1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "delayed-inode.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "ctree.h"
15 #include "qgroup.h"
16 #include "locking.h"
17
18 #define BTRFS_DELAYED_WRITEBACK 512
19 #define BTRFS_DELAYED_BACKGROUND 128
20 #define BTRFS_DELAYED_BATCH 16
21
22 static struct kmem_cache *delayed_node_cache;
23
btrfs_delayed_inode_init(void)24 int __init btrfs_delayed_inode_init(void)
25 {
26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 sizeof(struct btrfs_delayed_node),
28 0,
29 SLAB_MEM_SPREAD,
30 NULL);
31 if (!delayed_node_cache)
32 return -ENOMEM;
33 return 0;
34 }
35
btrfs_delayed_inode_exit(void)36 void __cold btrfs_delayed_inode_exit(void)
37 {
38 kmem_cache_destroy(delayed_node_cache);
39 }
40
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)41 static inline void btrfs_init_delayed_node(
42 struct btrfs_delayed_node *delayed_node,
43 struct btrfs_root *root, u64 inode_id)
44 {
45 delayed_node->root = root;
46 delayed_node->inode_id = inode_id;
47 refcount_set(&delayed_node->refs, 0);
48 delayed_node->ins_root = RB_ROOT_CACHED;
49 delayed_node->del_root = RB_ROOT_CACHED;
50 mutex_init(&delayed_node->mutex);
51 INIT_LIST_HEAD(&delayed_node->n_list);
52 INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54
btrfs_is_continuous_delayed_item(struct btrfs_delayed_item * item1,struct btrfs_delayed_item * item2)55 static inline int btrfs_is_continuous_delayed_item(
56 struct btrfs_delayed_item *item1,
57 struct btrfs_delayed_item *item2)
58 {
59 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 item1->key.objectid == item2->key.objectid &&
61 item1->key.type == item2->key.type &&
62 item1->key.offset + 1 == item2->key.offset)
63 return 1;
64 return 0;
65 }
66
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
69 {
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
73
74 node = READ_ONCE(btrfs_inode->delayed_node);
75 if (node) {
76 refcount_inc(&node->refs);
77 return node;
78 }
79
80 spin_lock(&root->inode_lock);
81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82
83 if (node) {
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 spin_unlock(&root->inode_lock);
88 return node;
89 }
90
91 /*
92 * It's possible that we're racing into the middle of removing
93 * this node from the radix tree. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the radix at all; our release
96 * function is in the process of removing it.
97 *
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
102 *
103 * If this node is properly in the radix, we want to bump the
104 * refcount twice, once for the inode and once for this get
105 * operation.
106 */
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
110 } else {
111 node = NULL;
112 }
113
114 spin_unlock(&root->inode_lock);
115 return node;
116 }
117 spin_unlock(&root->inode_lock);
118
119 return NULL;
120 }
121
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 struct btrfs_inode *btrfs_inode)
125 {
126 struct btrfs_delayed_node *node;
127 struct btrfs_root *root = btrfs_inode->root;
128 u64 ino = btrfs_ino(btrfs_inode);
129 int ret;
130
131 again:
132 node = btrfs_get_delayed_node(btrfs_inode);
133 if (node)
134 return node;
135
136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137 if (!node)
138 return ERR_PTR(-ENOMEM);
139 btrfs_init_delayed_node(node, root, ino);
140
141 /* cached in the btrfs inode and can be accessed */
142 refcount_set(&node->refs, 2);
143
144 ret = radix_tree_preload(GFP_NOFS);
145 if (ret) {
146 kmem_cache_free(delayed_node_cache, node);
147 return ERR_PTR(ret);
148 }
149
150 spin_lock(&root->inode_lock);
151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 if (ret == -EEXIST) {
153 spin_unlock(&root->inode_lock);
154 kmem_cache_free(delayed_node_cache, node);
155 radix_tree_preload_end();
156 goto again;
157 }
158 btrfs_inode->delayed_node = node;
159 spin_unlock(&root->inode_lock);
160 radix_tree_preload_end();
161
162 return node;
163 }
164
165 /*
166 * Call it when holding delayed_node->mutex
167 *
168 * If mod = 1, add this node into the prepared list.
169 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 struct btrfs_delayed_node *node,
172 int mod)
173 {
174 spin_lock(&root->lock);
175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176 if (!list_empty(&node->p_list))
177 list_move_tail(&node->p_list, &root->prepare_list);
178 else if (mod)
179 list_add_tail(&node->p_list, &root->prepare_list);
180 } else {
181 list_add_tail(&node->n_list, &root->node_list);
182 list_add_tail(&node->p_list, &root->prepare_list);
183 refcount_inc(&node->refs); /* inserted into list */
184 root->nodes++;
185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186 }
187 spin_unlock(&root->lock);
188 }
189
190 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 struct btrfs_delayed_node *node)
193 {
194 spin_lock(&root->lock);
195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196 root->nodes--;
197 refcount_dec(&node->refs); /* not in the list */
198 list_del_init(&node->n_list);
199 if (!list_empty(&node->p_list))
200 list_del_init(&node->p_list);
201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202 }
203 spin_unlock(&root->lock);
204 }
205
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)206 static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 struct btrfs_delayed_root *delayed_root)
208 {
209 struct list_head *p;
210 struct btrfs_delayed_node *node = NULL;
211
212 spin_lock(&delayed_root->lock);
213 if (list_empty(&delayed_root->node_list))
214 goto out;
215
216 p = delayed_root->node_list.next;
217 node = list_entry(p, struct btrfs_delayed_node, n_list);
218 refcount_inc(&node->refs);
219 out:
220 spin_unlock(&delayed_root->lock);
221
222 return node;
223 }
224
btrfs_next_delayed_node(struct btrfs_delayed_node * node)225 static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 struct btrfs_delayed_node *node)
227 {
228 struct btrfs_delayed_root *delayed_root;
229 struct list_head *p;
230 struct btrfs_delayed_node *next = NULL;
231
232 delayed_root = node->root->fs_info->delayed_root;
233 spin_lock(&delayed_root->lock);
234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235 /* not in the list */
236 if (list_empty(&delayed_root->node_list))
237 goto out;
238 p = delayed_root->node_list.next;
239 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
240 goto out;
241 else
242 p = node->n_list.next;
243
244 next = list_entry(p, struct btrfs_delayed_node, n_list);
245 refcount_inc(&next->refs);
246 out:
247 spin_unlock(&delayed_root->lock);
248
249 return next;
250 }
251
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)252 static void __btrfs_release_delayed_node(
253 struct btrfs_delayed_node *delayed_node,
254 int mod)
255 {
256 struct btrfs_delayed_root *delayed_root;
257
258 if (!delayed_node)
259 return;
260
261 delayed_root = delayed_node->root->fs_info->delayed_root;
262
263 mutex_lock(&delayed_node->mutex);
264 if (delayed_node->count)
265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266 else
267 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268 mutex_unlock(&delayed_node->mutex);
269
270 if (refcount_dec_and_test(&delayed_node->refs)) {
271 struct btrfs_root *root = delayed_node->root;
272
273 spin_lock(&root->inode_lock);
274 /*
275 * Once our refcount goes to zero, nobody is allowed to bump it
276 * back up. We can delete it now.
