1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31
32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
33
btrfs_compress_type2str(enum btrfs_compression_type type)34 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
35 {
36 switch (type) {
37 case BTRFS_COMPRESS_ZLIB:
38 case BTRFS_COMPRESS_LZO:
39 case BTRFS_COMPRESS_ZSTD:
40 case BTRFS_COMPRESS_NONE:
41 return btrfs_compress_types[type];
42 default:
43 break;
44 }
45
46 return NULL;
47 }
48
btrfs_compress_is_valid_type(const char * str,size_t len)49 bool btrfs_compress_is_valid_type(const char *str, size_t len)
50 {
51 int i;
52
53 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
54 size_t comp_len = strlen(btrfs_compress_types[i]);
55
56 if (len < comp_len)
57 continue;
58
59 if (!strncmp(btrfs_compress_types[i], str, comp_len))
60 return true;
61 }
62 return false;
63 }
64
compression_compress_pages(int type,struct list_head * ws,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)65 static int compression_compress_pages(int type, struct list_head *ws,
66 struct address_space *mapping, u64 start, struct page **pages,
67 unsigned long *out_pages, unsigned long *total_in,
68 unsigned long *total_out)
69 {
70 switch (type) {
71 case BTRFS_COMPRESS_ZLIB:
72 return zlib_compress_pages(ws, mapping, start, pages,
73 out_pages, total_in, total_out);
74 case BTRFS_COMPRESS_LZO:
75 return lzo_compress_pages(ws, mapping, start, pages,
76 out_pages, total_in, total_out);
77 case BTRFS_COMPRESS_ZSTD:
78 return zstd_compress_pages(ws, mapping, start, pages,
79 out_pages, total_in, total_out);
80 case BTRFS_COMPRESS_NONE:
81 default:
82 /*
83 * This can happen when compression races with remount setting
84 * it to 'no compress', while caller doesn't call
85 * inode_need_compress() to check if we really need to
86 * compress.
87 *
88 * Not a big deal, just need to inform caller that we
89 * haven't allocated any pages yet.
90 */
91 *out_pages = 0;
92 return -E2BIG;
93 }
94 }
95
compression_decompress_bio(int type,struct list_head * ws,struct compressed_bio * cb)96 static int compression_decompress_bio(int type, struct list_head *ws,
97 struct compressed_bio *cb)
98 {
99 switch (type) {
100 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
101 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
102 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
103 case BTRFS_COMPRESS_NONE:
104 default:
105 /*
106 * This can't happen, the type is validated several times
107 * before we get here.
108 */
109 BUG();
110 }
111 }
112
compression_decompress(int type,struct list_head * ws,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)113 static int compression_decompress(int type, struct list_head *ws,
114 unsigned char *data_in, struct page *dest_page,
115 unsigned long start_byte, size_t srclen, size_t destlen)
116 {
117 switch (type) {
118 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
119 start_byte, srclen, destlen);
120 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
121 start_byte, srclen, destlen);
122 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
123 start_byte, srclen, destlen);
124 case BTRFS_COMPRESS_NONE:
125 default:
126 /*
127 * This can't happen, the type is validated several times
128 * before we get here.
129 */
130 BUG();
131 }
132 }
133
134 static int btrfs_decompress_bio(struct compressed_bio *cb);
135
compressed_bio_size(struct btrfs_fs_info * fs_info,unsigned long disk_size)136 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
137 unsigned long disk_size)
138 {
139 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
140
141 return sizeof(struct compressed_bio) +
142 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
143 }
144
check_compressed_csum(struct btrfs_inode * inode,struct bio * bio,u64 disk_start)145 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
146 u64 disk_start)
147 {
148 struct btrfs_fs_info *fs_info = inode->root->fs_info;
149 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
150 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
151 struct page *page;
152 unsigned long i;
153 char *kaddr;
154 u8 csum[BTRFS_CSUM_SIZE];
155 struct compressed_bio *cb = bio->bi_private;
156 u8 *cb_sum = cb->sums;
157
158 if (inode->flags & BTRFS_INODE_NODATASUM)
159 return 0;
160
161 shash->tfm = fs_info->csum_shash;
162
163 for (i = 0; i < cb->nr_pages; i++) {
164 page = cb->compressed_pages[i];
165
166 kaddr = kmap_atomic(page);
167 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
168 kunmap_atomic(kaddr);
169
170 if (memcmp(&csum, cb_sum, csum_size)) {
171 btrfs_print_data_csum_error(inode, disk_start,
172 csum, cb_sum, cb->mirror_num);
173 if (btrfs_io_bio(bio)->device)
174 btrfs_dev_stat_inc_and_print(
175 btrfs_io_bio(bio)->device,
176 BTRFS_DEV_STAT_CORRUPTION_ERRS);
177 return -EIO;
178 }
179 cb_sum += csum_size;
180 }
181 return 0;
182 }
183
184 /* when we finish reading compressed pages from the disk, we
185 * decompress them and then run the bio end_io routines on the
186 * decompressed pages (in the inode address space).
187 *
188 * This allows the checksumming and other IO error handling routines
189 * to work normally
190 *
191 * The compressed pages are freed here, and it must be run
192 * in process context
193 */
end_compressed_bio_read(struct bio * bio)194 static void end_compressed_bio_read(struct bio *bio)
195 {
196 struct compressed_bio *cb = bio->bi_private;
197 struct inode *inode;
198 struct page *page;
199 unsigned long index;
200 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
201 int ret = 0;
202
203 if (bio->bi_status)
204 cb->errors = 1;
205
206 /* if there are more bios still pending for this compressed
207 * extent, just exit
208 */
209 if (!refcount_dec_and_test(&cb->pending_bios))
210 goto out;
211
212 /*
213 * Record the correct mirror_num in cb->orig_bio so that
214 * read-repair can work properly.
215 */
216 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
217 cb->mirror_num = mirror;
218
219 /*
220 * Some IO in this cb have failed, just skip checksum as there
221 * is no way it could be correct.
222 */
223 if (cb->errors == 1)
224 goto csum_failed;
225
226 inode = cb->inode;
227 ret = check_compressed_csum(BTRFS_I(inode), bio,
228 (u64)bio->bi_iter.bi_sector << 9);
229 if (ret)
230 goto csum_failed;
231
232 /* ok, we're the last bio for this extent, lets start
233 * the decompression.
