• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "export.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "locking.h"
37 #include "inode-map.h"
38 #include "backref.h"
39 #include "rcu-string.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
50 
51 #ifdef CONFIG_64BIT
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53  * structures are incorrect, as the timespec structure from userspace
54  * is 4 bytes too small. We define these alternatives here to teach
55  * the kernel about the 32-bit struct packing.
56  */
57 struct btrfs_ioctl_timespec_32 {
58 	__u64 sec;
59 	__u32 nsec;
60 } __attribute__ ((__packed__));
61 
62 struct btrfs_ioctl_received_subvol_args_32 {
63 	char	uuid[BTRFS_UUID_SIZE];	/* in */
64 	__u64	stransid;		/* in */
65 	__u64	rtransid;		/* out */
66 	struct btrfs_ioctl_timespec_32 stime; /* in */
67 	struct btrfs_ioctl_timespec_32 rtime; /* out */
68 	__u64	flags;			/* in */
69 	__u64	reserved[16];		/* in */
70 } __attribute__ ((__packed__));
71 
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 				struct btrfs_ioctl_received_subvol_args_32)
74 #endif
75 
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32 {
78 	__s64 send_fd;			/* in */
79 	__u64 clone_sources_count;	/* in */
80 	compat_uptr_t clone_sources;	/* in */
81 	__u64 parent_root;		/* in */
82 	__u64 flags;			/* in */
83 	__u64 reserved[4];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 			       struct btrfs_ioctl_send_args_32)
88 #endif
89 
90 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 		unsigned int flags)
93 {
94 	if (S_ISDIR(inode->i_mode))
95 		return flags;
96 	else if (S_ISREG(inode->i_mode))
97 		return flags & ~FS_DIRSYNC_FL;
98 	else
99 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101 
102 /*
103  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104  * ioctl.
105  */
btrfs_inode_flags_to_fsflags(unsigned int flags)106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if (flags & BTRFS_INODE_NOCOMPRESS)
126 		iflags |= FS_NOCOMP_FL;
127 	else if (flags & BTRFS_INODE_COMPRESS)
128 		iflags |= FS_COMPR_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 	struct btrfs_inode *binode = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (binode->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (binode->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (binode->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (binode->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
btrfs_ioctl_getflags(struct file * file,void __user * arg)157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161 
162 	if (copy_to_user(arg, &flags, sizeof(flags)))
163 		return -EFAULT;
164 	return 0;
165 }
166 
167 /*
168  * Check if @flags are a supported and valid set of FS_*_FL flags and that
169  * the old and new flags are not conflicting
170  */
check_fsflags(unsigned int old_flags,unsigned int flags)171 static int check_fsflags(unsigned int old_flags, unsigned int flags)
172 {
173 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
174 		      FS_NOATIME_FL | FS_NODUMP_FL | \
175 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
176 		      FS_NOCOMP_FL | FS_COMPR_FL |
177 		      FS_NOCOW_FL))
178 		return -EOPNOTSUPP;
179 
180 	/* COMPR and NOCOMP on new/old are valid */
181 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
182 		return -EINVAL;
183 
184 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
185 		return -EINVAL;
186 
187 	/* NOCOW and compression options are mutually exclusive */
188 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
189 		return -EINVAL;
190 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
btrfs_ioctl_setflags(struct file * file,void __user * arg)196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
197 {
198 	struct inode *inode = file_inode(file);
199 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
200 	struct btrfs_inode *binode = BTRFS_I(inode);
201 	struct btrfs_root *root = binode->root;
202 	struct btrfs_trans_handle *trans;
203 	unsigned int fsflags, old_fsflags;
204 	int ret;
205 	const char *comp = NULL;
206 	u32 binode_flags;
207 
208 	if (!inode_owner_or_capable(inode))
209 		return -EPERM;
210 
211 	if (btrfs_root_readonly(root))
212 		return -EROFS;
213 
214 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
215 		return -EFAULT;
216 
217 	ret = mnt_want_write_file(file);
218 	if (ret)
219 		return ret;
220 
221 	inode_lock(inode);
222 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
223 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
224 
225 	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
226 	if (ret)
227 		goto out_unlock;
228 
229 	ret = check_fsflags(old_fsflags, fsflags);
230 	if (ret)
231 		goto out_unlock;
232 
233 	binode_flags = binode->flags;
234 	if (fsflags & FS_SYNC_FL)
235 		binode_flags |= BTRFS_INODE_SYNC;
236 	else
237 		binode_flags &= ~BTRFS_INODE_SYNC;
238 	if (fsflags & FS_IMMUTABLE_FL)
239 		binode_flags |= BTRFS_INODE_IMMUTABLE;
240 	else
241 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
242 	if (fsflags & FS_APPEND_FL)
243 		binode_flags |= BTRFS_INODE_APPEND;
244 	else
245 		binode_flags &= ~BTRFS_INODE_APPEND;
246 	if (fsflags & FS_NODUMP_FL)
247 		binode_flags |= BTRFS_INODE_NODUMP;
248 	else
249 		binode_flags &= ~BTRFS_INODE_NODUMP;
250 	if (fsflags & FS_NOATIME_FL)
251 		binode_flags |= BTRFS_INODE_NOATIME;
252 	else
253 		binode_flags &= ~BTRFS_INODE_NOATIME;
254 	if (fsflags & FS_DIRSYNC_FL)
255 		binode_flags |= BTRFS_INODE_DIRSYNC;
256 	else
257 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
258 	if (fsflags & FS_NOCOW_FL) {
259 		if (S_ISREG(inode->i_mode)) {
260 			/*
261 			 * It's safe to turn csums off here, no extents exist.
262 			 * Otherwise we want the flag to reflect the real COW
263 			 * status of the file and will not set it.
264 			 */
265 			if (inode->i_size == 0)
266 				binode_flags |= BTRFS_INODE_NODATACOW |
267 						BTRFS_INODE_NODATASUM;
268 		} else {
269 			binode_flags |= BTRFS_INODE_NODATACOW;
270 		}
271 	} else {
272 		/*
273 		 * Revert back under same assumptions as above
274 		 */
275 		if (S_ISREG(inode->i_mode)) {
276 			if (inode->i_size == 0)
277 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
278 						  BTRFS_INODE_NODATASUM);
279 		} else {
280 			binode_flags &= ~BTRFS_INODE_NODATACOW;
281 		}
282 	}
283 
284 	/*
285 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
286 	 * flag may be changed automatically if compression code won't make
287 	 * things smaller.
288 	 */
289 	if (fsflags & FS_NOCOMP_FL) {
290 		binode_flags &= ~BTRFS_INODE_COMPRESS;
291 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
292 	} else if (fsflags & FS_COMPR_FL) {
293 
294 		if (IS_SWAPFILE(inode)) {
295 			ret = -ETXTBSY;
296 			goto out_unlock;
297 		}
298 
299 		binode_flags |= BTRFS_INODE_COMPRESS;
300 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
301 
302 		comp = btrfs_compress_type2str(fs_info->compress_type);
303 		if (!comp || comp[0] == 0)
304 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
305 	} else {
306 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
307 	}
308 
309 	/*
310 	 * 1 for inode item
311 	 * 2 for properties
312 	 */
313 	trans = btrfs_start_transaction(root, 3);
314 	if (IS_ERR(trans)) {
315 		ret = PTR_ERR(trans);
316 		goto out_unlock;
317 	}
318 
319 	if (comp) {
320 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
321 				     strlen(comp), 0);
322 		if (ret) {
323 			btrfs_abort_transaction(trans, ret);
324 			goto out_end_trans;
325 		}
326 	} else {
327 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
328 				     0, 0);
329 		if (ret && ret != -ENODATA) {
330 			btrfs_abort_transaction(trans, ret);
331 			goto out_end_trans;
332 		}
333 	}
334 
335 	binode->flags = binode_flags;
336 	btrfs_sync_inode_flags_to_i_flags(inode);
337 	inode_inc_iversion(inode);
338 	inode->i_ctime = current_time(inode);
339 	ret = btrfs_update_inode(trans, root, inode);
340 
341  out_end_trans:
342 	btrfs_end_transaction(trans);
343  out_unlock:
344 	inode_unlock(inode);
345 	mnt_drop_write_file(file);
346 	return ret;
347 }
348 
349 /*
350  * Translate btrfs internal inode flags to xflags as expected by the
351  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
352  * silently dropped.
353  */
btrfs_inode_flags_to_xflags(unsigned int flags)354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
355 {
356 	unsigned int xflags = 0;
357 
358 	if (flags & BTRFS_INODE_APPEND)
359 		xflags |= FS_XFLAG_APPEND;
360 	if (flags & BTRFS_INODE_IMMUTABLE)
361 		xflags |= FS_XFLAG_IMMUTABLE;
362 	if (flags & BTRFS_INODE_NOATIME)
363 		xflags |= FS_XFLAG_NOATIME;
364 	if (flags & BTRFS_INODE_NODUMP)
365 		xflags |= FS_XFLAG_NODUMP;
366 	if (flags & BTRFS_INODE_SYNC)
367 		xflags |= FS_XFLAG_SYNC;
368 
369 	return xflags;
370 }
371 
372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
check_xflags(unsigned int flags)373 static int check_xflags(unsigned int flags)
374 {
375 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
376 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
377 		return -EOPNOTSUPP;
378 	return 0;
379 }
380 
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)381 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
382 			enum btrfs_exclusive_operation type)
383 {
384 	return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
385 }
386 
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)387 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
388 {
389 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
390 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
391 }
392 
393 /*
394  * Set the xflags from the internal inode flags. The remaining items of fsxattr
395  * are zeroed.
396  */
btrfs_ioctl_fsgetxattr(struct file * file,void __user * arg)397 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
398 {
399 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
400 	struct fsxattr fa;
401 
402 	simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
403 	if (copy_to_user(arg, &fa, sizeof(fa)))
404 		return -EFAULT;
405 
406 	return 0;
407 }
408 
btrfs_ioctl_fssetxattr(struct file * file,void __user * arg)409 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
410 {
411 	struct inode *inode = file_inode(file);
412 	struct btrfs_inode *binode = BTRFS_I(inode);
413 	struct btrfs_root *root = binode->root;
414 	struct btrfs_trans_handle *trans;
415 	struct fsxattr fa, old_fa;
416 	unsigned old_flags;
417 	unsigned old_i_flags;
418 	int ret = 0;
419 
420 	if (!inode_owner_or_capable(inode))
421 		return -EPERM;
422 
423 	if (btrfs_root_readonly(root))
424 		return -EROFS;
425 
426 	if (copy_from_user(&fa, arg, sizeof(fa)))
427 		return -EFAULT;
428 
429 	ret = check_xflags(fa.fsx_xflags);
430 	if (ret)
431 		return ret;
432 
433 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
434 		return -EOPNOTSUPP;
435 
436 	ret = mnt_want_write_file(file);
437 	if (ret)
438 		return ret;
439 
440 	inode_lock(inode);
441 
442 	old_flags = binode->flags;
443 	old_i_flags = inode->i_flags;
444 
445 	simple_fill_fsxattr(&old_fa,
446 			    btrfs_inode_flags_to_xflags(binode->flags));
447 	ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
448 	if (ret)
449 		goto out_unlock;
450 
451 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
452 		binode->flags |= BTRFS_INODE_SYNC;
453 	else
454 		binode->flags &= ~BTRFS_INODE_SYNC;
455 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
456 		binode->flags |= BTRFS_INODE_IMMUTABLE;
457 	else
458 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
459 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
460 		binode->flags |= BTRFS_INODE_APPEND;
461 	else
462 		binode->flags &= ~BTRFS_INODE_APPEND;
463 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
464 		binode->flags |= BTRFS_INODE_NODUMP;
465 	else
466 		binode->flags &= ~BTRFS_INODE_NODUMP;
467 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
468 		binode->flags |= BTRFS_INODE_NOATIME;
469 	else
470 		binode->flags &= ~BTRFS_INODE_NOATIME;
471 
472 	/* 1 item for the inode */
473 	trans = btrfs_start_transaction(root, 1);
474 	if (IS_ERR(trans)) {
475 		ret = PTR_ERR(trans);
476 		goto out_unlock;
477 	}
478 
479 	btrfs_sync_inode_flags_to_i_flags(inode);
480 	inode_inc_iversion(inode);
481 	inode->i_ctime = current_time(inode);
482 	ret = btrfs_update_inode(trans, root, inode);
483 
484 	btrfs_end_transaction(trans);
485 
486 out_unlock:
487 	if (ret) {
488 		binode->flags = old_flags;
489 		inode->i_flags = old_i_flags;
490 	}
491 
492 	inode_unlock(inode);
493 	mnt_drop_write_file(file);
494 
495 	return ret;
496 }
497 
btrfs_ioctl_getversion(struct file * file,int __user * arg)498 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
499 {
500 	struct inode *inode = file_inode(file);
501 
502 	return put_user(inode->i_generation, arg);
503 }
504 
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)505 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
506 					void __user *arg)
507 {
508 	struct btrfs_device *device;
509 	struct request_queue *q;
510 	struct fstrim_range range;
511 	u64 minlen = ULLONG_MAX;
512 	u64 num_devices = 0;
513 	int ret;
514 
515 	if (!capable(CAP_SYS_ADMIN))
516 		return -EPERM;
517 
518 	/*
519 	 * If the fs is mounted with nologreplay, which requires it to be
520 	 * mounted in RO mode as well, we can not allow discard on free space
521 	 * inside block groups, because log trees refer to extents that are not
522 	 * pinned in a block group's free space cache (pinning the extents is
523 	 * precisely the first phase of replaying a log tree).
524 	 */
525 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
526 		return -EROFS;
527 
528 	rcu_read_lock();
529 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
530 				dev_list) {
531 		if (!device->bdev)
532 			continue;
533 		q = bdev_get_queue(device->bdev);
534 		if (blk_queue_discard(q)) {
535 			num_devices++;
536 			minlen = min_t(u64, q->limits.discard_granularity,
537 				     minlen);
538 		}
539 	}
540 	rcu_read_unlock();
541 
542 	if (!num_devices)
543 		return -EOPNOTSUPP;
544 	if (copy_from_user(&range, arg, sizeof(range)))
545 		return -EFAULT;
546 
547 	/*
548 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
549 	 * block group is in the logical address space, which can be any
550 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
551 	 */
552 	if (range.len < fs_info->sb->s_blocksize)
553 		return -EINVAL;
554 
555 	range.minlen = max(range.minlen, minlen);
556 	ret = btrfs_trim_fs(fs_info, &range);
557 	if (ret < 0)
558 		return ret;
559 
560 	if (copy_to_user(arg, &range, sizeof(range)))
561 		return -EFAULT;
562 
563 	return 0;
564 }
565 
btrfs_is_empty_uuid(u8 * uuid)566 int __pure btrfs_is_empty_uuid(u8 *uuid)
567 {
568 	int i;
569 
570 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
571 		if (uuid[i])
572 			return 0;
573 	}
574 	return 1;
575 }
576 
create_subvol(struct inode * dir,struct dentry * dentry,const char * name,int namelen,struct btrfs_qgroup_inherit * inherit)577 static noinline int create_subvol(struct inode *dir,
578 				  struct dentry *dentry,
579 				  const char *name, int namelen,
580 				  struct btrfs_qgroup_inherit *inherit)
581 {
582 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
583 	struct btrfs_trans_handle *trans;
584 	struct btrfs_key key;
585 	struct btrfs_root_item *root_item;
586 	struct btrfs_inode_item *inode_item;
587 	struct extent_buffer *leaf;
588 	struct btrfs_root *root = BTRFS_I(dir)->root;
589 	struct btrfs_root *new_root;
590 	struct btrfs_block_rsv block_rsv;
591 	struct timespec64 cur_time = current_time(dir);
592 	struct inode *inode;
593 	int ret;
594 	int err;
595 	dev_t anon_dev = 0;
596 	u64 objectid;
597 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
598 	u64 index = 0;
599 
600 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
601 	if (!root_item)
602 		return -ENOMEM;
603 
604 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
605 	if (ret)
606 		goto fail_free;
607 
608 	ret = get_anon_bdev(&anon_dev);
609 	if (ret < 0)
610 		goto fail_free;
611 
612 	/*
613 	 * Don't create subvolume whose level is not zero. Or qgroup will be
614 	 * screwed up since it assumes subvolume qgroup's level to be 0.
615 	 */
616 	if (btrfs_qgroup_level(objectid)) {
617 		ret = -ENOSPC;
618 		goto fail_free;
619 	}
620 
621 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
622 	/*
623 	 * The same as the snapshot creation, please see the comment
624 	 * of create_snapshot().
625 	 */
626 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
627 	if (ret)
628 		goto fail_free;
629 
630 	trans = btrfs_start_transaction(root, 0);
631 	if (IS_ERR(trans)) {
632 		ret = PTR_ERR(trans);
633 		btrfs_subvolume_release_metadata(root, &block_rsv);
634 		goto fail_free;
635 	}
636 	trans->block_rsv = &block_rsv;
637 	trans->bytes_reserved = block_rsv.size;
638 
639 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
640 	if (ret)
641 		goto fail;
642 
643 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
644 				      BTRFS_NESTING_NORMAL);
645 	if (IS_ERR(leaf)) {
646 		ret = PTR_ERR(leaf);
647 		goto fail;
648 	}
649 
650 	btrfs_mark_buffer_dirty(leaf);
651 
652 	inode_item = &root_item->inode;
653 	btrfs_set_stack_inode_generation(inode_item, 1);
654 	btrfs_set_stack_inode_size(inode_item, 3);
655 	btrfs_set_stack_inode_nlink(inode_item, 1);
656 	btrfs_set_stack_inode_nbytes(inode_item,
657 				     fs_info->nodesize);
658 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
659 
660 	btrfs_set_root_flags(root_item, 0);
661 	btrfs_set_root_limit(root_item, 0);
662 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
663 
664 	btrfs_set_root_bytenr(root_item, leaf->start);
665 	btrfs_set_root_generation(root_item, trans->transid);
666 	btrfs_set_root_level(root_item, 0);
667 	btrfs_set_root_refs(root_item, 1);
668 	btrfs_set_root_used(root_item, leaf->len);
669 	btrfs_set_root_last_snapshot(root_item, 0);
670 
671 	btrfs_set_root_generation_v2(root_item,
672 			btrfs_root_generation(root_item));
673 	generate_random_guid(root_item->uuid);
674 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
675 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
676 	root_item->ctime = root_item->otime;
677 	btrfs_set_root_ctransid(root_item, trans->transid);
678 	btrfs_set_root_otransid(root_item, trans->transid);
679 
680 	btrfs_tree_unlock(leaf);
681 
682 	btrfs_set_root_dirid(root_item, new_dirid);
683 
684 	key.objectid = objectid;
685 	key.offset = 0;
686 	key.type = BTRFS_ROOT_ITEM_KEY;
687 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
688 				root_item);
689 	if (ret) {
690 		/*
691 		 * Since we don't abort the transaction in this case, free the
692 		 * tree block so that we don't leak space and leave the
693 		 * filesystem in an inconsistent state (an extent item in the
694 		 * extent tree without backreferences). Also no need to have
695 		 * the tree block locked since it is not in any tree at this
696 		 * point, so no other task can find it and use it.
