1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "export.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "locking.h"
37 #include "inode-map.h"
38 #include "backref.h"
39 #include "rcu-string.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
50
51 #ifdef CONFIG_64BIT
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53 * structures are incorrect, as the timespec structure from userspace
54 * is 4 bytes too small. We define these alternatives here to teach
55 * the kernel about the 32-bit struct packing.
56 */
57 struct btrfs_ioctl_timespec_32 {
58 __u64 sec;
59 __u32 nsec;
60 } __attribute__ ((__packed__));
61
62 struct btrfs_ioctl_received_subvol_args_32 {
63 char uuid[BTRFS_UUID_SIZE]; /* in */
64 __u64 stransid; /* in */
65 __u64 rtransid; /* out */
66 struct btrfs_ioctl_timespec_32 stime; /* in */
67 struct btrfs_ioctl_timespec_32 rtime; /* out */
68 __u64 flags; /* in */
69 __u64 reserved[16]; /* in */
70 } __attribute__ ((__packed__));
71
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 struct btrfs_ioctl_received_subvol_args_32)
74 #endif
75
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32 {
78 __s64 send_fd; /* in */
79 __u64 clone_sources_count; /* in */
80 compat_uptr_t clone_sources; /* in */
81 __u64 parent_root; /* in */
82 __u64 flags; /* in */
83 __u64 reserved[4]; /* in */
84 } __attribute__ ((__packed__));
85
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 struct btrfs_ioctl_send_args_32)
88 #endif
89
90 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 unsigned int flags)
93 {
94 if (S_ISDIR(inode->i_mode))
95 return flags;
96 else if (S_ISREG(inode->i_mode))
97 return flags & ~FS_DIRSYNC_FL;
98 else
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101
102 /*
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104 * ioctl.
105 */
btrfs_inode_flags_to_fsflags(unsigned int flags)106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 unsigned int iflags = 0;
109
110 if (flags & BTRFS_INODE_SYNC)
111 iflags |= FS_SYNC_FL;
112 if (flags & BTRFS_INODE_IMMUTABLE)
113 iflags |= FS_IMMUTABLE_FL;
114 if (flags & BTRFS_INODE_APPEND)
115 iflags |= FS_APPEND_FL;
116 if (flags & BTRFS_INODE_NODUMP)
117 iflags |= FS_NODUMP_FL;
118 if (flags & BTRFS_INODE_NOATIME)
119 iflags |= FS_NOATIME_FL;
120 if (flags & BTRFS_INODE_DIRSYNC)
121 iflags |= FS_DIRSYNC_FL;
122 if (flags & BTRFS_INODE_NODATACOW)
123 iflags |= FS_NOCOW_FL;
124
125 if (flags & BTRFS_INODE_NOCOMPRESS)
126 iflags |= FS_NOCOMP_FL;
127 else if (flags & BTRFS_INODE_COMPRESS)
128 iflags |= FS_COMPR_FL;
129
130 return iflags;
131 }
132
133 /*
134 * Update inode->i_flags based on the btrfs internal flags.
135 */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 struct btrfs_inode *binode = BTRFS_I(inode);
139 unsigned int new_fl = 0;
140
141 if (binode->flags & BTRFS_INODE_SYNC)
142 new_fl |= S_SYNC;
143 if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 new_fl |= S_IMMUTABLE;
145 if (binode->flags & BTRFS_INODE_APPEND)
146 new_fl |= S_APPEND;
147 if (binode->flags & BTRFS_INODE_NOATIME)
148 new_fl |= S_NOATIME;
149 if (binode->flags & BTRFS_INODE_DIRSYNC)
150 new_fl |= S_DIRSYNC;
151
152 set_mask_bits(&inode->i_flags,
153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 new_fl);
155 }
156
btrfs_ioctl_getflags(struct file * file,void __user * arg)157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161
162 if (copy_to_user(arg, &flags, sizeof(flags)))
163 return -EFAULT;
164 return 0;
165 }
166
167 /*
168 * Check if @flags are a supported and valid set of FS_*_FL flags and that
169 * the old and new flags are not conflicting
170 */
check_fsflags(unsigned int old_flags,unsigned int flags)171 static int check_fsflags(unsigned int old_flags, unsigned int flags)
172 {
173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
174 FS_NOATIME_FL | FS_NODUMP_FL | \
175 FS_SYNC_FL | FS_DIRSYNC_FL | \
176 FS_NOCOMP_FL | FS_COMPR_FL |
177 FS_NOCOW_FL))
178 return -EOPNOTSUPP;
179
180 /* COMPR and NOCOMP on new/old are valid */
181 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
182 return -EINVAL;
183
184 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
185 return -EINVAL;
186
187 /* NOCOW and compression options are mutually exclusive */
188 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
189 return -EINVAL;
190 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
191 return -EINVAL;
192
193 return 0;
194 }
195
btrfs_ioctl_setflags(struct file * file,void __user * arg)196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
197 {
198 struct inode *inode = file_inode(file);
199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
200 struct btrfs_inode *binode = BTRFS_I(inode);
201 struct btrfs_root *root = binode->root;
202 struct btrfs_trans_handle *trans;
203 unsigned int fsflags, old_fsflags;
204 int ret;
205 const char *comp = NULL;
206 u32 binode_flags;
207
208 if (!inode_owner_or_capable(inode))
209 return -EPERM;
210
211 if (btrfs_root_readonly(root))
212 return -EROFS;
213
214 if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
215 return -EFAULT;
216
217 ret = mnt_want_write_file(file);
218 if (ret)
219 return ret;
220
221 inode_lock(inode);
222 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
223 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
224
225 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
226 if (ret)
227 goto out_unlock;
228
229 ret = check_fsflags(old_fsflags, fsflags);
230 if (ret)
231 goto out_unlock;
232
233 binode_flags = binode->flags;
234 if (fsflags & FS_SYNC_FL)
235 binode_flags |= BTRFS_INODE_SYNC;
236 else
237 binode_flags &= ~BTRFS_INODE_SYNC;
238 if (fsflags & FS_IMMUTABLE_FL)
239 binode_flags |= BTRFS_INODE_IMMUTABLE;
240 else
241 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
242 if (fsflags & FS_APPEND_FL)
243 binode_flags |= BTRFS_INODE_APPEND;
244 else
245 binode_flags &= ~BTRFS_INODE_APPEND;
246 if (fsflags & FS_NODUMP_FL)
247 binode_flags |= BTRFS_INODE_NODUMP;
248 else
249 binode_flags &= ~BTRFS_INODE_NODUMP;
250 if (fsflags & FS_NOATIME_FL)
251 binode_flags |= BTRFS_INODE_NOATIME;
252 else
253 binode_flags &= ~BTRFS_INODE_NOATIME;
254 if (fsflags & FS_DIRSYNC_FL)
255 binode_flags |= BTRFS_INODE_DIRSYNC;
256 else
257 binode_flags &= ~BTRFS_INODE_DIRSYNC;
258 if (fsflags & FS_NOCOW_FL) {
259 if (S_ISREG(inode->i_mode)) {
260 /*
261 * It's safe to turn csums off here, no extents exist.
262 * Otherwise we want the flag to reflect the real COW
263 * status of the file and will not set it.
264 */
265 if (inode->i_size == 0)
266 binode_flags |= BTRFS_INODE_NODATACOW |
267 BTRFS_INODE_NODATASUM;
268 } else {
269 binode_flags |= BTRFS_INODE_NODATACOW;
270 }
271 } else {
272 /*
273 * Revert back under same assumptions as above
274 */
275 if (S_ISREG(inode->i_mode)) {
276 if (inode->i_size == 0)
277 binode_flags &= ~(BTRFS_INODE_NODATACOW |
278 BTRFS_INODE_NODATASUM);
279 } else {
280 binode_flags &= ~BTRFS_INODE_NODATACOW;
281 }
282 }
283
284 /*
285 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
286 * flag may be changed automatically if compression code won't make
287 * things smaller.
288 */
289 if (fsflags & FS_NOCOMP_FL) {
290 binode_flags &= ~BTRFS_INODE_COMPRESS;
291 binode_flags |= BTRFS_INODE_NOCOMPRESS;
292 } else if (fsflags & FS_COMPR_FL) {
293
294 if (IS_SWAPFILE(inode)) {
295 ret = -ETXTBSY;
296 goto out_unlock;
297 }
298
299 binode_flags |= BTRFS_INODE_COMPRESS;
300 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
301
302 comp = btrfs_compress_type2str(fs_info->compress_type);
303 if (!comp || comp[0] == 0)
304 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
305 } else {
306 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
307 }
308
309 /*
310 * 1 for inode item
311 * 2 for properties
312 */
313 trans = btrfs_start_transaction(root, 3);
314 if (IS_ERR(trans)) {
315 ret = PTR_ERR(trans);
316 goto out_unlock;
317 }
318
319 if (comp) {
320 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
321 strlen(comp), 0);
322 if (ret) {
323 btrfs_abort_transaction(trans, ret);
324 goto out_end_trans;
325 }
326 } else {
327 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
328 0, 0);
329 if (ret && ret != -ENODATA) {
330 btrfs_abort_transaction(trans, ret);
331 goto out_end_trans;
332 }
333 }
334
335 binode->flags = binode_flags;
336 btrfs_sync_inode_flags_to_i_flags(inode);
337 inode_inc_iversion(inode);
338 inode->i_ctime = current_time(inode);
339 ret = btrfs_update_inode(trans, root, inode);
340
341 out_end_trans:
342 btrfs_end_transaction(trans);
343 out_unlock:
344 inode_unlock(inode);
345 mnt_drop_write_file(file);
346 return ret;
347 }
348
349 /*
350 * Translate btrfs internal inode flags to xflags as expected by the
351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
352 * silently dropped.
353 */
btrfs_inode_flags_to_xflags(unsigned int flags)354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
355 {
356 unsigned int xflags = 0;
357
358 if (flags & BTRFS_INODE_APPEND)
359 xflags |= FS_XFLAG_APPEND;
360 if (flags & BTRFS_INODE_IMMUTABLE)
361 xflags |= FS_XFLAG_IMMUTABLE;
362 if (flags & BTRFS_INODE_NOATIME)
363 xflags |= FS_XFLAG_NOATIME;
364 if (flags & BTRFS_INODE_NODUMP)
365 xflags |= FS_XFLAG_NODUMP;
366 if (flags & BTRFS_INODE_SYNC)
367 xflags |= FS_XFLAG_SYNC;
368
369 return xflags;
370 }
371
372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
check_xflags(unsigned int flags)373 static int check_xflags(unsigned int flags)
374 {
375 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
376 FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
377 return -EOPNOTSUPP;
378 return 0;
379 }
380
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)381 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
382 enum btrfs_exclusive_operation type)
383 {
384 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
385 }
386
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)387 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
388 {
389 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
390 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
391 }
392
393 /*
394 * Set the xflags from the internal inode flags. The remaining items of fsxattr
395 * are zeroed.
396 */
btrfs_ioctl_fsgetxattr(struct file * file,void __user * arg)397 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
398 {
399 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
400 struct fsxattr fa;
401
402 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
403 if (copy_to_user(arg, &fa, sizeof(fa)))
404 return -EFAULT;
405
406 return 0;
407 }
408
btrfs_ioctl_fssetxattr(struct file * file,void __user * arg)409 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
410 {
411 struct inode *inode = file_inode(file);
412 struct btrfs_inode *binode = BTRFS_I(inode);
413 struct btrfs_root *root = binode->root;
414 struct btrfs_trans_handle *trans;
415 struct fsxattr fa, old_fa;
416 unsigned old_flags;
417 unsigned old_i_flags;
418 int ret = 0;
419
420 if (!inode_owner_or_capable(inode))
421 return -EPERM;
422
423 if (btrfs_root_readonly(root))
424 return -EROFS;
425
426 if (copy_from_user(&fa, arg, sizeof(fa)))
427 return -EFAULT;
428
429 ret = check_xflags(fa.fsx_xflags);
430 if (ret)
431 return ret;
432
433 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
434 return -EOPNOTSUPP;
435
436 ret = mnt_want_write_file(file);
437 if (ret)
438 return ret;
439
440 inode_lock(inode);
441
442 old_flags = binode->flags;
443 old_i_flags = inode->i_flags;
444
445 simple_fill_fsxattr(&old_fa,
446 btrfs_inode_flags_to_xflags(binode->flags));
447 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
448 if (ret)
449 goto out_unlock;
450
451 if (fa.fsx_xflags & FS_XFLAG_SYNC)
452 binode->flags |= BTRFS_INODE_SYNC;
453 else
454 binode->flags &= ~BTRFS_INODE_SYNC;
455 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
456 binode->flags |= BTRFS_INODE_IMMUTABLE;
457 else
458 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
459 if (fa.fsx_xflags & FS_XFLAG_APPEND)
460 binode->flags |= BTRFS_INODE_APPEND;
461 else
462 binode->flags &= ~BTRFS_INODE_APPEND;
463 if (fa.fsx_xflags & FS_XFLAG_NODUMP)
464 binode->flags |= BTRFS_INODE_NODUMP;
465 else
466 binode->flags &= ~BTRFS_INODE_NODUMP;
467 if (fa.fsx_xflags & FS_XFLAG_NOATIME)
468 binode->flags |= BTRFS_INODE_NOATIME;
469 else
470 binode->flags &= ~BTRFS_INODE_NOATIME;
471
472 /* 1 item for the inode */
473 trans = btrfs_start_transaction(root, 1);
474 if (IS_ERR(trans)) {
475 ret = PTR_ERR(trans);
476 goto out_unlock;
477 }
478
479 btrfs_sync_inode_flags_to_i_flags(inode);
480 inode_inc_iversion(inode);
481 inode->i_ctime = current_time(inode);
482 ret = btrfs_update_inode(trans, root, inode);
483
484 btrfs_end_transaction(trans);
485
486 out_unlock:
487 if (ret) {
488 binode->flags = old_flags;
489 inode->i_flags = old_i_flags;
490 }
491
492 inode_unlock(inode);
493 mnt_drop_write_file(file);
494
495 return ret;
496 }
497
btrfs_ioctl_getversion(struct file * file,int __user * arg)498 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
499 {
500 struct inode *inode = file_inode(file);
501
502 return put_user(inode->i_generation, arg);
503 }
504
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)505 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
506 void __user *arg)
507 {
508 struct btrfs_device *device;
509 struct request_queue *q;
510 struct fstrim_range range;
511 u64 minlen = ULLONG_MAX;
512 u64 num_devices = 0;
513 int ret;
514
515 if (!capable(CAP_SYS_ADMIN))
516 return -EPERM;
517
518 /*
519 * If the fs is mounted with nologreplay, which requires it to be
520 * mounted in RO mode as well, we can not allow discard on free space
521 * inside block groups, because log trees refer to extents that are not
522 * pinned in a block group's free space cache (pinning the extents is
523 * precisely the first phase of replaying a log tree).
524 */
525 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
526 return -EROFS;
527
528 rcu_read_lock();
529 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
530 dev_list) {
531 if (!device->bdev)
532 continue;
533 q = bdev_get_queue(device->bdev);
534 if (blk_queue_discard(q)) {
535 num_devices++;
536 minlen = min_t(u64, q->limits.discard_granularity,
537 minlen);
538 }
539 }
540 rcu_read_unlock();
541
542 if (!num_devices)
543 return -EOPNOTSUPP;
544 if (copy_from_user(&range, arg, sizeof(range)))
545 return -EFAULT;
546
547 /*
548 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
549 * block group is in the logical address space, which can be any
550 * sectorsize aligned bytenr in the range [0, U64_MAX].
551 */
552 if (range.len < fs_info->sb->s_blocksize)
553 return -EINVAL;
554
555 range.minlen = max(range.minlen, minlen);
556 ret = btrfs_trim_fs(fs_info, &range);
557 if (ret < 0)
558 return ret;
559
560 if (copy_to_user(arg, &range, sizeof(range)))
561 return -EFAULT;
562
563 return 0;
564 }
565
btrfs_is_empty_uuid(u8 * uuid)566 int __pure btrfs_is_empty_uuid(u8 *uuid)
567 {
568 int i;
569
570 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
571 if (uuid[i])
572 return 0;
573 }
574 return 1;
575 }
576
create_subvol(struct inode * dir,struct dentry * dentry,const char * name,int namelen,struct btrfs_qgroup_inherit * inherit)577 static noinline int create_subvol(struct inode *dir,
578 struct dentry *dentry,
579 const char *name, int namelen,
580 struct btrfs_qgroup_inherit *inherit)
581 {
582 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
583 struct btrfs_trans_handle *trans;
584 struct btrfs_key key;
585 struct btrfs_root_item *root_item;
586 struct btrfs_inode_item *inode_item;
587 struct extent_buffer *leaf;
588 struct btrfs_root *root = BTRFS_I(dir)->root;
589 struct btrfs_root *new_root;
590 struct btrfs_block_rsv block_rsv;
591 struct timespec64 cur_time = current_time(dir);
592 struct inode *inode;
593 int ret;
594 int err;
595 dev_t anon_dev = 0;
596 u64 objectid;
597 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
598 u64 index = 0;
599
600 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
601 if (!root_item)
602 return -ENOMEM;
603
604 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
605 if (ret)
606 goto fail_free;
607
608 ret = get_anon_bdev(&anon_dev);
609 if (ret < 0)
610 goto fail_free;
611
612 /*
613 * Don't create subvolume whose level is not zero. Or qgroup will be
614 * screwed up since it assumes subvolume qgroup's level to be 0.
615 */
616 if (btrfs_qgroup_level(objectid)) {
617 ret = -ENOSPC;
618 goto fail_free;
619 }
620
621 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
622 /*
623 * The same as the snapshot creation, please see the comment
624 * of create_snapshot().
