• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 
32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
33 
btrfs_compress_type2str(enum btrfs_compression_type type)34 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
35 {
36 	switch (type) {
37 	case BTRFS_COMPRESS_ZLIB:
38 	case BTRFS_COMPRESS_LZO:
39 	case BTRFS_COMPRESS_ZSTD:
40 	case BTRFS_COMPRESS_NONE:
41 		return btrfs_compress_types[type];
42 	default:
43 		break;
44 	}
45 
46 	return NULL;
47 }
48 
btrfs_compress_is_valid_type(const char * str,size_t len)49 bool btrfs_compress_is_valid_type(const char *str, size_t len)
50 {
51 	int i;
52 
53 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
54 		size_t comp_len = strlen(btrfs_compress_types[i]);
55 
56 		if (len < comp_len)
57 			continue;
58 
59 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
60 			return true;
61 	}
62 	return false;
63 }
64 
compression_compress_pages(int type,struct list_head * ws,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)65 static int compression_compress_pages(int type, struct list_head *ws,
66                struct address_space *mapping, u64 start, struct page **pages,
67                unsigned long *out_pages, unsigned long *total_in,
68                unsigned long *total_out)
69 {
70 	switch (type) {
71 	case BTRFS_COMPRESS_ZLIB:
72 		return zlib_compress_pages(ws, mapping, start, pages,
73 				out_pages, total_in, total_out);
74 	case BTRFS_COMPRESS_LZO:
75 		return lzo_compress_pages(ws, mapping, start, pages,
76 				out_pages, total_in, total_out);
77 	case BTRFS_COMPRESS_ZSTD:
78 		return zstd_compress_pages(ws, mapping, start, pages,
79 				out_pages, total_in, total_out);
80 	case BTRFS_COMPRESS_NONE:
81 	default:
82 		/*
83 		 * This can happen when compression races with remount setting
84 		 * it to 'no compress', while caller doesn't call
85 		 * inode_need_compress() to check if we really need to
86 		 * compress.
87 		 *
88 		 * Not a big deal, just need to inform caller that we
89 		 * haven't allocated any pages yet.
90 		 */
91 		*out_pages = 0;
92 		return -E2BIG;
93 	}
94 }
95 
compression_decompress_bio(int type,struct list_head * ws,struct compressed_bio * cb)96 static int compression_decompress_bio(int type, struct list_head *ws,
97 		struct compressed_bio *cb)
98 {
99 	switch (type) {
100 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
101 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
102 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
103 	case BTRFS_COMPRESS_NONE:
104 	default:
105 		/*
106 		 * This can't happen, the type is validated several times
107 		 * before we get here.
108 		 */
109 		BUG();
110 	}
111 }
112 
compression_decompress(int type,struct list_head * ws,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)113 static int compression_decompress(int type, struct list_head *ws,
114                unsigned char *data_in, struct page *dest_page,
115                unsigned long start_byte, size_t srclen, size_t destlen)
116 {
117 	switch (type) {
118 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
119 						start_byte, srclen, destlen);
120 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
121 						start_byte, srclen, destlen);
122 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
123 						start_byte, srclen, destlen);
124 	case BTRFS_COMPRESS_NONE:
125 	default:
126 		/*
127 		 * This can't happen, the type is validated several times
128 		 * before we get here.
129 		 */
130 		BUG();
131 	}
132 }
133 
134 static int btrfs_decompress_bio(struct compressed_bio *cb);
135 
compressed_bio_size(struct btrfs_fs_info * fs_info,unsigned long disk_size)136 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
137 				      unsigned long disk_size)
138 {
139 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
140 
141 	return sizeof(struct compressed_bio) +
142 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
143 }
144 
check_compressed_csum(struct btrfs_inode * inode,struct bio * bio,u64 disk_start)145 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
146 				 u64 disk_start)
147 {
148 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
149 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
150 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
151 	struct page *page;
152 	unsigned long i;
153 	char *kaddr;
154 	u8 csum[BTRFS_CSUM_SIZE];
155 	struct compressed_bio *cb = bio->bi_private;
156 	u8 *cb_sum = cb->sums;
157 
158 	if (inode->flags & BTRFS_INODE_NODATASUM)
159 		return 0;
160 
161 	shash->tfm = fs_info->csum_shash;
162 
163 	for (i = 0; i < cb->nr_pages; i++) {
164 		page = cb->compressed_pages[i];
165 
166 		kaddr = kmap_atomic(page);
167 		crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
168 		kunmap_atomic(kaddr);
169 
170 		if (memcmp(&csum, cb_sum, csum_size)) {
171 			btrfs_print_data_csum_error(inode, disk_start,
172 					csum, cb_sum, cb->mirror_num);
173 			if (btrfs_io_bio(bio)->device)
174 				btrfs_dev_stat_inc_and_print(
175 					btrfs_io_bio(bio)->device,
176 					BTRFS_DEV_STAT_CORRUPTION_ERRS);
177 			return -EIO;
178 		}
179 		cb_sum += csum_size;
180 	}
181 	return 0;
182 }
183 
184 /* when we finish reading compressed pages from the disk, we
185  * decompress them and then run the bio end_io routines on the
186  * decompressed pages (in the inode address space).
187  *
188  * This allows the checksumming and other IO error handling routines
189  * to work normally
190  *
191  * The compressed pages are freed here, and it must be run
192  * in process context
193  */
end_compressed_bio_read(struct bio * bio)194 static void end_compressed_bio_read(struct bio *bio)
195 {
196 	struct compressed_bio *cb = bio->bi_private;
197 	struct inode *inode;
198 	struct page *page;
199 	unsigned long index;
200 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
201 	int ret = 0;
202 
203 	if (bio->bi_status)
204 		cb->errors = 1;
205 
206 	/* if there are more bios still pending for this compressed
207 	 * extent, just exit
208 	 */
209 	if (!refcount_dec_and_test(&cb->pending_bios))
210 		goto out;
211 
212 	/*
213 	 * Record the correct mirror_num in cb->orig_bio so that
214 	 * read-repair can work properly.
215 	 */
216 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
217 	cb->mirror_num = mirror;
218 
219 	/*
220 	 * Some IO in this cb have failed, just skip checksum as there
221 	 * is no way it could be correct.
222 	 */
223 	if (cb->errors == 1)
224 		goto csum_failed;
225 
226 	inode = cb->inode;
227 	ret = check_compressed_csum(BTRFS_I(inode), bio,
228 				    (u64)bio->bi_iter.bi_sector << 9);
229 	if (ret)
230 		goto csum_failed;
231 
232 	/* ok, we're the last bio for this extent, lets start
233 	 * the decompression.
