
3940 ffe_ctl->hint_byte = last_ptr->window_start;
3941 if (last_ptr->fragmented) {
3942 /*
3943 * We still set window_start so we can keep track of the
3944 * last place we found an allocation to try and save
3945 * some time.
3946 */
3947 ffe_ctl->hint_byte = last_ptr->window_start;
3948 ffe_ctl->use_cluster = false;
3949 }
3950 spin_unlock(&last_ptr->lock);
3951 }
3952
3953 return 0;
3954 }
3955
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)3956 static int prepare_allocation(struct btrfs_fs_info *fs_info,
3957 struct find_free_extent_ctl *ffe_ctl,
3958 struct btrfs_space_info *space_info,
3959 struct btrfs_key *ins)
3960 {
3961 switch (ffe_ctl->policy) {
3962 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3963 return prepare_allocation_clustered(fs_info, ffe_ctl,
3964 space_info, ins);
3965 default:
3966 BUG();
3967 }
3968 }
3969
3970 /*
3971 * walks the btree of allocated extents and find a hole of a given size.
3972 * The key ins is changed to record the hole:
3973 * ins->objectid == start position
3974 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3975 * ins->offset == the size of the hole.
3976 * Any available blocks before search_start are skipped.
3977 *
3978 * If there is no suitable free space, we will record the max size of
3979 * the free space extent currently.
3980 *
3981 * The overall logic and call chain:
3982 *
3983 * find_free_extent()
3984 * |- Iterate through all block groups
3985 * | |- Get a valid block group
3986 * | |- Try to do clustered allocation in that block group
3987 * | |- Try to do unclustered allocation in that block group
3988 * | |- Check if the result is valid
3989 * | | |- If valid, then exit
3990 * | |- Jump to next block group
3991 * |
3992 * |- Push harder to find free extents
3993 * |- If not found, re-iterate all block groups
3994 */
find_free_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte_orig,struct btrfs_key * ins,u64 flags,int delalloc)3995 static noinline int find_free_extent(struct btrfs_root *root,
3996 u64 ram_bytes, u64 num_bytes, u64 empty_size,
3997 u64 hint_byte_orig, struct btrfs_key *ins,
3998 u64 flags, int delalloc)
3999 {
4000 struct btrfs_fs_info *fs_info = root->fs_info;
4001 int ret = 0;
4002 int cache_block_group_error = 0;
4003 struct btrfs_block_group *block_group = NULL;
4004 struct find_free_extent_ctl ffe_ctl = {0};
4005 struct btrfs_space_info *space_info;
4006 bool full_search = false;
4007
4008 WARN_ON(num_bytes < fs_info->sectorsize);
4009
4010 ffe_ctl.num_bytes = num_bytes;
4011 ffe_ctl.empty_size = empty_size;
4012 ffe_ctl.flags = flags;
4013 ffe_ctl.search_start = 0;
4014 ffe_ctl.delalloc = delalloc;
4015 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
4016 ffe_ctl.have_caching_bg = false;
4017 ffe_ctl.orig_have_caching_bg = false;
4018 ffe_ctl.found_offset = 0;
4019 ffe_ctl.hint_byte = hint_byte_orig;
4020 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4021
4022 /* For clustered allocation */
4023 ffe_ctl.retry_clustered = false;
4024 ffe_ctl.retry_unclustered = false;
4025 ffe_ctl.last_ptr = NULL;
4026 ffe_ctl.use_cluster = true;
4027
4028 ins->type = BTRFS_EXTENT_ITEM_KEY;
4029 ins->objectid = 0;
4030 ins->offset = 0;
4031
4032 trace_find_free_extent(root, num_bytes, empty_size, flags);
4033
4034 space_info = btrfs_find_space_info(fs_info, flags);
4035 if (!space_info) {
4036 btrfs_err(fs_info, "No space info for %llu", flags);
4037 return -ENOSPC;
4038 }
4039
4040 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
4041 if (ret < 0)
4042 return ret;
4043
4044 ffe_ctl.search_start = max(ffe_ctl.search_start,
4045 first_logical_byte(fs_info, 0));
4046 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
4047 if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
4048 block_group = btrfs_lookup_block_group(fs_info,
4049 ffe_ctl.search_start);
4050 /*
4051 * we don't want to use the block group if it doesn't match our
4052 * allocation bits, or if its not cached.
4053 *
4054 * However if we are re-searching with an ideal block group
4055 * picked out then we don't care that the block group is cached.
4056 */
4057 if (block_group && block_group_bits(block_group, flags) &&
4058 block_group->cached != BTRFS_CACHE_NO) {
4059 down_read(&space_info->groups_sem);
4060 if (list_empty(&block_group->list) ||
4061 block_group->ro) {
4062 /*
4063 * someone is removing this block group,
4064 * we can't jump into the have_block_group
4065 * target because our list pointers are not
4066 * valid
4067 */
4068 btrfs_put_block_group(block_group);
4069 up_read(&space_info->groups_sem);
4070 } else {
4071 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4072 block_group->flags);
4073 btrfs_lock_block_group(block_group, delalloc);
4074 goto have_block_group;
4075 }
4076 } else if (block_group) {
4077 btrfs_put_block_group(block_group);
4078 }
4079 }
4080 search:
4081 ffe_ctl.have_caching_bg = false;
4082 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4083 ffe_ctl.index == 0)
4084 full_search = true;
4085 down_read(&space_info->groups_sem);
4086 list_for_each_entry(block_group,
4087 &space_info->block_groups[ffe_ctl.index], list) {
4088 struct btrfs_block_group *bg_ret;
4089
4090 /* If the block group is read-only, we can skip it entirely. */
4091 if (unlikely(block_group->ro))
4092 continue;
4093
4094 btrfs_grab_block_group(block_group, delalloc);
4095 ffe_ctl.search_start = block_group->start;
4096
4097 /*
4098 * this can happen if we end up cycling through all the
4099 * raid types, but we want to make sure we only allocate
4100 * for the proper type.
4101 */
4102 if (!block_group_bits(block_group, flags)) {
4103 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4104 BTRFS_BLOCK_GROUP_RAID1_MASK |
4105 BTRFS_BLOCK_GROUP_RAID56_MASK |
4106 BTRFS_BLOCK_GROUP_RAID10;
4107
4108 /*
4109 * if they asked for extra copies and this block group
4110 * doesn't provide them, bail. This does allow us to
4111 * fill raid0 from raid1.
4112 */
4113 if ((flags & extra) && !(block_group->flags & extra))
4114 goto loop;
4115
4116 /*
4117 * This block group has different flags than we want.
4118 * It's possible that we have MIXED_GROUP flag but no
4119 * block group is mixed. Just skip such block group.
4120 */
4121 btrfs_release_block_group(block_group, delalloc);
4122 continue;
4123 }
4124
4125 have_block_group:
4126 ffe_ctl.cached = btrfs_block_group_done(block_group);
4127 if (unlikely(!ffe_ctl.cached)) {
4128 ffe_ctl.have_caching_bg = true;
4129 ret = btrfs_cache_block_group(block_group, 0);
4130
4131 /*
4132 * If we get ENOMEM here or something else we want to
4133 * try other block groups, because it may not be fatal.
4134 * However if we can't find anything else we need to
4135 * save our return here so that we return the actual
4136 * error that caused problems, not ENOSPC.