277 */
278 ASSERT(refcount_read(&delayed_node->refs) == 0);
279 radix_tree_delete(&root->delayed_nodes_tree,
280 delayed_node->inode_id);
281 spin_unlock(&root->inode_lock);
282 kmem_cache_free(delayed_node_cache, delayed_node);
283 }
284 }
285
btrfs_release_delayed_node(struct btrfs_delayed_node * node)286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287 {
288 __btrfs_release_delayed_node(node, 0);
289 }
290
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292 struct btrfs_delayed_root *delayed_root)
293 {
294 struct list_head *p;
295 struct btrfs_delayed_node *node = NULL;
296
297 spin_lock(&delayed_root->lock);
298 if (list_empty(&delayed_root->prepare_list))
299 goto out;
300
301 p = delayed_root->prepare_list.next;
302 list_del_init(p);
303 node = list_entry(p, struct btrfs_delayed_node, p_list);
304 refcount_inc(&node->refs);
305 out:
306 spin_unlock(&delayed_root->lock);
307
308 return node;
309 }
310
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)311 static inline void btrfs_release_prepared_delayed_node(
312 struct btrfs_delayed_node *node)
313 {
314 __btrfs_release_delayed_node(node, 1);
315 }
316
btrfs_alloc_delayed_item(u32 data_len)317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318 {
319 struct btrfs_delayed_item *item;
320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321 if (item) {
322 item->data_len = data_len;
323 item->ins_or_del = 0;
324 item->bytes_reserved = 0;
325 item->delayed_node = NULL;
326 refcount_set(&item->refs, 1);
327 }
328 return item;
329 }
330
331 /*
332 * __btrfs_lookup_delayed_item - look up the delayed item by key
333 * @delayed_node: pointer to the delayed node
334 * @key: the key to look up
335 * @prev: used to store the prev item if the right item isn't found
336 * @next: used to store the next item if the right item isn't found
337 *
338 * Note: if we don't find the right item, we will return the prev item and
339 * the next item.
340 */
__btrfs_lookup_delayed_item(struct rb_root * root,struct btrfs_key * key,struct btrfs_delayed_item ** prev,struct btrfs_delayed_item ** next)341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342 struct rb_root *root,
343 struct btrfs_key *key,
344 struct btrfs_delayed_item **prev,
345 struct btrfs_delayed_item **next)
346 {
347 struct rb_node *node, *prev_node = NULL;
348 struct btrfs_delayed_item *delayed_item = NULL;
349 int ret = 0;
350
351 node = root->rb_node;
352
353 while (node) {
354 delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 rb_node);
356 prev_node = node;
357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358 if (ret < 0)
359 node = node->rb_right;
360 else if (ret > 0)
361 node = node->rb_left;
362 else
363 return delayed_item;
364 }
365
366 if (prev) {
367 if (!prev_node)
368 *prev = NULL;
369 else if (ret < 0)
370 *prev = delayed_item;
371 else if ((node = rb_prev(prev_node)) != NULL) {
372 *prev = rb_entry(node, struct btrfs_delayed_item,
373 rb_node);
374 } else
375 *prev = NULL;
376 }
377
378 if (next) {
379 if (!prev_node)
380 *next = NULL;
381 else if (ret > 0)
382 *next = delayed_item;
383 else if ((node = rb_next(prev_node)) != NULL) {
384 *next = rb_entry(node, struct btrfs_delayed_item,
385 rb_node);
386 } else
387 *next = NULL;
388 }
389 return NULL;
390 }
391
__btrfs_lookup_delayed_insertion_item(struct btrfs_delayed_node * delayed_node,struct btrfs_key * key)392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393 struct btrfs_delayed_node *delayed_node,
394 struct btrfs_key *key)
395 {
396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397 NULL, NULL);
398 }
399
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins,int action)400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401 struct btrfs_delayed_item *ins,
402 int action)
403 {
404 struct rb_node **p, *node;
405 struct rb_node *parent_node = NULL;
406 struct rb_root_cached *root;
407 struct btrfs_delayed_item *item;
408 int cmp;
409 bool leftmost = true;
410
411 if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 root = &delayed_node->ins_root;
413 else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 root = &delayed_node->del_root;
415 else
416 BUG();
417 p = &root->rb_root.rb_node;
418 node = &ins->rb_node;
419
420 while (*p) {
421 parent_node = *p;
422 item = rb_entry(parent_node, struct btrfs_delayed_item,
423 rb_node);
424
425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 if (cmp < 0) {
427 p = &(*p)->rb_right;
428 leftmost = false;
429 } else if (cmp > 0) {
430 p = &(*p)->rb_left;
431 } else {
432 return -EEXIST;
433 }
434 }
435
436 rb_link_node(node, parent_node, p);
437 rb_insert_color_cached(node, root, leftmost);
438 ins->delayed_node = delayed_node;
439 ins->ins_or_del = action;
440
441 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442 action == BTRFS_DELAYED_INSERTION_ITEM &&
443 ins->key.offset >= delayed_node->index_cnt)
444 delayed_node->index_cnt = ins->key.offset + 1;
445
446 delayed_node->count++;
447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448 return 0;
449 }
450
__btrfs_add_delayed_insertion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452 struct btrfs_delayed_item *item)
453 {
454 return __btrfs_add_delayed_item(node, item,
455 BTRFS_DELAYED_INSERTION_ITEM);
456 }
457
__btrfs_add_delayed_deletion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459 struct btrfs_delayed_item *item)
460 {
461 return __btrfs_add_delayed_item(node, item,
462 BTRFS_DELAYED_DELETION_ITEM);
463 }
464
finish_one_item(struct btrfs_delayed_root * delayed_root)465 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466 {
467 int seq = atomic_inc_return(&delayed_root->items_seq);
468
469 /* atomic_dec_return implies a barrier */
470 if ((atomic_dec_return(&delayed_root->items) <
471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472 cond_wake_up_nomb(&delayed_root->wait);
473 }
474
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476 {
477 struct rb_root_cached *root;
478 struct btrfs_delayed_root *delayed_root;
479
480 /* Not associated with any delayed_node */
481 if (!delayed_item->delayed_node)
482 return;
483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484
485 BUG_ON(!delayed_root);
486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488
489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490 root = &delayed_item->delayed_node->ins_root;
491 else
492 root = &delayed_item->delayed_node->del_root;
493
494 rb_erase_cached(&delayed_item->rb_node, root);
495 delayed_item->delayed_node->count--;
496
497 finish_one_item(delayed_root);
498 }
499
btrfs_release_delayed_item(struct btrfs_delayed_item * item)500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501 {
502 if (item) {
503 __btrfs_remove_delayed_item(item);
504 if (refcount_dec_and_test(&item->refs))
505 kfree(item);
506 }
507 }
508
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510 struct btrfs_delayed_node *delayed_node)
511 {
512 struct rb_node *p;
513 struct btrfs_delayed_item *item = NULL;
514
515 p = rb_first_cached(&delayed_node->ins_root);
516 if (p)
517 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518
519 return item;
520 }
521
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523 struct btrfs_delayed_node *delayed_node)
524 {
525 struct rb_node *p;
526 struct btrfs_delayed_item *item = NULL;
527
528 p = rb_first_cached(&delayed_node->del_root);
529 if (p)
530 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531
532 return item;
533 }
534
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)535 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536 struct btrfs_delayed_item *item)
537 {
538 struct rb_node *p;
539 struct btrfs_delayed_item *next = NULL;
540
541 p = rb_next(&item->rb_node);
542 if (p)
543 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544
545 return next;
546 }
547
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_item * item)548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct btrfs_delayed_item *item)
551 {
552 struct btrfs_block_rsv *src_rsv;
553 struct btrfs_block_rsv *dst_rsv;
554 struct btrfs_fs_info *fs_info = root->fs_info;
555 u64 num_bytes;
556 int ret;
557
558 if (!trans->bytes_reserved)
559 return 0;
560
561 src_rsv = trans->block_rsv;
562 dst_rsv = &fs_info->delayed_block_rsv;
563
564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565
566 /*
567 * Here we migrate space rsv from transaction rsv, since have already
568 * reserved space when starting a transaction. So no need to reserve
569 * qgroup space here.