234 	 */
235 	ret = btrfs_decompress_bio(cb);
236 
237 csum_failed:
238 	if (ret)
239 		cb->errors = 1;
240 
241 	/* release the compressed pages */
242 	index = 0;
243 	for (index = 0; index < cb->nr_pages; index++) {
244 		page = cb->compressed_pages[index];
245 		page->mapping = NULL;
246 		put_page(page);
247 	}
248 
249 	/* do io completion on the original bio */
250 	if (cb->errors) {
251 		bio_io_error(cb->orig_bio);
252 	} else {
253 		struct bio_vec *bvec;
254 		struct bvec_iter_all iter_all;
255 
256 		/*
257 		 * we have verified the checksum already, set page
258 		 * checked so the end_io handlers know about it
259 		 */
260 		ASSERT(!bio_flagged(bio, BIO_CLONED));
261 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
262 			SetPageChecked(bvec->bv_page);
263 
264 		bio_endio(cb->orig_bio);
265 	}
266 
267 	/* finally free the cb struct */
268 	kfree(cb->compressed_pages);
269 	kfree(cb);
270 out:
271 	bio_put(bio);
272 }
273 
274 /*
275  * Clear the writeback bits on all of the file
276  * pages for a compressed write
277  */
end_compressed_writeback(struct inode * inode,const struct compressed_bio * cb)278 static noinline void end_compressed_writeback(struct inode *inode,
279 					      const struct compressed_bio *cb)
280 {
281 	unsigned long index = cb->start >> PAGE_SHIFT;
282 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
283 	struct page *pages[16];
284 	unsigned long nr_pages = end_index - index + 1;
285 	int i;
286 	int ret;
287 
288 	if (cb->errors)
289 		mapping_set_error(inode->i_mapping, -EIO);
290 
291 	while (nr_pages > 0) {
292 		ret = find_get_pages_contig(inode->i_mapping, index,
293 				     min_t(unsigned long,
294 				     nr_pages, ARRAY_SIZE(pages)), pages);
295 		if (ret == 0) {
296 			nr_pages -= 1;
297 			index += 1;
298 			continue;
299 		}
300 		for (i = 0; i < ret; i++) {
301 			if (cb->errors)
302 				SetPageError(pages[i]);
303 			end_page_writeback(pages[i]);
304 			put_page(pages[i]);
305 		}
306 		nr_pages -= ret;
307 		index += ret;
308 	}
309 	/* the inode may be gone now */
310 }
311 
312 /*
313  * do the cleanup once all the compressed pages hit the disk.
314  * This will clear writeback on the file pages and free the compressed
315  * pages.
316  *
317  * This also calls the writeback end hooks for the file pages so that
318  * metadata and checksums can be updated in the file.
319  */
end_compressed_bio_write(struct bio * bio)320 static void end_compressed_bio_write(struct bio *bio)
321 {
322 	struct compressed_bio *cb = bio->bi_private;
323 	struct inode *inode;
324 	struct page *page;
325 	unsigned long index;
326 
327 	if (bio->bi_status)
328 		cb->errors = 1;
329 
330 	/* if there are more bios still pending for this compressed
331 	 * extent, just exit
332 	 */
333 	if (!refcount_dec_and_test(&cb->pending_bios))
334 		goto out;
335 
336 	/* ok, we're the last bio for this extent, step one is to
337 	 * call back into the FS and do all the end_io operations
338 	 */
339 	inode = cb->inode;
340 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
341 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
342 			cb->start, cb->start + cb->len - 1,
343 			!cb->errors);
344 	cb->compressed_pages[0]->mapping = NULL;
345 
346 	end_compressed_writeback(inode, cb);
347 	/* note, our inode could be gone now */
348 
349 	/*
350 	 * release the compressed pages, these came from alloc_page and
351 	 * are not attached to the inode at all
352 	 */
353 	index = 0;
354 	for (index = 0; index < cb->nr_pages; index++) {
355 		page = cb->compressed_pages[index];
356 		page->mapping = NULL;
357 		put_page(page);
358 	}
359 
360 	/* finally free the cb struct */
361 	kfree(cb->compressed_pages);
362 	kfree(cb);
363 out:
364 	bio_put(bio);
365 }
366 
367 /*
368  * worker function to build and submit bios for previously compressed pages.
369  * The corresponding pages in the inode should be marked for writeback
370  * and the compressed pages should have a reference on them for dropping
371  * when the IO is complete.
372  *
373  * This also checksums the file bytes and gets things ready for
374  * the end io hooks.
375  */
btrfs_submit_compressed_write(struct btrfs_inode * inode,u64 start,unsigned long len,u64 disk_start,unsigned long compressed_len,struct page ** compressed_pages,unsigned long nr_pages,unsigned int write_flags,struct cgroup_subsys_state * blkcg_css)376 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
377 				 unsigned long len, u64 disk_start,
378 				 unsigned long compressed_len,
379 				 struct page **compressed_pages,
380 				 unsigned long nr_pages,
381 				 unsigned int write_flags,
382 				 struct cgroup_subsys_state *blkcg_css)
383 {
384 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
385 	struct bio *bio = NULL;
386 	struct compressed_bio *cb;
387 	unsigned long bytes_left;
388 	int pg_index = 0;
389 	struct page *page;
390 	u64 first_byte = disk_start;
391 	blk_status_t ret;
392 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
393 
394 	WARN_ON(!PAGE_ALIGNED(start));
395 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
396 	if (!cb)
397 		return BLK_STS_RESOURCE;
398 	refcount_set(&cb->pending_bios, 0);
399 	cb->errors = 0;
400 	cb->inode = &inode->vfs_inode;
401 	cb->start = start;
402 	cb->len = len;
403 	cb->mirror_num = 0;
404 	cb->compressed_pages = compressed_pages;
405 	cb->compressed_len = compressed_len;
406 	cb->orig_bio = NULL;
407 	cb->nr_pages = nr_pages;
408 
409 	bio = btrfs_bio_alloc(first_byte);
410 	bio->bi_opf = REQ_OP_WRITE | write_flags;
411 	bio->bi_private = cb;
412 	bio->bi_end_io = end_compressed_bio_write;
