1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/spinlock.h>
9 #include <linux/page-flags.h>
10 #include <asm/bug.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "extent_io.h"
14 #include "locking.h"
15
16 /*
17 * Extent buffer locking
18 * =====================
19 *
20 * The locks use a custom scheme that allows to do more operations than are
21 * available fromt current locking primitives. The building blocks are still
22 * rwlock and wait queues.
23 *
24 * Required semantics:
25 *
26 * - reader/writer exclusion
27 * - writer/writer exclusion
28 * - reader/reader sharing
29 * - spinning lock semantics
30 * - blocking lock semantics
31 * - try-lock semantics for readers and writers
32 * - one level nesting, allowing read lock to be taken by the same thread that
33 * already has write lock
34 *
35 * The extent buffer locks (also called tree locks) manage access to eb data
36 * related to the storage in the b-tree (keys, items, but not the individual
37 * members of eb).
38 * We want concurrency of many readers and safe updates. The underlying locking
39 * is done by read-write spinlock and the blocking part is implemented using
40 * counters and wait queues.
41 *
42 * spinning semantics - the low-level rwlock is held so all other threads that
43 * want to take it are spinning on it.
44 *
45 * blocking semantics - the low-level rwlock is not held but the counter
46 * denotes how many times the blocking lock was held;
47 * sleeping is possible
48 *
49 * Write lock always allows only one thread to access the data.
50 *
51 *
52 * Debugging
53 * ---------
54 *
55 * There are additional state counters that are asserted in various contexts,
56 * removed from non-debug build to reduce extent_buffer size and for
57 * performance reasons.
58 *
59 *
60 * Lock recursion
61 * --------------
62 *
63 * A write operation on a tree might indirectly start a look up on the same
64 * tree. This can happen when btrfs_cow_block locks the tree and needs to
65 * lookup free extents.
66 *
67 * btrfs_cow_block
68 * ..
69 * alloc_tree_block_no_bg_flush
70 * btrfs_alloc_tree_block
71 * btrfs_reserve_extent
72 * ..
73 * load_free_space_cache
74 * ..
75 * btrfs_lookup_file_extent
76 * btrfs_search_slot
77 *
78 *
79 * Locking pattern - spinning
80 * --------------------------
81 *
82 * The simple locking scenario, the +--+ denotes the spinning section.
83 *
84 * +- btrfs_tree_lock
85 * | - extent_buffer::rwlock is held
86 * | - no heavy operations should happen, eg. IO, memory allocations, large
87 * | structure traversals
88 * +- btrfs_tree_unock
89 *
90 *
91 * Locking pattern - blocking
92 * --------------------------
93 *
94 * The blocking write uses the following scheme. The +--+ denotes the spinning
95 * section.
96 *
97 * +- btrfs_tree_lock
98 * |
99 * +- btrfs_set_lock_blocking_write
100 *
101 * - allowed: IO, memory allocations, etc.
102 *
103 * -- btrfs_tree_unlock - note, no explicit unblocking necessary
104 *
105 *
106 * Blocking read is similar.
