1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "inode-map.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 struct btrfs_dio_data {
61 u64 reserve;
62 loff_t length;
63 ssize_t submitted;
64 struct extent_changeset *data_reserved;
65 bool sync;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_special_inode_operations;
71 static const struct inode_operations btrfs_file_inode_operations;
72 static const struct address_space_operations btrfs_aops;
73 static const struct file_operations btrfs_dir_file_operations;
74
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80
81 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
82 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
84 static noinline int cow_file_range(struct btrfs_inode *inode,
85 struct page *locked_page,
86 u64 start, u64 end, int *page_started,
87 unsigned long *nr_written, int unlock);
88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
89 u64 len, u64 orig_start, u64 block_start,
90 u64 block_len, u64 orig_block_len,
91 u64 ram_bytes, int compress_type,
92 int type);
93
94 static void __endio_write_update_ordered(struct btrfs_inode *inode,
95 const u64 offset, const u64 bytes,
96 const bool uptodate);
97
98 /*
99 * Cleanup all submitted ordered extents in specified range to handle errors
100 * from the btrfs_run_delalloc_range() callback.
101 *
102 * NOTE: caller must ensure that when an error happens, it can not call
103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105 * to be released, which we want to happen only when finishing the ordered
106 * extent (btrfs_finish_ordered_io()).
107 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct page * locked_page,u64 offset,u64 bytes)108 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
109 struct page *locked_page,
110 u64 offset, u64 bytes)
111 {
112 unsigned long index = offset >> PAGE_SHIFT;
113 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
114 u64 page_start = page_offset(locked_page);
115 u64 page_end = page_start + PAGE_SIZE - 1;
116
117 struct page *page;
118
119 while (index <= end_index) {
120 page = find_get_page(inode->vfs_inode.i_mapping, index);
121 index++;
122 if (!page)
123 continue;
124 ClearPagePrivate2(page);
125 put_page(page);
126 }
127
128 /*
129 * In case this page belongs to the delalloc range being instantiated
130 * then skip it, since the first page of a range is going to be
131 * properly cleaned up by the caller of run_delalloc_range
132 */
133 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 offset += PAGE_SIZE;
135 bytes -= PAGE_SIZE;
136 }
137
138 return __endio_write_update_ordered(inode, offset, bytes, false);
139 }
140
141 static int btrfs_dirty_inode(struct inode *inode);
142
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)143 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
144 struct inode *inode, struct inode *dir,
145 const struct qstr *qstr)
146 {
147 int err;
148
149 err = btrfs_init_acl(trans, inode, dir);
150 if (!err)
151 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
152 return err;
153 }
154
155 /*
156 * this does all the hard work for inserting an inline extent into
157 * the btree. The caller should have done a btrfs_drop_extents so that
158 * no overlapping inline items exist in the btree
159 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)160 static int insert_inline_extent(struct btrfs_trans_handle *trans,
161 struct btrfs_path *path, int extent_inserted,
162 struct btrfs_root *root, struct inode *inode,
163 u64 start, size_t size, size_t compressed_size,
164 int compress_type,
165 struct page **compressed_pages)
166 {
167 struct extent_buffer *leaf;
168 struct page *page = NULL;
169 char *kaddr;
170 unsigned long ptr;
171 struct btrfs_file_extent_item *ei;
172 int ret;
173 size_t cur_size = size;
174 unsigned long offset;
175
176 ASSERT((compressed_size > 0 && compressed_pages) ||
177 (compressed_size == 0 && !compressed_pages));
178
179 if (compressed_size && compressed_pages)
180 cur_size = compressed_size;
181
182 inode_add_bytes(inode, size);
183
184 if (!extent_inserted) {
185 struct btrfs_key key;
186 size_t datasize;
187
188 key.objectid = btrfs_ino(BTRFS_I(inode));
189 key.offset = start;
190 key.type = BTRFS_EXTENT_DATA_KEY;
191
192 datasize = btrfs_file_extent_calc_inline_size(cur_size);
193 path->leave_spinning = 1;
194 ret = btrfs_insert_empty_item(trans, root, path, &key,
195 datasize);
196 if (ret)
197 goto fail;
198 }
199 leaf = path->nodes[0];
200 ei = btrfs_item_ptr(leaf, path->slots[0],
201 struct btrfs_file_extent_item);
202 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
203 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
204 btrfs_set_file_extent_encryption(leaf, ei, 0);
205 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
206 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
207 ptr = btrfs_file_extent_inline_start(ei);
208
209 if (compress_type != BTRFS_COMPRESS_NONE) {
210 struct page *cpage;
211 int i = 0;
212 while (compressed_size > 0) {
213 cpage = compressed_pages[i];
214 cur_size = min_t(unsigned long, compressed_size,
215 PAGE_SIZE);
216
217 kaddr = kmap_atomic(cpage);
218 write_extent_buffer(leaf, kaddr, ptr, cur_size);
219 kunmap_atomic(kaddr);
220
221 i++;
222 ptr += cur_size;
223 compressed_size -= cur_size;
224 }
225 btrfs_set_file_extent_compression(leaf, ei,
226 compress_type);
227 } else {
228 page = find_get_page(inode->i_mapping,
229 start >> PAGE_SHIFT);
230 btrfs_set_file_extent_compression(leaf, ei, 0);
231 kaddr = kmap_atomic(page);
232 offset = offset_in_page(start);
233 write_extent_buffer(leaf, kaddr + offset, ptr, size);
234 kunmap_atomic(kaddr);
235 put_page(page);
236 }
237 btrfs_mark_buffer_dirty(leaf);
238 btrfs_release_path(path);
239
240 /*
241 * We align size to sectorsize for inline extents just for simplicity
242 * sake.
243 */
244 size = ALIGN(size, root->fs_info->sectorsize);
245 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
246 if (ret)
247 goto fail;
248
249 /*
250 * we're an inline extent, so nobody can
251 * extend the file past i_size without locking
252 * a page we already have locked.
253 *
254 * We must do any isize and inode updates
255 * before we unlock the pages. Otherwise we
256 * could end up racing with unlink.
257 */
258 BTRFS_I(inode)->disk_i_size = inode->i_size;
259 ret = btrfs_update_inode(trans, root, inode);
260
261 fail:
262 return ret;
263 }
264
265
266 /*
267 * conditionally insert an inline extent into the file. This
268 * does the checks required to make sure the data is small enough
269 * to fit as an inline extent.
270 */
cow_file_range_inline(struct btrfs_inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)271 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
272 u64 end, size_t compressed_size,
273 int compress_type,
274 struct page **compressed_pages)
275 {
276 struct btrfs_root *root = inode->root;
277 struct btrfs_fs_info *fs_info = root->fs_info;
278 struct btrfs_trans_handle *trans;
279 u64 isize = i_size_read(&inode->vfs_inode);
280 u64 actual_end = min(end + 1, isize);
281 u64 inline_len = actual_end - start;
282 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
283 u64 data_len = inline_len;
284 int ret;
285 struct btrfs_path *path;
286 int extent_inserted = 0;
287 u32 extent_item_size;
288
289 if (compressed_size)
290 data_len = compressed_size;
291
292 if (start > 0 ||
293 actual_end > fs_info->sectorsize ||
294 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
295 (!compressed_size &&
296 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
297 end + 1 < isize ||
298 data_len > fs_info->max_inline) {
299 return 1;
300 }
301
302 path = btrfs_alloc_path();
303 if (!path)
304 return -ENOMEM;
305
306 trans = btrfs_join_transaction(root);
307 if (IS_ERR(trans)) {
308 btrfs_free_path(path);
309 return PTR_ERR(trans);
310 }
311 trans->block_rsv = &inode->block_rsv;
312
313 if (compressed_size && compressed_pages)
314 extent_item_size = btrfs_file_extent_calc_inline_size(
315 compressed_size);
316 else
317 extent_item_size = btrfs_file_extent_calc_inline_size(
318 inline_len);
319
320 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
321 NULL, 1, 1, extent_item_size,
322 &extent_inserted);
323 if (ret) {
324 btrfs_abort_transaction(trans, ret);
325 goto out;
326 }
327
328 if (isize > actual_end)
329 inline_len = min_t(u64, isize, actual_end);
330 ret = insert_inline_extent(trans, path, extent_inserted,
331 root, &inode->vfs_inode, start,
332 inline_len, compressed_size,
333 compress_type, compressed_pages);
334 if (ret && ret != -ENOSPC) {
335 btrfs_abort_transaction(trans, ret);
336 goto out;
337 } else if (ret == -ENOSPC) {
338 ret = 1;
339 goto out;
340 }
341
342 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
343 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
344 out:
345 /*
346 * Don't forget to free the reserved space, as for inlined extent
347 * it won't count as data extent, free them directly here.
348 * And at reserve time, it's always aligned to page size, so
349 * just free one page here.
350 */
351 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
352 btrfs_free_path(path);
353 btrfs_end_transaction(trans);
354 return ret;
355 }
356
357 struct async_extent {
358 u64 start;
359 u64 ram_size;
360 u64 compressed_size;
361 struct page **pages;
362 unsigned long nr_pages;
363 int compress_type;
364 struct list_head list;
365 };
366
367 struct async_chunk {
368 struct inode *inode;
369 struct page *locked_page;
370 u64 start;
371 u64 end;
372 unsigned int write_flags;
373 struct list_head extents;
374 struct cgroup_subsys_state *blkcg_css;
375 struct btrfs_work work;
376 atomic_t *pending;
377 };
378
379 struct async_cow {
380 /* Number of chunks in flight; must be first in the structure */
381 atomic_t num_chunks;
382 struct async_chunk chunks[];
383 };
384
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)385 static noinline int add_async_extent(struct async_chunk *cow,
386 u64 start, u64 ram_size,
387 u64 compressed_size,
388 struct page **pages,
389 unsigned long nr_pages,
390 int compress_type)
391 {
392 struct async_extent *async_extent;
393
394 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
395 BUG_ON(!async_extent); /* -ENOMEM */
396 async_extent->start = start;
397 async_extent->ram_size = ram_size;
398 async_extent->compressed_size = compressed_size;
399 async_extent->pages = pages;
400 async_extent->nr_pages = nr_pages;
401 async_extent->compress_type = compress_type;
402 list_add_tail(&async_extent->list, &cow->extents);
403 return 0;
404 }
405
406 /*
407 * Check if the inode has flags compatible with compression
408 */
inode_can_compress(struct btrfs_inode * inode)409 static inline bool inode_can_compress(struct btrfs_inode *inode)
410 {
411 if (inode->flags & BTRFS_INODE_NODATACOW ||
412 inode->flags & BTRFS_INODE_NODATASUM)
413 return false;
414 return true;
415 }
416
417 /*
418 * Check if the inode needs to be submitted to compression, based on mount
419 * options, defragmentation, properties or heuristics.
420 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)421 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
422 u64 end)
423 {
424 struct btrfs_fs_info *fs_info = inode->root->fs_info;
425
426 if (!inode_can_compress(inode)) {
427 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
428 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
429 btrfs_ino(inode));
430 return 0;
431 }
432 /* force compress */
433 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
434 return 1;
435 /* defrag ioctl */
436 if (inode->defrag_compress)
437 return 1;
438 /* bad compression ratios */
439 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
440 return 0;
441 if (btrfs_test_opt(fs_info, COMPRESS) ||
442 inode->flags & BTRFS_INODE_COMPRESS ||
443 inode->prop_compress)
444 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
445 return 0;
446 }
447
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)448 static inline void inode_should_defrag(struct btrfs_inode *inode,
449 u64 start, u64 end, u64 num_bytes, u64 small_write)
450 {
451 /* If this is a small write inside eof, kick off a defrag */
452 if (num_bytes < small_write &&
453 (start > 0 || end + 1 < inode->disk_i_size))
454 btrfs_add_inode_defrag(NULL, inode);
455 }
456
457 /*
458 * we create compressed extents in two phases. The first
459 * phase compresses a range of pages that have already been
460 * locked (both pages and state bits are locked).
461 *
462 * This is done inside an ordered work queue, and the compression
463 * is spread across many cpus. The actual IO submission is step
464 * two, and the ordered work queue takes care of making sure that
465 * happens in the same order things were put onto the queue by
466 * writepages and friends.
467 *
468 * If this code finds it can't get good compression, it puts an
469 * entry onto the work queue to write the uncompressed bytes. This
470 * makes sure that both compressed inodes and uncompressed inodes
471 * are written in the same order that the flusher thread sent them
472 * down.
473 */
compress_file_range(struct async_chunk * async_chunk)474 static noinline int compress_file_range(struct async_chunk *async_chunk)
475 {
476 struct inode *inode = async_chunk->inode;
477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
478 u64 blocksize = fs_info->sectorsize;
479 u64 start = async_chunk->start;
480 u64 end = async_chunk->end;
481 u64 actual_end;
482 u64 i_size;
483 int ret = 0;
484 struct page **pages = NULL;
485 unsigned long nr_pages;
486 unsigned long total_compressed = 0;
487 unsigned long total_in = 0;
488 int i;
489 int will_compress;
490 int compress_type = fs_info->compress_type;
491 int compressed_extents = 0;
492 int redirty = 0;
493
494 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
495 SZ_16K);
496
497 /*
498 * We need to save i_size before now because it could change in between
499 * us evaluating the size and assigning it. This is because we lock and
500 * unlock the page in truncate and fallocate, and then modify the i_size
501 * later on.
502 *
503 * The barriers are to emulate READ_ONCE, remove that once i_size_read
504 * does that for us.
505 */
506 barrier();
507 i_size = i_size_read(inode);
508 barrier();
509 actual_end = min_t(u64, i_size, end + 1);
510 again:
511 will_compress = 0;
512 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
513 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
514 nr_pages = min_t(unsigned long, nr_pages,
515 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
516
517 /*
518 * we don't want to send crud past the end of i_size through
519 * compression, that's just a waste of CPU time. So, if the
520 * end of the file is before the start of our current
521 * requested range of bytes, we bail out to the uncompressed
522 * cleanup code that can deal with all of this.
523 *
524 * It isn't really the fastest way to fix things, but this is a
525 * very uncommon corner.
526 */
527 if (actual_end <= start)
528 goto cleanup_and_bail_uncompressed;
529
530 total_compressed = actual_end - start;
531
532 /*
533 * skip compression for a small file range(<=blocksize) that
534 * isn't an inline extent, since it doesn't save disk space at all.
535 */
536 if (total_compressed <= blocksize &&
537 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
538 goto cleanup_and_bail_uncompressed;
539
540 total_compressed = min_t(unsigned long, total_compressed,
541 BTRFS_MAX_UNCOMPRESSED);
542 total_in = 0;
543 ret = 0;
544
545 /*
546 * we do compression for mount -o compress and when the
547 * inode has not been flagged as nocompress. This flag can
548 * change at any time if we discover bad compression ratios.
549 */
550 if (inode_need_compress(BTRFS_I(inode), start, end)) {
551 WARN_ON(pages);
552 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
553 if (!pages) {
554 /* just bail out to the uncompressed code */
555 nr_pages = 0;
556 goto cont;
557 }
558
559 if (BTRFS_I(inode)->defrag_compress)
560 compress_type = BTRFS_I(inode)->defrag_compress;
561 else if (BTRFS_I(inode)->prop_compress)
562 compress_type = BTRFS_I(inode)->prop_compress;
563
564 /*
565 * we need to call clear_page_dirty_for_io on each
566 * page in the range. Otherwise applications with the file
567 * mmap'd can wander in and change the page contents while
568 * we are compressing them.
569 *
570 * If the compression fails for any reason, we set the pages
571 * dirty again later on.
572 *
573 * Note that the remaining part is redirtied, the start pointer
574 * has moved, the end is the original one.
575 */
576 if (!redirty) {
577 extent_range_clear_dirty_for_io(inode, start, end);
578 redirty = 1;
579 }
580
581 /* Compression level is applied here and only here */
582 ret = btrfs_compress_pages(
583 compress_type | (fs_info->compress_level << 4),
584 inode->i_mapping, start,
585 pages,
586 &nr_pages,
587 &total_in,
588 &total_compressed);
589
590 if (!ret) {
591 unsigned long offset = offset_in_page(total_compressed);
592 struct page *page = pages[nr_pages - 1];
593 char *kaddr;
594
595 /* zero the tail end of the last page, we might be
596 * sending it down to disk
597 */
598 if (offset) {
599 kaddr = kmap_atomic(page);
600 memset(kaddr + offset, 0,
601 PAGE_SIZE - offset);
602 kunmap_atomic(kaddr);
603 }
604 will_compress = 1;
605 }
606 }
607 cont:
608 if (start == 0) {
609 /* lets try to make an inline extent */
610 if (ret || total_in < actual_end) {
611 /* we didn't compress the entire range, try
612 * to make an uncompressed inline extent.
613 */
614 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
615 0, BTRFS_COMPRESS_NONE,
616 NULL);
617 } else {
618 /* try making a compressed inline extent */
619 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
620 total_compressed,
621 compress_type, pages);
622 }
623 if (ret <= 0) {
624 unsigned long clear_flags = EXTENT_DELALLOC |
625 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
626 EXTENT_DO_ACCOUNTING;
627 unsigned long page_error_op;
628
629 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
630
631 /*
632 * inline extent creation worked or returned error,
633 * we don't need to create any more async work items.
634 * Unlock and free up our temp pages.
635 *
636 * We use DO_ACCOUNTING here because we need the
637 * delalloc_release_metadata to be done _after_ we drop
638 * our outstanding extent for clearing delalloc for this
639 * range.
640 */
641 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
642 NULL,
643 clear_flags,
644 PAGE_UNLOCK |
645 PAGE_CLEAR_DIRTY |
646 PAGE_SET_WRITEBACK |
647 page_error_op |
648 PAGE_END_WRITEBACK);
649
650 /*
651 * Ensure we only free the compressed pages if we have
652 * them allocated, as we can still reach here with
653 * inode_need_compress() == false.
654 */
655 if (pages) {
656 for (i = 0; i < nr_pages; i++) {
657 WARN_ON(pages[i]->mapping);
658 put_page(pages[i]);
659 }
660 kfree(pages);
661 }
662 return 0;
663 }
664 }
665
666 if (will_compress) {
667 /*
668 * we aren't doing an inline extent round the compressed size
669 * up to a block size boundary so the allocator does sane
670 * things
671 */
672 total_compressed = ALIGN(total_compressed, blocksize);
673
674 /*
675 * one last check to make sure the compression is really a
676 * win, compare the page count read with the blocks on disk,
677 * compression must free at least one sector size
678 */
679 total_in = ALIGN(total_in, PAGE_SIZE);
680 if (total_compressed + blocksize <= total_in) {
681 compressed_extents++;
682
683 /*
684 * The async work queues will take care of doing actual
685 * allocation on disk for these compressed pages, and
686 * will submit them to the elevator.
687 */
688 add_async_extent(async_chunk, start, total_in,
689 total_compressed, pages, nr_pages,
690 compress_type);
691
692 if (start + total_in < end) {
693 start += total_in;
694 pages = NULL;
695 cond_resched();
696 goto again;
697 }
698 return compressed_extents;
699 }
700 }
701 if (pages) {
702 /*
703 * the compression code ran but failed to make things smaller,
704 * free any pages it allocated and our page pointer array
705 */
706 for (i = 0; i < nr_pages; i++) {
707 WARN_ON(pages[i]->mapping);
708 put_page(pages[i]);
709 }
710 kfree(pages);
711 pages = NULL;
712 total_compressed = 0;
713 nr_pages = 0;
714
715 /* flag the file so we don't compress in the future */
716 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
717 !(BTRFS_I(inode)->prop_compress)) {
718 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
719 }
720 }
721 cleanup_and_bail_uncompressed:
722 /*
723 * No compression, but we still need to write the pages in the file
724 * we've been given so far. redirty the locked page if it corresponds
725 * to our extent and set things up for the async work queue to run
726 * cow_file_range to do the normal delalloc dance.
727 */
728 if (async_chunk->locked_page &&
729 (page_offset(async_chunk->locked_page) >= start &&
730 page_offset(async_chunk->locked_page)) <= end) {
731 __set_page_dirty_nobuffers(async_chunk->locked_page);
732 /* unlocked later on in the async handlers */
733 }
734
735 if (redirty)
736 extent_range_redirty_for_io(inode, start, end);
737 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
738 BTRFS_COMPRESS_NONE);
739 compressed_extents++;
740
741 return compressed_extents;
742 }
743
free_async_extent_pages(struct async_extent * async_extent)744 static void free_async_extent_pages(struct async_extent *async_extent)
745 {
746 int i;
747
748 if (!async_extent->pages)
749 return;
750
751 for (i = 0; i < async_extent->nr_pages; i++) {
752 WARN_ON(async_extent->pages[i]->mapping);
753 put_page(async_extent->pages[i]);
754 }
755 kfree(async_extent->pages);
756 async_extent->nr_pages = 0;
757 async_extent->pages = NULL;
758 }
759
760 /*
761 * phase two of compressed writeback. This is the ordered portion
762 * of the code, which only gets called in the order the work was
763 * queued. We walk all the async extents created by compress_file_range
764 * and send them down to the disk.
765 */
submit_compressed_extents(struct async_chunk * async_chunk)766 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
767 {
768 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
769 struct btrfs_fs_info *fs_info = inode->root->fs_info;
770 struct async_extent *async_extent;
771 u64 alloc_hint = 0;
772 struct btrfs_key ins;
773 struct extent_map *em;
774 struct btrfs_root *root = inode->root;
775 struct extent_io_tree *io_tree = &inode->io_tree;
776 int ret = 0;
777
778 again:
779 while (!list_empty(&async_chunk->extents)) {
780 async_extent = list_entry(async_chunk->extents.next,
781 struct async_extent, list);
782 list_del(&async_extent->list);
783
784 retry:
785 lock_extent(io_tree, async_extent->start,
786 async_extent->start + async_extent->ram_size - 1);
787 /* did the compression code fall back to uncompressed IO? */
788 if (!async_extent->pages) {
789 int page_started = 0;
790 unsigned long nr_written = 0;
791
792 /* allocate blocks */
793 ret = cow_file_range(inode, async_chunk->locked_page,
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1,
797 &page_started, &nr_written, 0);
798
799 /* JDM XXX */
800
801 /*
802 * if page_started, cow_file_range inserted an
803 * inline extent and took care of all the unlocking
804 * and IO for us. Otherwise, we need to submit
805 * all those pages down to the drive.
806 */
807 if (!page_started && !ret)
808 extent_write_locked_range(&inode->vfs_inode,
809 async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1,
812 WB_SYNC_ALL);
813 else if (ret && async_chunk->locked_page)
814 unlock_page(async_chunk->locked_page);
815 kfree(async_extent);
816 cond_resched();
817 continue;
818 }
819
820 ret = btrfs_reserve_extent(root, async_extent->ram_size,
821 async_extent->compressed_size,
822 async_extent->compressed_size,
823 0, alloc_hint, &ins, 1, 1);
824 if (ret) {
825 free_async_extent_pages(async_extent);
826
827 if (ret == -ENOSPC) {
828 unlock_extent(io_tree, async_extent->start,
829 async_extent->start +
830 async_extent->ram_size - 1);
831
832 /*
833 * we need to redirty the pages if we decide to
834 * fallback to uncompressed IO, otherwise we
835 * will not submit these pages down to lower
836 * layers.
837 */
838 extent_range_redirty_for_io(&inode->vfs_inode,
839 async_extent->start,
840 async_extent->start +
841 async_extent->ram_size - 1);
842
843 goto retry;
844 }
845 goto out_free;
846 }
847 /*
848 * here we're doing allocation and writeback of the
849 * compressed pages
850 */
851 em = create_io_em(inode, async_extent->start,
852 async_extent->ram_size, /* len */
853 async_extent->start, /* orig_start */
854 ins.objectid, /* block_start */
855 ins.offset, /* block_len */
856 ins.offset, /* orig_block_len */
857 async_extent->ram_size, /* ram_bytes */
858 async_extent->compress_type,
859 BTRFS_ORDERED_COMPRESSED);
860 if (IS_ERR(em))
861 /* ret value is not necessary due to void function */
862 goto out_free_reserve;
863 free_extent_map(em);
864
865 ret = btrfs_add_ordered_extent_compress(inode,
866 async_extent->start,
867 ins.objectid,
868 async_extent->ram_size,
869 ins.offset,
870 BTRFS_ORDERED_COMPRESSED,
871 async_extent->compress_type);
872 if (ret) {
873 btrfs_drop_extent_cache(inode, async_extent->start,
874 async_extent->start +
875 async_extent->ram_size - 1, 0);
876 goto out_free_reserve;
877 }
878 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
879
880 /*
881 * clear dirty, set writeback and unlock the pages.
882 */
883 extent_clear_unlock_delalloc(inode, async_extent->start,
884 async_extent->start +
885 async_extent->ram_size - 1,
886 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
887 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
888 PAGE_SET_WRITEBACK);
889 if (btrfs_submit_compressed_write(inode, async_extent->start,
890 async_extent->ram_size,
891 ins.objectid,
892 ins.offset, async_extent->pages,
893 async_extent->nr_pages,
894 async_chunk->write_flags,
895 async_chunk->blkcg_css)) {
896 struct page *p = async_extent->pages[0];
897 const u64 start = async_extent->start;
898 const u64 end = start + async_extent->ram_size - 1;
899
900 p->mapping = inode->vfs_inode.i_mapping;
901 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
902
903 p->mapping = NULL;
904 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
905 PAGE_END_WRITEBACK |
906 PAGE_SET_ERROR);
907 free_async_extent_pages(async_extent);
908 }
909 alloc_hint = ins.objectid + ins.offset;
910 kfree(async_extent);
911 cond_resched();
912 }
913 return;
914 out_free_reserve:
915 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
917 out_free:
918 extent_clear_unlock_delalloc(inode, async_extent->start,
919 async_extent->start +
920 async_extent->ram_size - 1,
921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
922 EXTENT_DELALLOC_NEW |
923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
926 PAGE_SET_ERROR);
927 free_async_extent_pages(async_extent);
928 kfree(async_extent);
929 goto again;
930 }
931
get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)932 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
933 u64 num_bytes)
934 {
935 struct extent_map_tree *em_tree = &inode->extent_tree;
936 struct extent_map *em;
937 u64 alloc_hint = 0;
938
939 read_lock(&em_tree->lock);
940 em = search_extent_mapping(em_tree, start, num_bytes);
941 if (em) {
942 /*
943 * if block start isn't an actual block number then find the
944 * first block in this inode and use that as a hint. If that
945 * block is also bogus then just don't worry about it.