697 		 */
698 		btrfs_free_tree_block(trans, root, leaf, 0, 1);
699 		free_extent_buffer(leaf);
700 		goto fail;
701 	}
702 
703 	free_extent_buffer(leaf);
704 	leaf = NULL;
705 
706 	key.offset = (u64)-1;
707 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
708 	if (IS_ERR(new_root)) {
709 		free_anon_bdev(anon_dev);
710 		ret = PTR_ERR(new_root);
711 		btrfs_abort_transaction(trans, ret);
712 		goto fail;
713 	}
714 	/* Freeing will be done in btrfs_put_root() of new_root */
715 	anon_dev = 0;
716 
717 	btrfs_record_root_in_trans(trans, new_root);
718 
719 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
720 	btrfs_put_root(new_root);
721 	if (ret) {
722 		/* We potentially lose an unused inode item here */
723 		btrfs_abort_transaction(trans, ret);
724 		goto fail;
725 	}
726 
727 	mutex_lock(&new_root->objectid_mutex);
728 	new_root->highest_objectid = new_dirid;
729 	mutex_unlock(&new_root->objectid_mutex);
730 
731 	/*
732 	 * insert the directory item
733 	 */
734 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
735 	if (ret) {
736 		btrfs_abort_transaction(trans, ret);
737 		goto fail;
738 	}
739 
740 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
741 				    BTRFS_FT_DIR, index);
742 	if (ret) {
743 		btrfs_abort_transaction(trans, ret);
744 		goto fail;
745 	}
746 
747 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
748 	ret = btrfs_update_inode(trans, root, dir);
749 	if (ret) {
750 		btrfs_abort_transaction(trans, ret);
751 		goto fail;
752 	}
753 
754 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
755 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
756 	if (ret) {
757 		btrfs_abort_transaction(trans, ret);
758 		goto fail;
759 	}
760 
761 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
762 				  BTRFS_UUID_KEY_SUBVOL, objectid);
763 	if (ret)
764 		btrfs_abort_transaction(trans, ret);
765 
766 fail:
767 	kfree(root_item);
768 	trans->block_rsv = NULL;
769 	trans->bytes_reserved = 0;
770 	btrfs_subvolume_release_metadata(root, &block_rsv);
771 
772 	err = btrfs_commit_transaction(trans);
773 	if (err && !ret)
774 		ret = err;
775 
776 	if (!ret) {
777 		inode = btrfs_lookup_dentry(dir, dentry);
778 		if (IS_ERR(inode))
779 			return PTR_ERR(inode);
780 		d_instantiate(dentry, inode);
781 	}
782 	return ret;
783 
784 fail_free:
785 	if (anon_dev)
786 		free_anon_bdev(anon_dev);
787 	kfree(root_item);
788 	return ret;
789 }
790 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)791 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
792 			   struct dentry *dentry, bool readonly,
793 			   struct btrfs_qgroup_inherit *inherit)
794 {
795 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
796 	struct inode *inode;
797 	struct btrfs_pending_snapshot *pending_snapshot;
798 	struct btrfs_trans_handle *trans;
799 	int ret;
800 
801 	if (btrfs_root_refs(&root->root_item) == 0)
802 		return -ENOENT;
803 
804 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
805 		return -EINVAL;
806 
807 	if (atomic_read(&root->nr_swapfiles)) {
808 		btrfs_warn(fs_info,
809 			   "cannot snapshot subvolume with active swapfile");
810 		return -ETXTBSY;
811 	}
812 
813 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
814 	if (!pending_snapshot)
815 		return -ENOMEM;
816 
817 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
818 	if (ret < 0)
819 		goto free_pending;
820 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
821 			GFP_KERNEL);
822 	pending_snapshot->path = btrfs_alloc_path();
823 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
824 		ret = -ENOMEM;
825 		goto free_pending;
826 	}
827 
828 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
829 			     BTRFS_BLOCK_RSV_TEMP);
830 	/*
831 	 * 1 - parent dir inode
832 	 * 2 - dir entries
833 	 * 1 - root item
834 	 * 2 - root ref/backref
835 	 * 1 - root of snapshot
836 	 * 1 - UUID item
837 	 */
838 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
839 					&pending_snapshot->block_rsv, 8,
840 					false);
841 	if (ret)
842 		goto free_pending;
843 
844 	pending_snapshot->dentry = dentry;
845 	pending_snapshot->root = root;
846 	pending_snapshot->readonly = readonly;
847 	pending_snapshot->dir = dir;
848 	pending_snapshot->inherit = inherit;
849 
850 	trans = btrfs_start_transaction(root, 0);
851 	if (IS_ERR(trans)) {
852 		ret = PTR_ERR(trans);
853 		goto fail;
854 	}
855 
856 	spin_lock(&fs_info->trans_lock);
857 	list_add(&pending_snapshot->list,
858 		 &trans->transaction->pending_snapshots);
859 	spin_unlock(&fs_info->trans_lock);
860 
861 	ret = btrfs_commit_transaction(trans);
862 	if (ret)
863 		goto fail;
864 
865 	ret = pending_snapshot->error;
866 	if (ret)
867 		goto fail;
868 
869 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
870 	if (ret)
871 		goto fail;
872 
873 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
874 	if (IS_ERR(inode)) {
875 		ret = PTR_ERR(inode);
876 		goto fail;
877 	}
878 
879 	d_instantiate(dentry, inode);
880 	ret = 0;
881 	pending_snapshot->anon_dev = 0;
882 fail:
883 	/* Prevent double freeing of anon_dev */
884 	if (ret && pending_snapshot->snap)
885 		pending_snapshot->snap->anon_dev = 0;
886 	btrfs_put_root(pending_snapshot->snap);
887 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
888 free_pending:
889 	if (pending_snapshot->anon_dev)
890 		free_anon_bdev(pending_snapshot->anon_dev);
891 	kfree(pending_snapshot->root_item);
892 	btrfs_free_path(pending_snapshot->path);
893 	kfree(pending_snapshot);
894 
895 	return ret;
896 }
897 
898 /*  copy of may_delete in fs/namei.c()
899  *	Check whether we can remove a link victim from directory dir, check
900  *  whether the type of victim is right.
901  *  1. We can't do it if dir is read-only (done in permission())
902  *  2. We should have write and exec permissions on dir
903  *  3. We can't remove anything from append-only dir
904  *  4. We can't do anything with immutable dir (done in permission())
905  *  5. If the sticky bit on dir is set we should either
906  *	a. be owner of dir, or
907  *	b. be owner of victim, or
908  *	c. have CAP_FOWNER capability
909  *  6. If the victim is append-only or immutable we can't do anything with
910  *     links pointing to it.
911  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
912  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
913  *  9. We can't remove a root or mountpoint.
914  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
915  *     nfs_async_unlink().
916  */
917 
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)918 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
919 {
920 	int error;
921 
922 	if (d_really_is_negative(victim))
923 		return -ENOENT;
924 
925 	BUG_ON(d_inode(victim->d_parent) != dir);
926 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
927 
928 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
929 	if (error)
930 		return error;
931 	if (IS_APPEND(dir))
932 		return -EPERM;
933 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
934 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
935 		return -EPERM;
936 	if (isdir) {
937 		if (!d_is_dir(victim))
938 			return -ENOTDIR;
939 		if (IS_ROOT(victim))
940 			return -EBUSY;
941 	} else if (d_is_dir(victim))
942 		return -EISDIR;
943 	if (IS_DEADDIR(dir))
944 		return -ENOENT;
945 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
946 		return -EBUSY;
947 	return 0;
948 }
949 
950 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)951 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
952 {
953 	if (d_really_is_positive(child))
954 		return -EEXIST;
955 	if (IS_DEADDIR(dir))
956 		return -ENOENT;
957 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
958 }
959 
960 /*
961  * Create a new subvolume below @parent.  This is largely modeled after
962  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
963  * inside this filesystem so it's quite a bit simpler.
964  */
btrfs_mksubvol(const struct path * parent,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)965 static noinline int btrfs_mksubvol(const struct path *parent,
966 				   const char *name, int namelen,
967 				   struct btrfs_root *snap_src,
968 				   bool readonly,
969 				   struct btrfs_qgroup_inherit *inherit)
970 {
971 	struct inode *dir = d_inode(parent->dentry);
972 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
973 	struct dentry *dentry;
974 	int error;
975 
976 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
977 	if (error == -EINTR)
978 		return error;
979 
980 	dentry = lookup_one_len(name, parent->dentry, namelen);
981 	error = PTR_ERR(dentry);
982 	if (IS_ERR(dentry))
983 		goto out_unlock;
984 
985 	error = btrfs_may_create(dir, dentry);
986 	if (error)
987 		goto out_dput;
988 
989 	/*
990 	 * even if this name doesn't exist, we may get hash collisions.
991 	 * check for them now when we can safely fail
992 	 */
993 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
994 					       dir->i_ino, name,
995 					       namelen);
996 	if (error)
997 		goto out_dput;
998 
999 	down_read(&fs_info->subvol_sem);
1000 
1001 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1002 		goto out_up_read;
1003 
1004 	if (snap_src)
1005 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1006 	else
1007 		error = create_subvol(dir, dentry, name, namelen, inherit);
1008 
1009 	if (!error)
1010 		fsnotify_mkdir(dir, dentry);
1011 out_up_read:
1012 	up_read(&fs_info->subvol_sem);
1013 out_dput:
1014 	dput(dentry);
1015 out_unlock:
1016 	inode_unlock(dir);
1017 	return error;
1018 }
1019 
btrfs_mksnapshot(const struct path * parent,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)1020 static noinline int btrfs_mksnapshot(const struct path *parent,
1021 				   const char *name, int namelen,
1022 				   struct btrfs_root *root,
1023 				   bool readonly,
1024 				   struct btrfs_qgroup_inherit *inherit)
1025 {
1026 	int ret;
1027 	bool snapshot_force_cow = false;
1028 
1029 	/*
1030 	 * Force new buffered writes to reserve space even when NOCOW is
1031 	 * possible. This is to avoid later writeback (running dealloc) to
1032 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1033 	 */
1034 	btrfs_drew_read_lock(&root->snapshot_lock);
1035 
1036 	ret = btrfs_start_delalloc_snapshot(root);
1037 	if (ret)
1038 		goto out;
1039 
1040 	/*
1041 	 * All previous writes have started writeback in NOCOW mode, so now
1042 	 * we force future writes to fallback to COW mode during snapshot
1043 	 * creation.
1044 	 */
1045 	atomic_inc(&root->snapshot_force_cow);
1046 	snapshot_force_cow = true;
1047 
1048 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1049 
1050 	ret = btrfs_mksubvol(parent, name, namelen,
1051 			     root, readonly, inherit);
1052 out:
1053 	if (snapshot_force_cow)
1054 		atomic_dec(&root->snapshot_force_cow);
1055 	btrfs_drew_read_unlock(&root->snapshot_lock);
1056 	return ret;
1057 }
1058 
1059 /*
1060  * When we're defragging a range, we don't want to kick it off again
1061  * if it is really just waiting for delalloc to send it down.
1062  * If we find a nice big extent or delalloc range for the bytes in the
1063  * file you want to defrag, we return 0 to let you know to skip this
1064  * part of the file
1065  */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)1066 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1067 {
1068 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1069 	struct extent_map *em = NULL;
1070 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1071 	u64 end;
1072 
1073 	read_lock(&em_tree->lock);
1074 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1075 	read_unlock(&em_tree->lock);
1076 
1077 	if (em) {
1078 		end = extent_map_end(em);
1079 		free_extent_map(em);
1080 		if (end - offset > thresh)
1081 			return 0;
1082 	}
1083 	/* if we already have a nice delalloc here, just stop */
1084 	thresh /= 2;
1085 	end = count_range_bits(io_tree, &offset, offset + thresh,
1086 			       thresh, EXTENT_DELALLOC, 1);
1087 	if (end >= thresh)
1088 		return 0;
1089 	return 1;
1090 }
1091 
1092 /*
1093  * helper function to walk through a file and find extents
1094  * newer than a specific transid, and smaller than thresh.
1095  *
1096  * This is used by the defragging code to find new and small
1097  * extents
1098  */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1099 static int find_new_extents(struct btrfs_root *root,
1100 			    struct inode *inode, u64 newer_than,
1101 			    u64 *off, u32 thresh)
1102 {
1103 	struct btrfs_path *path;
1104 	struct btrfs_key min_key;
1105 	struct extent_buffer *leaf;
1106 	struct btrfs_file_extent_item *extent;
1107 	int type;
1108 	int ret;
1109 	u64 ino = btrfs_ino(BTRFS_I(inode));
1110 
1111 	path = btrfs_alloc_path();
1112 	if (!path)
1113 		return -ENOMEM;
1114 
1115 	min_key.objectid = ino;
1116 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1117 	min_key.offset = *off;
1118 
1119 	while (1) {
1120 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1121 		if (ret != 0)
1122 			goto none;
1123 process_slot:
1124 		if (min_key.objectid != ino)
1125 			goto none;
1126 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1127 			goto none;
1128 
1129 		leaf = path->nodes[0];
1130 		extent = btrfs_item_ptr(leaf, path->slots[0],
1131 					struct btrfs_file_extent_item);
1132 
1133 		type = btrfs_file_extent_type(leaf, extent);
1134 		if (type == BTRFS_FILE_EXTENT_REG &&
1135 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1136 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1137 			*off = min_key.offset;
1138 			btrfs_free_path(path);
1139 			return 0;
1140 		}
1141 
1142 		path->slots[0]++;
1143 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1144 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1145 			goto process_slot;
1146 		}
1147 
1148 		if (min_key.offset == (u64)-1)
1149 			goto none;
1150 
1151 		min_key.offset++;
1152 		btrfs_release_path(path);
1153 	}
1154 none:
1155 	btrfs_free_path(path);
1156 	return -ENOENT;
1157 }
1158 
defrag_lookup_extent(struct inode * inode,u64 start)1159 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1160 {
1161 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1162 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1163 	struct extent_map *em;
1164 	u64 len = PAGE_SIZE;
1165 
1166 	/*
1167 	 * hopefully we have this extent in the tree already, try without
1168 	 * the full extent lock
1169 	 */
1170 	read_lock(&em_tree->lock);
1171 	em = lookup_extent_mapping(em_tree, start, len);
1172 	read_unlock(&em_tree->lock);
1173 
1174 	if (!em) {
1175 		struct extent_state *cached = NULL;
1176 		u64 end = start + len - 1;
1177 
1178 		/* get the big lock and read metadata off disk */
1179 		lock_extent_bits(io_tree, start, end, &cached);
1180 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1181 		unlock_extent_cached(io_tree, start, end, &cached);
1182 
1183 		if (IS_ERR(em))
1184 			return NULL;
1185 	}
1186 
1187 	return em;
1188 }
1189 
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1190 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1191 {
1192 	struct extent_map *next;
1193 	bool ret = true;
1194 
1195 	/* this is the last extent */
1196 	if (em->start + em->len >= i_size_read(inode))
1197 		return false;
1198 
1199 	next = defrag_lookup_extent(inode, em->start + em->len);
1200 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1201 		ret = false;
1202 	else if ((em->block_start + em->block_len == next->block_start) &&
1203 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1204 		ret = false;
1205 
1206 	free_extent_map(next);
1207 	return ret;
1208 }
1209 
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1210 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1211 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1212 			       int compress)
1213 {
1214 	struct extent_map *em;
1215 	int ret = 1;
1216 	bool next_mergeable = true;
1217 	bool prev_mergeable = true;
1218 
1219 	/*
1220 	 * make sure that once we start defragging an extent, we keep on
1221 	 * defragging it
1222 	 */
1223 	if (start < *defrag_end)
1224 		return 1;
1225 
1226 	*skip = 0;
1227 
1228 	em = defrag_lookup_extent(inode, start);
1229 	if (!em)
1230 		return 0;
1231 
1232 	/* this will cover holes, and inline extents */
1233 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1234 		ret = 0;
1235 		goto out;
1236 	}
1237 
1238 	if (!*defrag_end)
1239 		prev_mergeable = false;
1240 
1241 	next_mergeable = defrag_check_next_extent(inode, em);
1242 	/*
1243 	 * we hit a real extent, if it is big or the next extent is not a
1244 	 * real extent, don't bother defragging it
1245 	 */
1246 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1247 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1248 		ret = 0;
1249 out:
1250 	/*
1251 	 * last_len ends up being a counter of how many bytes we've defragged.
1252 	 * every time we choose not to defrag an extent, we reset *last_len
1253 	 * so that the next tiny extent will force a defrag.
1254 	 *
1255 	 * The end result of this is that tiny extents before a single big
1256 	 * extent will force at least part of that big extent to be defragged.
1257 	 */
1258 	if (ret) {
1259 		*defrag_end = extent_map_end(em);
1260 	} else {
1261 		*last_len = 0;
1262 		*skip = extent_map_end(em);
1263 		*defrag_end = 0;
1264 	}
1265 
1266 	free_extent_map(em);
1267 	return ret;
1268 }
1269 
1270 /*
1271  * it doesn't do much good to defrag one or two pages
1272  * at a time.  This pulls in a nice chunk of pages
1273  * to COW and defrag.
1274  *
1275  * It also makes sure the delalloc code has enough
1276  * dirty data to avoid making new small extents as part
1277  * of the defrag
1278  *
1279  * It's a good idea to start RA on this range
1280  * before calling this.
1281  */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1282 static int cluster_pages_for_defrag(struct inode *inode,
1283 				    struct page **pages,
1284 				    unsigned long start_index,
1285 				    unsigned long num_pages)
1286 {
1287 	unsigned long file_end;
1288 	u64 isize = i_size_read(inode);
1289 	u64 page_start;
1290 	u64 page_end;
1291 	u64 page_cnt;
1292 	u64 start = (u64)start_index << PAGE_SHIFT;
1293 	u64 search_start;
1294 	int ret;
1295 	int i;
1296 	int i_done;
1297 	struct btrfs_ordered_extent *ordered;
1298 	struct extent_state *cached_state = NULL;
1299 	struct extent_io_tree *tree;
1300 	struct extent_changeset *data_reserved = NULL;
1301 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1302 
1303 	file_end = (isize - 1) >> PAGE_SHIFT;
1304 	if (!isize || start_index > file_end)
1305 		return 0;
1306 
1307 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1308 
1309 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1310 			start, page_cnt << PAGE_SHIFT);
1311 	if (ret)
1312 		return ret;
1313 	i_done = 0;
1314 	tree = &BTRFS_I(inode)->io_tree;
1315 
1316 	/* step one, lock all the pages */
1317 	for (i = 0; i < page_cnt; i++) {
1318 		struct page *page;
1319 again:
1320 		page = find_or_create_page(inode->i_mapping,
1321 					   start_index + i, mask);
1322 		if (!page)
1323 			break;
1324 
1325 		page_start = page_offset(page);
1326 		page_end = page_start + PAGE_SIZE - 1;
1327 		while (1) {
1328 			lock_extent_bits(tree, page_start, page_end,
1329 					 &cached_state);
1330 			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1331 							      page_start);
1332 			unlock_extent_cached(tree, page_start, page_end,
1333 					     &cached_state);
1334 			if (!ordered)
1335 				break;
1336 
1337 			unlock_page(page);
1338 			btrfs_start_ordered_extent(ordered, 1);
1339 			btrfs_put_ordered_extent(ordered);
1340 			lock_page(page);
1341 			/*
1342 			 * we unlocked the page above, so we need check if
1343 			 * it was released or not.