107 *
108 * +- btrfs_tree_read_lock
109 * |
110 * +- btrfs_set_lock_blocking_read
111 *
112 * - heavy operations allowed
113 *
114 * +- btrfs_tree_read_unlock_blocking
115 * |
116 * +- btrfs_tree_read_unlock
117 *
118 */
119
120 #ifdef CONFIG_BTRFS_DEBUG
btrfs_assert_spinning_writers_get(struct extent_buffer * eb)121 static inline void btrfs_assert_spinning_writers_get(struct extent_buffer *eb)
122 {
123 WARN_ON(eb->spinning_writers);
124 eb->spinning_writers++;
125 }
126
btrfs_assert_spinning_writers_put(struct extent_buffer * eb)127 static inline void btrfs_assert_spinning_writers_put(struct extent_buffer *eb)
128 {
129 WARN_ON(eb->spinning_writers != 1);
130 eb->spinning_writers--;
131 }
132
btrfs_assert_no_spinning_writers(struct extent_buffer * eb)133 static inline void btrfs_assert_no_spinning_writers(struct extent_buffer *eb)
134 {
135 WARN_ON(eb->spinning_writers);
136 }
137
btrfs_assert_spinning_readers_get(struct extent_buffer * eb)138 static inline void btrfs_assert_spinning_readers_get(struct extent_buffer *eb)
139 {
140 atomic_inc(&eb->spinning_readers);
141 }
142
btrfs_assert_spinning_readers_put(struct extent_buffer * eb)143 static inline void btrfs_assert_spinning_readers_put(struct extent_buffer *eb)
144 {
145 WARN_ON(atomic_read(&eb->spinning_readers) == 0);
146 atomic_dec(&eb->spinning_readers);
147 }
148
btrfs_assert_tree_read_locks_get(struct extent_buffer * eb)149 static inline void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb)
150 {
151 atomic_inc(&eb->read_locks);
152 }
153
btrfs_assert_tree_read_locks_put(struct extent_buffer * eb)154 static inline void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb)
155 {
156 atomic_dec(&eb->read_locks);
157 }
158
btrfs_assert_tree_read_locked(struct extent_buffer * eb)159 static inline void btrfs_assert_tree_read_locked(struct extent_buffer *eb)
160 {
161 BUG_ON(!atomic_read(&eb->read_locks));
162 }
163
btrfs_assert_tree_write_locks_get(struct extent_buffer * eb)164 static inline void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb)
165 {
166 eb->write_locks++;
167 }
168
btrfs_assert_tree_write_locks_put(struct extent_buffer * eb)169 static inline void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb)
170 {
171 eb->write_locks--;
172 }
173
174 #else
btrfs_assert_spinning_writers_get(struct extent_buffer * eb)175 static void btrfs_assert_spinning_writers_get(struct extent_buffer *eb) { }
btrfs_assert_spinning_writers_put(struct extent_buffer * eb)176 static void btrfs_assert_spinning_writers_put(struct extent_buffer *eb) { }
btrfs_assert_no_spinning_writers(struct extent_buffer * eb)177 static void btrfs_assert_no_spinning_writers(struct extent_buffer *eb) { }
btrfs_assert_spinning_readers_put(struct extent_buffer * eb)178 static void btrfs_assert_spinning_readers_put(struct extent_buffer *eb) { }
btrfs_assert_spinning_readers_get(struct extent_buffer * eb)179 static void btrfs_assert_spinning_readers_get(struct extent_buffer *eb) { }
btrfs_assert_tree_read_locked(struct extent_buffer * eb)180 static void btrfs_assert_tree_read_locked(struct extent_buffer *eb) { }
btrfs_assert_tree_read_locks_get(struct extent_buffer * eb)181 static void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb) { }
btrfs_assert_tree_read_locks_put(struct extent_buffer * eb)182 static void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb) { }
btrfs_assert_tree_write_locks_get(struct extent_buffer * eb)183 static void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb) { }
btrfs_assert_tree_write_locks_put(struct extent_buffer * eb)184 static void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb) { }
185 #endif
186
187 /*
188 * Mark already held read lock as blocking. Can be nested in write lock by the
189 * same thread.
190 *
191 * Use when there are potentially long operations ahead so other thread waiting
192 * on the lock will not actively spin but sleep instead.
193 *
194 * The rwlock is released and blocking reader counter is increased.
195 */
btrfs_set_lock_blocking_read(struct extent_buffer * eb)196 void btrfs_set_lock_blocking_read(struct extent_buffer *eb)
197 {
198 trace_btrfs_set_lock_blocking_read(eb);
199 /*
200 * No lock is required. The lock owner may change if we have a read
201 * lock, but it won't change to or away from us. If we have the write
202 * lock, we are the owner and it'll never change.
203 */
204 if (eb->lock_recursed && current->pid == eb->lock_owner)
205 return;
206 btrfs_assert_tree_read_locked(eb);
207 atomic_inc(&eb->blocking_readers);
208 btrfs_assert_spinning_readers_put(eb);
209 read_unlock(&eb->lock);
210 }
211
212 /*
213 * Mark already held write lock as blocking.