4137 */
4138 if (ret < 0) {
4139 if (!cache_block_group_error)
4140 cache_block_group_error = ret;
4141 ret = 0;
4142 goto loop;
4143 }
4144 ret = 0;
4145 }
4146
4147 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4148 if (!cache_block_group_error)
4149 cache_block_group_error = -EIO;
4150 goto loop;
4151 }
4152
4153 bg_ret = NULL;
4154 ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4155 if (ret == 0) {
4156 if (bg_ret && bg_ret != block_group) {
4157 btrfs_release_block_group(block_group, delalloc);
4158 block_group = bg_ret;
4159 }
4160 } else if (ret == -EAGAIN) {
4161 goto have_block_group;
4162 } else if (ret > 0) {
4163 goto loop;
4164 }
4165
4166 /* Checks */
4167 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4168 fs_info->stripesize);
4169
4170 /* move on to the next group */
4171 if (ffe_ctl.search_start + num_bytes >
4172 block_group->start + block_group->length) {
4173 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4174 num_bytes);
4175 goto loop;
4176 }
4177
4178 if (ffe_ctl.found_offset < ffe_ctl.search_start)
4179 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4180 ffe_ctl.search_start - ffe_ctl.found_offset);
4181
4182 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4183 num_bytes, delalloc);
4184 if (ret == -EAGAIN) {
4185 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4186 num_bytes);
4187 goto loop;
4188 }
4189 btrfs_inc_block_group_reservations(block_group);
4190
4191 /* we are all good, lets return */
4192 ins->objectid = ffe_ctl.search_start;
4193 ins->offset = num_bytes;
4194
4195 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4196 num_bytes);
4197 btrfs_release_block_group(block_group, delalloc);
4198 break;
4199 loop:
4200 release_block_group(block_group, &ffe_ctl, delalloc);
4201 cond_resched();
4202 }
4203 up_read(&space_info->groups_sem);
4204
4205 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4206 if (ret > 0)
4207 goto search;
4208
4209 if (ret == -ENOSPC && !cache_block_group_error) {
4210 /*
4211 * Use ffe_ctl->total_free_space as fallback if we can't find
4212 * any contiguous hole.
4213 */
4214 if (!ffe_ctl.max_extent_size)
4215 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4216 spin_lock(&space_info->lock);
4217 space_info->max_extent_size = ffe_ctl.max_extent_size;
4218 spin_unlock(&space_info->lock);
4219 ins->offset = ffe_ctl.max_extent_size;
4220 } else if (ret == -ENOSPC) {
4221 ret = cache_block_group_error;
4222 }
4223 return ret;
4224 }
4225
4226 /*
4227 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4228 * hole that is at least as big as @num_bytes.
4229 *
4230 * @root - The root that will contain this extent
4231 *
4232 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4233 * is used for accounting purposes. This value differs
4234 * from @num_bytes only in the case of compressed extents.
4235 *
4236 * @num_bytes - Number of bytes to allocate on-disk.
4237 *
4238 * @min_alloc_size - Indicates the minimum amount of space that the
4239 * allocator should try to satisfy. In some cases
4240 * @num_bytes may be larger than what is required and if
4241 * the filesystem is fragmented then allocation fails.
4242 * However, the presence of @min_alloc_size gives a
4243 * chance to try and satisfy the smaller allocation.
4244 *
4245 * @empty_size - A hint that you plan on doing more COW. This is the
4246 * size in bytes the allocator should try to find free
4247 * next to the block it returns. This is just a hint and
4248 * may be ignored by the allocator.
4249 *
4250 * @hint_byte - Hint to the allocator to start searching above the byte
4251 * address passed. It might be ignored.
4252 *
4253 * @ins - This key is modified to record the found hole. It will
4254 * have the following values:
4255 * ins->objectid == start position
4256 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4257 * ins->offset == the size of the hole.
4258 *
4259 * @is_data - Boolean flag indicating whether an extent is
4260 * allocated for data (true) or metadata (false)
4261 *
4262 * @delalloc - Boolean flag indicating whether this allocation is for
4263 * delalloc or not. If 'true' data_rwsem of block groups
4264 * is going to be acquired.
4265 *
4266 *
4267 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4268 * case -ENOSPC is returned then @ins->offset will contain the size of the
4269 * largest available hole the allocator managed to find.
4270 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4271 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4272 u64 num_bytes, u64 min_alloc_size,
4273 u64 empty_size, u64 hint_byte,
4274 struct btrfs_key *ins, int is_data, int delalloc)
4275 {
4276 struct btrfs_fs_info *fs_info = root->fs_info;
4277 bool final_tried = num_bytes == min_alloc_size;
4278 u64 flags;
4279 int ret;
4280
4281 flags = get_alloc_profile_by_root(root, is_data);
4282 again:
4283 WARN_ON(num_bytes < fs_info->sectorsize);
4284 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
4285 hint_byte, ins, flags, delalloc);
4286 if (!ret && !is_data) {
4287 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4288 } else if (ret == -ENOSPC) {
4289 if (!final_tried && ins->offset) {
4290 num_bytes = min(num_bytes >> 1, ins->offset);
4291 num_bytes = round_down(num_bytes,
4292 fs_info->sectorsize);
4293 num_bytes = max(num_bytes, min_alloc_size);
4294 ram_bytes = num_bytes;
4295 if (num_bytes == min_alloc_size)
4296 final_tried = true;
4297 goto again;
4298 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4299 struct btrfs_space_info *sinfo;
4300
4301 sinfo = btrfs_find_space_info(fs_info, flags);
4302 btrfs_err(fs_info,
4303 "allocation failed flags %llu, wanted %llu",
4304 flags, num_bytes);
4305 if (sinfo)
4306 btrfs_dump_space_info(fs_info, sinfo,
4307 num_bytes, 1);
4308 }
4309 }
4310
4311 return ret;
4312 }
4313
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4314 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4315 u64 start, u64 len, int delalloc)
4316 {
4317 struct btrfs_block_group *cache;
4318
4319 cache = btrfs_lookup_block_group(fs_info, start);
4320 if (!cache) {
4321 btrfs_err(fs_info, "Unable to find block group for %llu",
4322 start);
4323 return -ENOSPC;
4324 }
4325
4326 btrfs_add_free_space(cache, start, len);
4327 btrfs_free_reserved_bytes(cache, len, delalloc);
4328 trace_btrfs_reserved_extent_free(fs_info, start, len);
4329
4330 btrfs_put_block_group(cache);
4331 return 0;
4332 }
4333
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4334 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4335 u64 len)
4336 {
4337 struct btrfs_block_group *cache;
4338 int ret = 0;
4339
4340 cache = btrfs_lookup_block_group(trans->fs_info, start);
4341 if (!cache) {
4342 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4343 start);
4344 return -ENOSPC;
4345 }
4346
4347 ret = pin_down_extent(trans, cache, start, len, 1);
4348 btrfs_put_block_group(cache);
4349 return ret;
4350 }
4351
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4352 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4353 u64 parent, u64 root_objectid,
4354 u64 flags, u64 owner, u64 offset,
4355 struct btrfs_key *ins, int ref_mod)
4356 {
4357 struct btrfs_fs_info *fs_info = trans->fs_info;
4358 int ret;
4359 struct btrfs_extent_item *extent_item;
4360 struct btrfs_extent_inline_ref *iref;
4361 struct btrfs_path *path;
4362 struct extent_buffer *leaf;
4363 int type;
4364 u32 size;
4365
4366 if (parent > 0)
4367 type = BTRFS_SHARED_DATA_REF_KEY;
4368 else
4369 type = BTRFS_EXTENT_DATA_REF_KEY;
4370
4371 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4372
4373 path = btrfs_alloc_path();
4374 if (!path)
4375 return -ENOMEM;
4376
4377 path->leave_spinning = 1;
4378 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4379 ins, size);
4380 if (ret) {
4381 btrfs_free_path(path);
4382 return ret;
4383 }
4384
4385 leaf = path->nodes[0];
4386 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4387 struct btrfs_extent_item);
4388 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4389 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4390 btrfs_set_extent_flags(leaf, extent_item,
4391 flags | BTRFS_EXTENT_FLAG_DATA);
4392
4393 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4394 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4395 if (parent > 0) {
4396 struct btrfs_shared_data_ref *ref;
4397 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4398 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4399 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4400 } else {