570 */
571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572 if (!ret) {
573 trace_btrfs_space_reservation(fs_info, "delayed_item",
574 item->key.objectid,
575 num_bytes, 1);
576 item->bytes_reserved = num_bytes;
577 }
578
579 return ret;
580 }
581
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
584 {
585 struct btrfs_block_rsv *rsv;
586 struct btrfs_fs_info *fs_info = root->fs_info;
587
588 if (!item->bytes_reserved)
589 return;
590
591 rsv = &fs_info->delayed_block_rsv;
592 /*
593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 * to release/reserve qgroup space.
595 */
596 trace_btrfs_space_reservation(fs_info, "delayed_item",
597 item->key.objectid, item->bytes_reserved,
598 0);
599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600 }
601
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_delayed_node * node)602 static int btrfs_delayed_inode_reserve_metadata(
603 struct btrfs_trans_handle *trans,
604 struct btrfs_root *root,
605 struct btrfs_inode *inode,
606 struct btrfs_delayed_node *node)
607 {
608 struct btrfs_fs_info *fs_info = root->fs_info;
609 struct btrfs_block_rsv *src_rsv;
610 struct btrfs_block_rsv *dst_rsv;
611 u64 num_bytes;
612 int ret;
613
614 src_rsv = trans->block_rsv;
615 dst_rsv = &fs_info->delayed_block_rsv;
616
617 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
618
619 /*
620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
621 * which doesn't reserve space for speed. This is a problem since we
622 * still need to reserve space for this update, so try to reserve the
623 * space.
624 *
625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
626 * we always reserve enough to update the inode item.
627 */
628 if (!src_rsv || (!trans->bytes_reserved &&
629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
630 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
631 BTRFS_QGROUP_RSV_META_PREALLOC, true);
632 if (ret < 0)
633 return ret;
634 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
635 BTRFS_RESERVE_NO_FLUSH);
636 /*
637 * Since we're under a transaction reserve_metadata_bytes could
638 * try to commit the transaction which will make it return
639 * EAGAIN to make us stop the transaction we have, so return
640 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641 */
642 if (ret == -EAGAIN) {
643 ret = -ENOSPC;
644 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
645 }
646 if (!ret) {
647 node->bytes_reserved = num_bytes;
648 trace_btrfs_space_reservation(fs_info,
649 "delayed_inode",
650 btrfs_ino(inode),
651 num_bytes, 1);
652 } else {
653 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
654 }
655 return ret;
656 }
657
658 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
659 if (!ret) {
660 trace_btrfs_space_reservation(fs_info, "delayed_inode",
661 btrfs_ino(inode), num_bytes, 1);
662 node->bytes_reserved = num_bytes;
663 }
664
665 return ret;
666 }
667
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)668 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
669 struct btrfs_delayed_node *node,
670 bool qgroup_free)
671 {
672 struct btrfs_block_rsv *rsv;
673
674 if (!node->bytes_reserved)
675 return;
676
677 rsv = &fs_info->delayed_block_rsv;
678 trace_btrfs_space_reservation(fs_info, "delayed_inode",
679 node->inode_id, node->bytes_reserved, 0);
680 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
681 if (qgroup_free)
682 btrfs_qgroup_free_meta_prealloc(node->root,
683 node->bytes_reserved);
684 else
685 btrfs_qgroup_convert_reserved_meta(node->root,
686 node->bytes_reserved);
687 node->bytes_reserved = 0;
688 }
689
690 /*
691 * This helper will insert some continuous items into the same leaf according
692 * to the free space of the leaf.
693 */
btrfs_batch_insert_items(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)694 static int btrfs_batch_insert_items(struct btrfs_root *root,
695 struct btrfs_path *path,
696 struct btrfs_delayed_item *item)
697 {
698 struct btrfs_delayed_item *curr, *next;
699 int free_space;
700 int total_data_size = 0, total_size = 0;
701 struct extent_buffer *leaf;
702 char *data_ptr;
703 struct btrfs_key *keys;
704 u32 *data_size;
705 struct list_head head;
706 int slot;
707 int nitems;
708 int i;
709 int ret = 0;
710
711 BUG_ON(!path->nodes[0]);
712
713 leaf = path->nodes[0];
714 free_space = btrfs_leaf_free_space(leaf);
715 INIT_LIST_HEAD(&head);
716
717 next = item;
718 nitems = 0;
719
720 /*
721 * count the number of the continuous items that we can insert in batch
722 */
723 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
724 free_space) {
725 total_data_size += next->data_len;
726 total_size += next->data_len + sizeof(struct btrfs_item);
727 list_add_tail(&next->tree_list, &head);
728 nitems++;
729
730 curr = next;
731 next = __btrfs_next_delayed_item(curr);
732 if (!next)
733 break;
734
735 if (!btrfs_is_continuous_delayed_item(curr, next))
736 break;
737 }
738
739 if (!nitems) {
740 ret = 0;
741 goto out;
742 }
743
744 /*
745 * we need allocate some memory space, but it might cause the task
746 * to sleep, so we set all locked nodes in the path to blocking locks
747 * first.
748 */
749 btrfs_set_path_blocking(path);
750
751 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
752 if (!keys) {
753 ret = -ENOMEM;
754 goto out;
755 }
756
757 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
758 if (!data_size) {
759 ret = -ENOMEM;
760 goto error;
761 }
762
763 /* get keys of all the delayed items */
764 i = 0;
765 list_for_each_entry(next, &head, tree_list) {
766 keys[i] = next->key;
767 data_size[i] = next->data_len;
768 i++;
769 }
770
771 /* insert the keys of the items */
772 setup_items_for_insert(root, path, keys, data_size, nitems);
773
774 /* insert the dir index items */
775 slot = path->slots[0];
776 list_for_each_entry_safe(curr, next, &head, tree_list) {
777 data_ptr = btrfs_item_ptr(leaf, slot, char);
778 write_extent_buffer(leaf, &curr->data,
779 (unsigned long)data_ptr,
780 curr->data_len);
781 slot++;
782
783 btrfs_delayed_item_release_metadata(root, curr);
784
785 list_del(&curr->tree_list);
786 btrfs_release_delayed_item(curr);
787 }
788
789 error:
790 kfree(data_size);
791 kfree(keys);
792 out:
793 return ret;
794 }
795
796 /*
797 * This helper can just do simple insertion that needn't extend item for new
798 * data, such as directory name index insertion, inode insertion.