214 *
215 * Use when there are potentially long operations ahead so other threads
216 * waiting on the lock will not actively spin but sleep instead.
217 *
218 * The rwlock is released and blocking writers is set.
219 */
btrfs_set_lock_blocking_write(struct extent_buffer * eb)220 void btrfs_set_lock_blocking_write(struct extent_buffer *eb)
221 {
222 trace_btrfs_set_lock_blocking_write(eb);
223 /*
224 * No lock is required. The lock owner may change if we have a read
225 * lock, but it won't change to or away from us. If we have the write
226 * lock, we are the owner and it'll never change.
227 */
228 if (eb->lock_recursed && current->pid == eb->lock_owner)
229 return;
230 if (eb->blocking_writers == 0) {
231 btrfs_assert_spinning_writers_put(eb);
232 btrfs_assert_tree_locked(eb);
233 WRITE_ONCE(eb->blocking_writers, 1);
234 write_unlock(&eb->lock);
235 }
236 }
237
238 /*
239 * Lock the extent buffer for read. Wait for any writers (spinning or blocking).
240 * Can be nested in write lock by the same thread.
241 *
242 * Use when the locked section does only lightweight actions and busy waiting
243 * would be cheaper than making other threads do the wait/wake loop.
244 *
245 * The rwlock is held upon exit.
246 */
__btrfs_tree_read_lock(struct extent_buffer * eb,enum btrfs_lock_nesting nest,bool recurse)247 void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest,
248 bool recurse)
249 {
250 u64 start_ns = 0;
251
252 if (trace_btrfs_tree_read_lock_enabled())
253 start_ns = ktime_get_ns();
254 again:
255 read_lock(&eb->lock);
256 BUG_ON(eb->blocking_writers == 0 &&
257 current->pid == eb->lock_owner);
258 if (eb->blocking_writers) {
259 if (current->pid == eb->lock_owner) {
260 /*
261 * This extent is already write-locked by our thread.
262 * We allow an additional read lock to be added because
263 * it's for the same thread. btrfs_find_all_roots()
264 * depends on this as it may be called on a partly
265 * (write-)locked tree.
266 */
267 WARN_ON(!recurse);
268 BUG_ON(eb->lock_recursed);
269 eb->lock_recursed = true;
270 read_unlock(&eb->lock);
271 trace_btrfs_tree_read_lock(eb, start_ns);
272 return;
273 }
274 read_unlock(&eb->lock);
275 wait_event(eb->write_lock_wq,
276 READ_ONCE(eb->blocking_writers) == 0);
277 goto again;
278 }
279 btrfs_assert_tree_read_locks_get(eb);
280 btrfs_assert_spinning_readers_get(eb);
281 trace_btrfs_tree_read_lock(eb, start_ns);
282 }
283
btrfs_tree_read_lock(struct extent_buffer * eb)284 void btrfs_tree_read_lock(struct extent_buffer *eb)
285 {
286 __btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL, false);
287 }
288
289 /*
290 * Lock extent buffer for read, optimistically expecting that there are no
291 * contending blocking writers. If there are, don't wait.
292 *
293 * Return 1 if the rwlock has been taken, 0 otherwise
294 */
btrfs_tree_read_lock_atomic(struct extent_buffer * eb)295 int btrfs_tree_read_lock_atomic(struct extent_buffer *eb)
296 {
297 if (READ_ONCE(eb->blocking_writers))
298 return 0;
299
300 read_lock(&eb->lock);
301 /* Refetch value after lock */
302 if (READ_ONCE(eb->blocking_writers)) {
303 read_unlock(&eb->lock);
304 return 0;
305 }
306 btrfs_assert_tree_read_locks_get(eb);
307 btrfs_assert_spinning_readers_get(eb);
308 trace_btrfs_tree_read_lock_atomic(eb);
309 return 1;
310 }
311
312 /*
313 * Try-lock for read. Don't block or wait for contending writers.