413 
414 	if (blkcg_css) {
415 		bio->bi_opf |= REQ_CGROUP_PUNT;
416 		kthread_associate_blkcg(blkcg_css);
417 	}
418 	refcount_set(&cb->pending_bios, 1);
419 
420 	/* create and submit bios for the compressed pages */
421 	bytes_left = compressed_len;
422 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
423 		int submit = 0;
424 
425 		page = compressed_pages[pg_index];
426 		page->mapping = inode->vfs_inode.i_mapping;
427 		if (bio->bi_iter.bi_size)
428 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
429 							  0);
430 
431 		page->mapping = NULL;
432 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
433 		    PAGE_SIZE) {
434 			/*
435 			 * inc the count before we submit the bio so
436 			 * we know the end IO handler won't happen before
437 			 * we inc the count.  Otherwise, the cb might get
438 			 * freed before we're done setting it up
439 			 */
440 			refcount_inc(&cb->pending_bios);
441 			ret = btrfs_bio_wq_end_io(fs_info, bio,
442 						  BTRFS_WQ_ENDIO_DATA);
443 			BUG_ON(ret); /* -ENOMEM */
444 
445 			if (!skip_sum) {
446 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
447 				BUG_ON(ret); /* -ENOMEM */
448 			}
449 
450 			ret = btrfs_map_bio(fs_info, bio, 0);
451 			if (ret) {
452 				bio->bi_status = ret;
453 				bio_endio(bio);
454 			}
455 
456 			bio = btrfs_bio_alloc(first_byte);
457 			bio->bi_opf = REQ_OP_WRITE | write_flags;
458 			bio->bi_private = cb;
459 			bio->bi_end_io = end_compressed_bio_write;
460 			if (blkcg_css)
461 				bio->bi_opf |= REQ_CGROUP_PUNT;
462 			bio_add_page(bio, page, PAGE_SIZE, 0);
463 		}
464 		if (bytes_left < PAGE_SIZE) {
465 			btrfs_info(fs_info,
466 					"bytes left %lu compress len %lu nr %lu",
467 			       bytes_left, cb->compressed_len, cb->nr_pages);
468 		}
469 		bytes_left -= PAGE_SIZE;
470 		first_byte += PAGE_SIZE;
471 		cond_resched();
472 	}
473 
474 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
475 	BUG_ON(ret); /* -ENOMEM */
476 
477 	if (!skip_sum) {
478 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
479 		BUG_ON(ret); /* -ENOMEM */
480 	}
481 
482 	ret = btrfs_map_bio(fs_info, bio, 0);
483 	if (ret) {
484 		bio->bi_status = ret;
485 		bio_endio(bio);
486 	}
487 
488 	if (blkcg_css)
489 		kthread_associate_blkcg(NULL);
490 
491 	return 0;
492 }
493 
bio_end_offset(struct bio * bio)494 static u64 bio_end_offset(struct bio *bio)
495 {
496 	struct bio_vec *last = bio_last_bvec_all(bio);
497 
498 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
499 }
500 
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb)501 static noinline int add_ra_bio_pages(struct inode *inode,
502 				     u64 compressed_end,
503 				     struct compressed_bio *cb)
504 {
505 	unsigned long end_index;
506 	unsigned long pg_index;
507 	u64 last_offset;
508 	u64 isize = i_size_read(inode);
509 	int ret;
510 	struct page *page;
511 	unsigned long nr_pages = 0;
512 	struct extent_map *em;
513 	struct address_space *mapping = inode->i_mapping;
514 	struct extent_map_tree *em_tree;
515 	struct extent_io_tree *tree;
516 	u64 end;
517 	int misses = 0;
518 
519 	last_offset = bio_end_offset(cb->orig_bio);
520 	em_tree = &BTRFS_I(inode)->extent_tree;
521 	tree = &BTRFS_I(inode)->io_tree;
522 
523 	if (isize == 0)
524 		return 0;
525 
526 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
527 
528 	while (last_offset < compressed_end) {
529 		pg_index = last_offset >> PAGE_SHIFT;
530 
531 		if (pg_index > end_index)
532 			break;
533 
534 		page = xa_load(&mapping->i_pages, pg_index);
535 		if (page && !xa_is_value(page)) {
536 			misses++;
537 			if (misses > 4)
538 				break;
539 			goto next;
540 		}
541 
542 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
543 								 ~__GFP_FS));
544 		if (!page)
545 			break;
546 
547 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
548 			put_page(page);
549 			goto next;
550 		}
551 
552 		end = last_offset + PAGE_SIZE - 1;
553 		/*
554 		 * at this point, we have a locked page in the page cache
555 		 * for these bytes in the file.  But, we have to make
556 		 * sure they map to this compressed extent on disk.
557 		 */
558 		set_page_extent_mapped(page);
559 		lock_extent(tree, last_offset, end);
560 		read_lock(&em_tree->lock);
561 		em = lookup_extent_mapping(em_tree, last_offset,
562 					   PAGE_SIZE);
563 		read_unlock(&em_tree->lock);
564 
565 		if (!em || last_offset < em->start ||
566 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
567 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
568 			free_extent_map(em);
569 			unlock_extent(tree, last_offset, end);
570 			unlock_page(page);
571 			put_page(page);
572 			break;
573 		}
574 		free_extent_map(em);
575 
576 		if (page->index == end_index) {
577 			char *userpage;
578 			size_t zero_offset = offset_in_page(isize);
579 
580 			if (zero_offset) {
581 				int zeros;
582 				zeros = PAGE_SIZE - zero_offset;
583 				userpage = kmap_atomic(page);
584 				memset(userpage + zero_offset, 0, zeros);
585 				flush_dcache_page(page);
586 				kunmap_atomic(userpage);
587 			}
588 		}
589 
590 		ret = bio_add_page(cb->orig_bio, page,
591 				   PAGE_SIZE, 0);
592 
593 		if (ret == PAGE_SIZE) {
594 			nr_pages++;
595 			put_page(page);
596 		} else {
597 			unlock_extent(tree, last_offset, end);
598 			unlock_page(page);
599 			put_page(page);
600 			break;
601 		}
602 next:
603 		last_offset += PAGE_SIZE;
604 	}
605 	return 0;
606 }
607 
608 /*
609  * for a compressed read, the bio we get passed has all the inode pages
610  * in it.  We don't actually do IO on those pages but allocate new ones
611  * to hold the compressed pages on disk.