625 */
626 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
627 if (ret)
628 goto fail_free;
629
630 trans = btrfs_start_transaction(root, 0);
631 if (IS_ERR(trans)) {
632 ret = PTR_ERR(trans);
633 btrfs_subvolume_release_metadata(root, &block_rsv);
634 goto fail_free;
635 }
636 trans->block_rsv = &block_rsv;
637 trans->bytes_reserved = block_rsv.size;
638
639 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
640 if (ret)
641 goto fail;
642
643 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
644 BTRFS_NESTING_NORMAL);
645 if (IS_ERR(leaf)) {
646 ret = PTR_ERR(leaf);
647 goto fail;
648 }
649
650 btrfs_mark_buffer_dirty(leaf);
651
652 inode_item = &root_item->inode;
653 btrfs_set_stack_inode_generation(inode_item, 1);
654 btrfs_set_stack_inode_size(inode_item, 3);
655 btrfs_set_stack_inode_nlink(inode_item, 1);
656 btrfs_set_stack_inode_nbytes(inode_item,
657 fs_info->nodesize);
658 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
659
660 btrfs_set_root_flags(root_item, 0);
661 btrfs_set_root_limit(root_item, 0);
662 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
663
664 btrfs_set_root_bytenr(root_item, leaf->start);
665 btrfs_set_root_generation(root_item, trans->transid);
666 btrfs_set_root_level(root_item, 0);
667 btrfs_set_root_refs(root_item, 1);
668 btrfs_set_root_used(root_item, leaf->len);
669 btrfs_set_root_last_snapshot(root_item, 0);
670
671 btrfs_set_root_generation_v2(root_item,
672 btrfs_root_generation(root_item));
673 generate_random_guid(root_item->uuid);
674 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
675 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
676 root_item->ctime = root_item->otime;
677 btrfs_set_root_ctransid(root_item, trans->transid);
678 btrfs_set_root_otransid(root_item, trans->transid);
679
680 btrfs_tree_unlock(leaf);
681
682 btrfs_set_root_dirid(root_item, new_dirid);
683
684 key.objectid = objectid;
685 key.offset = 0;
686 key.type = BTRFS_ROOT_ITEM_KEY;
687 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
688 root_item);
689 if (ret) {
690 /*
691 * Since we don't abort the transaction in this case, free the
692 * tree block so that we don't leak space and leave the
693 * filesystem in an inconsistent state (an extent item in the
694 * extent tree without backreferences). Also no need to have
695 * the tree block locked since it is not in any tree at this
696 * point, so no other task can find it and use it.
697 */
698 btrfs_free_tree_block(trans, root, leaf, 0, 1);
699 free_extent_buffer(leaf);
700 goto fail;
701 }
702
703 free_extent_buffer(leaf);
704 leaf = NULL;
705
706 key.offset = (u64)-1;
707 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
708 if (IS_ERR(new_root)) {
709 free_anon_bdev(anon_dev);
710 ret = PTR_ERR(new_root);
711 btrfs_abort_transaction(trans, ret);
712 goto fail;
713 }
714 /* Freeing will be done in btrfs_put_root() of new_root */
715 anon_dev = 0;
716
717 btrfs_record_root_in_trans(trans, new_root);
718
719 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
720 btrfs_put_root(new_root);
721 if (ret) {
722 /* We potentially lose an unused inode item here */
723 btrfs_abort_transaction(trans, ret);
724 goto fail;
725 }
726
727 mutex_lock(&new_root->objectid_mutex);
728 new_root->highest_objectid = new_dirid;
729 mutex_unlock(&new_root->objectid_mutex);
730
731 /*
732 * insert the directory item
733 */
734 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
735 if (ret) {
736 btrfs_abort_transaction(trans, ret);
737 goto fail;
738 }
739
740 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
741 BTRFS_FT_DIR, index);
742 if (ret) {
743 btrfs_abort_transaction(trans, ret);
744 goto fail;
745 }
746
747 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
748 ret = btrfs_update_inode(trans, root, dir);
749 if (ret) {
750 btrfs_abort_transaction(trans, ret);
751 goto fail;
752 }
753
754 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
755 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
756 if (ret) {
757 btrfs_abort_transaction(trans, ret);
758 goto fail;
759 }
760
761 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
762 BTRFS_UUID_KEY_SUBVOL, objectid);
763 if (ret)
764 btrfs_abort_transaction(trans, ret);
765
766 fail:
767 kfree(root_item);
768 trans->block_rsv = NULL;
769 trans->bytes_reserved = 0;
770 btrfs_subvolume_release_metadata(root, &block_rsv);
771
772 err = btrfs_commit_transaction(trans);
773 if (err && !ret)
774 ret = err;
775
776 if (!ret) {
777 inode = btrfs_lookup_dentry(dir, dentry);
778 if (IS_ERR(inode))
779 return PTR_ERR(inode);
780 d_instantiate(dentry, inode);
781 }
782 return ret;
783
784 fail_free:
785 if (anon_dev)
786 free_anon_bdev(anon_dev);
787 kfree(root_item);
788 return ret;
789 }
790
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)791 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
792 struct dentry *dentry, bool readonly,
793 struct btrfs_qgroup_inherit *inherit)
794 {
795 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
796 struct inode *inode;
797 struct btrfs_pending_snapshot *pending_snapshot;
798 struct btrfs_trans_handle *trans;
799 int ret;
800
801 if (btrfs_root_refs(&root->root_item) == 0)
802 return -ENOENT;
803
804 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
805 return -EINVAL;
806
807 if (atomic_read(&root->nr_swapfiles)) {
808 btrfs_warn(fs_info,
809 "cannot snapshot subvolume with active swapfile");
810 return -ETXTBSY;
811 }
812
813 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
814 if (!pending_snapshot)
815 return -ENOMEM;
816
817 ret = get_anon_bdev(&pending_snapshot->anon_dev);
818 if (ret < 0)
819 goto free_pending;
820 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
821 GFP_KERNEL);
822 pending_snapshot->path = btrfs_alloc_path();
823 if (!pending_snapshot->root_item || !pending_snapshot->path) {
824 ret = -ENOMEM;
825 goto free_pending;
826 }
827
828 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
829 BTRFS_BLOCK_RSV_TEMP);
830 /*
831 * 1 - parent dir inode
832 * 2 - dir entries
833 * 1 - root item
834 * 2 - root ref/backref
835 * 1 - root of snapshot
836 * 1 - UUID item
837 */
838 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
839 &pending_snapshot->block_rsv, 8,
840 false);
841 if (ret)
842 goto free_pending;
843
844 pending_snapshot->dentry = dentry;
845 pending_snapshot->root = root;
846 pending_snapshot->readonly = readonly;
847 pending_snapshot->dir = dir;
848 pending_snapshot->inherit = inherit;
849
850 trans = btrfs_start_transaction(root, 0);
851 if (IS_ERR(trans)) {
852 ret = PTR_ERR(trans);
853 goto fail;
854 }
855
856 spin_lock(&fs_info->trans_lock);
857 list_add(&pending_snapshot->list,
858 &trans->transaction->pending_snapshots);
859 spin_unlock(&fs_info->trans_lock);
860
861 ret = btrfs_commit_transaction(trans);
862 if (ret)
863 goto fail;
864
865 ret = pending_snapshot->error;
866 if (ret)
867 goto fail;
868
869 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
870 if (ret)
871 goto fail;
872
873 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
874 if (IS_ERR(inode)) {
875 ret = PTR_ERR(inode);
876 goto fail;
877 }
878
879 d_instantiate(dentry, inode);
880 ret = 0;
881 pending_snapshot->anon_dev = 0;
882 fail:
883 /* Prevent double freeing of anon_dev */
884 if (ret && pending_snapshot->snap)
885 pending_snapshot->snap->anon_dev = 0;
886 btrfs_put_root(pending_snapshot->snap);
887 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
888 free_pending:
889 if (pending_snapshot->anon_dev)
890 free_anon_bdev(pending_snapshot->anon_dev);
891 kfree(pending_snapshot->root_item);
892 btrfs_free_path(pending_snapshot->path);
893 kfree(pending_snapshot);
894
895 return ret;
896 }
897
898 /* copy of may_delete in fs/namei.c()
899 * Check whether we can remove a link victim from directory dir, check
900 * whether the type of victim is right.
901 * 1. We can't do it if dir is read-only (done in permission())
902 * 2. We should have write and exec permissions on dir
903 * 3. We can't remove anything from append-only dir
904 * 4. We can't do anything with immutable dir (done in permission())
905 * 5. If the sticky bit on dir is set we should either
906 * a. be owner of dir, or
907 * b. be owner of victim, or
908 * c. have CAP_FOWNER capability
909 * 6. If the victim is append-only or immutable we can't do anything with
910 * links pointing to it.
911 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
912 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
913 * 9. We can't remove a root or mountpoint.
914 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
915 * nfs_async_unlink().
916 */
917
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)918 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
919 {
920 int error;
921
922 if (d_really_is_negative(victim))
923 return -ENOENT;
924
925 BUG_ON(d_inode(victim->d_parent) != dir);
926 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
927
928 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
929 if (error)
930 return error;
931 if (IS_APPEND(dir))
932 return -EPERM;
933 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
934 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
935 return -EPERM;
936 if (isdir) {
937 if (!d_is_dir(victim))
938 return -ENOTDIR;
939 if (IS_ROOT(victim))
940 return -EBUSY;
941 } else if (d_is_dir(victim))
942 return -EISDIR;
943 if (IS_DEADDIR(dir))
944 return -ENOENT;
945 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
946 return -EBUSY;
947 return 0;
948 }
949
950 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)951 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
952 {
953 if (d_really_is_positive(child))
954 return -EEXIST;
955 if (IS_DEADDIR(dir))
956 return -ENOENT;
957 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
958 }
959
960 /*
961 * Create a new subvolume below @parent. This is largely modeled after
962 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
963 * inside this filesystem so it's quite a bit simpler.
964 */
btrfs_mksubvol(const struct path * parent,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)965 static noinline int btrfs_mksubvol(const struct path *parent,
966 const char *name, int namelen,
967 struct btrfs_root *snap_src,
968 bool readonly,
969 struct btrfs_qgroup_inherit *inherit)
970 {
971 struct inode *dir = d_inode(parent->dentry);
972 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
973 struct dentry *dentry;
974 int error;
975
976 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
977 if (error == -EINTR)
978 return error;
979
980 dentry = lookup_one_len(name, parent->dentry, namelen);
981 error = PTR_ERR(dentry);
982 if (IS_ERR(dentry))
983 goto out_unlock;
984
985 error = btrfs_may_create(dir, dentry);
986 if (error)
987 goto out_dput;
988
989 /*
990 * even if this name doesn't exist, we may get hash collisions.
991 * check for them now when we can safely fail
992 */
993 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
994 dir->i_ino, name,
995 namelen);
996 if (error)
997 goto out_dput;
998
999 down_read(&fs_info->subvol_sem);
1000
1001 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1002 goto out_up_read;
1003
1004 if (snap_src)
1005 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1006 else
1007 error = create_subvol(dir, dentry, name, namelen, inherit);
1008
1009 if (!error)
1010 fsnotify_mkdir(dir, dentry);
1011 out_up_read:
1012 up_read(&fs_info->subvol_sem);
1013 out_dput:
1014 dput(dentry);
1015 out_unlock:
1016 inode_unlock(dir);
1017 return error;
1018 }
1019
btrfs_mksnapshot(const struct path * parent,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)1020 static noinline int btrfs_mksnapshot(const struct path *parent,
1021 const char *name, int namelen,
1022 struct btrfs_root *root,
1023 bool readonly,
1024 struct btrfs_qgroup_inherit *inherit)
1025 {
1026 int ret;
1027 bool snapshot_force_cow = false;
1028
1029 /*
1030 * Force new buffered writes to reserve space even when NOCOW is
1031 * possible. This is to avoid later writeback (running dealloc) to
1032 * fallback to COW mode and unexpectedly fail with ENOSPC.
1033 */
1034 btrfs_drew_read_lock(&root->snapshot_lock);
1035
1036 ret = btrfs_start_delalloc_snapshot(root);
1037 if (ret)
1038 goto out;
1039
1040 /*
1041 * All previous writes have started writeback in NOCOW mode, so now
1042 * we force future writes to fallback to COW mode during snapshot
1043 * creation.
1044 */
1045 atomic_inc(&root->snapshot_force_cow);
1046 snapshot_force_cow = true;
1047
1048 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1049
1050 ret = btrfs_mksubvol(parent, name, namelen,
1051 root, readonly, inherit);
1052 out:
1053 if (snapshot_force_cow)
1054 atomic_dec(&root->snapshot_force_cow);
1055 btrfs_drew_read_unlock(&root->snapshot_lock);
1056 return ret;
1057 }
1058
1059 /*
1060 * When we're defragging a range, we don't want to kick it off again
1061 * if it is really just waiting for delalloc to send it down.
1062 * If we find a nice big extent or delalloc range for the bytes in the
1063 * file you want to defrag, we return 0 to let you know to skip this
1064 * part of the file
1065 */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)1066 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1067 {
1068 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1069 struct extent_map *em = NULL;
1070 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1071 u64 end;
1072
1073 read_lock(&em_tree->lock);
1074 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1075 read_unlock(&em_tree->lock);
1076
1077 if (em) {
1078 end = extent_map_end(em);
1079 free_extent_map(em);
1080 if (end - offset > thresh)
1081 return 0;
1082 }
1083 /* if we already have a nice delalloc here, just stop */
1084 thresh /= 2;
1085 end = count_range_bits(io_tree, &offset, offset + thresh,
1086 thresh, EXTENT_DELALLOC, 1);
1087 if (end >= thresh)
1088 return 0;
1089 return 1;
1090 }
1091
1092 /*
1093 * helper function to walk through a file and find extents
1094 * newer than a specific transid, and smaller than thresh.
1095 *
1096 * This is used by the defragging code to find new and small
1097 * extents
1098 */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1099 static int find_new_extents(struct btrfs_root *root,
1100 struct inode *inode, u64 newer_than,
1101 u64 *off, u32 thresh)
1102 {
1103 struct btrfs_path *path;
1104 struct btrfs_key min_key;
1105 struct extent_buffer *leaf;
1106 struct btrfs_file_extent_item *extent;
1107 int type;
1108 int ret;
1109 u64 ino = btrfs_ino(BTRFS_I(inode));
1110
1111 path = btrfs_alloc_path();
1112 if (!path)
1113 return -ENOMEM;
1114
1115 min_key.objectid = ino;
1116 min_key.type = BTRFS_EXTENT_DATA_KEY;
1117 min_key.offset = *off;
1118
1119 while (1) {
1120 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1121 if (ret != 0)
1122 goto none;
1123 process_slot:
1124 if (min_key.objectid != ino)
1125 goto none;
1126 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1127 goto none;
1128
1129 leaf = path->nodes[0];
1130 extent = btrfs_item_ptr(leaf, path->slots[0],
1131 struct btrfs_file_extent_item);
1132
1133 type = btrfs_file_extent_type(leaf, extent);
1134 if (type == BTRFS_FILE_EXTENT_REG &&
1135 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1136 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1137 *off = min_key.offset;
1138 btrfs_free_path(path);
1139 return 0;
1140 }
1141
1142 path->slots[0]++;
1143 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1144 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1145 goto process_slot;
1146 }
1147
1148 if (min_key.offset == (u64)-1)
1149 goto none;
1150
1151 min_key.offset++;
1152 btrfs_release_path(path);
1153 }
1154 none:
1155 btrfs_free_path(path);
1156 return -ENOENT;
1157 }
1158
defrag_lookup_extent(struct inode * inode,u64 start)1159 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1160 {
1161 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1162 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1163 struct extent_map *em;
1164 u64 len = PAGE_SIZE;
1165
1166 /*
1167 * hopefully we have this extent in the tree already, try without
1168 * the full extent lock
1169 */
1170 read_lock(&em_tree->lock);
1171 em = lookup_extent_mapping(em_tree, start, len);
1172 read_unlock(&em_tree->lock);
1173
1174 if (!em) {
1175 struct extent_state *cached = NULL;
1176 u64 end = start + len - 1;
1177
1178 /* get the big lock and read metadata off disk */
1179 lock_extent_bits(io_tree, start, end, &cached);
1180 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1181 unlock_extent_cached(io_tree, start, end, &cached);
1182
1183 if (IS_ERR(em))
1184 return NULL;
1185 }
1186
1187 return em;
1188 }
1189
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1190 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1191 {
1192 struct extent_map *next;
1193 bool ret = true;
1194
1195 /* this is the last extent */
1196 if (em->start + em->len >= i_size_read(inode))
1197 return false;
1198
1199 next = defrag_lookup_extent(inode, em->start + em->len);
1200 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1201 ret = false;
1202 else if ((em->block_start + em->block_len == next->block_start) &&
1203 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1204 ret = false;
1205
1206 free_extent_map(next);
1207 return ret;
1208 }
1209
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1210 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1211 u64 *last_len, u64 *skip, u64 *defrag_end,
1212 int compress)
1213 {
1214 struct extent_map *em;
1215 int ret = 1;
1216 bool next_mergeable = true;
1217 bool prev_mergeable = true;
1218
1219 /*
1220 * make sure that once we start defragging an extent, we keep on
1221 * defragging it
1222 */
1223 if (start < *defrag_end)
1224 return 1;
1225
1226 *skip = 0;
1227
1228 em = defrag_lookup_extent(inode, start);
1229 if (!em)
1230 return 0;
1231
1232 /* this will cover holes, and inline extents */
1233 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1234 ret = 0;
1235 goto out;
1236 }
1237
1238 if (!*defrag_end)
1239 prev_mergeable = false;
1240
1241 next_mergeable = defrag_check_next_extent(inode, em);
1242 /*
1243 * we hit a real extent, if it is big or the next extent is not a
1244 * real extent, don't bother defragging it
1245 */
1246 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1247 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1248 ret = 0;
1249 out:
1250 /*
1251 * last_len ends up being a counter of how many bytes we've defragged.
1252 * every time we choose not to defrag an extent, we reset *last_len
1253 * so that the next tiny extent will force a defrag.
1254 *
1255 * The end result of this is that tiny extents before a single big
1256 * extent will force at least part of that big extent to be defragged.
1257 */
1258 if (ret) {
1259 *defrag_end = extent_map_end(em);
1260 } else {
1261 *last_len = 0;
1262 *skip = extent_map_end(em);
1263 *defrag_end = 0;
1264 }
1265
1266 free_extent_map(em);
1267 return ret;
1268 }
1269
1270 /*
1271 * it doesn't do much good to defrag one or two pages
1272 * at a time. This pulls in a nice chunk of pages
1273 * to COW and defrag.
1274 *
1275 * It also makes sure the delalloc code has enough
1276 * dirty data to avoid making new small extents as part
1277 * of the defrag
1278 *
1279 * It's a good idea to start RA on this range
1280 * before calling this.