799 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * delayed_item)800 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
801 struct btrfs_root *root,
802 struct btrfs_path *path,
803 struct btrfs_delayed_item *delayed_item)
804 {
805 struct extent_buffer *leaf;
806 unsigned int nofs_flag;
807 char *ptr;
808 int ret;
809
810 nofs_flag = memalloc_nofs_save();
811 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
812 delayed_item->data_len);
813 memalloc_nofs_restore(nofs_flag);
814 if (ret < 0 && ret != -EEXIST)
815 return ret;
816
817 leaf = path->nodes[0];
818
819 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
820
821 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
822 delayed_item->data_len);
823 btrfs_mark_buffer_dirty(leaf);
824
825 btrfs_delayed_item_release_metadata(root, delayed_item);
826 return 0;
827 }
828
829 /*
830 * we insert an item first, then if there are some continuous items, we try
831 * to insert those items into the same leaf.
832 */
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)833 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
834 struct btrfs_path *path,
835 struct btrfs_root *root,
836 struct btrfs_delayed_node *node)
837 {
838 struct btrfs_delayed_item *curr, *prev;
839 int ret = 0;
840
841 do_again:
842 mutex_lock(&node->mutex);
843 curr = __btrfs_first_delayed_insertion_item(node);
844 if (!curr)
845 goto insert_end;
846
847 ret = btrfs_insert_delayed_item(trans, root, path, curr);
848 if (ret < 0) {
849 btrfs_release_path(path);
850 goto insert_end;
851 }
852
853 prev = curr;
854 curr = __btrfs_next_delayed_item(prev);
855 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
856 /* insert the continuous items into the same leaf */
857 path->slots[0]++;
858 btrfs_batch_insert_items(root, path, curr);
859 }
860 btrfs_release_delayed_item(prev);
861 btrfs_mark_buffer_dirty(path->nodes[0]);
862
863 btrfs_release_path(path);
864 mutex_unlock(&node->mutex);
865 goto do_again;
866
867 insert_end:
868 mutex_unlock(&node->mutex);
869 return ret;
870 }
871
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)872 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
873 struct btrfs_root *root,
874 struct btrfs_path *path,
875 struct btrfs_delayed_item *item)
876 {
877 struct btrfs_delayed_item *curr, *next;
878 struct extent_buffer *leaf;
879 struct btrfs_key key;
880 struct list_head head;
881 int nitems, i, last_item;
882 int ret = 0;
883
884 BUG_ON(!path->nodes[0]);
885
886 leaf = path->nodes[0];
887
888 i = path->slots[0];
889 last_item = btrfs_header_nritems(leaf) - 1;
890 if (i > last_item)
891 return -ENOENT; /* FIXME: Is errno suitable? */
892
893 next = item;
894 INIT_LIST_HEAD(&head);
895 btrfs_item_key_to_cpu(leaf, &key, i);
896 nitems = 0;
897 /*
898 * count the number of the dir index items that we can delete in batch
899 */
900 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
901 list_add_tail(&next->tree_list, &head);
902 nitems++;
903
904 curr = next;
905 next = __btrfs_next_delayed_item(curr);
906 if (!next)
907 break;
908
909 if (!btrfs_is_continuous_delayed_item(curr, next))
910 break;
911
912 i++;
913 if (i > last_item)
914 break;
915 btrfs_item_key_to_cpu(leaf, &key, i);
916 }
917
918 if (!nitems)
919 return 0;
920
921 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
922 if (ret)
923 goto out;
924
925 list_for_each_entry_safe(curr, next, &head, tree_list) {
926 btrfs_delayed_item_release_metadata(root, curr);
927 list_del(&curr->tree_list);
928 btrfs_release_delayed_item(curr);
929 }
930
931 out:
932 return ret;
933 }
934
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)935 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
936 struct btrfs_path *path,
937 struct btrfs_root *root,
938 struct btrfs_delayed_node *node)
939 {
940 struct btrfs_delayed_item *curr, *prev;
941 unsigned int nofs_flag;
942 int ret = 0;
943
944 do_again:
945 mutex_lock(&node->mutex);
946 curr = __btrfs_first_delayed_deletion_item(node);
947 if (!curr)
948 goto delete_fail;
949
950 nofs_flag = memalloc_nofs_save();
951 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
952 memalloc_nofs_restore(nofs_flag);
953 if (ret < 0)
954 goto delete_fail;
955 else if (ret > 0) {
956 /*
957 * can't find the item which the node points to, so this node
958 * is invalid, just drop it.
959 */
960 prev = curr;
961 curr = __btrfs_next_delayed_item(prev);
962 btrfs_release_delayed_item(prev);
963 ret = 0;
964 btrfs_release_path(path);
965 if (curr) {
966 mutex_unlock(&node->mutex);
967 goto do_again;
968 } else
969 goto delete_fail;
970 }
971
972 btrfs_batch_delete_items(trans, root, path, curr);
973 btrfs_release_path(path);
974 mutex_unlock(&node->mutex);
975 goto do_again;
976
977 delete_fail:
978 btrfs_release_path(path);
979 mutex_unlock(&node->mutex);
980 return ret;
981 }
982
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)983 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
984 {
985 struct btrfs_delayed_root *delayed_root;
986
987 if (delayed_node &&
988 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
989 BUG_ON(!delayed_node->root);
990 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
991 delayed_node->count--;
992
993 delayed_root = delayed_node->root->fs_info->delayed_root;
994 finish_one_item(delayed_root);
995 }
996 }
997
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)998 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
999 {
1000 struct btrfs_delayed_root *delayed_root;
1001
1002 ASSERT(delayed_node->root);
1003 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1004 delayed_node->count--;
1005
1006 delayed_root = delayed_node->root->fs_info->delayed_root;
1007 finish_one_item(delayed_root);
1008 }
1009
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1010 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1011 struct btrfs_root *root,
1012 struct btrfs_path *path,
1013 struct btrfs_delayed_node *node)
1014 {
1015 struct btrfs_fs_info *fs_info = root->fs_info;
1016 struct btrfs_key key;
1017 struct btrfs_inode_item *inode_item;
1018 struct extent_buffer *leaf;
1019 unsigned int nofs_flag;
1020 int mod;
1021 int ret;
1022
1023 key.objectid = node->inode_id;
1024 key.type = BTRFS_INODE_ITEM_KEY;
1025 key.offset = 0;
1026
1027 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1028 mod = -1;
1029 else
1030 mod = 1;
1031
1032 nofs_flag = memalloc_nofs_save();
1033 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1034 memalloc_nofs_restore(nofs_flag);
1035 if (ret > 0)
1036 ret = -ENOENT;
1037 if (ret < 0)
1038 goto out;
1039
1040 leaf = path->nodes[0];
1041 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1042 struct btrfs_inode_item);
1043 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1044 sizeof(struct btrfs_inode_item));
1045 btrfs_mark_buffer_dirty(leaf);
1046
1047 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1048 goto no_iref;
1049
1050 path->slots[0]++;
1051 if (path->slots[0] >= btrfs_header_nritems(leaf))
1052 goto search;
1053 again:
1054 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1055 if (key.objectid != node->inode_id)
1056 goto out;
1057
1058 if (key.type != BTRFS_INODE_REF_KEY &&
1059 key.type != BTRFS_INODE_EXTREF_KEY)
1060 goto out;
1061
1062 /*
1063 * Delayed iref deletion is for the inode who has only one link,
1064 * so there is only one iref. The case that several irefs are
1065 * in the same item doesn't exist.