612  *
613  * bio->bi_iter.bi_sector points to the compressed extent on disk
614  * bio->bi_io_vec points to all of the inode pages
615  *
616  * After the compressed pages are read, we copy the bytes into the
617  * bio we were passed and then call the bio end_io calls
618  */
btrfs_submit_compressed_read(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)619 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
620 				 int mirror_num, unsigned long bio_flags)
621 {
622 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
623 	struct extent_map_tree *em_tree;
624 	struct compressed_bio *cb;
625 	unsigned long compressed_len;
626 	unsigned long nr_pages;
627 	unsigned long pg_index;
628 	struct page *page;
629 	struct bio *comp_bio;
630 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
631 	u64 em_len;
632 	u64 em_start;
633 	struct extent_map *em;
634 	blk_status_t ret = BLK_STS_RESOURCE;
635 	int faili = 0;
636 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
637 	u8 *sums;
638 
639 	em_tree = &BTRFS_I(inode)->extent_tree;
640 
641 	/* we need the actual starting offset of this extent in the file */
642 	read_lock(&em_tree->lock);
643 	em = lookup_extent_mapping(em_tree,
644 				   page_offset(bio_first_page_all(bio)),
645 				   PAGE_SIZE);
646 	read_unlock(&em_tree->lock);
647 	if (!em)
648 		return BLK_STS_IOERR;
649 
650 	compressed_len = em->block_len;
651 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
652 	if (!cb)
653 		goto out;
654 
655 	refcount_set(&cb->pending_bios, 0);
656 	cb->errors = 0;
657 	cb->inode = inode;
658 	cb->mirror_num = mirror_num;
659 	sums = cb->sums;
660 
661 	cb->start = em->orig_start;
662 	em_len = em->len;
663 	em_start = em->start;
664 
665 	free_extent_map(em);
666 	em = NULL;
667 
668 	cb->len = bio->bi_iter.bi_size;
669 	cb->compressed_len = compressed_len;
670 	cb->compress_type = extent_compress_type(bio_flags);
671 	cb->orig_bio = bio;
672 
673 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
674 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
675 				       GFP_NOFS);
676 	if (!cb->compressed_pages)
677 		goto fail1;
678 
679 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
680 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
681 							      __GFP_HIGHMEM);
682 		if (!cb->compressed_pages[pg_index]) {
683 			faili = pg_index - 1;
684 			ret = BLK_STS_RESOURCE;
685 			goto fail2;
686 		}
687 	}
688 	faili = nr_pages - 1;
689 	cb->nr_pages = nr_pages;
690 
691 	add_ra_bio_pages(inode, em_start + em_len, cb);
692 
693 	/* include any pages we added in add_ra-bio_pages */
694 	cb->len = bio->bi_iter.bi_size;
695 
696 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
697 	comp_bio->bi_opf = REQ_OP_READ;
698 	comp_bio->bi_private = cb;
699 	comp_bio->bi_end_io = end_compressed_bio_read;
700 	refcount_set(&cb->pending_bios, 1);
701 
702 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
703 		int submit = 0;
704 
705 		page = cb->compressed_pages[pg_index];
706 		page->mapping = inode->i_mapping;
707 		page->index = em_start >> PAGE_SHIFT;
708 
709 		if (comp_bio->bi_iter.bi_size)
710 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
711 							  comp_bio, 0);
712 
713 		page->mapping = NULL;
714 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
715 		    PAGE_SIZE) {
716 			unsigned int nr_sectors;
717 
718 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
719 						  BTRFS_WQ_ENDIO_DATA);
720 			BUG_ON(ret); /* -ENOMEM */
721 
722 			/*
723 			 * inc the count before we submit the bio so
724 			 * we know the end IO handler won't happen before
725 			 * we inc the count.  Otherwise, the cb might get
726 			 * freed before we're done setting it up
727 			 */
728 			refcount_inc(&cb->pending_bios);
729 
730 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
731 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
732 							    (u64)-1, sums);
733 				BUG_ON(ret); /* -ENOMEM */
734 			}
735 
736 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
737 						  fs_info->sectorsize);
738 			sums += csum_size * nr_sectors;
739 
740 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
741 			if (ret) {
742 				comp_bio->bi_status = ret;
743 				bio_endio(comp_bio);
744 			}
745 
746 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
747 			comp_bio->bi_opf = REQ_OP_READ;
748 			comp_bio->bi_private = cb;
749 			comp_bio->bi_end_io = end_compressed_bio_read;
750 
751 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
752 		}
753 		cur_disk_byte += PAGE_SIZE;
754 	}
755 
756 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
757 	BUG_ON(ret); /* -ENOMEM */
758 
759 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
760 		ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
761 		BUG_ON(ret); /* -ENOMEM */
762 	}
763 
764 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
765 	if (ret) {
766 		comp_bio->bi_status = ret;
767 		bio_endio(comp_bio);
768 	}
769 
770 	return 0;
771 
772 fail2:
773 	while (faili >= 0) {
774 		__free_page(cb->compressed_pages[faili]);
775 		faili--;
776 	}
777 
778 	kfree(cb->compressed_pages);
779 fail1:
780 	kfree(cb);
781 out:
782 	free_extent_map(em);
783 	return ret;
784 }
785 
786 /*
787  * Heuristic uses systematic sampling to collect data from the input data
788  * range, the logic can be tuned by the following constants:
789  *
790  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
791  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
792  */
793 #define SAMPLING_READ_SIZE	(16)
794 #define SAMPLING_INTERVAL	(256)
795 
796 /*
797  * For statistical analysis of the input data we consider bytes that form a
798  * Galois Field of 256 objects. Each object has an attribute count, ie. how
799  * many times the object appeared in the sample.
800  */
801 #define BUCKET_SIZE		(256)
802 
803 /*
804  * The size of the sample is based on a statistical sampling rule of thumb.
805  * The common way is to perform sampling tests as long as the number of
806  * elements in each cell is at least 5.
807  *
808  * Instead of 5, we choose 32 to obtain more accurate results.
809  * If the data contain the maximum number of symbols, which is 256, we obtain a
810  * sample size bound by 8192.
811  *
812  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
813  * from up to 512 locations.
814  */
815 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
816 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
817 
818 struct bucket_item {
819 	u32 count;
820 };
821 
822 struct heuristic_ws {
823 	/* Partial copy of input data */
824 	u8 *sample;
825 	u32 sample_size;
826 	/* Buckets store counters for each byte value */
827 	struct bucket_item *bucket;
828 	/* Sorting buffer */
829 	struct bucket_item *bucket_b;
830 	struct list_head list;
831 };
832 
833 static struct workspace_manager heuristic_wsm;
834 
free_heuristic_ws(struct list_head * ws)835 static void free_heuristic_ws(struct list_head *ws)
836 {
837 	struct heuristic_ws *workspace;
838 
839 	workspace = list_entry(ws, struct heuristic_ws, list);
840 
841 	kvfree(workspace->sample);
842 	kfree(workspace->bucket);
843 	kfree(workspace->bucket_b);
844 	kfree(workspace);
845 }
846 
alloc_heuristic_ws(unsigned int level)847 static struct list_head *alloc_heuristic_ws(unsigned int level)
848 {
849 	struct heuristic_ws *ws;
850 
851 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
852 	if (!ws)
853 		return ERR_PTR(-ENOMEM);
854 
855 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
856 	if (!ws->sample)
857 		goto fail;
858 
859 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
860 	if (!ws->bucket)
861 		goto fail;
862 
863 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
864 	if (!ws->bucket_b)
865 		goto fail;
866 
867 	INIT_LIST_HEAD(&ws->list);
868 	return &ws->list;
869 fail:
870 	free_heuristic_ws(&ws->list);
871 	return ERR_PTR(-ENOMEM);
872 }
873 
874 const struct btrfs_compress_op btrfs_heuristic_compress = {
875 	.workspace_manager = &heuristic_wsm,
876 };
877 
878 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
879 	/* The heuristic is represented as compression type 0 */
880 	&btrfs_heuristic_compress,
881 	&btrfs_zlib_compress,
882 	&btrfs_lzo_compress,
883 	&btrfs_zstd_compress,
884 };
885 
alloc_workspace(int type,unsigned int level)886 static struct list_head *alloc_workspace(int type, unsigned int level)
887 {
888 	switch (type) {
889 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
890 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
891 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
892 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
893 	default:
894 		/*
895 		 * This can't happen, the type is validated several times
896 		 * before we get here.