1281 */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1282 static int cluster_pages_for_defrag(struct inode *inode,
1283 struct page **pages,
1284 unsigned long start_index,
1285 unsigned long num_pages)
1286 {
1287 unsigned long file_end;
1288 u64 isize = i_size_read(inode);
1289 u64 page_start;
1290 u64 page_end;
1291 u64 page_cnt;
1292 u64 start = (u64)start_index << PAGE_SHIFT;
1293 u64 search_start;
1294 int ret;
1295 int i;
1296 int i_done;
1297 struct btrfs_ordered_extent *ordered;
1298 struct extent_state *cached_state = NULL;
1299 struct extent_io_tree *tree;
1300 struct extent_changeset *data_reserved = NULL;
1301 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1302
1303 file_end = (isize - 1) >> PAGE_SHIFT;
1304 if (!isize || start_index > file_end)
1305 return 0;
1306
1307 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1308
1309 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1310 start, page_cnt << PAGE_SHIFT);
1311 if (ret)
1312 return ret;
1313 i_done = 0;
1314 tree = &BTRFS_I(inode)->io_tree;
1315
1316 /* step one, lock all the pages */
1317 for (i = 0; i < page_cnt; i++) {
1318 struct page *page;
1319 again:
1320 page = find_or_create_page(inode->i_mapping,
1321 start_index + i, mask);
1322 if (!page)
1323 break;
1324
1325 page_start = page_offset(page);
1326 page_end = page_start + PAGE_SIZE - 1;
1327 while (1) {
1328 lock_extent_bits(tree, page_start, page_end,
1329 &cached_state);
1330 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1331 page_start);
1332 unlock_extent_cached(tree, page_start, page_end,
1333 &cached_state);
1334 if (!ordered)
1335 break;
1336
1337 unlock_page(page);
1338 btrfs_start_ordered_extent(ordered, 1);
1339 btrfs_put_ordered_extent(ordered);
1340 lock_page(page);
1341 /*
1342 * we unlocked the page above, so we need check if
1343 * it was released or not.
1344 */
1345 if (page->mapping != inode->i_mapping) {
1346 unlock_page(page);
1347 put_page(page);
1348 goto again;
1349 }
1350 }
1351
1352 if (!PageUptodate(page)) {
1353 btrfs_readpage(NULL, page);
1354 lock_page(page);
1355 if (!PageUptodate(page)) {
1356 unlock_page(page);
1357 put_page(page);
1358 ret = -EIO;
1359 break;
1360 }
1361 }
1362
1363 if (page->mapping != inode->i_mapping) {
1364 unlock_page(page);
1365 put_page(page);
1366 goto again;
1367 }
1368
1369 pages[i] = page;
1370 i_done++;
1371 }
1372 if (!i_done || ret)
1373 goto out;
1374
1375 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1376 goto out;
1377
1378 /*
1379 * so now we have a nice long stream of locked
1380 * and up to date pages, lets wait on them
1381 */
1382 for (i = 0; i < i_done; i++)
1383 wait_on_page_writeback(pages[i]);
1384
1385 page_start = page_offset(pages[0]);
1386 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1387
1388 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1389 page_start, page_end - 1, &cached_state);
1390
1391 /*
1392 * When defragmenting we skip ranges that have holes or inline extents,
1393 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1394 * space. At btrfs_defrag_file(), we check if a range should be defragged
1395 * before locking the inode and then, if it should, we trigger a sync
1396 * page cache readahead - we lock the inode only after that to avoid
1397 * blocking for too long other tasks that possibly want to operate on
1398 * other file ranges. But before we were able to get the inode lock,
1399 * some other task may have punched a hole in the range, or we may have
1400 * now an inline extent, in which case we should not defrag. So check
1401 * for that here, where we have the inode and the range locked, and bail
1402 * out if that happened.
1403 */
1404 search_start = page_start;
1405 while (search_start < page_end) {
1406 struct extent_map *em;
1407
1408 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1409 page_end - search_start);
1410 if (IS_ERR(em)) {
1411 ret = PTR_ERR(em);
1412 goto out_unlock_range;
1413 }
1414 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1415 free_extent_map(em);
1416 /* Ok, 0 means we did not defrag anything */
1417 ret = 0;
1418 goto out_unlock_range;
1419 }
1420 search_start = extent_map_end(em);
1421 free_extent_map(em);
1422 }
1423
1424 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1425 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1426 EXTENT_DEFRAG, 0, 0, &cached_state);
1427
1428 if (i_done != page_cnt) {
1429 spin_lock(&BTRFS_I(inode)->lock);
1430 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1431 spin_unlock(&BTRFS_I(inode)->lock);
1432 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1433 start, (page_cnt - i_done) << PAGE_SHIFT, true);
1434 }
1435
1436
1437 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1438 &cached_state);
1439
1440 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1441 page_start, page_end - 1, &cached_state);
1442
1443 for (i = 0; i < i_done; i++) {
1444 clear_page_dirty_for_io(pages[i]);
1445 ClearPageChecked(pages[i]);
1446 set_page_extent_mapped(pages[i]);
1447 set_page_dirty(pages[i]);
1448 unlock_page(pages[i]);
1449 put_page(pages[i]);
1450 }
1451 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1452 extent_changeset_free(data_reserved);
1453 return i_done;
1454
1455 out_unlock_range:
1456 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1457 page_start, page_end - 1, &cached_state);
1458 out:
1459 for (i = 0; i < i_done; i++) {
1460 unlock_page(pages[i]);
1461 put_page(pages[i]);
1462 }
1463 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1464 start, page_cnt << PAGE_SHIFT, true);
1465 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1466 extent_changeset_free(data_reserved);
1467 return ret;
1468
1469 }
1470
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1471 int btrfs_defrag_file(struct inode *inode, struct file *file,
1472 struct btrfs_ioctl_defrag_range_args *range,
1473 u64 newer_than, unsigned long max_to_defrag)
1474 {
1475 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1476 struct btrfs_root *root = BTRFS_I(inode)->root;
1477 struct file_ra_state *ra = NULL;
1478 unsigned long last_index;
1479 u64 isize = i_size_read(inode);
1480 u64 last_len = 0;
1481 u64 skip = 0;
1482 u64 defrag_end = 0;
1483 u64 newer_off = range->start;
1484 unsigned long i;
1485 unsigned long ra_index = 0;
1486 int ret;
1487 int defrag_count = 0;
1488 int compress_type = BTRFS_COMPRESS_ZLIB;
1489 u32 extent_thresh = range->extent_thresh;
1490 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1491 unsigned long cluster = max_cluster;
1492 u64 new_align = ~((u64)SZ_128K - 1);
1493 struct page **pages = NULL;
1494 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1495
1496 if (isize == 0)
1497 return 0;
1498
1499 if (range->start >= isize)
1500 return -EINVAL;
1501
1502 if (do_compress) {
1503 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1504 return -EINVAL;
1505 if (range->compress_type)
1506 compress_type = range->compress_type;
1507 }
1508
1509 if (extent_thresh == 0)
1510 extent_thresh = SZ_256K;
1511
1512 /*
1513 * If we were not given a file, allocate a readahead context. As
1514 * readahead is just an optimization, defrag will work without it so
1515 * we don't error out.
1516 */
1517 if (!file) {
1518 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1519 if (ra)
1520 file_ra_state_init(ra, inode->i_mapping);
1521 } else {
1522 ra = &file->f_ra;
1523 }
1524
1525 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1526 if (!pages) {
1527 ret = -ENOMEM;
1528 goto out_ra;
1529 }
1530
1531 /* find the last page to defrag */
1532 if (range->start + range->len > range->start) {
1533 last_index = min_t(u64, isize - 1,
1534 range->start + range->len - 1) >> PAGE_SHIFT;
1535 } else {
1536 last_index = (isize - 1) >> PAGE_SHIFT;
1537 }
1538
1539 if (newer_than) {
1540 ret = find_new_extents(root, inode, newer_than,
1541 &newer_off, SZ_64K);
1542 if (!ret) {
1543 range->start = newer_off;
1544 /*
1545 * we always align our defrag to help keep
1546 * the extents in the file evenly spaced
1547 */
1548 i = (newer_off & new_align) >> PAGE_SHIFT;
1549 } else
1550 goto out_ra;
1551 } else {
1552 i = range->start >> PAGE_SHIFT;
1553 }
1554 if (!max_to_defrag)
1555 max_to_defrag = last_index - i + 1;
1556
1557 /*
1558 * make writeback starts from i, so the defrag range can be
1559 * written sequentially.
1560 */
1561 if (i < inode->i_mapping->writeback_index)
1562 inode->i_mapping->writeback_index = i;
1563
1564 while (i <= last_index && defrag_count < max_to_defrag &&
1565 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1566 /*
1567 * make sure we stop running if someone unmounts
1568 * the FS
1569 */
1570 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1571 break;
1572
1573 if (btrfs_defrag_cancelled(fs_info)) {
1574 btrfs_debug(fs_info, "defrag_file cancelled");
1575 ret = -EAGAIN;
1576 break;
1577 }
1578
1579 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1580 extent_thresh, &last_len, &skip,
1581 &defrag_end, do_compress)){
1582 unsigned long next;
1583 /*
1584 * the should_defrag function tells us how much to skip
1585 * bump our counter by the suggested amount
1586 */
1587 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1588 i = max(i + 1, next);
1589 continue;
1590 }
1591
1592 if (!newer_than) {
1593 cluster = (PAGE_ALIGN(defrag_end) >>
1594 PAGE_SHIFT) - i;
1595 cluster = min(cluster, max_cluster);
1596 } else {
1597 cluster = max_cluster;
1598 }
1599
1600 if (i + cluster > ra_index) {
1601 ra_index = max(i, ra_index);
1602 if (ra)
1603 page_cache_sync_readahead(inode->i_mapping, ra,
1604 file, ra_index, cluster);
1605 ra_index += cluster;
1606 }
1607
1608 inode_lock(inode);
1609 if (IS_SWAPFILE(inode)) {
1610 ret = -ETXTBSY;
1611 } else {
1612 if (do_compress)
1613 BTRFS_I(inode)->defrag_compress = compress_type;
1614 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1615 }
1616 if (ret < 0) {
1617 inode_unlock(inode);
1618 goto out_ra;
1619 }
1620
1621 defrag_count += ret;
1622 balance_dirty_pages_ratelimited(inode->i_mapping);
1623 inode_unlock(inode);
1624
1625 if (newer_than) {
1626 if (newer_off == (u64)-1)
1627 break;
1628
1629 if (ret > 0)
1630 i += ret;
1631
1632 newer_off = max(newer_off + 1,
1633 (u64)i << PAGE_SHIFT);
1634
1635 ret = find_new_extents(root, inode, newer_than,
1636 &newer_off, SZ_64K);
1637 if (!ret) {
1638 range->start = newer_off;
1639 i = (newer_off & new_align) >> PAGE_SHIFT;
1640 } else {
1641 break;
1642 }
1643 } else {
1644 if (ret > 0) {
1645 i += ret;
1646 last_len += ret << PAGE_SHIFT;
1647 } else {
1648 i++;
1649 last_len = 0;
1650 }
1651 }
1652 }
1653
1654 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1655 filemap_flush(inode->i_mapping);
1656 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1657 &BTRFS_I(inode)->runtime_flags))
1658 filemap_flush(inode->i_mapping);
1659 }
1660
1661 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1662 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1663 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1664 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1665 }
1666
1667 ret = defrag_count;
1668
1669 out_ra:
1670 if (do_compress) {
1671 inode_lock(inode);
1672 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1673 inode_unlock(inode);
1674 }
1675 if (!file)
1676 kfree(ra);
1677 kfree(pages);
1678 return ret;
1679 }
1680
btrfs_ioctl_resize(struct file * file,void __user * arg)1681 static noinline int btrfs_ioctl_resize(struct file *file,
1682 void __user *arg)
1683 {
1684 struct inode *inode = file_inode(file);
1685 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1686 u64 new_size;
1687 u64 old_size;
1688 u64 devid = 1;
1689 struct btrfs_root *root = BTRFS_I(inode)->root;
1690 struct btrfs_ioctl_vol_args *vol_args;
1691 struct btrfs_trans_handle *trans;
1692 struct btrfs_device *device = NULL;
1693 char *sizestr;
1694 char *retptr;
1695 char *devstr = NULL;
1696 int ret = 0;
1697 int mod = 0;
1698
1699 if (!capable(CAP_SYS_ADMIN))
1700 return -EPERM;
1701
1702 ret = mnt_want_write_file(file);
1703 if (ret)
1704 return ret;
1705
1706 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1707 mnt_drop_write_file(file);
1708 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1709 }
1710
1711 vol_args = memdup_user(arg, sizeof(*vol_args));
1712 if (IS_ERR(vol_args)) {
1713 ret = PTR_ERR(vol_args);
1714 goto out;
1715 }
1716
1717 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1718
1719 sizestr = vol_args->name;
1720 devstr = strchr(sizestr, ':');
1721 if (devstr) {
1722 sizestr = devstr + 1;
1723 *devstr = '\0';
1724 devstr = vol_args->name;
1725 ret = kstrtoull(devstr, 10, &devid);
1726 if (ret)
1727 goto out_free;
1728 if (!devid) {
1729 ret = -EINVAL;
1730 goto out_free;
1731 }
1732 btrfs_info(fs_info, "resizing devid %llu", devid);
1733 }
1734
1735 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1736 if (!device) {
1737 btrfs_info(fs_info, "resizer unable to find device %llu",
1738 devid);
1739 ret = -ENODEV;
1740 goto out_free;
1741 }
1742
1743 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1744 btrfs_info(fs_info,
1745 "resizer unable to apply on readonly device %llu",
1746 devid);
1747 ret = -EPERM;
1748 goto out_free;
1749 }
1750
1751 if (!strcmp(sizestr, "max"))
1752 new_size = device->bdev->bd_inode->i_size;
1753 else {
1754 if (sizestr[0] == '-') {
1755 mod = -1;
1756 sizestr++;
1757 } else if (sizestr[0] == '+') {
1758 mod = 1;
1759 sizestr++;
1760 }
1761 new_size = memparse(sizestr, &retptr);
1762 if (*retptr != '\0' || new_size == 0) {
1763 ret = -EINVAL;
1764 goto out_free;
1765 }
1766 }
1767
1768 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1769 ret = -EPERM;
1770 goto out_free;
1771 }
1772
1773 old_size = btrfs_device_get_total_bytes(device);
1774
1775 if (mod < 0) {
1776 if (new_size > old_size) {
1777 ret = -EINVAL;
1778 goto out_free;
1779 }
1780 new_size = old_size - new_size;
1781 } else if (mod > 0) {
1782 if (new_size > ULLONG_MAX - old_size) {
1783 ret = -ERANGE;
1784 goto out_free;
1785 }
1786 new_size = old_size + new_size;
1787 }
1788
1789 if (new_size < SZ_256M) {
1790 ret = -EINVAL;
1791 goto out_free;
1792 }
1793 if (new_size > device->bdev->bd_inode->i_size) {
1794 ret = -EFBIG;
1795 goto out_free;
1796 }
1797
1798 new_size = round_down(new_size, fs_info->sectorsize);
1799
1800 if (new_size > old_size) {
1801 trans = btrfs_start_transaction(root, 0);
1802 if (IS_ERR(trans)) {
1803 ret = PTR_ERR(trans);
1804 goto out_free;
1805 }
1806 ret = btrfs_grow_device(trans, device, new_size);
1807 btrfs_commit_transaction(trans);
1808 } else if (new_size < old_size) {
1809 ret = btrfs_shrink_device(device, new_size);
1810 } /* equal, nothing need to do */
1811
1812 if (ret == 0 && new_size != old_size)
1813 btrfs_info_in_rcu(fs_info,
1814 "resize device %s (devid %llu) from %llu to %llu",
1815 rcu_str_deref(device->name), device->devid,
1816 old_size, new_size);
1817 out_free:
1818 kfree(vol_args);
1819 out:
1820 btrfs_exclop_finish(fs_info);
1821 mnt_drop_write_file(file);
1822 return ret;
1823 }
1824
__btrfs_ioctl_snap_create(struct file * file,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1825 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1826 const char *name, unsigned long fd, int subvol,
1827 bool readonly,
1828 struct btrfs_qgroup_inherit *inherit)
1829 {
1830 int namelen;
1831 int ret = 0;
1832
1833 if (!S_ISDIR(file_inode(file)->i_mode))
1834 return -ENOTDIR;
1835
1836 ret = mnt_want_write_file(file);
1837 if (ret)
1838 goto out;
1839
1840 namelen = strlen(name);
1841 if (strchr(name, '/')) {
1842 ret = -EINVAL;
1843 goto out_drop_write;
1844 }
1845
1846 if (name[0] == '.' &&
1847 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1848 ret = -EEXIST;
1849 goto out_drop_write;
1850 }
1851
1852 if (subvol) {
1853 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1854 NULL, readonly, inherit);
1855 } else {
1856 struct fd src = fdget(fd);
1857 struct inode *src_inode;
1858 if (!src.file) {
1859 ret = -EINVAL;
1860 goto out_drop_write;
1861 }
1862
1863 src_inode = file_inode(src.file);
1864 if (src_inode->i_sb != file_inode(file)->i_sb) {
1865 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1866 "Snapshot src from another FS");
1867 ret = -EXDEV;
1868 } else if (!inode_owner_or_capable(src_inode)) {
1869 /*
1870 * Subvolume creation is not restricted, but snapshots
1871 * are limited to own subvolumes only
1872 */
1873 ret = -EPERM;
1874 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1875 /*
1876 * Snapshots must be made with the src_inode referring
1877 * to the subvolume inode, otherwise the permission
1878 * checking above is useless because we may have
1879 * permission on a lower directory but not the subvol
1880 * itself.