234 */
235 ret = btrfs_decompress_bio(cb);
236
237 csum_failed:
238 if (ret)
239 cb->errors = 1;
240
241 /* release the compressed pages */
242 index = 0;
243 for (index = 0; index < cb->nr_pages; index++) {
244 page = cb->compressed_pages[index];
245 page->mapping = NULL;
246 put_page(page);
247 }
248
249 /* do io completion on the original bio */
250 if (cb->errors) {
251 bio_io_error(cb->orig_bio);
252 } else {
253 struct bio_vec *bvec;
254 struct bvec_iter_all iter_all;
255
256 /*
257 * we have verified the checksum already, set page
258 * checked so the end_io handlers know about it
259 */
260 ASSERT(!bio_flagged(bio, BIO_CLONED));
261 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
262 SetPageChecked(bvec->bv_page);
263
264 bio_endio(cb->orig_bio);
265 }
266
267 /* finally free the cb struct */
268 kfree(cb->compressed_pages);
269 kfree(cb);
270 out:
271 bio_put(bio);
272 }
273
274 /*
275 * Clear the writeback bits on all of the file
276 * pages for a compressed write
277 */
end_compressed_writeback(struct inode * inode,const struct compressed_bio * cb)278 static noinline void end_compressed_writeback(struct inode *inode,
279 const struct compressed_bio *cb)
280 {
281 unsigned long index = cb->start >> PAGE_SHIFT;
282 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
283 struct page *pages[16];
284 unsigned long nr_pages = end_index - index + 1;
285 int i;
286 int ret;
287
288 if (cb->errors)
289 mapping_set_error(inode->i_mapping, -EIO);
290
291 while (nr_pages > 0) {
292 ret = find_get_pages_contig(inode->i_mapping, index,
293 min_t(unsigned long,
294 nr_pages, ARRAY_SIZE(pages)), pages);
295 if (ret == 0) {
296 nr_pages -= 1;
297 index += 1;
298 continue;
299 }
300 for (i = 0; i < ret; i++) {
301 if (cb->errors)
302 SetPageError(pages[i]);
303 end_page_writeback(pages[i]);
304 put_page(pages[i]);
305 }
306 nr_pages -= ret;
307 index += ret;
308 }
309 /* the inode may be gone now */
310 }
311
312 /*
313 * do the cleanup once all the compressed pages hit the disk.
314 * This will clear writeback on the file pages and free the compressed
315 * pages.
316 *
317 * This also calls the writeback end hooks for the file pages so that
318 * metadata and checksums can be updated in the file.
319 */
end_compressed_bio_write(struct bio * bio)320 static void end_compressed_bio_write(struct bio *bio)
321 {
322 struct compressed_bio *cb = bio->bi_private;
323 struct inode *inode;
324 struct page *page;
325 unsigned long index;
326
327 if (bio->bi_status)
328 cb->errors = 1;
329
330 /* if there are more bios still pending for this compressed
331 * extent, just exit
332 */
333 if (!refcount_dec_and_test(&cb->pending_bios))
334 goto out;
335
336 /* ok, we're the last bio for this extent, step one is to
337 * call back into the FS and do all the end_io operations
338 */
339 inode = cb->inode;
340 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
341 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
342 cb->start, cb->start + cb->len - 1,
343 !cb->errors);
344 cb->compressed_pages[0]->mapping = NULL;
345
346 end_compressed_writeback(inode, cb);
347 /* note, our inode could be gone now */
348
349 /*
350 * release the compressed pages, these came from alloc_page and
351 * are not attached to the inode at all
352 */
353 index = 0;
354 for (index = 0; index < cb->nr_pages; index++) {
355 page = cb->compressed_pages[index];
356 page->mapping = NULL;
357 put_page(page);
358 }
359
360 /* finally free the cb struct */
361 kfree(cb->compressed_pages);
362 kfree(cb);
363 out:
364 bio_put(bio);
365 }
366
367 /*
368 * worker function to build and submit bios for previously compressed pages.
369 * The corresponding pages in the inode should be marked for writeback
370 * and the compressed pages should have a reference on them for dropping
371 * when the IO is complete.
372 *
373 * This also checksums the file bytes and gets things ready for
374 * the end io hooks.
375 */
btrfs_submit_compressed_write(struct btrfs_inode * inode,u64 start,unsigned long len,u64 disk_start,unsigned long compressed_len,struct page ** compressed_pages,unsigned long nr_pages,unsigned int write_flags,struct cgroup_subsys_state * blkcg_css)376 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
377 unsigned long len, u64 disk_start,
378 unsigned long compressed_len,
379 struct page **compressed_pages,
380 unsigned long nr_pages,
381 unsigned int write_flags,
382 struct cgroup_subsys_state *blkcg_css)
383 {
384 struct btrfs_fs_info *fs_info = inode->root->fs_info;
385 struct bio *bio = NULL;
386 struct compressed_bio *cb;
387 unsigned long bytes_left;
388 int pg_index = 0;
389 struct page *page;
390 u64 first_byte = disk_start;
391 blk_status_t ret;
392 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
393
394 WARN_ON(!PAGE_ALIGNED(start));
395 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
396 if (!cb)
397 return BLK_STS_RESOURCE;
398 refcount_set(&cb->pending_bios, 0);
399 cb->errors = 0;
400 cb->inode = &inode->vfs_inode;
401 cb->start = start;
402 cb->len = len;
403 cb->mirror_num = 0;
404 cb->compressed_pages = compressed_pages;
405 cb->compressed_len = compressed_len;
406 cb->orig_bio = NULL;
407 cb->nr_pages = nr_pages;
408
409 bio = btrfs_bio_alloc(first_byte);
410 bio->bi_opf = REQ_OP_WRITE | write_flags;