946 */
947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
948 free_extent_map(em);
949 em = search_extent_mapping(em_tree, 0, 0);
950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
951 alloc_hint = em->block_start;
952 if (em)
953 free_extent_map(em);
954 } else {
955 alloc_hint = em->block_start;
956 free_extent_map(em);
957 }
958 }
959 read_unlock(&em_tree->lock);
960
961 return alloc_hint;
962 }
963
964 /*
965 * when extent_io.c finds a delayed allocation range in the file,
966 * the call backs end up in this code. The basic idea is to
967 * allocate extents on disk for the range, and create ordered data structs
968 * in ram to track those extents.
969 *
970 * locked_page is the page that writepage had locked already. We use
971 * it to make sure we don't do extra locks or unlocks.
972 *
973 * *page_started is set to one if we unlock locked_page and do everything
974 * required to start IO on it. It may be clean and already done with
975 * IO when we return.
976 */
cow_file_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)977 static noinline int cow_file_range(struct btrfs_inode *inode,
978 struct page *locked_page,
979 u64 start, u64 end, int *page_started,
980 unsigned long *nr_written, int unlock)
981 {
982 struct btrfs_root *root = inode->root;
983 struct btrfs_fs_info *fs_info = root->fs_info;
984 u64 alloc_hint = 0;
985 u64 num_bytes;
986 unsigned long ram_size;
987 u64 cur_alloc_size = 0;
988 u64 min_alloc_size;
989 u64 blocksize = fs_info->sectorsize;
990 struct btrfs_key ins;
991 struct extent_map *em;
992 unsigned clear_bits;
993 unsigned long page_ops;
994 bool extent_reserved = false;
995 int ret = 0;
996
997 if (btrfs_is_free_space_inode(inode)) {
998 ret = -EINVAL;
999 goto out_unlock;
1000 }
1001
1002 num_bytes = ALIGN(end - start + 1, blocksize);
1003 num_bytes = max(blocksize, num_bytes);
1004 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1005
1006 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1007
1008 if (start == 0) {
1009 /* lets try to make an inline extent */
1010 ret = cow_file_range_inline(inode, start, end, 0,
1011 BTRFS_COMPRESS_NONE, NULL);
1012 if (ret == 0) {
1013 /*
1014 * We use DO_ACCOUNTING here because we need the
1015 * delalloc_release_metadata to be run _after_ we drop
1016 * our outstanding extent for clearing delalloc for this
1017 * range.
1018 */
1019 extent_clear_unlock_delalloc(inode, start, end, NULL,
1020 EXTENT_LOCKED | EXTENT_DELALLOC |
1021 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1022 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1023 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1024 PAGE_END_WRITEBACK);
1025 *nr_written = *nr_written +
1026 (end - start + PAGE_SIZE) / PAGE_SIZE;
1027 *page_started = 1;
1028 goto out;
1029 } else if (ret < 0) {
1030 goto out_unlock;
1031 }
1032 }
1033
1034 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1035 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1036
1037 /*
1038 * Relocation relies on the relocated extents to have exactly the same
1039 * size as the original extents. Normally writeback for relocation data
1040 * extents follows a NOCOW path because relocation preallocates the
1041 * extents. However, due to an operation such as scrub turning a block
1042 * group to RO mode, it may fallback to COW mode, so we must make sure
1043 * an extent allocated during COW has exactly the requested size and can
1044 * not be split into smaller extents, otherwise relocation breaks and
1045 * fails during the stage where it updates the bytenr of file extent
1046 * items.
1047 */
1048 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1049 min_alloc_size = num_bytes;
1050 else
1051 min_alloc_size = fs_info->sectorsize;
1052
1053 while (num_bytes > 0) {
1054 cur_alloc_size = num_bytes;
1055 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1056 min_alloc_size, 0, alloc_hint,
1057 &ins, 1, 1);
1058 if (ret < 0)
1059 goto out_unlock;
1060 cur_alloc_size = ins.offset;
1061 extent_reserved = true;
1062
1063 ram_size = ins.offset;
1064 em = create_io_em(inode, start, ins.offset, /* len */
1065 start, /* orig_start */
1066 ins.objectid, /* block_start */
1067 ins.offset, /* block_len */
1068 ins.offset, /* orig_block_len */
1069 ram_size, /* ram_bytes */
1070 BTRFS_COMPRESS_NONE, /* compress_type */
1071 BTRFS_ORDERED_REGULAR /* type */);
1072 if (IS_ERR(em)) {
1073 ret = PTR_ERR(em);
1074 goto out_reserve;
1075 }
1076 free_extent_map(em);
1077
1078 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1079 ram_size, cur_alloc_size, 0);
1080 if (ret)
1081 goto out_drop_extent_cache;
1082
1083 if (root->root_key.objectid ==
1084 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1085 ret = btrfs_reloc_clone_csums(inode, start,
1086 cur_alloc_size);
1087 /*
1088 * Only drop cache here, and process as normal.
1089 *
1090 * We must not allow extent_clear_unlock_delalloc()
1091 * at out_unlock label to free meta of this ordered
1092 * extent, as its meta should be freed by
1093 * btrfs_finish_ordered_io().
1094 *
1095 * So we must continue until @start is increased to
1096 * skip current ordered extent.
1097 */
1098 if (ret)
1099 btrfs_drop_extent_cache(inode, start,
1100 start + ram_size - 1, 0);
1101 }
1102
1103 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1104
1105 /* we're not doing compressed IO, don't unlock the first
1106 * page (which the caller expects to stay locked), don't
1107 * clear any dirty bits and don't set any writeback bits
1108 *
1109 * Do set the Private2 bit so we know this page was properly
1110 * setup for writepage
1111 */
1112 page_ops = unlock ? PAGE_UNLOCK : 0;
1113 page_ops |= PAGE_SET_PRIVATE2;
1114
1115 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1116 locked_page,
1117 EXTENT_LOCKED | EXTENT_DELALLOC,
1118 page_ops);
1119 if (num_bytes < cur_alloc_size)
1120 num_bytes = 0;
1121 else
1122 num_bytes -= cur_alloc_size;
1123 alloc_hint = ins.objectid + ins.offset;
1124 start += cur_alloc_size;
1125 extent_reserved = false;
1126
1127 /*
1128 * btrfs_reloc_clone_csums() error, since start is increased
1129 * extent_clear_unlock_delalloc() at out_unlock label won't
1130 * free metadata of current ordered extent, we're OK to exit.
1131 */
1132 if (ret)
1133 goto out_unlock;
1134 }
1135 out:
1136 return ret;
1137
1138 out_drop_extent_cache:
1139 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1140 out_reserve:
1141 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1142 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1143 out_unlock:
1144 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1145 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1146 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1147 PAGE_END_WRITEBACK;
1148 /*
1149 * If we reserved an extent for our delalloc range (or a subrange) and
1150 * failed to create the respective ordered extent, then it means that
1151 * when we reserved the extent we decremented the extent's size from
1152 * the data space_info's bytes_may_use counter and incremented the
1153 * space_info's bytes_reserved counter by the same amount. We must make
1154 * sure extent_clear_unlock_delalloc() does not try to decrement again
1155 * the data space_info's bytes_may_use counter, therefore we do not pass
1156 * it the flag EXTENT_CLEAR_DATA_RESV.
1157 */
1158 if (extent_reserved) {
1159 extent_clear_unlock_delalloc(inode, start,
1160 start + cur_alloc_size - 1,
1161 locked_page,
1162 clear_bits,
1163 page_ops);
1164 start += cur_alloc_size;
1165 if (start >= end)
1166 goto out;
1167 }
1168 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1169 clear_bits | EXTENT_CLEAR_DATA_RESV,
1170 page_ops);
1171 goto out;
1172 }
1173
1174 /*
1175 * work queue call back to started compression on a file and pages
1176 */
async_cow_start(struct btrfs_work * work)1177 static noinline void async_cow_start(struct btrfs_work *work)
1178 {
1179 struct async_chunk *async_chunk;
1180 int compressed_extents;
1181
1182 async_chunk = container_of(work, struct async_chunk, work);
1183
1184 compressed_extents = compress_file_range(async_chunk);
1185 if (compressed_extents == 0) {
1186 btrfs_add_delayed_iput(async_chunk->inode);
1187 async_chunk->inode = NULL;
1188 }
1189 }
1190
1191 /*
1192 * work queue call back to submit previously compressed pages
1193 */
async_cow_submit(struct btrfs_work * work)1194 static noinline void async_cow_submit(struct btrfs_work *work)
1195 {
1196 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1197 work);
1198 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1199 unsigned long nr_pages;
1200
1201 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1202 PAGE_SHIFT;
1203
1204 /*
1205 * ->inode could be NULL if async_chunk_start has failed to compress,
1206 * in which case we don't have anything to submit, yet we need to
1207 * always adjust ->async_delalloc_pages as its paired with the init
1208 * happening in cow_file_range_async
1209 */
1210 if (async_chunk->inode)
1211 submit_compressed_extents(async_chunk);
1212
1213 /* atomic_sub_return implies a barrier */
1214 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1215 5 * SZ_1M)
1216 cond_wake_up_nomb(&fs_info->async_submit_wait);
1217 }
1218
async_cow_free(struct btrfs_work * work)1219 static noinline void async_cow_free(struct btrfs_work *work)
1220 {
1221 struct async_chunk *async_chunk;
1222
1223 async_chunk = container_of(work, struct async_chunk, work);
1224 if (async_chunk->inode)
1225 btrfs_add_delayed_iput(async_chunk->inode);
1226 if (async_chunk->blkcg_css)
1227 css_put(async_chunk->blkcg_css);
1228 /*
1229 * Since the pointer to 'pending' is at the beginning of the array of
1230 * async_chunk's, freeing it ensures the whole array has been freed.
1231 */
1232 if (atomic_dec_and_test(async_chunk->pending))
1233 kvfree(async_chunk->pending);
1234 }
1235
cow_file_range_async(struct btrfs_inode * inode,struct writeback_control * wbc,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1236 static int cow_file_range_async(struct btrfs_inode *inode,
1237 struct writeback_control *wbc,
1238 struct page *locked_page,
1239 u64 start, u64 end, int *page_started,
1240 unsigned long *nr_written)
1241 {
1242 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1243 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1244 struct async_cow *ctx;
1245 struct async_chunk *async_chunk;
1246 unsigned long nr_pages;
1247 u64 cur_end;
1248 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1249 int i;
1250 bool should_compress;
1251 unsigned nofs_flag;
1252 const unsigned int write_flags = wbc_to_write_flags(wbc);
1253
1254 unlock_extent(&inode->io_tree, start, end);
1255
1256 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1257 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1258 num_chunks = 1;
1259 should_compress = false;
1260 } else {
1261 should_compress = true;
1262 }
1263
1264 nofs_flag = memalloc_nofs_save();
1265 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1266 memalloc_nofs_restore(nofs_flag);
1267
1268 if (!ctx) {
1269 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1270 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1271 EXTENT_DO_ACCOUNTING;
1272 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1273 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1274 PAGE_SET_ERROR;
1275
1276 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1277 clear_bits, page_ops);
1278 return -ENOMEM;
1279 }
1280
1281 async_chunk = ctx->chunks;
1282 atomic_set(&ctx->num_chunks, num_chunks);
1283
1284 for (i = 0; i < num_chunks; i++) {
1285 if (should_compress)
1286 cur_end = min(end, start + SZ_512K - 1);
1287 else
1288 cur_end = end;
1289
1290 /*
1291 * igrab is called higher up in the call chain, take only the
1292 * lightweight reference for the callback lifetime
1293 */
1294 ihold(&inode->vfs_inode);
1295 async_chunk[i].pending = &ctx->num_chunks;
1296 async_chunk[i].inode = &inode->vfs_inode;
1297 async_chunk[i].start = start;
1298 async_chunk[i].end = cur_end;
1299 async_chunk[i].write_flags = write_flags;
1300 INIT_LIST_HEAD(&async_chunk[i].extents);
1301
1302 /*
1303 * The locked_page comes all the way from writepage and its
1304 * the original page we were actually given. As we spread
1305 * this large delalloc region across multiple async_chunk
1306 * structs, only the first struct needs a pointer to locked_page
1307 *
1308 * This way we don't need racey decisions about who is supposed
1309 * to unlock it.
1310 */
1311 if (locked_page) {
1312 /*
1313 * Depending on the compressibility, the pages might or
1314 * might not go through async. We want all of them to
1315 * be accounted against wbc once. Let's do it here
1316 * before the paths diverge. wbc accounting is used
1317 * only for foreign writeback detection and doesn't
1318 * need full accuracy. Just account the whole thing
1319 * against the first page.
1320 */
1321 wbc_account_cgroup_owner(wbc, locked_page,
1322 cur_end - start);
1323 async_chunk[i].locked_page = locked_page;
1324 locked_page = NULL;
1325 } else {
1326 async_chunk[i].locked_page = NULL;
1327 }
1328
1329 if (blkcg_css != blkcg_root_css) {
1330 css_get(blkcg_css);
1331 async_chunk[i].blkcg_css = blkcg_css;
1332 } else {
1333 async_chunk[i].blkcg_css = NULL;
1334 }
1335
1336 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1337 async_cow_submit, async_cow_free);
1338
1339 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1340 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1341
1342 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1343
1344 *nr_written += nr_pages;
1345 start = cur_end + 1;
1346 }
1347 *page_started = 1;
1348 return 0;
1349 }
1350
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1351 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1352 u64 bytenr, u64 num_bytes)
1353 {
1354 int ret;
1355 struct btrfs_ordered_sum *sums;
1356 LIST_HEAD(list);
1357
1358 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1359 bytenr + num_bytes - 1, &list, 0);
1360 if (ret == 0 && list_empty(&list))
1361 return 0;
1362
1363 while (!list_empty(&list)) {
1364 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1365 list_del(&sums->list);
1366 kfree(sums);
1367 }
1368 if (ret < 0)
1369 return ret;
1370 return 1;
1371 }
1372
fallback_to_cow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1373 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1374 const u64 start, const u64 end,
1375 int *page_started, unsigned long *nr_written)
1376 {
1377 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1378 const bool is_reloc_ino = (inode->root->root_key.objectid ==
1379 BTRFS_DATA_RELOC_TREE_OBJECTID);
1380 const u64 range_bytes = end + 1 - start;
1381 struct extent_io_tree *io_tree = &inode->io_tree;
1382 u64 range_start = start;
1383 u64 count;
1384
1385 /*
1386 * If EXTENT_NORESERVE is set it means that when the buffered write was
1387 * made we had not enough available data space and therefore we did not
1388 * reserve data space for it, since we though we could do NOCOW for the
1389 * respective file range (either there is prealloc extent or the inode
1390 * has the NOCOW bit set).
1391 *
1392 * However when we need to fallback to COW mode (because for example the
1393 * block group for the corresponding extent was turned to RO mode by a
1394 * scrub or relocation) we need to do the following:
1395 *
1396 * 1) We increment the bytes_may_use counter of the data space info.
1397 * If COW succeeds, it allocates a new data extent and after doing
1398 * that it decrements the space info's bytes_may_use counter and
1399 * increments its bytes_reserved counter by the same amount (we do
1400 * this at btrfs_add_reserved_bytes()). So we need to increment the
1401 * bytes_may_use counter to compensate (when space is reserved at
1402 * buffered write time, the bytes_may_use counter is incremented);
1403 *
1404 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1405 * that if the COW path fails for any reason, it decrements (through
1406 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1407 * data space info, which we incremented in the step above.
1408 *
1409 * If we need to fallback to cow and the inode corresponds to a free
1410 * space cache inode or an inode of the data relocation tree, we must
1411 * also increment bytes_may_use of the data space_info for the same
1412 * reason. Space caches and relocated data extents always get a prealloc
1413 * extent for them, however scrub or balance may have set the block
1414 * group that contains that extent to RO mode and therefore force COW
1415 * when starting writeback.
1416 */
1417 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1418 EXTENT_NORESERVE, 0);
1419 if (count > 0 || is_space_ino || is_reloc_ino) {
1420 u64 bytes = count;
1421 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1422 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1423
1424 if (is_space_ino || is_reloc_ino)
1425 bytes = range_bytes;
1426
1427 spin_lock(&sinfo->lock);
1428 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1429 spin_unlock(&sinfo->lock);
1430
1431 if (count > 0)
1432 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1433 0, 0, NULL);
1434 }
1435
1436 return cow_file_range(inode, locked_page, start, end, page_started,
1437 nr_written, 1);
1438 }
1439
1440 /*
1441 * when nowcow writeback call back. This checks for snapshots or COW copies
1442 * of the extents that exist in the file, and COWs the file as required.
1443 *
1444 * If no cow copies or snapshots exist, we write directly to the existing
1445 * blocks on disk
1446 */
run_delalloc_nocow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,int force,unsigned long * nr_written)1447 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1448 struct page *locked_page,
1449 const u64 start, const u64 end,
1450 int *page_started, int force,
1451 unsigned long *nr_written)
1452 {
1453 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1454 struct btrfs_root *root = inode->root;
1455 struct btrfs_path *path;
1456 u64 cow_start = (u64)-1;
1457 u64 cur_offset = start;
1458 int ret;
1459 bool check_prev = true;
1460 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1461 u64 ino = btrfs_ino(inode);
1462 bool nocow = false;
1463 u64 disk_bytenr = 0;
1464
1465 path = btrfs_alloc_path();
1466 if (!path) {
1467 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1468 EXTENT_LOCKED | EXTENT_DELALLOC |
1469 EXTENT_DO_ACCOUNTING |
1470 EXTENT_DEFRAG, PAGE_UNLOCK |
1471 PAGE_CLEAR_DIRTY |
1472 PAGE_SET_WRITEBACK |
1473 PAGE_END_WRITEBACK);
1474 return -ENOMEM;
1475 }
1476
1477 while (1) {
1478 struct btrfs_key found_key;
1479 struct btrfs_file_extent_item *fi;
1480 struct extent_buffer *leaf;
1481 u64 extent_end;
1482 u64 extent_offset;
1483 u64 num_bytes = 0;
1484 u64 disk_num_bytes;
1485 u64 ram_bytes;
1486 int extent_type;
1487
1488 nocow = false;
1489
1490 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1491 cur_offset, 0);
1492 if (ret < 0)
1493 goto error;
1494
1495 /*
1496 * If there is no extent for our range when doing the initial
1497 * search, then go back to the previous slot as it will be the
1498 * one containing the search offset
1499 */
1500 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1501 leaf = path->nodes[0];
1502 btrfs_item_key_to_cpu(leaf, &found_key,
1503 path->slots[0] - 1);
1504 if (found_key.objectid == ino &&
1505 found_key.type == BTRFS_EXTENT_DATA_KEY)
1506 path->slots[0]--;
1507 }
1508 check_prev = false;
1509 next_slot:
1510 /* Go to next leaf if we have exhausted the current one */
1511 leaf = path->nodes[0];
1512 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1513 ret = btrfs_next_leaf(root, path);
1514 if (ret < 0) {
1515 if (cow_start != (u64)-1)
1516 cur_offset = cow_start;
1517 goto error;
1518 }
1519 if (ret > 0)
1520 break;
1521 leaf = path->nodes[0];
1522 }
1523
1524 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1525
1526 /* Didn't find anything for our INO */
1527 if (found_key.objectid > ino)
1528 break;
1529 /*
1530 * Keep searching until we find an EXTENT_ITEM or there are no
1531 * more extents for this inode
1532 */
1533 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1534 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1535 path->slots[0]++;
1536 goto next_slot;
1537 }
1538
1539 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1540 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1541 found_key.offset > end)
1542 break;
1543
1544 /*
1545 * If the found extent starts after requested offset, then
1546 * adjust extent_end to be right before this extent begins
1547 */
1548 if (found_key.offset > cur_offset) {
1549 extent_end = found_key.offset;
1550 extent_type = 0;
1551 goto out_check;
1552 }
1553
1554 /*
1555 * Found extent which begins before our range and potentially
1556 * intersect it
1557 */
1558 fi = btrfs_item_ptr(leaf, path->slots[0],
1559 struct btrfs_file_extent_item);
1560 extent_type = btrfs_file_extent_type(leaf, fi);
1561
1562 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1563 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1564 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1565 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1566 extent_offset = btrfs_file_extent_offset(leaf, fi);
1567 extent_end = found_key.offset +
1568 btrfs_file_extent_num_bytes(leaf, fi);
1569 disk_num_bytes =
1570 btrfs_file_extent_disk_num_bytes(leaf, fi);
1571 /*
1572 * If the extent we got ends before our current offset,
1573 * skip to the next extent.
1574 */
1575 if (extent_end <= cur_offset) {
1576 path->slots[0]++;
1577 goto next_slot;
1578 }
1579 /* Skip holes */
1580 if (disk_bytenr == 0)
1581 goto out_check;
1582 /* Skip compressed/encrypted/encoded extents */
1583 if (btrfs_file_extent_compression(leaf, fi) ||
1584 btrfs_file_extent_encryption(leaf, fi) ||
1585 btrfs_file_extent_other_encoding(leaf, fi))
1586 goto out_check;
1587 /*
1588 * If extent is created before the last volume's snapshot
1589 * this implies the extent is shared, hence we can't do
1590 * nocow. This is the same check as in
1591 * btrfs_cross_ref_exist but without calling
1592 * btrfs_search_slot.
1593 */
1594 if (!freespace_inode &&
1595 btrfs_file_extent_generation(leaf, fi) <=
1596 btrfs_root_last_snapshot(&root->root_item))
1597 goto out_check;
1598 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1599 goto out_check;
1600 /* If extent is RO, we must COW it */
1601 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1602 goto out_check;
1603 ret = btrfs_cross_ref_exist(root, ino,
1604 found_key.offset -
1605 extent_offset, disk_bytenr, false);
1606 if (ret) {
1607 /*
1608 * ret could be -EIO if the above fails to read
1609 * metadata.
1610 */
1611 if (ret < 0) {
1612 if (cow_start != (u64)-1)
1613 cur_offset = cow_start;
1614 goto error;
1615 }
1616
1617 WARN_ON_ONCE(freespace_inode);
1618 goto out_check;
1619 }
1620 disk_bytenr += extent_offset;
1621 disk_bytenr += cur_offset - found_key.offset;
1622 num_bytes = min(end + 1, extent_end) - cur_offset;
1623 /*
1624 * If there are pending snapshots for this root, we
1625 * fall into common COW way
1626 */
1627 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1628 goto out_check;
1629 /*
1630 * force cow if csum exists in the range.
1631 * this ensure that csum for a given extent are
1632 * either valid or do not exist.
1633 */
1634 ret = csum_exist_in_range(fs_info, disk_bytenr,
1635 num_bytes);
1636 if (ret) {
1637 /*
1638 * ret could be -EIO if the above fails to read
1639 * metadata.
1640 */
1641 if (ret < 0) {
1642 if (cow_start != (u64)-1)
1643 cur_offset = cow_start;
1644 goto error;
1645 }
1646 WARN_ON_ONCE(freespace_inode);
1647 goto out_check;
1648 }
1649 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1650 goto out_check;
1651 nocow = true;
1652 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1653 extent_end = found_key.offset + ram_bytes;
1654 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1655 /* Skip extents outside of our requested range */
1656 if (extent_end <= start) {
1657 path->slots[0]++;
1658 goto next_slot;
1659 }
1660 } else {
1661 /* If this triggers then we have a memory corruption */
1662 BUG();
1663 }
1664 out_check:
1665 /*
1666 * If nocow is false then record the beginning of the range
1667 * that needs to be COWed
1668 */
1669 if (!nocow) {
1670 if (cow_start == (u64)-1)
1671 cow_start = cur_offset;
1672 cur_offset = extent_end;
1673 if (cur_offset > end)
1674 break;
1675 path->slots[0]++;
1676 goto next_slot;
1677 }
1678
1679 btrfs_release_path(path);
1680
1681 /*
1682 * COW range from cow_start to found_key.offset - 1. As the key
1683 * will contain the beginning of the first extent that can be
1684 * NOCOW, following one which needs to be COW'ed
1685 */
1686 if (cow_start != (u64)-1) {
1687 ret = fallback_to_cow(inode, locked_page,
1688 cow_start, found_key.offset - 1,
1689 page_started, nr_written);
1690 if (ret)
1691 goto error;
1692 cow_start = (u64)-1;
1693 }
1694
1695 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1696 u64 orig_start = found_key.offset - extent_offset;
1697 struct extent_map *em;
1698
1699 em = create_io_em(inode, cur_offset, num_bytes,
1700 orig_start,
1701 disk_bytenr, /* block_start */
1702 num_bytes, /* block_len */
1703 disk_num_bytes, /* orig_block_len */
1704 ram_bytes, BTRFS_COMPRESS_NONE,
1705 BTRFS_ORDERED_PREALLOC);
1706 if (IS_ERR(em)) {
1707 ret = PTR_ERR(em);
1708 goto error;
1709 }
1710 free_extent_map(em);
1711 ret = btrfs_add_ordered_extent(inode, cur_offset,
1712 disk_bytenr, num_bytes,
1713 num_bytes,
1714 BTRFS_ORDERED_PREALLOC);
1715 if (ret) {
1716 btrfs_drop_extent_cache(inode, cur_offset,
1717 cur_offset + num_bytes - 1,
1718 0);
1719 goto error;
1720 }
1721 } else {
1722 ret = btrfs_add_ordered_extent(inode, cur_offset,
1723 disk_bytenr, num_bytes,
1724 num_bytes,
1725 BTRFS_ORDERED_NOCOW);
1726 if (ret)
1727 goto error;
1728 }
1729
1730 if (nocow)
1731 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1732 nocow = false;
1733
1734 if (root->root_key.objectid ==
1735 BTRFS_DATA_RELOC_TREE_OBJECTID)
1736 /*
1737 * Error handled later, as we must prevent
1738 * extent_clear_unlock_delalloc() in error handler
1739 * from freeing metadata of created ordered extent.