4401 struct btrfs_extent_data_ref *ref;
4402 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4403 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4404 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4405 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4406 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4407 }
4408
4409 btrfs_mark_buffer_dirty(path->nodes[0]);
4410 btrfs_free_path(path);
4411
4412 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4413 if (ret)
4414 return ret;
4415
4416 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4417 if (ret) { /* -ENOENT, logic error */
4418 btrfs_err(fs_info, "update block group failed for %llu %llu",
4419 ins->objectid, ins->offset);
4420 BUG();
4421 }
4422 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4423 return ret;
4424 }
4425
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4426 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4427 struct btrfs_delayed_ref_node *node,
4428 struct btrfs_delayed_extent_op *extent_op)
4429 {
4430 struct btrfs_fs_info *fs_info = trans->fs_info;
4431 int ret;
4432 struct btrfs_extent_item *extent_item;
4433 struct btrfs_key extent_key;
4434 struct btrfs_tree_block_info *block_info;
4435 struct btrfs_extent_inline_ref *iref;
4436 struct btrfs_path *path;
4437 struct extent_buffer *leaf;
4438 struct btrfs_delayed_tree_ref *ref;
4439 u32 size = sizeof(*extent_item) + sizeof(*iref);
4440 u64 num_bytes;
4441 u64 flags = extent_op->flags_to_set;
4442 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4443
4444 ref = btrfs_delayed_node_to_tree_ref(node);
4445
4446 extent_key.objectid = node->bytenr;
4447 if (skinny_metadata) {
4448 extent_key.offset = ref->level;
4449 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4450 num_bytes = fs_info->nodesize;
4451 } else {
4452 extent_key.offset = node->num_bytes;
4453 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4454 size += sizeof(*block_info);
4455 num_bytes = node->num_bytes;
4456 }
4457
4458 path = btrfs_alloc_path();
4459 if (!path)
4460 return -ENOMEM;
4461
4462 path->leave_spinning = 1;
4463 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4464 &extent_key, size);
4465 if (ret) {
4466 btrfs_free_path(path);
4467 return ret;
4468 }
4469
4470 leaf = path->nodes[0];
4471 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4472 struct btrfs_extent_item);
4473 btrfs_set_extent_refs(leaf, extent_item, 1);
4474 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4475 btrfs_set_extent_flags(leaf, extent_item,
4476 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4477
4478 if (skinny_metadata) {
4479 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4480 } else {
4481 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4482 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4483 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4484 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4485 }
4486
4487 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4488 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4489 btrfs_set_extent_inline_ref_type(leaf, iref,
4490 BTRFS_SHARED_BLOCK_REF_KEY);
4491 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4492 } else {
4493 btrfs_set_extent_inline_ref_type(leaf, iref,
4494 BTRFS_TREE_BLOCK_REF_KEY);
4495 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4496 }
4497
4498 btrfs_mark_buffer_dirty(leaf);
4499 btrfs_free_path(path);
4500
4501 ret = remove_from_free_space_tree(trans, extent_key.objectid,
4502 num_bytes);
4503 if (ret)
4504 return ret;
4505
4506 ret = btrfs_update_block_group(trans, extent_key.objectid,
4507 fs_info->nodesize, 1);
4508 if (ret) { /* -ENOENT, logic error */
4509 btrfs_err(fs_info, "update block group failed for %llu %llu",
4510 extent_key.objectid, extent_key.offset);
4511 BUG();
4512 }
4513
4514 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4515 fs_info->nodesize);
4516 return ret;
4517 }
4518
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4519 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4520 struct btrfs_root *root, u64 owner,
4521 u64 offset, u64 ram_bytes,
4522 struct btrfs_key *ins)
4523 {
4524 struct btrfs_ref generic_ref = { 0 };
4525
4526 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4527
4528 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4529 ins->objectid, ins->offset, 0);
4530 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4531 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4532
4533 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4534 }
4535
4536 /*
4537 * this is used by the tree logging recovery code. It records that
4538 * an extent has been allocated and makes sure to clear the free
4539 * space cache bits as well
4540 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4541 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4542 u64 root_objectid, u64 owner, u64 offset,
4543 struct btrfs_key *ins)
4544 {
4545 struct btrfs_fs_info *fs_info = trans->fs_info;
4546 int ret;
4547 struct btrfs_block_group *block_group;
4548 struct btrfs_space_info *space_info;
4549
4550 /*
4551 * Mixed block groups will exclude before processing the log so we only
4552 * need to do the exclude dance if this fs isn't mixed.
4553 */
4554 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4555 ret = __exclude_logged_extent(fs_info, ins->objectid,
4556 ins->offset);
4557 if (ret)
4558 return ret;
4559 }
4560
4561 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4562 if (!block_group)
4563 return -EINVAL;
4564
4565 space_info = block_group->space_info;
4566 spin_lock(&space_info->lock);
4567 spin_lock(&block_group->lock);
4568 space_info->bytes_reserved += ins->offset;
4569 block_group->reserved += ins->offset;
4570 spin_unlock(&block_group->lock);
4571 spin_unlock(&space_info->lock);
4572
4573 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4574 offset, ins, 1);
4575 if (ret)
4576 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4577 btrfs_put_block_group(block_group);
4578 return ret;
4579 }
4580
4581 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4582 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4583 u64 bytenr, int level, u64 owner,
4584 enum btrfs_lock_nesting nest)
4585 {
4586 struct btrfs_fs_info *fs_info = root->fs_info;
4587 struct extent_buffer *buf;
4588
4589 buf = btrfs_find_create_tree_block(fs_info, bytenr);
4590 if (IS_ERR(buf))
4591 return buf;
4592
4593 /*
4594 * Extra safety check in case the extent tree is corrupted and extent
4595 * allocator chooses to use a tree block which is already used and
4596 * locked.
4597 */
4598 if (buf->lock_owner == current->pid) {
4599 btrfs_err_rl(fs_info,
4600 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4601 buf->start, btrfs_header_owner(buf), current->pid);
4602 free_extent_buffer(buf);
4603 return ERR_PTR(-EUCLEAN);
4604 }
4605
4606 btrfs_set_buffer_lockdep_class(owner, buf, level);
4607 __btrfs_tree_lock(buf, nest);
4608 btrfs_clean_tree_block(buf);
4609 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4610
4611 btrfs_set_lock_blocking_write(buf);
4612 set_extent_buffer_uptodate(buf);
4613
4614 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4615 btrfs_set_header_level(buf, level);
4616 btrfs_set_header_bytenr(buf, buf->start);
4617 btrfs_set_header_generation(buf, trans->transid);
4618 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4619 btrfs_set_header_owner(buf, owner);
4620 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4621 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4622 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4623 buf->log_index = root->log_transid % 2;
4624 /*
4625 * we allow two log transactions at a time, use different
4626 * EXTENT bit to differentiate dirty pages.
4627 */
4628 if (buf->log_index == 0)
4629 set_extent_dirty(&root->dirty_log_pages, buf->start,
4630 buf->start + buf->len - 1, GFP_NOFS);
4631 else
4632 set_extent_new(&root->dirty_log_pages, buf->start,
4633 buf->start + buf->len - 1);
4634 } else {
4635 buf->log_index = -1;
4636 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4637 buf->start + buf->len - 1, GFP_NOFS);
4638 }
4639 trans->dirty = true;
4640 /* this returns a buffer locked for blocking */
4641 return buf;
4642 }
4643
4644 /*
4645 * finds a free extent and does all the dirty work required for allocation
4646 * returns the tree buffer or an ERR_PTR on error.