411 bio->bi_private = cb;
412 bio->bi_end_io = end_compressed_bio_write;
413
414 if (blkcg_css) {
415 bio->bi_opf |= REQ_CGROUP_PUNT;
416 kthread_associate_blkcg(blkcg_css);
417 }
418 refcount_set(&cb->pending_bios, 1);
419
420 /* create and submit bios for the compressed pages */
421 bytes_left = compressed_len;
422 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
423 int submit = 0;
424
425 page = compressed_pages[pg_index];
426 page->mapping = inode->vfs_inode.i_mapping;
427 if (bio->bi_iter.bi_size)
428 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
429 0);
430
431 page->mapping = NULL;
432 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
433 PAGE_SIZE) {
434 /*
435 * inc the count before we submit the bio so
436 * we know the end IO handler won't happen before
437 * we inc the count. Otherwise, the cb might get
438 * freed before we're done setting it up
439 */
440 refcount_inc(&cb->pending_bios);
441 ret = btrfs_bio_wq_end_io(fs_info, bio,
442 BTRFS_WQ_ENDIO_DATA);
443 BUG_ON(ret); /* -ENOMEM */
444
445 if (!skip_sum) {
446 ret = btrfs_csum_one_bio(inode, bio, start, 1);
447 BUG_ON(ret); /* -ENOMEM */
448 }
449
450 ret = btrfs_map_bio(fs_info, bio, 0);
451 if (ret) {
452 bio->bi_status = ret;
453 bio_endio(bio);
454 }
455
456 bio = btrfs_bio_alloc(first_byte);
457 bio->bi_opf = REQ_OP_WRITE | write_flags;
458 bio->bi_private = cb;
459 bio->bi_end_io = end_compressed_bio_write;
460 if (blkcg_css)
461 bio->bi_opf |= REQ_CGROUP_PUNT;
462 bio_add_page(bio, page, PAGE_SIZE, 0);
463 }
464 if (bytes_left < PAGE_SIZE) {
465 btrfs_info(fs_info,
466 "bytes left %lu compress len %lu nr %lu",
467 bytes_left, cb->compressed_len, cb->nr_pages);
468 }
469 bytes_left -= PAGE_SIZE;
470 first_byte += PAGE_SIZE;
471 cond_resched();
472 }
473
474 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
475 BUG_ON(ret); /* -ENOMEM */
476
477 if (!skip_sum) {
478 ret = btrfs_csum_one_bio(inode, bio, start, 1);
479 BUG_ON(ret); /* -ENOMEM */
480 }
481
482 ret = btrfs_map_bio(fs_info, bio, 0);
483 if (ret) {
484 bio->bi_status = ret;
485 bio_endio(bio);
486 }
487
488 if (blkcg_css)
489 kthread_associate_blkcg(NULL);
490
491 return 0;
492 }
493
bio_end_offset(struct bio * bio)494 static u64 bio_end_offset(struct bio *bio)
495 {
496 struct bio_vec *last = bio_last_bvec_all(bio);
497
498 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
499 }
500
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb)501 static noinline int add_ra_bio_pages(struct inode *inode,
502 u64 compressed_end,
503 struct compressed_bio *cb)
504 {
505 unsigned long end_index;
506 unsigned long pg_index;
507 u64 last_offset;
508 u64 isize = i_size_read(inode);
509 int ret;
510 struct page *page;
511 unsigned long nr_pages = 0;
512 struct extent_map *em;
513 struct address_space *mapping = inode->i_mapping;
514 struct extent_map_tree *em_tree;
515 struct extent_io_tree *tree;
516 u64 end;
517 int misses = 0;
518
519 last_offset = bio_end_offset(cb->orig_bio);
520 em_tree = &BTRFS_I(inode)->extent_tree;
521 tree = &BTRFS_I(inode)->io_tree;
522
523 if (isize == 0)
524 return 0;
525
526 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
527
528 while (last_offset < compressed_end) {
529 pg_index = last_offset >> PAGE_SHIFT;
530
531 if (pg_index > end_index)
532 break;
533
534 page = xa_load(&mapping->i_pages, pg_index);
535 if (page && !xa_is_value(page)) {
536 misses++;
537 if (misses > 4)
538 break;
539 goto next;
540 }
541
542 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
543 ~__GFP_FS));
544 if (!page)
545 break;
546
547 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
548 put_page(page);
549 goto next;
550 }
551
552 end = last_offset + PAGE_SIZE - 1;
553 /*
554 * at this point, we have a locked page in the page cache
555 * for these bytes in the file. But, we have to make
556 * sure they map to this compressed extent on disk.
557 */
558 set_page_extent_mapped(page);
559 lock_extent(tree, last_offset, end);
560 read_lock(&em_tree->lock);
561 em = lookup_extent_mapping(em_tree, last_offset,
562 PAGE_SIZE);
563 read_unlock(&em_tree->lock);
564
565 if (!em || last_offset < em->start ||
566 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
567 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
568 free_extent_map(em);
569 unlock_extent(tree, last_offset, end);
570 unlock_page(page);
571 put_page(page);
572 break;
573 }
574 free_extent_map(em);
575
576 if (page->index == end_index) {
577 char *userpage;
578 size_t zero_offset = offset_in_page(isize);
579
580 if (zero_offset) {
581 int zeros;
582 zeros = PAGE_SIZE - zero_offset;
583 userpage = kmap_atomic(page);
584 memset(userpage + zero_offset, 0, zeros);
585 flush_dcache_page(page);
586 kunmap_atomic(userpage);
587 }
588 }
589
590 ret = bio_add_page(cb->orig_bio, page,
591 PAGE_SIZE, 0);
592
593 if (ret == PAGE_SIZE) {
594 nr_pages++;
595 put_page(page);
596 } else {
597 unlock_extent(tree, last_offset, end);
598 unlock_page(page);
599 put_page(page);
600 break;
601 }
602 next:
603 last_offset += PAGE_SIZE;
604 }
605 return 0;
606 }
607
608 /*
609 * for a compressed read, the bio we get passed has all the inode pages
610 * in it. We don't actually do IO on those pages but allocate new ones
611 * to hold the compressed pages on disk.