1066 */
1067 btrfs_del_item(trans, root, path);
1068 out:
1069 btrfs_release_delayed_iref(node);
1070 no_iref:
1071 btrfs_release_path(path);
1072 err_out:
1073 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1074 btrfs_release_delayed_inode(node);
1075
1076 /*
1077 * If we fail to update the delayed inode we need to abort the
1078 * transaction, because we could leave the inode with the improper
1079 * counts behind.
1080 */
1081 if (ret && ret != -ENOENT)
1082 btrfs_abort_transaction(trans, ret);
1083
1084 return ret;
1085
1086 search:
1087 btrfs_release_path(path);
1088
1089 key.type = BTRFS_INODE_EXTREF_KEY;
1090 key.offset = -1;
1091
1092 nofs_flag = memalloc_nofs_save();
1093 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1094 memalloc_nofs_restore(nofs_flag);
1095 if (ret < 0)
1096 goto err_out;
1097 ASSERT(ret);
1098
1099 ret = 0;
1100 leaf = path->nodes[0];
1101 path->slots[0]--;
1102 goto again;
1103 }
1104
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1105 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root,
1107 struct btrfs_path *path,
1108 struct btrfs_delayed_node *node)
1109 {
1110 int ret;
1111
1112 mutex_lock(&node->mutex);
1113 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1114 mutex_unlock(&node->mutex);
1115 return 0;
1116 }
1117
1118 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1119 mutex_unlock(&node->mutex);
1120 return ret;
1121 }
1122
1123 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1124 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1125 struct btrfs_path *path,
1126 struct btrfs_delayed_node *node)
1127 {
1128 int ret;
1129
1130 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1131 if (ret)
1132 return ret;
1133
1134 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1135 if (ret)
1136 return ret;
1137
1138 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1139 return ret;
1140 }
1141
1142 /*
1143 * Called when committing the transaction.
1144 * Returns 0 on success.
1145 * Returns < 0 on error and returns with an aborted transaction with any
1146 * outstanding delayed items cleaned up.
1147 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1148 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1149 {
1150 struct btrfs_fs_info *fs_info = trans->fs_info;
1151 struct btrfs_delayed_root *delayed_root;
1152 struct btrfs_delayed_node *curr_node, *prev_node;
1153 struct btrfs_path *path;
1154 struct btrfs_block_rsv *block_rsv;
1155 int ret = 0;
1156 bool count = (nr > 0);
1157
1158 if (TRANS_ABORTED(trans))
1159 return -EIO;
1160
1161 path = btrfs_alloc_path();
1162 if (!path)
1163 return -ENOMEM;
1164 path->leave_spinning = 1;
1165
1166 block_rsv = trans->block_rsv;
1167 trans->block_rsv = &fs_info->delayed_block_rsv;
1168
1169 delayed_root = fs_info->delayed_root;
1170
1171 curr_node = btrfs_first_delayed_node(delayed_root);
1172 while (curr_node && (!count || (count && nr--))) {
1173 ret = __btrfs_commit_inode_delayed_items(trans, path,
1174 curr_node);
1175 if (ret) {
1176 btrfs_abort_transaction(trans, ret);
1177 break;
1178 }
1179
1180 prev_node = curr_node;
1181 curr_node = btrfs_next_delayed_node(curr_node);
1182 /*
1183 * See the comment below about releasing path before releasing
1184 * node. If the commit of delayed items was successful the path
1185 * should always be released, but in case of an error, it may
1186 * point to locked extent buffers (a leaf at the very least).
1187 */
1188 ASSERT(path->nodes[0] == NULL);
1189 btrfs_release_delayed_node(prev_node);
1190 }
1191
1192 /*
1193 * Release the path to avoid a potential deadlock and lockdep splat when
1194 * releasing the delayed node, as that requires taking the delayed node's
1195 * mutex. If another task starts running delayed items before we take
1196 * the mutex, it will first lock the mutex and then it may try to lock
1197 * the same btree path (leaf).
1198 */
1199 btrfs_free_path(path);
1200
1201 if (curr_node)
1202 btrfs_release_delayed_node(curr_node);
1203 trans->block_rsv = block_rsv;
1204
1205 return ret;
1206 }
1207
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1208 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1209 {
1210 return __btrfs_run_delayed_items(trans, -1);
1211 }
1212
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1213 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1214 {
1215 return __btrfs_run_delayed_items(trans, nr);
1216 }
1217
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1218 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1219 struct btrfs_inode *inode)
1220 {
1221 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1222 struct btrfs_path *path;
1223 struct btrfs_block_rsv *block_rsv;
1224 int ret;
1225
1226 if (!delayed_node)
1227 return 0;
1228
1229 mutex_lock(&delayed_node->mutex);
1230 if (!delayed_node->count) {
1231 mutex_unlock(&delayed_node->mutex);
1232 btrfs_release_delayed_node(delayed_node);
1233 return 0;
1234 }
1235 mutex_unlock(&delayed_node->mutex);
1236
1237 path = btrfs_alloc_path();
1238 if (!path) {
1239 btrfs_release_delayed_node(delayed_node);
1240 return -ENOMEM;
1241 }
1242 path->leave_spinning = 1;
1243
1244 block_rsv = trans->block_rsv;
1245 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1246
1247 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1248
1249 btrfs_release_delayed_node(delayed_node);
1250 btrfs_free_path(path);
1251 trans->block_rsv = block_rsv;
1252
1253 return ret;
1254 }
1255
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1256 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1257 {
1258 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1259 struct btrfs_trans_handle *trans;
1260 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1261 struct btrfs_path *path;
1262 struct btrfs_block_rsv *block_rsv;
1263 int ret;
1264
1265 if (!delayed_node)
1266 return 0;
1267
1268 mutex_lock(&delayed_node->mutex);
1269 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1270 mutex_unlock(&delayed_node->mutex);
1271 btrfs_release_delayed_node(delayed_node);
1272 return 0;
1273 }
1274 mutex_unlock(&delayed_node->mutex);
1275
1276 trans = btrfs_join_transaction(delayed_node->root);
1277 if (IS_ERR(trans)) {
1278 ret = PTR_ERR(trans);
1279 goto out;
1280 }
1281
1282 path = btrfs_alloc_path();
1283 if (!path) {
1284 ret = -ENOMEM;
1285 goto trans_out;
1286 }
1287 path->leave_spinning = 1;
1288
1289 block_rsv = trans->block_rsv;
1290 trans->block_rsv = &fs_info->delayed_block_rsv;
1291
1292 mutex_lock(&delayed_node->mutex);
1293 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1294 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1295 path, delayed_node);
1296 else
1297 ret = 0;
1298 mutex_unlock(&delayed_node->mutex);
1299
1300 btrfs_free_path(path);
1301 trans->block_rsv = block_rsv;
1302 trans_out:
1303 btrfs_end_transaction(trans);
1304 btrfs_btree_balance_dirty(fs_info);
1305 out:
1306 btrfs_release_delayed_node(delayed_node);
1307
1308 return ret;
1309 }
1310
btrfs_remove_delayed_node(struct btrfs_inode * inode)1311 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1312 {
1313 struct btrfs_delayed_node *delayed_node;
1314
1315 delayed_node = READ_ONCE(inode->delayed_node);
1316 if (!delayed_node)
1317 return;
1318
1319 inode->delayed_node = NULL;