1344 			 */
1345 			if (page->mapping != inode->i_mapping) {
1346 				unlock_page(page);
1347 				put_page(page);
1348 				goto again;
1349 			}
1350 		}
1351 
1352 		if (!PageUptodate(page)) {
1353 			btrfs_readpage(NULL, page);
1354 			lock_page(page);
1355 			if (!PageUptodate(page)) {
1356 				unlock_page(page);
1357 				put_page(page);
1358 				ret = -EIO;
1359 				break;
1360 			}
1361 		}
1362 
1363 		if (page->mapping != inode->i_mapping) {
1364 			unlock_page(page);
1365 			put_page(page);
1366 			goto again;
1367 		}
1368 
1369 		pages[i] = page;
1370 		i_done++;
1371 	}
1372 	if (!i_done || ret)
1373 		goto out;
1374 
1375 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1376 		goto out;
1377 
1378 	/*
1379 	 * so now we have a nice long stream of locked
1380 	 * and up to date pages, lets wait on them
1381 	 */
1382 	for (i = 0; i < i_done; i++)
1383 		wait_on_page_writeback(pages[i]);
1384 
1385 	page_start = page_offset(pages[0]);
1386 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1387 
1388 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1389 			 page_start, page_end - 1, &cached_state);
1390 
1391 	/*
1392 	 * When defragmenting we skip ranges that have holes or inline extents,
1393 	 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1394 	 * space. At btrfs_defrag_file(), we check if a range should be defragged
1395 	 * before locking the inode and then, if it should, we trigger a sync
1396 	 * page cache readahead - we lock the inode only after that to avoid
1397 	 * blocking for too long other tasks that possibly want to operate on
1398 	 * other file ranges. But before we were able to get the inode lock,
1399 	 * some other task may have punched a hole in the range, or we may have
1400 	 * now an inline extent, in which case we should not defrag. So check
1401 	 * for that here, where we have the inode and the range locked, and bail
1402 	 * out if that happened.
1403 	 */
1404 	search_start = page_start;
1405 	while (search_start < page_end) {
1406 		struct extent_map *em;
1407 
1408 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1409 				      page_end - search_start);
1410 		if (IS_ERR(em)) {
1411 			ret = PTR_ERR(em);
1412 			goto out_unlock_range;
1413 		}
1414 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1415 			free_extent_map(em);
1416 			/* Ok, 0 means we did not defrag anything */
1417 			ret = 0;
1418 			goto out_unlock_range;
1419 		}
1420 		search_start = extent_map_end(em);
1421 		free_extent_map(em);
1422 	}
1423 
1424 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1425 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1426 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1427 
1428 	if (i_done != page_cnt) {
1429 		spin_lock(&BTRFS_I(inode)->lock);
1430 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1431 		spin_unlock(&BTRFS_I(inode)->lock);
1432 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1433 				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1434 	}
1435 
1436 
1437 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1438 			  &cached_state);
1439 
1440 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1441 			     page_start, page_end - 1, &cached_state);
1442 
1443 	for (i = 0; i < i_done; i++) {
1444 		clear_page_dirty_for_io(pages[i]);
1445 		ClearPageChecked(pages[i]);
1446 		set_page_extent_mapped(pages[i]);
1447 		set_page_dirty(pages[i]);
1448 		unlock_page(pages[i]);
1449 		put_page(pages[i]);
1450 	}
1451 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1452 	extent_changeset_free(data_reserved);
1453 	return i_done;
1454 
1455 out_unlock_range:
1456 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1457 			     page_start, page_end - 1, &cached_state);
1458 out:
1459 	for (i = 0; i < i_done; i++) {
1460 		unlock_page(pages[i]);
1461 		put_page(pages[i]);
1462 	}
1463 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1464 			start, page_cnt << PAGE_SHIFT, true);
1465 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1466 	extent_changeset_free(data_reserved);
1467 	return ret;
1468 
1469 }
1470 
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1471 int btrfs_defrag_file(struct inode *inode, struct file *file,
1472 		      struct btrfs_ioctl_defrag_range_args *range,
1473 		      u64 newer_than, unsigned long max_to_defrag)
1474 {
1475 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1476 	struct btrfs_root *root = BTRFS_I(inode)->root;
1477 	struct file_ra_state *ra = NULL;
1478 	unsigned long last_index;
1479 	u64 isize = i_size_read(inode);
1480 	u64 last_len = 0;
1481 	u64 skip = 0;
1482 	u64 defrag_end = 0;
1483 	u64 newer_off = range->start;
1484 	unsigned long i;
1485 	unsigned long ra_index = 0;
1486 	int ret;
1487 	int defrag_count = 0;
1488 	int compress_type = BTRFS_COMPRESS_ZLIB;
1489 	u32 extent_thresh = range->extent_thresh;
1490 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1491 	unsigned long cluster = max_cluster;
1492 	u64 new_align = ~((u64)SZ_128K - 1);
1493 	struct page **pages = NULL;
1494 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1495 
1496 	if (isize == 0)
1497 		return 0;
1498 
1499 	if (range->start >= isize)
1500 		return -EINVAL;
1501 
1502 	if (do_compress) {
1503 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1504 			return -EINVAL;
1505 		if (range->compress_type)
1506 			compress_type = range->compress_type;
1507 	}
1508 
1509 	if (extent_thresh == 0)
1510 		extent_thresh = SZ_256K;
1511 
1512 	/*
1513 	 * If we were not given a file, allocate a readahead context. As
1514 	 * readahead is just an optimization, defrag will work without it so
1515 	 * we don't error out.
1516 	 */
1517 	if (!file) {
1518 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1519 		if (ra)
1520 			file_ra_state_init(ra, inode->i_mapping);
1521 	} else {
1522 		ra = &file->f_ra;
1523 	}
1524 
1525 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1526 	if (!pages) {
1527 		ret = -ENOMEM;
1528 		goto out_ra;
1529 	}
1530 
1531 	/* find the last page to defrag */
1532 	if (range->start + range->len > range->start) {
1533 		last_index = min_t(u64, isize - 1,
1534 			 range->start + range->len - 1) >> PAGE_SHIFT;
1535 	} else {
1536 		last_index = (isize - 1) >> PAGE_SHIFT;
1537 	}
1538 
1539 	if (newer_than) {
1540 		ret = find_new_extents(root, inode, newer_than,
1541 				       &newer_off, SZ_64K);
1542 		if (!ret) {
1543 			range->start = newer_off;
1544 			/*
1545 			 * we always align our defrag to help keep
1546 			 * the extents in the file evenly spaced
1547 			 */
1548 			i = (newer_off & new_align) >> PAGE_SHIFT;
1549 		} else
1550 			goto out_ra;
1551 	} else {
1552 		i = range->start >> PAGE_SHIFT;
1553 	}
1554 	if (!max_to_defrag)
1555 		max_to_defrag = last_index - i + 1;
1556 
1557 	/*
1558 	 * make writeback starts from i, so the defrag range can be
1559 	 * written sequentially.
1560 	 */
1561 	if (i < inode->i_mapping->writeback_index)
1562 		inode->i_mapping->writeback_index = i;
1563 
1564 	while (i <= last_index && defrag_count < max_to_defrag &&
1565 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1566 		/*
1567 		 * make sure we stop running if someone unmounts
1568 		 * the FS
1569 		 */
1570 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1571 			break;
1572 
1573 		if (btrfs_defrag_cancelled(fs_info)) {
1574 			btrfs_debug(fs_info, "defrag_file cancelled");
1575 			ret = -EAGAIN;
1576 			break;
1577 		}
1578 
1579 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1580 					 extent_thresh, &last_len, &skip,
1581 					 &defrag_end, do_compress)){
1582 			unsigned long next;
1583 			/*
1584 			 * the should_defrag function tells us how much to skip
1585 			 * bump our counter by the suggested amount
1586 			 */
1587 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1588 			i = max(i + 1, next);
1589 			continue;
1590 		}
1591 
1592 		if (!newer_than) {
1593 			cluster = (PAGE_ALIGN(defrag_end) >>
1594 				   PAGE_SHIFT) - i;
1595 			cluster = min(cluster, max_cluster);
1596 		} else {
1597 			cluster = max_cluster;
1598 		}
1599 
1600 		if (i + cluster > ra_index) {
1601 			ra_index = max(i, ra_index);
1602 			if (ra)
1603 				page_cache_sync_readahead(inode->i_mapping, ra,
1604 						file, ra_index, cluster);
1605 			ra_index += cluster;
1606 		}
1607 
1608 		inode_lock(inode);
1609 		if (IS_SWAPFILE(inode)) {
1610 			ret = -ETXTBSY;
1611 		} else {
1612 			if (do_compress)
1613 				BTRFS_I(inode)->defrag_compress = compress_type;
1614 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1615 		}
1616 		if (ret < 0) {
1617 			inode_unlock(inode);
1618 			goto out_ra;
1619 		}
1620 
1621 		defrag_count += ret;
1622 		balance_dirty_pages_ratelimited(inode->i_mapping);
1623 		inode_unlock(inode);
1624 
1625 		if (newer_than) {
1626 			if (newer_off == (u64)-1)
1627 				break;
1628 
1629 			if (ret > 0)
1630 				i += ret;
1631 
1632 			newer_off = max(newer_off + 1,
1633 					(u64)i << PAGE_SHIFT);
1634 
1635 			ret = find_new_extents(root, inode, newer_than,
1636 					       &newer_off, SZ_64K);
1637 			if (!ret) {
1638 				range->start = newer_off;
1639 				i = (newer_off & new_align) >> PAGE_SHIFT;
1640 			} else {
1641 				break;
1642 			}
1643 		} else {
1644 			if (ret > 0) {
1645 				i += ret;
1646 				last_len += ret << PAGE_SHIFT;
1647 			} else {
1648 				i++;
1649 				last_len = 0;
1650 			}
1651 		}
1652 	}
1653 
1654 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1655 		filemap_flush(inode->i_mapping);
1656 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1657 			     &BTRFS_I(inode)->runtime_flags))
1658 			filemap_flush(inode->i_mapping);
1659 	}
1660 
1661 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1662 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1663 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1664 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1665 	}
1666 
1667 	ret = defrag_count;
1668 
1669 out_ra:
1670 	if (do_compress) {
1671 		inode_lock(inode);
1672 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1673 		inode_unlock(inode);
1674 	}
1675 	if (!file)
1676 		kfree(ra);
1677 	kfree(pages);
1678 	return ret;
1679 }
1680 
btrfs_ioctl_resize(struct file * file,void __user * arg)1681 static noinline int btrfs_ioctl_resize(struct file *file,
1682 					void __user *arg)
1683 {
1684 	struct inode *inode = file_inode(file);
1685 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1686 	u64 new_size;
1687 	u64 old_size;
1688 	u64 devid = 1;
1689 	struct btrfs_root *root = BTRFS_I(inode)->root;
1690 	struct btrfs_ioctl_vol_args *vol_args;
1691 	struct btrfs_trans_handle *trans;
1692 	struct btrfs_device *device = NULL;
1693 	char *sizestr;
1694 	char *retptr;
1695 	char *devstr = NULL;
1696 	int ret = 0;
1697 	int mod = 0;
1698 
1699 	if (!capable(CAP_SYS_ADMIN))
1700 		return -EPERM;
1701 
1702 	ret = mnt_want_write_file(file);
1703 	if (ret)
1704 		return ret;
1705 
1706 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1707 		mnt_drop_write_file(file);
1708 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1709 	}
1710 
1711 	vol_args = memdup_user(arg, sizeof(*vol_args));
1712 	if (IS_ERR(vol_args)) {
1713 		ret = PTR_ERR(vol_args);
1714 		goto out;
1715 	}
1716 
1717 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1718 
1719 	sizestr = vol_args->name;
1720 	devstr = strchr(sizestr, ':');
1721 	if (devstr) {
1722 		sizestr = devstr + 1;
1723 		*devstr = '\0';
1724 		devstr = vol_args->name;
1725 		ret = kstrtoull(devstr, 10, &devid);
1726 		if (ret)
1727 			goto out_free;
1728 		if (!devid) {
1729 			ret = -EINVAL;
1730 			goto out_free;
1731 		}
1732 		btrfs_info(fs_info, "resizing devid %llu", devid);
1733 	}
1734 
1735 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1736 	if (!device) {
1737 		btrfs_info(fs_info, "resizer unable to find device %llu",
1738 			   devid);
1739 		ret = -ENODEV;
1740 		goto out_free;
1741 	}
1742 
1743 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1744 		btrfs_info(fs_info,
1745 			   "resizer unable to apply on readonly device %llu",
1746 		       devid);
1747 		ret = -EPERM;
1748 		goto out_free;
1749 	}
1750 
1751 	if (!strcmp(sizestr, "max"))
1752 		new_size = device->bdev->bd_inode->i_size;
1753 	else {
1754 		if (sizestr[0] == '-') {
1755 			mod = -1;
1756 			sizestr++;
1757 		} else if (sizestr[0] == '+') {
1758 			mod = 1;
1759 			sizestr++;
1760 		}
1761 		new_size = memparse(sizestr, &retptr);
1762 		if (*retptr != '\0' || new_size == 0) {
1763 			ret = -EINVAL;
1764 			goto out_free;
1765 		}
1766 	}
1767 
1768 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1769 		ret = -EPERM;
1770 		goto out_free;
1771 	}
1772 
1773 	old_size = btrfs_device_get_total_bytes(device);
1774 
1775 	if (mod < 0) {
1776 		if (new_size > old_size) {
1777 			ret = -EINVAL;
1778 			goto out_free;
1779 		}
1780 		new_size = old_size - new_size;
1781 	} else if (mod > 0) {
1782 		if (new_size > ULLONG_MAX - old_size) {
1783 			ret = -ERANGE;
1784 			goto out_free;
1785 		}
1786 		new_size = old_size + new_size;
1787 	}
1788 
1789 	if (new_size < SZ_256M) {
1790 		ret = -EINVAL;
1791 		goto out_free;
1792 	}
1793 	if (new_size > device->bdev->bd_inode->i_size) {
1794 		ret = -EFBIG;
1795 		goto out_free;
1796 	}
1797 
1798 	new_size = round_down(new_size, fs_info->sectorsize);
1799 
1800 	if (new_size > old_size) {
1801 		trans = btrfs_start_transaction(root, 0);
1802 		if (IS_ERR(trans)) {
1803 			ret = PTR_ERR(trans);
1804 			goto out_free;
1805 		}
1806 		ret = btrfs_grow_device(trans, device, new_size);
1807 		btrfs_commit_transaction(trans);
1808 	} else if (new_size < old_size) {
1809 		ret = btrfs_shrink_device(device, new_size);
1810 	} /* equal, nothing need to do */
1811 
1812 	if (ret == 0 && new_size != old_size)
1813 		btrfs_info_in_rcu(fs_info,
1814 			"resize device %s (devid %llu) from %llu to %llu",
1815 			rcu_str_deref(device->name), device->devid,
1816 			old_size, new_size);
1817 out_free:
1818 	kfree(vol_args);
1819 out:
1820 	btrfs_exclop_finish(fs_info);
1821 	mnt_drop_write_file(file);
1822 	return ret;
1823 }
1824 
__btrfs_ioctl_snap_create(struct file * file,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1825 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1826 				const char *name, unsigned long fd, int subvol,
1827 				bool readonly,
1828 				struct btrfs_qgroup_inherit *inherit)
1829 {
1830 	int namelen;
1831 	int ret = 0;
1832 
1833 	if (!S_ISDIR(file_inode(file)->i_mode))
1834 		return -ENOTDIR;
1835 
1836 	ret = mnt_want_write_file(file);
1837 	if (ret)
1838 		goto out;
1839 
1840 	namelen = strlen(name);
1841 	if (strchr(name, '/')) {
1842 		ret = -EINVAL;
1843 		goto out_drop_write;
1844 	}
1845 
1846 	if (name[0] == '.' &&
1847 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1848 		ret = -EEXIST;
1849 		goto out_drop_write;
1850 	}
1851 
1852 	if (subvol) {
1853 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1854 				     NULL, readonly, inherit);
1855 	} else {
1856 		struct fd src = fdget(fd);
1857 		struct inode *src_inode;
1858 		if (!src.file) {
1859 			ret = -EINVAL;
1860 			goto out_drop_write;
1861 		}
1862 
1863 		src_inode = file_inode(src.file);
1864 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1865 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1866 				   "Snapshot src from another FS");
1867 			ret = -EXDEV;
1868 		} else if (!inode_owner_or_capable(src_inode)) {
1869 			/*
1870 			 * Subvolume creation is not restricted, but snapshots
1871 			 * are limited to own subvolumes only
1872 			 */
1873 			ret = -EPERM;
1874 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1875 			/*
1876 			 * Snapshots must be made with the src_inode referring
1877 			 * to the subvolume inode, otherwise the permission
1878 			 * checking above is useless because we may have
1879 			 * permission on a lower directory but not the subvol
1880 			 * itself.