612 *
613 * bio->bi_iter.bi_sector points to the compressed extent on disk
614 * bio->bi_io_vec points to all of the inode pages
615 *
616 * After the compressed pages are read, we copy the bytes into the
617 * bio we were passed and then call the bio end_io calls
618 */
btrfs_submit_compressed_read(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)619 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
620 int mirror_num, unsigned long bio_flags)
621 {
622 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
623 struct extent_map_tree *em_tree;
624 struct compressed_bio *cb;
625 unsigned long compressed_len;
626 unsigned long nr_pages;
627 unsigned long pg_index;
628 struct page *page;
629 struct bio *comp_bio;
630 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
631 u64 em_len;
632 u64 em_start;
633 struct extent_map *em;
634 blk_status_t ret = BLK_STS_RESOURCE;
635 int faili = 0;
636 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
637 u8 *sums;
638
639 em_tree = &BTRFS_I(inode)->extent_tree;
640
641 /* we need the actual starting offset of this extent in the file */
642 read_lock(&em_tree->lock);
643 em = lookup_extent_mapping(em_tree,
644 page_offset(bio_first_page_all(bio)),
645 PAGE_SIZE);
646 read_unlock(&em_tree->lock);
647 if (!em)
648 return BLK_STS_IOERR;
649
650 compressed_len = em->block_len;
651 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
652 if (!cb)
653 goto out;
654
655 refcount_set(&cb->pending_bios, 0);
656 cb->errors = 0;
657 cb->inode = inode;
658 cb->mirror_num = mirror_num;
659 sums = cb->sums;
660
661 cb->start = em->orig_start;
662 em_len = em->len;
663 em_start = em->start;
664
665 free_extent_map(em);
666 em = NULL;
667
668 cb->len = bio->bi_iter.bi_size;
669 cb->compressed_len = compressed_len;
670 cb->compress_type = extent_compress_type(bio_flags);
671 cb->orig_bio = bio;
672
673 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
674 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
675 GFP_NOFS);
676 if (!cb->compressed_pages)
677 goto fail1;
678
679 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
680 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
681 __GFP_HIGHMEM);
682 if (!cb->compressed_pages[pg_index]) {
683 faili = pg_index - 1;
684 ret = BLK_STS_RESOURCE;
685 goto fail2;
686 }
687 }
688 faili = nr_pages - 1;
689 cb->nr_pages = nr_pages;
690
691 add_ra_bio_pages(inode, em_start + em_len, cb);
692
693 /* include any pages we added in add_ra-bio_pages */
694 cb->len = bio->bi_iter.bi_size;
695
696 comp_bio = btrfs_bio_alloc(cur_disk_byte);
697 comp_bio->bi_opf = REQ_OP_READ;
698 comp_bio->bi_private = cb;
699 comp_bio->bi_end_io = end_compressed_bio_read;
700 refcount_set(&cb->pending_bios, 1);
701
702 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
703 int submit = 0;
704
705 page = cb->compressed_pages[pg_index];
706 page->mapping = inode->i_mapping;
707 page->index = em_start >> PAGE_SHIFT;
708
709 if (comp_bio->bi_iter.bi_size)
710 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
711 comp_bio, 0);
712
713 page->mapping = NULL;
714 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
715 PAGE_SIZE) {
716 unsigned int nr_sectors;
717
718 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
719 BTRFS_WQ_ENDIO_DATA);
720 BUG_ON(ret); /* -ENOMEM */
721
722 /*
723 * inc the count before we submit the bio so
724 * we know the end IO handler won't happen before
725 * we inc the count. Otherwise, the cb might get
726 * freed before we're done setting it up
727 */
728 refcount_inc(&cb->pending_bios);
729
730 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
731 ret = btrfs_lookup_bio_sums(inode, comp_bio,
732 (u64)-1, sums);
733 BUG_ON(ret); /* -ENOMEM */
734 }
735
736 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
737 fs_info->sectorsize);
738 sums += csum_size * nr_sectors;
739
740 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
741 if (ret) {
742 comp_bio->bi_status = ret;
743 bio_endio(comp_bio);
744 }
745
746 comp_bio = btrfs_bio_alloc(cur_disk_byte);
747 comp_bio->bi_opf = REQ_OP_READ;
748 comp_bio->bi_private = cb;
749 comp_bio->bi_end_io = end_compressed_bio_read;
750
751 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
752 }
753 cur_disk_byte += PAGE_SIZE;
754 }
755
756 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
757 BUG_ON(ret); /* -ENOMEM */
758
759 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
760 ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
761 BUG_ON(ret); /* -ENOMEM */
762 }
763
764 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
765 if (ret) {
766 comp_bio->bi_status = ret;
767 bio_endio(comp_bio);
768 }
769
770 return 0;
771
772 fail2:
773 while (faili >= 0) {
774 __free_page(cb->compressed_pages[faili]);
775 faili--;
776 }
777
778 kfree(cb->compressed_pages);
779 fail1:
780 kfree(cb);
781 out:
782 free_extent_map(em);
783 return ret;
784 }
785
786 /*
787 * Heuristic uses systematic sampling to collect data from the input data
788 * range, the logic can be tuned by the following constants:
789 *
790 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
791 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
792 */
793 #define SAMPLING_READ_SIZE (16)
794 #define SAMPLING_INTERVAL (256)
795
796 /*
797 * For statistical analysis of the input data we consider bytes that form a
798 * Galois Field of 256 objects. Each object has an attribute count, ie. how
799 * many times the object appeared in the sample.
800 */
801 #define BUCKET_SIZE (256)
802
803 /*
804 * The size of the sample is based on a statistical sampling rule of thumb.
805 * The common way is to perform sampling tests as long as the number of
806 * elements in each cell is at least 5.
807 *
808 * Instead of 5, we choose 32 to obtain more accurate results.
809 * If the data contain the maximum number of symbols, which is 256, we obtain a
810 * sample size bound by 8192.
811 *
812 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
813 * from up to 512 locations.
814 */
815 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
816 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
817
818 struct bucket_item {
819 u32 count;
820 };
821
822 struct heuristic_ws {
823 /* Partial copy of input data */
824 u8 *sample;
825 u32 sample_size;
826 /* Buckets store counters for each byte value */
827 struct bucket_item *bucket;
828 /* Sorting buffer */
829 struct bucket_item *bucket_b;
830 struct list_head list;
831 };
832
833 static struct workspace_manager heuristic_wsm;
834
free_heuristic_ws(struct list_head * ws)835 static void free_heuristic_ws(struct list_head *ws)
836 {
837 struct heuristic_ws *workspace;
838
839 workspace = list_entry(ws, struct heuristic_ws, list);
840
841 kvfree(workspace->sample);
842 kfree(workspace->bucket);
843 kfree(workspace->bucket_b);
844 kfree(workspace);
845 }
846
alloc_heuristic_ws(unsigned int level)847 static struct list_head *alloc_heuristic_ws(unsigned int level)
848 {
849 struct heuristic_ws *ws;
850
851 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
852 if (!ws)
853 return ERR_PTR(-ENOMEM);
854
855 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
856 if (!ws->sample)
857 goto fail;
858
859 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
860 if (!ws->bucket)
861 goto fail;
862
863 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
864 if (!ws->bucket_b)
865 goto fail;
866
867 INIT_LIST_HEAD(&ws->list);
868 return &ws->list;
869 fail:
870 free_heuristic_ws(&ws->list);
871 return ERR_PTR(-ENOMEM);
872 }
873
874 const struct btrfs_compress_op btrfs_heuristic_compress = {
875 .workspace_manager = &heuristic_wsm,
876 };
877
878 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
879 /* The heuristic is represented as compression type 0 */
880 &btrfs_heuristic_compress,
881 &btrfs_zlib_compress,
882 &btrfs_lzo_compress,
883 &btrfs_zstd_compress,
884 };
885
alloc_workspace(int type,unsigned int level)886 static struct list_head *alloc_workspace(int type, unsigned int level)
887 {
888 switch (type) {
889 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
890 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
891 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
892 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
893 default:
894 /*
895 * This can't happen, the type is validated several times
896 * before we get here.