1740 */
1741 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1742 num_bytes);
1743
1744 extent_clear_unlock_delalloc(inode, cur_offset,
1745 cur_offset + num_bytes - 1,
1746 locked_page, EXTENT_LOCKED |
1747 EXTENT_DELALLOC |
1748 EXTENT_CLEAR_DATA_RESV,
1749 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1750
1751 cur_offset = extent_end;
1752
1753 /*
1754 * btrfs_reloc_clone_csums() error, now we're OK to call error
1755 * handler, as metadata for created ordered extent will only
1756 * be freed by btrfs_finish_ordered_io().
1757 */
1758 if (ret)
1759 goto error;
1760 if (cur_offset > end)
1761 break;
1762 }
1763 btrfs_release_path(path);
1764
1765 if (cur_offset <= end && cow_start == (u64)-1)
1766 cow_start = cur_offset;
1767
1768 if (cow_start != (u64)-1) {
1769 cur_offset = end;
1770 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1771 page_started, nr_written);
1772 if (ret)
1773 goto error;
1774 }
1775
1776 error:
1777 if (nocow)
1778 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1779
1780 if (ret && cur_offset < end)
1781 extent_clear_unlock_delalloc(inode, cur_offset, end,
1782 locked_page, EXTENT_LOCKED |
1783 EXTENT_DELALLOC | EXTENT_DEFRAG |
1784 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1785 PAGE_CLEAR_DIRTY |
1786 PAGE_SET_WRITEBACK |
1787 PAGE_END_WRITEBACK);
1788 btrfs_free_path(path);
1789 return ret;
1790 }
1791
need_force_cow(struct btrfs_inode * inode,u64 start,u64 end)1792 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1793 {
1794
1795 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1796 !(inode->flags & BTRFS_INODE_PREALLOC))
1797 return 0;
1798
1799 /*
1800 * @defrag_bytes is a hint value, no spinlock held here,
1801 * if is not zero, it means the file is defragging.
1802 * Force cow if given extent needs to be defragged.
1803 */
1804 if (inode->defrag_bytes &&
1805 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1806 return 1;
1807
1808 return 0;
1809 }
1810
1811 /*
1812 * Function to process delayed allocation (create CoW) for ranges which are
1813 * being touched for the first time.
1814 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1815 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1816 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1817 struct writeback_control *wbc)
1818 {
1819 int ret;
1820 int force_cow = need_force_cow(inode, start, end);
1821
1822 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1823 ret = run_delalloc_nocow(inode, locked_page, start, end,
1824 page_started, 1, nr_written);
1825 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1826 ret = run_delalloc_nocow(inode, locked_page, start, end,
1827 page_started, 0, nr_written);
1828 } else if (!inode_can_compress(inode) ||
1829 !inode_need_compress(inode, start, end)) {
1830 ret = cow_file_range(inode, locked_page, start, end,
1831 page_started, nr_written, 1);
1832 } else {
1833 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1834 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1835 page_started, nr_written);
1836 }
1837 if (ret)
1838 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1839 end - start + 1);
1840 return ret;
1841 }
1842
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)1843 void btrfs_split_delalloc_extent(struct inode *inode,
1844 struct extent_state *orig, u64 split)
1845 {
1846 u64 size;
1847
1848 /* not delalloc, ignore it */
1849 if (!(orig->state & EXTENT_DELALLOC))
1850 return;
1851
1852 size = orig->end - orig->start + 1;
1853 if (size > BTRFS_MAX_EXTENT_SIZE) {
1854 u32 num_extents;
1855 u64 new_size;
1856
1857 /*
1858 * See the explanation in btrfs_merge_delalloc_extent, the same
1859 * applies here, just in reverse.
1860 */
1861 new_size = orig->end - split + 1;
1862 num_extents = count_max_extents(new_size);
1863 new_size = split - orig->start;
1864 num_extents += count_max_extents(new_size);
1865 if (count_max_extents(size) >= num_extents)
1866 return;
1867 }
1868
1869 spin_lock(&BTRFS_I(inode)->lock);
1870 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1871 spin_unlock(&BTRFS_I(inode)->lock);
1872 }
1873
1874 /*
1875 * Handle merged delayed allocation extents so we can keep track of new extents
1876 * that are just merged onto old extents, such as when we are doing sequential
1877 * writes, so we can properly account for the metadata space we'll need.
1878 */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)1879 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1880 struct extent_state *other)
1881 {
1882 u64 new_size, old_size;
1883 u32 num_extents;
1884
1885 /* not delalloc, ignore it */
1886 if (!(other->state & EXTENT_DELALLOC))
1887 return;
1888
1889 if (new->start > other->start)
1890 new_size = new->end - other->start + 1;
1891 else
1892 new_size = other->end - new->start + 1;
1893
1894 /* we're not bigger than the max, unreserve the space and go */
1895 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1896 spin_lock(&BTRFS_I(inode)->lock);
1897 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1898 spin_unlock(&BTRFS_I(inode)->lock);
1899 return;
1900 }
1901
1902 /*
1903 * We have to add up either side to figure out how many extents were
1904 * accounted for before we merged into one big extent. If the number of
1905 * extents we accounted for is <= the amount we need for the new range
1906 * then we can return, otherwise drop. Think of it like this
1907 *
1908 * [ 4k][MAX_SIZE]
1909 *
1910 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1911 * need 2 outstanding extents, on one side we have 1 and the other side
1912 * we have 1 so they are == and we can return. But in this case
1913 *
1914 * [MAX_SIZE+4k][MAX_SIZE+4k]
1915 *
1916 * Each range on their own accounts for 2 extents, but merged together
1917 * they are only 3 extents worth of accounting, so we need to drop in
1918 * this case.
1919 */
1920 old_size = other->end - other->start + 1;
1921 num_extents = count_max_extents(old_size);
1922 old_size = new->end - new->start + 1;
1923 num_extents += count_max_extents(old_size);
1924 if (count_max_extents(new_size) >= num_extents)
1925 return;
1926
1927 spin_lock(&BTRFS_I(inode)->lock);
1928 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1929 spin_unlock(&BTRFS_I(inode)->lock);
1930 }
1931
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1932 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1933 struct inode *inode)
1934 {
1935 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1936
1937 spin_lock(&root->delalloc_lock);
1938 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1939 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1940 &root->delalloc_inodes);
1941 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1942 &BTRFS_I(inode)->runtime_flags);
1943 root->nr_delalloc_inodes++;
1944 if (root->nr_delalloc_inodes == 1) {
1945 spin_lock(&fs_info->delalloc_root_lock);
1946 BUG_ON(!list_empty(&root->delalloc_root));
1947 list_add_tail(&root->delalloc_root,
1948 &fs_info->delalloc_roots);
1949 spin_unlock(&fs_info->delalloc_root_lock);
1950 }
1951 }
1952 spin_unlock(&root->delalloc_lock);
1953 }
1954
1955
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1956 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1957 struct btrfs_inode *inode)
1958 {
1959 struct btrfs_fs_info *fs_info = root->fs_info;
1960
1961 if (!list_empty(&inode->delalloc_inodes)) {
1962 list_del_init(&inode->delalloc_inodes);
1963 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1964 &inode->runtime_flags);
1965 root->nr_delalloc_inodes--;
1966 if (!root->nr_delalloc_inodes) {
1967 ASSERT(list_empty(&root->delalloc_inodes));
1968 spin_lock(&fs_info->delalloc_root_lock);
1969 BUG_ON(list_empty(&root->delalloc_root));
1970 list_del_init(&root->delalloc_root);
1971 spin_unlock(&fs_info->delalloc_root_lock);
1972 }
1973 }
1974 }
1975
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1976 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1977 struct btrfs_inode *inode)
1978 {
1979 spin_lock(&root->delalloc_lock);
1980 __btrfs_del_delalloc_inode(root, inode);
1981 spin_unlock(&root->delalloc_lock);
1982 }
1983
1984 /*
1985 * Properly track delayed allocation bytes in the inode and to maintain the
1986 * list of inodes that have pending delalloc work to be done.
1987 */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,unsigned * bits)1988 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1989 unsigned *bits)
1990 {
1991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1992
1993 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1994 WARN_ON(1);
1995 /*
1996 * set_bit and clear bit hooks normally require _irqsave/restore
1997 * but in this case, we are only testing for the DELALLOC
1998 * bit, which is only set or cleared with irqs on
1999 */
2000 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2001 struct btrfs_root *root = BTRFS_I(inode)->root;
2002 u64 len = state->end + 1 - state->start;
2003 u32 num_extents = count_max_extents(len);
2004 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2005
2006 spin_lock(&BTRFS_I(inode)->lock);
2007 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2008 spin_unlock(&BTRFS_I(inode)->lock);
2009
2010 /* For sanity tests */
2011 if (btrfs_is_testing(fs_info))
2012 return;
2013
2014 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2015 fs_info->delalloc_batch);
2016 spin_lock(&BTRFS_I(inode)->lock);
2017 BTRFS_I(inode)->delalloc_bytes += len;
2018 if (*bits & EXTENT_DEFRAG)
2019 BTRFS_I(inode)->defrag_bytes += len;
2020 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2021 &BTRFS_I(inode)->runtime_flags))
2022 btrfs_add_delalloc_inodes(root, inode);
2023 spin_unlock(&BTRFS_I(inode)->lock);
2024 }
2025
2026 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2027 (*bits & EXTENT_DELALLOC_NEW)) {
2028 spin_lock(&BTRFS_I(inode)->lock);
2029 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2030 state->start;
2031 spin_unlock(&BTRFS_I(inode)->lock);
2032 }
2033 }
2034
2035 /*
2036 * Once a range is no longer delalloc this function ensures that proper
2037 * accounting happens.
2038 */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,unsigned * bits)2039 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2040 struct extent_state *state, unsigned *bits)
2041 {
2042 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2043 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2044 u64 len = state->end + 1 - state->start;
2045 u32 num_extents = count_max_extents(len);
2046
2047 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2048 spin_lock(&inode->lock);
2049 inode->defrag_bytes -= len;
2050 spin_unlock(&inode->lock);
2051 }
2052
2053 /*
2054 * set_bit and clear bit hooks normally require _irqsave/restore
2055 * but in this case, we are only testing for the DELALLOC
2056 * bit, which is only set or cleared with irqs on
2057 */
2058 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2059 struct btrfs_root *root = inode->root;
2060 bool do_list = !btrfs_is_free_space_inode(inode);
2061
2062 spin_lock(&inode->lock);
2063 btrfs_mod_outstanding_extents(inode, -num_extents);
2064 spin_unlock(&inode->lock);
2065
2066 /*
2067 * We don't reserve metadata space for space cache inodes so we
2068 * don't need to call delalloc_release_metadata if there is an
2069 * error.
2070 */
2071 if (*bits & EXTENT_CLEAR_META_RESV &&
2072 root != fs_info->tree_root)
2073 btrfs_delalloc_release_metadata(inode, len, false);
2074
2075 /* For sanity tests. */
2076 if (btrfs_is_testing(fs_info))
2077 return;
2078
2079 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2080 do_list && !(state->state & EXTENT_NORESERVE) &&
2081 (*bits & EXTENT_CLEAR_DATA_RESV))
2082 btrfs_free_reserved_data_space_noquota(fs_info, len);
2083
2084 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2085 fs_info->delalloc_batch);
2086 spin_lock(&inode->lock);
2087 inode->delalloc_bytes -= len;
2088 if (do_list && inode->delalloc_bytes == 0 &&
2089 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2090 &inode->runtime_flags))
2091 btrfs_del_delalloc_inode(root, inode);
2092 spin_unlock(&inode->lock);
2093 }
2094
2095 if ((state->state & EXTENT_DELALLOC_NEW) &&
2096 (*bits & EXTENT_DELALLOC_NEW)) {
2097 spin_lock(&inode->lock);
2098 ASSERT(inode->new_delalloc_bytes >= len);
2099 inode->new_delalloc_bytes -= len;
2100 spin_unlock(&inode->lock);
2101 }
2102 }
2103
2104 /*
2105 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2106 * in a chunk's stripe. This function ensures that bios do not span a
2107 * stripe/chunk
2108 *
2109 * @page - The page we are about to add to the bio
2110 * @size - size we want to add to the bio
2111 * @bio - bio we want to ensure is smaller than a stripe
2112 * @bio_flags - flags of the bio
2113 *
2114 * return 1 if page cannot be added to the bio
2115 * return 0 if page can be added to the bio
2116 * return error otherwise
2117 */
btrfs_bio_fits_in_stripe(struct page * page,size_t size,struct bio * bio,unsigned long bio_flags)2118 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2119 unsigned long bio_flags)
2120 {
2121 struct inode *inode = page->mapping->host;
2122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2123 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2124 u64 length = 0;
2125 u64 map_length;
2126 int ret;
2127 struct btrfs_io_geometry geom;
2128
2129 if (bio_flags & EXTENT_BIO_COMPRESSED)
2130 return 0;
2131
2132 length = bio->bi_iter.bi_size;
2133 map_length = length;
2134 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2135 &geom);
2136 if (ret < 0)
2137 return ret;
2138
2139 if (geom.len < length + size)
2140 return 1;
2141 return 0;
2142 }
2143
2144 /*
2145 * in order to insert checksums into the metadata in large chunks,
2146 * we wait until bio submission time. All the pages in the bio are
2147 * checksummed and sums are attached onto the ordered extent record.
2148 *
2149 * At IO completion time the cums attached on the ordered extent record
2150 * are inserted into the btree
2151 */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)2152 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2153 u64 bio_offset)
2154 {
2155 struct inode *inode = private_data;
2156
2157 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2158 }
2159
2160 /*
2161 * extent_io.c submission hook. This does the right thing for csum calculation
2162 * on write, or reading the csums from the tree before a read.
2163 *
2164 * Rules about async/sync submit,
2165 * a) read: sync submit
2166 *
2167 * b) write without checksum: sync submit
2168 *
2169 * c) write with checksum:
2170 * c-1) if bio is issued by fsync: sync submit
2171 * (sync_writers != 0)
2172 *
2173 * c-2) if root is reloc root: sync submit
2174 * (only in case of buffered IO)
2175 *
2176 * c-3) otherwise: async submit
2177 */
btrfs_submit_data_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)2178 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2179 int mirror_num, unsigned long bio_flags)
2180
2181 {
2182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2183 struct btrfs_root *root = BTRFS_I(inode)->root;
2184 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2185 blk_status_t ret = 0;
2186 int skip_sum;
2187 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2188
2189 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2190
2191 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2192 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2193
2194 if (bio_op(bio) != REQ_OP_WRITE) {
2195 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2196 if (ret)
2197 goto out;
2198
2199 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2200 ret = btrfs_submit_compressed_read(inode, bio,
2201 mirror_num,
2202 bio_flags);
2203 goto out;
2204 } else if (!skip_sum) {
2205 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2206 if (ret)
2207 goto out;
2208 }
2209 goto mapit;
2210 } else if (async && !skip_sum) {
2211 /* csum items have already been cloned */
2212 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2213 goto mapit;
2214 /* we're doing a write, do the async checksumming */
2215 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2216 0, inode, btrfs_submit_bio_start);
2217 goto out;
2218 } else if (!skip_sum) {
2219 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2220 if (ret)
2221 goto out;
2222 }
2223
2224 mapit:
2225 ret = btrfs_map_bio(fs_info, bio, mirror_num);
2226
2227 out:
2228 if (ret) {
2229 bio->bi_status = ret;
2230 bio_endio(bio);
2231 }
2232 return ret;
2233 }
2234
2235 /*
2236 * given a list of ordered sums record them in the inode. This happens
2237 * at IO completion time based on sums calculated at bio submission time.
2238 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2239 static int add_pending_csums(struct btrfs_trans_handle *trans,
2240 struct list_head *list)
2241 {
2242 struct btrfs_ordered_sum *sum;
2243 int ret;
2244
2245 list_for_each_entry(sum, list, list) {
2246 trans->adding_csums = true;
2247 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2248 trans->adding_csums = false;
2249 if (ret)
2250 return ret;
2251 }
2252 return 0;
2253 }
2254
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2255 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2256 const u64 start,
2257 const u64 len,
2258 struct extent_state **cached_state)
2259 {
2260 u64 search_start = start;
2261 const u64 end = start + len - 1;
2262
2263 while (search_start < end) {
2264 const u64 search_len = end - search_start + 1;
2265 struct extent_map *em;
2266 u64 em_len;
2267 int ret = 0;
2268
2269 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2270 if (IS_ERR(em))
2271 return PTR_ERR(em);
2272
2273 if (em->block_start != EXTENT_MAP_HOLE)
2274 goto next;
2275
2276 em_len = em->len;
2277 if (em->start < search_start)
2278 em_len -= search_start - em->start;
2279 if (em_len > search_len)
2280 em_len = search_len;
2281
2282 ret = set_extent_bit(&inode->io_tree, search_start,
2283 search_start + em_len - 1,
2284 EXTENT_DELALLOC_NEW,
2285 NULL, cached_state, GFP_NOFS);
2286 next:
2287 search_start = extent_map_end(em);
2288 free_extent_map(em);
2289 if (ret)
2290 return ret;
2291 }
2292 return 0;
2293 }
2294
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2295 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2296 unsigned int extra_bits,
2297 struct extent_state **cached_state)
2298 {
2299 WARN_ON(PAGE_ALIGNED(end));
2300
2301 if (start >= i_size_read(&inode->vfs_inode) &&
2302 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2303 /*
2304 * There can't be any extents following eof in this case so just
2305 * set the delalloc new bit for the range directly.
2306 */
2307 extra_bits |= EXTENT_DELALLOC_NEW;
2308 } else {
2309 int ret;
2310
2311 ret = btrfs_find_new_delalloc_bytes(inode, start,
2312 end + 1 - start,
2313 cached_state);
2314 if (ret)
2315 return ret;
2316 }
2317
2318 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2319 cached_state);
2320 }
2321
2322 /* see btrfs_writepage_start_hook for details on why this is required */
2323 struct btrfs_writepage_fixup {
2324 struct page *page;
2325 struct inode *inode;
2326 struct btrfs_work work;
2327 };
2328
btrfs_writepage_fixup_worker(struct btrfs_work * work)2329 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2330 {
2331 struct btrfs_writepage_fixup *fixup;
2332 struct btrfs_ordered_extent *ordered;
2333 struct extent_state *cached_state = NULL;
2334 struct extent_changeset *data_reserved = NULL;
2335 struct page *page;
2336 struct btrfs_inode *inode;
2337 u64 page_start;
2338 u64 page_end;
2339 int ret = 0;
2340 bool free_delalloc_space = true;
2341
2342 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2343 page = fixup->page;
2344 inode = BTRFS_I(fixup->inode);
2345 page_start = page_offset(page);
2346 page_end = page_offset(page) + PAGE_SIZE - 1;
2347
2348 /*
2349 * This is similar to page_mkwrite, we need to reserve the space before
2350 * we take the page lock.
2351 */
2352 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2353 PAGE_SIZE);
2354 again:
2355 lock_page(page);
2356
2357 /*
2358 * Before we queued this fixup, we took a reference on the page.
2359 * page->mapping may go NULL, but it shouldn't be moved to a different
2360 * address space.
2361 */
2362 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2363 /*
2364 * Unfortunately this is a little tricky, either
2365 *
2366 * 1) We got here and our page had already been dealt with and
2367 * we reserved our space, thus ret == 0, so we need to just
2368 * drop our space reservation and bail. This can happen the
2369 * first time we come into the fixup worker, or could happen
2370 * while waiting for the ordered extent.
2371 * 2) Our page was already dealt with, but we happened to get an
2372 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2373 * this case we obviously don't have anything to release, but
2374 * because the page was already dealt with we don't want to
2375 * mark the page with an error, so make sure we're resetting
2376 * ret to 0. This is why we have this check _before_ the ret
2377 * check, because we do not want to have a surprise ENOSPC
2378 * when the page was already properly dealt with.
2379 */
2380 if (!ret) {
2381 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2382 btrfs_delalloc_release_space(inode, data_reserved,
2383 page_start, PAGE_SIZE,
2384 true);
2385 }
2386 ret = 0;
2387 goto out_page;
2388 }
2389
2390 /*
2391 * We can't mess with the page state unless it is locked, so now that
2392 * it is locked bail if we failed to make our space reservation.
2393 */
2394 if (ret)
2395 goto out_page;
2396
2397 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2398
2399 /* already ordered? We're done */
2400 if (PagePrivate2(page))
2401 goto out_reserved;
2402
2403 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2404 if (ordered) {
2405 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2406 &cached_state);
2407 unlock_page(page);
2408 btrfs_start_ordered_extent(ordered, 1);
2409 btrfs_put_ordered_extent(ordered);
2410 goto again;
2411 }
2412
2413 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2414 &cached_state);
2415 if (ret)
2416 goto out_reserved;
2417
2418 /*
2419 * Everything went as planned, we're now the owner of a dirty page with
2420 * delayed allocation bits set and space reserved for our COW
2421 * destination.
2422 *
2423 * The page was dirty when we started, nothing should have cleaned it.
2424 */
2425 BUG_ON(!PageDirty(page));
2426 free_delalloc_space = false;
2427 out_reserved:
2428 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2429 if (free_delalloc_space)
2430 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2431 PAGE_SIZE, true);
2432 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2433 &cached_state);
2434 out_page:
2435 if (ret) {
2436 /*
2437 * We hit ENOSPC or other errors. Update the mapping and page
2438 * to reflect the errors and clean the page.
2439 */
2440 mapping_set_error(page->mapping, ret);
2441 end_extent_writepage(page, ret, page_start, page_end);
2442 clear_page_dirty_for_io(page);
2443 SetPageError(page);
2444 }
2445 ClearPageChecked(page);
2446 unlock_page(page);
2447 put_page(page);
2448 kfree(fixup);
2449 extent_changeset_free(data_reserved);
2450 /*
2451 * As a precaution, do a delayed iput in case it would be the last iput
2452 * that could need flushing space. Recursing back to fixup worker would
2453 * deadlock.
2454 */
2455 btrfs_add_delayed_iput(&inode->vfs_inode);
2456 }
2457
2458 /*
2459 * There are a few paths in the higher layers of the kernel that directly
2460 * set the page dirty bit without asking the filesystem if it is a
2461 * good idea. This causes problems because we want to make sure COW
2462 * properly happens and the data=ordered rules are followed.
2463 *
2464 * In our case any range that doesn't have the ORDERED bit set
2465 * hasn't been properly setup for IO. We kick off an async process
2466 * to fix it up. The async helper will wait for ordered extents, set
2467 * the delalloc bit and make it safe to write the page.
2468 */
btrfs_writepage_cow_fixup(struct page * page,u64 start,u64 end)2469 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2470 {
2471 struct inode *inode = page->mapping->host;
2472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2473 struct btrfs_writepage_fixup *fixup;
2474
2475 /* this page is properly in the ordered list */
2476 if (TestClearPagePrivate2(page))
2477 return 0;
2478
2479 /*
2480 * PageChecked is set below when we create a fixup worker for this page,
2481 * don't try to create another one if we're already PageChecked()
2482 *
2483 * The extent_io writepage code will redirty the page if we send back
2484 * EAGAIN.
2485 */
2486 if (PageChecked(page))
2487 return -EAGAIN;
2488
2489 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2490 if (!fixup)
2491 return -EAGAIN;
2492
2493 /*
2494 * We are already holding a reference to this inode from
2495 * write_cache_pages. We need to hold it because the space reservation
2496 * takes place outside of the page lock, and we can't trust
2497 * page->mapping outside of the page lock.
2498 */
2499 ihold(inode);
2500 SetPageChecked(page);
2501 get_page(page);
2502 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2503 fixup->page = page;
2504 fixup->inode = inode;
2505 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2506
2507 return -EAGAIN;
2508 }
2509
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,u64 qgroup_reserved)2510 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2511 struct btrfs_inode *inode, u64 file_pos,
2512 struct btrfs_file_extent_item *stack_fi,
2513 u64 qgroup_reserved)
2514 {
2515 struct btrfs_root *root = inode->root;
2516 struct btrfs_path *path;
2517 struct extent_buffer *leaf;
2518 struct btrfs_key ins;
2519 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2520 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2521 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2522 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2523 int extent_inserted = 0;
2524 int ret;
2525
2526 path = btrfs_alloc_path();
2527 if (!path)
2528 return -ENOMEM;
2529
2530 /*
2531 * we may be replacing one extent in the tree with another.
2532 * The new extent is pinned in the extent map, and we don't want
2533 * to drop it from the cache until it is completely in the btree.
2534 *
2535 * So, tell btrfs_drop_extents to leave this extent in the cache.
2536 * the caller is expected to unpin it and allow it to be merged
2537 * with the others.