4647 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4648 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4649 struct btrfs_root *root,
4650 u64 parent, u64 root_objectid,
4651 const struct btrfs_disk_key *key,
4652 int level, u64 hint,
4653 u64 empty_size,
4654 enum btrfs_lock_nesting nest)
4655 {
4656 struct btrfs_fs_info *fs_info = root->fs_info;
4657 struct btrfs_key ins;
4658 struct btrfs_block_rsv *block_rsv;
4659 struct extent_buffer *buf;
4660 struct btrfs_delayed_extent_op *extent_op;
4661 struct btrfs_ref generic_ref = { 0 };
4662 u64 flags = 0;
4663 int ret;
4664 u32 blocksize = fs_info->nodesize;
4665 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4666
4667 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4668 if (btrfs_is_testing(fs_info)) {
4669 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4670 level, root_objectid, nest);
4671 if (!IS_ERR(buf))
4672 root->alloc_bytenr += blocksize;
4673 return buf;
4674 }
4675 #endif
4676
4677 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4678 if (IS_ERR(block_rsv))
4679 return ERR_CAST(block_rsv);
4680
4681 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4682 empty_size, hint, &ins, 0, 0);
4683 if (ret)
4684 goto out_unuse;
4685
4686 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4687 root_objectid, nest);
4688 if (IS_ERR(buf)) {
4689 ret = PTR_ERR(buf);
4690 goto out_free_reserved;
4691 }
4692
4693 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4694 if (parent == 0)
4695 parent = ins.objectid;
4696 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4697 } else
4698 BUG_ON(parent > 0);
4699
4700 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4701 extent_op = btrfs_alloc_delayed_extent_op();
4702 if (!extent_op) {
4703 ret = -ENOMEM;
4704 goto out_free_buf;
4705 }
4706 if (key)
4707 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4708 else
4709 memset(&extent_op->key, 0, sizeof(extent_op->key));
4710 extent_op->flags_to_set = flags;
4711 extent_op->update_key = skinny_metadata ? false : true;
4712 extent_op->update_flags = true;
4713 extent_op->is_data = false;
4714 extent_op->level = level;
4715
4716 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4717 ins.objectid, ins.offset, parent);
4718 generic_ref.real_root = root->root_key.objectid;
4719 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4720 btrfs_ref_tree_mod(fs_info, &generic_ref);
4721 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4722 if (ret)
4723 goto out_free_delayed;
4724 }
4725 return buf;
4726
4727 out_free_delayed:
4728 btrfs_free_delayed_extent_op(extent_op);
4729 out_free_buf:
4730 btrfs_tree_unlock(buf);
4731 free_extent_buffer(buf);
4732 out_free_reserved:
4733 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4734 out_unuse:
4735 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4736 return ERR_PTR(ret);
4737 }
4738
4739 struct walk_control {
4740 u64 refs[BTRFS_MAX_LEVEL];
4741 u64 flags[BTRFS_MAX_LEVEL];
4742 struct btrfs_key update_progress;
4743 struct btrfs_key drop_progress;
4744 int drop_level;
4745 int stage;
4746 int level;
4747 int shared_level;
4748 int update_ref;
4749 int keep_locks;
4750 int reada_slot;
4751 int reada_count;
4752 int restarted;
4753 };
4754
4755 #define DROP_REFERENCE 1
4756 #define UPDATE_BACKREF 2
4757
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)4758 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4759 struct btrfs_root *root,
4760 struct walk_control *wc,
4761 struct btrfs_path *path)
4762 {
4763 struct btrfs_fs_info *fs_info = root->fs_info;
4764 u64 bytenr;
4765 u64 generation;
4766 u64 refs;
4767 u64 flags;
4768 u32 nritems;
4769 struct btrfs_key key;
4770 struct extent_buffer *eb;
4771 int ret;
4772 int slot;
4773 int nread = 0;
4774
4775 if (path->slots[wc->level] < wc->reada_slot) {
4776 wc->reada_count = wc->reada_count * 2 / 3;
4777 wc->reada_count = max(wc->reada_count, 2);
4778 } else {
4779 wc->reada_count = wc->reada_count * 3 / 2;
4780 wc->reada_count = min_t(int, wc->reada_count,
4781 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4782 }
4783
4784 eb = path->nodes[wc->level];
4785 nritems = btrfs_header_nritems(eb);
4786
4787 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4788 if (nread >= wc->reada_count)
4789 break;
4790
4791 cond_resched();
4792 bytenr = btrfs_node_blockptr(eb, slot);
4793 generation = btrfs_node_ptr_generation(eb, slot);
4794
4795 if (slot == path->slots[wc->level])
4796 goto reada;
4797
4798 if (wc->stage == UPDATE_BACKREF &&
4799 generation <= root->root_key.offset)
4800 continue;
4801
4802 /* We don't lock the tree block, it's OK to be racy here */
4803 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4804 wc->level - 1, 1, &refs,
4805 &flags);
4806 /* We don't care about errors in readahead. */
4807 if (ret < 0)
4808 continue;
4809 BUG_ON(refs == 0);
4810
4811 if (wc->stage == DROP_REFERENCE) {
4812 if (refs == 1)
4813 goto reada;
4814
4815 if (wc->level == 1 &&
4816 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4817 continue;
4818 if (!wc->update_ref ||
4819 generation <= root->root_key.offset)
4820 continue;
4821 btrfs_node_key_to_cpu(eb, &key, slot);
4822 ret = btrfs_comp_cpu_keys(&key,
4823 &wc->update_progress);
4824 if (ret < 0)
4825 continue;
4826 } else {
4827 if (wc->level == 1 &&
4828 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4829 continue;
4830 }
4831 reada:
4832 readahead_tree_block(fs_info, bytenr);
4833 nread++;
4834 }
4835 wc->reada_slot = slot;
4836 }
4837
4838 /*
4839 * helper to process tree block while walking down the tree.
4840 *
4841 * when wc->stage == UPDATE_BACKREF, this function updates
4842 * back refs for pointers in the block.
4843 *
4844 * NOTE: return value 1 means we should stop walking down.
4845 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)4846 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4847 struct btrfs_root *root,
4848 struct btrfs_path *path,
4849 struct walk_control *wc, int lookup_info)
4850 {
4851 struct btrfs_fs_info *fs_info = root->fs_info;
4852 int level = wc->level;
4853 struct extent_buffer *eb = path->nodes[level];
4854 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4855 int ret;
4856
4857 if (wc->stage == UPDATE_BACKREF &&
4858 btrfs_header_owner(eb) != root->root_key.objectid)
4859 return 1;
4860
4861 /*
4862 * when reference count of tree block is 1, it won't increase
4863 * again. once full backref flag is set, we never clear it.
4864 */
4865 if (lookup_info &&
4866 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4867 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4868 BUG_ON(!path->locks[level]);
4869 ret = btrfs_lookup_extent_info(trans, fs_info,
4870 eb->start, level, 1,
4871 &wc->refs[level],
4872 &wc->flags[level]);
4873 BUG_ON(ret == -ENOMEM);
4874 if (ret)
4875 return ret;
4876 BUG_ON(wc->refs[level] == 0);
4877 }
4878
4879 if (wc->stage == DROP_REFERENCE) {
4880 if (wc->refs[level] > 1)
4881 return 1;
4882
4883 if (path->locks[level] && !wc->keep_locks) {
4884 btrfs_tree_unlock_rw(eb, path->locks[level]);
4885 path->locks[level] = 0;
4886 }
4887 return 0;
4888 }
4889
4890 /* wc->stage == UPDATE_BACKREF */
4891 if (!(wc->flags[level] & flag)) {
4892 BUG_ON(!path->locks[level]);
4893 ret = btrfs_inc_ref(trans, root, eb, 1);
4894 BUG_ON(ret); /* -ENOMEM */
4895 ret = btrfs_dec_ref(trans, root, eb, 0);
4896 BUG_ON(ret); /* -ENOMEM */
4897 ret = btrfs_set_disk_extent_flags(trans, eb, flag,
4898 btrfs_header_level(eb), 0);
4899 BUG_ON(ret); /* -ENOMEM */
4900 wc->flags[level] |= flag;
4901 }
4902
4903 /*
4904 * the block is shared by multiple trees, so it's not good to
4905 * keep the tree lock
4906 */
4907 if (path->locks[level] && level > 0) {
4908 btrfs_tree_unlock_rw(eb, path->locks[level]);
4909 path->locks[level] = 0;
4910 }
4911 return 0;
4912 }
4913
4914 /*
4915 * This is used to verify a ref exists for this root to deal with a bug where we
4916 * would have a drop_progress key that hadn't been updated properly.