897 */
898 BUG();
899 }
900 }
901
free_workspace(int type,struct list_head * ws)902 static void free_workspace(int type, struct list_head *ws)
903 {
904 switch (type) {
905 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
906 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
907 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
908 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
909 default:
910 /*
911 * This can't happen, the type is validated several times
912 * before we get here.
913 */
914 BUG();
915 }
916 }
917
btrfs_init_workspace_manager(int type)918 static void btrfs_init_workspace_manager(int type)
919 {
920 struct workspace_manager *wsm;
921 struct list_head *workspace;
922
923 wsm = btrfs_compress_op[type]->workspace_manager;
924 INIT_LIST_HEAD(&wsm->idle_ws);
925 spin_lock_init(&wsm->ws_lock);
926 atomic_set(&wsm->total_ws, 0);
927 init_waitqueue_head(&wsm->ws_wait);
928
929 /*
930 * Preallocate one workspace for each compression type so we can
931 * guarantee forward progress in the worst case
932 */
933 workspace = alloc_workspace(type, 0);
934 if (IS_ERR(workspace)) {
935 pr_warn(
936 "BTRFS: cannot preallocate compression workspace, will try later\n");
937 } else {
938 atomic_set(&wsm->total_ws, 1);
939 wsm->free_ws = 1;
940 list_add(workspace, &wsm->idle_ws);
941 }
942 }
943
btrfs_cleanup_workspace_manager(int type)944 static void btrfs_cleanup_workspace_manager(int type)
945 {
946 struct workspace_manager *wsman;
947 struct list_head *ws;
948
949 wsman = btrfs_compress_op[type]->workspace_manager;
950 while (!list_empty(&wsman->idle_ws)) {
951 ws = wsman->idle_ws.next;
952 list_del(ws);
953 free_workspace(type, ws);
954 atomic_dec(&wsman->total_ws);
955 }
956 }
957
958 /*
959 * This finds an available workspace or allocates a new one.
960 * If it's not possible to allocate a new one, waits until there's one.
961 * Preallocation makes a forward progress guarantees and we do not return
962 * errors.
963 */
btrfs_get_workspace(int type,unsigned int level)964 struct list_head *btrfs_get_workspace(int type, unsigned int level)
965 {
966 struct workspace_manager *wsm;
967 struct list_head *workspace;
968 int cpus = num_online_cpus();
969 unsigned nofs_flag;
970 struct list_head *idle_ws;
971 spinlock_t *ws_lock;
972 atomic_t *total_ws;
973 wait_queue_head_t *ws_wait;
974 int *free_ws;
975
976 wsm = btrfs_compress_op[type]->workspace_manager;
977 idle_ws = &wsm->idle_ws;
978 ws_lock = &wsm->ws_lock;
979 total_ws = &wsm->total_ws;
980 ws_wait = &wsm->ws_wait;
981 free_ws = &wsm->free_ws;
982
983 again:
984 spin_lock(ws_lock);
985 if (!list_empty(idle_ws)) {
986 workspace = idle_ws->next;
987 list_del(workspace);
988 (*free_ws)--;
989 spin_unlock(ws_lock);
990 return workspace;
991
992 }
993 if (atomic_read(total_ws) > cpus) {
994 DEFINE_WAIT(wait);
995
996 spin_unlock(ws_lock);
997 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
998 if (atomic_read(total_ws) > cpus && !*free_ws)
999 schedule();
1000 finish_wait(ws_wait, &wait);
1001 goto again;
1002 }
1003 atomic_inc(total_ws);
1004 spin_unlock(ws_lock);
1005
1006 /*
1007 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1008 * to turn it off here because we might get called from the restricted
1009 * context of btrfs_compress_bio/btrfs_compress_pages
1010 */
1011 nofs_flag = memalloc_nofs_save();
1012 workspace = alloc_workspace(type, level);
1013 memalloc_nofs_restore(nofs_flag);
1014
1015 if (IS_ERR(workspace)) {
1016 atomic_dec(total_ws);
1017 wake_up(ws_wait);
1018
1019 /*
1020 * Do not return the error but go back to waiting. There's a
1021 * workspace preallocated for each type and the compression
1022 * time is bounded so we get to a workspace eventually. This
1023 * makes our caller's life easier.
1024 *
1025 * To prevent silent and low-probability deadlocks (when the
1026 * initial preallocation fails), check if there are any
1027 * workspaces at all.
1028 */
1029 if (atomic_read(total_ws) == 0) {
1030 static DEFINE_RATELIMIT_STATE(_rs,
1031 /* once per minute */ 60 * HZ,
1032 /* no burst */ 1);
1033
1034 if (__ratelimit(&_rs)) {
1035 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1036 }
1037 }
1038 goto again;
1039 }
1040 return workspace;
1041 }
1042
get_workspace(int type,int level)1043 static struct list_head *get_workspace(int type, int level)
1044 {
1045 switch (type) {
1046 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1047 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1048 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1049 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1050 default:
1051 /*
1052 * This can't happen, the type is validated several times
1053 * before we get here.
1054 */
1055 BUG();
1056 }
1057 }
1058
1059 /*
1060 * put a workspace struct back on the list or free it if we have enough
1061 * idle ones sitting around
1062 */
btrfs_put_workspace(int type,struct list_head * ws)1063 void btrfs_put_workspace(int type, struct list_head *ws)
1064 {
1065 struct workspace_manager *wsm;
1066 struct list_head *idle_ws;
1067 spinlock_t *ws_lock;
1068 atomic_t *total_ws;
1069 wait_queue_head_t *ws_wait;
1070 int *free_ws;
1071
1072 wsm = btrfs_compress_op[type]->workspace_manager;
1073 idle_ws = &wsm->idle_ws;
1074 ws_lock = &wsm->ws_lock;
1075 total_ws = &wsm->total_ws;
1076 ws_wait = &wsm->ws_wait;
1077 free_ws = &wsm->free_ws;
1078
1079 spin_lock(ws_lock);
1080 if (*free_ws <= num_online_cpus()) {
1081 list_add(ws, idle_ws);
1082 (*free_ws)++;
1083 spin_unlock(ws_lock);
1084 goto wake;
1085 }
1086 spin_unlock(ws_lock);
1087
1088 free_workspace(type, ws);
1089 atomic_dec(total_ws);
1090 wake:
1091 cond_wake_up(ws_wait);
1092 }
1093
put_workspace(int type,struct list_head * ws)1094 static void put_workspace(int type, struct list_head *ws)
1095 {
1096 switch (type) {
1097 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1098 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1099 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1100 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1101 default:
1102 /*
1103 * This can't happen, the type is validated several times
1104 * before we get here.