314 *
315 * Retrun 1 if the rwlock has been taken, 0 otherwise
316 */
btrfs_try_tree_read_lock(struct extent_buffer * eb)317 int btrfs_try_tree_read_lock(struct extent_buffer *eb)
318 {
319 if (READ_ONCE(eb->blocking_writers))
320 return 0;
321
322 if (!read_trylock(&eb->lock))
323 return 0;
324
325 /* Refetch value after lock */
326 if (READ_ONCE(eb->blocking_writers)) {
327 read_unlock(&eb->lock);
328 return 0;
329 }
330 btrfs_assert_tree_read_locks_get(eb);
331 btrfs_assert_spinning_readers_get(eb);
332 trace_btrfs_try_tree_read_lock(eb);
333 return 1;
334 }
335
336 /*
337 * Try-lock for write. May block until the lock is uncontended, but does not
338 * wait until it is free.
339 *
340 * Retrun 1 if the rwlock has been taken, 0 otherwise
341 */
btrfs_try_tree_write_lock(struct extent_buffer * eb)342 int btrfs_try_tree_write_lock(struct extent_buffer *eb)
343 {
344 if (READ_ONCE(eb->blocking_writers) || atomic_read(&eb->blocking_readers))
345 return 0;
346
347 write_lock(&eb->lock);
348 /* Refetch value after lock */
349 if (READ_ONCE(eb->blocking_writers) || atomic_read(&eb->blocking_readers)) {
350 write_unlock(&eb->lock);
351 return 0;
352 }
353 btrfs_assert_tree_write_locks_get(eb);
354 btrfs_assert_spinning_writers_get(eb);
355 eb->lock_owner = current->pid;
356 trace_btrfs_try_tree_write_lock(eb);
357 return 1;
358 }
359
360 /*
361 * Release read lock. Must be used only if the lock is in spinning mode. If
362 * the read lock is nested, must pair with read lock before the write unlock.
363 *
364 * The rwlock is not held upon exit.
365 */
btrfs_tree_read_unlock(struct extent_buffer * eb)366 void btrfs_tree_read_unlock(struct extent_buffer *eb)
367 {
368 trace_btrfs_tree_read_unlock(eb);
369 /*
370 * if we're nested, we have the write lock. No new locking
371 * is needed as long as we are the lock owner.
372 * The write unlock will do a barrier for us, and the lock_recursed
373 * field only matters to the lock owner.
374 */
375 if (eb->lock_recursed && current->pid == eb->lock_owner) {
376 eb->lock_recursed = false;
377 return;
378 }
379 btrfs_assert_tree_read_locked(eb);
380 btrfs_assert_spinning_readers_put(eb);
381 btrfs_assert_tree_read_locks_put(eb);
382 read_unlock(&eb->lock);
383 }
384
385 /*
386 * Release read lock, previously set to blocking by a pairing call to
387 * btrfs_set_lock_blocking_read(). Can be nested in write lock by the same
388 * thread.
389 *
390 * State of rwlock is unchanged, last reader wakes waiting threads.
391 */
btrfs_tree_read_unlock_blocking(struct extent_buffer * eb)392 void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb)
393 {
394 trace_btrfs_tree_read_unlock_blocking(eb);
395 /*
396 * if we're nested, we have the write lock. No new locking
397 * is needed as long as we are the lock owner.
398 * The write unlock will do a barrier for us, and the lock_recursed
399 * field only matters to the lock owner.
400 */
401 if (eb->lock_recursed && current->pid == eb->lock_owner) {
402 eb->lock_recursed = false;
403 return;
404 }
405 btrfs_assert_tree_read_locked(eb);
406 WARN_ON(atomic_read(&eb->blocking_readers) == 0);
407 /* atomic_dec_and_test implies a barrier */
408 if (atomic_dec_and_test(&eb->blocking_readers))
409 cond_wake_up_nomb(&eb->read_lock_wq);
410 btrfs_assert_tree_read_locks_put(eb);
411 }
412
413 /*
414 * Lock for write. Wait for all blocking and spinning readers and writers. This
415 * starts context where reader lock could be nested by the same thread.
416 *
417 * The rwlock is held for write upon exit.