897 		 */
898 		BUG();
899 	}
900 }
901 
free_workspace(int type,struct list_head * ws)902 static void free_workspace(int type, struct list_head *ws)
903 {
904 	switch (type) {
905 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
906 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
907 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
908 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
909 	default:
910 		/*
911 		 * This can't happen, the type is validated several times
912 		 * before we get here.
913 		 */
914 		BUG();
915 	}
916 }
917 
btrfs_init_workspace_manager(int type)918 static void btrfs_init_workspace_manager(int type)
919 {
920 	struct workspace_manager *wsm;
921 	struct list_head *workspace;
922 
923 	wsm = btrfs_compress_op[type]->workspace_manager;
924 	INIT_LIST_HEAD(&wsm->idle_ws);
925 	spin_lock_init(&wsm->ws_lock);
926 	atomic_set(&wsm->total_ws, 0);
927 	init_waitqueue_head(&wsm->ws_wait);
928 
929 	/*
930 	 * Preallocate one workspace for each compression type so we can
931 	 * guarantee forward progress in the worst case
932 	 */
933 	workspace = alloc_workspace(type, 0);
934 	if (IS_ERR(workspace)) {
935 		pr_warn(
936 	"BTRFS: cannot preallocate compression workspace, will try later\n");
937 	} else {
938 		atomic_set(&wsm->total_ws, 1);
939 		wsm->free_ws = 1;
940 		list_add(workspace, &wsm->idle_ws);
941 	}
942 }
943 
btrfs_cleanup_workspace_manager(int type)944 static void btrfs_cleanup_workspace_manager(int type)
945 {
946 	struct workspace_manager *wsman;
947 	struct list_head *ws;
948 
949 	wsman = btrfs_compress_op[type]->workspace_manager;
950 	while (!list_empty(&wsman->idle_ws)) {
951 		ws = wsman->idle_ws.next;
952 		list_del(ws);
953 		free_workspace(type, ws);
954 		atomic_dec(&wsman->total_ws);
955 	}
956 }
957 
958 /*
959  * This finds an available workspace or allocates a new one.
960  * If it's not possible to allocate a new one, waits until there's one.
961  * Preallocation makes a forward progress guarantees and we do not return
962  * errors.
963  */
btrfs_get_workspace(int type,unsigned int level)964 struct list_head *btrfs_get_workspace(int type, unsigned int level)
965 {
966 	struct workspace_manager *wsm;
967 	struct list_head *workspace;
968 	int cpus = num_online_cpus();
969 	unsigned nofs_flag;
970 	struct list_head *idle_ws;
971 	spinlock_t *ws_lock;
972 	atomic_t *total_ws;
973 	wait_queue_head_t *ws_wait;
974 	int *free_ws;
975 
976 	wsm = btrfs_compress_op[type]->workspace_manager;
977 	idle_ws	 = &wsm->idle_ws;
978 	ws_lock	 = &wsm->ws_lock;
979 	total_ws = &wsm->total_ws;
980 	ws_wait	 = &wsm->ws_wait;
981 	free_ws	 = &wsm->free_ws;
982 
983 again:
984 	spin_lock(ws_lock);
985 	if (!list_empty(idle_ws)) {
986 		workspace = idle_ws->next;
987 		list_del(workspace);
988 		(*free_ws)--;
989 		spin_unlock(ws_lock);
990 		return workspace;
991 
992 	}
993 	if (atomic_read(total_ws) > cpus) {
994 		DEFINE_WAIT(wait);
995 
996 		spin_unlock(ws_lock);
997 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
998 		if (atomic_read(total_ws) > cpus && !*free_ws)
999 			schedule();
1000 		finish_wait(ws_wait, &wait);
1001 		goto again;
1002 	}
1003 	atomic_inc(total_ws);
1004 	spin_unlock(ws_lock);
1005 
1006 	/*
1007 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1008 	 * to turn it off here because we might get called from the restricted
1009 	 * context of btrfs_compress_bio/btrfs_compress_pages
1010 	 */
1011 	nofs_flag = memalloc_nofs_save();
1012 	workspace = alloc_workspace(type, level);
1013 	memalloc_nofs_restore(nofs_flag);
1014 
1015 	if (IS_ERR(workspace)) {
1016 		atomic_dec(total_ws);
1017 		wake_up(ws_wait);
1018 
1019 		/*
1020 		 * Do not return the error but go back to waiting. There's a
1021 		 * workspace preallocated for each type and the compression
1022 		 * time is bounded so we get to a workspace eventually. This
1023 		 * makes our caller's life easier.
1024 		 *
1025 		 * To prevent silent and low-probability deadlocks (when the
1026 		 * initial preallocation fails), check if there are any
1027 		 * workspaces at all.
1028 		 */
1029 		if (atomic_read(total_ws) == 0) {
1030 			static DEFINE_RATELIMIT_STATE(_rs,
1031 					/* once per minute */ 60 * HZ,
1032 					/* no burst */ 1);
1033 
1034 			if (__ratelimit(&_rs)) {
1035 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1036 			}
1037 		}
1038 		goto again;
1039 	}
1040 	return workspace;
1041 }
1042 
get_workspace(int type,int level)1043 static struct list_head *get_workspace(int type, int level)
1044 {
1045 	switch (type) {
1046 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1047 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1048 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1049 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1050 	default:
1051 		/*
1052 		 * This can't happen, the type is validated several times
1053 		 * before we get here.
1054 		 */
1055 		BUG();
1056 	}
1057 }
1058 
1059 /*
1060  * put a workspace struct back on the list or free it if we have enough
1061  * idle ones sitting around
1062  */
btrfs_put_workspace(int type,struct list_head * ws)1063 void btrfs_put_workspace(int type, struct list_head *ws)
1064 {
1065 	struct workspace_manager *wsm;
1066 	struct list_head *idle_ws;
1067 	spinlock_t *ws_lock;
1068 	atomic_t *total_ws;
1069 	wait_queue_head_t *ws_wait;
1070 	int *free_ws;
1071 
1072 	wsm = btrfs_compress_op[type]->workspace_manager;
1073 	idle_ws	 = &wsm->idle_ws;
1074 	ws_lock	 = &wsm->ws_lock;
1075 	total_ws = &wsm->total_ws;
1076 	ws_wait	 = &wsm->ws_wait;
1077 	free_ws	 = &wsm->free_ws;
1078 
1079 	spin_lock(ws_lock);
1080 	if (*free_ws <= num_online_cpus()) {
1081 		list_add(ws, idle_ws);
1082 		(*free_ws)++;
1083 		spin_unlock(ws_lock);
1084 		goto wake;
1085 	}
1086 	spin_unlock(ws_lock);
1087 
1088 	free_workspace(type, ws);
1089 	atomic_dec(total_ws);
1090 wake:
1091 	cond_wake_up(ws_wait);
1092 }
1093 
put_workspace(int type,struct list_head * ws)1094 static void put_workspace(int type, struct list_head *ws)
1095 {
1096 	switch (type) {
1097 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1098 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1099 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1100 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1101 	default:
1102 		/*
1103 		 * This can't happen, the type is validated several times
1104 		 * before we get here.