1881 			 */
1882 			ret = -EINVAL;
1883 		} else {
1884 			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1885 					     BTRFS_I(src_inode)->root,
1886 					     readonly, inherit);
1887 		}
1888 		fdput(src);
1889 	}
1890 out_drop_write:
1891 	mnt_drop_write_file(file);
1892 out:
1893 	return ret;
1894 }
1895 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1896 static noinline int btrfs_ioctl_snap_create(struct file *file,
1897 					    void __user *arg, int subvol)
1898 {
1899 	struct btrfs_ioctl_vol_args *vol_args;
1900 	int ret;
1901 
1902 	if (!S_ISDIR(file_inode(file)->i_mode))
1903 		return -ENOTDIR;
1904 
1905 	vol_args = memdup_user(arg, sizeof(*vol_args));
1906 	if (IS_ERR(vol_args))
1907 		return PTR_ERR(vol_args);
1908 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1909 
1910 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1911 					subvol, false, NULL);
1912 
1913 	kfree(vol_args);
1914 	return ret;
1915 }
1916 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1917 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1918 					       void __user *arg, int subvol)
1919 {
1920 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1921 	int ret;
1922 	bool readonly = false;
1923 	struct btrfs_qgroup_inherit *inherit = NULL;
1924 
1925 	if (!S_ISDIR(file_inode(file)->i_mode))
1926 		return -ENOTDIR;
1927 
1928 	vol_args = memdup_user(arg, sizeof(*vol_args));
1929 	if (IS_ERR(vol_args))
1930 		return PTR_ERR(vol_args);
1931 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1932 
1933 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1934 		ret = -EOPNOTSUPP;
1935 		goto free_args;
1936 	}
1937 
1938 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1939 		readonly = true;
1940 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1941 		u64 nums;
1942 
1943 		if (vol_args->size < sizeof(*inherit) ||
1944 		    vol_args->size > PAGE_SIZE) {
1945 			ret = -EINVAL;
1946 			goto free_args;
1947 		}
1948 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1949 		if (IS_ERR(inherit)) {
1950 			ret = PTR_ERR(inherit);
1951 			goto free_args;
1952 		}
1953 
1954 		if (inherit->num_qgroups > PAGE_SIZE ||
1955 		    inherit->num_ref_copies > PAGE_SIZE ||
1956 		    inherit->num_excl_copies > PAGE_SIZE) {
1957 			ret = -EINVAL;
1958 			goto free_inherit;
1959 		}
1960 
1961 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1962 		       2 * inherit->num_excl_copies;
1963 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1964 			ret = -EINVAL;
1965 			goto free_inherit;
1966 		}
1967 	}
1968 
1969 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1970 					subvol, readonly, inherit);
1971 	if (ret)
1972 		goto free_inherit;
1973 free_inherit:
1974 	kfree(inherit);
1975 free_args:
1976 	kfree(vol_args);
1977 	return ret;
1978 }
1979 
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1980 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1981 						void __user *arg)
1982 {
1983 	struct inode *inode = file_inode(file);
1984 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1985 	struct btrfs_root *root = BTRFS_I(inode)->root;
1986 	int ret = 0;
1987 	u64 flags = 0;
1988 
1989 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1990 		return -EINVAL;
1991 
1992 	down_read(&fs_info->subvol_sem);
1993 	if (btrfs_root_readonly(root))
1994 		flags |= BTRFS_SUBVOL_RDONLY;
1995 	up_read(&fs_info->subvol_sem);
1996 
1997 	if (copy_to_user(arg, &flags, sizeof(flags)))
1998 		ret = -EFAULT;
1999 
2000 	return ret;
2001 }
2002 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)2003 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2004 					      void __user *arg)
2005 {
2006 	struct inode *inode = file_inode(file);
2007 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2008 	struct btrfs_root *root = BTRFS_I(inode)->root;
2009 	struct btrfs_trans_handle *trans;
2010 	u64 root_flags;
2011 	u64 flags;
2012 	int ret = 0;
2013 
2014 	if (!inode_owner_or_capable(inode))
2015 		return -EPERM;
2016 
2017 	ret = mnt_want_write_file(file);
2018 	if (ret)
2019 		goto out;
2020 
2021 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2022 		ret = -EINVAL;
2023 		goto out_drop_write;
2024 	}
2025 
2026 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2027 		ret = -EFAULT;
2028 		goto out_drop_write;
2029 	}
2030 
2031 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2032 		ret = -EOPNOTSUPP;
2033 		goto out_drop_write;
2034 	}
2035 
2036 	down_write(&fs_info->subvol_sem);
2037 
2038 	/* nothing to do */
2039 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2040 		goto out_drop_sem;
2041 
2042 	root_flags = btrfs_root_flags(&root->root_item);
2043 	if (flags & BTRFS_SUBVOL_RDONLY) {
2044 		btrfs_set_root_flags(&root->root_item,
2045 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2046 	} else {
2047 		/*
2048 		 * Block RO -> RW transition if this subvolume is involved in
2049 		 * send
2050 		 */
2051 		spin_lock(&root->root_item_lock);
2052 		if (root->send_in_progress == 0) {
2053 			btrfs_set_root_flags(&root->root_item,
2054 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2055 			spin_unlock(&root->root_item_lock);
2056 		} else {
2057 			spin_unlock(&root->root_item_lock);
2058 			btrfs_warn(fs_info,
2059 				   "Attempt to set subvolume %llu read-write during send",
2060 				   root->root_key.objectid);
2061 			ret = -EPERM;
2062 			goto out_drop_sem;
2063 		}
2064 	}
2065 
2066 	trans = btrfs_start_transaction(root, 1);
2067 	if (IS_ERR(trans)) {
2068 		ret = PTR_ERR(trans);
2069 		goto out_reset;
2070 	}
2071 
2072 	ret = btrfs_update_root(trans, fs_info->tree_root,
2073 				&root->root_key, &root->root_item);
2074 	if (ret < 0) {
2075 		btrfs_end_transaction(trans);
2076 		goto out_reset;
2077 	}
2078 
2079 	ret = btrfs_commit_transaction(trans);
2080 
2081 out_reset:
2082 	if (ret)
2083 		btrfs_set_root_flags(&root->root_item, root_flags);
2084 out_drop_sem:
2085 	up_write(&fs_info->subvol_sem);
2086 out_drop_write:
2087 	mnt_drop_write_file(file);
2088 out:
2089 	return ret;
2090 }
2091 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2092 static noinline int key_in_sk(struct btrfs_key *key,
2093 			      struct btrfs_ioctl_search_key *sk)
2094 {
2095 	struct btrfs_key test;
2096 	int ret;
2097 
2098 	test.objectid = sk->min_objectid;
2099 	test.type = sk->min_type;
2100 	test.offset = sk->min_offset;
2101 
2102 	ret = btrfs_comp_cpu_keys(key, &test);
2103 	if (ret < 0)
2104 		return 0;
2105 
2106 	test.objectid = sk->max_objectid;
2107 	test.type = sk->max_type;
2108 	test.offset = sk->max_offset;
2109 
2110 	ret = btrfs_comp_cpu_keys(key, &test);
2111 	if (ret > 0)
2112 		return 0;
2113 	return 1;
2114 }
2115 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2116 static noinline int copy_to_sk(struct btrfs_path *path,
2117 			       struct btrfs_key *key,
2118 			       struct btrfs_ioctl_search_key *sk,
2119 			       u64 *buf_size,
2120 			       char __user *ubuf,
2121 			       unsigned long *sk_offset,
2122 			       int *num_found)
2123 {
2124 	u64 found_transid;
2125 	struct extent_buffer *leaf;
2126 	struct btrfs_ioctl_search_header sh;
2127 	struct btrfs_key test;
2128 	unsigned long item_off;
2129 	unsigned long item_len;
2130 	int nritems;
2131 	int i;
2132 	int slot;
2133 	int ret = 0;
2134 
2135 	leaf = path->nodes[0];
2136 	slot = path->slots[0];
2137 	nritems = btrfs_header_nritems(leaf);
2138 
2139 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2140 		i = nritems;
2141 		goto advance_key;
2142 	}
2143 	found_transid = btrfs_header_generation(leaf);
2144 
2145 	for (i = slot; i < nritems; i++) {
2146 		item_off = btrfs_item_ptr_offset(leaf, i);
2147 		item_len = btrfs_item_size_nr(leaf, i);
2148 
2149 		btrfs_item_key_to_cpu(leaf, key, i);
2150 		if (!key_in_sk(key, sk))
2151 			continue;
2152 
2153 		if (sizeof(sh) + item_len > *buf_size) {
2154 			if (*num_found) {
2155 				ret = 1;
2156 				goto out;
2157 			}
2158 
2159 			/*
2160 			 * return one empty item back for v1, which does not
2161 			 * handle -EOVERFLOW
2162 			 */
2163 
2164 			*buf_size = sizeof(sh) + item_len;
2165 			item_len = 0;
2166 			ret = -EOVERFLOW;
2167 		}
2168 
2169 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2170 			ret = 1;
2171 			goto out;
2172 		}
2173 
2174 		sh.objectid = key->objectid;
2175 		sh.offset = key->offset;
2176 		sh.type = key->type;
2177 		sh.len = item_len;
2178 		sh.transid = found_transid;
2179 
2180 		/*
2181 		 * Copy search result header. If we fault then loop again so we
2182 		 * can fault in the pages and -EFAULT there if there's a
2183 		 * problem. Otherwise we'll fault and then copy the buffer in
2184 		 * properly this next time through
2185 		 */
2186 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2187 			ret = 0;
2188 			goto out;
2189 		}
2190 
2191 		*sk_offset += sizeof(sh);
2192 
2193 		if (item_len) {
2194 			char __user *up = ubuf + *sk_offset;
2195 			/*
2196 			 * Copy the item, same behavior as above, but reset the
2197 			 * * sk_offset so we copy the full thing again.
2198 			 */
2199 			if (read_extent_buffer_to_user_nofault(leaf, up,
2200 						item_off, item_len)) {
2201 				ret = 0;
2202 				*sk_offset -= sizeof(sh);
2203 				goto out;
2204 			}
2205 
2206 			*sk_offset += item_len;
2207 		}
2208 		(*num_found)++;
2209 
2210 		if (ret) /* -EOVERFLOW from above */
2211 			goto out;
2212 
2213 		if (*num_found >= sk->nr_items) {
2214 			ret = 1;
2215 			goto out;
2216 		}
2217 	}
2218 advance_key:
2219 	ret = 0;
2220 	test.objectid = sk->max_objectid;
2221 	test.type = sk->max_type;
2222 	test.offset = sk->max_offset;
2223 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2224 		ret = 1;
2225 	else if (key->offset < (u64)-1)
2226 		key->offset++;
2227 	else if (key->type < (u8)-1) {
2228 		key->offset = 0;
2229 		key->type++;
2230 	} else if (key->objectid < (u64)-1) {
2231 		key->offset = 0;
2232 		key->type = 0;
2233 		key->objectid++;
2234 	} else
2235 		ret = 1;
2236 out:
2237 	/*
2238 	 *  0: all items from this leaf copied, continue with next
2239 	 *  1: * more items can be copied, but unused buffer is too small
2240 	 *     * all items were found
2241 	 *     Either way, it will stops the loop which iterates to the next
2242 	 *     leaf
2243 	 *  -EOVERFLOW: item was to large for buffer
2244 	 *  -EFAULT: could not copy extent buffer back to userspace
2245 	 */
2246 	return ret;
2247 }
2248 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)2249 static noinline int search_ioctl(struct inode *inode,
2250 				 struct btrfs_ioctl_search_key *sk,
2251 				 u64 *buf_size,
2252 				 char __user *ubuf)
2253 {
2254 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2255 	struct btrfs_root *root;
2256 	struct btrfs_key key;
2257 	struct btrfs_path *path;
2258 	int ret;
2259 	int num_found = 0;
2260 	unsigned long sk_offset = 0;
2261 
2262 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2263 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2264 		return -EOVERFLOW;
2265 	}
2266 
2267 	path = btrfs_alloc_path();
2268 	if (!path)
2269 		return -ENOMEM;
2270 
2271 	if (sk->tree_id == 0) {
2272 		/* search the root of the inode that was passed */
2273 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2274 	} else {
2275 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2276 		if (IS_ERR(root)) {
2277 			btrfs_free_path(path);
2278 			return PTR_ERR(root);
2279 		}
2280 	}
2281 
2282 	key.objectid = sk->min_objectid;
2283 	key.type = sk->min_type;
2284 	key.offset = sk->min_offset;
2285 
2286 	while (1) {
2287 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2288 					       *buf_size - sk_offset);
2289 		if (ret)
2290 			break;
2291 
2292 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2293 		if (ret != 0) {
2294 			if (ret > 0)
2295 				ret = 0;
2296 			goto err;
2297 		}
2298 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2299 				 &sk_offset, &num_found);
2300 		btrfs_release_path(path);
2301 		if (ret)
2302 			break;
2303 
2304 	}
2305 	if (ret > 0)
2306 		ret = 0;
2307 err:
2308 	sk->nr_items = num_found;
2309 	btrfs_put_root(root);
2310 	btrfs_free_path(path);
2311 	return ret;
2312 }
2313 
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2314 static noinline int btrfs_ioctl_tree_search(struct file *file,
2315 					   void __user *argp)
2316 {
2317 	struct btrfs_ioctl_search_args __user *uargs;
2318 	struct btrfs_ioctl_search_key sk;
2319 	struct inode *inode;
2320 	int ret;
2321 	u64 buf_size;
2322 
2323 	if (!capable(CAP_SYS_ADMIN))
2324 		return -EPERM;
2325 
2326 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2327 
2328 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2329 		return -EFAULT;
2330 
2331 	buf_size = sizeof(uargs->buf);
2332 
2333 	inode = file_inode(file);
2334 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2335 
2336 	/*
2337 	 * In the origin implementation an overflow is handled by returning a
2338 	 * search header with a len of zero, so reset ret.
2339 	 */
2340 	if (ret == -EOVERFLOW)
2341 		ret = 0;
2342 
2343 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2344 		ret = -EFAULT;
2345 	return ret;
2346 }
2347 
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2348 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2349 					       void __user *argp)
2350 {
2351 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2352 	struct btrfs_ioctl_search_args_v2 args;
2353 	struct inode *inode;
2354 	int ret;
2355 	u64 buf_size;
2356 	const u64 buf_limit = SZ_16M;
2357 
2358 	if (!capable(CAP_SYS_ADMIN))
2359 		return -EPERM;
2360 
2361 	/* copy search header and buffer size */
2362 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2363 	if (copy_from_user(&args, uarg, sizeof(args)))
2364 		return -EFAULT;
2365 
2366 	buf_size = args.buf_size;
2367 
2368 	/* limit result size to 16MB */
2369 	if (buf_size > buf_limit)
2370 		buf_size = buf_limit;
2371 
2372 	inode = file_inode(file);
2373 	ret = search_ioctl(inode, &args.key, &buf_size,
2374 			   (char __user *)(&uarg->buf[0]));
2375 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2376 		ret = -EFAULT;
2377 	else if (ret == -EOVERFLOW &&
2378 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2379 		ret = -EFAULT;
2380 
2381 	return ret;
2382 }
2383 
2384 /*
2385  * Search INODE_REFs to identify path name of 'dirid' directory
2386  * in a 'tree_id' tree. and sets path name to 'name'.
2387  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2388 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2389 				u64 tree_id, u64 dirid, char *name)
2390 {
2391 	struct btrfs_root *root;
2392 	struct btrfs_key key;
2393 	char *ptr;
2394 	int ret = -1;
2395 	int slot;
2396 	int len;
2397 	int total_len = 0;
2398 	struct btrfs_inode_ref *iref;
2399 	struct extent_buffer *l;
2400 	struct btrfs_path *path;
2401 
2402 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2403 		name[0]='\0';
2404 		return 0;
2405 	}
2406 
2407 	path = btrfs_alloc_path();
2408 	if (!path)
2409 		return -ENOMEM;
2410 
2411 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2412 
2413 	root = btrfs_get_fs_root(info, tree_id, true);
2414 	if (IS_ERR(root)) {
2415 		ret = PTR_ERR(root);
2416 		root = NULL;
2417 		goto out;
2418 	}
2419 
2420 	key.objectid = dirid;
2421 	key.type = BTRFS_INODE_REF_KEY;
2422 	key.offset = (u64)-1;
2423 
2424 	while (1) {
2425 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2426 		if (ret < 0)
2427 			goto out;
2428 		else if (ret > 0) {
2429 			ret = btrfs_previous_item(root, path, dirid,
2430 						  BTRFS_INODE_REF_KEY);
2431 			if (ret < 0)
2432 				goto out;
2433 			else if (ret > 0) {
2434 				ret = -ENOENT;
2435 				goto out;
2436 			}
2437 		}
2438 
2439 		l = path->nodes[0];
2440 		slot = path->slots[0];
2441 		btrfs_item_key_to_cpu(l, &key, slot);
2442 
2443 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2444 		len = btrfs_inode_ref_name_len(l, iref);
2445 		ptr -= len + 1;
2446 		total_len += len + 1;
2447 		if (ptr < name) {
2448 			ret = -ENAMETOOLONG;
2449 			goto out;
2450 		}
2451 
2452 		*(ptr + len) = '/';
2453 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2454 
2455 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2456 			break;
2457 
2458 		btrfs_release_path(path);
2459 		key.objectid = key.offset;
2460 		key.offset = (u64)-1;
2461 		dirid = key.objectid;
2462 	}
2463 	memmove(name, ptr, total_len);
2464 	name[total_len] = '\0';
2465 	ret = 0;
2466 out:
2467 	btrfs_put_root(root);
2468 	btrfs_free_path(path);
2469 	return ret;
2470 }
2471 
btrfs_search_path_in_tree_user(struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2472 static int btrfs_search_path_in_tree_user(struct inode *inode,
2473 				struct btrfs_ioctl_ino_lookup_user_args *args)
2474 {
2475 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2476 	struct super_block *sb = inode->i_sb;
2477 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2478 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2479 	u64 dirid = args->dirid;
2480 	unsigned long item_off;
2481 	unsigned long item_len;
2482 	struct btrfs_inode_ref *iref;
2483 	struct btrfs_root_ref *rref;
2484 	struct btrfs_root *root = NULL;
2485 	struct btrfs_path *path;
2486 	struct btrfs_key key, key2;
2487 	struct extent_buffer *leaf;
2488 	struct inode *temp_inode;
2489 	char *ptr;
2490 	int slot;
2491 	int len;
2492 	int total_len = 0;
2493 	int ret;
2494 
2495 	path = btrfs_alloc_path();
2496 	if (!path)
2497 		return -ENOMEM;
2498 
2499 	/*
2500 	 * If the bottom subvolume does not exist directly under upper_limit,
2501 	 * construct the path in from the bottom up.
2502 	 */
2503 	if (dirid != upper_limit.objectid) {
2504 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2505 
2506 		root = btrfs_get_fs_root(fs_info, treeid, true);
2507 		if (IS_ERR(root)) {
2508 			ret = PTR_ERR(root);
2509 			goto out;
2510 		}
2511 
2512 		key.objectid = dirid;
2513 		key.type = BTRFS_INODE_REF_KEY;
2514 		key.offset = (u64)-1;
2515 		while (1) {
2516 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2517 			if (ret < 0) {
2518 				goto out_put;
2519 			} else if (ret > 0) {
2520 				ret = btrfs_previous_item(root, path, dirid,
2521 							  BTRFS_INODE_REF_KEY);
2522 				if (ret < 0) {
2523 					goto out_put;
2524 				} else if (ret > 0) {
2525 					ret = -ENOENT;
2526 					goto out_put;
2527 				}
2528 			}
2529 
2530 			leaf = path->nodes[0];
2531 			slot = path->slots[0];
2532 			btrfs_item_key_to_cpu(leaf, &key, slot);
2533 
2534 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2535 			len = btrfs_inode_ref_name_len(leaf, iref);
2536 			ptr -= len + 1;
2537 			total_len += len + 1;
2538 			if (ptr < args->path) {
2539 				ret = -ENAMETOOLONG;
2540 				goto out_put;
2541 			}
2542 
2543 			*(ptr + len) = '/';
2544 			read_extent_buffer(leaf, ptr,
2545 					(unsigned long)(iref + 1), len);
2546 
2547 			/* Check the read+exec permission of this directory */
2548 			ret = btrfs_previous_item(root, path, dirid,
2549 						  BTRFS_INODE_ITEM_KEY);
2550 			if (ret < 0) {
2551 				goto out_put;
2552 			} else if (ret > 0) {
2553 				ret = -ENOENT;
2554 				goto out_put;
2555 			}
2556 
2557 			leaf = path->nodes[0];
2558 			slot = path->slots[0];
2559 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2560 			if (key2.objectid != dirid) {
2561 				ret = -ENOENT;
2562 				goto out_put;
2563 			}
2564 
2565 			/*
2566 			 * We don't need the path anymore, so release it and
2567 			 * avoid deadlocks and lockdep warnings in case
2568 			 * btrfs_iget() needs to lookup the inode from its root
2569 			 * btree and lock the same leaf.