2538 */
2539 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2540 file_pos + num_bytes, NULL, 0,
2541 1, sizeof(*stack_fi), &extent_inserted);
2542 if (ret)
2543 goto out;
2544
2545 if (!extent_inserted) {
2546 ins.objectid = btrfs_ino(inode);
2547 ins.offset = file_pos;
2548 ins.type = BTRFS_EXTENT_DATA_KEY;
2549
2550 path->leave_spinning = 1;
2551 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2552 sizeof(*stack_fi));
2553 if (ret)
2554 goto out;
2555 }
2556 leaf = path->nodes[0];
2557 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2558 write_extent_buffer(leaf, stack_fi,
2559 btrfs_item_ptr_offset(leaf, path->slots[0]),
2560 sizeof(struct btrfs_file_extent_item));
2561
2562 btrfs_mark_buffer_dirty(leaf);
2563 btrfs_release_path(path);
2564
2565 inode_add_bytes(&inode->vfs_inode, num_bytes);
2566
2567 ins.objectid = disk_bytenr;
2568 ins.offset = disk_num_bytes;
2569 ins.type = BTRFS_EXTENT_ITEM_KEY;
2570
2571 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2572 if (ret)
2573 goto out;
2574
2575 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2576 file_pos, qgroup_reserved, &ins);
2577 out:
2578 btrfs_free_path(path);
2579
2580 return ret;
2581 }
2582
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2583 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2584 u64 start, u64 len)
2585 {
2586 struct btrfs_block_group *cache;
2587
2588 cache = btrfs_lookup_block_group(fs_info, start);
2589 ASSERT(cache);
2590
2591 spin_lock(&cache->lock);
2592 cache->delalloc_bytes -= len;
2593 spin_unlock(&cache->lock);
2594
2595 btrfs_put_block_group(cache);
2596 }
2597
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)2598 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2599 struct btrfs_ordered_extent *oe)
2600 {
2601 struct btrfs_file_extent_item stack_fi;
2602 u64 logical_len;
2603
2604 memset(&stack_fi, 0, sizeof(stack_fi));
2605 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2606 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2607 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2608 oe->disk_num_bytes);
2609 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2610 logical_len = oe->truncated_len;
2611 else
2612 logical_len = oe->num_bytes;
2613 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2614 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2615 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2616 /* Encryption and other encoding is reserved and all 0 */
2617
2618 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2619 oe->file_offset, &stack_fi,
2620 oe->qgroup_rsv);
2621 }
2622
2623 /*
2624 * As ordered data IO finishes, this gets called so we can finish
2625 * an ordered extent if the range of bytes in the file it covers are
2626 * fully written.
2627 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2628 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2629 {
2630 struct inode *inode = ordered_extent->inode;
2631 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2632 struct btrfs_root *root = BTRFS_I(inode)->root;
2633 struct btrfs_trans_handle *trans = NULL;
2634 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2635 struct extent_state *cached_state = NULL;
2636 u64 start, end;
2637 int compress_type = 0;
2638 int ret = 0;
2639 u64 logical_len = ordered_extent->num_bytes;
2640 bool freespace_inode;
2641 bool truncated = false;
2642 bool range_locked = false;
2643 bool clear_new_delalloc_bytes = false;
2644 bool clear_reserved_extent = true;
2645 unsigned int clear_bits;
2646
2647 start = ordered_extent->file_offset;
2648 end = start + ordered_extent->num_bytes - 1;
2649
2650 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2651 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2652 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2653 clear_new_delalloc_bytes = true;
2654
2655 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2656
2657 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2658 ret = -EIO;
2659 goto out;
2660 }
2661
2662 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2663
2664 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2665 truncated = true;
2666 logical_len = ordered_extent->truncated_len;
2667 /* Truncated the entire extent, don't bother adding */
2668 if (!logical_len)
2669 goto out;
2670 }
2671
2672 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2673 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2674
2675 btrfs_inode_safe_disk_i_size_write(inode, 0);
2676 if (freespace_inode)
2677 trans = btrfs_join_transaction_spacecache(root);
2678 else
2679 trans = btrfs_join_transaction(root);
2680 if (IS_ERR(trans)) {
2681 ret = PTR_ERR(trans);
2682 trans = NULL;
2683 goto out;
2684 }
2685 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2686 ret = btrfs_update_inode_fallback(trans, root, inode);
2687 if (ret) /* -ENOMEM or corruption */
2688 btrfs_abort_transaction(trans, ret);
2689 goto out;
2690 }
2691
2692 range_locked = true;
2693 lock_extent_bits(io_tree, start, end, &cached_state);
2694
2695 if (freespace_inode)
2696 trans = btrfs_join_transaction_spacecache(root);
2697 else
2698 trans = btrfs_join_transaction(root);
2699 if (IS_ERR(trans)) {
2700 ret = PTR_ERR(trans);
2701 trans = NULL;
2702 goto out;
2703 }
2704
2705 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2706
2707 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2708 compress_type = ordered_extent->compress_type;
2709 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2710 BUG_ON(compress_type);
2711 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2712 ordered_extent->file_offset,
2713 ordered_extent->file_offset +
2714 logical_len);
2715 } else {
2716 BUG_ON(root == fs_info->tree_root);
2717 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2718 if (!ret) {
2719 clear_reserved_extent = false;
2720 btrfs_release_delalloc_bytes(fs_info,
2721 ordered_extent->disk_bytenr,
2722 ordered_extent->disk_num_bytes);
2723 }
2724 }
2725 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2726 ordered_extent->file_offset,
2727 ordered_extent->num_bytes, trans->transid);
2728 if (ret < 0) {
2729 btrfs_abort_transaction(trans, ret);
2730 goto out;
2731 }
2732
2733 ret = add_pending_csums(trans, &ordered_extent->list);
2734 if (ret) {
2735 btrfs_abort_transaction(trans, ret);
2736 goto out;
2737 }
2738
2739 btrfs_inode_safe_disk_i_size_write(inode, 0);
2740 ret = btrfs_update_inode_fallback(trans, root, inode);
2741 if (ret) { /* -ENOMEM or corruption */
2742 btrfs_abort_transaction(trans, ret);
2743 goto out;
2744 }
2745 ret = 0;
2746 out:
2747 clear_bits = EXTENT_DEFRAG;
2748 if (range_locked)
2749 clear_bits |= EXTENT_LOCKED;
2750 if (clear_new_delalloc_bytes)
2751 clear_bits |= EXTENT_DELALLOC_NEW;
2752 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2753 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2754 &cached_state);
2755
2756 if (trans)
2757 btrfs_end_transaction(trans);
2758
2759 if (ret || truncated) {
2760 u64 unwritten_start = start;
2761
2762 /*
2763 * If we failed to finish this ordered extent for any reason we
2764 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
2765 * extent, and mark the inode with the error if it wasn't
2766 * already set. Any error during writeback would have already
2767 * set the mapping error, so we need to set it if we're the ones
2768 * marking this ordered extent as failed.
2769 */
2770 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
2771 &ordered_extent->flags))
2772 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
2773
2774 if (truncated)
2775 unwritten_start += logical_len;
2776 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2777
2778 /* Drop the cache for the part of the extent we didn't write. */
2779 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2780
2781 /*
2782 * If the ordered extent had an IOERR or something else went
2783 * wrong we need to return the space for this ordered extent
2784 * back to the allocator. We only free the extent in the
2785 * truncated case if we didn't write out the extent at all.
2786 *
2787 * If we made it past insert_reserved_file_extent before we
2788 * errored out then we don't need to do this as the accounting
2789 * has already been done.
2790 */
2791 if ((ret || !logical_len) &&
2792 clear_reserved_extent &&
2793 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2794 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2795 /*
2796 * Discard the range before returning it back to the
2797 * free space pool
2798 */
2799 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2800 btrfs_discard_extent(fs_info,
2801 ordered_extent->disk_bytenr,
2802 ordered_extent->disk_num_bytes,
2803 NULL);
2804 btrfs_free_reserved_extent(fs_info,
2805 ordered_extent->disk_bytenr,
2806 ordered_extent->disk_num_bytes, 1);
2807 }
2808 }
2809
2810 /*
2811 * This needs to be done to make sure anybody waiting knows we are done
2812 * updating everything for this ordered extent.
2813 */
2814 btrfs_remove_ordered_extent(BTRFS_I(inode), ordered_extent);
2815
2816 /* once for us */
2817 btrfs_put_ordered_extent(ordered_extent);
2818 /* once for the tree */
2819 btrfs_put_ordered_extent(ordered_extent);
2820
2821 return ret;
2822 }
2823
finish_ordered_fn(struct btrfs_work * work)2824 static void finish_ordered_fn(struct btrfs_work *work)
2825 {
2826 struct btrfs_ordered_extent *ordered_extent;
2827 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2828 btrfs_finish_ordered_io(ordered_extent);
2829 }
2830
btrfs_writepage_endio_finish_ordered(struct page * page,u64 start,u64 end,int uptodate)2831 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2832 u64 end, int uptodate)
2833 {
2834 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2835 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2836 struct btrfs_ordered_extent *ordered_extent = NULL;
2837 struct btrfs_workqueue *wq;
2838
2839 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2840
2841 ClearPagePrivate2(page);
2842 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2843 end - start + 1, uptodate))
2844 return;
2845
2846 if (btrfs_is_free_space_inode(inode))
2847 wq = fs_info->endio_freespace_worker;
2848 else
2849 wq = fs_info->endio_write_workers;
2850
2851 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2852 btrfs_queue_work(wq, &ordered_extent->work);
2853 }
2854
check_data_csum(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)2855 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2856 int icsum, struct page *page, int pgoff, u64 start,
2857 size_t len)
2858 {
2859 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2860 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2861 char *kaddr;
2862 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2863 u8 *csum_expected;
2864 u8 csum[BTRFS_CSUM_SIZE];
2865
2866 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2867
2868 kaddr = kmap_atomic(page);
2869 shash->tfm = fs_info->csum_shash;
2870
2871 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2872
2873 if (memcmp(csum, csum_expected, csum_size))
2874 goto zeroit;
2875
2876 kunmap_atomic(kaddr);
2877 return 0;
2878 zeroit:
2879 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2880 io_bio->mirror_num);
2881 if (io_bio->device)
2882 btrfs_dev_stat_inc_and_print(io_bio->device,
2883 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2884 memset(kaddr + pgoff, 1, len);
2885 flush_dcache_page(page);
2886 kunmap_atomic(kaddr);
2887 return -EIO;
2888 }
2889
2890 /*
2891 * when reads are done, we need to check csums to verify the data is correct
2892 * if there's a match, we allow the bio to finish. If not, the code in
2893 * extent_io.c will try to find good copies for us.
2894 */
btrfs_verify_data_csum(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)2895 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u64 phy_offset,
2896 struct page *page, u64 start, u64 end, int mirror)
2897 {
2898 size_t offset = start - page_offset(page);
2899 struct inode *inode = page->mapping->host;
2900 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2901 struct btrfs_root *root = BTRFS_I(inode)->root;
2902
2903 if (PageChecked(page)) {
2904 ClearPageChecked(page);
2905 return 0;
2906 }
2907
2908 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2909 return 0;
2910
2911 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2912 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2913 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2914 return 0;
2915 }
2916
2917 phy_offset >>= inode->i_sb->s_blocksize_bits;
2918 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2919 (size_t)(end - start + 1));
2920 }
2921
2922 /*
2923 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2924 *
2925 * @inode: The inode we want to perform iput on
2926 *
2927 * This function uses the generic vfs_inode::i_count to track whether we should
2928 * just decrement it (in case it's > 1) or if this is the last iput then link
2929 * the inode to the delayed iput machinery. Delayed iputs are processed at
2930 * transaction commit time/superblock commit/cleaner kthread.
2931 */
btrfs_add_delayed_iput(struct inode * inode)2932 void btrfs_add_delayed_iput(struct inode *inode)
2933 {
2934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2935 struct btrfs_inode *binode = BTRFS_I(inode);
2936
2937 if (atomic_add_unless(&inode->i_count, -1, 1))
2938 return;
2939
2940 atomic_inc(&fs_info->nr_delayed_iputs);
2941 spin_lock(&fs_info->delayed_iput_lock);
2942 ASSERT(list_empty(&binode->delayed_iput));
2943 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2944 spin_unlock(&fs_info->delayed_iput_lock);
2945 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2946 wake_up_process(fs_info->cleaner_kthread);
2947 }
2948
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)2949 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2950 struct btrfs_inode *inode)
2951 {
2952 list_del_init(&inode->delayed_iput);
2953 spin_unlock(&fs_info->delayed_iput_lock);
2954 iput(&inode->vfs_inode);
2955 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2956 wake_up(&fs_info->delayed_iputs_wait);
2957 spin_lock(&fs_info->delayed_iput_lock);
2958 }
2959
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)2960 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2961 struct btrfs_inode *inode)
2962 {
2963 if (!list_empty(&inode->delayed_iput)) {
2964 spin_lock(&fs_info->delayed_iput_lock);
2965 if (!list_empty(&inode->delayed_iput))
2966 run_delayed_iput_locked(fs_info, inode);
2967 spin_unlock(&fs_info->delayed_iput_lock);
2968 }
2969 }
2970
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)2971 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2972 {
2973
2974 spin_lock(&fs_info->delayed_iput_lock);
2975 while (!list_empty(&fs_info->delayed_iputs)) {
2976 struct btrfs_inode *inode;
2977
2978 inode = list_first_entry(&fs_info->delayed_iputs,
2979 struct btrfs_inode, delayed_iput);
2980 run_delayed_iput_locked(fs_info, inode);
2981 cond_resched_lock(&fs_info->delayed_iput_lock);
2982 }
2983 spin_unlock(&fs_info->delayed_iput_lock);
2984 }
2985
2986 /**
2987 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2988 * @fs_info - the fs_info for this fs
2989 * @return - EINTR if we were killed, 0 if nothing's pending
2990 *
2991 * This will wait on any delayed iputs that are currently running with KILLABLE
2992 * set. Once they are all done running we will return, unless we are killed in
2993 * which case we return EINTR. This helps in user operations like fallocate etc
2994 * that might get blocked on the iputs.
2995 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)2996 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2997 {
2998 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2999 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3000 if (ret)
3001 return -EINTR;
3002 return 0;
3003 }
3004
3005 /*
3006 * This creates an orphan entry for the given inode in case something goes wrong
3007 * in the middle of an unlink.
3008 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3009 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3010 struct btrfs_inode *inode)
3011 {
3012 int ret;
3013
3014 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3015 if (ret && ret != -EEXIST) {
3016 btrfs_abort_transaction(trans, ret);
3017 return ret;
3018 }
3019
3020 return 0;
3021 }
3022
3023 /*
3024 * We have done the delete so we can go ahead and remove the orphan item for
3025 * this particular inode.
3026 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3027 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3028 struct btrfs_inode *inode)
3029 {
3030 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3031 }
3032
3033 /*
3034 * this cleans up any orphans that may be left on the list from the last use
3035 * of this root.
3036 */
btrfs_orphan_cleanup(struct btrfs_root * root)3037 int btrfs_orphan_cleanup(struct btrfs_root *root)
3038 {
3039 struct btrfs_fs_info *fs_info = root->fs_info;
3040 struct btrfs_path *path;
3041 struct extent_buffer *leaf;
3042 struct btrfs_key key, found_key;
3043 struct btrfs_trans_handle *trans;
3044 struct inode *inode;
3045 u64 last_objectid = 0;
3046 int ret = 0, nr_unlink = 0;
3047
3048 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3049 return 0;
3050
3051 path = btrfs_alloc_path();
3052 if (!path) {
3053 ret = -ENOMEM;
3054 goto out;
3055 }
3056 path->reada = READA_BACK;
3057
3058 key.objectid = BTRFS_ORPHAN_OBJECTID;
3059 key.type = BTRFS_ORPHAN_ITEM_KEY;
3060 key.offset = (u64)-1;
3061
3062 while (1) {
3063 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3064 if (ret < 0)
3065 goto out;
3066
3067 /*
3068 * if ret == 0 means we found what we were searching for, which
3069 * is weird, but possible, so only screw with path if we didn't
3070 * find the key and see if we have stuff that matches
3071 */
3072 if (ret > 0) {
3073 ret = 0;
3074 if (path->slots[0] == 0)
3075 break;
3076 path->slots[0]--;
3077 }
3078
3079 /* pull out the item */
3080 leaf = path->nodes[0];
3081 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3082
3083 /* make sure the item matches what we want */
3084 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3085 break;
3086 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3087 break;
3088
3089 /* release the path since we're done with it */
3090 btrfs_release_path(path);
3091
3092 /*
3093 * this is where we are basically btrfs_lookup, without the
3094 * crossing root thing. we store the inode number in the
3095 * offset of the orphan item.
3096 */
3097
3098 if (found_key.offset == last_objectid) {
3099 btrfs_err(fs_info,
3100 "Error removing orphan entry, stopping orphan cleanup");
3101 ret = -EINVAL;
3102 goto out;
3103 }
3104
3105 last_objectid = found_key.offset;
3106
3107 found_key.objectid = found_key.offset;
3108 found_key.type = BTRFS_INODE_ITEM_KEY;
3109 found_key.offset = 0;
3110 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3111 ret = PTR_ERR_OR_ZERO(inode);
3112 if (ret && ret != -ENOENT)
3113 goto out;
3114
3115 if (ret == -ENOENT && root == fs_info->tree_root) {
3116 struct btrfs_root *dead_root;
3117 int is_dead_root = 0;
3118
3119 /*
3120 * this is an orphan in the tree root. Currently these
3121 * could come from 2 sources:
3122 * a) a snapshot deletion in progress
3123 * b) a free space cache inode
3124 * We need to distinguish those two, as the snapshot
3125 * orphan must not get deleted.
3126 * find_dead_roots already ran before us, so if this
3127 * is a snapshot deletion, we should find the root
3128 * in the fs_roots radix tree.
3129 */
3130
3131 spin_lock(&fs_info->fs_roots_radix_lock);
3132 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3133 (unsigned long)found_key.objectid);
3134 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3135 is_dead_root = 1;
3136 spin_unlock(&fs_info->fs_roots_radix_lock);
3137
3138 if (is_dead_root) {
3139 /* prevent this orphan from being found again */
3140 key.offset = found_key.objectid - 1;
3141 continue;
3142 }
3143
3144 }
3145
3146 /*
3147 * If we have an inode with links, there are a couple of
3148 * possibilities. Old kernels (before v3.12) used to create an
3149 * orphan item for truncate indicating that there were possibly
3150 * extent items past i_size that needed to be deleted. In v3.12,
3151 * truncate was changed to update i_size in sync with the extent
3152 * items, but the (useless) orphan item was still created. Since
3153 * v4.18, we don't create the orphan item for truncate at all.
3154 *
3155 * So, this item could mean that we need to do a truncate, but
3156 * only if this filesystem was last used on a pre-v3.12 kernel
3157 * and was not cleanly unmounted. The odds of that are quite
3158 * slim, and it's a pain to do the truncate now, so just delete
3159 * the orphan item.
3160 *
3161 * It's also possible that this orphan item was supposed to be
3162 * deleted but wasn't. The inode number may have been reused,
3163 * but either way, we can delete the orphan item.
3164 */
3165 if (ret == -ENOENT || inode->i_nlink) {
3166 if (!ret)
3167 iput(inode);
3168 trans = btrfs_start_transaction(root, 1);
3169 if (IS_ERR(trans)) {
3170 ret = PTR_ERR(trans);
3171 goto out;
3172 }
3173 btrfs_debug(fs_info, "auto deleting %Lu",
3174 found_key.objectid);
3175 ret = btrfs_del_orphan_item(trans, root,
3176 found_key.objectid);
3177 btrfs_end_transaction(trans);
3178 if (ret)
3179 goto out;
3180 continue;
3181 }
3182
3183 nr_unlink++;
3184
3185 /* this will do delete_inode and everything for us */
3186 iput(inode);
3187 }
3188 /* release the path since we're done with it */
3189 btrfs_release_path(path);
3190
3191 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3192
3193 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3194 trans = btrfs_join_transaction(root);
3195 if (!IS_ERR(trans))
3196 btrfs_end_transaction(trans);
3197 }
3198
3199 if (nr_unlink)
3200 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3201
3202 out:
3203 if (ret)
3204 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3205 btrfs_free_path(path);
3206 return ret;
3207 }
3208
3209 /*
3210 * very simple check to peek ahead in the leaf looking for xattrs. If we
3211 * don't find any xattrs, we know there can't be any acls.
3212 *
3213 * slot is the slot the inode is in, objectid is the objectid of the inode
3214 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3215 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3216 int slot, u64 objectid,
3217 int *first_xattr_slot)
3218 {
3219 u32 nritems = btrfs_header_nritems(leaf);
3220 struct btrfs_key found_key;
3221 static u64 xattr_access = 0;
3222 static u64 xattr_default = 0;
3223 int scanned = 0;
3224
3225 if (!xattr_access) {
3226 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3227 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3228 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3229 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3230 }
3231
3232 slot++;
3233 *first_xattr_slot = -1;
3234 while (slot < nritems) {
3235 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3236
3237 /* we found a different objectid, there must not be acls */
3238 if (found_key.objectid != objectid)
3239 return 0;
3240
3241 /* we found an xattr, assume we've got an acl */
3242 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3243 if (*first_xattr_slot == -1)
3244 *first_xattr_slot = slot;
3245 if (found_key.offset == xattr_access ||
3246 found_key.offset == xattr_default)
3247 return 1;
3248 }
3249
3250 /*
3251 * we found a key greater than an xattr key, there can't
3252 * be any acls later on
3253 */
3254 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3255 return 0;
3256
3257 slot++;
3258 scanned++;
3259
3260 /*
3261 * it goes inode, inode backrefs, xattrs, extents,
3262 * so if there are a ton of hard links to an inode there can
3263 * be a lot of backrefs. Don't waste time searching too hard,
3264 * this is just an optimization
3265 */
3266 if (scanned >= 8)
3267 break;
3268 }
3269 /* we hit the end of the leaf before we found an xattr or
3270 * something larger than an xattr. We have to assume the inode
3271 * has acls
3272 */
3273 if (*first_xattr_slot == -1)
3274 *first_xattr_slot = slot;
3275 return 1;
3276 }
3277
3278 /*
3279 * read an inode from the btree into the in-memory inode
3280 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3281 static int btrfs_read_locked_inode(struct inode *inode,
3282 struct btrfs_path *in_path)
3283 {
3284 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3285 struct btrfs_path *path = in_path;
3286 struct extent_buffer *leaf;
3287 struct btrfs_inode_item *inode_item;
3288 struct btrfs_root *root = BTRFS_I(inode)->root;
3289 struct btrfs_key location;
3290 unsigned long ptr;
3291 int maybe_acls;
3292 u32 rdev;
3293 int ret;
3294 bool filled = false;
3295 int first_xattr_slot;
3296
3297 ret = btrfs_fill_inode(inode, &rdev);
3298 if (!ret)
3299 filled = true;
3300
3301 if (!path) {
3302 path = btrfs_alloc_path();
3303 if (!path)
3304 return -ENOMEM;
3305 }
3306
3307 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3308
3309 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3310 if (ret) {
3311 if (path != in_path)
3312 btrfs_free_path(path);
3313 return ret;
3314 }
3315
3316 leaf = path->nodes[0];
3317
3318 if (filled)
3319 goto cache_index;
3320
3321 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3322 struct btrfs_inode_item);
3323 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3324 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3325 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3326 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3327 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3328 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3329 round_up(i_size_read(inode), fs_info->sectorsize));
3330
3331 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3332 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3333
3334 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3335 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3336
3337 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3338 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3339
3340 BTRFS_I(inode)->i_otime.tv_sec =
3341 btrfs_timespec_sec(leaf, &inode_item->otime);
3342 BTRFS_I(inode)->i_otime.tv_nsec =
3343 btrfs_timespec_nsec(leaf, &inode_item->otime);
3344
3345 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3346 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3347 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3348
3349 inode_set_iversion_queried(inode,
3350 btrfs_inode_sequence(leaf, inode_item));
3351 inode->i_generation = BTRFS_I(inode)->generation;
3352 inode->i_rdev = 0;
3353 rdev = btrfs_inode_rdev(leaf, inode_item);
3354
3355 BTRFS_I(inode)->index_cnt = (u64)-1;
3356 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3357
3358 cache_index:
3359 /*
3360 * If we were modified in the current generation and evicted from memory
3361 * and then re-read we need to do a full sync since we don't have any
3362 * idea about which extents were modified before we were evicted from
3363 * cache.
3364 *
3365 * This is required for both inode re-read from disk and delayed inode
3366 * in delayed_nodes_tree.
3367 */
3368 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3369 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3370 &BTRFS_I(inode)->runtime_flags);
3371
3372 /*
3373 * We don't persist the id of the transaction where an unlink operation
3374 * against the inode was last made. So here we assume the inode might
3375 * have been evicted, and therefore the exact value of last_unlink_trans
3376 * lost, and set it to last_trans to avoid metadata inconsistencies
3377 * between the inode and its parent if the inode is fsync'ed and the log
3378 * replayed. For example, in the scenario:
3379 *
3380 * touch mydir/foo
3381 * ln mydir/foo mydir/bar
3382 * sync
3383 * unlink mydir/bar
3384 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3385 * xfs_io -c fsync mydir/foo
3386 * <power failure>
3387 * mount fs, triggers fsync log replay
3388 *
3389 * We must make sure that when we fsync our inode foo we also log its
3390 * parent inode, otherwise after log replay the parent still has the
3391 * dentry with the "bar" name but our inode foo has a link count of 1
3392 * and doesn't have an inode ref with the name "bar" anymore.
3393 *
3394 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3395 * but it guarantees correctness at the expense of occasional full
3396 * transaction commits on fsync if our inode is a directory, or if our
3397 * inode is not a directory, logging its parent unnecessarily.