418 */
__btrfs_tree_lock(struct extent_buffer * eb,enum btrfs_lock_nesting nest)419 void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
420 __acquires(&eb->lock)
421 {
422 u64 start_ns = 0;
423
424 if (trace_btrfs_tree_lock_enabled())
425 start_ns = ktime_get_ns();
426
427 WARN_ON(eb->lock_owner == current->pid);
428 again:
429 wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0);
430 wait_event(eb->write_lock_wq, READ_ONCE(eb->blocking_writers) == 0);
431 write_lock(&eb->lock);
432 /* Refetch value after lock */
433 if (atomic_read(&eb->blocking_readers) ||
434 READ_ONCE(eb->blocking_writers)) {
435 write_unlock(&eb->lock);
436 goto again;
437 }
438 btrfs_assert_spinning_writers_get(eb);
439 btrfs_assert_tree_write_locks_get(eb);
440 eb->lock_owner = current->pid;
441 trace_btrfs_tree_lock(eb, start_ns);
442 }
443
btrfs_tree_lock(struct extent_buffer * eb)444 void btrfs_tree_lock(struct extent_buffer *eb)
445 {
446 __btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
447 }
448
449 /*
450 * Release the write lock, either blocking or spinning (ie. there's no need
451 * for an explicit blocking unlock, like btrfs_tree_read_unlock_blocking).
452 * This also ends the context for nesting, the read lock must have been
453 * released already.
454 *
455 * Tasks blocked and waiting are woken, rwlock is not held upon exit.
456 */
btrfs_tree_unlock(struct extent_buffer * eb)457 void btrfs_tree_unlock(struct extent_buffer *eb)
458 {
459 /*
460 * This is read both locked and unlocked but always by the same thread
461 * that already owns the lock so we don't need to use READ_ONCE
462 */
463 int blockers = eb->blocking_writers;
464
465 BUG_ON(blockers > 1);
466
467 btrfs_assert_tree_locked(eb);
468 trace_btrfs_tree_unlock(eb);
469 eb->lock_owner = 0;
470 btrfs_assert_tree_write_locks_put(eb);
471
472 if (blockers) {
473 btrfs_assert_no_spinning_writers(eb);
474 /* Unlocked write */
475 WRITE_ONCE(eb->blocking_writers, 0);
476 /*
477 * We need to order modifying blocking_writers above with
478 * actually waking up the sleepers to ensure they see the
479 * updated value of blocking_writers
480 */
481 cond_wake_up(&eb->write_lock_wq);
482 } else {
483 btrfs_assert_spinning_writers_put(eb);
484 write_unlock(&eb->lock);
485 }
486 }
487
488 /*
489 * Set all locked nodes in the path to blocking locks. This should be done
490 * before scheduling
491 */
btrfs_set_path_blocking(struct btrfs_path * p)492 void btrfs_set_path_blocking(struct btrfs_path *p)
493 {
494 int i;
495
496 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
497 if (!p->nodes[i] || !p->locks[i])
498 continue;
499 /*
500 * If we currently have a spinning reader or writer lock this
501 * will bump the count of blocking holders and drop the
502 * spinlock.
503 */
504 if (p->locks[i] == BTRFS_READ_LOCK) {
505 btrfs_set_lock_blocking_read(p->nodes[i]);
506 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
507 } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
508 btrfs_set_lock_blocking_write(p->nodes[i]);
509 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
510 }
511 }
512 }
513
514 /*
515 * This releases any locks held in the path starting at level and going all the
516 * way up to the root.
517 *
518 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
519 * cases, such as COW of the block at slot zero in the node. This ignores
520 * those rules, and it should only be called when there are no more updates to
521 * be done higher up in the tree.
522 */
btrfs_unlock_up_safe(struct btrfs_path * path,int level)523 void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
524 {
525 int i;
526
527 if (path->keep_locks)
528 return;
529
530 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
531 if (!path->nodes[i])
532 continue;
533 if (!path->locks[i])
534 continue;
535 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
536 path->locks[i] = 0;
537 }
538 }
539
540 /*
541 * Loop around taking references on and locking the root node of the tree until
542 * we end up with a lock on the root node.