1320 btrfs_release_delayed_node(delayed_node);
1321 }
1322
1323 struct btrfs_async_delayed_work {
1324 struct btrfs_delayed_root *delayed_root;
1325 int nr;
1326 struct btrfs_work work;
1327 };
1328
btrfs_async_run_delayed_root(struct btrfs_work * work)1329 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1330 {
1331 struct btrfs_async_delayed_work *async_work;
1332 struct btrfs_delayed_root *delayed_root;
1333 struct btrfs_trans_handle *trans;
1334 struct btrfs_path *path;
1335 struct btrfs_delayed_node *delayed_node = NULL;
1336 struct btrfs_root *root;
1337 struct btrfs_block_rsv *block_rsv;
1338 int total_done = 0;
1339
1340 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1341 delayed_root = async_work->delayed_root;
1342
1343 path = btrfs_alloc_path();
1344 if (!path)
1345 goto out;
1346
1347 do {
1348 if (atomic_read(&delayed_root->items) <
1349 BTRFS_DELAYED_BACKGROUND / 2)
1350 break;
1351
1352 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1353 if (!delayed_node)
1354 break;
1355
1356 path->leave_spinning = 1;
1357 root = delayed_node->root;
1358
1359 trans = btrfs_join_transaction(root);
1360 if (IS_ERR(trans)) {
1361 btrfs_release_path(path);
1362 btrfs_release_prepared_delayed_node(delayed_node);
1363 total_done++;
1364 continue;
1365 }
1366
1367 block_rsv = trans->block_rsv;
1368 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1369
1370 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1371
1372 trans->block_rsv = block_rsv;
1373 btrfs_end_transaction(trans);
1374 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1375
1376 btrfs_release_path(path);
1377 btrfs_release_prepared_delayed_node(delayed_node);
1378 total_done++;
1379
1380 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1381 || total_done < async_work->nr);
1382
1383 btrfs_free_path(path);
1384 out:
1385 wake_up(&delayed_root->wait);
1386 kfree(async_work);
1387 }
1388
1389
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1390 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1391 struct btrfs_fs_info *fs_info, int nr)
1392 {
1393 struct btrfs_async_delayed_work *async_work;
1394
1395 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1396 if (!async_work)
1397 return -ENOMEM;
1398
1399 async_work->delayed_root = delayed_root;
1400 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1401 NULL);
1402 async_work->nr = nr;
1403
1404 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1405 return 0;
1406 }
1407
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1408 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1409 {
1410 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1411 }
1412
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1413 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1414 {
1415 int val = atomic_read(&delayed_root->items_seq);
1416
1417 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1418 return 1;
1419
1420 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1421 return 1;
1422
1423 return 0;
1424 }
1425
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1426 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1427 {
1428 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1429
1430 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1431 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1432 return;
1433
1434 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1435 int seq;
1436 int ret;
1437
1438 seq = atomic_read(&delayed_root->items_seq);
1439
1440 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1441 if (ret)
1442 return;
1443
1444 wait_event_interruptible(delayed_root->wait,
1445 could_end_wait(delayed_root, seq));
1446 return;
1447 }
1448
1449 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1450 }
1451
1452 /* Will return 0 or -ENOMEM */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,struct btrfs_disk_key * disk_key,u8 type,u64 index)1453 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1454 const char *name, int name_len,
1455 struct btrfs_inode *dir,
1456 struct btrfs_disk_key *disk_key, u8 type,
1457 u64 index)
1458 {
1459 struct btrfs_delayed_node *delayed_node;
1460 struct btrfs_delayed_item *delayed_item;
1461 struct btrfs_dir_item *dir_item;
1462 int ret;
1463
1464 delayed_node = btrfs_get_or_create_delayed_node(dir);
1465 if (IS_ERR(delayed_node))
1466 return PTR_ERR(delayed_node);
1467
1468 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1469 if (!delayed_item) {
1470 ret = -ENOMEM;
1471 goto release_node;
1472 }
1473
1474 delayed_item->key.objectid = btrfs_ino(dir);
1475 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1476 delayed_item->key.offset = index;
1477
1478 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1479 dir_item->location = *disk_key;
1480 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1481 btrfs_set_stack_dir_data_len(dir_item, 0);
1482 btrfs_set_stack_dir_name_len(dir_item, name_len);
1483 btrfs_set_stack_dir_type(dir_item, type);
1484 memcpy((char *)(dir_item + 1), name, name_len);
1485
1486 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1487 /*
1488 * we have reserved enough space when we start a new transaction,
1489 * so reserving metadata failure is impossible
1490 */
1491 BUG_ON(ret);
1492
1493 mutex_lock(&delayed_node->mutex);
1494 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1495 if (unlikely(ret)) {
1496 btrfs_err(trans->fs_info,
1497 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1498 name_len, name, delayed_node->root->root_key.objectid,
1499 delayed_node->inode_id, ret);
1500 BUG();
1501 }
1502 mutex_unlock(&delayed_node->mutex);
1503
1504 release_node:
1505 btrfs_release_delayed_node(delayed_node);
1506 return ret;
1507 }
1508
btrfs_delete_delayed_insertion_item(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,struct btrfs_key * key)1509 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1510 struct btrfs_delayed_node *node,
1511 struct btrfs_key *key)
1512 {
1513 struct btrfs_delayed_item *item;
1514
1515 mutex_lock(&node->mutex);
1516 item = __btrfs_lookup_delayed_insertion_item(node, key);
1517 if (!item) {
1518 mutex_unlock(&node->mutex);
1519 return 1;
1520 }
1521
1522 btrfs_delayed_item_release_metadata(node->root, item);
1523 btrfs_release_delayed_item(item);
1524 mutex_unlock(&node->mutex);
1525 return 0;
1526 }
1527
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1528 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1529 struct btrfs_inode *dir, u64 index)
1530 {
1531 struct btrfs_delayed_node *node;
1532 struct btrfs_delayed_item *item;
1533 struct btrfs_key item_key;
1534 int ret;
1535
1536 node = btrfs_get_or_create_delayed_node(dir);
1537 if (IS_ERR(node))
1538 return PTR_ERR(node);
1539
1540 item_key.objectid = btrfs_ino(dir);
1541 item_key.type = BTRFS_DIR_INDEX_KEY;
1542 item_key.offset = index;
1543
1544 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1545 &item_key);
1546 if (!ret)
1547 goto end;
1548
1549 item = btrfs_alloc_delayed_item(0);
1550 if (!item) {
1551 ret = -ENOMEM;
1552 goto end;
1553 }
1554
1555 item->key = item_key;
1556
1557 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1558 /*
1559 * we have reserved enough space when we start a new transaction,
1560 * so reserving metadata failure is impossible.