4917 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)4918 static int check_ref_exists(struct btrfs_trans_handle *trans,
4919 struct btrfs_root *root, u64 bytenr, u64 parent,
4920 int level)
4921 {
4922 struct btrfs_path *path;
4923 struct btrfs_extent_inline_ref *iref;
4924 int ret;
4925
4926 path = btrfs_alloc_path();
4927 if (!path)
4928 return -ENOMEM;
4929
4930 ret = lookup_extent_backref(trans, path, &iref, bytenr,
4931 root->fs_info->nodesize, parent,
4932 root->root_key.objectid, level, 0);
4933 btrfs_free_path(path);
4934 if (ret == -ENOENT)
4935 return 0;
4936 if (ret < 0)
4937 return ret;
4938 return 1;
4939 }
4940
4941 /*
4942 * helper to process tree block pointer.
4943 *
4944 * when wc->stage == DROP_REFERENCE, this function checks
4945 * reference count of the block pointed to. if the block
4946 * is shared and we need update back refs for the subtree
4947 * rooted at the block, this function changes wc->stage to
4948 * UPDATE_BACKREF. if the block is shared and there is no
4949 * need to update back, this function drops the reference
4950 * to the block.
4951 *
4952 * NOTE: return value 1 means we should stop walking down.
4953 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)4954 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4955 struct btrfs_root *root,
4956 struct btrfs_path *path,
4957 struct walk_control *wc, int *lookup_info)
4958 {
4959 struct btrfs_fs_info *fs_info = root->fs_info;
4960 u64 bytenr;
4961 u64 generation;
4962 u64 parent;
4963 struct btrfs_key key;
4964 struct btrfs_key first_key;
4965 struct btrfs_ref ref = { 0 };
4966 struct extent_buffer *next;
4967 int level = wc->level;
4968 int reada = 0;
4969 int ret = 0;
4970 bool need_account = false;
4971
4972 generation = btrfs_node_ptr_generation(path->nodes[level],
4973 path->slots[level]);
4974 /*
4975 * if the lower level block was created before the snapshot
4976 * was created, we know there is no need to update back refs
4977 * for the subtree
4978 */
4979 if (wc->stage == UPDATE_BACKREF &&
4980 generation <= root->root_key.offset) {
4981 *lookup_info = 1;
4982 return 1;
4983 }
4984
4985 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4986 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4987 path->slots[level]);
4988
4989 next = find_extent_buffer(fs_info, bytenr);
4990 if (!next) {
4991 next = btrfs_find_create_tree_block(fs_info, bytenr);
4992 if (IS_ERR(next))
4993 return PTR_ERR(next);
4994
4995 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4996 level - 1);
4997 reada = 1;
4998 }
4999 btrfs_tree_lock(next);
5000 btrfs_set_lock_blocking_write(next);
5001
5002 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5003 &wc->refs[level - 1],
5004 &wc->flags[level - 1]);
5005 if (ret < 0)
5006 goto out_unlock;
5007
5008 if (unlikely(wc->refs[level - 1] == 0)) {
5009 btrfs_err(fs_info, "Missing references.");
5010 ret = -EIO;
5011 goto out_unlock;
5012 }
5013 *lookup_info = 0;
5014
5015 if (wc->stage == DROP_REFERENCE) {
5016 if (wc->refs[level - 1] > 1) {
5017 need_account = true;
5018 if (level == 1 &&
5019 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5020 goto skip;
5021
5022 if (!wc->update_ref ||
5023 generation <= root->root_key.offset)
5024 goto skip;
5025
5026 btrfs_node_key_to_cpu(path->nodes[level], &key,
5027 path->slots[level]);
5028 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5029 if (ret < 0)
5030 goto skip;
5031
5032 wc->stage = UPDATE_BACKREF;
5033 wc->shared_level = level - 1;
5034 }
5035 } else {
5036 if (level == 1 &&
5037 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5038 goto skip;
5039 }
5040
5041 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5042 btrfs_tree_unlock(next);
5043 free_extent_buffer(next);
5044 next = NULL;
5045 *lookup_info = 1;
5046 }
5047
5048 if (!next) {
5049 if (reada && level == 1)
5050 reada_walk_down(trans, root, wc, path);
5051 next = read_tree_block(fs_info, bytenr, generation, level - 1,
5052 &first_key);
5053 if (IS_ERR(next)) {
5054 return PTR_ERR(next);
5055 } else if (!extent_buffer_uptodate(next)) {
5056 free_extent_buffer(next);
5057 return -EIO;
5058 }
5059 btrfs_tree_lock(next);
5060 btrfs_set_lock_blocking_write(next);
5061 }
5062
5063 level--;
5064 ASSERT(level == btrfs_header_level(next));
5065 if (level != btrfs_header_level(next)) {
5066 btrfs_err(root->fs_info, "mismatched level");
5067 ret = -EIO;
5068 goto out_unlock;
5069 }
5070 path->nodes[level] = next;
5071 path->slots[level] = 0;
5072 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5073 wc->level = level;
5074 if (wc->level == 1)
5075 wc->reada_slot = 0;
5076 return 0;
5077 skip:
5078 wc->refs[level - 1] = 0;
5079 wc->flags[level - 1] = 0;
5080 if (wc->stage == DROP_REFERENCE) {
5081 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5082 parent = path->nodes[level]->start;
5083 } else {
5084 ASSERT(root->root_key.objectid ==
5085 btrfs_header_owner(path->nodes[level]));
5086 if (root->root_key.objectid !=
5087 btrfs_header_owner(path->nodes[level])) {
5088 btrfs_err(root->fs_info,
5089 "mismatched block owner");
5090 ret = -EIO;
5091 goto out_unlock;
5092 }
5093 parent = 0;
5094 }
5095
5096 /*
5097 * If we had a drop_progress we need to verify the refs are set
5098 * as expected. If we find our ref then we know that from here
5099 * on out everything should be correct, and we can clear the
5100 * ->restarted flag.
5101 */
5102 if (wc->restarted) {
5103 ret = check_ref_exists(trans, root, bytenr, parent,
5104 level - 1);
5105 if (ret < 0)
5106 goto out_unlock;
5107 if (ret == 0)
5108 goto no_delete;
5109 ret = 0;
5110 wc->restarted = 0;
5111 }
5112
5113 /*
5114 * Reloc tree doesn't contribute to qgroup numbers, and we have
5115 * already accounted them at merge time (replace_path),
5116 * thus we could skip expensive subtree trace here.
5117 */
5118 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5119 need_account) {
5120 ret = btrfs_qgroup_trace_subtree(trans, next,
5121 generation, level - 1);
5122 if (ret) {
5123 btrfs_err_rl(fs_info,
5124 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5125 ret);
5126 }
5127 }
5128
5129 /*
5130 * We need to update the next key in our walk control so we can
5131 * update the drop_progress key accordingly. We don't care if
5132 * find_next_key doesn't find a key because that means we're at
5133 * the end and are going to clean up now.