3398 */
3399 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3400
3401 /*
3402 * Same logic as for last_unlink_trans. We don't persist the generation
3403 * of the last transaction where this inode was used for a reflink
3404 * operation, so after eviction and reloading the inode we must be
3405 * pessimistic and assume the last transaction that modified the inode.
3406 */
3407 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3408
3409 path->slots[0]++;
3410 if (inode->i_nlink != 1 ||
3411 path->slots[0] >= btrfs_header_nritems(leaf))
3412 goto cache_acl;
3413
3414 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3415 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3416 goto cache_acl;
3417
3418 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3419 if (location.type == BTRFS_INODE_REF_KEY) {
3420 struct btrfs_inode_ref *ref;
3421
3422 ref = (struct btrfs_inode_ref *)ptr;
3423 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3424 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3425 struct btrfs_inode_extref *extref;
3426
3427 extref = (struct btrfs_inode_extref *)ptr;
3428 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3429 extref);
3430 }
3431 cache_acl:
3432 /*
3433 * try to precache a NULL acl entry for files that don't have
3434 * any xattrs or acls
3435 */
3436 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3437 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3438 if (first_xattr_slot != -1) {
3439 path->slots[0] = first_xattr_slot;
3440 ret = btrfs_load_inode_props(inode, path);
3441 if (ret)
3442 btrfs_err(fs_info,
3443 "error loading props for ino %llu (root %llu): %d",
3444 btrfs_ino(BTRFS_I(inode)),
3445 root->root_key.objectid, ret);
3446 }
3447 if (path != in_path)
3448 btrfs_free_path(path);
3449
3450 if (!maybe_acls)
3451 cache_no_acl(inode);
3452
3453 switch (inode->i_mode & S_IFMT) {
3454 case S_IFREG:
3455 inode->i_mapping->a_ops = &btrfs_aops;
3456 inode->i_fop = &btrfs_file_operations;
3457 inode->i_op = &btrfs_file_inode_operations;
3458 break;
3459 case S_IFDIR:
3460 inode->i_fop = &btrfs_dir_file_operations;
3461 inode->i_op = &btrfs_dir_inode_operations;
3462 break;
3463 case S_IFLNK:
3464 inode->i_op = &btrfs_symlink_inode_operations;
3465 inode_nohighmem(inode);
3466 inode->i_mapping->a_ops = &btrfs_aops;
3467 break;
3468 default:
3469 inode->i_op = &btrfs_special_inode_operations;
3470 init_special_inode(inode, inode->i_mode, rdev);
3471 break;
3472 }
3473
3474 btrfs_sync_inode_flags_to_i_flags(inode);
3475 return 0;
3476 }
3477
3478 /*
3479 * given a leaf and an inode, copy the inode fields into the leaf
3480 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3481 static void fill_inode_item(struct btrfs_trans_handle *trans,
3482 struct extent_buffer *leaf,
3483 struct btrfs_inode_item *item,
3484 struct inode *inode)
3485 {
3486 struct btrfs_map_token token;
3487
3488 btrfs_init_map_token(&token, leaf);
3489
3490 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3491 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3492 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3493 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3494 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3495
3496 btrfs_set_token_timespec_sec(&token, &item->atime,
3497 inode->i_atime.tv_sec);
3498 btrfs_set_token_timespec_nsec(&token, &item->atime,
3499 inode->i_atime.tv_nsec);
3500
3501 btrfs_set_token_timespec_sec(&token, &item->mtime,
3502 inode->i_mtime.tv_sec);
3503 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3504 inode->i_mtime.tv_nsec);
3505
3506 btrfs_set_token_timespec_sec(&token, &item->ctime,
3507 inode->i_ctime.tv_sec);
3508 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3509 inode->i_ctime.tv_nsec);
3510
3511 btrfs_set_token_timespec_sec(&token, &item->otime,
3512 BTRFS_I(inode)->i_otime.tv_sec);
3513 btrfs_set_token_timespec_nsec(&token, &item->otime,
3514 BTRFS_I(inode)->i_otime.tv_nsec);
3515
3516 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3517 btrfs_set_token_inode_generation(&token, item,
3518 BTRFS_I(inode)->generation);
3519 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3520 btrfs_set_token_inode_transid(&token, item, trans->transid);
3521 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3522 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3523 btrfs_set_token_inode_block_group(&token, item, 0);
3524 }
3525
3526 /*
3527 * copy everything in the in-memory inode into the btree.
3528 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3529 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3530 struct btrfs_root *root, struct inode *inode)
3531 {
3532 struct btrfs_inode_item *inode_item;
3533 struct btrfs_path *path;
3534 struct extent_buffer *leaf;
3535 int ret;
3536
3537 path = btrfs_alloc_path();
3538 if (!path)
3539 return -ENOMEM;
3540
3541 path->leave_spinning = 1;
3542 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3543 1);
3544 if (ret) {
3545 if (ret > 0)
3546 ret = -ENOENT;
3547 goto failed;
3548 }
3549
3550 leaf = path->nodes[0];
3551 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3552 struct btrfs_inode_item);
3553
3554 fill_inode_item(trans, leaf, inode_item, inode);
3555 btrfs_mark_buffer_dirty(leaf);
3556 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3557 ret = 0;
3558 failed:
3559 btrfs_free_path(path);
3560 return ret;
3561 }
3562
3563 /*
3564 * copy everything in the in-memory inode into the btree.
3565 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3566 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3567 struct btrfs_root *root, struct inode *inode)
3568 {
3569 struct btrfs_fs_info *fs_info = root->fs_info;
3570 int ret;
3571
3572 /*
3573 * If the inode is a free space inode, we can deadlock during commit
3574 * if we put it into the delayed code.
3575 *
3576 * The data relocation inode should also be directly updated
3577 * without delay
3578 */
3579 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3580 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3581 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3582 btrfs_update_root_times(trans, root);
3583
3584 ret = btrfs_delayed_update_inode(trans, root, inode);
3585 if (!ret)
3586 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3587 return ret;
3588 }
3589
3590 return btrfs_update_inode_item(trans, root, inode);
3591 }
3592
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3593 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3594 struct btrfs_root *root,
3595 struct inode *inode)
3596 {
3597 int ret;
3598
3599 ret = btrfs_update_inode(trans, root, inode);
3600 if (ret == -ENOSPC)
3601 return btrfs_update_inode_item(trans, root, inode);
3602 return ret;
3603 }
3604
3605 /*
3606 * unlink helper that gets used here in inode.c and in the tree logging
3607 * recovery code. It remove a link in a directory with a given name, and
3608 * also drops the back refs in the inode to the directory
3609 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3610 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3611 struct btrfs_root *root,
3612 struct btrfs_inode *dir,
3613 struct btrfs_inode *inode,
3614 const char *name, int name_len)
3615 {
3616 struct btrfs_fs_info *fs_info = root->fs_info;
3617 struct btrfs_path *path;
3618 int ret = 0;
3619 struct btrfs_dir_item *di;
3620 u64 index;
3621 u64 ino = btrfs_ino(inode);
3622 u64 dir_ino = btrfs_ino(dir);
3623
3624 path = btrfs_alloc_path();
3625 if (!path) {
3626 ret = -ENOMEM;
3627 goto out;
3628 }
3629
3630 path->leave_spinning = 1;
3631 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3632 name, name_len, -1);
3633 if (IS_ERR_OR_NULL(di)) {
3634 ret = di ? PTR_ERR(di) : -ENOENT;
3635 goto err;
3636 }
3637 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3638 if (ret)
3639 goto err;
3640 btrfs_release_path(path);
3641
3642 /*
3643 * If we don't have dir index, we have to get it by looking up
3644 * the inode ref, since we get the inode ref, remove it directly,
3645 * it is unnecessary to do delayed deletion.
3646 *
3647 * But if we have dir index, needn't search inode ref to get it.
3648 * Since the inode ref is close to the inode item, it is better
3649 * that we delay to delete it, and just do this deletion when
3650 * we update the inode item.
3651 */
3652 if (inode->dir_index) {
3653 ret = btrfs_delayed_delete_inode_ref(inode);
3654 if (!ret) {
3655 index = inode->dir_index;
3656 goto skip_backref;
3657 }
3658 }
3659
3660 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3661 dir_ino, &index);
3662 if (ret) {
3663 btrfs_info(fs_info,
3664 "failed to delete reference to %.*s, inode %llu parent %llu",
3665 name_len, name, ino, dir_ino);
3666 btrfs_abort_transaction(trans, ret);
3667 goto err;
3668 }
3669 skip_backref:
3670 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3671 if (ret) {
3672 btrfs_abort_transaction(trans, ret);
3673 goto err;
3674 }
3675
3676 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3677 dir_ino);
3678 if (ret != 0 && ret != -ENOENT) {
3679 btrfs_abort_transaction(trans, ret);
3680 goto err;
3681 }
3682
3683 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3684 index);
3685 if (ret == -ENOENT)
3686 ret = 0;
3687 else if (ret)
3688 btrfs_abort_transaction(trans, ret);
3689
3690 /*
3691 * If we have a pending delayed iput we could end up with the final iput
3692 * being run in btrfs-cleaner context. If we have enough of these built
3693 * up we can end up burning a lot of time in btrfs-cleaner without any
3694 * way to throttle the unlinks. Since we're currently holding a ref on
3695 * the inode we can run the delayed iput here without any issues as the
3696 * final iput won't be done until after we drop the ref we're currently
3697 * holding.
3698 */
3699 btrfs_run_delayed_iput(fs_info, inode);
3700 err:
3701 btrfs_free_path(path);
3702 if (ret)
3703 goto out;
3704
3705 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3706 inode_inc_iversion(&inode->vfs_inode);
3707 inode_inc_iversion(&dir->vfs_inode);
3708 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3709 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3710 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3711 out:
3712 return ret;
3713 }
3714
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3715 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3716 struct btrfs_root *root,
3717 struct btrfs_inode *dir, struct btrfs_inode *inode,
3718 const char *name, int name_len)
3719 {
3720 int ret;
3721 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3722 if (!ret) {
3723 drop_nlink(&inode->vfs_inode);
3724 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3725 }
3726 return ret;
3727 }
3728
3729 /*
3730 * helper to start transaction for unlink and rmdir.
3731 *
3732 * unlink and rmdir are special in btrfs, they do not always free space, so
3733 * if we cannot make our reservations the normal way try and see if there is
3734 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3735 * allow the unlink to occur.
3736 */
__unlink_start_trans(struct inode * dir)3737 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3738 {
3739 struct btrfs_root *root = BTRFS_I(dir)->root;
3740
3741 /*
3742 * 1 for the possible orphan item
3743 * 1 for the dir item
3744 * 1 for the dir index
3745 * 1 for the inode ref
3746 * 1 for the inode
3747 */
3748 return btrfs_start_transaction_fallback_global_rsv(root, 5);
3749 }
3750
btrfs_unlink(struct inode * dir,struct dentry * dentry)3751 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3752 {
3753 struct btrfs_root *root = BTRFS_I(dir)->root;
3754 struct btrfs_trans_handle *trans;
3755 struct inode *inode = d_inode(dentry);
3756 int ret;
3757
3758 trans = __unlink_start_trans(dir);
3759 if (IS_ERR(trans))
3760 return PTR_ERR(trans);
3761
3762 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3763 0);
3764
3765 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3766 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3767 dentry->d_name.len);
3768 if (ret)
3769 goto out;
3770
3771 if (inode->i_nlink == 0) {
3772 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3773 if (ret)
3774 goto out;
3775 }
3776
3777 out:
3778 btrfs_end_transaction(trans);
3779 btrfs_btree_balance_dirty(root->fs_info);
3780 return ret;
3781 }
3782
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)3783 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3784 struct inode *dir, struct dentry *dentry)
3785 {
3786 struct btrfs_root *root = BTRFS_I(dir)->root;
3787 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3788 struct btrfs_path *path;
3789 struct extent_buffer *leaf;
3790 struct btrfs_dir_item *di;
3791 struct btrfs_key key;
3792 const char *name = dentry->d_name.name;
3793 int name_len = dentry->d_name.len;
3794 u64 index;
3795 int ret;
3796 u64 objectid;
3797 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3798
3799 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3800 objectid = inode->root->root_key.objectid;
3801 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3802 objectid = inode->location.objectid;
3803 } else {
3804 WARN_ON(1);
3805 return -EINVAL;
3806 }
3807
3808 path = btrfs_alloc_path();
3809 if (!path)
3810 return -ENOMEM;
3811
3812 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3813 name, name_len, -1);
3814 if (IS_ERR_OR_NULL(di)) {
3815 ret = di ? PTR_ERR(di) : -ENOENT;
3816 goto out;
3817 }
3818
3819 leaf = path->nodes[0];
3820 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3821 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3822 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3823 if (ret) {
3824 btrfs_abort_transaction(trans, ret);
3825 goto out;
3826 }
3827 btrfs_release_path(path);
3828
3829 /*
3830 * This is a placeholder inode for a subvolume we didn't have a
3831 * reference to at the time of the snapshot creation. In the meantime
3832 * we could have renamed the real subvol link into our snapshot, so
3833 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3834 * Instead simply lookup the dir_index_item for this entry so we can
3835 * remove it. Otherwise we know we have a ref to the root and we can
3836 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3837 */
3838 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3839 di = btrfs_search_dir_index_item(root, path, dir_ino,
3840 name, name_len);
3841 if (IS_ERR_OR_NULL(di)) {
3842 if (!di)
3843 ret = -ENOENT;
3844 else
3845 ret = PTR_ERR(di);
3846 btrfs_abort_transaction(trans, ret);
3847 goto out;
3848 }
3849
3850 leaf = path->nodes[0];
3851 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3852 index = key.offset;
3853 btrfs_release_path(path);
3854 } else {
3855 ret = btrfs_del_root_ref(trans, objectid,
3856 root->root_key.objectid, dir_ino,
3857 &index, name, name_len);
3858 if (ret) {
3859 btrfs_abort_transaction(trans, ret);
3860 goto out;
3861 }
3862 }
3863
3864 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3865 if (ret) {
3866 btrfs_abort_transaction(trans, ret);
3867 goto out;
3868 }
3869
3870 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3871 inode_inc_iversion(dir);
3872 dir->i_mtime = dir->i_ctime = current_time(dir);
3873 ret = btrfs_update_inode_fallback(trans, root, dir);
3874 if (ret)
3875 btrfs_abort_transaction(trans, ret);
3876 out:
3877 btrfs_free_path(path);
3878 return ret;
3879 }
3880
3881 /*
3882 * Helper to check if the subvolume references other subvolumes or if it's
3883 * default.
3884 */
may_destroy_subvol(struct btrfs_root * root)3885 static noinline int may_destroy_subvol(struct btrfs_root *root)
3886 {
3887 struct btrfs_fs_info *fs_info = root->fs_info;
3888 struct btrfs_path *path;
3889 struct btrfs_dir_item *di;
3890 struct btrfs_key key;
3891 u64 dir_id;
3892 int ret;
3893
3894 path = btrfs_alloc_path();
3895 if (!path)
3896 return -ENOMEM;
3897
3898 /* Make sure this root isn't set as the default subvol */
3899 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3900 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3901 dir_id, "default", 7, 0);
3902 if (di && !IS_ERR(di)) {
3903 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3904 if (key.objectid == root->root_key.objectid) {
3905 ret = -EPERM;
3906 btrfs_err(fs_info,
3907 "deleting default subvolume %llu is not allowed",
3908 key.objectid);
3909 goto out;
3910 }
3911 btrfs_release_path(path);
3912 }
3913
3914 key.objectid = root->root_key.objectid;
3915 key.type = BTRFS_ROOT_REF_KEY;
3916 key.offset = (u64)-1;
3917
3918 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3919 if (ret < 0)
3920 goto out;
3921 BUG_ON(ret == 0);
3922
3923 ret = 0;
3924 if (path->slots[0] > 0) {
3925 path->slots[0]--;
3926 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3927 if (key.objectid == root->root_key.objectid &&
3928 key.type == BTRFS_ROOT_REF_KEY)
3929 ret = -ENOTEMPTY;
3930 }
3931 out:
3932 btrfs_free_path(path);
3933 return ret;
3934 }
3935
3936 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)3937 static void btrfs_prune_dentries(struct btrfs_root *root)
3938 {
3939 struct btrfs_fs_info *fs_info = root->fs_info;
3940 struct rb_node *node;
3941 struct rb_node *prev;
3942 struct btrfs_inode *entry;
3943 struct inode *inode;
3944 u64 objectid = 0;
3945
3946 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3947 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3948
3949 spin_lock(&root->inode_lock);
3950 again:
3951 node = root->inode_tree.rb_node;
3952 prev = NULL;
3953 while (node) {
3954 prev = node;
3955 entry = rb_entry(node, struct btrfs_inode, rb_node);
3956
3957 if (objectid < btrfs_ino(entry))
3958 node = node->rb_left;
3959 else if (objectid > btrfs_ino(entry))
3960 node = node->rb_right;
3961 else
3962 break;
3963 }
3964 if (!node) {
3965 while (prev) {
3966 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3967 if (objectid <= btrfs_ino(entry)) {
3968 node = prev;
3969 break;
3970 }
3971 prev = rb_next(prev);
3972 }
3973 }
3974 while (node) {
3975 entry = rb_entry(node, struct btrfs_inode, rb_node);
3976 objectid = btrfs_ino(entry) + 1;
3977 inode = igrab(&entry->vfs_inode);
3978 if (inode) {
3979 spin_unlock(&root->inode_lock);
3980 if (atomic_read(&inode->i_count) > 1)
3981 d_prune_aliases(inode);
3982 /*
3983 * btrfs_drop_inode will have it removed from the inode
3984 * cache when its usage count hits zero.
3985 */
3986 iput(inode);
3987 cond_resched();
3988 spin_lock(&root->inode_lock);
3989 goto again;
3990 }
3991
3992 if (cond_resched_lock(&root->inode_lock))
3993 goto again;
3994
3995 node = rb_next(node);
3996 }
3997 spin_unlock(&root->inode_lock);
3998 }
3999
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4000 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4001 {
4002 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4003 struct btrfs_root *root = BTRFS_I(dir)->root;
4004 struct inode *inode = d_inode(dentry);
4005 struct btrfs_root *dest = BTRFS_I(inode)->root;
4006 struct btrfs_trans_handle *trans;
4007 struct btrfs_block_rsv block_rsv;
4008 u64 root_flags;
4009 int ret;
4010
4011 down_write(&fs_info->subvol_sem);
4012
4013 /*
4014 * Don't allow to delete a subvolume with send in progress. This is
4015 * inside the inode lock so the error handling that has to drop the bit
4016 * again is not run concurrently.
4017 */
4018 spin_lock(&dest->root_item_lock);
4019 if (dest->send_in_progress) {
4020 spin_unlock(&dest->root_item_lock);
4021 btrfs_warn(fs_info,
4022 "attempt to delete subvolume %llu during send",
4023 dest->root_key.objectid);
4024 ret = -EPERM;
4025 goto out_up_write;
4026 }
4027 if (atomic_read(&dest->nr_swapfiles)) {
4028 spin_unlock(&dest->root_item_lock);
4029 btrfs_warn(fs_info,
4030 "attempt to delete subvolume %llu with active swapfile",
4031 root->root_key.objectid);
4032 ret = -EPERM;
4033 goto out_up_write;
4034 }
4035 root_flags = btrfs_root_flags(&dest->root_item);
4036 btrfs_set_root_flags(&dest->root_item,
4037 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4038 spin_unlock(&dest->root_item_lock);
4039
4040 ret = may_destroy_subvol(dest);
4041 if (ret)
4042 goto out_undead;
4043
4044 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4045 /*
4046 * One for dir inode,
4047 * two for dir entries,
4048 * two for root ref/backref.
4049 */
4050 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4051 if (ret)
4052 goto out_undead;
4053
4054 trans = btrfs_start_transaction(root, 0);
4055 if (IS_ERR(trans)) {
4056 ret = PTR_ERR(trans);
4057 goto out_release;
4058 }
4059 trans->block_rsv = &block_rsv;
4060 trans->bytes_reserved = block_rsv.size;
4061
4062 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4063
4064 ret = btrfs_unlink_subvol(trans, dir, dentry);
4065 if (ret) {
4066 btrfs_abort_transaction(trans, ret);
4067 goto out_end_trans;
4068 }
4069
4070 btrfs_record_root_in_trans(trans, dest);
4071
4072 memset(&dest->root_item.drop_progress, 0,
4073 sizeof(dest->root_item.drop_progress));
4074 dest->root_item.drop_level = 0;
4075 btrfs_set_root_refs(&dest->root_item, 0);
4076
4077 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4078 ret = btrfs_insert_orphan_item(trans,
4079 fs_info->tree_root,
4080 dest->root_key.objectid);
4081 if (ret) {
4082 btrfs_abort_transaction(trans, ret);
4083 goto out_end_trans;
4084 }
4085 }
4086
4087 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4088 BTRFS_UUID_KEY_SUBVOL,
4089 dest->root_key.objectid);
4090 if (ret && ret != -ENOENT) {
4091 btrfs_abort_transaction(trans, ret);
4092 goto out_end_trans;
4093 }
4094 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4095 ret = btrfs_uuid_tree_remove(trans,
4096 dest->root_item.received_uuid,
4097 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4098 dest->root_key.objectid);
4099 if (ret && ret != -ENOENT) {
4100 btrfs_abort_transaction(trans, ret);
4101 goto out_end_trans;
4102 }
4103 }
4104
4105 free_anon_bdev(dest->anon_dev);
4106 dest->anon_dev = 0;
4107 out_end_trans:
4108 trans->block_rsv = NULL;
4109 trans->bytes_reserved = 0;
4110 ret = btrfs_end_transaction(trans);
4111 inode->i_flags |= S_DEAD;
4112 out_release:
4113 btrfs_subvolume_release_metadata(root, &block_rsv);
4114 out_undead:
4115 if (ret) {
4116 spin_lock(&dest->root_item_lock);
4117 root_flags = btrfs_root_flags(&dest->root_item);
4118 btrfs_set_root_flags(&dest->root_item,
4119 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4120 spin_unlock(&dest->root_item_lock);
4121 }
4122 out_up_write:
4123 up_write(&fs_info->subvol_sem);
4124 if (!ret) {
4125 d_invalidate(dentry);
4126 btrfs_prune_dentries(dest);
4127 ASSERT(dest->send_in_progress == 0);
4128
4129 /* the last ref */
4130 if (dest->ino_cache_inode) {
4131 iput(dest->ino_cache_inode);
4132 dest->ino_cache_inode = NULL;
4133 }
4134 }
4135
4136 return ret;
4137 }
4138
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4139 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4140 {
4141 struct inode *inode = d_inode(dentry);
4142 int err = 0;
4143 struct btrfs_root *root = BTRFS_I(dir)->root;
4144 struct btrfs_trans_handle *trans;
4145 u64 last_unlink_trans;
4146
4147 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4148 return -ENOTEMPTY;
4149 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4150 return btrfs_delete_subvolume(dir, dentry);
4151
4152 trans = __unlink_start_trans(dir);
4153 if (IS_ERR(trans))
4154 return PTR_ERR(trans);
4155
4156 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4157 err = btrfs_unlink_subvol(trans, dir, dentry);
4158 goto out;
4159 }
4160
4161 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4162 if (err)
4163 goto out;
4164
4165 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4166
4167 /* now the directory is empty */
4168 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4169 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4170 dentry->d_name.len);
4171 if (!err) {
4172 btrfs_i_size_write(BTRFS_I(inode), 0);
4173 /*
4174 * Propagate the last_unlink_trans value of the deleted dir to
4175 * its parent directory. This is to prevent an unrecoverable
4176 * log tree in the case we do something like this:
4177 * 1) create dir foo
4178 * 2) create snapshot under dir foo
4179 * 3) delete the snapshot
4180 * 4) rmdir foo
4181 * 5) mkdir foo
4182 * 6) fsync foo or some file inside foo
4183 */
4184 if (last_unlink_trans >= trans->transid)
4185 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4186 }
4187 out:
4188 btrfs_end_transaction(trans);
4189 btrfs_btree_balance_dirty(root->fs_info);
4190
4191 return err;
4192 }
4193
4194 /*
4195 * Return this if we need to call truncate_block for the last bit of the
4196 * truncate.
4197 */
4198 #define NEED_TRUNCATE_BLOCK 1
4199
4200 /*
4201 * this can truncate away extent items, csum items and directory items.
4202 * It starts at a high offset and removes keys until it can't find
4203 * any higher than new_size
4204 *
4205 * csum items that cross the new i_size are truncated to the new size
4206 * as well.
4207 *
4208 * min_type is the minimum key type to truncate down to. If set to 0, this
4209 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4210 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4211 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4212 struct btrfs_root *root,
4213 struct inode *inode,
4214 u64 new_size, u32 min_type)
4215 {
4216 struct btrfs_fs_info *fs_info = root->fs_info;
4217 struct btrfs_path *path;
4218 struct extent_buffer *leaf;
4219 struct btrfs_file_extent_item *fi;
4220 struct btrfs_key key;
4221 struct btrfs_key found_key;
4222 u64 extent_start = 0;
4223 u64 extent_num_bytes = 0;
4224 u64 extent_offset = 0;
4225 u64 item_end = 0;
4226 u64 last_size = new_size;
4227 u32 found_type = (u8)-1;
4228 int found_extent;
4229 int del_item;
4230 int pending_del_nr = 0;
4231 int pending_del_slot = 0;
4232 int extent_type = -1;
4233 int ret;
4234 u64 ino = btrfs_ino(BTRFS_I(inode));
4235 u64 bytes_deleted = 0;
4236 bool be_nice = false;
4237 bool should_throttle = false;
4238 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4239 struct extent_state *cached_state = NULL;
4240
4241 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4242
4243 /*
4244 * For non-free space inodes and non-shareable roots, we want to back
4245 * off from time to time. This means all inodes in subvolume roots,
4246 * reloc roots, and data reloc roots.