2570 			 */
2571 			btrfs_release_path(path);
2572 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2573 			if (IS_ERR(temp_inode)) {
2574 				ret = PTR_ERR(temp_inode);
2575 				goto out_put;
2576 			}
2577 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2578 			iput(temp_inode);
2579 			if (ret) {
2580 				ret = -EACCES;
2581 				goto out_put;
2582 			}
2583 
2584 			if (key.offset == upper_limit.objectid)
2585 				break;
2586 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2587 				ret = -EACCES;
2588 				goto out_put;
2589 			}
2590 
2591 			key.objectid = key.offset;
2592 			key.offset = (u64)-1;
2593 			dirid = key.objectid;
2594 		}
2595 
2596 		memmove(args->path, ptr, total_len);
2597 		args->path[total_len] = '\0';
2598 		btrfs_put_root(root);
2599 		root = NULL;
2600 		btrfs_release_path(path);
2601 	}
2602 
2603 	/* Get the bottom subvolume's name from ROOT_REF */
2604 	key.objectid = treeid;
2605 	key.type = BTRFS_ROOT_REF_KEY;
2606 	key.offset = args->treeid;
2607 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2608 	if (ret < 0) {
2609 		goto out;
2610 	} else if (ret > 0) {
2611 		ret = -ENOENT;
2612 		goto out;
2613 	}
2614 
2615 	leaf = path->nodes[0];
2616 	slot = path->slots[0];
2617 	btrfs_item_key_to_cpu(leaf, &key, slot);
2618 
2619 	item_off = btrfs_item_ptr_offset(leaf, slot);
2620 	item_len = btrfs_item_size_nr(leaf, slot);
2621 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2622 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2623 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2624 		ret = -EINVAL;
2625 		goto out;
2626 	}
2627 
2628 	/* Copy subvolume's name */
2629 	item_off += sizeof(struct btrfs_root_ref);
2630 	item_len -= sizeof(struct btrfs_root_ref);
2631 	read_extent_buffer(leaf, args->name, item_off, item_len);
2632 	args->name[item_len] = 0;
2633 
2634 out_put:
2635 	btrfs_put_root(root);
2636 out:
2637 	btrfs_free_path(path);
2638 	return ret;
2639 }
2640 
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2641 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2642 					   void __user *argp)
2643 {
2644 	struct btrfs_ioctl_ino_lookup_args *args;
2645 	struct inode *inode;
2646 	int ret = 0;
2647 
2648 	args = memdup_user(argp, sizeof(*args));
2649 	if (IS_ERR(args))
2650 		return PTR_ERR(args);
2651 
2652 	inode = file_inode(file);
2653 
2654 	/*
2655 	 * Unprivileged query to obtain the containing subvolume root id. The
2656 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2657 	 */
2658 	if (args->treeid == 0)
2659 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2660 
2661 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2662 		args->name[0] = 0;
2663 		goto out;
2664 	}
2665 
2666 	if (!capable(CAP_SYS_ADMIN)) {
2667 		ret = -EPERM;
2668 		goto out;
2669 	}
2670 
2671 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2672 					args->treeid, args->objectid,
2673 					args->name);
2674 
2675 out:
2676 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2677 		ret = -EFAULT;
2678 
2679 	kfree(args);
2680 	return ret;
2681 }
2682 
2683 /*
2684  * Version of ino_lookup ioctl (unprivileged)
2685  *
2686  * The main differences from ino_lookup ioctl are:
2687  *
2688  *   1. Read + Exec permission will be checked using inode_permission() during
2689  *      path construction. -EACCES will be returned in case of failure.
2690  *   2. Path construction will be stopped at the inode number which corresponds
2691  *      to the fd with which this ioctl is called. If constructed path does not
2692  *      exist under fd's inode, -EACCES will be returned.
2693  *   3. The name of bottom subvolume is also searched and filled.
2694  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2695 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2696 {
2697 	struct btrfs_ioctl_ino_lookup_user_args *args;
2698 	struct inode *inode;
2699 	int ret;
2700 
2701 	args = memdup_user(argp, sizeof(*args));
2702 	if (IS_ERR(args))
2703 		return PTR_ERR(args);
2704 
2705 	inode = file_inode(file);
2706 
2707 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2708 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2709 		/*
2710 		 * The subvolume does not exist under fd with which this is
2711 		 * called
2712 		 */
2713 		kfree(args);
2714 		return -EACCES;
2715 	}
2716 
2717 	ret = btrfs_search_path_in_tree_user(inode, args);
2718 
2719 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2720 		ret = -EFAULT;
2721 
2722 	kfree(args);
2723 	return ret;
2724 }
2725 
2726 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2727 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2728 {
2729 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2730 	struct btrfs_fs_info *fs_info;
2731 	struct btrfs_root *root;
2732 	struct btrfs_path *path;
2733 	struct btrfs_key key;
2734 	struct btrfs_root_item *root_item;
2735 	struct btrfs_root_ref *rref;
2736 	struct extent_buffer *leaf;
2737 	unsigned long item_off;
2738 	unsigned long item_len;
2739 	struct inode *inode;
2740 	int slot;
2741 	int ret = 0;
2742 
2743 	path = btrfs_alloc_path();
2744 	if (!path)
2745 		return -ENOMEM;
2746 
2747 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2748 	if (!subvol_info) {
2749 		btrfs_free_path(path);
2750 		return -ENOMEM;
2751 	}
2752 
2753 	inode = file_inode(file);
2754 	fs_info = BTRFS_I(inode)->root->fs_info;
2755 
2756 	/* Get root_item of inode's subvolume */
2757 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2758 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2759 	if (IS_ERR(root)) {
2760 		ret = PTR_ERR(root);
2761 		goto out_free;
2762 	}
2763 	root_item = &root->root_item;
2764 
2765 	subvol_info->treeid = key.objectid;
2766 
2767 	subvol_info->generation = btrfs_root_generation(root_item);
2768 	subvol_info->flags = btrfs_root_flags(root_item);
2769 
2770 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2771 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2772 						    BTRFS_UUID_SIZE);
2773 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2774 						    BTRFS_UUID_SIZE);
2775 
2776 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2777 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2778 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2779 
2780 	subvol_info->otransid = btrfs_root_otransid(root_item);
2781 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2782 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2783 
2784 	subvol_info->stransid = btrfs_root_stransid(root_item);
2785 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2786 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2787 
2788 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2789 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2790 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2791 
2792 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2793 		/* Search root tree for ROOT_BACKREF of this subvolume */
2794 		key.type = BTRFS_ROOT_BACKREF_KEY;
2795 		key.offset = 0;
2796 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2797 		if (ret < 0) {
2798 			goto out;
2799 		} else if (path->slots[0] >=
2800 			   btrfs_header_nritems(path->nodes[0])) {
2801 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2802 			if (ret < 0) {
2803 				goto out;
2804 			} else if (ret > 0) {
2805 				ret = -EUCLEAN;
2806 				goto out;
2807 			}
2808 		}
2809 
2810 		leaf = path->nodes[0];
2811 		slot = path->slots[0];
2812 		btrfs_item_key_to_cpu(leaf, &key, slot);
2813 		if (key.objectid == subvol_info->treeid &&
2814 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2815 			subvol_info->parent_id = key.offset;
2816 
2817 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2818 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2819 
2820 			item_off = btrfs_item_ptr_offset(leaf, slot)
2821 					+ sizeof(struct btrfs_root_ref);
2822 			item_len = btrfs_item_size_nr(leaf, slot)
2823 					- sizeof(struct btrfs_root_ref);
2824 			read_extent_buffer(leaf, subvol_info->name,
2825 					   item_off, item_len);
2826 		} else {
2827 			ret = -ENOENT;
2828 			goto out;
2829 		}
2830 	}
2831 
2832 	btrfs_free_path(path);
2833 	path = NULL;
2834 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2835 		ret = -EFAULT;
2836 
2837 out:
2838 	btrfs_put_root(root);
2839 out_free:
2840 	btrfs_free_path(path);
2841 	kfree(subvol_info);
2842 	return ret;
2843 }
2844 
2845 /*
2846  * Return ROOT_REF information of the subvolume containing this inode
2847  * except the subvolume name.
2848  */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2849 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2850 {
2851 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2852 	struct btrfs_root_ref *rref;
2853 	struct btrfs_root *root;
2854 	struct btrfs_path *path;
2855 	struct btrfs_key key;
2856 	struct extent_buffer *leaf;
2857 	struct inode *inode;
2858 	u64 objectid;
2859 	int slot;
2860 	int ret;
2861 	u8 found;
2862 
2863 	path = btrfs_alloc_path();
2864 	if (!path)
2865 		return -ENOMEM;
2866 
2867 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2868 	if (IS_ERR(rootrefs)) {
2869 		btrfs_free_path(path);
2870 		return PTR_ERR(rootrefs);
2871 	}
2872 
2873 	inode = file_inode(file);
2874 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2875 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2876 
2877 	key.objectid = objectid;
2878 	key.type = BTRFS_ROOT_REF_KEY;
2879 	key.offset = rootrefs->min_treeid;
2880 	found = 0;
2881 
2882 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2883 	if (ret < 0) {
2884 		goto out;
2885 	} else if (path->slots[0] >=
2886 		   btrfs_header_nritems(path->nodes[0])) {
2887 		ret = btrfs_next_leaf(root, path);
2888 		if (ret < 0) {
2889 			goto out;
2890 		} else if (ret > 0) {
2891 			ret = -EUCLEAN;
2892 			goto out;
2893 		}
2894 	}
2895 	while (1) {
2896 		leaf = path->nodes[0];
2897 		slot = path->slots[0];
2898 
2899 		btrfs_item_key_to_cpu(leaf, &key, slot);
2900 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2901 			ret = 0;
2902 			goto out;
2903 		}
2904 
2905 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2906 			ret = -EOVERFLOW;
2907 			goto out;
2908 		}
2909 
2910 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2911 		rootrefs->rootref[found].treeid = key.offset;
2912 		rootrefs->rootref[found].dirid =
2913 				  btrfs_root_ref_dirid(leaf, rref);
2914 		found++;
2915 
2916 		ret = btrfs_next_item(root, path);
2917 		if (ret < 0) {
2918 			goto out;
2919 		} else if (ret > 0) {
2920 			ret = -EUCLEAN;
2921 			goto out;
2922 		}
2923 	}
2924 
2925 out:
2926 	btrfs_free_path(path);
2927 
2928 	if (!ret || ret == -EOVERFLOW) {
2929 		rootrefs->num_items = found;
2930 		/* update min_treeid for next search */
2931 		if (found)
2932 			rootrefs->min_treeid =
2933 				rootrefs->rootref[found - 1].treeid + 1;
2934 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2935 			ret = -EFAULT;
2936 	}
2937 
2938 	kfree(rootrefs);
2939 
2940 	return ret;
2941 }
2942 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2943 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2944 					     void __user *arg,
2945 					     bool destroy_v2)
2946 {
2947 	struct dentry *parent = file->f_path.dentry;
2948 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2949 	struct dentry *dentry;
2950 	struct inode *dir = d_inode(parent);
2951 	struct inode *inode;
2952 	struct btrfs_root *root = BTRFS_I(dir)->root;
2953 	struct btrfs_root *dest = NULL;
2954 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2955 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2956 	char *subvol_name, *subvol_name_ptr = NULL;
2957 	int subvol_namelen;
2958 	int err = 0;
2959 	bool destroy_parent = false;
2960 
2961 	if (destroy_v2) {
2962 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2963 		if (IS_ERR(vol_args2))
2964 			return PTR_ERR(vol_args2);
2965 
2966 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2967 			err = -EOPNOTSUPP;
2968 			goto out;
2969 		}
2970 
2971 		/*
2972 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2973 		 * name, same as v1 currently does.
2974 		 */
2975 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2976 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2977 			subvol_name = vol_args2->name;
2978 
2979 			err = mnt_want_write_file(file);
2980 			if (err)
2981 				goto out;
2982 		} else {
2983 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2984 				err = -EINVAL;
2985 				goto out;
2986 			}
2987 
2988 			err = mnt_want_write_file(file);
2989 			if (err)
2990 				goto out;
2991 
2992 			dentry = btrfs_get_dentry(fs_info->sb,
2993 					BTRFS_FIRST_FREE_OBJECTID,
2994 					vol_args2->subvolid, 0, 0);
2995 			if (IS_ERR(dentry)) {
2996 				err = PTR_ERR(dentry);
2997 				goto out_drop_write;
2998 			}
2999 
3000 			/*
3001 			 * Change the default parent since the subvolume being
3002 			 * deleted can be outside of the current mount point.
3003 			 */
3004 			parent = btrfs_get_parent(dentry);
3005 
3006 			/*
3007 			 * At this point dentry->d_name can point to '/' if the
3008 			 * subvolume we want to destroy is outsite of the
3009 			 * current mount point, so we need to release the
3010 			 * current dentry and execute the lookup to return a new
3011 			 * one with ->d_name pointing to the
3012 			 * <mount point>/subvol_name.
3013 			 */
3014 			dput(dentry);
3015 			if (IS_ERR(parent)) {
3016 				err = PTR_ERR(parent);
3017 				goto out_drop_write;
3018 			}
3019 			dir = d_inode(parent);
3020 
3021 			/*
3022 			 * If v2 was used with SPEC_BY_ID, a new parent was
3023 			 * allocated since the subvolume can be outside of the
3024 			 * current mount point. Later on we need to release this
3025 			 * new parent dentry.
3026 			 */
3027 			destroy_parent = true;
3028 
3029 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3030 						fs_info, vol_args2->subvolid);
3031 			if (IS_ERR(subvol_name_ptr)) {
3032 				err = PTR_ERR(subvol_name_ptr);
3033 				goto free_parent;
3034 			}
3035 			/* subvol_name_ptr is already NULL termined */
3036 			subvol_name = (char *)kbasename(subvol_name_ptr);
3037 		}
3038 	} else {
3039 		vol_args = memdup_user(arg, sizeof(*vol_args));
3040 		if (IS_ERR(vol_args))
3041 			return PTR_ERR(vol_args);
3042 
3043 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3044 		subvol_name = vol_args->name;
3045 
3046 		err = mnt_want_write_file(file);
3047 		if (err)
3048 			goto out;
3049 	}
3050 
3051 	subvol_namelen = strlen(subvol_name);
3052 
3053 	if (strchr(subvol_name, '/') ||
3054 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3055 		err = -EINVAL;
3056 		goto free_subvol_name;
3057 	}
3058 
3059 	if (!S_ISDIR(dir->i_mode)) {
3060 		err = -ENOTDIR;
3061 		goto free_subvol_name;
3062 	}
3063 
3064 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3065 	if (err == -EINTR)
3066 		goto free_subvol_name;
3067 	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3068 	if (IS_ERR(dentry)) {
3069 		err = PTR_ERR(dentry);
3070 		goto out_unlock_dir;
3071 	}
3072 
3073 	if (d_really_is_negative(dentry)) {
3074 		err = -ENOENT;
3075 		goto out_dput;
3076 	}
3077 
3078 	inode = d_inode(dentry);
3079 	dest = BTRFS_I(inode)->root;
3080 	if (!capable(CAP_SYS_ADMIN)) {
3081 		/*
3082 		 * Regular user.  Only allow this with a special mount
3083 		 * option, when the user has write+exec access to the
3084 		 * subvol root, and when rmdir(2) would have been
3085 		 * allowed.
3086 		 *
3087 		 * Note that this is _not_ check that the subvol is
3088 		 * empty or doesn't contain data that we wouldn't
3089 		 * otherwise be able to delete.
3090 		 *
3091 		 * Users who want to delete empty subvols should try
3092 		 * rmdir(2).
3093 		 */
3094 		err = -EPERM;
3095 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3096 			goto out_dput;
3097 
3098 		/*
3099 		 * Do not allow deletion if the parent dir is the same
3100 		 * as the dir to be deleted.  That means the ioctl
3101 		 * must be called on the dentry referencing the root
3102 		 * of the subvol, not a random directory contained
3103 		 * within it.
3104 		 */
3105 		err = -EINVAL;
3106 		if (root == dest)
3107 			goto out_dput;
3108 
3109 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3110 		if (err)
3111 			goto out_dput;
3112 	}
3113 
3114 	/* check if subvolume may be deleted by a user */
3115 	err = btrfs_may_delete(dir, dentry, 1);
3116 	if (err)
3117 		goto out_dput;
3118 
3119 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3120 		err = -EINVAL;
3121 		goto out_dput;
3122 	}
3123 
3124 	inode_lock(inode);
3125 	err = btrfs_delete_subvolume(dir, dentry);
3126 	inode_unlock(inode);
3127 	if (!err)
3128 		d_delete_notify(dir, dentry);
3129 
3130 out_dput:
3131 	dput(dentry);
3132 out_unlock_dir:
3133 	inode_unlock(dir);
3134 free_subvol_name:
3135 	kfree(subvol_name_ptr);
3136 free_parent:
3137 	if (destroy_parent)
3138 		dput(parent);
3139 out_drop_write:
3140 	mnt_drop_write_file(file);
3141 out:
3142 	kfree(vol_args2);
3143 	kfree(vol_args);
3144 	return err;
3145 }
3146 
btrfs_ioctl_defrag(struct file * file,void __user * argp)3147 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3148 {
3149 	struct inode *inode = file_inode(file);
3150 	struct btrfs_root *root = BTRFS_I(inode)->root;
3151 	struct btrfs_ioctl_defrag_range_args *range;
3152 	int ret;
3153 
3154 	ret = mnt_want_write_file(file);
3155 	if (ret)
3156 		return ret;
3157 
3158 	if (btrfs_root_readonly(root)) {
3159 		ret = -EROFS;
3160 		goto out;
3161 	}
3162 
3163 	switch (inode->i_mode & S_IFMT) {
3164 	case S_IFDIR:
3165 		if (!capable(CAP_SYS_ADMIN)) {
3166 			ret = -EPERM;
3167 			goto out;
3168 		}
3169 		ret = btrfs_defrag_root(root);
3170 		break;
3171 	case S_IFREG:
3172 		/*
3173 		 * Note that this does not check the file descriptor for write
3174 		 * access. This prevents defragmenting executables that are
3175 		 * running and allows defrag on files open in read-only mode.