1105 */
1106 BUG();
1107 }
1108 }
1109
1110 /*
1111 * Adjust @level according to the limits of the compression algorithm or
1112 * fallback to default
1113 */
btrfs_compress_set_level(int type,unsigned level)1114 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1115 {
1116 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1117
1118 if (level == 0)
1119 level = ops->default_level;
1120 else
1121 level = min(level, ops->max_level);
1122
1123 return level;
1124 }
1125
1126 /*
1127 * Given an address space and start and length, compress the bytes into @pages
1128 * that are allocated on demand.
1129 *
1130 * @type_level is encoded algorithm and level, where level 0 means whatever
1131 * default the algorithm chooses and is opaque here;
1132 * - compression algo are 0-3
1133 * - the level are bits 4-7
1134 *
1135 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1136 * and returns number of actually allocated pages
1137 *
1138 * @total_in is used to return the number of bytes actually read. It
1139 * may be smaller than the input length if we had to exit early because we
1140 * ran out of room in the pages array or because we cross the
1141 * max_out threshold.
1142 *
1143 * @total_out is an in/out parameter, must be set to the input length and will
1144 * be also used to return the total number of compressed bytes
1145 *
1146 * @max_out tells us the max number of bytes that we're allowed to
1147 * stuff into pages
1148 */
btrfs_compress_pages(unsigned int type_level,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)1149 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1150 u64 start, struct page **pages,
1151 unsigned long *out_pages,
1152 unsigned long *total_in,
1153 unsigned long *total_out)
1154 {
1155 int type = btrfs_compress_type(type_level);
1156 int level = btrfs_compress_level(type_level);
1157 struct list_head *workspace;
1158 int ret;
1159
1160 level = btrfs_compress_set_level(type, level);
1161 workspace = get_workspace(type, level);
1162 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1163 out_pages, total_in, total_out);
1164 put_workspace(type, workspace);
1165 return ret;
1166 }
1167
1168 /*
1169 * pages_in is an array of pages with compressed data.
1170 *
1171 * disk_start is the starting logical offset of this array in the file
1172 *
1173 * orig_bio contains the pages from the file that we want to decompress into
1174 *
1175 * srclen is the number of bytes in pages_in
1176 *
1177 * The basic idea is that we have a bio that was created by readpages.
1178 * The pages in the bio are for the uncompressed data, and they may not
1179 * be contiguous. They all correspond to the range of bytes covered by
1180 * the compressed extent.
1181 */
btrfs_decompress_bio(struct compressed_bio * cb)1182 static int btrfs_decompress_bio(struct compressed_bio *cb)
1183 {
1184 struct list_head *workspace;
1185 int ret;
1186 int type = cb->compress_type;
1187
1188 workspace = get_workspace(type, 0);
1189 ret = compression_decompress_bio(type, workspace, cb);
1190 put_workspace(type, workspace);
1191
1192 return ret;
1193 }
1194
1195 /*
1196 * a less complex decompression routine. Our compressed data fits in a
1197 * single page, and we want to read a single page out of it.
1198 * start_byte tells us the offset into the compressed data we're interested in
1199 */
btrfs_decompress(int type,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)1200 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1201 unsigned long start_byte, size_t srclen, size_t destlen)
1202 {
1203 struct list_head *workspace;
1204 int ret;
1205
1206 workspace = get_workspace(type, 0);
1207 ret = compression_decompress(type, workspace, data_in, dest_page,
1208 start_byte, srclen, destlen);
1209 put_workspace(type, workspace);
1210
1211 return ret;
1212 }
1213
btrfs_init_compress(void)1214 void __init btrfs_init_compress(void)
1215 {
1216 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1217 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1218 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1219 zstd_init_workspace_manager();
1220 }
1221
btrfs_exit_compress(void)1222 void __cold btrfs_exit_compress(void)
1223 {
1224 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1225 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1226 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1227 zstd_cleanup_workspace_manager();
1228 }
1229
1230 /*
1231 * Copy uncompressed data from working buffer to pages.
1232 *
1233 * buf_start is the byte offset we're of the start of our workspace buffer.
1234 *
1235 * total_out is the last byte of the buffer
1236 */
btrfs_decompress_buf2page(const char * buf,unsigned long buf_start,unsigned long total_out,u64 disk_start,struct bio * bio)1237 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1238 unsigned long total_out, u64 disk_start,
1239 struct bio *bio)
1240 {
1241 unsigned long buf_offset;
1242 unsigned long current_buf_start;
1243 unsigned long start_byte;
1244 unsigned long prev_start_byte;
1245 unsigned long working_bytes = total_out - buf_start;
1246 unsigned long bytes;
1247 char *kaddr;
1248 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1249
1250 /*
1251 * start byte is the first byte of the page we're currently
1252 * copying into relative to the start of the compressed data.
1253 */
1254 start_byte = page_offset(bvec.bv_page) - disk_start;
1255
1256 /* we haven't yet hit data corresponding to this page */
1257 if (total_out <= start_byte)
1258 return 1;
1259
1260 /*
1261 * the start of the data we care about is offset into
1262 * the middle of our working buffer
1263 */
1264 if (total_out > start_byte && buf_start < start_byte) {
1265 buf_offset = start_byte - buf_start;
1266 working_bytes -= buf_offset;
1267 } else {
1268 buf_offset = 0;
1269 }
1270 current_buf_start = buf_start;
1271
1272 /* copy bytes from the working buffer into the pages */
1273 while (working_bytes > 0) {
1274 bytes = min_t(unsigned long, bvec.bv_len,
1275 PAGE_SIZE - (buf_offset % PAGE_SIZE));
1276 bytes = min(bytes, working_bytes);
1277
1278 kaddr = kmap_atomic(bvec.bv_page);
1279 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1280 kunmap_atomic(kaddr);
1281 flush_dcache_page(bvec.bv_page);
1282
1283 buf_offset += bytes;
1284 working_bytes -= bytes;
1285 current_buf_start += bytes;
1286
1287 /* check if we need to pick another page */
1288 bio_advance(bio, bytes);
1289 if (!bio->bi_iter.bi_size)
1290 return 0;
1291 bvec = bio_iter_iovec(bio, bio->bi_iter);
1292 prev_start_byte = start_byte;
1293 start_byte = page_offset(bvec.bv_page) - disk_start;
1294
1295 /*
1296 * We need to make sure we're only adjusting
1297 * our offset into compression working buffer when
1298 * we're switching pages. Otherwise we can incorrectly
1299 * keep copying when we were actually done.