5134 */
5135 wc->drop_level = level;
5136 find_next_key(path, level, &wc->drop_progress);
5137
5138 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5139 fs_info->nodesize, parent);
5140 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5141 ret = btrfs_free_extent(trans, &ref);
5142 if (ret)
5143 goto out_unlock;
5144 }
5145 no_delete:
5146 *lookup_info = 1;
5147 ret = 1;
5148
5149 out_unlock:
5150 btrfs_tree_unlock(next);
5151 free_extent_buffer(next);
5152
5153 return ret;
5154 }
5155
5156 /*
5157 * helper to process tree block while walking up the tree.
5158 *
5159 * when wc->stage == DROP_REFERENCE, this function drops
5160 * reference count on the block.
5161 *
5162 * when wc->stage == UPDATE_BACKREF, this function changes
5163 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5164 * to UPDATE_BACKREF previously while processing the block.
5165 *
5166 * NOTE: return value 1 means we should stop walking up.
5167 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5168 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5169 struct btrfs_root *root,
5170 struct btrfs_path *path,
5171 struct walk_control *wc)
5172 {
5173 struct btrfs_fs_info *fs_info = root->fs_info;
5174 int ret;
5175 int level = wc->level;
5176 struct extent_buffer *eb = path->nodes[level];
5177 u64 parent = 0;
5178
5179 if (wc->stage == UPDATE_BACKREF) {
5180 BUG_ON(wc->shared_level < level);
5181 if (level < wc->shared_level)
5182 goto out;
5183
5184 ret = find_next_key(path, level + 1, &wc->update_progress);
5185 if (ret > 0)
5186 wc->update_ref = 0;
5187
5188 wc->stage = DROP_REFERENCE;
5189 wc->shared_level = -1;
5190 path->slots[level] = 0;
5191
5192 /*
5193 * check reference count again if the block isn't locked.
5194 * we should start walking down the tree again if reference
5195 * count is one.
5196 */
5197 if (!path->locks[level]) {
5198 BUG_ON(level == 0);
5199 btrfs_tree_lock(eb);
5200 btrfs_set_lock_blocking_write(eb);
5201 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5202
5203 ret = btrfs_lookup_extent_info(trans, fs_info,
5204 eb->start, level, 1,
5205 &wc->refs[level],
5206 &wc->flags[level]);
5207 if (ret < 0) {
5208 btrfs_tree_unlock_rw(eb, path->locks[level]);
5209 path->locks[level] = 0;
5210 return ret;
5211 }
5212 BUG_ON(wc->refs[level] == 0);
5213 if (wc->refs[level] == 1) {
5214 btrfs_tree_unlock_rw(eb, path->locks[level]);
5215 path->locks[level] = 0;
5216 return 1;
5217 }
5218 }
5219 }
5220
5221 /* wc->stage == DROP_REFERENCE */
5222 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5223
5224 if (wc->refs[level] == 1) {
5225 if (level == 0) {
5226 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5227 ret = btrfs_dec_ref(trans, root, eb, 1);
5228 else
5229 ret = btrfs_dec_ref(trans, root, eb, 0);
5230 BUG_ON(ret); /* -ENOMEM */
5231 if (is_fstree(root->root_key.objectid)) {
5232 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5233 if (ret) {
5234 btrfs_err_rl(fs_info,
5235 "error %d accounting leaf items, quota is out of sync, rescan required",
5236 ret);
5237 }
5238 }
5239 }
5240 /* make block locked assertion in btrfs_clean_tree_block happy */
5241 if (!path->locks[level] &&
5242 btrfs_header_generation(eb) == trans->transid) {
5243 btrfs_tree_lock(eb);
5244 btrfs_set_lock_blocking_write(eb);
5245 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5246 }
5247 btrfs_clean_tree_block(eb);
5248 }
5249
5250 if (eb == root->node) {
5251 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5252 parent = eb->start;
5253 else if (root->root_key.objectid != btrfs_header_owner(eb))
5254 goto owner_mismatch;
5255 } else {
5256 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5257 parent = path->nodes[level + 1]->start;
5258 else if (root->root_key.objectid !=
5259 btrfs_header_owner(path->nodes[level + 1]))
5260 goto owner_mismatch;
5261 }
5262
5263 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5264 out:
5265 wc->refs[level] = 0;
5266 wc->flags[level] = 0;
5267 return 0;
5268
5269 owner_mismatch:
5270 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5271 btrfs_header_owner(eb), root->root_key.objectid);
5272 return -EUCLEAN;
5273 }
5274
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5275 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5276 struct btrfs_root *root,
5277 struct btrfs_path *path,
5278 struct walk_control *wc)
5279 {
5280 int level = wc->level;
5281 int lookup_info = 1;
5282 int ret;
5283
5284 while (level >= 0) {
5285 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5286 if (ret > 0)
5287 break;
5288
5289 if (level == 0)
5290 break;
5291
5292 if (path->slots[level] >=
5293 btrfs_header_nritems(path->nodes[level]))
5294 break;
5295
5296 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5297 if (ret > 0) {
5298 path->slots[level]++;
5299 continue;
5300 } else if (ret < 0)
5301 return ret;
5302 level = wc->level;
5303 }
5304 return 0;
5305 }
5306
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5307 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5308 struct btrfs_root *root,
5309 struct btrfs_path *path,
5310 struct walk_control *wc, int max_level)
5311 {
5312 int level = wc->level;
5313 int ret;
5314
5315 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5316 while (level < max_level && path->nodes[level]) {
5317 wc->level = level;
5318 if (path->slots[level] + 1 <
5319 btrfs_header_nritems(path->nodes[level])) {
5320 path->slots[level]++;
5321 return 0;
5322 } else {
5323 ret = walk_up_proc(trans, root, path, wc);
5324 if (ret > 0)
5325 return 0;
5326 if (ret < 0)
5327 return ret;
5328
5329 if (path->locks[level]) {
5330 btrfs_tree_unlock_rw(path->nodes[level],
5331 path->locks[level]);
5332 path->locks[level] = 0;
5333 }
5334 free_extent_buffer(path->nodes[level]);
5335 path->nodes[level] = NULL;
5336 level++;
5337 }
5338 }
5339 return 1;
5340 }
5341
5342 /*
5343 * drop a subvolume tree.
5344 *
5345 * this function traverses the tree freeing any blocks that only
5346 * referenced by the tree.
5347 *
5348 * when a shared tree block is found. this function decreases its
5349 * reference count by one. if update_ref is true, this function
5350 * also make sure backrefs for the shared block and all lower level
5351 * blocks are properly updated.
5352 *
5353 * If called with for_reloc == 0, may exit early with -EAGAIN
5354 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5355 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5356 {
5357 struct btrfs_fs_info *fs_info = root->fs_info;
5358 struct btrfs_path *path;
5359 struct btrfs_trans_handle *trans;
5360 struct btrfs_root *tree_root = fs_info->tree_root;
5361 struct btrfs_root_item *root_item = &root->root_item;
5362 struct walk_control *wc;
5363 struct btrfs_key key;
5364 int err = 0;
5365 int ret;
5366 int level;
5367 bool root_dropped = false;
5368
5369 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5370
5371 path = btrfs_alloc_path();
5372 if (!path) {
5373 err = -ENOMEM;
5374 goto out;
5375 }
5376
5377 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5378 if (!wc) {
5379 btrfs_free_path(path);
5380 err = -ENOMEM;
5381 goto out;
5382 }
5383
5384 /*
5385 * Use join to avoid potential EINTR from transaction start. See
5386 * wait_reserve_ticket and the whole reservation callchain.
5387 */
5388 if (for_reloc)
5389 trans = btrfs_join_transaction(tree_root);
5390 else
5391 trans = btrfs_start_transaction(tree_root, 0);
5392 if (IS_ERR(trans)) {
5393 err = PTR_ERR(trans);
5394 goto out_free;
5395 }
5396
5397 err = btrfs_run_delayed_items(trans);
5398 if (err)
5399 goto out_end_trans;
5400
5401 /*
5402 * This will help us catch people modifying the fs tree while we're
5403 * dropping it. It is unsafe to mess with the fs tree while it's being
5404 * dropped as we unlock the root node and parent nodes as we walk down
5405 * the tree, assuming nothing will change. If something does change
5406 * then we'll have stale information and drop references to blocks we've
5407 * already dropped.