1105 		 */
1106 		BUG();
1107 	}
1108 }
1109 
1110 /*
1111  * Adjust @level according to the limits of the compression algorithm or
1112  * fallback to default
1113  */
btrfs_compress_set_level(int type,unsigned level)1114 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1115 {
1116 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1117 
1118 	if (level == 0)
1119 		level = ops->default_level;
1120 	else
1121 		level = min(level, ops->max_level);
1122 
1123 	return level;
1124 }
1125 
1126 /*
1127  * Given an address space and start and length, compress the bytes into @pages
1128  * that are allocated on demand.
1129  *
1130  * @type_level is encoded algorithm and level, where level 0 means whatever
1131  * default the algorithm chooses and is opaque here;
1132  * - compression algo are 0-3
1133  * - the level are bits 4-7
1134  *
1135  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1136  * and returns number of actually allocated pages
1137  *
1138  * @total_in is used to return the number of bytes actually read.  It
1139  * may be smaller than the input length if we had to exit early because we
1140  * ran out of room in the pages array or because we cross the
1141  * max_out threshold.
1142  *
1143  * @total_out is an in/out parameter, must be set to the input length and will
1144  * be also used to return the total number of compressed bytes
1145  *
1146  * @max_out tells us the max number of bytes that we're allowed to
1147  * stuff into pages
1148  */
btrfs_compress_pages(unsigned int type_level,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)1149 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1150 			 u64 start, struct page **pages,
1151 			 unsigned long *out_pages,
1152 			 unsigned long *total_in,
1153 			 unsigned long *total_out)
1154 {
1155 	int type = btrfs_compress_type(type_level);
1156 	int level = btrfs_compress_level(type_level);
1157 	struct list_head *workspace;
1158 	int ret;
1159 
1160 	level = btrfs_compress_set_level(type, level);
1161 	workspace = get_workspace(type, level);
1162 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1163 					 out_pages, total_in, total_out);
1164 	put_workspace(type, workspace);
1165 	return ret;
1166 }
1167 
1168 /*
1169  * pages_in is an array of pages with compressed data.
1170  *
1171  * disk_start is the starting logical offset of this array in the file
1172  *
1173  * orig_bio contains the pages from the file that we want to decompress into
1174  *
1175  * srclen is the number of bytes in pages_in
1176  *
1177  * The basic idea is that we have a bio that was created by readpages.
1178  * The pages in the bio are for the uncompressed data, and they may not
1179  * be contiguous.  They all correspond to the range of bytes covered by
1180  * the compressed extent.
1181  */
btrfs_decompress_bio(struct compressed_bio * cb)1182 static int btrfs_decompress_bio(struct compressed_bio *cb)
1183 {
1184 	struct list_head *workspace;
1185 	int ret;
1186 	int type = cb->compress_type;
1187 
1188 	workspace = get_workspace(type, 0);
1189 	ret = compression_decompress_bio(type, workspace, cb);
1190 	put_workspace(type, workspace);
1191 
1192 	return ret;
1193 }
1194 
1195 /*
1196  * a less complex decompression routine.  Our compressed data fits in a
1197  * single page, and we want to read a single page out of it.
1198  * start_byte tells us the offset into the compressed data we're interested in
1199  */
btrfs_decompress(int type,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)1200 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1201 		     unsigned long start_byte, size_t srclen, size_t destlen)
1202 {
1203 	struct list_head *workspace;
1204 	int ret;
1205 
1206 	workspace = get_workspace(type, 0);
1207 	ret = compression_decompress(type, workspace, data_in, dest_page,
1208 				     start_byte, srclen, destlen);
1209 	put_workspace(type, workspace);
1210 
1211 	return ret;
1212 }
1213 
btrfs_init_compress(void)1214 void __init btrfs_init_compress(void)
1215 {
1216 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1217 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1218 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1219 	zstd_init_workspace_manager();
1220 }
1221 
btrfs_exit_compress(void)1222 void __cold btrfs_exit_compress(void)
1223 {
1224 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1225 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1226 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1227 	zstd_cleanup_workspace_manager();
1228 }
1229 
1230 /*
1231  * Copy uncompressed data from working buffer to pages.
1232  *
1233  * buf_start is the byte offset we're of the start of our workspace buffer.
1234  *
1235  * total_out is the last byte of the buffer
1236  */
btrfs_decompress_buf2page(const char * buf,unsigned long buf_start,unsigned long total_out,u64 disk_start,struct bio * bio)1237 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1238 			      unsigned long total_out, u64 disk_start,
1239 			      struct bio *bio)
1240 {
1241 	unsigned long buf_offset;
1242 	unsigned long current_buf_start;
1243 	unsigned long start_byte;
1244 	unsigned long prev_start_byte;
1245 	unsigned long working_bytes = total_out - buf_start;
1246 	unsigned long bytes;
1247 	char *kaddr;
1248 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1249 
1250 	/*
1251 	 * start byte is the first byte of the page we're currently
1252 	 * copying into relative to the start of the compressed data.
1253 	 */
1254 	start_byte = page_offset(bvec.bv_page) - disk_start;
1255 
1256 	/* we haven't yet hit data corresponding to this page */
1257 	if (total_out <= start_byte)
1258 		return 1;
1259 
1260 	/*
1261 	 * the start of the data we care about is offset into
1262 	 * the middle of our working buffer
1263 	 */
1264 	if (total_out > start_byte && buf_start < start_byte) {
1265 		buf_offset = start_byte - buf_start;
1266 		working_bytes -= buf_offset;
1267 	} else {
1268 		buf_offset = 0;
1269 	}
1270 	current_buf_start = buf_start;
1271 
1272 	/* copy bytes from the working buffer into the pages */
1273 	while (working_bytes > 0) {
1274 		bytes = min_t(unsigned long, bvec.bv_len,
1275 				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1276 		bytes = min(bytes, working_bytes);
1277 
1278 		kaddr = kmap_atomic(bvec.bv_page);
1279 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1280 		kunmap_atomic(kaddr);
1281 		flush_dcache_page(bvec.bv_page);
1282 
1283 		buf_offset += bytes;
1284 		working_bytes -= bytes;
1285 		current_buf_start += bytes;
1286 
1287 		/* check if we need to pick another page */
1288 		bio_advance(bio, bytes);
1289 		if (!bio->bi_iter.bi_size)
1290 			return 0;
1291 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1292 		prev_start_byte = start_byte;
1293 		start_byte = page_offset(bvec.bv_page) - disk_start;
1294 
1295 		/*
1296 		 * We need to make sure we're only adjusting
1297 		 * our offset into compression working buffer when
1298 		 * we're switching pages.  Otherwise we can incorrectly
1299 		 * keep copying when we were actually done.