1881 */
1882 ret = -EINVAL;
1883 } else {
1884 ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1885 BTRFS_I(src_inode)->root,
1886 readonly, inherit);
1887 }
1888 fdput(src);
1889 }
1890 out_drop_write:
1891 mnt_drop_write_file(file);
1892 out:
1893 return ret;
1894 }
1895
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1896 static noinline int btrfs_ioctl_snap_create(struct file *file,
1897 void __user *arg, int subvol)
1898 {
1899 struct btrfs_ioctl_vol_args *vol_args;
1900 int ret;
1901
1902 if (!S_ISDIR(file_inode(file)->i_mode))
1903 return -ENOTDIR;
1904
1905 vol_args = memdup_user(arg, sizeof(*vol_args));
1906 if (IS_ERR(vol_args))
1907 return PTR_ERR(vol_args);
1908 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1909
1910 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1911 subvol, false, NULL);
1912
1913 kfree(vol_args);
1914 return ret;
1915 }
1916
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1917 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1918 void __user *arg, int subvol)
1919 {
1920 struct btrfs_ioctl_vol_args_v2 *vol_args;
1921 int ret;
1922 bool readonly = false;
1923 struct btrfs_qgroup_inherit *inherit = NULL;
1924
1925 if (!S_ISDIR(file_inode(file)->i_mode))
1926 return -ENOTDIR;
1927
1928 vol_args = memdup_user(arg, sizeof(*vol_args));
1929 if (IS_ERR(vol_args))
1930 return PTR_ERR(vol_args);
1931 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1932
1933 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1934 ret = -EOPNOTSUPP;
1935 goto free_args;
1936 }
1937
1938 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1939 readonly = true;
1940 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1941 u64 nums;
1942
1943 if (vol_args->size < sizeof(*inherit) ||
1944 vol_args->size > PAGE_SIZE) {
1945 ret = -EINVAL;
1946 goto free_args;
1947 }
1948 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1949 if (IS_ERR(inherit)) {
1950 ret = PTR_ERR(inherit);
1951 goto free_args;
1952 }
1953
1954 if (inherit->num_qgroups > PAGE_SIZE ||
1955 inherit->num_ref_copies > PAGE_SIZE ||
1956 inherit->num_excl_copies > PAGE_SIZE) {
1957 ret = -EINVAL;
1958 goto free_inherit;
1959 }
1960
1961 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1962 2 * inherit->num_excl_copies;
1963 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1964 ret = -EINVAL;
1965 goto free_inherit;
1966 }
1967 }
1968
1969 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1970 subvol, readonly, inherit);
1971 if (ret)
1972 goto free_inherit;
1973 free_inherit:
1974 kfree(inherit);
1975 free_args:
1976 kfree(vol_args);
1977 return ret;
1978 }
1979
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1980 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1981 void __user *arg)
1982 {
1983 struct inode *inode = file_inode(file);
1984 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1985 struct btrfs_root *root = BTRFS_I(inode)->root;
1986 int ret = 0;
1987 u64 flags = 0;
1988
1989 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1990 return -EINVAL;
1991
1992 down_read(&fs_info->subvol_sem);
1993 if (btrfs_root_readonly(root))
1994 flags |= BTRFS_SUBVOL_RDONLY;
1995 up_read(&fs_info->subvol_sem);
1996
1997 if (copy_to_user(arg, &flags, sizeof(flags)))
1998 ret = -EFAULT;
1999
2000 return ret;
2001 }
2002
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)2003 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2004 void __user *arg)
2005 {
2006 struct inode *inode = file_inode(file);
2007 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2008 struct btrfs_root *root = BTRFS_I(inode)->root;
2009 struct btrfs_trans_handle *trans;
2010 u64 root_flags;
2011 u64 flags;
2012 int ret = 0;
2013
2014 if (!inode_owner_or_capable(inode))
2015 return -EPERM;
2016
2017 ret = mnt_want_write_file(file);
2018 if (ret)
2019 goto out;
2020
2021 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2022 ret = -EINVAL;
2023 goto out_drop_write;
2024 }
2025
2026 if (copy_from_user(&flags, arg, sizeof(flags))) {
2027 ret = -EFAULT;
2028 goto out_drop_write;
2029 }
2030
2031 if (flags & ~BTRFS_SUBVOL_RDONLY) {
2032 ret = -EOPNOTSUPP;
2033 goto out_drop_write;
2034 }
2035
2036 down_write(&fs_info->subvol_sem);
2037
2038 /* nothing to do */
2039 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2040 goto out_drop_sem;
2041
2042 root_flags = btrfs_root_flags(&root->root_item);
2043 if (flags & BTRFS_SUBVOL_RDONLY) {
2044 btrfs_set_root_flags(&root->root_item,
2045 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2046 } else {
2047 /*
2048 * Block RO -> RW transition if this subvolume is involved in
2049 * send
2050 */
2051 spin_lock(&root->root_item_lock);
2052 if (root->send_in_progress == 0) {
2053 btrfs_set_root_flags(&root->root_item,
2054 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2055 spin_unlock(&root->root_item_lock);
2056 } else {
2057 spin_unlock(&root->root_item_lock);
2058 btrfs_warn(fs_info,
2059 "Attempt to set subvolume %llu read-write during send",
2060 root->root_key.objectid);
2061 ret = -EPERM;
2062 goto out_drop_sem;
2063 }
2064 }
2065
2066 trans = btrfs_start_transaction(root, 1);
2067 if (IS_ERR(trans)) {
2068 ret = PTR_ERR(trans);
2069 goto out_reset;
2070 }
2071
2072 ret = btrfs_update_root(trans, fs_info->tree_root,
2073 &root->root_key, &root->root_item);
2074 if (ret < 0) {
2075 btrfs_end_transaction(trans);
2076 goto out_reset;
2077 }
2078
2079 ret = btrfs_commit_transaction(trans);
2080
2081 out_reset:
2082 if (ret)
2083 btrfs_set_root_flags(&root->root_item, root_flags);
2084 out_drop_sem:
2085 up_write(&fs_info->subvol_sem);
2086 out_drop_write:
2087 mnt_drop_write_file(file);
2088 out:
2089 return ret;
2090 }
2091
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2092 static noinline int key_in_sk(struct btrfs_key *key,
2093 struct btrfs_ioctl_search_key *sk)
2094 {
2095 struct btrfs_key test;
2096 int ret;
2097
2098 test.objectid = sk->min_objectid;
2099 test.type = sk->min_type;
2100 test.offset = sk->min_offset;
2101
2102 ret = btrfs_comp_cpu_keys(key, &test);
2103 if (ret < 0)
2104 return 0;
2105
2106 test.objectid = sk->max_objectid;
2107 test.type = sk->max_type;
2108 test.offset = sk->max_offset;
2109
2110 ret = btrfs_comp_cpu_keys(key, &test);
2111 if (ret > 0)
2112 return 0;
2113 return 1;
2114 }
2115
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2116 static noinline int copy_to_sk(struct btrfs_path *path,
2117 struct btrfs_key *key,
2118 struct btrfs_ioctl_search_key *sk,
2119 u64 *buf_size,
2120 char __user *ubuf,
2121 unsigned long *sk_offset,
2122 int *num_found)
2123 {
2124 u64 found_transid;
2125 struct extent_buffer *leaf;
2126 struct btrfs_ioctl_search_header sh;
2127 struct btrfs_key test;
2128 unsigned long item_off;
2129 unsigned long item_len;
2130 int nritems;
2131 int i;
2132 int slot;
2133 int ret = 0;
2134
2135 leaf = path->nodes[0];
2136 slot = path->slots[0];
2137 nritems = btrfs_header_nritems(leaf);
2138
2139 if (btrfs_header_generation(leaf) > sk->max_transid) {
2140 i = nritems;
2141 goto advance_key;
2142 }
2143 found_transid = btrfs_header_generation(leaf);
2144
2145 for (i = slot; i < nritems; i++) {
2146 item_off = btrfs_item_ptr_offset(leaf, i);
2147 item_len = btrfs_item_size_nr(leaf, i);
2148
2149 btrfs_item_key_to_cpu(leaf, key, i);
2150 if (!key_in_sk(key, sk))
2151 continue;
2152
2153 if (sizeof(sh) + item_len > *buf_size) {
2154 if (*num_found) {
2155 ret = 1;
2156 goto out;
2157 }
2158
2159 /*
2160 * return one empty item back for v1, which does not
2161 * handle -EOVERFLOW
2162 */
2163
2164 *buf_size = sizeof(sh) + item_len;
2165 item_len = 0;
2166 ret = -EOVERFLOW;
2167 }
2168
2169 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2170 ret = 1;
2171 goto out;
2172 }
2173
2174 sh.objectid = key->objectid;
2175 sh.offset = key->offset;
2176 sh.type = key->type;
2177 sh.len = item_len;
2178 sh.transid = found_transid;
2179
2180 /*
2181 * Copy search result header. If we fault then loop again so we
2182 * can fault in the pages and -EFAULT there if there's a
2183 * problem. Otherwise we'll fault and then copy the buffer in
2184 * properly this next time through
2185 */
2186 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2187 ret = 0;
2188 goto out;
2189 }
2190
2191 *sk_offset += sizeof(sh);
2192
2193 if (item_len) {
2194 char __user *up = ubuf + *sk_offset;
2195 /*
2196 * Copy the item, same behavior as above, but reset the
2197 * * sk_offset so we copy the full thing again.
2198 */
2199 if (read_extent_buffer_to_user_nofault(leaf, up,
2200 item_off, item_len)) {
2201 ret = 0;
2202 *sk_offset -= sizeof(sh);
2203 goto out;
2204 }
2205
2206 *sk_offset += item_len;
2207 }
2208 (*num_found)++;
2209
2210 if (ret) /* -EOVERFLOW from above */
2211 goto out;
2212
2213 if (*num_found >= sk->nr_items) {
2214 ret = 1;
2215 goto out;
2216 }
2217 }
2218 advance_key:
2219 ret = 0;
2220 test.objectid = sk->max_objectid;
2221 test.type = sk->max_type;
2222 test.offset = sk->max_offset;
2223 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2224 ret = 1;
2225 else if (key->offset < (u64)-1)
2226 key->offset++;
2227 else if (key->type < (u8)-1) {
2228 key->offset = 0;
2229 key->type++;
2230 } else if (key->objectid < (u64)-1) {
2231 key->offset = 0;
2232 key->type = 0;
2233 key->objectid++;
2234 } else
2235 ret = 1;
2236 out:
2237 /*
2238 * 0: all items from this leaf copied, continue with next
2239 * 1: * more items can be copied, but unused buffer is too small
2240 * * all items were found
2241 * Either way, it will stops the loop which iterates to the next
2242 * leaf
2243 * -EOVERFLOW: item was to large for buffer
2244 * -EFAULT: could not copy extent buffer back to userspace
2245 */
2246 return ret;
2247 }
2248
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)2249 static noinline int search_ioctl(struct inode *inode,
2250 struct btrfs_ioctl_search_key *sk,
2251 u64 *buf_size,
2252 char __user *ubuf)
2253 {
2254 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2255 struct btrfs_root *root;
2256 struct btrfs_key key;
2257 struct btrfs_path *path;
2258 int ret;
2259 int num_found = 0;
2260 unsigned long sk_offset = 0;
2261
2262 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2263 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2264 return -EOVERFLOW;
2265 }
2266
2267 path = btrfs_alloc_path();
2268 if (!path)
2269 return -ENOMEM;
2270
2271 if (sk->tree_id == 0) {
2272 /* search the root of the inode that was passed */
2273 root = btrfs_grab_root(BTRFS_I(inode)->root);
2274 } else {
2275 root = btrfs_get_fs_root(info, sk->tree_id, true);
2276 if (IS_ERR(root)) {
2277 btrfs_free_path(path);
2278 return PTR_ERR(root);
2279 }
2280 }
2281
2282 key.objectid = sk->min_objectid;
2283 key.type = sk->min_type;
2284 key.offset = sk->min_offset;
2285
2286 while (1) {
2287 ret = fault_in_pages_writeable(ubuf + sk_offset,
2288 *buf_size - sk_offset);
2289 if (ret)
2290 break;
2291
2292 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2293 if (ret != 0) {
2294 if (ret > 0)
2295 ret = 0;
2296 goto err;
2297 }
2298 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2299 &sk_offset, &num_found);
2300 btrfs_release_path(path);
2301 if (ret)
2302 break;
2303
2304 }
2305 if (ret > 0)
2306 ret = 0;
2307 err:
2308 sk->nr_items = num_found;
2309 btrfs_put_root(root);
2310 btrfs_free_path(path);
2311 return ret;
2312 }
2313
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2314 static noinline int btrfs_ioctl_tree_search(struct file *file,
2315 void __user *argp)
2316 {
2317 struct btrfs_ioctl_search_args __user *uargs;
2318 struct btrfs_ioctl_search_key sk;
2319 struct inode *inode;
2320 int ret;
2321 u64 buf_size;
2322
2323 if (!capable(CAP_SYS_ADMIN))
2324 return -EPERM;
2325
2326 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2327
2328 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2329 return -EFAULT;
2330
2331 buf_size = sizeof(uargs->buf);
2332
2333 inode = file_inode(file);
2334 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2335
2336 /*
2337 * In the origin implementation an overflow is handled by returning a
2338 * search header with a len of zero, so reset ret.
2339 */
2340 if (ret == -EOVERFLOW)
2341 ret = 0;
2342
2343 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2344 ret = -EFAULT;
2345 return ret;
2346 }
2347
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2348 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2349 void __user *argp)
2350 {
2351 struct btrfs_ioctl_search_args_v2 __user *uarg;
2352 struct btrfs_ioctl_search_args_v2 args;
2353 struct inode *inode;
2354 int ret;
2355 u64 buf_size;
2356 const u64 buf_limit = SZ_16M;
2357
2358 if (!capable(CAP_SYS_ADMIN))
2359 return -EPERM;
2360
2361 /* copy search header and buffer size */
2362 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2363 if (copy_from_user(&args, uarg, sizeof(args)))
2364 return -EFAULT;
2365
2366 buf_size = args.buf_size;
2367
2368 /* limit result size to 16MB */
2369 if (buf_size > buf_limit)
2370 buf_size = buf_limit;
2371
2372 inode = file_inode(file);
2373 ret = search_ioctl(inode, &args.key, &buf_size,
2374 (char __user *)(&uarg->buf[0]));
2375 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2376 ret = -EFAULT;
2377 else if (ret == -EOVERFLOW &&
2378 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2379 ret = -EFAULT;
2380
2381 return ret;
2382 }
2383
2384 /*
2385 * Search INODE_REFs to identify path name of 'dirid' directory
2386 * in a 'tree_id' tree. and sets path name to 'name'.
2387 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2388 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2389 u64 tree_id, u64 dirid, char *name)
2390 {
2391 struct btrfs_root *root;
2392 struct btrfs_key key;
2393 char *ptr;
2394 int ret = -1;
2395 int slot;
2396 int len;
2397 int total_len = 0;
2398 struct btrfs_inode_ref *iref;
2399 struct extent_buffer *l;
2400 struct btrfs_path *path;
2401
2402 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2403 name[0]='\0';
2404 return 0;
2405 }
2406
2407 path = btrfs_alloc_path();
2408 if (!path)
2409 return -ENOMEM;
2410
2411 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2412
2413 root = btrfs_get_fs_root(info, tree_id, true);
2414 if (IS_ERR(root)) {
2415 ret = PTR_ERR(root);
2416 root = NULL;
2417 goto out;
2418 }
2419
2420 key.objectid = dirid;
2421 key.type = BTRFS_INODE_REF_KEY;
2422 key.offset = (u64)-1;
2423
2424 while (1) {
2425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2426 if (ret < 0)
2427 goto out;
2428 else if (ret > 0) {
2429 ret = btrfs_previous_item(root, path, dirid,
2430 BTRFS_INODE_REF_KEY);
2431 if (ret < 0)
2432 goto out;
2433 else if (ret > 0) {
2434 ret = -ENOENT;
2435 goto out;
2436 }
2437 }
2438
2439 l = path->nodes[0];
2440 slot = path->slots[0];
2441 btrfs_item_key_to_cpu(l, &key, slot);
2442
2443 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2444 len = btrfs_inode_ref_name_len(l, iref);
2445 ptr -= len + 1;
2446 total_len += len + 1;
2447 if (ptr < name) {
2448 ret = -ENAMETOOLONG;
2449 goto out;
2450 }
2451
2452 *(ptr + len) = '/';
2453 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2454
2455 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2456 break;
2457
2458 btrfs_release_path(path);
2459 key.objectid = key.offset;
2460 key.offset = (u64)-1;
2461 dirid = key.objectid;
2462 }
2463 memmove(name, ptr, total_len);
2464 name[total_len] = '\0';
2465 ret = 0;
2466 out:
2467 btrfs_put_root(root);
2468 btrfs_free_path(path);
2469 return ret;
2470 }
2471
btrfs_search_path_in_tree_user(struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2472 static int btrfs_search_path_in_tree_user(struct inode *inode,
2473 struct btrfs_ioctl_ino_lookup_user_args *args)
2474 {
2475 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2476 struct super_block *sb = inode->i_sb;
2477 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2478 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2479 u64 dirid = args->dirid;
2480 unsigned long item_off;
2481 unsigned long item_len;
2482 struct btrfs_inode_ref *iref;
2483 struct btrfs_root_ref *rref;
2484 struct btrfs_root *root = NULL;
2485 struct btrfs_path *path;
2486 struct btrfs_key key, key2;
2487 struct extent_buffer *leaf;
2488 struct inode *temp_inode;
2489 char *ptr;
2490 int slot;
2491 int len;
2492 int total_len = 0;
2493 int ret;
2494
2495 path = btrfs_alloc_path();
2496 if (!path)
2497 return -ENOMEM;
2498
2499 /*
2500 * If the bottom subvolume does not exist directly under upper_limit,
2501 * construct the path in from the bottom up.
2502 */
2503 if (dirid != upper_limit.objectid) {
2504 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2505
2506 root = btrfs_get_fs_root(fs_info, treeid, true);
2507 if (IS_ERR(root)) {
2508 ret = PTR_ERR(root);
2509 goto out;
2510 }
2511
2512 key.objectid = dirid;
2513 key.type = BTRFS_INODE_REF_KEY;
2514 key.offset = (u64)-1;
2515 while (1) {
2516 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2517 if (ret < 0) {
2518 goto out_put;
2519 } else if (ret > 0) {
2520 ret = btrfs_previous_item(root, path, dirid,
2521 BTRFS_INODE_REF_KEY);
2522 if (ret < 0) {
2523 goto out_put;
2524 } else if (ret > 0) {
2525 ret = -ENOENT;
2526 goto out_put;
2527 }
2528 }
2529
2530 leaf = path->nodes[0];
2531 slot = path->slots[0];
2532 btrfs_item_key_to_cpu(leaf, &key, slot);
2533
2534 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2535 len = btrfs_inode_ref_name_len(leaf, iref);
2536 ptr -= len + 1;
2537 total_len += len + 1;
2538 if (ptr < args->path) {
2539 ret = -ENAMETOOLONG;
2540 goto out_put;
2541 }
2542
2543 *(ptr + len) = '/';
2544 read_extent_buffer(leaf, ptr,
2545 (unsigned long)(iref + 1), len);
2546
2547 /* Check the read+exec permission of this directory */
2548 ret = btrfs_previous_item(root, path, dirid,
2549 BTRFS_INODE_ITEM_KEY);
2550 if (ret < 0) {
2551 goto out_put;
2552 } else if (ret > 0) {
2553 ret = -ENOENT;
2554 goto out_put;
2555 }
2556
2557 leaf = path->nodes[0];
2558 slot = path->slots[0];
2559 btrfs_item_key_to_cpu(leaf, &key2, slot);
2560 if (key2.objectid != dirid) {
2561 ret = -ENOENT;
2562 goto out_put;
2563 }
2564
2565 /*
2566 * We don't need the path anymore, so release it and
2567 * avoid deadlocks and lockdep warnings in case
2568 * btrfs_iget() needs to lookup the inode from its root
2569 * btree and lock the same leaf.