3176 		 */
3177 		if (!capable(CAP_SYS_ADMIN) &&
3178 		    inode_permission(inode, MAY_WRITE)) {
3179 			ret = -EPERM;
3180 			goto out;
3181 		}
3182 
3183 		range = kzalloc(sizeof(*range), GFP_KERNEL);
3184 		if (!range) {
3185 			ret = -ENOMEM;
3186 			goto out;
3187 		}
3188 
3189 		if (argp) {
3190 			if (copy_from_user(range, argp,
3191 					   sizeof(*range))) {
3192 				ret = -EFAULT;
3193 				kfree(range);
3194 				goto out;
3195 			}
3196 			if (range->flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
3197 				ret = -EOPNOTSUPP;
3198 				goto out;
3199 			}
3200 			/* compression requires us to start the IO */
3201 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3202 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3203 				range->extent_thresh = (u32)-1;
3204 			}
3205 		} else {
3206 			/* the rest are all set to zero by kzalloc */
3207 			range->len = (u64)-1;
3208 		}
3209 		ret = btrfs_defrag_file(file_inode(file), file,
3210 					range, BTRFS_OLDEST_GENERATION, 0);
3211 		if (ret > 0)
3212 			ret = 0;
3213 		kfree(range);
3214 		break;
3215 	default:
3216 		ret = -EINVAL;
3217 	}
3218 out:
3219 	mnt_drop_write_file(file);
3220 	return ret;
3221 }
3222 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3223 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3224 {
3225 	struct btrfs_ioctl_vol_args *vol_args;
3226 	int ret;
3227 
3228 	if (!capable(CAP_SYS_ADMIN))
3229 		return -EPERM;
3230 
3231 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3232 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3233 
3234 	vol_args = memdup_user(arg, sizeof(*vol_args));
3235 	if (IS_ERR(vol_args)) {
3236 		ret = PTR_ERR(vol_args);
3237 		goto out;
3238 	}
3239 
3240 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3241 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3242 
3243 	if (!ret)
3244 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3245 
3246 	kfree(vol_args);
3247 out:
3248 	btrfs_exclop_finish(fs_info);
3249 	return ret;
3250 }
3251 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3252 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3253 {
3254 	struct inode *inode = file_inode(file);
3255 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3256 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3257 	int ret;
3258 
3259 	if (!capable(CAP_SYS_ADMIN))
3260 		return -EPERM;
3261 
3262 	ret = mnt_want_write_file(file);
3263 	if (ret)
3264 		return ret;
3265 
3266 	vol_args = memdup_user(arg, sizeof(*vol_args));
3267 	if (IS_ERR(vol_args)) {
3268 		ret = PTR_ERR(vol_args);
3269 		goto err_drop;
3270 	}
3271 
3272 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3273 		ret = -EOPNOTSUPP;
3274 		goto out;
3275 	}
3276 
3277 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3278 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3279 		goto out;
3280 	}
3281 
3282 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3283 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3284 	} else {
3285 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3286 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3287 	}
3288 	btrfs_exclop_finish(fs_info);
3289 
3290 	if (!ret) {
3291 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3292 			btrfs_info(fs_info, "device deleted: id %llu",
3293 					vol_args->devid);
3294 		else
3295 			btrfs_info(fs_info, "device deleted: %s",
3296 					vol_args->name);
3297 	}
3298 out:
3299 	kfree(vol_args);
3300 err_drop:
3301 	mnt_drop_write_file(file);
3302 	return ret;
3303 }
3304 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3305 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3306 {
3307 	struct inode *inode = file_inode(file);
3308 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3309 	struct btrfs_ioctl_vol_args *vol_args;
3310 	int ret;
3311 
3312 	if (!capable(CAP_SYS_ADMIN))
3313 		return -EPERM;
3314 
3315 	ret = mnt_want_write_file(file);
3316 	if (ret)
3317 		return ret;
3318 
3319 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3320 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3321 		goto out_drop_write;
3322 	}
3323 
3324 	vol_args = memdup_user(arg, sizeof(*vol_args));
3325 	if (IS_ERR(vol_args)) {
3326 		ret = PTR_ERR(vol_args);
3327 		goto out;
3328 	}
3329 
3330 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3331 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3332 
3333 	if (!ret)
3334 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3335 	kfree(vol_args);
3336 out:
3337 	btrfs_exclop_finish(fs_info);
3338 out_drop_write:
3339 	mnt_drop_write_file(file);
3340 
3341 	return ret;
3342 }
3343 
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3344 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3345 				void __user *arg)
3346 {
3347 	struct btrfs_ioctl_fs_info_args *fi_args;
3348 	struct btrfs_device *device;
3349 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3350 	u64 flags_in;
3351 	int ret = 0;
3352 
3353 	fi_args = memdup_user(arg, sizeof(*fi_args));
3354 	if (IS_ERR(fi_args))
3355 		return PTR_ERR(fi_args);
3356 
3357 	flags_in = fi_args->flags;
3358 	memset(fi_args, 0, sizeof(*fi_args));
3359 
3360 	rcu_read_lock();
3361 	fi_args->num_devices = fs_devices->num_devices;
3362 
3363 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3364 		if (device->devid > fi_args->max_id)
3365 			fi_args->max_id = device->devid;
3366 	}
3367 	rcu_read_unlock();
3368 
3369 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3370 	fi_args->nodesize = fs_info->nodesize;
3371 	fi_args->sectorsize = fs_info->sectorsize;
3372 	fi_args->clone_alignment = fs_info->sectorsize;
3373 
3374 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3375 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3376 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3377 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3378 	}
3379 
3380 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3381 		fi_args->generation = fs_info->generation;
3382 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3383 	}
3384 
3385 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3386 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3387 		       sizeof(fi_args->metadata_uuid));
3388 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3389 	}
3390 
3391 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3392 		ret = -EFAULT;
3393 
3394 	kfree(fi_args);
3395 	return ret;
3396 }
3397 
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3398 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3399 				 void __user *arg)
3400 {
3401 	struct btrfs_ioctl_dev_info_args *di_args;
3402 	struct btrfs_device *dev;
3403 	int ret = 0;
3404 	char *s_uuid = NULL;
3405 
3406 	di_args = memdup_user(arg, sizeof(*di_args));
3407 	if (IS_ERR(di_args))
3408 		return PTR_ERR(di_args);
3409 
3410 	if (!btrfs_is_empty_uuid(di_args->uuid))
3411 		s_uuid = di_args->uuid;
3412 
3413 	rcu_read_lock();
3414 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3415 				NULL, true);
3416 
3417 	if (!dev) {
3418 		ret = -ENODEV;
3419 		goto out;
3420 	}
3421 
3422 	di_args->devid = dev->devid;
3423 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3424 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3425 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3426 	if (dev->name)
3427 		strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path));
3428 	else
3429 		di_args->path[0] = '\0';
3430 
3431 out:
3432 	rcu_read_unlock();
3433 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3434 		ret = -EFAULT;
3435 
3436 	kfree(di_args);
3437 	return ret;
3438 }
3439 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3440 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3441 {
3442 	struct inode *inode = file_inode(file);
3443 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3444 	struct btrfs_root *root = BTRFS_I(inode)->root;
3445 	struct btrfs_root *new_root;
3446 	struct btrfs_dir_item *di;
3447 	struct btrfs_trans_handle *trans;
3448 	struct btrfs_path *path = NULL;
3449 	struct btrfs_disk_key disk_key;
3450 	u64 objectid = 0;
3451 	u64 dir_id;
3452 	int ret;
3453 
3454 	if (!capable(CAP_SYS_ADMIN))
3455 		return -EPERM;
3456 
3457 	ret = mnt_want_write_file(file);
3458 	if (ret)
3459 		return ret;
3460 
3461 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3462 		ret = -EFAULT;
3463 		goto out;
3464 	}
3465 
3466 	if (!objectid)
3467 		objectid = BTRFS_FS_TREE_OBJECTID;
3468 
3469 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3470 	if (IS_ERR(new_root)) {
3471 		ret = PTR_ERR(new_root);
3472 		goto out;
3473 	}
3474 	if (!is_fstree(new_root->root_key.objectid)) {
3475 		ret = -ENOENT;
3476 		goto out_free;
3477 	}
3478 
3479 	path = btrfs_alloc_path();
3480 	if (!path) {
3481 		ret = -ENOMEM;
3482 		goto out_free;
3483 	}
3484 	path->leave_spinning = 1;
3485 
3486 	trans = btrfs_start_transaction(root, 1);
3487 	if (IS_ERR(trans)) {
3488 		ret = PTR_ERR(trans);
3489 		goto out_free;
3490 	}
3491 
3492 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3493 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3494 				   dir_id, "default", 7, 1);
3495 	if (IS_ERR_OR_NULL(di)) {
3496 		btrfs_release_path(path);
3497 		btrfs_end_transaction(trans);
3498 		btrfs_err(fs_info,
3499 			  "Umm, you don't have the default diritem, this isn't going to work");
3500 		ret = -ENOENT;
3501 		goto out_free;
3502 	}
3503 
3504 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3505 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3506 	btrfs_mark_buffer_dirty(path->nodes[0]);
3507 	btrfs_release_path(path);
3508 
3509 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3510 	btrfs_end_transaction(trans);
3511 out_free:
3512 	btrfs_put_root(new_root);
3513 	btrfs_free_path(path);
3514 out:
3515 	mnt_drop_write_file(file);
3516 	return ret;
3517 }
3518 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3519 static void get_block_group_info(struct list_head *groups_list,
3520 				 struct btrfs_ioctl_space_info *space)
3521 {
3522 	struct btrfs_block_group *block_group;
3523 
3524 	space->total_bytes = 0;
3525 	space->used_bytes = 0;
3526 	space->flags = 0;
3527 	list_for_each_entry(block_group, groups_list, list) {
3528 		space->flags = block_group->flags;
3529 		space->total_bytes += block_group->length;
3530 		space->used_bytes += block_group->used;
3531 	}
3532 }
3533 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3534 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3535 				   void __user *arg)
3536 {
3537 	struct btrfs_ioctl_space_args space_args = { 0 };
3538 	struct btrfs_ioctl_space_info space;
3539 	struct btrfs_ioctl_space_info *dest;
3540 	struct btrfs_ioctl_space_info *dest_orig;
3541 	struct btrfs_ioctl_space_info __user *user_dest;
3542 	struct btrfs_space_info *info;
3543 	static const u64 types[] = {
3544 		BTRFS_BLOCK_GROUP_DATA,
3545 		BTRFS_BLOCK_GROUP_SYSTEM,
3546 		BTRFS_BLOCK_GROUP_METADATA,
3547 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3548 	};
3549 	int num_types = 4;
3550 	int alloc_size;
3551 	int ret = 0;
3552 	u64 slot_count = 0;
3553 	int i, c;
3554 
3555 	if (copy_from_user(&space_args,
3556 			   (struct btrfs_ioctl_space_args __user *)arg,
3557 			   sizeof(space_args)))
3558 		return -EFAULT;
3559 
3560 	for (i = 0; i < num_types; i++) {
3561 		struct btrfs_space_info *tmp;
3562 
3563 		info = NULL;
3564 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3565 			if (tmp->flags == types[i]) {
3566 				info = tmp;
3567 				break;
3568 			}
3569 		}
3570 
3571 		if (!info)
3572 			continue;
3573 
3574 		down_read(&info->groups_sem);
3575 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3576 			if (!list_empty(&info->block_groups[c]))
3577 				slot_count++;
3578 		}
3579 		up_read(&info->groups_sem);
3580 	}
3581 
3582 	/*
3583 	 * Global block reserve, exported as a space_info
3584 	 */
3585 	slot_count++;
3586 
3587 	/* space_slots == 0 means they are asking for a count */
3588 	if (space_args.space_slots == 0) {
3589 		space_args.total_spaces = slot_count;
3590 		goto out;
3591 	}
3592 
3593 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3594 
3595 	alloc_size = sizeof(*dest) * slot_count;
3596 
3597 	/* we generally have at most 6 or so space infos, one for each raid
3598 	 * level.  So, a whole page should be more than enough for everyone
3599 	 */
3600 	if (alloc_size > PAGE_SIZE)
3601 		return -ENOMEM;
3602 
3603 	space_args.total_spaces = 0;
3604 	dest = kmalloc(alloc_size, GFP_KERNEL);
3605 	if (!dest)
3606 		return -ENOMEM;
3607 	dest_orig = dest;
3608 
3609 	/* now we have a buffer to copy into */
3610 	for (i = 0; i < num_types; i++) {
3611 		struct btrfs_space_info *tmp;
3612 
3613 		if (!slot_count)
3614 			break;
3615 
3616 		info = NULL;
3617 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3618 			if (tmp->flags == types[i]) {
3619 				info = tmp;
3620 				break;
3621 			}
3622 		}
3623 
3624 		if (!info)
3625 			continue;
3626 		down_read(&info->groups_sem);
3627 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3628 			if (!list_empty(&info->block_groups[c])) {
3629 				get_block_group_info(&info->block_groups[c],
3630 						     &space);
3631 				memcpy(dest, &space, sizeof(space));
3632 				dest++;
3633 				space_args.total_spaces++;
3634 				slot_count--;
3635 			}
3636 			if (!slot_count)
3637 				break;
3638 		}
3639 		up_read(&info->groups_sem);
3640 	}
3641 
3642 	/*
3643 	 * Add global block reserve
3644 	 */
3645 	if (slot_count) {
3646 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3647 
3648 		spin_lock(&block_rsv->lock);
3649 		space.total_bytes = block_rsv->size;
3650 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3651 		spin_unlock(&block_rsv->lock);
3652 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3653 		memcpy(dest, &space, sizeof(space));
3654 		space_args.total_spaces++;
3655 	}
3656 
3657 	user_dest = (struct btrfs_ioctl_space_info __user *)
3658 		(arg + sizeof(struct btrfs_ioctl_space_args));
3659 
3660 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3661 		ret = -EFAULT;
3662 
3663 	kfree(dest_orig);
3664 out:
3665 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3666 		ret = -EFAULT;
3667 
3668 	return ret;
3669 }
3670 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3671 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3672 					    void __user *argp)
3673 {
3674 	struct btrfs_trans_handle *trans;
3675 	u64 transid;
3676 	int ret;
3677 
3678 	trans = btrfs_attach_transaction_barrier(root);
3679 	if (IS_ERR(trans)) {
3680 		if (PTR_ERR(trans) != -ENOENT)
3681 			return PTR_ERR(trans);
3682 
3683 		/* No running transaction, don't bother */
3684 		transid = root->fs_info->last_trans_committed;
3685 		goto out;
3686 	}
3687 	transid = trans->transid;
3688 	ret = btrfs_commit_transaction_async(trans, 0);
3689 	if (ret) {
3690 		btrfs_end_transaction(trans);
3691 		return ret;
3692 	}
3693 out:
3694 	if (argp)
3695 		if (copy_to_user(argp, &transid, sizeof(transid)))
3696 			return -EFAULT;
3697 	return 0;
3698 }
3699 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3700 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3701 					   void __user *argp)
3702 {
3703 	u64 transid;
3704 
3705 	if (argp) {
3706 		if (copy_from_user(&transid, argp, sizeof(transid)))
3707 			return -EFAULT;
3708 	} else {
3709 		transid = 0;  /* current trans */
3710 	}
3711 	return btrfs_wait_for_commit(fs_info, transid);
3712 }
3713 
btrfs_ioctl_scrub(struct file * file,void __user * arg)3714 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3715 {
3716 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3717 	struct btrfs_ioctl_scrub_args *sa;
3718 	int ret;
3719 
3720 	if (!capable(CAP_SYS_ADMIN))
3721 		return -EPERM;
3722 
3723 	sa = memdup_user(arg, sizeof(*sa));
3724 	if (IS_ERR(sa))
3725 		return PTR_ERR(sa);
3726 
3727 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3728 		ret = -EOPNOTSUPP;
3729 		goto out;
3730 	}
3731 
3732 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3733 		ret = mnt_want_write_file(file);
3734 		if (ret)
3735 			goto out;
3736 	}
3737 
3738 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3739 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3740 			      0);
3741 
3742 	/*
3743 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3744 	 * error. This is important as it allows user space to know how much
3745 	 * progress scrub has done. For example, if scrub is canceled we get
3746 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3747 	 * space. Later user space can inspect the progress from the structure
3748 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3749 	 * previously (btrfs-progs does this).
3750 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3751 	 * then return -EFAULT to signal the structure was not copied or it may
3752 	 * be corrupt and unreliable due to a partial copy.