1300 		 */
1301 		if (start_byte != prev_start_byte) {
1302 			/*
1303 			 * make sure our new page is covered by this
1304 			 * working buffer
1305 			 */
1306 			if (total_out <= start_byte)
1307 				return 1;
1308 
1309 			/*
1310 			 * the next page in the biovec might not be adjacent
1311 			 * to the last page, but it might still be found
1312 			 * inside this working buffer. bump our offset pointer
1313 			 */
1314 			if (total_out > start_byte &&
1315 			    current_buf_start < start_byte) {
1316 				buf_offset = start_byte - buf_start;
1317 				working_bytes = total_out - start_byte;
1318 				current_buf_start = buf_start + buf_offset;
1319 			}
1320 		}
1321 	}
1322 
1323 	return 1;
1324 }
1325 
1326 /*
1327  * Shannon Entropy calculation
1328  *
1329  * Pure byte distribution analysis fails to determine compressibility of data.
1330  * Try calculating entropy to estimate the average minimum number of bits
1331  * needed to encode the sampled data.
1332  *
1333  * For convenience, return the percentage of needed bits, instead of amount of
1334  * bits directly.
1335  *
1336  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1337  *			    and can be compressible with high probability
1338  *
1339  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1340  *
1341  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1342  */
1343 #define ENTROPY_LVL_ACEPTABLE		(65)
1344 #define ENTROPY_LVL_HIGH		(80)
1345 
1346 /*
1347  * For increasead precision in shannon_entropy calculation,
1348  * let's do pow(n, M) to save more digits after comma:
1349  *
1350  * - maximum int bit length is 64
1351  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1352  * - 13 * 4 = 52 < 64		-> M = 4
1353  *
1354  * So use pow(n, 4).
1355  */
ilog2_w(u64 n)1356 static inline u32 ilog2_w(u64 n)
1357 {
1358 	return ilog2(n * n * n * n);
1359 }
1360 
shannon_entropy(struct heuristic_ws * ws)1361 static u32 shannon_entropy(struct heuristic_ws *ws)
1362 {
1363 	const u32 entropy_max = 8 * ilog2_w(2);
1364 	u32 entropy_sum = 0;
1365 	u32 p, p_base, sz_base;
1366 	u32 i;
1367 
1368 	sz_base = ilog2_w(ws->sample_size);
1369 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1370 		p = ws->bucket[i].count;
1371 		p_base = ilog2_w(p);
1372 		entropy_sum += p * (sz_base - p_base);
1373 	}
1374 
1375 	entropy_sum /= ws->sample_size;
1376 	return entropy_sum * 100 / entropy_max;
1377 }
1378 
1379 #define RADIX_BASE		4U
1380 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1381 
get4bits(u64 num,int shift)1382 static u8 get4bits(u64 num, int shift) {
1383 	u8 low4bits;
1384 
1385 	num >>= shift;
1386 	/* Reverse order */
1387 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1388 	return low4bits;
1389 }
1390 
1391 /*
1392  * Use 4 bits as radix base
1393  * Use 16 u32 counters for calculating new position in buf array
1394  *
1395  * @array     - array that will be sorted
1396  * @array_buf - buffer array to store sorting results
1397  *              must be equal in size to @array
1398  * @num       - array size
1399  */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1400 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1401 		       int num)
1402 {
1403 	u64 max_num;
1404 	u64 buf_num;
1405 	u32 counters[COUNTERS_SIZE];
1406 	u32 new_addr;
1407 	u32 addr;
1408 	int bitlen;
1409 	int shift;
1410 	int i;
1411 
1412 	/*
1413 	 * Try avoid useless loop iterations for small numbers stored in big
1414 	 * counters.  Example: 48 33 4 ... in 64bit array
1415 	 */
1416 	max_num = array[0].count;
1417 	for (i = 1; i < num; i++) {
1418 		buf_num = array[i].count;
1419 		if (buf_num > max_num)
1420 			max_num = buf_num;
1421 	}
1422 
1423 	buf_num = ilog2(max_num);
1424 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1425 
1426 	shift = 0;
1427 	while (shift < bitlen) {
1428 		memset(counters, 0, sizeof(counters));
1429 
1430 		for (i = 0; i < num; i++) {
1431 			buf_num = array[i].count;
1432 			addr = get4bits(buf_num, shift);
1433 			counters[addr]++;
1434 		}
1435 
1436 		for (i = 1; i < COUNTERS_SIZE; i++)
1437 			counters[i] += counters[i - 1];
1438 
1439 		for (i = num - 1; i >= 0; i--) {
1440 			buf_num = array[i].count;
1441 			addr = get4bits(buf_num, shift);
1442 			counters[addr]--;
1443 			new_addr = counters[addr];
1444 			array_buf[new_addr] = array[i];
1445 		}
1446 
1447 		shift += RADIX_BASE;
1448 
1449 		/*
1450 		 * Normal radix expects to move data from a temporary array, to
1451 		 * the main one.  But that requires some CPU time. Avoid that
1452 		 * by doing another sort iteration to original array instead of
1453 		 * memcpy()
1454 		 */
1455 		memset(counters, 0, sizeof(counters));
1456 
1457 		for (i = 0; i < num; i ++) {
1458 			buf_num = array_buf[i].count;
1459 			addr = get4bits(buf_num, shift);
1460 			counters[addr]++;
1461 		}
1462 
1463 		for (i = 1; i < COUNTERS_SIZE; i++)
1464 			counters[i] += counters[i - 1];
1465 
1466 		for (i = num - 1; i >= 0; i--) {
1467 			buf_num = array_buf[i].count;
1468 			addr = get4bits(buf_num, shift);
1469 			counters[addr]--;
1470 			new_addr = counters[addr];
1471 			array[new_addr] = array_buf[i];
1472 		}
1473 
1474 		shift += RADIX_BASE;
1475 	}
1476 }
1477 
1478 /*
1479  * Size of the core byte set - how many bytes cover 90% of the sample
1480  *
1481  * There are several types of structured binary data that use nearly all byte
1482  * values. The distribution can be uniform and counts in all buckets will be
1483  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1484  *
1485  * Other possibility is normal (Gaussian) distribution, where the data could
1486  * be potentially compressible, but we have to take a few more steps to decide
1487  * how much.
1488  *
1489  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1490  *                       compression algo can easy fix that
1491  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1492  *                       probability is not compressible
1493  */
1494 #define BYTE_CORE_SET_LOW		(64)
1495 #define BYTE_CORE_SET_HIGH		(200)
1496 
byte_core_set_size(struct heuristic_ws * ws)1497 static int byte_core_set_size(struct heuristic_ws *ws)
1498 {
1499 	u32 i;
1500 	u32 coreset_sum = 0;
1501 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1502 	struct bucket_item *bucket = ws->bucket;
1503 
1504 	/* Sort in reverse order */
1505 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1506 
1507 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1508 		coreset_sum += bucket[i].count;
1509 
1510 	if (coreset_sum > core_set_threshold)
1511 		return i;
1512 
1513 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1514 		coreset_sum += bucket[i].count;
1515 		if (coreset_sum > core_set_threshold)
1516 			break;
1517 	}
1518 
1519 	return i;
1520 }
1521 
1522 /*
1523  * Count byte values in buckets.