1561 */
1562 if (ret < 0) {
1563 btrfs_err(trans->fs_info,
1564 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1565 btrfs_release_delayed_item(item);
1566 goto end;
1567 }
1568
1569 mutex_lock(&node->mutex);
1570 ret = __btrfs_add_delayed_deletion_item(node, item);
1571 if (unlikely(ret)) {
1572 btrfs_err(trans->fs_info,
1573 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1574 index, node->root->root_key.objectid,
1575 node->inode_id, ret);
1576 btrfs_delayed_item_release_metadata(dir->root, item);
1577 btrfs_release_delayed_item(item);
1578 }
1579 mutex_unlock(&node->mutex);
1580 end:
1581 btrfs_release_delayed_node(node);
1582 return ret;
1583 }
1584
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1585 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1586 {
1587 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1588
1589 if (!delayed_node)
1590 return -ENOENT;
1591
1592 /*
1593 * Since we have held i_mutex of this directory, it is impossible that
1594 * a new directory index is added into the delayed node and index_cnt
1595 * is updated now. So we needn't lock the delayed node.
1596 */
1597 if (!delayed_node->index_cnt) {
1598 btrfs_release_delayed_node(delayed_node);
1599 return -EINVAL;
1600 }
1601
1602 inode->index_cnt = delayed_node->index_cnt;
1603 btrfs_release_delayed_node(delayed_node);
1604 return 0;
1605 }
1606
btrfs_readdir_get_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1607 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1608 struct list_head *ins_list,
1609 struct list_head *del_list)
1610 {
1611 struct btrfs_delayed_node *delayed_node;
1612 struct btrfs_delayed_item *item;
1613
1614 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1615 if (!delayed_node)
1616 return false;
1617
1618 /*
1619 * We can only do one readdir with delayed items at a time because of
1620 * item->readdir_list.
1621 */
1622 inode_unlock_shared(inode);
1623 inode_lock(inode);
1624
1625 mutex_lock(&delayed_node->mutex);
1626 item = __btrfs_first_delayed_insertion_item(delayed_node);
1627 while (item) {
1628 refcount_inc(&item->refs);
1629 list_add_tail(&item->readdir_list, ins_list);
1630 item = __btrfs_next_delayed_item(item);
1631 }
1632
1633 item = __btrfs_first_delayed_deletion_item(delayed_node);
1634 while (item) {
1635 refcount_inc(&item->refs);
1636 list_add_tail(&item->readdir_list, del_list);
1637 item = __btrfs_next_delayed_item(item);
1638 }
1639 mutex_unlock(&delayed_node->mutex);
1640 /*
1641 * This delayed node is still cached in the btrfs inode, so refs
1642 * must be > 1 now, and we needn't check it is going to be freed
1643 * or not.
1644 *
1645 * Besides that, this function is used to read dir, we do not
1646 * insert/delete delayed items in this period. So we also needn't
1647 * requeue or dequeue this delayed node.
1648 */
1649 refcount_dec(&delayed_node->refs);
1650
1651 return true;
1652 }
1653
btrfs_readdir_put_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1654 void btrfs_readdir_put_delayed_items(struct inode *inode,
1655 struct list_head *ins_list,
1656 struct list_head *del_list)
1657 {
1658 struct btrfs_delayed_item *curr, *next;
1659
1660 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1661 list_del(&curr->readdir_list);
1662 if (refcount_dec_and_test(&curr->refs))
1663 kfree(curr);
1664 }
1665
1666 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1667 list_del(&curr->readdir_list);
1668 if (refcount_dec_and_test(&curr->refs))
1669 kfree(curr);
1670 }
1671
1672 /*
1673 * The VFS is going to do up_read(), so we need to downgrade back to a
1674 * read lock.
1675 */
1676 downgrade_write(&inode->i_rwsem);
1677 }
1678
btrfs_should_delete_dir_index(struct list_head * del_list,u64 index)1679 int btrfs_should_delete_dir_index(struct list_head *del_list,
1680 u64 index)
1681 {
1682 struct btrfs_delayed_item *curr;
1683 int ret = 0;
1684
1685 list_for_each_entry(curr, del_list, readdir_list) {
1686 if (curr->key.offset > index)
1687 break;
1688 if (curr->key.offset == index) {
1689 ret = 1;
1690 break;
1691 }
1692 }
1693 return ret;
1694 }
1695
1696 /*
1697 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1698 *
1699 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,struct list_head * ins_list)1700 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1701 struct list_head *ins_list)
1702 {
1703 struct btrfs_dir_item *di;
1704 struct btrfs_delayed_item *curr, *next;
1705 struct btrfs_key location;
1706 char *name;
1707 int name_len;
1708 int over = 0;
1709 unsigned char d_type;
1710
1711 if (list_empty(ins_list))
1712 return 0;
1713
1714 /*
1715 * Changing the data of the delayed item is impossible. So
1716 * we needn't lock them. And we have held i_mutex of the
1717 * directory, nobody can delete any directory indexes now.