543 *
544 * Return: root extent buffer with write lock held
545 */
btrfs_lock_root_node(struct btrfs_root * root)546 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
547 {
548 struct extent_buffer *eb;
549
550 while (1) {
551 eb = btrfs_root_node(root);
552 btrfs_tree_lock(eb);
553 if (eb == root->node)
554 break;
555 btrfs_tree_unlock(eb);
556 free_extent_buffer(eb);
557 }
558 return eb;
559 }
560
561 /*
562 * Loop around taking references on and locking the root node of the tree until
563 * we end up with a lock on the root node.
564 *
565 * Return: root extent buffer with read lock held
566 */
__btrfs_read_lock_root_node(struct btrfs_root * root,bool recurse)567 struct extent_buffer *__btrfs_read_lock_root_node(struct btrfs_root *root,
568 bool recurse)
569 {
570 struct extent_buffer *eb;
571
572 while (1) {
573 eb = btrfs_root_node(root);
574 __btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL, recurse);
575 if (eb == root->node)
576 break;
577 btrfs_tree_read_unlock(eb);
578 free_extent_buffer(eb);
579 }
580 return eb;
581 }
582
583 /*
584 * DREW locks
585 * ==========
586 *
587 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
588 * where you want to provide A-B exclusion but not AA or BB.
589 *
590 * Currently implementation gives more priority to reader. If a reader and a
591 * writer both race to acquire their respective sides of the lock the writer
592 * would yield its lock as soon as it detects a concurrent reader. Additionally
593 * if there are pending readers no new writers would be allowed to come in and
594 * acquire the lock.
595 */
596
btrfs_drew_lock_init(struct btrfs_drew_lock * lock)597 int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
598 {
599 int ret;
600
601 ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
602 if (ret)
603 return ret;
604
605 atomic_set(&lock->readers, 0);
606 init_waitqueue_head(&lock->pending_readers);
607 init_waitqueue_head(&lock->pending_writers);
608
609 return 0;
610 }
611
btrfs_drew_lock_destroy(struct btrfs_drew_lock * lock)612 void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
613 {
614 percpu_counter_destroy(&lock->writers);
615 }
616
617 /* Return true if acquisition is successful, false otherwise */
btrfs_drew_try_write_lock(struct btrfs_drew_lock * lock)618 bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
619 {
620 if (atomic_read(&lock->readers))
621 return false;
622
623 percpu_counter_inc(&lock->writers);
624
625 /* Ensure writers count is updated before we check for pending readers */
626 smp_mb();
627 if (atomic_read(&lock->readers)) {
628 btrfs_drew_write_unlock(lock);
629 return false;
630 }
631
632 return true;
633 }
634
btrfs_drew_write_lock(struct btrfs_drew_lock * lock)635 void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
636 {
637 while (true) {
638 if (btrfs_drew_try_write_lock(lock))
639 return;
640 wait_event(lock->pending_writers, !atomic_read(&lock->readers));
641 }
642 }
643
btrfs_drew_write_unlock(struct btrfs_drew_lock * lock)644 void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
645 {
646 percpu_counter_dec(&lock->writers);
647 cond_wake_up(&lock->pending_readers);
648 }
649
btrfs_drew_read_lock(struct btrfs_drew_lock * lock)650 void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
651 {
652 atomic_inc(&lock->readers);
653
654 /*
655 * Ensure the pending reader count is perceieved BEFORE this reader
656 * goes to sleep in case of active writers. This guarantees new writers
657 * won't be allowed and that the current reader will be woken up when
658 * the last active writer finishes its jobs.
659 */
660 smp_mb__after_atomic();
661
662 wait_event(lock->pending_readers,
663 percpu_counter_sum(&lock->writers) == 0);
664 }
665
btrfs_drew_read_unlock(struct btrfs_drew_lock * lock)666 void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
667 {
668 /*
669 * atomic_dec_and_test implies a full barrier, so woken up writers
670 * are guaranteed to see the decrement
671 */
672 if (atomic_dec_and_test(&lock->readers))
673 wake_up(&lock->pending_writers);
674 }
675