1524  * This heuristic can detect textual data (configs, xml, json, html, etc).
1525  * Because in most text-like data byte set is restricted to limited number of
1526  * possible characters, and that restriction in most cases makes data easy to
1527  * compress.
1528  *
1529  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1530  *	less - compressible
1531  *	more - need additional analysis
1532  */
1533 #define BYTE_SET_THRESHOLD		(64)
1534 
byte_set_size(const struct heuristic_ws * ws)1535 static u32 byte_set_size(const struct heuristic_ws *ws)
1536 {
1537 	u32 i;
1538 	u32 byte_set_size = 0;
1539 
1540 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1541 		if (ws->bucket[i].count > 0)
1542 			byte_set_size++;
1543 	}
1544 
1545 	/*
1546 	 * Continue collecting count of byte values in buckets.  If the byte
1547 	 * set size is bigger then the threshold, it's pointless to continue,
1548 	 * the detection technique would fail for this type of data.
1549 	 */
1550 	for (; i < BUCKET_SIZE; i++) {
1551 		if (ws->bucket[i].count > 0) {
1552 			byte_set_size++;
1553 			if (byte_set_size > BYTE_SET_THRESHOLD)
1554 				return byte_set_size;
1555 		}
1556 	}
1557 
1558 	return byte_set_size;
1559 }
1560 
sample_repeated_patterns(struct heuristic_ws * ws)1561 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1562 {
1563 	const u32 half_of_sample = ws->sample_size / 2;
1564 	const u8 *data = ws->sample;
1565 
1566 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1567 }
1568 
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1569 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1570 				     struct heuristic_ws *ws)
1571 {
1572 	struct page *page;
1573 	u64 index, index_end;
1574 	u32 i, curr_sample_pos;
1575 	u8 *in_data;
1576 
1577 	/*
1578 	 * Compression handles the input data by chunks of 128KiB
1579 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1580 	 *
1581 	 * We do the same for the heuristic and loop over the whole range.
1582 	 *
1583 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1584 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1585 	 */
1586 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1587 		end = start + BTRFS_MAX_UNCOMPRESSED;
1588 
1589 	index = start >> PAGE_SHIFT;
1590 	index_end = end >> PAGE_SHIFT;
1591 
1592 	/* Don't miss unaligned end */
1593 	if (!IS_ALIGNED(end, PAGE_SIZE))
1594 		index_end++;
1595 
1596 	curr_sample_pos = 0;
1597 	while (index < index_end) {
1598 		page = find_get_page(inode->i_mapping, index);
1599 		in_data = kmap(page);
1600 		/* Handle case where the start is not aligned to PAGE_SIZE */
1601 		i = start % PAGE_SIZE;
1602 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1603 			/* Don't sample any garbage from the last page */
1604 			if (start > end - SAMPLING_READ_SIZE)
1605 				break;
1606 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1607 					SAMPLING_READ_SIZE);
1608 			i += SAMPLING_INTERVAL;
1609 			start += SAMPLING_INTERVAL;
1610 			curr_sample_pos += SAMPLING_READ_SIZE;
1611 		}
1612 		kunmap(page);
1613 		put_page(page);
1614 
1615 		index++;
1616 	}
1617 
1618 	ws->sample_size = curr_sample_pos;
1619 }
1620 
1621 /*
1622  * Compression heuristic.
1623  *
1624  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1625  * quickly (compared to direct compression) detect data characteristics
1626  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1627  * data.
1628  *
1629  * The following types of analysis can be performed:
1630  * - detect mostly zero data
1631  * - detect data with low "byte set" size (text, etc)
1632  * - detect data with low/high "core byte" set
1633  *
1634  * Return non-zero if the compression should be done, 0 otherwise.
1635  */
btrfs_compress_heuristic(struct inode * inode,u64 start,u64 end)1636 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1637 {
1638 	struct list_head *ws_list = get_workspace(0, 0);
1639 	struct heuristic_ws *ws;
1640 	u32 i;
1641 	u8 byte;
1642 	int ret = 0;
1643 
1644 	ws = list_entry(ws_list, struct heuristic_ws, list);
1645 
1646 	heuristic_collect_sample(inode, start, end, ws);
1647 
1648 	if (sample_repeated_patterns(ws)) {
1649 		ret = 1;
1650 		goto out;
1651 	}
1652 
1653 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1654 
1655 	for (i = 0; i < ws->sample_size; i++) {
1656 		byte = ws->sample[i];
1657 		ws->bucket[byte].count++;
1658 	}
1659 
1660 	i = byte_set_size(ws);
1661 	if (i < BYTE_SET_THRESHOLD) {
1662 		ret = 2;
1663 		goto out;
1664 	}
1665 
1666 	i = byte_core_set_size(ws);
1667 	if (i <= BYTE_CORE_SET_LOW) {
1668 		ret = 3;
1669 		goto out;
1670 	}
1671 
1672 	if (i >= BYTE_CORE_SET_HIGH) {
1673 		ret = 0;
1674 		goto out;
1675 	}
1676 
1677 	i = shannon_entropy(ws);
1678 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1679 		ret = 4;
1680 		goto out;
1681 	}
1682 
1683 	/*
1684 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1685 	 * needed to give green light to compression.
1686 	 *
1687 	 * For now just assume that compression at that level is not worth the
1688 	 * resources because:
1689 	 *
1690 	 * 1. it is possible to defrag the data later
1691 	 *
1692 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1693 	 * values, every bucket has counter at level ~54. The heuristic would
1694 	 * be confused. This can happen when data have some internal repeated
1695 	 * patterns like "abbacbbc...". This can be detected by analyzing
1696 	 * pairs of bytes, which is too costly.
1697 	 */
1698 	if (i < ENTROPY_LVL_HIGH) {
1699 		ret = 5;
1700 		goto out;
1701 	} else {
1702 		ret = 0;
1703 		goto out;
1704 	}
1705 
1706 out:
1707 	put_workspace(0, ws_list);
1708 	return ret;
1709 }
1710 
1711 /*
1712  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1713  * level, unrecognized string will set the default level
1714  */
btrfs_compress_str2level(unsigned int type,const char * str)1715 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1716 {
1717 	unsigned int level = 0;
1718 	int ret;
1719 
1720 	if (!type)
1721 		return 0;
1722 
1723 	if (str[0] == ':') {
1724 		ret = kstrtouint(str + 1, 10, &level);
1725 		if (ret)
1726 			level = 0;
1727 	}
1728 
1729 	level = btrfs_compress_set_level(type, level);
1730 
1731 	return level;
1732 }
1733