1718 */
1719 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1720 list_del(&curr->readdir_list);
1721
1722 if (curr->key.offset < ctx->pos) {
1723 if (refcount_dec_and_test(&curr->refs))
1724 kfree(curr);
1725 continue;
1726 }
1727
1728 ctx->pos = curr->key.offset;
1729
1730 di = (struct btrfs_dir_item *)curr->data;
1731 name = (char *)(di + 1);
1732 name_len = btrfs_stack_dir_name_len(di);
1733
1734 d_type = fs_ftype_to_dtype(di->type);
1735 btrfs_disk_key_to_cpu(&location, &di->location);
1736
1737 over = !dir_emit(ctx, name, name_len,
1738 location.objectid, d_type);
1739
1740 if (refcount_dec_and_test(&curr->refs))
1741 kfree(curr);
1742
1743 if (over)
1744 return 1;
1745 ctx->pos++;
1746 }
1747 return 0;
1748 }
1749
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct inode * inode)1750 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1751 struct btrfs_inode_item *inode_item,
1752 struct inode *inode)
1753 {
1754 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1755 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1756 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1757 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1758 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1759 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1760 btrfs_set_stack_inode_generation(inode_item,
1761 BTRFS_I(inode)->generation);
1762 btrfs_set_stack_inode_sequence(inode_item,
1763 inode_peek_iversion(inode));
1764 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1765 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1766 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1767 btrfs_set_stack_inode_block_group(inode_item, 0);
1768
1769 btrfs_set_stack_timespec_sec(&inode_item->atime,
1770 inode->i_atime.tv_sec);
1771 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1772 inode->i_atime.tv_nsec);
1773
1774 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1775 inode->i_mtime.tv_sec);
1776 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1777 inode->i_mtime.tv_nsec);
1778
1779 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1780 inode->i_ctime.tv_sec);
1781 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1782 inode->i_ctime.tv_nsec);
1783
1784 btrfs_set_stack_timespec_sec(&inode_item->otime,
1785 BTRFS_I(inode)->i_otime.tv_sec);
1786 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1787 BTRFS_I(inode)->i_otime.tv_nsec);
1788 }
1789
btrfs_fill_inode(struct inode * inode,u32 * rdev)1790 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1791 {
1792 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1793 struct btrfs_delayed_node *delayed_node;
1794 struct btrfs_inode_item *inode_item;
1795
1796 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1797 if (!delayed_node)
1798 return -ENOENT;
1799
1800 mutex_lock(&delayed_node->mutex);
1801 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1802 mutex_unlock(&delayed_node->mutex);
1803 btrfs_release_delayed_node(delayed_node);
1804 return -ENOENT;
1805 }
1806
1807 inode_item = &delayed_node->inode_item;
1808
1809 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1810 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1811 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1812 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1813 round_up(i_size_read(inode), fs_info->sectorsize));
1814 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1815 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1816 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1817 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1818 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1819
1820 inode_set_iversion_queried(inode,
1821 btrfs_stack_inode_sequence(inode_item));
1822 inode->i_rdev = 0;
1823 *rdev = btrfs_stack_inode_rdev(inode_item);
1824 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1825
1826 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1827 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1828
1829 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1830 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1831
1832 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1833 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1834
1835 BTRFS_I(inode)->i_otime.tv_sec =
1836 btrfs_stack_timespec_sec(&inode_item->otime);
1837 BTRFS_I(inode)->i_otime.tv_nsec =
1838 btrfs_stack_timespec_nsec(&inode_item->otime);
1839
1840 inode->i_generation = BTRFS_I(inode)->generation;
1841 BTRFS_I(inode)->index_cnt = (u64)-1;
1842
1843 mutex_unlock(&delayed_node->mutex);
1844 btrfs_release_delayed_node(delayed_node);
1845 return 0;
1846 }
1847
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1848 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1849 struct btrfs_root *root, struct inode *inode)
1850 {
1851 struct btrfs_delayed_node *delayed_node;
1852 int ret = 0;
1853
1854 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1855 if (IS_ERR(delayed_node))
1856 return PTR_ERR(delayed_node);
1857
1858 mutex_lock(&delayed_node->mutex);
1859 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1860 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1861 goto release_node;
1862 }
1863
1864 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1865 delayed_node);
1866 if (ret)
1867 goto release_node;
1868
1869 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1870 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1871 delayed_node->count++;
1872 atomic_inc(&root->fs_info->delayed_root->items);
1873 release_node:
1874 mutex_unlock(&delayed_node->mutex);
1875 btrfs_release_delayed_node(delayed_node);
1876 return ret;
1877 }
1878
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1879 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1880 {
1881 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1882 struct btrfs_delayed_node *delayed_node;
1883
1884 /*
1885 * we don't do delayed inode updates during log recovery because it
1886 * leads to enospc problems. This means we also can't do
1887 * delayed inode refs
1888 */
1889 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1890 return -EAGAIN;
1891
1892 delayed_node = btrfs_get_or_create_delayed_node(inode);
1893 if (IS_ERR(delayed_node))
1894 return PTR_ERR(delayed_node);
1895
1896 /*
1897 * We don't reserve space for inode ref deletion is because:
1898 * - We ONLY do async inode ref deletion for the inode who has only
1899 * one link(i_nlink == 1), it means there is only one inode ref.
1900 * And in most case, the inode ref and the inode item are in the
1901 * same leaf, and we will deal with them at the same time.
1902 * Since we are sure we will reserve the space for the inode item,
1903 * it is unnecessary to reserve space for inode ref deletion.
1904 * - If the inode ref and the inode item are not in the same leaf,
1905 * We also needn't worry about enospc problem, because we reserve
1906 * much more space for the inode update than it needs.
1907 * - At the worst, we can steal some space from the global reservation.
1908 * It is very rare.
1909 */
1910 mutex_lock(&delayed_node->mutex);
1911 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1912 goto release_node;
1913
1914 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1915 delayed_node->count++;
1916 atomic_inc(&fs_info->delayed_root->items);
1917 release_node:
1918 mutex_unlock(&delayed_node->mutex);
1919 btrfs_release_delayed_node(delayed_node);
1920 return 0;
1921 }
1922
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1923 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1924 {
1925 struct btrfs_root *root = delayed_node->root;
1926 struct btrfs_fs_info *fs_info = root->fs_info;
1927 struct btrfs_delayed_item *curr_item, *prev_item;
1928
1929 mutex_lock(&delayed_node->mutex);
1930 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1931 while (curr_item) {
1932 btrfs_delayed_item_release_metadata(root, curr_item);
1933 prev_item = curr_item;
1934 curr_item = __btrfs_next_delayed_item(prev_item);
1935 btrfs_release_delayed_item(prev_item);
1936 }
1937
1938 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1939 while (curr_item) {
1940 btrfs_delayed_item_release_metadata(root, curr_item);
1941 prev_item = curr_item;
1942 curr_item = __btrfs_next_delayed_item(prev_item);
1943 btrfs_release_delayed_item(prev_item);
1944 }
1945
1946 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1947 btrfs_release_delayed_iref(delayed_node);
1948
1949 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1950 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1951 btrfs_release_delayed_inode(delayed_node);
1952 }
1953 mutex_unlock(&delayed_node->mutex);
1954 }
1955
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)1956 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1957 {
1958 struct btrfs_delayed_node *delayed_node;
1959
1960 delayed_node = btrfs_get_delayed_node(inode);
1961 if (!delayed_node)
1962 return;
1963
1964 __btrfs_kill_delayed_node(delayed_node);
1965 btrfs_release_delayed_node(delayed_node);
1966 }
1967
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)1968 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1969 {
1970 u64 inode_id = 0;
1971 struct btrfs_delayed_node *delayed_nodes[8];
1972 int i, n;
1973
1974 while (1) {
1975 spin_lock(&root->inode_lock);
1976 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1977 (void **)delayed_nodes, inode_id,
1978 ARRAY_SIZE(delayed_nodes));
1979 if (!n) {
1980 spin_unlock(&root->inode_lock);
1981 break;
1982 }
1983
1984 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1985 for (i = 0; i < n; i++) {
1986 /*
1987 * Don't increase refs in case the node is dead and
1988 * about to be removed from the tree in the loop below
1989 */
1990 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1991 delayed_nodes[i] = NULL;
1992 }
1993 spin_unlock(&root->inode_lock);
1994
1995 for (i = 0; i < n; i++) {
1996 if (!delayed_nodes[i])
1997 continue;
1998 __btrfs_kill_delayed_node(delayed_nodes[i]);
1999 btrfs_release_delayed_node(delayed_nodes[i]);
2000 }
2001 }
2002 }
2003
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2004 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2005 {
2006 struct btrfs_delayed_node *curr_node, *prev_node;
2007
2008 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2009 while (curr_node) {
2010 __btrfs_kill_delayed_node(curr_node);
2011
2012 prev_node = curr_node;
2013 curr_node = btrfs_next_delayed_node(curr_node);
2014 btrfs_release_delayed_node(prev_node);
2015 }
2016 }
2017
2018