4247 */
4248 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4249 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4250 be_nice = true;
4251
4252 path = btrfs_alloc_path();
4253 if (!path)
4254 return -ENOMEM;
4255 path->reada = READA_BACK;
4256
4257 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4258 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4259 &cached_state);
4260
4261 /*
4262 * We want to drop from the next block forward in case this
4263 * new size is not block aligned since we will be keeping the
4264 * last block of the extent just the way it is.
4265 */
4266 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4267 fs_info->sectorsize),
4268 (u64)-1, 0);
4269 }
4270
4271 /*
4272 * This function is also used to drop the items in the log tree before
4273 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4274 * it is used to drop the logged items. So we shouldn't kill the delayed
4275 * items.
4276 */
4277 if (min_type == 0 && root == BTRFS_I(inode)->root)
4278 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4279
4280 key.objectid = ino;
4281 key.offset = (u64)-1;
4282 key.type = (u8)-1;
4283
4284 search_again:
4285 /*
4286 * with a 16K leaf size and 128MB extents, you can actually queue
4287 * up a huge file in a single leaf. Most of the time that
4288 * bytes_deleted is > 0, it will be huge by the time we get here
4289 */
4290 if (be_nice && bytes_deleted > SZ_32M &&
4291 btrfs_should_end_transaction(trans)) {
4292 ret = -EAGAIN;
4293 goto out;
4294 }
4295
4296 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4297 if (ret < 0)
4298 goto out;
4299
4300 if (ret > 0) {
4301 ret = 0;
4302 /* there are no items in the tree for us to truncate, we're
4303 * done
4304 */
4305 if (path->slots[0] == 0)
4306 goto out;
4307 path->slots[0]--;
4308 }
4309
4310 while (1) {
4311 u64 clear_start = 0, clear_len = 0;
4312
4313 fi = NULL;
4314 leaf = path->nodes[0];
4315 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4316 found_type = found_key.type;
4317
4318 if (found_key.objectid != ino)
4319 break;
4320
4321 if (found_type < min_type)
4322 break;
4323
4324 item_end = found_key.offset;
4325 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4326 fi = btrfs_item_ptr(leaf, path->slots[0],
4327 struct btrfs_file_extent_item);
4328 extent_type = btrfs_file_extent_type(leaf, fi);
4329 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4330 item_end +=
4331 btrfs_file_extent_num_bytes(leaf, fi);
4332
4333 trace_btrfs_truncate_show_fi_regular(
4334 BTRFS_I(inode), leaf, fi,
4335 found_key.offset);
4336 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4337 item_end += btrfs_file_extent_ram_bytes(leaf,
4338 fi);
4339
4340 trace_btrfs_truncate_show_fi_inline(
4341 BTRFS_I(inode), leaf, fi, path->slots[0],
4342 found_key.offset);
4343 }
4344 item_end--;
4345 }
4346 if (found_type > min_type) {
4347 del_item = 1;
4348 } else {
4349 if (item_end < new_size)
4350 break;
4351 if (found_key.offset >= new_size)
4352 del_item = 1;
4353 else
4354 del_item = 0;
4355 }
4356 found_extent = 0;
4357 /* FIXME, shrink the extent if the ref count is only 1 */
4358 if (found_type != BTRFS_EXTENT_DATA_KEY)
4359 goto delete;
4360
4361 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4362 u64 num_dec;
4363
4364 clear_start = found_key.offset;
4365 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4366 if (!del_item) {
4367 u64 orig_num_bytes =
4368 btrfs_file_extent_num_bytes(leaf, fi);
4369 extent_num_bytes = ALIGN(new_size -
4370 found_key.offset,
4371 fs_info->sectorsize);
4372 clear_start = ALIGN(new_size, fs_info->sectorsize);
4373 btrfs_set_file_extent_num_bytes(leaf, fi,
4374 extent_num_bytes);
4375 num_dec = (orig_num_bytes -
4376 extent_num_bytes);
4377 if (test_bit(BTRFS_ROOT_SHAREABLE,
4378 &root->state) &&
4379 extent_start != 0)
4380 inode_sub_bytes(inode, num_dec);
4381 btrfs_mark_buffer_dirty(leaf);
4382 } else {
4383 extent_num_bytes =
4384 btrfs_file_extent_disk_num_bytes(leaf,
4385 fi);
4386 extent_offset = found_key.offset -
4387 btrfs_file_extent_offset(leaf, fi);
4388
4389 /* FIXME blocksize != 4096 */
4390 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4391 if (extent_start != 0) {
4392 found_extent = 1;
4393 if (test_bit(BTRFS_ROOT_SHAREABLE,
4394 &root->state))
4395 inode_sub_bytes(inode, num_dec);
4396 }
4397 }
4398 clear_len = num_dec;
4399 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4400 /*
4401 * we can't truncate inline items that have had
4402 * special encodings
4403 */
4404 if (!del_item &&
4405 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4406 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4407 btrfs_file_extent_compression(leaf, fi) == 0) {
4408 u32 size = (u32)(new_size - found_key.offset);
4409
4410 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4411 size = btrfs_file_extent_calc_inline_size(size);
4412 btrfs_truncate_item(path, size, 1);
4413 } else if (!del_item) {
4414 /*
4415 * We have to bail so the last_size is set to
4416 * just before this extent.
4417 */
4418 ret = NEED_TRUNCATE_BLOCK;
4419 break;
4420 } else {
4421 /*
4422 * Inline extents are special, we just treat
4423 * them as a full sector worth in the file
4424 * extent tree just for simplicity sake.
4425 */
4426 clear_len = fs_info->sectorsize;
4427 }
4428
4429 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4430 inode_sub_bytes(inode, item_end + 1 - new_size);
4431 }
4432 delete:
4433 /*
4434 * We use btrfs_truncate_inode_items() to clean up log trees for
4435 * multiple fsyncs, and in this case we don't want to clear the
4436 * file extent range because it's just the log.
4437 */
4438 if (root == BTRFS_I(inode)->root) {
4439 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4440 clear_start, clear_len);
4441 if (ret) {
4442 btrfs_abort_transaction(trans, ret);
4443 break;
4444 }
4445 }
4446
4447 if (del_item)
4448 last_size = found_key.offset;
4449 else
4450 last_size = new_size;
4451 if (del_item) {
4452 if (!pending_del_nr) {
4453 /* no pending yet, add ourselves */
4454 pending_del_slot = path->slots[0];
4455 pending_del_nr = 1;
4456 } else if (pending_del_nr &&
4457 path->slots[0] + 1 == pending_del_slot) {
4458 /* hop on the pending chunk */
4459 pending_del_nr++;
4460 pending_del_slot = path->slots[0];
4461 } else {
4462 BUG();
4463 }
4464 } else {
4465 break;
4466 }
4467 should_throttle = false;
4468
4469 if (found_extent &&
4470 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4471 struct btrfs_ref ref = { 0 };
4472
4473 bytes_deleted += extent_num_bytes;
4474
4475 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4476 extent_start, extent_num_bytes, 0);
4477 ref.real_root = root->root_key.objectid;
4478 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4479 ino, extent_offset);
4480 ret = btrfs_free_extent(trans, &ref);
4481 if (ret) {
4482 btrfs_abort_transaction(trans, ret);
4483 break;
4484 }
4485 if (be_nice) {
4486 if (btrfs_should_throttle_delayed_refs(trans))
4487 should_throttle = true;
4488 }
4489 }
4490
4491 if (found_type == BTRFS_INODE_ITEM_KEY)
4492 break;
4493
4494 if (path->slots[0] == 0 ||
4495 path->slots[0] != pending_del_slot ||
4496 should_throttle) {
4497 if (pending_del_nr) {
4498 ret = btrfs_del_items(trans, root, path,
4499 pending_del_slot,
4500 pending_del_nr);
4501 if (ret) {
4502 btrfs_abort_transaction(trans, ret);
4503 break;
4504 }
4505 pending_del_nr = 0;
4506 }
4507 btrfs_release_path(path);
4508
4509 /*
4510 * We can generate a lot of delayed refs, so we need to
4511 * throttle every once and a while and make sure we're
4512 * adding enough space to keep up with the work we are
4513 * generating. Since we hold a transaction here we
4514 * can't flush, and we don't want to FLUSH_LIMIT because
4515 * we could have generated too many delayed refs to
4516 * actually allocate, so just bail if we're short and
4517 * let the normal reservation dance happen higher up.
4518 */
4519 if (should_throttle) {
4520 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4521 BTRFS_RESERVE_NO_FLUSH);
4522 if (ret) {
4523 ret = -EAGAIN;
4524 break;
4525 }
4526 }
4527 goto search_again;
4528 } else {
4529 path->slots[0]--;
4530 }
4531 }
4532 out:
4533 if (ret >= 0 && pending_del_nr) {
4534 int err;
4535
4536 err = btrfs_del_items(trans, root, path, pending_del_slot,
4537 pending_del_nr);
4538 if (err) {
4539 btrfs_abort_transaction(trans, err);
4540 ret = err;
4541 }
4542 }
4543 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4544 ASSERT(last_size >= new_size);
4545 if (!ret && last_size > new_size)
4546 last_size = new_size;
4547 btrfs_inode_safe_disk_i_size_write(inode, last_size);
4548 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4549 (u64)-1, &cached_state);
4550 }
4551
4552 btrfs_free_path(path);
4553 return ret;
4554 }
4555
4556 /*
4557 * btrfs_truncate_block - read, zero a chunk and write a block
4558 * @inode - inode that we're zeroing
4559 * @from - the offset to start zeroing
4560 * @len - the length to zero, 0 to zero the entire range respective to the
4561 * offset
4562 * @front - zero up to the offset instead of from the offset on
4563 *
4564 * This will find the block for the "from" offset and cow the block and zero the
4565 * part we want to zero. This is used with truncate and hole punching.
4566 */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4567 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4568 int front)
4569 {
4570 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4571 struct address_space *mapping = inode->i_mapping;
4572 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4573 struct btrfs_ordered_extent *ordered;
4574 struct extent_state *cached_state = NULL;
4575 struct extent_changeset *data_reserved = NULL;
4576 char *kaddr;
4577 bool only_release_metadata = false;
4578 u32 blocksize = fs_info->sectorsize;
4579 pgoff_t index = from >> PAGE_SHIFT;
4580 unsigned offset = from & (blocksize - 1);
4581 struct page *page;
4582 gfp_t mask = btrfs_alloc_write_mask(mapping);
4583 size_t write_bytes = blocksize;
4584 int ret = 0;
4585 u64 block_start;
4586 u64 block_end;
4587
4588 if (IS_ALIGNED(offset, blocksize) &&
4589 (!len || IS_ALIGNED(len, blocksize)))
4590 goto out;
4591
4592 block_start = round_down(from, blocksize);
4593 block_end = block_start + blocksize - 1;
4594
4595 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4596 block_start, blocksize);
4597 if (ret < 0) {
4598 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4599 &write_bytes) > 0) {
4600 /* For nocow case, no need to reserve data space */
4601 only_release_metadata = true;
4602 } else {
4603 goto out;
4604 }
4605 }
4606 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4607 if (ret < 0) {
4608 if (!only_release_metadata)
4609 btrfs_free_reserved_data_space(BTRFS_I(inode),
4610 data_reserved, block_start, blocksize);
4611 goto out;
4612 }
4613 again:
4614 page = find_or_create_page(mapping, index, mask);
4615 if (!page) {
4616 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4617 block_start, blocksize, true);
4618 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4619 ret = -ENOMEM;
4620 goto out;
4621 }
4622
4623 if (!PageUptodate(page)) {
4624 ret = btrfs_readpage(NULL, page);
4625 lock_page(page);
4626 if (page->mapping != mapping) {
4627 unlock_page(page);
4628 put_page(page);
4629 goto again;
4630 }
4631 if (!PageUptodate(page)) {
4632 ret = -EIO;
4633 goto out_unlock;
4634 }
4635 }
4636 wait_on_page_writeback(page);
4637
4638 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4639 set_page_extent_mapped(page);
4640
4641 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
4642 if (ordered) {
4643 unlock_extent_cached(io_tree, block_start, block_end,
4644 &cached_state);
4645 unlock_page(page);
4646 put_page(page);
4647 btrfs_start_ordered_extent(ordered, 1);
4648 btrfs_put_ordered_extent(ordered);
4649 goto again;
4650 }
4651
4652 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4653 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4654 0, 0, &cached_state);
4655
4656 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
4657 &cached_state);
4658 if (ret) {
4659 unlock_extent_cached(io_tree, block_start, block_end,
4660 &cached_state);
4661 goto out_unlock;
4662 }
4663
4664 if (offset != blocksize) {
4665 if (!len)
4666 len = blocksize - offset;
4667 kaddr = kmap(page);
4668 if (front)
4669 memset(kaddr + (block_start - page_offset(page)),
4670 0, offset);
4671 else
4672 memset(kaddr + (block_start - page_offset(page)) + offset,
4673 0, len);
4674 flush_dcache_page(page);
4675 kunmap(page);
4676 }
4677 ClearPageChecked(page);
4678 set_page_dirty(page);
4679 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4680
4681 if (only_release_metadata)
4682 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4683 block_end, EXTENT_NORESERVE, NULL, NULL,
4684 GFP_NOFS);
4685
4686 out_unlock:
4687 if (ret) {
4688 if (only_release_metadata)
4689 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4690 blocksize, true);
4691 else
4692 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4693 block_start, blocksize, true);
4694 }
4695 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4696 unlock_page(page);
4697 put_page(page);
4698 out:
4699 if (only_release_metadata)
4700 btrfs_check_nocow_unlock(BTRFS_I(inode));
4701 extent_changeset_free(data_reserved);
4702 return ret;
4703 }
4704
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)4705 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4706 u64 offset, u64 len)
4707 {
4708 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4709 struct btrfs_trans_handle *trans;
4710 int ret;
4711
4712 /*
4713 * Still need to make sure the inode looks like it's been updated so
4714 * that any holes get logged if we fsync.
4715 */
4716 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4717 BTRFS_I(inode)->last_trans = fs_info->generation;
4718 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4719 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4720 return 0;
4721 }
4722
4723 /*
4724 * 1 - for the one we're dropping
4725 * 1 - for the one we're adding
4726 * 1 - for updating the inode.
4727 */
4728 trans = btrfs_start_transaction(root, 3);
4729 if (IS_ERR(trans))
4730 return PTR_ERR(trans);
4731
4732 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4733 if (ret) {
4734 btrfs_abort_transaction(trans, ret);
4735 btrfs_end_transaction(trans);
4736 return ret;
4737 }
4738
4739 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4740 offset, 0, 0, len, 0, len, 0, 0, 0);
4741 if (ret)
4742 btrfs_abort_transaction(trans, ret);
4743 else
4744 btrfs_update_inode(trans, root, inode);
4745 btrfs_end_transaction(trans);
4746 return ret;
4747 }
4748
4749 /*
4750 * This function puts in dummy file extents for the area we're creating a hole
4751 * for. So if we are truncating this file to a larger size we need to insert
4752 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4753 * the range between oldsize and size
4754 */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)4755 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4756 {
4757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4758 struct btrfs_root *root = BTRFS_I(inode)->root;
4759 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4760 struct extent_map *em = NULL;
4761 struct extent_state *cached_state = NULL;
4762 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4763 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4764 u64 block_end = ALIGN(size, fs_info->sectorsize);
4765 u64 last_byte;
4766 u64 cur_offset;
4767 u64 hole_size;
4768 int err = 0;
4769
4770 /*
4771 * If our size started in the middle of a block we need to zero out the
4772 * rest of the block before we expand the i_size, otherwise we could
4773 * expose stale data.
4774 */
4775 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4776 if (err)
4777 return err;
4778
4779 if (size <= hole_start)
4780 return 0;
4781
4782 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
4783 block_end - 1, &cached_state);
4784 cur_offset = hole_start;
4785 while (1) {
4786 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4787 block_end - cur_offset);
4788 if (IS_ERR(em)) {
4789 err = PTR_ERR(em);
4790 em = NULL;
4791 break;
4792 }
4793 last_byte = min(extent_map_end(em), block_end);
4794 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4795 hole_size = last_byte - cur_offset;
4796
4797 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4798 struct extent_map *hole_em;
4799
4800 err = maybe_insert_hole(root, inode, cur_offset,
4801 hole_size);
4802 if (err)
4803 break;
4804
4805 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4806 cur_offset, hole_size);
4807 if (err)
4808 break;
4809
4810 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4811 cur_offset + hole_size - 1, 0);
4812 hole_em = alloc_extent_map();
4813 if (!hole_em) {
4814 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4815 &BTRFS_I(inode)->runtime_flags);
4816 goto next;
4817 }
4818 hole_em->start = cur_offset;
4819 hole_em->len = hole_size;
4820 hole_em->orig_start = cur_offset;
4821
4822 hole_em->block_start = EXTENT_MAP_HOLE;
4823 hole_em->block_len = 0;
4824 hole_em->orig_block_len = 0;
4825 hole_em->ram_bytes = hole_size;
4826 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4827 hole_em->generation = fs_info->generation;
4828
4829 while (1) {
4830 write_lock(&em_tree->lock);
4831 err = add_extent_mapping(em_tree, hole_em, 1);
4832 write_unlock(&em_tree->lock);
4833 if (err != -EEXIST)
4834 break;
4835 btrfs_drop_extent_cache(BTRFS_I(inode),
4836 cur_offset,
4837 cur_offset +
4838 hole_size - 1, 0);
4839 }
4840 free_extent_map(hole_em);
4841 } else {
4842 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4843 cur_offset, hole_size);
4844 if (err)
4845 break;
4846 }
4847 next:
4848 free_extent_map(em);
4849 em = NULL;
4850 cur_offset = last_byte;
4851 if (cur_offset >= block_end)
4852 break;
4853 }
4854 free_extent_map(em);
4855 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4856 return err;
4857 }
4858
btrfs_setsize(struct inode * inode,struct iattr * attr)4859 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4860 {
4861 struct btrfs_root *root = BTRFS_I(inode)->root;
4862 struct btrfs_trans_handle *trans;
4863 loff_t oldsize = i_size_read(inode);
4864 loff_t newsize = attr->ia_size;
4865 int mask = attr->ia_valid;
4866 int ret;
4867
4868 /*
4869 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4870 * special case where we need to update the times despite not having
4871 * these flags set. For all other operations the VFS set these flags
4872 * explicitly if it wants a timestamp update.
4873 */
4874 if (newsize != oldsize) {
4875 inode_inc_iversion(inode);
4876 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4877 inode->i_ctime = inode->i_mtime =
4878 current_time(inode);
4879 }
4880
4881 if (newsize > oldsize) {
4882 /*
4883 * Don't do an expanding truncate while snapshotting is ongoing.
4884 * This is to ensure the snapshot captures a fully consistent
4885 * state of this file - if the snapshot captures this expanding
4886 * truncation, it must capture all writes that happened before
4887 * this truncation.
4888 */
4889 btrfs_drew_write_lock(&root->snapshot_lock);
4890 ret = btrfs_cont_expand(inode, oldsize, newsize);
4891 if (ret) {
4892 btrfs_drew_write_unlock(&root->snapshot_lock);
4893 return ret;
4894 }
4895
4896 trans = btrfs_start_transaction(root, 1);
4897 if (IS_ERR(trans)) {
4898 btrfs_drew_write_unlock(&root->snapshot_lock);
4899 return PTR_ERR(trans);
4900 }
4901
4902 i_size_write(inode, newsize);
4903 btrfs_inode_safe_disk_i_size_write(inode, 0);
4904 pagecache_isize_extended(inode, oldsize, newsize);
4905 ret = btrfs_update_inode(trans, root, inode);
4906 btrfs_drew_write_unlock(&root->snapshot_lock);
4907 btrfs_end_transaction(trans);
4908 } else {
4909
4910 /*
4911 * We're truncating a file that used to have good data down to
4912 * zero. Make sure any new writes to the file get on disk
4913 * on close.
4914 */
4915 if (newsize == 0)
4916 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
4917 &BTRFS_I(inode)->runtime_flags);
4918
4919 truncate_setsize(inode, newsize);
4920
4921 inode_dio_wait(inode);
4922
4923 ret = btrfs_truncate(inode, newsize == oldsize);
4924 if (ret && inode->i_nlink) {
4925 int err;
4926
4927 /*
4928 * Truncate failed, so fix up the in-memory size. We
4929 * adjusted disk_i_size down as we removed extents, so
4930 * wait for disk_i_size to be stable and then update the
4931 * in-memory size to match.
4932 */
4933 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4934 if (err)
4935 return err;
4936 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4937 }
4938 }
4939
4940 return ret;
4941 }
4942
btrfs_setattr(struct dentry * dentry,struct iattr * attr)4943 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4944 {
4945 struct inode *inode = d_inode(dentry);
4946 struct btrfs_root *root = BTRFS_I(inode)->root;
4947 int err;
4948
4949 if (btrfs_root_readonly(root))
4950 return -EROFS;
4951
4952 err = setattr_prepare(dentry, attr);
4953 if (err)
4954 return err;
4955
4956 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4957 err = btrfs_setsize(inode, attr);
4958 if (err)
4959 return err;
4960 }
4961
4962 if (attr->ia_valid) {
4963 setattr_copy(inode, attr);
4964 inode_inc_iversion(inode);
4965 err = btrfs_dirty_inode(inode);
4966
4967 if (!err && attr->ia_valid & ATTR_MODE)
4968 err = posix_acl_chmod(inode, inode->i_mode);
4969 }
4970
4971 return err;
4972 }
4973
4974 /*
4975 * While truncating the inode pages during eviction, we get the VFS calling
4976 * btrfs_invalidatepage() against each page of the inode. This is slow because
4977 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4978 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4979 * extent_state structures over and over, wasting lots of time.
4980 *
4981 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4982 * those expensive operations on a per page basis and do only the ordered io
4983 * finishing, while we release here the extent_map and extent_state structures,
4984 * without the excessive merging and splitting.
4985 */
evict_inode_truncate_pages(struct inode * inode)4986 static void evict_inode_truncate_pages(struct inode *inode)
4987 {
4988 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4989 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4990 struct rb_node *node;
4991
4992 ASSERT(inode->i_state & I_FREEING);
4993 truncate_inode_pages_final(&inode->i_data);
4994
4995 write_lock(&map_tree->lock);
4996 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
4997 struct extent_map *em;
4998
4999 node = rb_first_cached(&map_tree->map);
5000 em = rb_entry(node, struct extent_map, rb_node);
5001 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5002 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5003 remove_extent_mapping(map_tree, em);
5004 free_extent_map(em);
5005 if (need_resched()) {
5006 write_unlock(&map_tree->lock);
5007 cond_resched();
5008 write_lock(&map_tree->lock);
5009 }
5010 }
5011 write_unlock(&map_tree->lock);
5012
5013 /*
5014 * Keep looping until we have no more ranges in the io tree.
5015 * We can have ongoing bios started by readahead that have
5016 * their endio callback (extent_io.c:end_bio_extent_readpage)
5017 * still in progress (unlocked the pages in the bio but did not yet
5018 * unlocked the ranges in the io tree). Therefore this means some
5019 * ranges can still be locked and eviction started because before
5020 * submitting those bios, which are executed by a separate task (work
5021 * queue kthread), inode references (inode->i_count) were not taken
5022 * (which would be dropped in the end io callback of each bio).
5023 * Therefore here we effectively end up waiting for those bios and
5024 * anyone else holding locked ranges without having bumped the inode's
5025 * reference count - if we don't do it, when they access the inode's
5026 * io_tree to unlock a range it may be too late, leading to an
5027 * use-after-free issue.
5028 */
5029 spin_lock(&io_tree->lock);
5030 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5031 struct extent_state *state;
5032 struct extent_state *cached_state = NULL;
5033 u64 start;
5034 u64 end;
5035 unsigned state_flags;
5036
5037 node = rb_first(&io_tree->state);
5038 state = rb_entry(node, struct extent_state, rb_node);
5039 start = state->start;
5040 end = state->end;
5041 state_flags = state->state;
5042 spin_unlock(&io_tree->lock);
5043
5044 lock_extent_bits(io_tree, start, end, &cached_state);
5045
5046 /*
5047 * If still has DELALLOC flag, the extent didn't reach disk,
5048 * and its reserved space won't be freed by delayed_ref.
5049 * So we need to free its reserved space here.
5050 * (Refer to comment in btrfs_invalidatepage, case 2)
5051 *
5052 * Note, end is the bytenr of last byte, so we need + 1 here.
5053 */
5054 if (state_flags & EXTENT_DELALLOC)
5055 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5056 end - start + 1);
5057
5058 clear_extent_bit(io_tree, start, end,
5059 EXTENT_LOCKED | EXTENT_DELALLOC |
5060 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5061 &cached_state);
5062
5063 cond_resched();
5064 spin_lock(&io_tree->lock);
5065 }
5066 spin_unlock(&io_tree->lock);
5067 }
5068
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5069 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5070 struct btrfs_block_rsv *rsv)
5071 {
5072 struct btrfs_fs_info *fs_info = root->fs_info;
5073 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5074 struct btrfs_trans_handle *trans;
5075 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5076 int ret;
5077
5078 /*
5079 * Eviction should be taking place at some place safe because of our
5080 * delayed iputs. However the normal flushing code will run delayed
5081 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5082 *
5083 * We reserve the delayed_refs_extra here again because we can't use
5084 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5085 * above. We reserve our extra bit here because we generate a ton of
5086 * delayed refs activity by truncating.
5087 *
5088 * If we cannot make our reservation we'll attempt to steal from the
5089 * global reserve, because we really want to be able to free up space.
5090 */
5091 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5092 BTRFS_RESERVE_FLUSH_EVICT);
5093 if (ret) {
5094 /*
5095 * Try to steal from the global reserve if there is space for
5096 * it.