3753 	 */
3754 	if (copy_to_user(arg, sa, sizeof(*sa)))
3755 		ret = -EFAULT;
3756 
3757 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3758 		mnt_drop_write_file(file);
3759 out:
3760 	kfree(sa);
3761 	return ret;
3762 }
3763 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3764 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3765 {
3766 	if (!capable(CAP_SYS_ADMIN))
3767 		return -EPERM;
3768 
3769 	return btrfs_scrub_cancel(fs_info);
3770 }
3771 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3772 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3773 				       void __user *arg)
3774 {
3775 	struct btrfs_ioctl_scrub_args *sa;
3776 	int ret;
3777 
3778 	if (!capable(CAP_SYS_ADMIN))
3779 		return -EPERM;
3780 
3781 	sa = memdup_user(arg, sizeof(*sa));
3782 	if (IS_ERR(sa))
3783 		return PTR_ERR(sa);
3784 
3785 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3786 
3787 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3788 		ret = -EFAULT;
3789 
3790 	kfree(sa);
3791 	return ret;
3792 }
3793 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3794 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3795 				      void __user *arg)
3796 {
3797 	struct btrfs_ioctl_get_dev_stats *sa;
3798 	int ret;
3799 
3800 	sa = memdup_user(arg, sizeof(*sa));
3801 	if (IS_ERR(sa))
3802 		return PTR_ERR(sa);
3803 
3804 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3805 		kfree(sa);
3806 		return -EPERM;
3807 	}
3808 
3809 	ret = btrfs_get_dev_stats(fs_info, sa);
3810 
3811 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3812 		ret = -EFAULT;
3813 
3814 	kfree(sa);
3815 	return ret;
3816 }
3817 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3818 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3819 				    void __user *arg)
3820 {
3821 	struct btrfs_ioctl_dev_replace_args *p;
3822 	int ret;
3823 
3824 	if (!capable(CAP_SYS_ADMIN))
3825 		return -EPERM;
3826 
3827 	p = memdup_user(arg, sizeof(*p));
3828 	if (IS_ERR(p))
3829 		return PTR_ERR(p);
3830 
3831 	switch (p->cmd) {
3832 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3833 		if (sb_rdonly(fs_info->sb)) {
3834 			ret = -EROFS;
3835 			goto out;
3836 		}
3837 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3838 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3839 		} else {
3840 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3841 			btrfs_exclop_finish(fs_info);
3842 		}
3843 		break;
3844 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3845 		btrfs_dev_replace_status(fs_info, p);
3846 		ret = 0;
3847 		break;
3848 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3849 		p->result = btrfs_dev_replace_cancel(fs_info);
3850 		ret = 0;
3851 		break;
3852 	default:
3853 		ret = -EINVAL;
3854 		break;
3855 	}
3856 
3857 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3858 		ret = -EFAULT;
3859 out:
3860 	kfree(p);
3861 	return ret;
3862 }
3863 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3864 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3865 {
3866 	int ret = 0;
3867 	int i;
3868 	u64 rel_ptr;
3869 	int size;
3870 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3871 	struct inode_fs_paths *ipath = NULL;
3872 	struct btrfs_path *path;
3873 
3874 	if (!capable(CAP_DAC_READ_SEARCH))
3875 		return -EPERM;
3876 
3877 	path = btrfs_alloc_path();
3878 	if (!path) {
3879 		ret = -ENOMEM;
3880 		goto out;
3881 	}
3882 
3883 	ipa = memdup_user(arg, sizeof(*ipa));
3884 	if (IS_ERR(ipa)) {
3885 		ret = PTR_ERR(ipa);
3886 		ipa = NULL;
3887 		goto out;
3888 	}
3889 
3890 	size = min_t(u32, ipa->size, 4096);
3891 	ipath = init_ipath(size, root, path);
3892 	if (IS_ERR(ipath)) {
3893 		ret = PTR_ERR(ipath);
3894 		ipath = NULL;
3895 		goto out;
3896 	}
3897 
3898 	ret = paths_from_inode(ipa->inum, ipath);
3899 	if (ret < 0)
3900 		goto out;
3901 
3902 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3903 		rel_ptr = ipath->fspath->val[i] -
3904 			  (u64)(unsigned long)ipath->fspath->val;
3905 		ipath->fspath->val[i] = rel_ptr;
3906 	}
3907 
3908 	btrfs_free_path(path);
3909 	path = NULL;
3910 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3911 			   ipath->fspath, size);
3912 	if (ret) {
3913 		ret = -EFAULT;
3914 		goto out;
3915 	}
3916 
3917 out:
3918 	btrfs_free_path(path);
3919 	free_ipath(ipath);
3920 	kfree(ipa);
3921 
3922 	return ret;
3923 }
3924 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3925 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3926 					void __user *arg, int version)
3927 {
3928 	int ret = 0;
3929 	int size;
3930 	struct btrfs_ioctl_logical_ino_args *loi;
3931 	struct btrfs_data_container *inodes = NULL;
3932 	struct btrfs_path *path = NULL;
3933 	bool ignore_offset;
3934 
3935 	if (!capable(CAP_SYS_ADMIN))
3936 		return -EPERM;
3937 
3938 	loi = memdup_user(arg, sizeof(*loi));
3939 	if (IS_ERR(loi))
3940 		return PTR_ERR(loi);
3941 
3942 	if (version == 1) {
3943 		ignore_offset = false;
3944 		size = min_t(u32, loi->size, SZ_64K);
3945 	} else {
3946 		/* All reserved bits must be 0 for now */
3947 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3948 			ret = -EINVAL;
3949 			goto out_loi;
3950 		}
3951 		/* Only accept flags we have defined so far */
3952 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3953 			ret = -EINVAL;
3954 			goto out_loi;
3955 		}
3956 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3957 		size = min_t(u32, loi->size, SZ_16M);
3958 	}
3959 
3960 	inodes = init_data_container(size);
3961 	if (IS_ERR(inodes)) {
3962 		ret = PTR_ERR(inodes);
3963 		goto out_loi;
3964 	}
3965 
3966 	path = btrfs_alloc_path();
3967 	if (!path) {
3968 		ret = -ENOMEM;
3969 		goto out;
3970 	}
3971 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3972 					  inodes, ignore_offset);
3973 	btrfs_free_path(path);
3974 	if (ret == -EINVAL)
3975 		ret = -ENOENT;
3976 	if (ret < 0)
3977 		goto out;
3978 
3979 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3980 			   size);
3981 	if (ret)
3982 		ret = -EFAULT;
3983 
3984 out:
3985 	kvfree(inodes);
3986 out_loi:
3987 	kfree(loi);
3988 
3989 	return ret;
3990 }
3991 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3992 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3993 			       struct btrfs_ioctl_balance_args *bargs)
3994 {
3995 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3996 
3997 	bargs->flags = bctl->flags;
3998 
3999 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4000 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4001 	if (atomic_read(&fs_info->balance_pause_req))
4002 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4003 	if (atomic_read(&fs_info->balance_cancel_req))
4004 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4005 
4006 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4007 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4008 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4009 
4010 	spin_lock(&fs_info->balance_lock);
4011 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4012 	spin_unlock(&fs_info->balance_lock);
4013 }
4014 
btrfs_ioctl_balance(struct file * file,void __user * arg)4015 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4016 {
4017 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4018 	struct btrfs_fs_info *fs_info = root->fs_info;
4019 	struct btrfs_ioctl_balance_args *bargs;
4020 	struct btrfs_balance_control *bctl;
4021 	bool need_unlock; /* for mut. excl. ops lock */
4022 	int ret;
4023 
4024 	if (!capable(CAP_SYS_ADMIN))
4025 		return -EPERM;
4026 
4027 	ret = mnt_want_write_file(file);
4028 	if (ret)
4029 		return ret;
4030 
4031 again:
4032 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4033 		mutex_lock(&fs_info->balance_mutex);
4034 		need_unlock = true;
4035 		goto locked;
4036 	}
4037 
4038 	/*
4039 	 * mut. excl. ops lock is locked.  Three possibilities:
4040 	 *   (1) some other op is running
4041 	 *   (2) balance is running
4042 	 *   (3) balance is paused -- special case (think resume)
4043 	 */
4044 	mutex_lock(&fs_info->balance_mutex);
4045 	if (fs_info->balance_ctl) {
4046 		/* this is either (2) or (3) */
4047 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4048 			mutex_unlock(&fs_info->balance_mutex);
4049 			/*
4050 			 * Lock released to allow other waiters to continue,
4051 			 * we'll reexamine the status again.
4052 			 */
4053 			mutex_lock(&fs_info->balance_mutex);
4054 
4055 			if (fs_info->balance_ctl &&
4056 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4057 				/* this is (3) */
4058 				need_unlock = false;
4059 				goto locked;
4060 			}
4061 
4062 			mutex_unlock(&fs_info->balance_mutex);
4063 			goto again;
4064 		} else {
4065 			/* this is (2) */
4066 			mutex_unlock(&fs_info->balance_mutex);
4067 			ret = -EINPROGRESS;
4068 			goto out;
4069 		}
4070 	} else {
4071 		/* this is (1) */
4072 		mutex_unlock(&fs_info->balance_mutex);
4073 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4074 		goto out;
4075 	}
4076 
4077 locked:
4078 
4079 	if (arg) {
4080 		bargs = memdup_user(arg, sizeof(*bargs));
4081 		if (IS_ERR(bargs)) {
4082 			ret = PTR_ERR(bargs);
4083 			goto out_unlock;
4084 		}
4085 
4086 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4087 			if (!fs_info->balance_ctl) {
4088 				ret = -ENOTCONN;
4089 				goto out_bargs;
4090 			}
4091 
4092 			bctl = fs_info->balance_ctl;
4093 			spin_lock(&fs_info->balance_lock);
4094 			bctl->flags |= BTRFS_BALANCE_RESUME;
4095 			spin_unlock(&fs_info->balance_lock);
4096 
4097 			goto do_balance;
4098 		}
4099 	} else {
4100 		bargs = NULL;
4101 	}
4102 
4103 	if (fs_info->balance_ctl) {
4104 		ret = -EINPROGRESS;
4105 		goto out_bargs;
4106 	}
4107 
4108 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4109 	if (!bctl) {
4110 		ret = -ENOMEM;
4111 		goto out_bargs;
4112 	}
4113 
4114 	if (arg) {
4115 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4116 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4117 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4118 
4119 		bctl->flags = bargs->flags;
4120 	} else {
4121 		/* balance everything - no filters */
4122 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4123 	}
4124 
4125 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4126 		ret = -EINVAL;
4127 		goto out_bctl;
4128 	}
4129 
4130 do_balance:
4131 	/*
4132 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4133 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4134 	 * all the way until unmount, in free_fs_info.  The flag should be
4135 	 * cleared after reset_balance_state.
4136 	 */
4137 	need_unlock = false;
4138 
4139 	ret = btrfs_balance(fs_info, bctl, bargs);
4140 	bctl = NULL;
4141 
4142 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4143 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4144 			ret = -EFAULT;
4145 	}
4146 
4147 out_bctl:
4148 	kfree(bctl);
4149 out_bargs:
4150 	kfree(bargs);
4151 out_unlock:
4152 	mutex_unlock(&fs_info->balance_mutex);
4153 	if (need_unlock)
4154 		btrfs_exclop_finish(fs_info);
4155 out:
4156 	mnt_drop_write_file(file);
4157 	return ret;
4158 }
4159 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4160 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4161 {
4162 	if (!capable(CAP_SYS_ADMIN))
4163 		return -EPERM;
4164 
4165 	switch (cmd) {
4166 	case BTRFS_BALANCE_CTL_PAUSE:
4167 		return btrfs_pause_balance(fs_info);
4168 	case BTRFS_BALANCE_CTL_CANCEL:
4169 		return btrfs_cancel_balance(fs_info);
4170 	}
4171 
4172 	return -EINVAL;
4173 }
4174 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4175 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4176 					 void __user *arg)
4177 {
4178 	struct btrfs_ioctl_balance_args *bargs;
4179 	int ret = 0;
4180 
4181 	if (!capable(CAP_SYS_ADMIN))
4182 		return -EPERM;
4183 
4184 	mutex_lock(&fs_info->balance_mutex);
4185 	if (!fs_info->balance_ctl) {
4186 		ret = -ENOTCONN;
4187 		goto out;
4188 	}
4189 
4190 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4191 	if (!bargs) {
4192 		ret = -ENOMEM;
4193 		goto out;
4194 	}
4195 
4196 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4197 
4198 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4199 		ret = -EFAULT;
4200 
4201 	kfree(bargs);
4202 out:
4203 	mutex_unlock(&fs_info->balance_mutex);
4204 	return ret;
4205 }
4206 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4207 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4208 {
4209 	struct inode *inode = file_inode(file);
4210 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4211 	struct btrfs_ioctl_quota_ctl_args *sa;
4212 	int ret;
4213 
4214 	if (!capable(CAP_SYS_ADMIN))
4215 		return -EPERM;
4216 
4217 	ret = mnt_want_write_file(file);
4218 	if (ret)
4219 		return ret;
4220 
4221 	sa = memdup_user(arg, sizeof(*sa));
4222 	if (IS_ERR(sa)) {
4223 		ret = PTR_ERR(sa);
4224 		goto drop_write;
4225 	}
4226 
4227 	down_write(&fs_info->subvol_sem);
4228 
4229 	switch (sa->cmd) {
4230 	case BTRFS_QUOTA_CTL_ENABLE:
4231 		ret = btrfs_quota_enable(fs_info);
4232 		break;
4233 	case BTRFS_QUOTA_CTL_DISABLE:
4234 		ret = btrfs_quota_disable(fs_info);
4235 		break;
4236 	default:
4237 		ret = -EINVAL;
4238 		break;
4239 	}
4240 
4241 	kfree(sa);
4242 	up_write(&fs_info->subvol_sem);
4243 drop_write:
4244 	mnt_drop_write_file(file);
4245 	return ret;
4246 }
4247 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4248 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4249 {
4250 	struct inode *inode = file_inode(file);
4251 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4252 	struct btrfs_root *root = BTRFS_I(inode)->root;
4253 	struct btrfs_ioctl_qgroup_assign_args *sa;
4254 	struct btrfs_trans_handle *trans;
4255 	int ret;
4256 	int err;
4257 
4258 	if (!capable(CAP_SYS_ADMIN))
4259 		return -EPERM;
4260 
4261 	ret = mnt_want_write_file(file);
4262 	if (ret)
4263 		return ret;
4264 
4265 	sa = memdup_user(arg, sizeof(*sa));
4266 	if (IS_ERR(sa)) {
4267 		ret = PTR_ERR(sa);
4268 		goto drop_write;
4269 	}
4270 
4271 	trans = btrfs_join_transaction(root);
4272 	if (IS_ERR(trans)) {
4273 		ret = PTR_ERR(trans);
4274 		goto out;
4275 	}
4276 
4277 	if (sa->assign) {
4278 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4279 	} else {
4280 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4281 	}
4282 
4283 	/* update qgroup status and info */
4284 	mutex_lock(&fs_info->qgroup_ioctl_lock);
4285 	err = btrfs_run_qgroups(trans);
4286 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
4287 	if (err < 0)
4288 		btrfs_handle_fs_error(fs_info, err,
4289 				      "failed to update qgroup status and info");
4290 	err = btrfs_end_transaction(trans);
4291 	if (err && !ret)
4292 		ret = err;
4293 
4294 out:
4295 	kfree(sa);
4296 drop_write:
4297 	mnt_drop_write_file(file);
4298 	return ret;
4299 }
4300 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4301 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4302 {
4303 	struct inode *inode = file_inode(file);
4304 	struct btrfs_root *root = BTRFS_I(inode)->root;
4305 	struct btrfs_ioctl_qgroup_create_args *sa;
4306 	struct btrfs_trans_handle *trans;
4307 	int ret;
4308 	int err;
4309 
4310 	if (!capable(CAP_SYS_ADMIN))
4311 		return -EPERM;
4312 
4313 	ret = mnt_want_write_file(file);
4314 	if (ret)
4315 		return ret;
4316 
4317 	sa = memdup_user(arg, sizeof(*sa));
4318 	if (IS_ERR(sa)) {
4319 		ret = PTR_ERR(sa);
4320 		goto drop_write;
4321 	}
4322 
4323 	if (!sa->qgroupid) {
4324 		ret = -EINVAL;
4325 		goto out;
4326 	}
4327 
4328 	if (sa->create && is_fstree(sa->qgroupid)) {
4329 		ret = -EINVAL;
4330 		goto out;
4331 	}
4332 
4333 	trans = btrfs_join_transaction(root);
4334 	if (IS_ERR(trans)) {
4335 		ret = PTR_ERR(trans);
4336 		goto out;
4337 	}
4338 
4339 	if (sa->create) {
4340 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4341 	} else {
4342 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4343 	}
4344 
4345 	err = btrfs_end_transaction(trans);
4346 	if (err && !ret)
4347 		ret = err;
4348 
4349 out:
4350 	kfree(sa);
4351 drop_write:
4352 	mnt_drop_write_file(file);
4353 	return ret;
4354 }
4355 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4356 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4357 {
4358 	struct inode *inode = file_inode(file);
4359 	struct btrfs_root *root = BTRFS_I(inode)->root;
4360 	struct btrfs_ioctl_qgroup_limit_args *sa;
4361 	struct btrfs_trans_handle *trans;
4362 	int ret;
4363 	int err;
4364 	u64 qgroupid;
4365 
4366 	if (!capable(CAP_SYS_ADMIN))
4367 		return -EPERM;
4368 
4369 	ret = mnt_want_write_file(file);
4370 	if (ret)
4371 		return ret;
4372 
4373 	sa = memdup_user(arg, sizeof(*sa));
4374 	if (IS_ERR(sa)) {
4375 		ret = PTR_ERR(sa);
4376 		goto drop_write;
4377 	}
4378 
4379 	trans = btrfs_join_transaction(root);
4380 	if (IS_ERR(trans)) {
4381 		ret = PTR_ERR(trans);
4382 		goto out;
4383 	}
4384 
4385 	qgroupid = sa->qgroupid;
4386 	if (!qgroupid) {
4387 		/* take the current subvol as qgroup */
4388 		qgroupid = root->root_key.objectid;
4389 	}
4390 
4391 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4392 
4393 	err = btrfs_end_transaction(trans);
4394 	if (err && !ret)
4395 		ret = err;
4396 
4397 out:
4398 	kfree(sa);
4399 drop_write:
4400 	mnt_drop_write_file(file);
4401 	return ret;
4402 }
4403 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4404 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4405 {
4406 	struct inode *inode = file_inode(file);
4407 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4408 	struct btrfs_ioctl_quota_rescan_args *qsa;
4409 	int ret;
4410 
4411 	if (!capable(CAP_SYS_ADMIN))
4412 		return -EPERM;
4413 
4414 	ret = mnt_want_write_file(file);
4415 	if (ret)
4416 		return ret;
4417 
4418 	qsa = memdup_user(arg, sizeof(*qsa));
4419 	if (IS_ERR(qsa)) {
4420 		ret = PTR_ERR(qsa);
4421 		goto drop_write;
4422 	}
4423 
4424 	if (qsa->flags) {
4425 		ret = -EINVAL;
4426 		goto out;
4427 	}
4428 
4429 	ret = btrfs_qgroup_rescan(fs_info);
4430 
4431 out:
4432 	kfree(qsa);
4433 drop_write:
4434 	mnt_drop_write_file(file);
4435 	return ret;
4436 }
4437 
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4438 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4439 						void __user *arg)
4440 {
4441 	struct btrfs_ioctl_quota_rescan_args *qsa;
4442 	int ret = 0;
4443 
4444 	if (!capable(CAP_SYS_ADMIN))
4445 		return -EPERM;
4446 
4447 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4448 	if (!qsa)
4449 		return -ENOMEM;
4450 
4451 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4452 		qsa->flags = 1;
4453 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4454 	}
4455 
4456 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4457 		ret = -EFAULT;
4458 
4459 	kfree(qsa);
4460 	return ret;
4461 }
4462 
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4463 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4464 						void __user *arg)
4465 {
4466 	if (!capable(CAP_SYS_ADMIN))
4467 		return -EPERM;
4468 
4469 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4470 }
4471 
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)4472 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4473 					    struct btrfs_ioctl_received_subvol_args *sa)
4474 {
4475 	struct inode *inode = file_inode(file);
4476 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4477 	struct btrfs_root *root = BTRFS_I(inode)->root;
4478 	struct btrfs_root_item *root_item = &root->root_item;
4479 	struct btrfs_trans_handle *trans;
4480 	struct timespec64 ct = current_time(inode);
4481 	int ret = 0;
4482 	int received_uuid_changed;
4483 
4484 	if (!inode_owner_or_capable(inode))
4485 		return -EPERM;
4486 
4487 	ret = mnt_want_write_file(file);
4488 	if (ret < 0)
4489 		return ret;
4490 
4491 	down_write(&fs_info->subvol_sem);
4492 
4493 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4494 		ret = -EINVAL;
4495 		goto out;
4496 	}
4497 
4498 	if (btrfs_root_readonly(root)) {
4499 		ret = -EROFS;
4500 		goto out;
4501 	}
4502 