2570 */
2571 btrfs_release_path(path);
2572 temp_inode = btrfs_iget(sb, key2.objectid, root);
2573 if (IS_ERR(temp_inode)) {
2574 ret = PTR_ERR(temp_inode);
2575 goto out_put;
2576 }
2577 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2578 iput(temp_inode);
2579 if (ret) {
2580 ret = -EACCES;
2581 goto out_put;
2582 }
2583
2584 if (key.offset == upper_limit.objectid)
2585 break;
2586 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2587 ret = -EACCES;
2588 goto out_put;
2589 }
2590
2591 key.objectid = key.offset;
2592 key.offset = (u64)-1;
2593 dirid = key.objectid;
2594 }
2595
2596 memmove(args->path, ptr, total_len);
2597 args->path[total_len] = '\0';
2598 btrfs_put_root(root);
2599 root = NULL;
2600 btrfs_release_path(path);
2601 }
2602
2603 /* Get the bottom subvolume's name from ROOT_REF */
2604 key.objectid = treeid;
2605 key.type = BTRFS_ROOT_REF_KEY;
2606 key.offset = args->treeid;
2607 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2608 if (ret < 0) {
2609 goto out;
2610 } else if (ret > 0) {
2611 ret = -ENOENT;
2612 goto out;
2613 }
2614
2615 leaf = path->nodes[0];
2616 slot = path->slots[0];
2617 btrfs_item_key_to_cpu(leaf, &key, slot);
2618
2619 item_off = btrfs_item_ptr_offset(leaf, slot);
2620 item_len = btrfs_item_size_nr(leaf, slot);
2621 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2622 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2623 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2624 ret = -EINVAL;
2625 goto out;
2626 }
2627
2628 /* Copy subvolume's name */
2629 item_off += sizeof(struct btrfs_root_ref);
2630 item_len -= sizeof(struct btrfs_root_ref);
2631 read_extent_buffer(leaf, args->name, item_off, item_len);
2632 args->name[item_len] = 0;
2633
2634 out_put:
2635 btrfs_put_root(root);
2636 out:
2637 btrfs_free_path(path);
2638 return ret;
2639 }
2640
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2641 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2642 void __user *argp)
2643 {
2644 struct btrfs_ioctl_ino_lookup_args *args;
2645 struct inode *inode;
2646 int ret = 0;
2647
2648 args = memdup_user(argp, sizeof(*args));
2649 if (IS_ERR(args))
2650 return PTR_ERR(args);
2651
2652 inode = file_inode(file);
2653
2654 /*
2655 * Unprivileged query to obtain the containing subvolume root id. The
2656 * path is reset so it's consistent with btrfs_search_path_in_tree.
2657 */
2658 if (args->treeid == 0)
2659 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2660
2661 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2662 args->name[0] = 0;
2663 goto out;
2664 }
2665
2666 if (!capable(CAP_SYS_ADMIN)) {
2667 ret = -EPERM;
2668 goto out;
2669 }
2670
2671 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2672 args->treeid, args->objectid,
2673 args->name);
2674
2675 out:
2676 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2677 ret = -EFAULT;
2678
2679 kfree(args);
2680 return ret;
2681 }
2682
2683 /*
2684 * Version of ino_lookup ioctl (unprivileged)
2685 *
2686 * The main differences from ino_lookup ioctl are:
2687 *
2688 * 1. Read + Exec permission will be checked using inode_permission() during
2689 * path construction. -EACCES will be returned in case of failure.
2690 * 2. Path construction will be stopped at the inode number which corresponds
2691 * to the fd with which this ioctl is called. If constructed path does not
2692 * exist under fd's inode, -EACCES will be returned.
2693 * 3. The name of bottom subvolume is also searched and filled.
2694 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2695 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2696 {
2697 struct btrfs_ioctl_ino_lookup_user_args *args;
2698 struct inode *inode;
2699 int ret;
2700
2701 args = memdup_user(argp, sizeof(*args));
2702 if (IS_ERR(args))
2703 return PTR_ERR(args);
2704
2705 inode = file_inode(file);
2706
2707 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2708 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2709 /*
2710 * The subvolume does not exist under fd with which this is
2711 * called
2712 */
2713 kfree(args);
2714 return -EACCES;
2715 }
2716
2717 ret = btrfs_search_path_in_tree_user(inode, args);
2718
2719 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2720 ret = -EFAULT;
2721
2722 kfree(args);
2723 return ret;
2724 }
2725
2726 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2727 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2728 {
2729 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2730 struct btrfs_fs_info *fs_info;
2731 struct btrfs_root *root;
2732 struct btrfs_path *path;
2733 struct btrfs_key key;
2734 struct btrfs_root_item *root_item;
2735 struct btrfs_root_ref *rref;
2736 struct extent_buffer *leaf;
2737 unsigned long item_off;
2738 unsigned long item_len;
2739 struct inode *inode;
2740 int slot;
2741 int ret = 0;
2742
2743 path = btrfs_alloc_path();
2744 if (!path)
2745 return -ENOMEM;
2746
2747 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2748 if (!subvol_info) {
2749 btrfs_free_path(path);
2750 return -ENOMEM;
2751 }
2752
2753 inode = file_inode(file);
2754 fs_info = BTRFS_I(inode)->root->fs_info;
2755
2756 /* Get root_item of inode's subvolume */
2757 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2758 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2759 if (IS_ERR(root)) {
2760 ret = PTR_ERR(root);
2761 goto out_free;
2762 }
2763 root_item = &root->root_item;
2764
2765 subvol_info->treeid = key.objectid;
2766
2767 subvol_info->generation = btrfs_root_generation(root_item);
2768 subvol_info->flags = btrfs_root_flags(root_item);
2769
2770 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2771 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2772 BTRFS_UUID_SIZE);
2773 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2774 BTRFS_UUID_SIZE);
2775
2776 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2777 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2778 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2779
2780 subvol_info->otransid = btrfs_root_otransid(root_item);
2781 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2782 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2783
2784 subvol_info->stransid = btrfs_root_stransid(root_item);
2785 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2786 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2787
2788 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2789 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2790 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2791
2792 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2793 /* Search root tree for ROOT_BACKREF of this subvolume */
2794 key.type = BTRFS_ROOT_BACKREF_KEY;
2795 key.offset = 0;
2796 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2797 if (ret < 0) {
2798 goto out;
2799 } else if (path->slots[0] >=
2800 btrfs_header_nritems(path->nodes[0])) {
2801 ret = btrfs_next_leaf(fs_info->tree_root, path);
2802 if (ret < 0) {
2803 goto out;
2804 } else if (ret > 0) {
2805 ret = -EUCLEAN;
2806 goto out;
2807 }
2808 }
2809
2810 leaf = path->nodes[0];
2811 slot = path->slots[0];
2812 btrfs_item_key_to_cpu(leaf, &key, slot);
2813 if (key.objectid == subvol_info->treeid &&
2814 key.type == BTRFS_ROOT_BACKREF_KEY) {
2815 subvol_info->parent_id = key.offset;
2816
2817 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2818 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2819
2820 item_off = btrfs_item_ptr_offset(leaf, slot)
2821 + sizeof(struct btrfs_root_ref);
2822 item_len = btrfs_item_size_nr(leaf, slot)
2823 - sizeof(struct btrfs_root_ref);
2824 read_extent_buffer(leaf, subvol_info->name,
2825 item_off, item_len);
2826 } else {
2827 ret = -ENOENT;
2828 goto out;
2829 }
2830 }
2831
2832 btrfs_free_path(path);
2833 path = NULL;
2834 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2835 ret = -EFAULT;
2836
2837 out:
2838 btrfs_put_root(root);
2839 out_free:
2840 btrfs_free_path(path);
2841 kfree(subvol_info);
2842 return ret;
2843 }
2844
2845 /*
2846 * Return ROOT_REF information of the subvolume containing this inode
2847 * except the subvolume name.
2848 */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2849 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2850 {
2851 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2852 struct btrfs_root_ref *rref;
2853 struct btrfs_root *root;
2854 struct btrfs_path *path;
2855 struct btrfs_key key;
2856 struct extent_buffer *leaf;
2857 struct inode *inode;
2858 u64 objectid;
2859 int slot;
2860 int ret;
2861 u8 found;
2862
2863 path = btrfs_alloc_path();
2864 if (!path)
2865 return -ENOMEM;
2866
2867 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2868 if (IS_ERR(rootrefs)) {
2869 btrfs_free_path(path);
2870 return PTR_ERR(rootrefs);
2871 }
2872
2873 inode = file_inode(file);
2874 root = BTRFS_I(inode)->root->fs_info->tree_root;
2875 objectid = BTRFS_I(inode)->root->root_key.objectid;
2876
2877 key.objectid = objectid;
2878 key.type = BTRFS_ROOT_REF_KEY;
2879 key.offset = rootrefs->min_treeid;
2880 found = 0;
2881
2882 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2883 if (ret < 0) {
2884 goto out;
2885 } else if (path->slots[0] >=
2886 btrfs_header_nritems(path->nodes[0])) {
2887 ret = btrfs_next_leaf(root, path);
2888 if (ret < 0) {
2889 goto out;
2890 } else if (ret > 0) {
2891 ret = -EUCLEAN;
2892 goto out;
2893 }
2894 }
2895 while (1) {
2896 leaf = path->nodes[0];
2897 slot = path->slots[0];
2898
2899 btrfs_item_key_to_cpu(leaf, &key, slot);
2900 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2901 ret = 0;
2902 goto out;
2903 }
2904
2905 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2906 ret = -EOVERFLOW;
2907 goto out;
2908 }
2909
2910 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2911 rootrefs->rootref[found].treeid = key.offset;
2912 rootrefs->rootref[found].dirid =
2913 btrfs_root_ref_dirid(leaf, rref);
2914 found++;
2915
2916 ret = btrfs_next_item(root, path);
2917 if (ret < 0) {
2918 goto out;
2919 } else if (ret > 0) {
2920 ret = -EUCLEAN;
2921 goto out;
2922 }
2923 }
2924
2925 out:
2926 btrfs_free_path(path);
2927
2928 if (!ret || ret == -EOVERFLOW) {
2929 rootrefs->num_items = found;
2930 /* update min_treeid for next search */
2931 if (found)
2932 rootrefs->min_treeid =
2933 rootrefs->rootref[found - 1].treeid + 1;
2934 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2935 ret = -EFAULT;
2936 }
2937
2938 kfree(rootrefs);
2939
2940 return ret;
2941 }
2942
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2943 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2944 void __user *arg,
2945 bool destroy_v2)
2946 {
2947 struct dentry *parent = file->f_path.dentry;
2948 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2949 struct dentry *dentry;
2950 struct inode *dir = d_inode(parent);
2951 struct inode *inode;
2952 struct btrfs_root *root = BTRFS_I(dir)->root;
2953 struct btrfs_root *dest = NULL;
2954 struct btrfs_ioctl_vol_args *vol_args = NULL;
2955 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2956 char *subvol_name, *subvol_name_ptr = NULL;
2957 int subvol_namelen;
2958 int err = 0;
2959 bool destroy_parent = false;
2960
2961 if (destroy_v2) {
2962 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2963 if (IS_ERR(vol_args2))
2964 return PTR_ERR(vol_args2);
2965
2966 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2967 err = -EOPNOTSUPP;
2968 goto out;
2969 }
2970
2971 /*
2972 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2973 * name, same as v1 currently does.
2974 */
2975 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2976 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2977 subvol_name = vol_args2->name;
2978
2979 err = mnt_want_write_file(file);
2980 if (err)
2981 goto out;
2982 } else {
2983 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2984 err = -EINVAL;
2985 goto out;
2986 }
2987
2988 err = mnt_want_write_file(file);
2989 if (err)
2990 goto out;
2991
2992 dentry = btrfs_get_dentry(fs_info->sb,
2993 BTRFS_FIRST_FREE_OBJECTID,
2994 vol_args2->subvolid, 0, 0);
2995 if (IS_ERR(dentry)) {
2996 err = PTR_ERR(dentry);
2997 goto out_drop_write;
2998 }
2999
3000 /*
3001 * Change the default parent since the subvolume being
3002 * deleted can be outside of the current mount point.
3003 */
3004 parent = btrfs_get_parent(dentry);
3005
3006 /*
3007 * At this point dentry->d_name can point to '/' if the
3008 * subvolume we want to destroy is outsite of the
3009 * current mount point, so we need to release the
3010 * current dentry and execute the lookup to return a new
3011 * one with ->d_name pointing to the
3012 * <mount point>/subvol_name.
3013 */
3014 dput(dentry);
3015 if (IS_ERR(parent)) {
3016 err = PTR_ERR(parent);
3017 goto out_drop_write;
3018 }
3019 dir = d_inode(parent);
3020
3021 /*
3022 * If v2 was used with SPEC_BY_ID, a new parent was
3023 * allocated since the subvolume can be outside of the
3024 * current mount point. Later on we need to release this
3025 * new parent dentry.
3026 */
3027 destroy_parent = true;
3028
3029 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3030 fs_info, vol_args2->subvolid);
3031 if (IS_ERR(subvol_name_ptr)) {
3032 err = PTR_ERR(subvol_name_ptr);
3033 goto free_parent;
3034 }
3035 /* subvol_name_ptr is already NULL termined */
3036 subvol_name = (char *)kbasename(subvol_name_ptr);
3037 }
3038 } else {
3039 vol_args = memdup_user(arg, sizeof(*vol_args));
3040 if (IS_ERR(vol_args))
3041 return PTR_ERR(vol_args);
3042
3043 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3044 subvol_name = vol_args->name;
3045
3046 err = mnt_want_write_file(file);
3047 if (err)
3048 goto out;
3049 }
3050
3051 subvol_namelen = strlen(subvol_name);
3052
3053 if (strchr(subvol_name, '/') ||
3054 strncmp(subvol_name, "..", subvol_namelen) == 0) {
3055 err = -EINVAL;
3056 goto free_subvol_name;
3057 }
3058
3059 if (!S_ISDIR(dir->i_mode)) {
3060 err = -ENOTDIR;
3061 goto free_subvol_name;
3062 }
3063
3064 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3065 if (err == -EINTR)
3066 goto free_subvol_name;
3067 dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3068 if (IS_ERR(dentry)) {
3069 err = PTR_ERR(dentry);
3070 goto out_unlock_dir;
3071 }
3072
3073 if (d_really_is_negative(dentry)) {
3074 err = -ENOENT;
3075 goto out_dput;
3076 }
3077
3078 inode = d_inode(dentry);
3079 dest = BTRFS_I(inode)->root;
3080 if (!capable(CAP_SYS_ADMIN)) {
3081 /*
3082 * Regular user. Only allow this with a special mount
3083 * option, when the user has write+exec access to the
3084 * subvol root, and when rmdir(2) would have been
3085 * allowed.
3086 *
3087 * Note that this is _not_ check that the subvol is
3088 * empty or doesn't contain data that we wouldn't
3089 * otherwise be able to delete.
3090 *
3091 * Users who want to delete empty subvols should try
3092 * rmdir(2).
3093 */
3094 err = -EPERM;
3095 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3096 goto out_dput;
3097
3098 /*
3099 * Do not allow deletion if the parent dir is the same
3100 * as the dir to be deleted. That means the ioctl
3101 * must be called on the dentry referencing the root
3102 * of the subvol, not a random directory contained
3103 * within it.
3104 */
3105 err = -EINVAL;
3106 if (root == dest)
3107 goto out_dput;
3108
3109 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3110 if (err)
3111 goto out_dput;
3112 }
3113
3114 /* check if subvolume may be deleted by a user */
3115 err = btrfs_may_delete(dir, dentry, 1);
3116 if (err)
3117 goto out_dput;
3118
3119 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3120 err = -EINVAL;
3121 goto out_dput;
3122 }
3123
3124 inode_lock(inode);
3125 err = btrfs_delete_subvolume(dir, dentry);
3126 inode_unlock(inode);
3127 if (!err)
3128 d_delete_notify(dir, dentry);
3129
3130 out_dput:
3131 dput(dentry);
3132 out_unlock_dir:
3133 inode_unlock(dir);
3134 free_subvol_name:
3135 kfree(subvol_name_ptr);
3136 free_parent:
3137 if (destroy_parent)
3138 dput(parent);
3139 out_drop_write:
3140 mnt_drop_write_file(file);
3141 out:
3142 kfree(vol_args2);
3143 kfree(vol_args);
3144 return err;
3145 }
3146
btrfs_ioctl_defrag(struct file * file,void __user * argp)3147 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3148 {
3149 struct inode *inode = file_inode(file);
3150 struct btrfs_root *root = BTRFS_I(inode)->root;
3151 struct btrfs_ioctl_defrag_range_args *range;
3152 int ret;
3153
3154 ret = mnt_want_write_file(file);
3155 if (ret)
3156 return ret;
3157
3158 if (btrfs_root_readonly(root)) {
3159 ret = -EROFS;
3160 goto out;
3161 }
3162
3163 switch (inode->i_mode & S_IFMT) {
3164 case S_IFDIR:
3165 if (!capable(CAP_SYS_ADMIN)) {
3166 ret = -EPERM;
3167 goto out;
3168 }
3169 ret = btrfs_defrag_root(root);
3170 break;
3171 case S_IFREG:
3172 /*
3173 * Note that this does not check the file descriptor for write
3174 * access. This prevents defragmenting executables that are
3175 * running and allows defrag on files open in read-only mode.