5097 */
5098 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5099 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5100 btrfs_warn(fs_info,
5101 "could not allocate space for delete; will truncate on mount");
5102 return ERR_PTR(-ENOSPC);
5103 }
5104 delayed_refs_extra = 0;
5105 }
5106
5107 trans = btrfs_join_transaction(root);
5108 if (IS_ERR(trans))
5109 return trans;
5110
5111 if (delayed_refs_extra) {
5112 trans->block_rsv = &fs_info->trans_block_rsv;
5113 trans->bytes_reserved = delayed_refs_extra;
5114 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5115 delayed_refs_extra, 1);
5116 }
5117 return trans;
5118 }
5119
btrfs_evict_inode(struct inode * inode)5120 void btrfs_evict_inode(struct inode *inode)
5121 {
5122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5123 struct btrfs_trans_handle *trans;
5124 struct btrfs_root *root = BTRFS_I(inode)->root;
5125 struct btrfs_block_rsv *rsv;
5126 int ret;
5127
5128 trace_btrfs_inode_evict(inode);
5129
5130 if (!root) {
5131 clear_inode(inode);
5132 return;
5133 }
5134
5135 evict_inode_truncate_pages(inode);
5136
5137 if (inode->i_nlink &&
5138 ((btrfs_root_refs(&root->root_item) != 0 &&
5139 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5140 btrfs_is_free_space_inode(BTRFS_I(inode))))
5141 goto no_delete;
5142
5143 if (is_bad_inode(inode))
5144 goto no_delete;
5145
5146 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5147
5148 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5149 goto no_delete;
5150
5151 if (inode->i_nlink > 0) {
5152 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5153 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5154 goto no_delete;
5155 }
5156
5157 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5158 if (ret)
5159 goto no_delete;
5160
5161 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5162 if (!rsv)
5163 goto no_delete;
5164 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5165 rsv->failfast = 1;
5166
5167 btrfs_i_size_write(BTRFS_I(inode), 0);
5168
5169 while (1) {
5170 trans = evict_refill_and_join(root, rsv);
5171 if (IS_ERR(trans))
5172 goto free_rsv;
5173
5174 trans->block_rsv = rsv;
5175
5176 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5177 trans->block_rsv = &fs_info->trans_block_rsv;
5178 btrfs_end_transaction(trans);
5179 btrfs_btree_balance_dirty(fs_info);
5180 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5181 goto free_rsv;
5182 else if (!ret)
5183 break;
5184 }
5185
5186 /*
5187 * Errors here aren't a big deal, it just means we leave orphan items in
5188 * the tree. They will be cleaned up on the next mount. If the inode
5189 * number gets reused, cleanup deletes the orphan item without doing
5190 * anything, and unlink reuses the existing orphan item.
5191 *
5192 * If it turns out that we are dropping too many of these, we might want
5193 * to add a mechanism for retrying these after a commit.
5194 */
5195 trans = evict_refill_and_join(root, rsv);
5196 if (!IS_ERR(trans)) {
5197 trans->block_rsv = rsv;
5198 btrfs_orphan_del(trans, BTRFS_I(inode));
5199 trans->block_rsv = &fs_info->trans_block_rsv;
5200 btrfs_end_transaction(trans);
5201 }
5202
5203 if (!(root == fs_info->tree_root ||
5204 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5205 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5206
5207 free_rsv:
5208 btrfs_free_block_rsv(fs_info, rsv);
5209 no_delete:
5210 /*
5211 * If we didn't successfully delete, the orphan item will still be in
5212 * the tree and we'll retry on the next mount. Again, we might also want
5213 * to retry these periodically in the future.
5214 */
5215 btrfs_remove_delayed_node(BTRFS_I(inode));
5216 clear_inode(inode);
5217 }
5218
5219 /*
5220 * Return the key found in the dir entry in the location pointer, fill @type
5221 * with BTRFS_FT_*, and return 0.
5222 *
5223 * If no dir entries were found, returns -ENOENT.
5224 * If found a corrupted location in dir entry, returns -EUCLEAN.
5225 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5226 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5227 struct btrfs_key *location, u8 *type)
5228 {
5229 const char *name = dentry->d_name.name;
5230 int namelen = dentry->d_name.len;
5231 struct btrfs_dir_item *di;
5232 struct btrfs_path *path;
5233 struct btrfs_root *root = BTRFS_I(dir)->root;
5234 int ret = 0;
5235
5236 path = btrfs_alloc_path();
5237 if (!path)
5238 return -ENOMEM;
5239
5240 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5241 name, namelen, 0);
5242 if (IS_ERR_OR_NULL(di)) {
5243 ret = di ? PTR_ERR(di) : -ENOENT;
5244 goto out;
5245 }
5246
5247 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5248 if (location->type != BTRFS_INODE_ITEM_KEY &&
5249 location->type != BTRFS_ROOT_ITEM_KEY) {
5250 ret = -EUCLEAN;
5251 btrfs_warn(root->fs_info,
5252 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5253 __func__, name, btrfs_ino(BTRFS_I(dir)),
5254 location->objectid, location->type, location->offset);
5255 }
5256 if (!ret)
5257 *type = btrfs_dir_type(path->nodes[0], di);
5258 out:
5259 btrfs_free_path(path);
5260 return ret;
5261 }
5262
5263 /*
5264 * when we hit a tree root in a directory, the btrfs part of the inode
5265 * needs to be changed to reflect the root directory of the tree root. This
5266 * is kind of like crossing a mount point.
5267 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5268 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5269 struct inode *dir,
5270 struct dentry *dentry,
5271 struct btrfs_key *location,
5272 struct btrfs_root **sub_root)
5273 {
5274 struct btrfs_path *path;
5275 struct btrfs_root *new_root;
5276 struct btrfs_root_ref *ref;
5277 struct extent_buffer *leaf;
5278 struct btrfs_key key;
5279 int ret;
5280 int err = 0;
5281
5282 path = btrfs_alloc_path();
5283 if (!path) {
5284 err = -ENOMEM;
5285 goto out;
5286 }
5287
5288 err = -ENOENT;
5289 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5290 key.type = BTRFS_ROOT_REF_KEY;
5291 key.offset = location->objectid;
5292
5293 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5294 if (ret) {
5295 if (ret < 0)
5296 err = ret;
5297 goto out;
5298 }
5299
5300 leaf = path->nodes[0];
5301 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5302 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5303 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5304 goto out;
5305
5306 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5307 (unsigned long)(ref + 1),
5308 dentry->d_name.len);
5309 if (ret)
5310 goto out;
5311
5312 btrfs_release_path(path);
5313
5314 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5315 if (IS_ERR(new_root)) {
5316 err = PTR_ERR(new_root);
5317 goto out;
5318 }
5319
5320 *sub_root = new_root;
5321 location->objectid = btrfs_root_dirid(&new_root->root_item);
5322 location->type = BTRFS_INODE_ITEM_KEY;
5323 location->offset = 0;
5324 err = 0;
5325 out:
5326 btrfs_free_path(path);
5327 return err;
5328 }
5329
inode_tree_add(struct inode * inode)5330 static void inode_tree_add(struct inode *inode)
5331 {
5332 struct btrfs_root *root = BTRFS_I(inode)->root;
5333 struct btrfs_inode *entry;
5334 struct rb_node **p;
5335 struct rb_node *parent;
5336 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5337 u64 ino = btrfs_ino(BTRFS_I(inode));
5338
5339 if (inode_unhashed(inode))
5340 return;
5341 parent = NULL;
5342 spin_lock(&root->inode_lock);
5343 p = &root->inode_tree.rb_node;
5344 while (*p) {
5345 parent = *p;
5346 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5347
5348 if (ino < btrfs_ino(entry))
5349 p = &parent->rb_left;
5350 else if (ino > btrfs_ino(entry))
5351 p = &parent->rb_right;
5352 else {
5353 WARN_ON(!(entry->vfs_inode.i_state &
5354 (I_WILL_FREE | I_FREEING)));
5355 rb_replace_node(parent, new, &root->inode_tree);
5356 RB_CLEAR_NODE(parent);
5357 spin_unlock(&root->inode_lock);
5358 return;
5359 }
5360 }
5361 rb_link_node(new, parent, p);
5362 rb_insert_color(new, &root->inode_tree);
5363 spin_unlock(&root->inode_lock);
5364 }
5365
inode_tree_del(struct btrfs_inode * inode)5366 static void inode_tree_del(struct btrfs_inode *inode)
5367 {
5368 struct btrfs_root *root = inode->root;
5369 int empty = 0;
5370
5371 spin_lock(&root->inode_lock);
5372 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5373 rb_erase(&inode->rb_node, &root->inode_tree);
5374 RB_CLEAR_NODE(&inode->rb_node);
5375 empty = RB_EMPTY_ROOT(&root->inode_tree);
5376 }
5377 spin_unlock(&root->inode_lock);
5378
5379 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5380 spin_lock(&root->inode_lock);
5381 empty = RB_EMPTY_ROOT(&root->inode_tree);
5382 spin_unlock(&root->inode_lock);
5383 if (empty)
5384 btrfs_add_dead_root(root);
5385 }
5386 }
5387
5388
btrfs_init_locked_inode(struct inode * inode,void * p)5389 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5390 {
5391 struct btrfs_iget_args *args = p;
5392
5393 inode->i_ino = args->ino;
5394 BTRFS_I(inode)->location.objectid = args->ino;
5395 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5396 BTRFS_I(inode)->location.offset = 0;
5397 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5398 BUG_ON(args->root && !BTRFS_I(inode)->root);
5399 return 0;
5400 }
5401
btrfs_find_actor(struct inode * inode,void * opaque)5402 static int btrfs_find_actor(struct inode *inode, void *opaque)
5403 {
5404 struct btrfs_iget_args *args = opaque;
5405
5406 return args->ino == BTRFS_I(inode)->location.objectid &&
5407 args->root == BTRFS_I(inode)->root;
5408 }
5409
btrfs_iget_locked(struct super_block * s,u64 ino,struct btrfs_root * root)5410 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5411 struct btrfs_root *root)
5412 {
5413 struct inode *inode;
5414 struct btrfs_iget_args args;
5415 unsigned long hashval = btrfs_inode_hash(ino, root);
5416
5417 args.ino = ino;
5418 args.root = root;
5419
5420 inode = iget5_locked(s, hashval, btrfs_find_actor,
5421 btrfs_init_locked_inode,
5422 (void *)&args);
5423 return inode;
5424 }
5425
5426 /*
5427 * Get an inode object given its inode number and corresponding root.
5428 * Path can be preallocated to prevent recursing back to iget through
5429 * allocator. NULL is also valid but may require an additional allocation
5430 * later.
5431 */
btrfs_iget_path(struct super_block * s,u64 ino,struct btrfs_root * root,struct btrfs_path * path)5432 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5433 struct btrfs_root *root, struct btrfs_path *path)
5434 {
5435 struct inode *inode;
5436
5437 inode = btrfs_iget_locked(s, ino, root);
5438 if (!inode)
5439 return ERR_PTR(-ENOMEM);
5440
5441 if (inode->i_state & I_NEW) {
5442 int ret;
5443
5444 ret = btrfs_read_locked_inode(inode, path);
5445 if (!ret) {
5446 inode_tree_add(inode);
5447 unlock_new_inode(inode);
5448 } else {
5449 iget_failed(inode);
5450 /*
5451 * ret > 0 can come from btrfs_search_slot called by
5452 * btrfs_read_locked_inode, this means the inode item
5453 * was not found.
5454 */
5455 if (ret > 0)
5456 ret = -ENOENT;
5457 inode = ERR_PTR(ret);
5458 }
5459 }
5460
5461 return inode;
5462 }
5463
btrfs_iget(struct super_block * s,u64 ino,struct btrfs_root * root)5464 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5465 {
5466 return btrfs_iget_path(s, ino, root, NULL);
5467 }
5468
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5469 static struct inode *new_simple_dir(struct super_block *s,
5470 struct btrfs_key *key,
5471 struct btrfs_root *root)
5472 {
5473 struct inode *inode = new_inode(s);
5474
5475 if (!inode)
5476 return ERR_PTR(-ENOMEM);
5477
5478 BTRFS_I(inode)->root = btrfs_grab_root(root);
5479 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5480 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5481
5482 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5483 /*
5484 * We only need lookup, the rest is read-only and there's no inode
5485 * associated with the dentry
5486 */
5487 inode->i_op = &simple_dir_inode_operations;
5488 inode->i_opflags &= ~IOP_XATTR;
5489 inode->i_fop = &simple_dir_operations;
5490 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5491 inode->i_mtime = current_time(inode);
5492 inode->i_atime = inode->i_mtime;
5493 inode->i_ctime = inode->i_mtime;
5494 BTRFS_I(inode)->i_otime = inode->i_mtime;
5495
5496 return inode;
5497 }
5498
btrfs_inode_type(struct inode * inode)5499 static inline u8 btrfs_inode_type(struct inode *inode)
5500 {
5501 /*
5502 * Compile-time asserts that generic FT_* types still match
5503 * BTRFS_FT_* types
5504 */
5505 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5506 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5507 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5508 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5509 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5510 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5511 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5512 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5513
5514 return fs_umode_to_ftype(inode->i_mode);
5515 }
5516
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5517 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5518 {
5519 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5520 struct inode *inode;
5521 struct btrfs_root *root = BTRFS_I(dir)->root;
5522 struct btrfs_root *sub_root = root;
5523 struct btrfs_key location;
5524 u8 di_type = 0;
5525 int ret = 0;
5526
5527 if (dentry->d_name.len > BTRFS_NAME_LEN)
5528 return ERR_PTR(-ENAMETOOLONG);
5529
5530 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5531 if (ret < 0)
5532 return ERR_PTR(ret);
5533
5534 if (location.type == BTRFS_INODE_ITEM_KEY) {
5535 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5536 if (IS_ERR(inode))
5537 return inode;
5538
5539 /* Do extra check against inode mode with di_type */
5540 if (btrfs_inode_type(inode) != di_type) {
5541 btrfs_crit(fs_info,
5542 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5543 inode->i_mode, btrfs_inode_type(inode),
5544 di_type);
5545 iput(inode);
5546 return ERR_PTR(-EUCLEAN);
5547 }
5548 return inode;
5549 }
5550
5551 ret = fixup_tree_root_location(fs_info, dir, dentry,
5552 &location, &sub_root);
5553 if (ret < 0) {
5554 if (ret != -ENOENT)
5555 inode = ERR_PTR(ret);
5556 else
5557 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5558 } else {
5559 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5560 }
5561 if (root != sub_root)
5562 btrfs_put_root(sub_root);
5563
5564 if (!IS_ERR(inode) && root != sub_root) {
5565 down_read(&fs_info->cleanup_work_sem);
5566 if (!sb_rdonly(inode->i_sb))
5567 ret = btrfs_orphan_cleanup(sub_root);
5568 up_read(&fs_info->cleanup_work_sem);
5569 if (ret) {
5570 iput(inode);
5571 inode = ERR_PTR(ret);
5572 }
5573 }
5574
5575 return inode;
5576 }
5577
btrfs_dentry_delete(const struct dentry * dentry)5578 static int btrfs_dentry_delete(const struct dentry *dentry)
5579 {
5580 struct btrfs_root *root;
5581 struct inode *inode = d_inode(dentry);
5582
5583 if (!inode && !IS_ROOT(dentry))
5584 inode = d_inode(dentry->d_parent);
5585
5586 if (inode) {
5587 root = BTRFS_I(inode)->root;
5588 if (btrfs_root_refs(&root->root_item) == 0)
5589 return 1;
5590
5591 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5592 return 1;
5593 }
5594 return 0;
5595 }
5596
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5597 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5598 unsigned int flags)
5599 {
5600 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5601
5602 if (inode == ERR_PTR(-ENOENT))
5603 inode = NULL;
5604 return d_splice_alias(inode, dentry);
5605 }
5606
5607 /*
5608 * All this infrastructure exists because dir_emit can fault, and we are holding
5609 * the tree lock when doing readdir. For now just allocate a buffer and copy
5610 * our information into that, and then dir_emit from the buffer. This is
5611 * similar to what NFS does, only we don't keep the buffer around in pagecache
5612 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5613 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5614 * tree lock.
5615 */
btrfs_opendir(struct inode * inode,struct file * file)5616 static int btrfs_opendir(struct inode *inode, struct file *file)
5617 {
5618 struct btrfs_file_private *private;
5619
5620 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5621 if (!private)
5622 return -ENOMEM;
5623 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5624 if (!private->filldir_buf) {
5625 kfree(private);
5626 return -ENOMEM;
5627 }
5628 file->private_data = private;
5629 return 0;
5630 }
5631
5632 struct dir_entry {
5633 u64 ino;
5634 u64 offset;
5635 unsigned type;
5636 int name_len;
5637 };
5638
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5639 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5640 {
5641 while (entries--) {
5642 struct dir_entry *entry = addr;
5643 char *name = (char *)(entry + 1);
5644
5645 ctx->pos = get_unaligned(&entry->offset);
5646 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5647 get_unaligned(&entry->ino),
5648 get_unaligned(&entry->type)))
5649 return 1;
5650 addr += sizeof(struct dir_entry) +
5651 get_unaligned(&entry->name_len);
5652 ctx->pos++;
5653 }
5654 return 0;
5655 }
5656
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5657 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5658 {
5659 struct inode *inode = file_inode(file);
5660 struct btrfs_root *root = BTRFS_I(inode)->root;
5661 struct btrfs_file_private *private = file->private_data;
5662 struct btrfs_dir_item *di;
5663 struct btrfs_key key;
5664 struct btrfs_key found_key;
5665 struct btrfs_path *path;
5666 void *addr;
5667 struct list_head ins_list;
5668 struct list_head del_list;
5669 int ret;
5670 struct extent_buffer *leaf;
5671 int slot;
5672 char *name_ptr;
5673 int name_len;
5674 int entries = 0;
5675 int total_len = 0;
5676 bool put = false;
5677 struct btrfs_key location;
5678
5679 if (!dir_emit_dots(file, ctx))
5680 return 0;
5681
5682 path = btrfs_alloc_path();
5683 if (!path)
5684 return -ENOMEM;
5685
5686 addr = private->filldir_buf;
5687 path->reada = READA_FORWARD;
5688
5689 INIT_LIST_HEAD(&ins_list);
5690 INIT_LIST_HEAD(&del_list);
5691 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5692
5693 again:
5694 key.type = BTRFS_DIR_INDEX_KEY;
5695 key.offset = ctx->pos;
5696 key.objectid = btrfs_ino(BTRFS_I(inode));
5697
5698 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5699 if (ret < 0)
5700 goto err;
5701
5702 while (1) {
5703 struct dir_entry *entry;
5704
5705 leaf = path->nodes[0];
5706 slot = path->slots[0];
5707 if (slot >= btrfs_header_nritems(leaf)) {
5708 ret = btrfs_next_leaf(root, path);
5709 if (ret < 0)
5710 goto err;
5711 else if (ret > 0)
5712 break;
5713 continue;
5714 }
5715
5716 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5717
5718 if (found_key.objectid != key.objectid)
5719 break;
5720 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5721 break;
5722 if (found_key.offset < ctx->pos)
5723 goto next;
5724 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5725 goto next;
5726 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5727 name_len = btrfs_dir_name_len(leaf, di);
5728 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5729 PAGE_SIZE) {
5730 btrfs_release_path(path);
5731 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5732 if (ret)
5733 goto nopos;
5734 addr = private->filldir_buf;
5735 entries = 0;
5736 total_len = 0;
5737 goto again;
5738 }
5739
5740 entry = addr;
5741 put_unaligned(name_len, &entry->name_len);
5742 name_ptr = (char *)(entry + 1);
5743 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5744 name_len);
5745 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5746 &entry->type);
5747 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5748 put_unaligned(location.objectid, &entry->ino);
5749 put_unaligned(found_key.offset, &entry->offset);
5750 entries++;
5751 addr += sizeof(struct dir_entry) + name_len;
5752 total_len += sizeof(struct dir_entry) + name_len;
5753 next:
5754 path->slots[0]++;
5755 }
5756 btrfs_release_path(path);
5757
5758 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5759 if (ret)
5760 goto nopos;
5761
5762 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5763 if (ret)
5764 goto nopos;
5765
5766 /*
5767 * Stop new entries from being returned after we return the last
5768 * entry.
5769 *
5770 * New directory entries are assigned a strictly increasing
5771 * offset. This means that new entries created during readdir
5772 * are *guaranteed* to be seen in the future by that readdir.
5773 * This has broken buggy programs which operate on names as
5774 * they're returned by readdir. Until we re-use freed offsets
5775 * we have this hack to stop new entries from being returned
5776 * under the assumption that they'll never reach this huge
5777 * offset.
5778 *
5779 * This is being careful not to overflow 32bit loff_t unless the
5780 * last entry requires it because doing so has broken 32bit apps
5781 * in the past.
5782 */
5783 if (ctx->pos >= INT_MAX)
5784 ctx->pos = LLONG_MAX;
5785 else
5786 ctx->pos = INT_MAX;
5787 nopos:
5788 ret = 0;
5789 err:
5790 if (put)
5791 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5792 btrfs_free_path(path);
5793 return ret;
5794 }
5795
5796 /*
5797 * This is somewhat expensive, updating the tree every time the
5798 * inode changes. But, it is most likely to find the inode in cache.
5799 * FIXME, needs more benchmarking...there are no reasons other than performance
5800 * to keep or drop this code.
5801 */
btrfs_dirty_inode(struct inode * inode)5802 static int btrfs_dirty_inode(struct inode *inode)
5803 {
5804 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5805 struct btrfs_root *root = BTRFS_I(inode)->root;
5806 struct btrfs_trans_handle *trans;
5807 int ret;
5808
5809 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5810 return 0;
5811
5812 trans = btrfs_join_transaction(root);
5813 if (IS_ERR(trans))
5814 return PTR_ERR(trans);
5815
5816 ret = btrfs_update_inode(trans, root, inode);
5817 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
5818 /* whoops, lets try again with the full transaction */
5819 btrfs_end_transaction(trans);
5820 trans = btrfs_start_transaction(root, 1);
5821 if (IS_ERR(trans))
5822 return PTR_ERR(trans);
5823
5824 ret = btrfs_update_inode(trans, root, inode);
5825 }
5826 btrfs_end_transaction(trans);
5827 if (BTRFS_I(inode)->delayed_node)
5828 btrfs_balance_delayed_items(fs_info);
5829
5830 return ret;
5831 }
5832
5833 /*
5834 * This is a copy of file_update_time. We need this so we can return error on
5835 * ENOSPC for updating the inode in the case of file write and mmap writes.
5836 */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)5837 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5838 int flags)
5839 {
5840 struct btrfs_root *root = BTRFS_I(inode)->root;
5841 bool dirty = flags & ~S_VERSION;
5842
5843 if (btrfs_root_readonly(root))
5844 return -EROFS;
5845
5846 if (flags & S_VERSION)
5847 dirty |= inode_maybe_inc_iversion(inode, dirty);
5848 if (flags & S_CTIME)
5849 inode->i_ctime = *now;
5850 if (flags & S_MTIME)
5851 inode->i_mtime = *now;
5852 if (flags & S_ATIME)
5853 inode->i_atime = *now;
5854 return dirty ? btrfs_dirty_inode(inode) : 0;
5855 }
5856
5857 /*
5858 * find the highest existing sequence number in a directory
5859 * and then set the in-memory index_cnt variable to reflect
5860 * free sequence numbers
5861 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5862 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5863 {
5864 struct btrfs_root *root = inode->root;
5865 struct btrfs_key key, found_key;
5866 struct btrfs_path *path;
5867 struct extent_buffer *leaf;
5868 int ret;
5869
5870 key.objectid = btrfs_ino(inode);
5871 key.type = BTRFS_DIR_INDEX_KEY;
5872 key.offset = (u64)-1;
5873
5874 path = btrfs_alloc_path();
5875 if (!path)
5876 return -ENOMEM;
5877
5878 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5879 if (ret < 0)
5880 goto out;
5881 /* FIXME: we should be able to handle this */
5882 if (ret == 0)
5883 goto out;
5884 ret = 0;
5885
5886 /*
5887 * MAGIC NUMBER EXPLANATION:
5888 * since we search a directory based on f_pos we have to start at 2
5889 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5890 * else has to start at 2
5891 */
5892 if (path->slots[0] == 0) {
5893 inode->index_cnt = 2;
5894 goto out;
5895 }
5896
5897 path->slots[0]--;
5898
5899 leaf = path->nodes[0];
5900 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5901
5902 if (found_key.objectid != btrfs_ino(inode) ||
5903 found_key.type != BTRFS_DIR_INDEX_KEY) {
5904 inode->index_cnt = 2;
5905 goto out;
5906 }
5907
5908 inode->index_cnt = found_key.offset + 1;
5909 out:
5910 btrfs_free_path(path);
5911 return ret;
5912 }
5913
5914 /*
5915 * helper to find a free sequence number in a given directory. This current
5916 * code is very simple, later versions will do smarter things in the btree
5917 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)5918 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5919 {
5920 int ret = 0;
5921
5922 if (dir->index_cnt == (u64)-1) {
5923 ret = btrfs_inode_delayed_dir_index_count(dir);
5924 if (ret) {
5925 ret = btrfs_set_inode_index_count(dir);
5926 if (ret)
5927 return ret;
5928 }
5929 }
5930
5931 *index = dir->index_cnt;
5932 dir->index_cnt++;
5933
5934 return ret;
5935 }
5936
btrfs_insert_inode_locked(struct inode * inode)5937 static int btrfs_insert_inode_locked(struct inode *inode)
5938 {
5939 struct btrfs_iget_args args;
5940
5941 args.ino = BTRFS_I(inode)->location.objectid;
5942 args.root = BTRFS_I(inode)->root;
5943
5944 return insert_inode_locked4(inode,
5945 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5946 btrfs_find_actor, &args);
5947 }
5948
5949 /*
5950 * Inherit flags from the parent inode.