1300 */
1301 if (start_byte != prev_start_byte) {
1302 /*
1303 * make sure our new page is covered by this
1304 * working buffer
1305 */
1306 if (total_out <= start_byte)
1307 return 1;
1308
1309 /*
1310 * the next page in the biovec might not be adjacent
1311 * to the last page, but it might still be found
1312 * inside this working buffer. bump our offset pointer
1313 */
1314 if (total_out > start_byte &&
1315 current_buf_start < start_byte) {
1316 buf_offset = start_byte - buf_start;
1317 working_bytes = total_out - start_byte;
1318 current_buf_start = buf_start + buf_offset;
1319 }
1320 }
1321 }
1322
1323 return 1;
1324 }
1325
1326 /*
1327 * Shannon Entropy calculation
1328 *
1329 * Pure byte distribution analysis fails to determine compressibility of data.
1330 * Try calculating entropy to estimate the average minimum number of bits
1331 * needed to encode the sampled data.
1332 *
1333 * For convenience, return the percentage of needed bits, instead of amount of
1334 * bits directly.
1335 *
1336 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1337 * and can be compressible with high probability
1338 *
1339 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1340 *
1341 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1342 */
1343 #define ENTROPY_LVL_ACEPTABLE (65)
1344 #define ENTROPY_LVL_HIGH (80)
1345
1346 /*
1347 * For increasead precision in shannon_entropy calculation,
1348 * let's do pow(n, M) to save more digits after comma:
1349 *
1350 * - maximum int bit length is 64
1351 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1352 * - 13 * 4 = 52 < 64 -> M = 4
1353 *
1354 * So use pow(n, 4).
1355 */
ilog2_w(u64 n)1356 static inline u32 ilog2_w(u64 n)
1357 {
1358 return ilog2(n * n * n * n);
1359 }
1360
shannon_entropy(struct heuristic_ws * ws)1361 static u32 shannon_entropy(struct heuristic_ws *ws)
1362 {
1363 const u32 entropy_max = 8 * ilog2_w(2);
1364 u32 entropy_sum = 0;
1365 u32 p, p_base, sz_base;
1366 u32 i;
1367
1368 sz_base = ilog2_w(ws->sample_size);
1369 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1370 p = ws->bucket[i].count;
1371 p_base = ilog2_w(p);
1372 entropy_sum += p * (sz_base - p_base);
1373 }
1374
1375 entropy_sum /= ws->sample_size;
1376 return entropy_sum * 100 / entropy_max;
1377 }
1378
1379 #define RADIX_BASE 4U
1380 #define COUNTERS_SIZE (1U << RADIX_BASE)
1381
get4bits(u64 num,int shift)1382 static u8 get4bits(u64 num, int shift) {
1383 u8 low4bits;
1384
1385 num >>= shift;
1386 /* Reverse order */
1387 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1388 return low4bits;
1389 }
1390
1391 /*
1392 * Use 4 bits as radix base
1393 * Use 16 u32 counters for calculating new position in buf array
1394 *
1395 * @array - array that will be sorted
1396 * @array_buf - buffer array to store sorting results
1397 * must be equal in size to @array
1398 * @num - array size
1399 */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1400 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1401 int num)
1402 {
1403 u64 max_num;
1404 u64 buf_num;
1405 u32 counters[COUNTERS_SIZE];
1406 u32 new_addr;
1407 u32 addr;
1408 int bitlen;
1409 int shift;
1410 int i;
1411
1412 /*
1413 * Try avoid useless loop iterations for small numbers stored in big
1414 * counters. Example: 48 33 4 ... in 64bit array
1415 */
1416 max_num = array[0].count;
1417 for (i = 1; i < num; i++) {
1418 buf_num = array[i].count;
1419 if (buf_num > max_num)
1420 max_num = buf_num;
1421 }
1422
1423 buf_num = ilog2(max_num);
1424 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1425
1426 shift = 0;
1427 while (shift < bitlen) {
1428 memset(counters, 0, sizeof(counters));
1429
1430 for (i = 0; i < num; i++) {
1431 buf_num = array[i].count;
1432 addr = get4bits(buf_num, shift);
1433 counters[addr]++;
1434 }
1435
1436 for (i = 1; i < COUNTERS_SIZE; i++)
1437 counters[i] += counters[i - 1];
1438
1439 for (i = num - 1; i >= 0; i--) {
1440 buf_num = array[i].count;
1441 addr = get4bits(buf_num, shift);
1442 counters[addr]--;
1443 new_addr = counters[addr];
1444 array_buf[new_addr] = array[i];
1445 }
1446
1447 shift += RADIX_BASE;
1448
1449 /*
1450 * Normal radix expects to move data from a temporary array, to
1451 * the main one. But that requires some CPU time. Avoid that
1452 * by doing another sort iteration to original array instead of
1453 * memcpy()
1454 */
1455 memset(counters, 0, sizeof(counters));
1456
1457 for (i = 0; i < num; i ++) {
1458 buf_num = array_buf[i].count;
1459 addr = get4bits(buf_num, shift);
1460 counters[addr]++;
1461 }
1462
1463 for (i = 1; i < COUNTERS_SIZE; i++)
1464 counters[i] += counters[i - 1];
1465
1466 for (i = num - 1; i >= 0; i--) {
1467 buf_num = array_buf[i].count;
1468 addr = get4bits(buf_num, shift);
1469 counters[addr]--;
1470 new_addr = counters[addr];
1471 array[new_addr] = array_buf[i];
1472 }
1473
1474 shift += RADIX_BASE;
1475 }
1476 }
1477
1478 /*
1479 * Size of the core byte set - how many bytes cover 90% of the sample
1480 *
1481 * There are several types of structured binary data that use nearly all byte
1482 * values. The distribution can be uniform and counts in all buckets will be
1483 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1484 *
1485 * Other possibility is normal (Gaussian) distribution, where the data could
1486 * be potentially compressible, but we have to take a few more steps to decide
1487 * how much.
1488 *
1489 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1490 * compression algo can easy fix that
1491 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1492 * probability is not compressible
1493 */
1494 #define BYTE_CORE_SET_LOW (64)
1495 #define BYTE_CORE_SET_HIGH (200)
1496
byte_core_set_size(struct heuristic_ws * ws)1497 static int byte_core_set_size(struct heuristic_ws *ws)
1498 {
1499 u32 i;
1500 u32 coreset_sum = 0;
1501 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1502 struct bucket_item *bucket = ws->bucket;
1503
1504 /* Sort in reverse order */
1505 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1506
1507 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1508 coreset_sum += bucket[i].count;
1509
1510 if (coreset_sum > core_set_threshold)
1511 return i;
1512
1513 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1514 coreset_sum += bucket[i].count;
1515 if (coreset_sum > core_set_threshold)
1516 break;
1517 }
1518
1519 return i;
1520 }
1521
1522 /*
1523 * Count byte values in buckets.