3176 */
3177 if (!capable(CAP_SYS_ADMIN) &&
3178 inode_permission(inode, MAY_WRITE)) {
3179 ret = -EPERM;
3180 goto out;
3181 }
3182
3183 range = kzalloc(sizeof(*range), GFP_KERNEL);
3184 if (!range) {
3185 ret = -ENOMEM;
3186 goto out;
3187 }
3188
3189 if (argp) {
3190 if (copy_from_user(range, argp,
3191 sizeof(*range))) {
3192 ret = -EFAULT;
3193 kfree(range);
3194 goto out;
3195 }
3196 if (range->flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
3197 ret = -EOPNOTSUPP;
3198 goto out;
3199 }
3200 /* compression requires us to start the IO */
3201 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3202 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3203 range->extent_thresh = (u32)-1;
3204 }
3205 } else {
3206 /* the rest are all set to zero by kzalloc */
3207 range->len = (u64)-1;
3208 }
3209 ret = btrfs_defrag_file(file_inode(file), file,
3210 range, BTRFS_OLDEST_GENERATION, 0);
3211 if (ret > 0)
3212 ret = 0;
3213 kfree(range);
3214 break;
3215 default:
3216 ret = -EINVAL;
3217 }
3218 out:
3219 mnt_drop_write_file(file);
3220 return ret;
3221 }
3222
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3223 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3224 {
3225 struct btrfs_ioctl_vol_args *vol_args;
3226 int ret;
3227
3228 if (!capable(CAP_SYS_ADMIN))
3229 return -EPERM;
3230
3231 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3232 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3233
3234 vol_args = memdup_user(arg, sizeof(*vol_args));
3235 if (IS_ERR(vol_args)) {
3236 ret = PTR_ERR(vol_args);
3237 goto out;
3238 }
3239
3240 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3241 ret = btrfs_init_new_device(fs_info, vol_args->name);
3242
3243 if (!ret)
3244 btrfs_info(fs_info, "disk added %s", vol_args->name);
3245
3246 kfree(vol_args);
3247 out:
3248 btrfs_exclop_finish(fs_info);
3249 return ret;
3250 }
3251
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3252 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3253 {
3254 struct inode *inode = file_inode(file);
3255 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3256 struct btrfs_ioctl_vol_args_v2 *vol_args;
3257 int ret;
3258
3259 if (!capable(CAP_SYS_ADMIN))
3260 return -EPERM;
3261
3262 ret = mnt_want_write_file(file);
3263 if (ret)
3264 return ret;
3265
3266 vol_args = memdup_user(arg, sizeof(*vol_args));
3267 if (IS_ERR(vol_args)) {
3268 ret = PTR_ERR(vol_args);
3269 goto err_drop;
3270 }
3271
3272 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3273 ret = -EOPNOTSUPP;
3274 goto out;
3275 }
3276
3277 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3278 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3279 goto out;
3280 }
3281
3282 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3283 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3284 } else {
3285 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3286 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3287 }
3288 btrfs_exclop_finish(fs_info);
3289
3290 if (!ret) {
3291 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3292 btrfs_info(fs_info, "device deleted: id %llu",
3293 vol_args->devid);
3294 else
3295 btrfs_info(fs_info, "device deleted: %s",
3296 vol_args->name);
3297 }
3298 out:
3299 kfree(vol_args);
3300 err_drop:
3301 mnt_drop_write_file(file);
3302 return ret;
3303 }
3304
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3305 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3306 {
3307 struct inode *inode = file_inode(file);
3308 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3309 struct btrfs_ioctl_vol_args *vol_args;
3310 int ret;
3311
3312 if (!capable(CAP_SYS_ADMIN))
3313 return -EPERM;
3314
3315 ret = mnt_want_write_file(file);
3316 if (ret)
3317 return ret;
3318
3319 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3320 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3321 goto out_drop_write;
3322 }
3323
3324 vol_args = memdup_user(arg, sizeof(*vol_args));
3325 if (IS_ERR(vol_args)) {
3326 ret = PTR_ERR(vol_args);
3327 goto out;
3328 }
3329
3330 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3331 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3332
3333 if (!ret)
3334 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3335 kfree(vol_args);
3336 out:
3337 btrfs_exclop_finish(fs_info);
3338 out_drop_write:
3339 mnt_drop_write_file(file);
3340
3341 return ret;
3342 }
3343
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3344 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3345 void __user *arg)
3346 {
3347 struct btrfs_ioctl_fs_info_args *fi_args;
3348 struct btrfs_device *device;
3349 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3350 u64 flags_in;
3351 int ret = 0;
3352
3353 fi_args = memdup_user(arg, sizeof(*fi_args));
3354 if (IS_ERR(fi_args))
3355 return PTR_ERR(fi_args);
3356
3357 flags_in = fi_args->flags;
3358 memset(fi_args, 0, sizeof(*fi_args));
3359
3360 rcu_read_lock();
3361 fi_args->num_devices = fs_devices->num_devices;
3362
3363 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3364 if (device->devid > fi_args->max_id)
3365 fi_args->max_id = device->devid;
3366 }
3367 rcu_read_unlock();
3368
3369 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3370 fi_args->nodesize = fs_info->nodesize;
3371 fi_args->sectorsize = fs_info->sectorsize;
3372 fi_args->clone_alignment = fs_info->sectorsize;
3373
3374 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3375 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3376 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3377 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3378 }
3379
3380 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3381 fi_args->generation = fs_info->generation;
3382 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3383 }
3384
3385 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3386 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3387 sizeof(fi_args->metadata_uuid));
3388 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3389 }
3390
3391 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3392 ret = -EFAULT;
3393
3394 kfree(fi_args);
3395 return ret;
3396 }
3397
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3398 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3399 void __user *arg)
3400 {
3401 struct btrfs_ioctl_dev_info_args *di_args;
3402 struct btrfs_device *dev;
3403 int ret = 0;
3404 char *s_uuid = NULL;
3405
3406 di_args = memdup_user(arg, sizeof(*di_args));
3407 if (IS_ERR(di_args))
3408 return PTR_ERR(di_args);
3409
3410 if (!btrfs_is_empty_uuid(di_args->uuid))
3411 s_uuid = di_args->uuid;
3412
3413 rcu_read_lock();
3414 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3415 NULL, true);
3416
3417 if (!dev) {
3418 ret = -ENODEV;
3419 goto out;
3420 }
3421
3422 di_args->devid = dev->devid;
3423 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3424 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3425 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3426 if (dev->name)
3427 strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path));
3428 else
3429 di_args->path[0] = '\0';
3430
3431 out:
3432 rcu_read_unlock();
3433 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3434 ret = -EFAULT;
3435
3436 kfree(di_args);
3437 return ret;
3438 }
3439
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3440 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3441 {
3442 struct inode *inode = file_inode(file);
3443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3444 struct btrfs_root *root = BTRFS_I(inode)->root;
3445 struct btrfs_root *new_root;
3446 struct btrfs_dir_item *di;
3447 struct btrfs_trans_handle *trans;
3448 struct btrfs_path *path = NULL;
3449 struct btrfs_disk_key disk_key;
3450 u64 objectid = 0;
3451 u64 dir_id;
3452 int ret;
3453
3454 if (!capable(CAP_SYS_ADMIN))
3455 return -EPERM;
3456
3457 ret = mnt_want_write_file(file);
3458 if (ret)
3459 return ret;
3460
3461 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3462 ret = -EFAULT;
3463 goto out;
3464 }
3465
3466 if (!objectid)
3467 objectid = BTRFS_FS_TREE_OBJECTID;
3468
3469 new_root = btrfs_get_fs_root(fs_info, objectid, true);
3470 if (IS_ERR(new_root)) {
3471 ret = PTR_ERR(new_root);
3472 goto out;
3473 }
3474 if (!is_fstree(new_root->root_key.objectid)) {
3475 ret = -ENOENT;
3476 goto out_free;
3477 }
3478
3479 path = btrfs_alloc_path();
3480 if (!path) {
3481 ret = -ENOMEM;
3482 goto out_free;
3483 }
3484 path->leave_spinning = 1;
3485
3486 trans = btrfs_start_transaction(root, 1);
3487 if (IS_ERR(trans)) {
3488 ret = PTR_ERR(trans);
3489 goto out_free;
3490 }
3491
3492 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3493 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3494 dir_id, "default", 7, 1);
3495 if (IS_ERR_OR_NULL(di)) {
3496 btrfs_release_path(path);
3497 btrfs_end_transaction(trans);
3498 btrfs_err(fs_info,
3499 "Umm, you don't have the default diritem, this isn't going to work");
3500 ret = -ENOENT;
3501 goto out_free;
3502 }
3503
3504 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3505 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3506 btrfs_mark_buffer_dirty(path->nodes[0]);
3507 btrfs_release_path(path);
3508
3509 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3510 btrfs_end_transaction(trans);
3511 out_free:
3512 btrfs_put_root(new_root);
3513 btrfs_free_path(path);
3514 out:
3515 mnt_drop_write_file(file);
3516 return ret;
3517 }
3518
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3519 static void get_block_group_info(struct list_head *groups_list,
3520 struct btrfs_ioctl_space_info *space)
3521 {
3522 struct btrfs_block_group *block_group;
3523
3524 space->total_bytes = 0;
3525 space->used_bytes = 0;
3526 space->flags = 0;
3527 list_for_each_entry(block_group, groups_list, list) {
3528 space->flags = block_group->flags;
3529 space->total_bytes += block_group->length;
3530 space->used_bytes += block_group->used;
3531 }
3532 }
3533
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3534 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3535 void __user *arg)
3536 {
3537 struct btrfs_ioctl_space_args space_args = { 0 };
3538 struct btrfs_ioctl_space_info space;
3539 struct btrfs_ioctl_space_info *dest;
3540 struct btrfs_ioctl_space_info *dest_orig;
3541 struct btrfs_ioctl_space_info __user *user_dest;
3542 struct btrfs_space_info *info;
3543 static const u64 types[] = {
3544 BTRFS_BLOCK_GROUP_DATA,
3545 BTRFS_BLOCK_GROUP_SYSTEM,
3546 BTRFS_BLOCK_GROUP_METADATA,
3547 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3548 };
3549 int num_types = 4;
3550 int alloc_size;
3551 int ret = 0;
3552 u64 slot_count = 0;
3553 int i, c;
3554
3555 if (copy_from_user(&space_args,
3556 (struct btrfs_ioctl_space_args __user *)arg,
3557 sizeof(space_args)))
3558 return -EFAULT;
3559
3560 for (i = 0; i < num_types; i++) {
3561 struct btrfs_space_info *tmp;
3562
3563 info = NULL;
3564 list_for_each_entry(tmp, &fs_info->space_info, list) {
3565 if (tmp->flags == types[i]) {
3566 info = tmp;
3567 break;
3568 }
3569 }
3570
3571 if (!info)
3572 continue;
3573
3574 down_read(&info->groups_sem);
3575 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3576 if (!list_empty(&info->block_groups[c]))
3577 slot_count++;
3578 }
3579 up_read(&info->groups_sem);
3580 }
3581
3582 /*
3583 * Global block reserve, exported as a space_info
3584 */
3585 slot_count++;
3586
3587 /* space_slots == 0 means they are asking for a count */
3588 if (space_args.space_slots == 0) {
3589 space_args.total_spaces = slot_count;
3590 goto out;
3591 }
3592
3593 slot_count = min_t(u64, space_args.space_slots, slot_count);
3594
3595 alloc_size = sizeof(*dest) * slot_count;
3596
3597 /* we generally have at most 6 or so space infos, one for each raid
3598 * level. So, a whole page should be more than enough for everyone
3599 */
3600 if (alloc_size > PAGE_SIZE)
3601 return -ENOMEM;
3602
3603 space_args.total_spaces = 0;
3604 dest = kmalloc(alloc_size, GFP_KERNEL);
3605 if (!dest)
3606 return -ENOMEM;
3607 dest_orig = dest;
3608
3609 /* now we have a buffer to copy into */
3610 for (i = 0; i < num_types; i++) {
3611 struct btrfs_space_info *tmp;
3612
3613 if (!slot_count)
3614 break;
3615
3616 info = NULL;
3617 list_for_each_entry(tmp, &fs_info->space_info, list) {
3618 if (tmp->flags == types[i]) {
3619 info = tmp;
3620 break;
3621 }
3622 }
3623
3624 if (!info)
3625 continue;
3626 down_read(&info->groups_sem);
3627 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3628 if (!list_empty(&info->block_groups[c])) {
3629 get_block_group_info(&info->block_groups[c],
3630 &space);
3631 memcpy(dest, &space, sizeof(space));
3632 dest++;
3633 space_args.total_spaces++;
3634 slot_count--;
3635 }
3636 if (!slot_count)
3637 break;
3638 }
3639 up_read(&info->groups_sem);
3640 }
3641
3642 /*
3643 * Add global block reserve
3644 */
3645 if (slot_count) {
3646 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3647
3648 spin_lock(&block_rsv->lock);
3649 space.total_bytes = block_rsv->size;
3650 space.used_bytes = block_rsv->size - block_rsv->reserved;
3651 spin_unlock(&block_rsv->lock);
3652 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3653 memcpy(dest, &space, sizeof(space));
3654 space_args.total_spaces++;
3655 }
3656
3657 user_dest = (struct btrfs_ioctl_space_info __user *)
3658 (arg + sizeof(struct btrfs_ioctl_space_args));
3659
3660 if (copy_to_user(user_dest, dest_orig, alloc_size))
3661 ret = -EFAULT;
3662
3663 kfree(dest_orig);
3664 out:
3665 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3666 ret = -EFAULT;
3667
3668 return ret;
3669 }
3670
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3671 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3672 void __user *argp)
3673 {
3674 struct btrfs_trans_handle *trans;
3675 u64 transid;
3676 int ret;
3677
3678 trans = btrfs_attach_transaction_barrier(root);
3679 if (IS_ERR(trans)) {
3680 if (PTR_ERR(trans) != -ENOENT)
3681 return PTR_ERR(trans);
3682
3683 /* No running transaction, don't bother */
3684 transid = root->fs_info->last_trans_committed;
3685 goto out;
3686 }
3687 transid = trans->transid;
3688 ret = btrfs_commit_transaction_async(trans, 0);
3689 if (ret) {
3690 btrfs_end_transaction(trans);
3691 return ret;
3692 }
3693 out:
3694 if (argp)
3695 if (copy_to_user(argp, &transid, sizeof(transid)))
3696 return -EFAULT;
3697 return 0;
3698 }
3699
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3700 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3701 void __user *argp)
3702 {
3703 u64 transid;
3704
3705 if (argp) {
3706 if (copy_from_user(&transid, argp, sizeof(transid)))
3707 return -EFAULT;
3708 } else {
3709 transid = 0; /* current trans */
3710 }
3711 return btrfs_wait_for_commit(fs_info, transid);
3712 }
3713
btrfs_ioctl_scrub(struct file * file,void __user * arg)3714 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3715 {
3716 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3717 struct btrfs_ioctl_scrub_args *sa;
3718 int ret;
3719
3720 if (!capable(CAP_SYS_ADMIN))
3721 return -EPERM;
3722
3723 sa = memdup_user(arg, sizeof(*sa));
3724 if (IS_ERR(sa))
3725 return PTR_ERR(sa);
3726
3727 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3728 ret = -EOPNOTSUPP;
3729 goto out;
3730 }
3731
3732 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3733 ret = mnt_want_write_file(file);
3734 if (ret)
3735 goto out;
3736 }
3737
3738 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3739 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3740 0);
3741
3742 /*
3743 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3744 * error. This is important as it allows user space to know how much
3745 * progress scrub has done. For example, if scrub is canceled we get
3746 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3747 * space. Later user space can inspect the progress from the structure
3748 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3749 * previously (btrfs-progs does this).
3750 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3751 * then return -EFAULT to signal the structure was not copied or it may
3752 * be corrupt and unreliable due to a partial copy.