4503 	/*
4504 	 * 1 - root item
4505 	 * 2 - uuid items (received uuid + subvol uuid)
4506 	 */
4507 	trans = btrfs_start_transaction(root, 3);
4508 	if (IS_ERR(trans)) {
4509 		ret = PTR_ERR(trans);
4510 		trans = NULL;
4511 		goto out;
4512 	}
4513 
4514 	sa->rtransid = trans->transid;
4515 	sa->rtime.sec = ct.tv_sec;
4516 	sa->rtime.nsec = ct.tv_nsec;
4517 
4518 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4519 				       BTRFS_UUID_SIZE);
4520 	if (received_uuid_changed &&
4521 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4522 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4523 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4524 					  root->root_key.objectid);
4525 		if (ret && ret != -ENOENT) {
4526 		        btrfs_abort_transaction(trans, ret);
4527 		        btrfs_end_transaction(trans);
4528 		        goto out;
4529 		}
4530 	}
4531 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4532 	btrfs_set_root_stransid(root_item, sa->stransid);
4533 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4534 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4535 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4536 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4537 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4538 
4539 	ret = btrfs_update_root(trans, fs_info->tree_root,
4540 				&root->root_key, &root->root_item);
4541 	if (ret < 0) {
4542 		btrfs_end_transaction(trans);
4543 		goto out;
4544 	}
4545 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4546 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4547 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4548 					  root->root_key.objectid);
4549 		if (ret < 0 && ret != -EEXIST) {
4550 			btrfs_abort_transaction(trans, ret);
4551 			btrfs_end_transaction(trans);
4552 			goto out;
4553 		}
4554 	}
4555 	ret = btrfs_commit_transaction(trans);
4556 out:
4557 	up_write(&fs_info->subvol_sem);
4558 	mnt_drop_write_file(file);
4559 	return ret;
4560 }
4561 
4562 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4563 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4564 						void __user *arg)
4565 {
4566 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4567 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4568 	int ret = 0;
4569 
4570 	args32 = memdup_user(arg, sizeof(*args32));
4571 	if (IS_ERR(args32))
4572 		return PTR_ERR(args32);
4573 
4574 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4575 	if (!args64) {
4576 		ret = -ENOMEM;
4577 		goto out;
4578 	}
4579 
4580 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4581 	args64->stransid = args32->stransid;
4582 	args64->rtransid = args32->rtransid;
4583 	args64->stime.sec = args32->stime.sec;
4584 	args64->stime.nsec = args32->stime.nsec;
4585 	args64->rtime.sec = args32->rtime.sec;
4586 	args64->rtime.nsec = args32->rtime.nsec;
4587 	args64->flags = args32->flags;
4588 
4589 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4590 	if (ret)
4591 		goto out;
4592 
4593 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4594 	args32->stransid = args64->stransid;
4595 	args32->rtransid = args64->rtransid;
4596 	args32->stime.sec = args64->stime.sec;
4597 	args32->stime.nsec = args64->stime.nsec;
4598 	args32->rtime.sec = args64->rtime.sec;
4599 	args32->rtime.nsec = args64->rtime.nsec;
4600 	args32->flags = args64->flags;
4601 
4602 	ret = copy_to_user(arg, args32, sizeof(*args32));
4603 	if (ret)
4604 		ret = -EFAULT;
4605 
4606 out:
4607 	kfree(args32);
4608 	kfree(args64);
4609 	return ret;
4610 }
4611 #endif
4612 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4613 static long btrfs_ioctl_set_received_subvol(struct file *file,
4614 					    void __user *arg)
4615 {
4616 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4617 	int ret = 0;
4618 
4619 	sa = memdup_user(arg, sizeof(*sa));
4620 	if (IS_ERR(sa))
4621 		return PTR_ERR(sa);
4622 
4623 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4624 
4625 	if (ret)
4626 		goto out;
4627 
4628 	ret = copy_to_user(arg, sa, sizeof(*sa));
4629 	if (ret)
4630 		ret = -EFAULT;
4631 
4632 out:
4633 	kfree(sa);
4634 	return ret;
4635 }
4636 
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4637 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4638 					void __user *arg)
4639 {
4640 	size_t len;
4641 	int ret;
4642 	char label[BTRFS_LABEL_SIZE];
4643 
4644 	spin_lock(&fs_info->super_lock);
4645 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4646 	spin_unlock(&fs_info->super_lock);
4647 
4648 	len = strnlen(label, BTRFS_LABEL_SIZE);
4649 
4650 	if (len == BTRFS_LABEL_SIZE) {
4651 		btrfs_warn(fs_info,
4652 			   "label is too long, return the first %zu bytes",
4653 			   --len);
4654 	}
4655 
4656 	ret = copy_to_user(arg, label, len);
4657 
4658 	return ret ? -EFAULT : 0;
4659 }
4660 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4661 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4662 {
4663 	struct inode *inode = file_inode(file);
4664 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4665 	struct btrfs_root *root = BTRFS_I(inode)->root;
4666 	struct btrfs_super_block *super_block = fs_info->super_copy;
4667 	struct btrfs_trans_handle *trans;
4668 	char label[BTRFS_LABEL_SIZE];
4669 	int ret;
4670 
4671 	if (!capable(CAP_SYS_ADMIN))
4672 		return -EPERM;
4673 
4674 	if (copy_from_user(label, arg, sizeof(label)))
4675 		return -EFAULT;
4676 
4677 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4678 		btrfs_err(fs_info,
4679 			  "unable to set label with more than %d bytes",
4680 			  BTRFS_LABEL_SIZE - 1);
4681 		return -EINVAL;
4682 	}
4683 
4684 	ret = mnt_want_write_file(file);
4685 	if (ret)
4686 		return ret;
4687 
4688 	trans = btrfs_start_transaction(root, 0);
4689 	if (IS_ERR(trans)) {
4690 		ret = PTR_ERR(trans);
4691 		goto out_unlock;
4692 	}
4693 
4694 	spin_lock(&fs_info->super_lock);
4695 	strcpy(super_block->label, label);
4696 	spin_unlock(&fs_info->super_lock);
4697 	ret = btrfs_commit_transaction(trans);
4698 
4699 out_unlock:
4700 	mnt_drop_write_file(file);
4701 	return ret;
4702 }
4703 
4704 #define INIT_FEATURE_FLAGS(suffix) \
4705 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4706 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4707 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4708 
btrfs_ioctl_get_supported_features(void __user * arg)4709 int btrfs_ioctl_get_supported_features(void __user *arg)
4710 {
4711 	static const struct btrfs_ioctl_feature_flags features[3] = {
4712 		INIT_FEATURE_FLAGS(SUPP),
4713 		INIT_FEATURE_FLAGS(SAFE_SET),
4714 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4715 	};
4716 
4717 	if (copy_to_user(arg, &features, sizeof(features)))
4718 		return -EFAULT;
4719 
4720 	return 0;
4721 }
4722 
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4723 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4724 					void __user *arg)
4725 {
4726 	struct btrfs_super_block *super_block = fs_info->super_copy;
4727 	struct btrfs_ioctl_feature_flags features;
4728 
4729 	features.compat_flags = btrfs_super_compat_flags(super_block);
4730 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4731 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4732 
4733 	if (copy_to_user(arg, &features, sizeof(features)))
4734 		return -EFAULT;
4735 
4736 	return 0;
4737 }
4738 
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4739 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4740 			      enum btrfs_feature_set set,
4741 			      u64 change_mask, u64 flags, u64 supported_flags,
4742 			      u64 safe_set, u64 safe_clear)
4743 {
4744 	const char *type = btrfs_feature_set_name(set);
4745 	char *names;
4746 	u64 disallowed, unsupported;
4747 	u64 set_mask = flags & change_mask;
4748 	u64 clear_mask = ~flags & change_mask;
4749 
4750 	unsupported = set_mask & ~supported_flags;
4751 	if (unsupported) {
4752 		names = btrfs_printable_features(set, unsupported);
4753 		if (names) {
4754 			btrfs_warn(fs_info,
4755 				   "this kernel does not support the %s feature bit%s",
4756 				   names, strchr(names, ',') ? "s" : "");
4757 			kfree(names);
4758 		} else
4759 			btrfs_warn(fs_info,
4760 				   "this kernel does not support %s bits 0x%llx",
4761 				   type, unsupported);
4762 		return -EOPNOTSUPP;
4763 	}
4764 
4765 	disallowed = set_mask & ~safe_set;
4766 	if (disallowed) {
4767 		names = btrfs_printable_features(set, disallowed);
4768 		if (names) {
4769 			btrfs_warn(fs_info,
4770 				   "can't set the %s feature bit%s while mounted",
4771 				   names, strchr(names, ',') ? "s" : "");
4772 			kfree(names);
4773 		} else
4774 			btrfs_warn(fs_info,
4775 				   "can't set %s bits 0x%llx while mounted",
4776 				   type, disallowed);
4777 		return -EPERM;
4778 	}
4779 
4780 	disallowed = clear_mask & ~safe_clear;
4781 	if (disallowed) {
4782 		names = btrfs_printable_features(set, disallowed);
4783 		if (names) {
4784 			btrfs_warn(fs_info,
4785 				   "can't clear the %s feature bit%s while mounted",
4786 				   names, strchr(names, ',') ? "s" : "");
4787 			kfree(names);
4788 		} else
4789 			btrfs_warn(fs_info,
4790 				   "can't clear %s bits 0x%llx while mounted",
4791 				   type, disallowed);
4792 		return -EPERM;
4793 	}
4794 
4795 	return 0;
4796 }
4797 
4798 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4799 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4800 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4801 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4802 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4803 
btrfs_ioctl_set_features(struct file * file,void __user * arg)4804 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4805 {
4806 	struct inode *inode = file_inode(file);
4807 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4808 	struct btrfs_root *root = BTRFS_I(inode)->root;
4809 	struct btrfs_super_block *super_block = fs_info->super_copy;
4810 	struct btrfs_ioctl_feature_flags flags[2];
4811 	struct btrfs_trans_handle *trans;
4812 	u64 newflags;
4813 	int ret;
4814 
4815 	if (!capable(CAP_SYS_ADMIN))
4816 		return -EPERM;
4817 
4818 	if (copy_from_user(flags, arg, sizeof(flags)))
4819 		return -EFAULT;
4820 
4821 	/* Nothing to do */
4822 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4823 	    !flags[0].incompat_flags)
4824 		return 0;
4825 
4826 	ret = check_feature(fs_info, flags[0].compat_flags,
4827 			    flags[1].compat_flags, COMPAT);
4828 	if (ret)
4829 		return ret;
4830 
4831 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4832 			    flags[1].compat_ro_flags, COMPAT_RO);
4833 	if (ret)
4834 		return ret;
4835 
4836 	ret = check_feature(fs_info, flags[0].incompat_flags,
4837 			    flags[1].incompat_flags, INCOMPAT);
4838 	if (ret)
4839 		return ret;
4840 
4841 	ret = mnt_want_write_file(file);
4842 	if (ret)
4843 		return ret;
4844 
4845 	trans = btrfs_start_transaction(root, 0);
4846 	if (IS_ERR(trans)) {
4847 		ret = PTR_ERR(trans);
4848 		goto out_drop_write;
4849 	}
4850 
4851 	spin_lock(&fs_info->super_lock);
4852 	newflags = btrfs_super_compat_flags(super_block);
4853 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4854 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4855 	btrfs_set_super_compat_flags(super_block, newflags);
4856 
4857 	newflags = btrfs_super_compat_ro_flags(super_block);
4858 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4859 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4860 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4861 
4862 	newflags = btrfs_super_incompat_flags(super_block);
4863 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4864 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4865 	btrfs_set_super_incompat_flags(super_block, newflags);
4866 	spin_unlock(&fs_info->super_lock);
4867 
4868 	ret = btrfs_commit_transaction(trans);
4869 out_drop_write:
4870 	mnt_drop_write_file(file);
4871 
4872 	return ret;
4873 }
4874 
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)4875 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4876 {
4877 	struct btrfs_ioctl_send_args *arg;
4878 	int ret;
4879 
4880 	if (compat) {
4881 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4882 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4883 
4884 		ret = copy_from_user(&args32, argp, sizeof(args32));
4885 		if (ret)
4886 			return -EFAULT;
4887 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4888 		if (!arg)
4889 			return -ENOMEM;
4890 		arg->send_fd = args32.send_fd;
4891 		arg->clone_sources_count = args32.clone_sources_count;
4892 		arg->clone_sources = compat_ptr(args32.clone_sources);
4893 		arg->parent_root = args32.parent_root;
4894 		arg->flags = args32.flags;
4895 		memcpy(arg->reserved, args32.reserved,
4896 		       sizeof(args32.reserved));
4897 #else
4898 		return -ENOTTY;
4899 #endif
4900 	} else {
4901 		arg = memdup_user(argp, sizeof(*arg));
4902 		if (IS_ERR(arg))
4903 			return PTR_ERR(arg);
4904 	}
4905 	ret = btrfs_ioctl_send(file, arg);
4906 	kfree(arg);
4907 	return ret;
4908 }
4909 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4910 long btrfs_ioctl(struct file *file, unsigned int
4911 		cmd, unsigned long arg)
4912 {
4913 	struct inode *inode = file_inode(file);
4914 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4915 	struct btrfs_root *root = BTRFS_I(inode)->root;
4916 	void __user *argp = (void __user *)arg;
4917 
4918 	switch (cmd) {
4919 	case FS_IOC_GETFLAGS:
4920 		return btrfs_ioctl_getflags(file, argp);
4921 	case FS_IOC_SETFLAGS:
4922 		return btrfs_ioctl_setflags(file, argp);
4923 	case FS_IOC_GETVERSION:
4924 		return btrfs_ioctl_getversion(file, argp);
4925 	case FS_IOC_GETFSLABEL:
4926 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4927 	case FS_IOC_SETFSLABEL:
4928 		return btrfs_ioctl_set_fslabel(file, argp);
4929 	case FITRIM:
4930 		return btrfs_ioctl_fitrim(fs_info, argp);
4931 	case BTRFS_IOC_SNAP_CREATE:
4932 		return btrfs_ioctl_snap_create(file, argp, 0);
4933 	case BTRFS_IOC_SNAP_CREATE_V2:
4934 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4935 	case BTRFS_IOC_SUBVOL_CREATE:
4936 		return btrfs_ioctl_snap_create(file, argp, 1);
4937 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4938 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4939 	case BTRFS_IOC_SNAP_DESTROY:
4940 		return btrfs_ioctl_snap_destroy(file, argp, false);
4941 	case BTRFS_IOC_SNAP_DESTROY_V2:
4942 		return btrfs_ioctl_snap_destroy(file, argp, true);
4943 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4944 		return btrfs_ioctl_subvol_getflags(file, argp);
4945 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4946 		return btrfs_ioctl_subvol_setflags(file, argp);
4947 	case BTRFS_IOC_DEFAULT_SUBVOL:
4948 		return btrfs_ioctl_default_subvol(file, argp);
4949 	case BTRFS_IOC_DEFRAG:
4950 		return btrfs_ioctl_defrag(file, NULL);
4951 	case BTRFS_IOC_DEFRAG_RANGE:
4952 		return btrfs_ioctl_defrag(file, argp);
4953 	case BTRFS_IOC_RESIZE:
4954 		return btrfs_ioctl_resize(file, argp);
4955 	case BTRFS_IOC_ADD_DEV:
4956 		return btrfs_ioctl_add_dev(fs_info, argp);
4957 	case BTRFS_IOC_RM_DEV:
4958 		return btrfs_ioctl_rm_dev(file, argp);
4959 	case BTRFS_IOC_RM_DEV_V2:
4960 		return btrfs_ioctl_rm_dev_v2(file, argp);
4961 	case BTRFS_IOC_FS_INFO:
4962 		return btrfs_ioctl_fs_info(fs_info, argp);
4963 	case BTRFS_IOC_DEV_INFO:
4964 		return btrfs_ioctl_dev_info(fs_info, argp);
4965 	case BTRFS_IOC_BALANCE:
4966 		return btrfs_ioctl_balance(file, NULL);
4967 	case BTRFS_IOC_TREE_SEARCH:
4968 		return btrfs_ioctl_tree_search(file, argp);
4969 	case BTRFS_IOC_TREE_SEARCH_V2:
4970 		return btrfs_ioctl_tree_search_v2(file, argp);
4971 	case BTRFS_IOC_INO_LOOKUP:
4972 		return btrfs_ioctl_ino_lookup(file, argp);
4973 	case BTRFS_IOC_INO_PATHS:
4974 		return btrfs_ioctl_ino_to_path(root, argp);
4975 	case BTRFS_IOC_LOGICAL_INO:
4976 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4977 	case BTRFS_IOC_LOGICAL_INO_V2:
4978 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4979 	case BTRFS_IOC_SPACE_INFO:
4980 		return btrfs_ioctl_space_info(fs_info, argp);
4981 	case BTRFS_IOC_SYNC: {
4982 		int ret;
4983 
4984 		ret = btrfs_start_delalloc_roots(fs_info, U64_MAX, false);
4985 		if (ret)
4986 			return ret;
4987 		ret = btrfs_sync_fs(inode->i_sb, 1);
4988 		/*
4989 		 * The transaction thread may want to do more work,
4990 		 * namely it pokes the cleaner kthread that will start
4991 		 * processing uncleaned subvols.
4992 		 */
4993 		wake_up_process(fs_info->transaction_kthread);
4994 		return ret;
4995 	}
4996 	case BTRFS_IOC_START_SYNC:
4997 		return btrfs_ioctl_start_sync(root, argp);
4998 	case BTRFS_IOC_WAIT_SYNC:
4999 		return btrfs_ioctl_wait_sync(fs_info, argp);
5000 	case BTRFS_IOC_SCRUB:
5001 		return btrfs_ioctl_scrub(file, argp);
5002 	case BTRFS_IOC_SCRUB_CANCEL:
5003 		return btrfs_ioctl_scrub_cancel(fs_info);
5004 	case BTRFS_IOC_SCRUB_PROGRESS:
5005 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5006 	case BTRFS_IOC_BALANCE_V2:
5007 		return btrfs_ioctl_balance(file, argp);
5008 	case BTRFS_IOC_BALANCE_CTL:
5009 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5010 	case BTRFS_IOC_BALANCE_PROGRESS:
5011 		return btrfs_ioctl_balance_progress(fs_info, argp);
5012 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5013 		return btrfs_ioctl_set_received_subvol(file, argp);
5014 #ifdef CONFIG_64BIT
5015 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5016 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5017 #endif
5018 	case BTRFS_IOC_SEND:
5019 		return _btrfs_ioctl_send(file, argp, false);
5020 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5021 	case BTRFS_IOC_SEND_32:
5022 		return _btrfs_ioctl_send(file, argp, true);
5023 #endif
5024 	case BTRFS_IOC_GET_DEV_STATS:
5025 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5026 	case BTRFS_IOC_QUOTA_CTL:
5027 		return btrfs_ioctl_quota_ctl(file, argp);
5028 	case BTRFS_IOC_QGROUP_ASSIGN:
5029 		return btrfs_ioctl_qgroup_assign(file, argp);
5030 	case BTRFS_IOC_QGROUP_CREATE:
5031 		return btrfs_ioctl_qgroup_create(file, argp);
5032 	case BTRFS_IOC_QGROUP_LIMIT:
5033 		return btrfs_ioctl_qgroup_limit(file, argp);
5034 	case BTRFS_IOC_QUOTA_RESCAN:
5035 		return btrfs_ioctl_quota_rescan(file, argp);
5036 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5037 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5038 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5039 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5040 	case BTRFS_IOC_DEV_REPLACE:
5041 		return btrfs_ioctl_dev_replace(fs_info, argp);
5042 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5043 		return btrfs_ioctl_get_supported_features(argp);
5044 	case BTRFS_IOC_GET_FEATURES:
5045 		return btrfs_ioctl_get_features(fs_info, argp);
5046 	case BTRFS_IOC_SET_FEATURES:
5047 		return btrfs_ioctl_set_features(file, argp);
5048 	case FS_IOC_FSGETXATTR:
5049 		return btrfs_ioctl_fsgetxattr(file, argp);
5050 	case FS_IOC_FSSETXATTR:
5051 		return btrfs_ioctl_fssetxattr(file, argp);
5052 	case BTRFS_IOC_GET_SUBVOL_INFO:
5053 		return btrfs_ioctl_get_subvol_info(file, argp);
5054 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5055 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5056 	case BTRFS_IOC_INO_LOOKUP_USER:
5057 		return btrfs_ioctl_ino_lookup_user(file, argp);
5058 	}
5059 
5060 	return -ENOTTY;
5061 }
5062 
5063 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5064 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5065 {
5066 	/*
5067 	 * These all access 32-bit values anyway so no further
5068 	 * handling is necessary.
5069 	 */
5070 	switch (cmd) {
5071 	case FS_IOC32_GETFLAGS:
5072 		cmd = FS_IOC_GETFLAGS;
5073 		break;
5074 	case FS_IOC32_SETFLAGS:
5075 		cmd = FS_IOC_SETFLAGS;
5076 		break;
5077 	case FS_IOC32_GETVERSION:
5078 		cmd = FS_IOC_GETVERSION;
5079 		break;
5080 	}
5081 
5082 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5083 }
5084 #endif
5085