5408 */
5409 set_bit(BTRFS_ROOT_DELETING, &root->state);
5410 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5411 level = btrfs_header_level(root->node);
5412 path->nodes[level] = btrfs_lock_root_node(root);
5413 btrfs_set_lock_blocking_write(path->nodes[level]);
5414 path->slots[level] = 0;
5415 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5416 memset(&wc->update_progress, 0,
5417 sizeof(wc->update_progress));
5418 } else {
5419 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5420 memcpy(&wc->update_progress, &key,
5421 sizeof(wc->update_progress));
5422
5423 level = root_item->drop_level;
5424 BUG_ON(level == 0);
5425 path->lowest_level = level;
5426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5427 path->lowest_level = 0;
5428 if (ret < 0) {
5429 err = ret;
5430 goto out_end_trans;
5431 }
5432 WARN_ON(ret > 0);
5433
5434 /*
5435 * unlock our path, this is safe because only this
5436 * function is allowed to delete this snapshot
5437 */
5438 btrfs_unlock_up_safe(path, 0);
5439
5440 level = btrfs_header_level(root->node);
5441 while (1) {
5442 btrfs_tree_lock(path->nodes[level]);
5443 btrfs_set_lock_blocking_write(path->nodes[level]);
5444 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5445
5446 ret = btrfs_lookup_extent_info(trans, fs_info,
5447 path->nodes[level]->start,
5448 level, 1, &wc->refs[level],
5449 &wc->flags[level]);
5450 if (ret < 0) {
5451 err = ret;
5452 goto out_end_trans;
5453 }
5454 BUG_ON(wc->refs[level] == 0);
5455
5456 if (level == root_item->drop_level)
5457 break;
5458
5459 btrfs_tree_unlock(path->nodes[level]);
5460 path->locks[level] = 0;
5461 WARN_ON(wc->refs[level] != 1);
5462 level--;
5463 }
5464 }
5465
5466 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5467 wc->level = level;
5468 wc->shared_level = -1;
5469 wc->stage = DROP_REFERENCE;
5470 wc->update_ref = update_ref;
5471 wc->keep_locks = 0;
5472 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5473
5474 while (1) {
5475
5476 ret = walk_down_tree(trans, root, path, wc);
5477 if (ret < 0) {
5478 err = ret;
5479 break;
5480 }
5481
5482 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5483 if (ret < 0) {
5484 err = ret;
5485 break;
5486 }
5487
5488 if (ret > 0) {
5489 BUG_ON(wc->stage != DROP_REFERENCE);
5490 break;
5491 }
5492
5493 if (wc->stage == DROP_REFERENCE) {
5494 wc->drop_level = wc->level;
5495 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5496 &wc->drop_progress,
5497 path->slots[wc->drop_level]);
5498 }
5499 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5500 &wc->drop_progress);
5501 root_item->drop_level = wc->drop_level;
5502
5503 BUG_ON(wc->level == 0);
5504 if (btrfs_should_end_transaction(trans) ||
5505 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5506 ret = btrfs_update_root(trans, tree_root,
5507 &root->root_key,
5508 root_item);
5509 if (ret) {
5510 btrfs_abort_transaction(trans, ret);
5511 err = ret;
5512 goto out_end_trans;
5513 }
5514
5515 btrfs_end_transaction_throttle(trans);
5516 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5517 btrfs_debug(fs_info,
5518 "drop snapshot early exit");
5519 err = -EAGAIN;
5520 goto out_free;
5521 }
5522
5523 /*
5524 * Use join to avoid potential EINTR from transaction
5525 * start. See wait_reserve_ticket and the whole
5526 * reservation callchain.
5527 */
5528 if (for_reloc)
5529 trans = btrfs_join_transaction(tree_root);
5530 else
5531 trans = btrfs_start_transaction(tree_root, 0);
5532 if (IS_ERR(trans)) {
5533 err = PTR_ERR(trans);
5534 goto out_free;
5535 }
5536 }
5537 }
5538 btrfs_release_path(path);
5539 if (err)
5540 goto out_end_trans;
5541
5542 ret = btrfs_del_root(trans, &root->root_key);
5543 if (ret) {
5544 btrfs_abort_transaction(trans, ret);
5545 err = ret;
5546 goto out_end_trans;
5547 }
5548
5549 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5550 ret = btrfs_find_root(tree_root, &root->root_key, path,
5551 NULL, NULL);
5552 if (ret < 0) {
5553 btrfs_abort_transaction(trans, ret);
5554 err = ret;
5555 goto out_end_trans;
5556 } else if (ret > 0) {
5557 /* if we fail to delete the orphan item this time
5558 * around, it'll get picked up the next time.
5559 *
5560 * The most common failure here is just -ENOENT.
5561 */
5562 btrfs_del_orphan_item(trans, tree_root,
5563 root->root_key.objectid);
5564 }
5565 }
5566
5567 /*
5568 * This subvolume is going to be completely dropped, and won't be
5569 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5570 * commit transaction time. So free it here manually.
5571 */
5572 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5573 btrfs_qgroup_free_meta_all_pertrans(root);
5574
5575 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5576 btrfs_add_dropped_root(trans, root);
5577 else
5578 btrfs_put_root(root);
5579 root_dropped = true;
5580 out_end_trans:
5581 btrfs_end_transaction_throttle(trans);
5582 out_free:
5583 kfree(wc);
5584 btrfs_free_path(path);
5585 out:
5586 /*
5587 * So if we need to stop dropping the snapshot for whatever reason we
5588 * need to make sure to add it back to the dead root list so that we
5589 * keep trying to do the work later. This also cleans up roots if we
5590 * don't have it in the radix (like when we recover after a power fail
5591 * or unmount) so we don't leak memory.
5592 */
5593 if (!for_reloc && !root_dropped)
5594 btrfs_add_dead_root(root);
5595 return err;
5596 }
5597
5598 /*
5599 * drop subtree rooted at tree block 'node'.
5600 *
5601 * NOTE: this function will unlock and release tree block 'node'
5602 * only used by relocation code
5603 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5604 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5605 struct btrfs_root *root,
5606 struct extent_buffer *node,
5607 struct extent_buffer *parent)
5608 {
5609 struct btrfs_fs_info *fs_info = root->fs_info;
5610 struct btrfs_path *path;
5611 struct walk_control *wc;
5612 int level;
5613 int parent_level;
5614 int ret = 0;
5615 int wret;
5616
5617 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5618
5619 path = btrfs_alloc_path();
5620 if (!path)
5621 return -ENOMEM;
5622
5623 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5624 if (!wc) {
5625 btrfs_free_path(path);
5626 return -ENOMEM;
5627 }
5628
5629 btrfs_assert_tree_locked(parent);
5630 parent_level = btrfs_header_level(parent);
5631 atomic_inc(&parent->refs);
5632 path->nodes[parent_level] = parent;
5633 path->slots[parent_level] = btrfs_header_nritems(parent);
5634
5635 btrfs_assert_tree_locked(node);
5636 level = btrfs_header_level(node);
5637 path->nodes[level] = node;
5638 path->slots[level] = 0;
5639 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5640
5641 wc->refs[parent_level] = 1;
5642 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5643 wc->level = level;
5644 wc->shared_level = -1;
5645 wc->stage = DROP_REFERENCE;
5646 wc->update_ref = 0;
5647 wc->keep_locks = 1;
5648 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5649
5650 while (1) {
5651 wret = walk_down_tree(trans, root, path, wc);
5652 if (wret < 0) {
5653 ret = wret;
5654 break;
5655 }
5656
5657 wret = walk_up_tree(trans, root, path, wc, parent_level);
5658 if (wret < 0)
5659 ret = wret;
5660 if (wret != 0)
5661 break;
5662 }
5663
5664 kfree(wc);
5665 btrfs_free_path(path);
5666 return ret;
5667 }
5668
5669 /*
5670 * helper to account the unused space of all the readonly block group in the
5671 * space_info. takes mirrors into account.