3753 */
3754 if (copy_to_user(arg, sa, sizeof(*sa)))
3755 ret = -EFAULT;
3756
3757 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3758 mnt_drop_write_file(file);
3759 out:
3760 kfree(sa);
3761 return ret;
3762 }
3763
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3764 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3765 {
3766 if (!capable(CAP_SYS_ADMIN))
3767 return -EPERM;
3768
3769 return btrfs_scrub_cancel(fs_info);
3770 }
3771
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3772 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3773 void __user *arg)
3774 {
3775 struct btrfs_ioctl_scrub_args *sa;
3776 int ret;
3777
3778 if (!capable(CAP_SYS_ADMIN))
3779 return -EPERM;
3780
3781 sa = memdup_user(arg, sizeof(*sa));
3782 if (IS_ERR(sa))
3783 return PTR_ERR(sa);
3784
3785 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3786
3787 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3788 ret = -EFAULT;
3789
3790 kfree(sa);
3791 return ret;
3792 }
3793
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3794 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3795 void __user *arg)
3796 {
3797 struct btrfs_ioctl_get_dev_stats *sa;
3798 int ret;
3799
3800 sa = memdup_user(arg, sizeof(*sa));
3801 if (IS_ERR(sa))
3802 return PTR_ERR(sa);
3803
3804 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3805 kfree(sa);
3806 return -EPERM;
3807 }
3808
3809 ret = btrfs_get_dev_stats(fs_info, sa);
3810
3811 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3812 ret = -EFAULT;
3813
3814 kfree(sa);
3815 return ret;
3816 }
3817
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3818 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3819 void __user *arg)
3820 {
3821 struct btrfs_ioctl_dev_replace_args *p;
3822 int ret;
3823
3824 if (!capable(CAP_SYS_ADMIN))
3825 return -EPERM;
3826
3827 p = memdup_user(arg, sizeof(*p));
3828 if (IS_ERR(p))
3829 return PTR_ERR(p);
3830
3831 switch (p->cmd) {
3832 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3833 if (sb_rdonly(fs_info->sb)) {
3834 ret = -EROFS;
3835 goto out;
3836 }
3837 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3838 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3839 } else {
3840 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3841 btrfs_exclop_finish(fs_info);
3842 }
3843 break;
3844 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3845 btrfs_dev_replace_status(fs_info, p);
3846 ret = 0;
3847 break;
3848 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3849 p->result = btrfs_dev_replace_cancel(fs_info);
3850 ret = 0;
3851 break;
3852 default:
3853 ret = -EINVAL;
3854 break;
3855 }
3856
3857 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3858 ret = -EFAULT;
3859 out:
3860 kfree(p);
3861 return ret;
3862 }
3863
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3864 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3865 {
3866 int ret = 0;
3867 int i;
3868 u64 rel_ptr;
3869 int size;
3870 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3871 struct inode_fs_paths *ipath = NULL;
3872 struct btrfs_path *path;
3873
3874 if (!capable(CAP_DAC_READ_SEARCH))
3875 return -EPERM;
3876
3877 path = btrfs_alloc_path();
3878 if (!path) {
3879 ret = -ENOMEM;
3880 goto out;
3881 }
3882
3883 ipa = memdup_user(arg, sizeof(*ipa));
3884 if (IS_ERR(ipa)) {
3885 ret = PTR_ERR(ipa);
3886 ipa = NULL;
3887 goto out;
3888 }
3889
3890 size = min_t(u32, ipa->size, 4096);
3891 ipath = init_ipath(size, root, path);
3892 if (IS_ERR(ipath)) {
3893 ret = PTR_ERR(ipath);
3894 ipath = NULL;
3895 goto out;
3896 }
3897
3898 ret = paths_from_inode(ipa->inum, ipath);
3899 if (ret < 0)
3900 goto out;
3901
3902 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3903 rel_ptr = ipath->fspath->val[i] -
3904 (u64)(unsigned long)ipath->fspath->val;
3905 ipath->fspath->val[i] = rel_ptr;
3906 }
3907
3908 btrfs_free_path(path);
3909 path = NULL;
3910 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3911 ipath->fspath, size);
3912 if (ret) {
3913 ret = -EFAULT;
3914 goto out;
3915 }
3916
3917 out:
3918 btrfs_free_path(path);
3919 free_ipath(ipath);
3920 kfree(ipa);
3921
3922 return ret;
3923 }
3924
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3925 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3926 void __user *arg, int version)
3927 {
3928 int ret = 0;
3929 int size;
3930 struct btrfs_ioctl_logical_ino_args *loi;
3931 struct btrfs_data_container *inodes = NULL;
3932 struct btrfs_path *path = NULL;
3933 bool ignore_offset;
3934
3935 if (!capable(CAP_SYS_ADMIN))
3936 return -EPERM;
3937
3938 loi = memdup_user(arg, sizeof(*loi));
3939 if (IS_ERR(loi))
3940 return PTR_ERR(loi);
3941
3942 if (version == 1) {
3943 ignore_offset = false;
3944 size = min_t(u32, loi->size, SZ_64K);
3945 } else {
3946 /* All reserved bits must be 0 for now */
3947 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3948 ret = -EINVAL;
3949 goto out_loi;
3950 }
3951 /* Only accept flags we have defined so far */
3952 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3953 ret = -EINVAL;
3954 goto out_loi;
3955 }
3956 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3957 size = min_t(u32, loi->size, SZ_16M);
3958 }
3959
3960 inodes = init_data_container(size);
3961 if (IS_ERR(inodes)) {
3962 ret = PTR_ERR(inodes);
3963 goto out_loi;
3964 }
3965
3966 path = btrfs_alloc_path();
3967 if (!path) {
3968 ret = -ENOMEM;
3969 goto out;
3970 }
3971 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3972 inodes, ignore_offset);
3973 btrfs_free_path(path);
3974 if (ret == -EINVAL)
3975 ret = -ENOENT;
3976 if (ret < 0)
3977 goto out;
3978
3979 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3980 size);
3981 if (ret)
3982 ret = -EFAULT;
3983
3984 out:
3985 kvfree(inodes);
3986 out_loi:
3987 kfree(loi);
3988
3989 return ret;
3990 }
3991
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3992 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3993 struct btrfs_ioctl_balance_args *bargs)
3994 {
3995 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3996
3997 bargs->flags = bctl->flags;
3998
3999 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4000 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4001 if (atomic_read(&fs_info->balance_pause_req))
4002 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4003 if (atomic_read(&fs_info->balance_cancel_req))
4004 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4005
4006 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4007 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4008 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4009
4010 spin_lock(&fs_info->balance_lock);
4011 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4012 spin_unlock(&fs_info->balance_lock);
4013 }
4014
btrfs_ioctl_balance(struct file * file,void __user * arg)4015 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4016 {
4017 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4018 struct btrfs_fs_info *fs_info = root->fs_info;
4019 struct btrfs_ioctl_balance_args *bargs;
4020 struct btrfs_balance_control *bctl;
4021 bool need_unlock; /* for mut. excl. ops lock */
4022 int ret;
4023
4024 if (!capable(CAP_SYS_ADMIN))
4025 return -EPERM;
4026
4027 ret = mnt_want_write_file(file);
4028 if (ret)
4029 return ret;
4030
4031 again:
4032 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4033 mutex_lock(&fs_info->balance_mutex);
4034 need_unlock = true;
4035 goto locked;
4036 }
4037
4038 /*
4039 * mut. excl. ops lock is locked. Three possibilities:
4040 * (1) some other op is running
4041 * (2) balance is running
4042 * (3) balance is paused -- special case (think resume)
4043 */
4044 mutex_lock(&fs_info->balance_mutex);
4045 if (fs_info->balance_ctl) {
4046 /* this is either (2) or (3) */
4047 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4048 mutex_unlock(&fs_info->balance_mutex);
4049 /*
4050 * Lock released to allow other waiters to continue,
4051 * we'll reexamine the status again.
4052 */
4053 mutex_lock(&fs_info->balance_mutex);
4054
4055 if (fs_info->balance_ctl &&
4056 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4057 /* this is (3) */
4058 need_unlock = false;
4059 goto locked;
4060 }
4061
4062 mutex_unlock(&fs_info->balance_mutex);
4063 goto again;
4064 } else {
4065 /* this is (2) */
4066 mutex_unlock(&fs_info->balance_mutex);
4067 ret = -EINPROGRESS;
4068 goto out;
4069 }
4070 } else {
4071 /* this is (1) */
4072 mutex_unlock(&fs_info->balance_mutex);
4073 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4074 goto out;
4075 }
4076
4077 locked:
4078
4079 if (arg) {
4080 bargs = memdup_user(arg, sizeof(*bargs));
4081 if (IS_ERR(bargs)) {
4082 ret = PTR_ERR(bargs);
4083 goto out_unlock;
4084 }
4085
4086 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4087 if (!fs_info->balance_ctl) {
4088 ret = -ENOTCONN;
4089 goto out_bargs;
4090 }
4091
4092 bctl = fs_info->balance_ctl;
4093 spin_lock(&fs_info->balance_lock);
4094 bctl->flags |= BTRFS_BALANCE_RESUME;
4095 spin_unlock(&fs_info->balance_lock);
4096
4097 goto do_balance;
4098 }
4099 } else {
4100 bargs = NULL;
4101 }
4102
4103 if (fs_info->balance_ctl) {
4104 ret = -EINPROGRESS;
4105 goto out_bargs;
4106 }
4107
4108 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4109 if (!bctl) {
4110 ret = -ENOMEM;
4111 goto out_bargs;
4112 }
4113
4114 if (arg) {
4115 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4116 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4117 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4118
4119 bctl->flags = bargs->flags;
4120 } else {
4121 /* balance everything - no filters */
4122 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4123 }
4124
4125 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4126 ret = -EINVAL;
4127 goto out_bctl;
4128 }
4129
4130 do_balance:
4131 /*
4132 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4133 * bctl is freed in reset_balance_state, or, if restriper was paused
4134 * all the way until unmount, in free_fs_info. The flag should be
4135 * cleared after reset_balance_state.
4136 */
4137 need_unlock = false;
4138
4139 ret = btrfs_balance(fs_info, bctl, bargs);
4140 bctl = NULL;
4141
4142 if ((ret == 0 || ret == -ECANCELED) && arg) {
4143 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4144 ret = -EFAULT;
4145 }
4146
4147 out_bctl:
4148 kfree(bctl);
4149 out_bargs:
4150 kfree(bargs);
4151 out_unlock:
4152 mutex_unlock(&fs_info->balance_mutex);
4153 if (need_unlock)
4154 btrfs_exclop_finish(fs_info);
4155 out:
4156 mnt_drop_write_file(file);
4157 return ret;
4158 }
4159
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4160 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4161 {
4162 if (!capable(CAP_SYS_ADMIN))
4163 return -EPERM;
4164
4165 switch (cmd) {
4166 case BTRFS_BALANCE_CTL_PAUSE:
4167 return btrfs_pause_balance(fs_info);
4168 case BTRFS_BALANCE_CTL_CANCEL:
4169 return btrfs_cancel_balance(fs_info);
4170 }
4171
4172 return -EINVAL;
4173 }
4174
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4175 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4176 void __user *arg)
4177 {
4178 struct btrfs_ioctl_balance_args *bargs;
4179 int ret = 0;
4180
4181 if (!capable(CAP_SYS_ADMIN))
4182 return -EPERM;
4183
4184 mutex_lock(&fs_info->balance_mutex);
4185 if (!fs_info->balance_ctl) {
4186 ret = -ENOTCONN;
4187 goto out;
4188 }
4189
4190 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4191 if (!bargs) {
4192 ret = -ENOMEM;
4193 goto out;
4194 }
4195
4196 btrfs_update_ioctl_balance_args(fs_info, bargs);
4197
4198 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4199 ret = -EFAULT;
4200
4201 kfree(bargs);
4202 out:
4203 mutex_unlock(&fs_info->balance_mutex);
4204 return ret;
4205 }
4206
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4207 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4208 {
4209 struct inode *inode = file_inode(file);
4210 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4211 struct btrfs_ioctl_quota_ctl_args *sa;
4212 int ret;
4213
4214 if (!capable(CAP_SYS_ADMIN))
4215 return -EPERM;
4216
4217 ret = mnt_want_write_file(file);
4218 if (ret)
4219 return ret;
4220
4221 sa = memdup_user(arg, sizeof(*sa));
4222 if (IS_ERR(sa)) {
4223 ret = PTR_ERR(sa);
4224 goto drop_write;
4225 }
4226
4227 down_write(&fs_info->subvol_sem);
4228
4229 switch (sa->cmd) {
4230 case BTRFS_QUOTA_CTL_ENABLE:
4231 ret = btrfs_quota_enable(fs_info);
4232 break;
4233 case BTRFS_QUOTA_CTL_DISABLE:
4234 ret = btrfs_quota_disable(fs_info);
4235 break;
4236 default:
4237 ret = -EINVAL;
4238 break;
4239 }
4240
4241 kfree(sa);
4242 up_write(&fs_info->subvol_sem);
4243 drop_write:
4244 mnt_drop_write_file(file);
4245 return ret;
4246 }
4247
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4248 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4249 {
4250 struct inode *inode = file_inode(file);
4251 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4252 struct btrfs_root *root = BTRFS_I(inode)->root;
4253 struct btrfs_ioctl_qgroup_assign_args *sa;
4254 struct btrfs_trans_handle *trans;
4255 int ret;
4256 int err;
4257
4258 if (!capable(CAP_SYS_ADMIN))
4259 return -EPERM;
4260
4261 ret = mnt_want_write_file(file);
4262 if (ret)
4263 return ret;
4264
4265 sa = memdup_user(arg, sizeof(*sa));
4266 if (IS_ERR(sa)) {
4267 ret = PTR_ERR(sa);
4268 goto drop_write;
4269 }
4270
4271 trans = btrfs_join_transaction(root);
4272 if (IS_ERR(trans)) {
4273 ret = PTR_ERR(trans);
4274 goto out;
4275 }
4276
4277 if (sa->assign) {
4278 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4279 } else {
4280 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4281 }
4282
4283 /* update qgroup status and info */
4284 mutex_lock(&fs_info->qgroup_ioctl_lock);
4285 err = btrfs_run_qgroups(trans);
4286 mutex_unlock(&fs_info->qgroup_ioctl_lock);
4287 if (err < 0)
4288 btrfs_handle_fs_error(fs_info, err,
4289 "failed to update qgroup status and info");
4290 err = btrfs_end_transaction(trans);
4291 if (err && !ret)
4292 ret = err;
4293
4294 out:
4295 kfree(sa);
4296 drop_write:
4297 mnt_drop_write_file(file);
4298 return ret;
4299 }
4300
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4301 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4302 {
4303 struct inode *inode = file_inode(file);
4304 struct btrfs_root *root = BTRFS_I(inode)->root;
4305 struct btrfs_ioctl_qgroup_create_args *sa;
4306 struct btrfs_trans_handle *trans;
4307 int ret;
4308 int err;
4309
4310 if (!capable(CAP_SYS_ADMIN))
4311 return -EPERM;
4312
4313 ret = mnt_want_write_file(file);
4314 if (ret)
4315 return ret;
4316
4317 sa = memdup_user(arg, sizeof(*sa));
4318 if (IS_ERR(sa)) {
4319 ret = PTR_ERR(sa);
4320 goto drop_write;
4321 }
4322
4323 if (!sa->qgroupid) {
4324 ret = -EINVAL;
4325 goto out;
4326 }
4327
4328 if (sa->create && is_fstree(sa->qgroupid)) {
4329 ret = -EINVAL;
4330 goto out;
4331 }
4332
4333 trans = btrfs_join_transaction(root);
4334 if (IS_ERR(trans)) {
4335 ret = PTR_ERR(trans);
4336 goto out;
4337 }
4338
4339 if (sa->create) {
4340 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4341 } else {
4342 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4343 }
4344
4345 err = btrfs_end_transaction(trans);
4346 if (err && !ret)
4347 ret = err;
4348
4349 out:
4350 kfree(sa);
4351 drop_write:
4352 mnt_drop_write_file(file);
4353 return ret;
4354 }
4355
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4356 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4357 {
4358 struct inode *inode = file_inode(file);
4359 struct btrfs_root *root = BTRFS_I(inode)->root;
4360 struct btrfs_ioctl_qgroup_limit_args *sa;
4361 struct btrfs_trans_handle *trans;
4362 int ret;
4363 int err;
4364 u64 qgroupid;
4365
4366 if (!capable(CAP_SYS_ADMIN))
4367 return -EPERM;
4368
4369 ret = mnt_want_write_file(file);
4370 if (ret)
4371 return ret;
4372
4373 sa = memdup_user(arg, sizeof(*sa));
4374 if (IS_ERR(sa)) {
4375 ret = PTR_ERR(sa);
4376 goto drop_write;
4377 }
4378
4379 trans = btrfs_join_transaction(root);
4380 if (IS_ERR(trans)) {
4381 ret = PTR_ERR(trans);
4382 goto out;
4383 }
4384
4385 qgroupid = sa->qgroupid;
4386 if (!qgroupid) {
4387 /* take the current subvol as qgroup */
4388 qgroupid = root->root_key.objectid;
4389 }
4390
4391 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4392
4393 err = btrfs_end_transaction(trans);
4394 if (err && !ret)
4395 ret = err;
4396
4397 out:
4398 kfree(sa);
4399 drop_write:
4400 mnt_drop_write_file(file);
4401 return ret;
4402 }
4403
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4404 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4405 {
4406 struct inode *inode = file_inode(file);
4407 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4408 struct btrfs_ioctl_quota_rescan_args *qsa;
4409 int ret;
4410
4411 if (!capable(CAP_SYS_ADMIN))
4412 return -EPERM;
4413
4414 ret = mnt_want_write_file(file);
4415 if (ret)
4416 return ret;
4417
4418 qsa = memdup_user(arg, sizeof(*qsa));
4419 if (IS_ERR(qsa)) {
4420 ret = PTR_ERR(qsa);
4421 goto drop_write;
4422 }
4423
4424 if (qsa->flags) {
4425 ret = -EINVAL;
4426 goto out;
4427 }
4428
4429 ret = btrfs_qgroup_rescan(fs_info);
4430
4431 out:
4432 kfree(qsa);
4433 drop_write:
4434 mnt_drop_write_file(file);
4435 return ret;
4436 }
4437
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4438 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4439 void __user *arg)
4440 {
4441 struct btrfs_ioctl_quota_rescan_args *qsa;
4442 int ret = 0;
4443
4444 if (!capable(CAP_SYS_ADMIN))
4445 return -EPERM;
4446
4447 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4448 if (!qsa)
4449 return -ENOMEM;
4450
4451 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4452 qsa->flags = 1;
4453 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4454 }
4455
4456 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4457 ret = -EFAULT;
4458
4459 kfree(qsa);
4460 return ret;
4461 }
4462
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4463 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4464 void __user *arg)
4465 {
4466 if (!capable(CAP_SYS_ADMIN))
4467 return -EPERM;
4468
4469 return btrfs_qgroup_wait_for_completion(fs_info, true);
4470 }
4471
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)4472 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4473 struct btrfs_ioctl_received_subvol_args *sa)
4474 {
4475 struct inode *inode = file_inode(file);
4476 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4477 struct btrfs_root *root = BTRFS_I(inode)->root;
4478 struct btrfs_root_item *root_item = &root->root_item;
4479 struct btrfs_trans_handle *trans;
4480 struct timespec64 ct = current_time(inode);
4481 int ret = 0;
4482 int received_uuid_changed;
4483
4484 if (!inode_owner_or_capable(inode))
4485 return -EPERM;
4486
4487 ret = mnt_want_write_file(file);
4488 if (ret < 0)
4489 return ret;
4490
4491 down_write(&fs_info->subvol_sem);
4492
4493 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4494 ret = -EINVAL;
4495 goto out;
4496 }
4497
4498 if (btrfs_root_readonly(root)) {
4499 ret = -EROFS;
4500 goto out;
4501 }
4502
4503 /*