1524 * This heuristic can detect textual data (configs, xml, json, html, etc).
1525 * Because in most text-like data byte set is restricted to limited number of
1526 * possible characters, and that restriction in most cases makes data easy to
1527 * compress.
1528 *
1529 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1530 * less - compressible
1531 * more - need additional analysis
1532 */
1533 #define BYTE_SET_THRESHOLD (64)
1534
byte_set_size(const struct heuristic_ws * ws)1535 static u32 byte_set_size(const struct heuristic_ws *ws)
1536 {
1537 u32 i;
1538 u32 byte_set_size = 0;
1539
1540 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1541 if (ws->bucket[i].count > 0)
1542 byte_set_size++;
1543 }
1544
1545 /*
1546 * Continue collecting count of byte values in buckets. If the byte
1547 * set size is bigger then the threshold, it's pointless to continue,
1548 * the detection technique would fail for this type of data.
1549 */
1550 for (; i < BUCKET_SIZE; i++) {
1551 if (ws->bucket[i].count > 0) {
1552 byte_set_size++;
1553 if (byte_set_size > BYTE_SET_THRESHOLD)
1554 return byte_set_size;
1555 }
1556 }
1557
1558 return byte_set_size;
1559 }
1560
sample_repeated_patterns(struct heuristic_ws * ws)1561 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1562 {
1563 const u32 half_of_sample = ws->sample_size / 2;
1564 const u8 *data = ws->sample;
1565
1566 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1567 }
1568
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1569 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1570 struct heuristic_ws *ws)
1571 {
1572 struct page *page;
1573 u64 index, index_end;
1574 u32 i, curr_sample_pos;
1575 u8 *in_data;
1576
1577 /*
1578 * Compression handles the input data by chunks of 128KiB
1579 * (defined by BTRFS_MAX_UNCOMPRESSED)
1580 *
1581 * We do the same for the heuristic and loop over the whole range.
1582 *
1583 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1584 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1585 */
1586 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1587 end = start + BTRFS_MAX_UNCOMPRESSED;
1588
1589 index = start >> PAGE_SHIFT;
1590 index_end = end >> PAGE_SHIFT;
1591
1592 /* Don't miss unaligned end */
1593 if (!IS_ALIGNED(end, PAGE_SIZE))
1594 index_end++;
1595
1596 curr_sample_pos = 0;
1597 while (index < index_end) {
1598 page = find_get_page(inode->i_mapping, index);
1599 in_data = kmap(page);
1600 /* Handle case where the start is not aligned to PAGE_SIZE */
1601 i = start % PAGE_SIZE;
1602 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1603 /* Don't sample any garbage from the last page */
1604 if (start > end - SAMPLING_READ_SIZE)
1605 break;
1606 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1607 SAMPLING_READ_SIZE);
1608 i += SAMPLING_INTERVAL;
1609 start += SAMPLING_INTERVAL;
1610 curr_sample_pos += SAMPLING_READ_SIZE;
1611 }
1612 kunmap(page);
1613 put_page(page);
1614
1615 index++;
1616 }
1617
1618 ws->sample_size = curr_sample_pos;
1619 }
1620
1621 /*
1622 * Compression heuristic.
1623 *
1624 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1625 * quickly (compared to direct compression) detect data characteristics
1626 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1627 * data.
1628 *
1629 * The following types of analysis can be performed:
1630 * - detect mostly zero data
1631 * - detect data with low "byte set" size (text, etc)
1632 * - detect data with low/high "core byte" set
1633 *
1634 * Return non-zero if the compression should be done, 0 otherwise.
1635 */
btrfs_compress_heuristic(struct inode * inode,u64 start,u64 end)1636 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1637 {
1638 struct list_head *ws_list = get_workspace(0, 0);
1639 struct heuristic_ws *ws;
1640 u32 i;
1641 u8 byte;
1642 int ret = 0;
1643
1644 ws = list_entry(ws_list, struct heuristic_ws, list);
1645
1646 heuristic_collect_sample(inode, start, end, ws);
1647
1648 if (sample_repeated_patterns(ws)) {
1649 ret = 1;
1650 goto out;
1651 }
1652
1653 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1654
1655 for (i = 0; i < ws->sample_size; i++) {
1656 byte = ws->sample[i];
1657 ws->bucket[byte].count++;
1658 }
1659
1660 i = byte_set_size(ws);
1661 if (i < BYTE_SET_THRESHOLD) {
1662 ret = 2;
1663 goto out;
1664 }
1665
1666 i = byte_core_set_size(ws);
1667 if (i <= BYTE_CORE_SET_LOW) {
1668 ret = 3;
1669 goto out;
1670 }
1671
1672 if (i >= BYTE_CORE_SET_HIGH) {
1673 ret = 0;
1674 goto out;
1675 }
1676
1677 i = shannon_entropy(ws);
1678 if (i <= ENTROPY_LVL_ACEPTABLE) {
1679 ret = 4;
1680 goto out;
1681 }
1682
1683 /*
1684 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1685 * needed to give green light to compression.
1686 *
1687 * For now just assume that compression at that level is not worth the
1688 * resources because:
1689 *
1690 * 1. it is possible to defrag the data later
1691 *
1692 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1693 * values, every bucket has counter at level ~54. The heuristic would
1694 * be confused. This can happen when data have some internal repeated
1695 * patterns like "abbacbbc...". This can be detected by analyzing
1696 * pairs of bytes, which is too costly.
1697 */
1698 if (i < ENTROPY_LVL_HIGH) {
1699 ret = 5;
1700 goto out;
1701 } else {
1702 ret = 0;
1703 goto out;
1704 }
1705
1706 out:
1707 put_workspace(0, ws_list);
1708 return ret;
1709 }
1710
1711 /*
1712 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1713 * level, unrecognized string will set the default level
1714 */
btrfs_compress_str2level(unsigned int type,const char * str)1715 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1716 {
1717 unsigned int level = 0;
1718 int ret;
1719
1720 if (!type)
1721 return 0;
1722
1723 if (str[0] == ':') {
1724 ret = kstrtouint(str + 1, 10, &level);
1725 if (ret)
1726 level = 0;
1727 }
1728
1729 level = btrfs_compress_set_level(type, level);
1730
1731 return level;
1732 }
1733