5672 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)5673 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5674 {
5675 struct btrfs_block_group *block_group;
5676 u64 free_bytes = 0;
5677 int factor;
5678
5679 /* It's df, we don't care if it's racy */
5680 if (list_empty(&sinfo->ro_bgs))
5681 return 0;
5682
5683 spin_lock(&sinfo->lock);
5684 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5685 spin_lock(&block_group->lock);
5686
5687 if (!block_group->ro) {
5688 spin_unlock(&block_group->lock);
5689 continue;
5690 }
5691
5692 factor = btrfs_bg_type_to_factor(block_group->flags);
5693 free_bytes += (block_group->length -
5694 block_group->used) * factor;
5695
5696 spin_unlock(&block_group->lock);
5697 }
5698 spin_unlock(&sinfo->lock);
5699
5700 return free_bytes;
5701 }
5702
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)5703 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5704 u64 start, u64 end)
5705 {
5706 return unpin_extent_range(fs_info, start, end, false);
5707 }
5708
5709 /*
5710 * It used to be that old block groups would be left around forever.
5711 * Iterating over them would be enough to trim unused space. Since we
5712 * now automatically remove them, we also need to iterate over unallocated
5713 * space.
5714 *
5715 * We don't want a transaction for this since the discard may take a
5716 * substantial amount of time. We don't require that a transaction be
5717 * running, but we do need to take a running transaction into account
5718 * to ensure that we're not discarding chunks that were released or
5719 * allocated in the current transaction.
5720 *
5721 * Holding the chunks lock will prevent other threads from allocating
5722 * or releasing chunks, but it won't prevent a running transaction
5723 * from committing and releasing the memory that the pending chunks
5724 * list head uses. For that, we need to take a reference to the
5725 * transaction and hold the commit root sem. We only need to hold
5726 * it while performing the free space search since we have already
5727 * held back allocations.
5728 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)5729 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5730 {
5731 u64 start = SZ_1M, len = 0, end = 0;
5732 int ret;
5733
5734 *trimmed = 0;
5735
5736 /* Discard not supported = nothing to do. */
5737 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5738 return 0;
5739
5740 /* Not writable = nothing to do. */
5741 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5742 return 0;
5743
5744 /* No free space = nothing to do. */
5745 if (device->total_bytes <= device->bytes_used)
5746 return 0;
5747
5748 ret = 0;
5749
5750 while (1) {
5751 struct btrfs_fs_info *fs_info = device->fs_info;
5752 u64 bytes;
5753
5754 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5755 if (ret)
5756 break;
5757
5758 find_first_clear_extent_bit(&device->alloc_state, start,
5759 &start, &end,
5760 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5761
5762 /* Check if there are any CHUNK_* bits left */
5763 if (start > device->total_bytes) {
5764 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5765 btrfs_warn_in_rcu(fs_info,
5766 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5767 start, end - start + 1,
5768 rcu_str_deref(device->name),
5769 device->total_bytes);
5770 mutex_unlock(&fs_info->chunk_mutex);
5771 ret = 0;
5772 break;
5773 }
5774
5775 /* Ensure we skip the reserved area in the first 1M */
5776 start = max_t(u64, start, SZ_1M);
5777
5778 /*
5779 * If find_first_clear_extent_bit find a range that spans the
5780 * end of the device it will set end to -1, in this case it's up
5781 * to the caller to trim the value to the size of the device.
5782 */
5783 end = min(end, device->total_bytes - 1);
5784
5785 len = end - start + 1;
5786
5787 /* We didn't find any extents */
5788 if (!len) {
5789 mutex_unlock(&fs_info->chunk_mutex);
5790 ret = 0;
5791 break;
5792 }
5793
5794 ret = btrfs_issue_discard(device->bdev, start, len,
5795 &bytes);
5796 if (!ret)
5797 set_extent_bits(&device->alloc_state, start,
5798 start + bytes - 1,
5799 CHUNK_TRIMMED);
5800 mutex_unlock(&fs_info->chunk_mutex);
5801
5802 if (ret)
5803 break;
5804
5805 start += len;
5806 *trimmed += bytes;
5807
5808 if (fatal_signal_pending(current)) {
5809 ret = -ERESTARTSYS;
5810 break;
5811 }
5812
5813 cond_resched();
5814 }
5815
5816 return ret;
5817 }
5818
5819 /*
5820 * Trim the whole filesystem by:
5821 * 1) trimming the free space in each block group
5822 * 2) trimming the unallocated space on each device
5823 *
5824 * This will also continue trimming even if a block group or device encounters
5825 * an error. The return value will be the last error, or 0 if nothing bad
5826 * happens.
5827 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)5828 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5829 {
5830 struct btrfs_block_group *cache = NULL;
5831 struct btrfs_device *device;
5832 struct list_head *devices;
5833 u64 group_trimmed;
5834 u64 range_end = U64_MAX;
5835 u64 start;
5836 u64 end;
5837 u64 trimmed = 0;
5838 u64 bg_failed = 0;
5839 u64 dev_failed = 0;
5840 int bg_ret = 0;
5841 int dev_ret = 0;
5842 int ret = 0;
5843
5844 /*
5845 * Check range overflow if range->len is set.
5846 * The default range->len is U64_MAX.
5847 */
5848 if (range->len != U64_MAX &&
5849 check_add_overflow(range->start, range->len, &range_end))
5850 return -EINVAL;
5851
5852 cache = btrfs_lookup_first_block_group(fs_info, range->start);
5853 for (; cache; cache = btrfs_next_block_group(cache)) {
5854 if (cache->start >= range_end) {
5855 btrfs_put_block_group(cache);
5856 break;
5857 }
5858
5859 start = max(range->start, cache->start);
5860 end = min(range_end, cache->start + cache->length);
5861
5862 if (end - start >= range->minlen) {
5863 if (!btrfs_block_group_done(cache)) {
5864 ret = btrfs_cache_block_group(cache, 0);
5865 if (ret) {
5866 bg_failed++;
5867 bg_ret = ret;
5868 continue;
5869 }
5870 ret = btrfs_wait_block_group_cache_done(cache);
5871 if (ret) {
5872 bg_failed++;
5873 bg_ret = ret;
5874 continue;
5875 }
5876 }
5877 ret = btrfs_trim_block_group(cache,
5878 &group_trimmed,
5879 start,
5880 end,
5881 range->minlen);
5882
5883 trimmed += group_trimmed;
5884 if (ret) {
5885 bg_failed++;
5886 bg_ret = ret;
5887 continue;
5888 }
5889 }
5890 }
5891
5892 if (bg_failed)
5893 btrfs_warn(fs_info,
5894 "failed to trim %llu block group(s), last error %d",
5895 bg_failed, bg_ret);
5896 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5897 devices = &fs_info->fs_devices->devices;
5898 list_for_each_entry(device, devices, dev_list) {
5899 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
5900 continue;
5901
5902 ret = btrfs_trim_free_extents(device, &group_trimmed);
5903 if (ret) {
5904 dev_failed++;
5905 dev_ret = ret;
5906 break;
5907 }
5908
5909 trimmed += group_trimmed;
5910 }
5911 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5912
5913 if (dev_failed)
5914 btrfs_warn(fs_info,
5915 "failed to trim %llu device(s), last error %d",
5916 dev_failed, dev_ret);
5917 range->len = trimmed;
5918 if (bg_ret)
5919 return bg_ret;
5920 return dev_ret;
5921 }
5922