4504 * 1 - root item
4505 * 2 - uuid items (received uuid + subvol uuid)
4506 */
4507 trans = btrfs_start_transaction(root, 3);
4508 if (IS_ERR(trans)) {
4509 ret = PTR_ERR(trans);
4510 trans = NULL;
4511 goto out;
4512 }
4513
4514 sa->rtransid = trans->transid;
4515 sa->rtime.sec = ct.tv_sec;
4516 sa->rtime.nsec = ct.tv_nsec;
4517
4518 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4519 BTRFS_UUID_SIZE);
4520 if (received_uuid_changed &&
4521 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4522 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4523 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4524 root->root_key.objectid);
4525 if (ret && ret != -ENOENT) {
4526 btrfs_abort_transaction(trans, ret);
4527 btrfs_end_transaction(trans);
4528 goto out;
4529 }
4530 }
4531 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4532 btrfs_set_root_stransid(root_item, sa->stransid);
4533 btrfs_set_root_rtransid(root_item, sa->rtransid);
4534 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4535 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4536 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4537 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4538
4539 ret = btrfs_update_root(trans, fs_info->tree_root,
4540 &root->root_key, &root->root_item);
4541 if (ret < 0) {
4542 btrfs_end_transaction(trans);
4543 goto out;
4544 }
4545 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4546 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4547 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4548 root->root_key.objectid);
4549 if (ret < 0 && ret != -EEXIST) {
4550 btrfs_abort_transaction(trans, ret);
4551 btrfs_end_transaction(trans);
4552 goto out;
4553 }
4554 }
4555 ret = btrfs_commit_transaction(trans);
4556 out:
4557 up_write(&fs_info->subvol_sem);
4558 mnt_drop_write_file(file);
4559 return ret;
4560 }
4561
4562 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4563 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4564 void __user *arg)
4565 {
4566 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4567 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4568 int ret = 0;
4569
4570 args32 = memdup_user(arg, sizeof(*args32));
4571 if (IS_ERR(args32))
4572 return PTR_ERR(args32);
4573
4574 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4575 if (!args64) {
4576 ret = -ENOMEM;
4577 goto out;
4578 }
4579
4580 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4581 args64->stransid = args32->stransid;
4582 args64->rtransid = args32->rtransid;
4583 args64->stime.sec = args32->stime.sec;
4584 args64->stime.nsec = args32->stime.nsec;
4585 args64->rtime.sec = args32->rtime.sec;
4586 args64->rtime.nsec = args32->rtime.nsec;
4587 args64->flags = args32->flags;
4588
4589 ret = _btrfs_ioctl_set_received_subvol(file, args64);
4590 if (ret)
4591 goto out;
4592
4593 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4594 args32->stransid = args64->stransid;
4595 args32->rtransid = args64->rtransid;
4596 args32->stime.sec = args64->stime.sec;
4597 args32->stime.nsec = args64->stime.nsec;
4598 args32->rtime.sec = args64->rtime.sec;
4599 args32->rtime.nsec = args64->rtime.nsec;
4600 args32->flags = args64->flags;
4601
4602 ret = copy_to_user(arg, args32, sizeof(*args32));
4603 if (ret)
4604 ret = -EFAULT;
4605
4606 out:
4607 kfree(args32);
4608 kfree(args64);
4609 return ret;
4610 }
4611 #endif
4612
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4613 static long btrfs_ioctl_set_received_subvol(struct file *file,
4614 void __user *arg)
4615 {
4616 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4617 int ret = 0;
4618
4619 sa = memdup_user(arg, sizeof(*sa));
4620 if (IS_ERR(sa))
4621 return PTR_ERR(sa);
4622
4623 ret = _btrfs_ioctl_set_received_subvol(file, sa);
4624
4625 if (ret)
4626 goto out;
4627
4628 ret = copy_to_user(arg, sa, sizeof(*sa));
4629 if (ret)
4630 ret = -EFAULT;
4631
4632 out:
4633 kfree(sa);
4634 return ret;
4635 }
4636
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4637 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4638 void __user *arg)
4639 {
4640 size_t len;
4641 int ret;
4642 char label[BTRFS_LABEL_SIZE];
4643
4644 spin_lock(&fs_info->super_lock);
4645 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4646 spin_unlock(&fs_info->super_lock);
4647
4648 len = strnlen(label, BTRFS_LABEL_SIZE);
4649
4650 if (len == BTRFS_LABEL_SIZE) {
4651 btrfs_warn(fs_info,
4652 "label is too long, return the first %zu bytes",
4653 --len);
4654 }
4655
4656 ret = copy_to_user(arg, label, len);
4657
4658 return ret ? -EFAULT : 0;
4659 }
4660
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4661 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4662 {
4663 struct inode *inode = file_inode(file);
4664 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4665 struct btrfs_root *root = BTRFS_I(inode)->root;
4666 struct btrfs_super_block *super_block = fs_info->super_copy;
4667 struct btrfs_trans_handle *trans;
4668 char label[BTRFS_LABEL_SIZE];
4669 int ret;
4670
4671 if (!capable(CAP_SYS_ADMIN))
4672 return -EPERM;
4673
4674 if (copy_from_user(label, arg, sizeof(label)))
4675 return -EFAULT;
4676
4677 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4678 btrfs_err(fs_info,
4679 "unable to set label with more than %d bytes",
4680 BTRFS_LABEL_SIZE - 1);
4681 return -EINVAL;
4682 }
4683
4684 ret = mnt_want_write_file(file);
4685 if (ret)
4686 return ret;
4687
4688 trans = btrfs_start_transaction(root, 0);
4689 if (IS_ERR(trans)) {
4690 ret = PTR_ERR(trans);
4691 goto out_unlock;
4692 }
4693
4694 spin_lock(&fs_info->super_lock);
4695 strcpy(super_block->label, label);
4696 spin_unlock(&fs_info->super_lock);
4697 ret = btrfs_commit_transaction(trans);
4698
4699 out_unlock:
4700 mnt_drop_write_file(file);
4701 return ret;
4702 }
4703
4704 #define INIT_FEATURE_FLAGS(suffix) \
4705 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4706 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4707 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4708
btrfs_ioctl_get_supported_features(void __user * arg)4709 int btrfs_ioctl_get_supported_features(void __user *arg)
4710 {
4711 static const struct btrfs_ioctl_feature_flags features[3] = {
4712 INIT_FEATURE_FLAGS(SUPP),
4713 INIT_FEATURE_FLAGS(SAFE_SET),
4714 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4715 };
4716
4717 if (copy_to_user(arg, &features, sizeof(features)))
4718 return -EFAULT;
4719
4720 return 0;
4721 }
4722
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4723 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4724 void __user *arg)
4725 {
4726 struct btrfs_super_block *super_block = fs_info->super_copy;
4727 struct btrfs_ioctl_feature_flags features;
4728
4729 features.compat_flags = btrfs_super_compat_flags(super_block);
4730 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4731 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4732
4733 if (copy_to_user(arg, &features, sizeof(features)))
4734 return -EFAULT;
4735
4736 return 0;
4737 }
4738
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4739 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4740 enum btrfs_feature_set set,
4741 u64 change_mask, u64 flags, u64 supported_flags,
4742 u64 safe_set, u64 safe_clear)
4743 {
4744 const char *type = btrfs_feature_set_name(set);
4745 char *names;
4746 u64 disallowed, unsupported;
4747 u64 set_mask = flags & change_mask;
4748 u64 clear_mask = ~flags & change_mask;
4749
4750 unsupported = set_mask & ~supported_flags;
4751 if (unsupported) {
4752 names = btrfs_printable_features(set, unsupported);
4753 if (names) {
4754 btrfs_warn(fs_info,
4755 "this kernel does not support the %s feature bit%s",
4756 names, strchr(names, ',') ? "s" : "");
4757 kfree(names);
4758 } else
4759 btrfs_warn(fs_info,
4760 "this kernel does not support %s bits 0x%llx",
4761 type, unsupported);
4762 return -EOPNOTSUPP;
4763 }
4764
4765 disallowed = set_mask & ~safe_set;
4766 if (disallowed) {
4767 names = btrfs_printable_features(set, disallowed);
4768 if (names) {
4769 btrfs_warn(fs_info,
4770 "can't set the %s feature bit%s while mounted",
4771 names, strchr(names, ',') ? "s" : "");
4772 kfree(names);
4773 } else
4774 btrfs_warn(fs_info,
4775 "can't set %s bits 0x%llx while mounted",
4776 type, disallowed);
4777 return -EPERM;
4778 }
4779
4780 disallowed = clear_mask & ~safe_clear;
4781 if (disallowed) {
4782 names = btrfs_printable_features(set, disallowed);
4783 if (names) {
4784 btrfs_warn(fs_info,
4785 "can't clear the %s feature bit%s while mounted",
4786 names, strchr(names, ',') ? "s" : "");
4787 kfree(names);
4788 } else
4789 btrfs_warn(fs_info,
4790 "can't clear %s bits 0x%llx while mounted",
4791 type, disallowed);
4792 return -EPERM;
4793 }
4794
4795 return 0;
4796 }
4797
4798 #define check_feature(fs_info, change_mask, flags, mask_base) \
4799 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4800 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4801 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4802 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4803
btrfs_ioctl_set_features(struct file * file,void __user * arg)4804 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4805 {
4806 struct inode *inode = file_inode(file);
4807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4808 struct btrfs_root *root = BTRFS_I(inode)->root;
4809 struct btrfs_super_block *super_block = fs_info->super_copy;
4810 struct btrfs_ioctl_feature_flags flags[2];
4811 struct btrfs_trans_handle *trans;
4812 u64 newflags;
4813 int ret;
4814
4815 if (!capable(CAP_SYS_ADMIN))
4816 return -EPERM;
4817
4818 if (copy_from_user(flags, arg, sizeof(flags)))
4819 return -EFAULT;
4820
4821 /* Nothing to do */
4822 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4823 !flags[0].incompat_flags)
4824 return 0;
4825
4826 ret = check_feature(fs_info, flags[0].compat_flags,
4827 flags[1].compat_flags, COMPAT);
4828 if (ret)
4829 return ret;
4830
4831 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4832 flags[1].compat_ro_flags, COMPAT_RO);
4833 if (ret)
4834 return ret;
4835
4836 ret = check_feature(fs_info, flags[0].incompat_flags,
4837 flags[1].incompat_flags, INCOMPAT);
4838 if (ret)
4839 return ret;
4840
4841 ret = mnt_want_write_file(file);
4842 if (ret)
4843 return ret;
4844
4845 trans = btrfs_start_transaction(root, 0);
4846 if (IS_ERR(trans)) {
4847 ret = PTR_ERR(trans);
4848 goto out_drop_write;
4849 }
4850
4851 spin_lock(&fs_info->super_lock);
4852 newflags = btrfs_super_compat_flags(super_block);
4853 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4854 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4855 btrfs_set_super_compat_flags(super_block, newflags);
4856
4857 newflags = btrfs_super_compat_ro_flags(super_block);
4858 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4859 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4860 btrfs_set_super_compat_ro_flags(super_block, newflags);
4861
4862 newflags = btrfs_super_incompat_flags(super_block);
4863 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4864 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4865 btrfs_set_super_incompat_flags(super_block, newflags);
4866 spin_unlock(&fs_info->super_lock);
4867
4868 ret = btrfs_commit_transaction(trans);
4869 out_drop_write:
4870 mnt_drop_write_file(file);
4871
4872 return ret;
4873 }
4874
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)4875 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4876 {
4877 struct btrfs_ioctl_send_args *arg;
4878 int ret;
4879
4880 if (compat) {
4881 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4882 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4883
4884 ret = copy_from_user(&args32, argp, sizeof(args32));
4885 if (ret)
4886 return -EFAULT;
4887 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4888 if (!arg)
4889 return -ENOMEM;
4890 arg->send_fd = args32.send_fd;
4891 arg->clone_sources_count = args32.clone_sources_count;
4892 arg->clone_sources = compat_ptr(args32.clone_sources);
4893 arg->parent_root = args32.parent_root;
4894 arg->flags = args32.flags;
4895 memcpy(arg->reserved, args32.reserved,
4896 sizeof(args32.reserved));
4897 #else
4898 return -ENOTTY;
4899 #endif
4900 } else {
4901 arg = memdup_user(argp, sizeof(*arg));
4902 if (IS_ERR(arg))
4903 return PTR_ERR(arg);
4904 }
4905 ret = btrfs_ioctl_send(file, arg);
4906 kfree(arg);
4907 return ret;
4908 }
4909
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4910 long btrfs_ioctl(struct file *file, unsigned int
4911 cmd, unsigned long arg)
4912 {
4913 struct inode *inode = file_inode(file);
4914 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4915 struct btrfs_root *root = BTRFS_I(inode)->root;
4916 void __user *argp = (void __user *)arg;
4917
4918 switch (cmd) {
4919 case FS_IOC_GETFLAGS:
4920 return btrfs_ioctl_getflags(file, argp);
4921 case FS_IOC_SETFLAGS:
4922 return btrfs_ioctl_setflags(file, argp);
4923 case FS_IOC_GETVERSION:
4924 return btrfs_ioctl_getversion(file, argp);
4925 case FS_IOC_GETFSLABEL:
4926 return btrfs_ioctl_get_fslabel(fs_info, argp);
4927 case FS_IOC_SETFSLABEL:
4928 return btrfs_ioctl_set_fslabel(file, argp);
4929 case FITRIM:
4930 return btrfs_ioctl_fitrim(fs_info, argp);
4931 case BTRFS_IOC_SNAP_CREATE:
4932 return btrfs_ioctl_snap_create(file, argp, 0);
4933 case BTRFS_IOC_SNAP_CREATE_V2:
4934 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4935 case BTRFS_IOC_SUBVOL_CREATE:
4936 return btrfs_ioctl_snap_create(file, argp, 1);
4937 case BTRFS_IOC_SUBVOL_CREATE_V2:
4938 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4939 case BTRFS_IOC_SNAP_DESTROY:
4940 return btrfs_ioctl_snap_destroy(file, argp, false);
4941 case BTRFS_IOC_SNAP_DESTROY_V2:
4942 return btrfs_ioctl_snap_destroy(file, argp, true);
4943 case BTRFS_IOC_SUBVOL_GETFLAGS:
4944 return btrfs_ioctl_subvol_getflags(file, argp);
4945 case BTRFS_IOC_SUBVOL_SETFLAGS:
4946 return btrfs_ioctl_subvol_setflags(file, argp);
4947 case BTRFS_IOC_DEFAULT_SUBVOL:
4948 return btrfs_ioctl_default_subvol(file, argp);
4949 case BTRFS_IOC_DEFRAG:
4950 return btrfs_ioctl_defrag(file, NULL);
4951 case BTRFS_IOC_DEFRAG_RANGE:
4952 return btrfs_ioctl_defrag(file, argp);
4953 case BTRFS_IOC_RESIZE:
4954 return btrfs_ioctl_resize(file, argp);
4955 case BTRFS_IOC_ADD_DEV:
4956 return btrfs_ioctl_add_dev(fs_info, argp);
4957 case BTRFS_IOC_RM_DEV:
4958 return btrfs_ioctl_rm_dev(file, argp);
4959 case BTRFS_IOC_RM_DEV_V2:
4960 return btrfs_ioctl_rm_dev_v2(file, argp);
4961 case BTRFS_IOC_FS_INFO:
4962 return btrfs_ioctl_fs_info(fs_info, argp);
4963 case BTRFS_IOC_DEV_INFO:
4964 return btrfs_ioctl_dev_info(fs_info, argp);
4965 case BTRFS_IOC_BALANCE:
4966 return btrfs_ioctl_balance(file, NULL);
4967 case BTRFS_IOC_TREE_SEARCH:
4968 return btrfs_ioctl_tree_search(file, argp);
4969 case BTRFS_IOC_TREE_SEARCH_V2:
4970 return btrfs_ioctl_tree_search_v2(file, argp);
4971 case BTRFS_IOC_INO_LOOKUP:
4972 return btrfs_ioctl_ino_lookup(file, argp);
4973 case BTRFS_IOC_INO_PATHS:
4974 return btrfs_ioctl_ino_to_path(root, argp);
4975 case BTRFS_IOC_LOGICAL_INO:
4976 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4977 case BTRFS_IOC_LOGICAL_INO_V2:
4978 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4979 case BTRFS_IOC_SPACE_INFO:
4980 return btrfs_ioctl_space_info(fs_info, argp);
4981 case BTRFS_IOC_SYNC: {
4982 int ret;
4983
4984 ret = btrfs_start_delalloc_roots(fs_info, U64_MAX, false);
4985 if (ret)
4986 return ret;
4987 ret = btrfs_sync_fs(inode->i_sb, 1);
4988 /*
4989 * The transaction thread may want to do more work,
4990 * namely it pokes the cleaner kthread that will start
4991 * processing uncleaned subvols.
4992 */
4993 wake_up_process(fs_info->transaction_kthread);
4994 return ret;
4995 }
4996 case BTRFS_IOC_START_SYNC:
4997 return btrfs_ioctl_start_sync(root, argp);
4998 case BTRFS_IOC_WAIT_SYNC:
4999 return btrfs_ioctl_wait_sync(fs_info, argp);
5000 case BTRFS_IOC_SCRUB:
5001 return btrfs_ioctl_scrub(file, argp);
5002 case BTRFS_IOC_SCRUB_CANCEL:
5003 return btrfs_ioctl_scrub_cancel(fs_info);
5004 case BTRFS_IOC_SCRUB_PROGRESS:
5005 return btrfs_ioctl_scrub_progress(fs_info, argp);
5006 case BTRFS_IOC_BALANCE_V2:
5007 return btrfs_ioctl_balance(file, argp);
5008 case BTRFS_IOC_BALANCE_CTL:
5009 return btrfs_ioctl_balance_ctl(fs_info, arg);
5010 case BTRFS_IOC_BALANCE_PROGRESS:
5011 return btrfs_ioctl_balance_progress(fs_info, argp);
5012 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5013 return btrfs_ioctl_set_received_subvol(file, argp);
5014 #ifdef CONFIG_64BIT
5015 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5016 return btrfs_ioctl_set_received_subvol_32(file, argp);
5017 #endif
5018 case BTRFS_IOC_SEND:
5019 return _btrfs_ioctl_send(file, argp, false);
5020 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5021 case BTRFS_IOC_SEND_32:
5022 return _btrfs_ioctl_send(file, argp, true);
5023 #endif
5024 case BTRFS_IOC_GET_DEV_STATS:
5025 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5026 case BTRFS_IOC_QUOTA_CTL:
5027 return btrfs_ioctl_quota_ctl(file, argp);
5028 case BTRFS_IOC_QGROUP_ASSIGN:
5029 return btrfs_ioctl_qgroup_assign(file, argp);
5030 case BTRFS_IOC_QGROUP_CREATE:
5031 return btrfs_ioctl_qgroup_create(file, argp);
5032 case BTRFS_IOC_QGROUP_LIMIT:
5033 return btrfs_ioctl_qgroup_limit(file, argp);
5034 case BTRFS_IOC_QUOTA_RESCAN:
5035 return btrfs_ioctl_quota_rescan(file, argp);
5036 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5037 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5038 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5039 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5040 case BTRFS_IOC_DEV_REPLACE:
5041 return btrfs_ioctl_dev_replace(fs_info, argp);
5042 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5043 return btrfs_ioctl_get_supported_features(argp);
5044 case BTRFS_IOC_GET_FEATURES:
5045 return btrfs_ioctl_get_features(fs_info, argp);
5046 case BTRFS_IOC_SET_FEATURES:
5047 return btrfs_ioctl_set_features(file, argp);
5048 case FS_IOC_FSGETXATTR:
5049 return btrfs_ioctl_fsgetxattr(file, argp);
5050 case FS_IOC_FSSETXATTR:
5051 return btrfs_ioctl_fssetxattr(file, argp);
5052 case BTRFS_IOC_GET_SUBVOL_INFO:
5053 return btrfs_ioctl_get_subvol_info(file, argp);
5054 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5055 return btrfs_ioctl_get_subvol_rootref(file, argp);
5056 case BTRFS_IOC_INO_LOOKUP_USER:
5057 return btrfs_ioctl_ino_lookup_user(file, argp);
5058 }
5059
5060 return -ENOTTY;
5061 }
5062
5063 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5064 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5065 {
5066 /*
5067 * These all access 32-bit values anyway so no further
5068 * handling is necessary.
5069 */
5070 switch (cmd) {
5071 case FS_IOC32_GETFLAGS:
5072 cmd = FS_IOC_GETFLAGS;
5073 break;
5074 case FS_IOC32_SETFLAGS:
5075 cmd = FS_IOC_SETFLAGS;
5076 break;
5077 case FS_IOC32_GETVERSION:
5078 cmd = FS_IOC_GETVERSION;
5079 break;
5080 }
5081
5082 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5083 }
5084 #endif
5085