5951 *
5952 * Currently only the compression flags and the cow flags are inherited.
5953 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)5954 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5955 {
5956 unsigned int flags;
5957
5958 if (!dir)
5959 return;
5960
5961 flags = BTRFS_I(dir)->flags;
5962
5963 if (flags & BTRFS_INODE_NOCOMPRESS) {
5964 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5965 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5966 } else if (flags & BTRFS_INODE_COMPRESS) {
5967 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5968 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5969 }
5970
5971 if (flags & BTRFS_INODE_NODATACOW) {
5972 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5973 if (S_ISREG(inode->i_mode))
5974 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5975 }
5976
5977 btrfs_sync_inode_flags_to_i_flags(inode);
5978 }
5979
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)5980 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5981 struct btrfs_root *root,
5982 struct inode *dir,
5983 const char *name, int name_len,
5984 u64 ref_objectid, u64 objectid,
5985 umode_t mode, u64 *index)
5986 {
5987 struct btrfs_fs_info *fs_info = root->fs_info;
5988 struct inode *inode;
5989 struct btrfs_inode_item *inode_item;
5990 struct btrfs_key *location;
5991 struct btrfs_path *path;
5992 struct btrfs_inode_ref *ref;
5993 struct btrfs_key key[2];
5994 u32 sizes[2];
5995 int nitems = name ? 2 : 1;
5996 unsigned long ptr;
5997 unsigned int nofs_flag;
5998 int ret;
5999
6000 path = btrfs_alloc_path();
6001 if (!path)
6002 return ERR_PTR(-ENOMEM);
6003
6004 nofs_flag = memalloc_nofs_save();
6005 inode = new_inode(fs_info->sb);
6006 memalloc_nofs_restore(nofs_flag);
6007 if (!inode) {
6008 btrfs_free_path(path);
6009 return ERR_PTR(-ENOMEM);
6010 }
6011
6012 /*
6013 * O_TMPFILE, set link count to 0, so that after this point,
6014 * we fill in an inode item with the correct link count.
6015 */
6016 if (!name)
6017 set_nlink(inode, 0);
6018
6019 /*
6020 * we have to initialize this early, so we can reclaim the inode
6021 * number if we fail afterwards in this function.
6022 */
6023 inode->i_ino = objectid;
6024
6025 if (dir && name) {
6026 trace_btrfs_inode_request(dir);
6027
6028 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6029 if (ret) {
6030 btrfs_free_path(path);
6031 iput(inode);
6032 return ERR_PTR(ret);
6033 }
6034 } else if (dir) {
6035 *index = 0;
6036 }
6037 /*
6038 * index_cnt is ignored for everything but a dir,
6039 * btrfs_set_inode_index_count has an explanation for the magic
6040 * number
6041 */
6042 BTRFS_I(inode)->index_cnt = 2;
6043 BTRFS_I(inode)->dir_index = *index;
6044 BTRFS_I(inode)->root = btrfs_grab_root(root);
6045 BTRFS_I(inode)->generation = trans->transid;
6046 inode->i_generation = BTRFS_I(inode)->generation;
6047
6048 /*
6049 * We could have gotten an inode number from somebody who was fsynced
6050 * and then removed in this same transaction, so let's just set full
6051 * sync since it will be a full sync anyway and this will blow away the
6052 * old info in the log.
6053 */
6054 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6055
6056 key[0].objectid = objectid;
6057 key[0].type = BTRFS_INODE_ITEM_KEY;
6058 key[0].offset = 0;
6059
6060 sizes[0] = sizeof(struct btrfs_inode_item);
6061
6062 if (name) {
6063 /*
6064 * Start new inodes with an inode_ref. This is slightly more
6065 * efficient for small numbers of hard links since they will
6066 * be packed into one item. Extended refs will kick in if we
6067 * add more hard links than can fit in the ref item.
6068 */
6069 key[1].objectid = objectid;
6070 key[1].type = BTRFS_INODE_REF_KEY;
6071 key[1].offset = ref_objectid;
6072
6073 sizes[1] = name_len + sizeof(*ref);
6074 }
6075
6076 location = &BTRFS_I(inode)->location;
6077 location->objectid = objectid;
6078 location->offset = 0;
6079 location->type = BTRFS_INODE_ITEM_KEY;
6080
6081 ret = btrfs_insert_inode_locked(inode);
6082 if (ret < 0) {
6083 iput(inode);
6084 goto fail;
6085 }
6086
6087 path->leave_spinning = 1;
6088 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6089 if (ret != 0)
6090 goto fail_unlock;
6091
6092 inode_init_owner(inode, dir, mode);
6093 inode_set_bytes(inode, 0);
6094
6095 inode->i_mtime = current_time(inode);
6096 inode->i_atime = inode->i_mtime;
6097 inode->i_ctime = inode->i_mtime;
6098 BTRFS_I(inode)->i_otime = inode->i_mtime;
6099
6100 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6101 struct btrfs_inode_item);
6102 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6103 sizeof(*inode_item));
6104 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6105
6106 if (name) {
6107 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6108 struct btrfs_inode_ref);
6109 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6110 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6111 ptr = (unsigned long)(ref + 1);
6112 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6113 }
6114
6115 btrfs_mark_buffer_dirty(path->nodes[0]);
6116 btrfs_free_path(path);
6117
6118 btrfs_inherit_iflags(inode, dir);
6119
6120 if (S_ISREG(mode)) {
6121 if (btrfs_test_opt(fs_info, NODATASUM))
6122 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6123 if (btrfs_test_opt(fs_info, NODATACOW))
6124 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6125 BTRFS_INODE_NODATASUM;
6126 }
6127
6128 inode_tree_add(inode);
6129
6130 trace_btrfs_inode_new(inode);
6131 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6132
6133 btrfs_update_root_times(trans, root);
6134
6135 ret = btrfs_inode_inherit_props(trans, inode, dir);
6136 if (ret)
6137 btrfs_err(fs_info,
6138 "error inheriting props for ino %llu (root %llu): %d",
6139 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6140
6141 return inode;
6142
6143 fail_unlock:
6144 discard_new_inode(inode);
6145 fail:
6146 if (dir && name)
6147 BTRFS_I(dir)->index_cnt--;
6148 btrfs_free_path(path);
6149 return ERR_PTR(ret);
6150 }
6151
6152 /*
6153 * utility function to add 'inode' into 'parent_inode' with
6154 * a give name and a given sequence number.
6155 * if 'add_backref' is true, also insert a backref from the
6156 * inode to the parent directory.
6157 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6158 int btrfs_add_link(struct btrfs_trans_handle *trans,
6159 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6160 const char *name, int name_len, int add_backref, u64 index)
6161 {
6162 int ret = 0;
6163 struct btrfs_key key;
6164 struct btrfs_root *root = parent_inode->root;
6165 u64 ino = btrfs_ino(inode);
6166 u64 parent_ino = btrfs_ino(parent_inode);
6167
6168 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6169 memcpy(&key, &inode->root->root_key, sizeof(key));
6170 } else {
6171 key.objectid = ino;
6172 key.type = BTRFS_INODE_ITEM_KEY;
6173 key.offset = 0;
6174 }
6175
6176 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6177 ret = btrfs_add_root_ref(trans, key.objectid,
6178 root->root_key.objectid, parent_ino,
6179 index, name, name_len);
6180 } else if (add_backref) {
6181 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6182 parent_ino, index);
6183 }
6184
6185 /* Nothing to clean up yet */
6186 if (ret)
6187 return ret;
6188
6189 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6190 btrfs_inode_type(&inode->vfs_inode), index);
6191 if (ret == -EEXIST || ret == -EOVERFLOW)
6192 goto fail_dir_item;
6193 else if (ret) {
6194 btrfs_abort_transaction(trans, ret);
6195 return ret;
6196 }
6197
6198 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6199 name_len * 2);
6200 inode_inc_iversion(&parent_inode->vfs_inode);
6201 /*
6202 * If we are replaying a log tree, we do not want to update the mtime
6203 * and ctime of the parent directory with the current time, since the
6204 * log replay procedure is responsible for setting them to their correct
6205 * values (the ones it had when the fsync was done).
6206 */
6207 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6208 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6209
6210 parent_inode->vfs_inode.i_mtime = now;
6211 parent_inode->vfs_inode.i_ctime = now;
6212 }
6213 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6214 if (ret)
6215 btrfs_abort_transaction(trans, ret);
6216 return ret;
6217
6218 fail_dir_item:
6219 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6220 u64 local_index;
6221 int err;
6222 err = btrfs_del_root_ref(trans, key.objectid,
6223 root->root_key.objectid, parent_ino,
6224 &local_index, name, name_len);
6225 if (err)
6226 btrfs_abort_transaction(trans, err);
6227 } else if (add_backref) {
6228 u64 local_index;
6229 int err;
6230
6231 err = btrfs_del_inode_ref(trans, root, name, name_len,
6232 ino, parent_ino, &local_index);
6233 if (err)
6234 btrfs_abort_transaction(trans, err);
6235 }
6236
6237 /* Return the original error code */
6238 return ret;
6239 }
6240
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6241 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6242 struct btrfs_inode *dir, struct dentry *dentry,
6243 struct btrfs_inode *inode, int backref, u64 index)
6244 {
6245 int err = btrfs_add_link(trans, dir, inode,
6246 dentry->d_name.name, dentry->d_name.len,
6247 backref, index);
6248 if (err > 0)
6249 err = -EEXIST;
6250 return err;
6251 }
6252
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6253 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6254 umode_t mode, dev_t rdev)
6255 {
6256 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6257 struct btrfs_trans_handle *trans;
6258 struct btrfs_root *root = BTRFS_I(dir)->root;
6259 struct inode *inode = NULL;
6260 int err;
6261 u64 objectid;
6262 u64 index = 0;
6263
6264 /*
6265 * 2 for inode item and ref
6266 * 2 for dir items
6267 * 1 for xattr if selinux is on
6268 */
6269 trans = btrfs_start_transaction(root, 5);
6270 if (IS_ERR(trans))
6271 return PTR_ERR(trans);
6272
6273 err = btrfs_find_free_objectid(root, &objectid);
6274 if (err)
6275 goto out_unlock;
6276
6277 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6278 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6279 mode, &index);
6280 if (IS_ERR(inode)) {
6281 err = PTR_ERR(inode);
6282 inode = NULL;
6283 goto out_unlock;
6284 }
6285
6286 /*
6287 * If the active LSM wants to access the inode during
6288 * d_instantiate it needs these. Smack checks to see
6289 * if the filesystem supports xattrs by looking at the
6290 * ops vector.
6291 */
6292 inode->i_op = &btrfs_special_inode_operations;
6293 init_special_inode(inode, inode->i_mode, rdev);
6294
6295 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6296 if (err)
6297 goto out_unlock;
6298
6299 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6300 0, index);
6301 if (err)
6302 goto out_unlock;
6303
6304 btrfs_update_inode(trans, root, inode);
6305 d_instantiate_new(dentry, inode);
6306
6307 out_unlock:
6308 btrfs_end_transaction(trans);
6309 btrfs_btree_balance_dirty(fs_info);
6310 if (err && inode) {
6311 inode_dec_link_count(inode);
6312 discard_new_inode(inode);
6313 }
6314 return err;
6315 }
6316
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6317 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6318 umode_t mode, bool excl)
6319 {
6320 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6321 struct btrfs_trans_handle *trans;
6322 struct btrfs_root *root = BTRFS_I(dir)->root;
6323 struct inode *inode = NULL;
6324 int err;
6325 u64 objectid;
6326 u64 index = 0;
6327
6328 /*
6329 * 2 for inode item and ref
6330 * 2 for dir items
6331 * 1 for xattr if selinux is on
6332 */
6333 trans = btrfs_start_transaction(root, 5);
6334 if (IS_ERR(trans))
6335 return PTR_ERR(trans);
6336
6337 err = btrfs_find_free_objectid(root, &objectid);
6338 if (err)
6339 goto out_unlock;
6340
6341 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6342 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6343 mode, &index);
6344 if (IS_ERR(inode)) {
6345 err = PTR_ERR(inode);
6346 inode = NULL;
6347 goto out_unlock;
6348 }
6349 /*
6350 * If the active LSM wants to access the inode during
6351 * d_instantiate it needs these. Smack checks to see
6352 * if the filesystem supports xattrs by looking at the
6353 * ops vector.
6354 */
6355 inode->i_fop = &btrfs_file_operations;
6356 inode->i_op = &btrfs_file_inode_operations;
6357 inode->i_mapping->a_ops = &btrfs_aops;
6358
6359 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6360 if (err)
6361 goto out_unlock;
6362
6363 err = btrfs_update_inode(trans, root, inode);
6364 if (err)
6365 goto out_unlock;
6366
6367 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6368 0, index);
6369 if (err)
6370 goto out_unlock;
6371
6372 d_instantiate_new(dentry, inode);
6373
6374 out_unlock:
6375 btrfs_end_transaction(trans);
6376 if (err && inode) {
6377 inode_dec_link_count(inode);
6378 discard_new_inode(inode);
6379 }
6380 btrfs_btree_balance_dirty(fs_info);
6381 return err;
6382 }
6383
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6384 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6385 struct dentry *dentry)
6386 {
6387 struct btrfs_trans_handle *trans = NULL;
6388 struct btrfs_root *root = BTRFS_I(dir)->root;
6389 struct inode *inode = d_inode(old_dentry);
6390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6391 u64 index;
6392 int err;
6393 int drop_inode = 0;
6394
6395 /* do not allow sys_link's with other subvols of the same device */
6396 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6397 return -EXDEV;
6398
6399 if (inode->i_nlink >= BTRFS_LINK_MAX)
6400 return -EMLINK;
6401
6402 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6403 if (err)
6404 goto fail;
6405
6406 /*
6407 * 2 items for inode and inode ref
6408 * 2 items for dir items
6409 * 1 item for parent inode
6410 * 1 item for orphan item deletion if O_TMPFILE
6411 */
6412 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6413 if (IS_ERR(trans)) {
6414 err = PTR_ERR(trans);
6415 trans = NULL;
6416 goto fail;
6417 }
6418
6419 /* There are several dir indexes for this inode, clear the cache. */
6420 BTRFS_I(inode)->dir_index = 0ULL;
6421 inc_nlink(inode);
6422 inode_inc_iversion(inode);
6423 inode->i_ctime = current_time(inode);
6424 ihold(inode);
6425 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6426
6427 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6428 1, index);
6429
6430 if (err) {
6431 drop_inode = 1;
6432 } else {
6433 struct dentry *parent = dentry->d_parent;
6434
6435 err = btrfs_update_inode(trans, root, inode);
6436 if (err)
6437 goto fail;
6438 if (inode->i_nlink == 1) {
6439 /*
6440 * If new hard link count is 1, it's a file created
6441 * with open(2) O_TMPFILE flag.
6442 */
6443 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6444 if (err)
6445 goto fail;
6446 }
6447 d_instantiate(dentry, inode);
6448 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6449 }
6450
6451 fail:
6452 if (trans)
6453 btrfs_end_transaction(trans);
6454 if (drop_inode) {
6455 inode_dec_link_count(inode);
6456 iput(inode);
6457 }
6458 btrfs_btree_balance_dirty(fs_info);
6459 return err;
6460 }
6461
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6462 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6463 {
6464 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6465 struct inode *inode = NULL;
6466 struct btrfs_trans_handle *trans;
6467 struct btrfs_root *root = BTRFS_I(dir)->root;
6468 int err = 0;
6469 u64 objectid = 0;
6470 u64 index = 0;
6471
6472 /*
6473 * 2 items for inode and ref
6474 * 2 items for dir items
6475 * 1 for xattr if selinux is on
6476 */
6477 trans = btrfs_start_transaction(root, 5);
6478 if (IS_ERR(trans))
6479 return PTR_ERR(trans);
6480
6481 err = btrfs_find_free_objectid(root, &objectid);
6482 if (err)
6483 goto out_fail;
6484
6485 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6486 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6487 S_IFDIR | mode, &index);
6488 if (IS_ERR(inode)) {
6489 err = PTR_ERR(inode);
6490 inode = NULL;
6491 goto out_fail;
6492 }
6493
6494 /* these must be set before we unlock the inode */
6495 inode->i_op = &btrfs_dir_inode_operations;
6496 inode->i_fop = &btrfs_dir_file_operations;
6497
6498 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6499 if (err)
6500 goto out_fail;
6501
6502 btrfs_i_size_write(BTRFS_I(inode), 0);
6503 err = btrfs_update_inode(trans, root, inode);
6504 if (err)
6505 goto out_fail;
6506
6507 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6508 dentry->d_name.name,
6509 dentry->d_name.len, 0, index);
6510 if (err)
6511 goto out_fail;
6512
6513 d_instantiate_new(dentry, inode);
6514
6515 out_fail:
6516 btrfs_end_transaction(trans);
6517 if (err && inode) {
6518 inode_dec_link_count(inode);
6519 discard_new_inode(inode);
6520 }
6521 btrfs_btree_balance_dirty(fs_info);
6522 return err;
6523 }
6524
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6525 static noinline int uncompress_inline(struct btrfs_path *path,
6526 struct page *page,
6527 size_t pg_offset, u64 extent_offset,
6528 struct btrfs_file_extent_item *item)
6529 {
6530 int ret;
6531 struct extent_buffer *leaf = path->nodes[0];
6532 char *tmp;
6533 size_t max_size;
6534 unsigned long inline_size;
6535 unsigned long ptr;
6536 int compress_type;
6537
6538 WARN_ON(pg_offset != 0);
6539 compress_type = btrfs_file_extent_compression(leaf, item);
6540 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6541 inline_size = btrfs_file_extent_inline_item_len(leaf,
6542 btrfs_item_nr(path->slots[0]));
6543 tmp = kmalloc(inline_size, GFP_NOFS);
6544 if (!tmp)
6545 return -ENOMEM;
6546 ptr = btrfs_file_extent_inline_start(item);
6547
6548 read_extent_buffer(leaf, tmp, ptr, inline_size);
6549
6550 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6551 ret = btrfs_decompress(compress_type, tmp, page,
6552 extent_offset, inline_size, max_size);
6553
6554 /*
6555 * decompression code contains a memset to fill in any space between the end
6556 * of the uncompressed data and the end of max_size in case the decompressed
6557 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6558 * the end of an inline extent and the beginning of the next block, so we
6559 * cover that region here.
6560 */
6561
6562 if (max_size + pg_offset < PAGE_SIZE) {
6563 char *map = kmap(page);
6564 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6565 kunmap(page);
6566 }
6567 kfree(tmp);
6568 return ret;
6569 }
6570
6571 /**
6572 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6573 * @inode: file to search in
6574 * @page: page to read extent data into if the extent is inline
6575 * @pg_offset: offset into @page to copy to
6576 * @start: file offset
6577 * @len: length of range starting at @start
6578 *
6579 * This returns the first &struct extent_map which overlaps with the given
6580 * range, reading it from the B-tree and caching it if necessary. Note that
6581 * there may be more extents which overlap the given range after the returned
6582 * extent_map.
6583 *
6584 * If @page is not NULL and the extent is inline, this also reads the extent
6585 * data directly into the page and marks the extent up to date in the io_tree.
6586 *
6587 * Return: ERR_PTR on error, non-NULL extent_map on success.
6588 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len)6589 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6590 struct page *page, size_t pg_offset,
6591 u64 start, u64 len)
6592 {
6593 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6594 int ret = 0;
6595 u64 extent_start = 0;
6596 u64 extent_end = 0;
6597 u64 objectid = btrfs_ino(inode);
6598 int extent_type = -1;
6599 struct btrfs_path *path = NULL;
6600 struct btrfs_root *root = inode->root;
6601 struct btrfs_file_extent_item *item;
6602 struct extent_buffer *leaf;
6603 struct btrfs_key found_key;
6604 struct extent_map *em = NULL;
6605 struct extent_map_tree *em_tree = &inode->extent_tree;
6606 struct extent_io_tree *io_tree = &inode->io_tree;
6607
6608 read_lock(&em_tree->lock);
6609 em = lookup_extent_mapping(em_tree, start, len);
6610 read_unlock(&em_tree->lock);
6611
6612 if (em) {
6613 if (em->start > start || em->start + em->len <= start)
6614 free_extent_map(em);
6615 else if (em->block_start == EXTENT_MAP_INLINE && page)
6616 free_extent_map(em);
6617 else
6618 goto out;
6619 }
6620 em = alloc_extent_map();
6621 if (!em) {
6622 ret = -ENOMEM;
6623 goto out;
6624 }
6625 em->start = EXTENT_MAP_HOLE;
6626 em->orig_start = EXTENT_MAP_HOLE;
6627 em->len = (u64)-1;
6628 em->block_len = (u64)-1;
6629
6630 path = btrfs_alloc_path();
6631 if (!path) {
6632 ret = -ENOMEM;
6633 goto out;
6634 }
6635
6636 /* Chances are we'll be called again, so go ahead and do readahead */
6637 path->reada = READA_FORWARD;
6638
6639 /*
6640 * Unless we're going to uncompress the inline extent, no sleep would
6641 * happen.
6642 */
6643 path->leave_spinning = 1;
6644
6645 path->recurse = btrfs_is_free_space_inode(inode);
6646
6647 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6648 if (ret < 0) {
6649 goto out;
6650 } else if (ret > 0) {
6651 if (path->slots[0] == 0)
6652 goto not_found;
6653 path->slots[0]--;
6654 ret = 0;
6655 }
6656
6657 leaf = path->nodes[0];
6658 item = btrfs_item_ptr(leaf, path->slots[0],
6659 struct btrfs_file_extent_item);
6660 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6661 if (found_key.objectid != objectid ||
6662 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6663 /*
6664 * If we backup past the first extent we want to move forward
6665 * and see if there is an extent in front of us, otherwise we'll
6666 * say there is a hole for our whole search range which can
6667 * cause problems.
6668 */
6669 extent_end = start;
6670 goto next;
6671 }
6672
6673 extent_type = btrfs_file_extent_type(leaf, item);
6674 extent_start = found_key.offset;
6675 extent_end = btrfs_file_extent_end(path);
6676 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6677 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6678 /* Only regular file could have regular/prealloc extent */
6679 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6680 ret = -EUCLEAN;
6681 btrfs_crit(fs_info,
6682 "regular/prealloc extent found for non-regular inode %llu",
6683 btrfs_ino(inode));
6684 goto out;
6685 }
6686 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6687 extent_start);
6688 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6689 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6690 path->slots[0],
6691 extent_start);
6692 }
6693 next:
6694 if (start >= extent_end) {
6695 path->slots[0]++;
6696 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6697 ret = btrfs_next_leaf(root, path);
6698 if (ret < 0)
6699 goto out;
6700 else if (ret > 0)
6701 goto not_found;
6702
6703 leaf = path->nodes[0];
6704 }
6705 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6706 if (found_key.objectid != objectid ||
6707 found_key.type != BTRFS_EXTENT_DATA_KEY)
6708 goto not_found;
6709 if (start + len <= found_key.offset)
6710 goto not_found;
6711 if (start > found_key.offset)
6712 goto next;
6713
6714 /* New extent overlaps with existing one */
6715 em->start = start;
6716 em->orig_start = start;
6717 em->len = found_key.offset - start;
6718 em->block_start = EXTENT_MAP_HOLE;
6719 goto insert;
6720 }
6721
6722 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6723
6724 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6725 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6726 goto insert;
6727 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6728 unsigned long ptr;
6729 char *map;
6730 size_t size;
6731 size_t extent_offset;
6732 size_t copy_size;
6733
6734 if (!page)
6735 goto out;
6736
6737 size = btrfs_file_extent_ram_bytes(leaf, item);
6738 extent_offset = page_offset(page) + pg_offset - extent_start;
6739 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6740 size - extent_offset);
6741 em->start = extent_start + extent_offset;
6742 em->len = ALIGN(copy_size, fs_info->sectorsize);
6743 em->orig_block_len = em->len;
6744 em->orig_start = em->start;
6745 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6746
6747 btrfs_set_path_blocking(path);
6748 if (!PageUptodate(page)) {
6749 if (btrfs_file_extent_compression(leaf, item) !=
6750 BTRFS_COMPRESS_NONE) {
6751 ret = uncompress_inline(path, page, pg_offset,
6752 extent_offset, item);
6753 if (ret)
6754 goto out;
6755 } else {
6756 map = kmap(page);
6757 read_extent_buffer(leaf, map + pg_offset, ptr,
6758 copy_size);
6759 if (pg_offset + copy_size < PAGE_SIZE) {
6760 memset(map + pg_offset + copy_size, 0,
6761 PAGE_SIZE - pg_offset -
6762 copy_size);
6763 }
6764 kunmap(page);
6765 }
6766 flush_dcache_page(page);
6767 }
6768 set_extent_uptodate(io_tree, em->start,
6769 extent_map_end(em) - 1, NULL, GFP_NOFS);
6770 goto insert;
6771 }
6772 not_found:
6773 em->start = start;
6774 em->orig_start = start;
6775 em->len = len;
6776 em->block_start = EXTENT_MAP_HOLE;
6777 insert:
6778 ret = 0;
6779 btrfs_release_path(path);
6780 if (em->start > start || extent_map_end(em) <= start) {
6781 btrfs_err(fs_info,
6782 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6783 em->start, em->len, start, len);
6784 ret = -EIO;
6785 goto out;
6786 }
6787
6788 write_lock(&em_tree->lock);
6789 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6790 write_unlock(&em_tree->lock);
6791 out:
6792 btrfs_free_path(path);
6793
6794 trace_btrfs_get_extent(root, inode, em);
6795
6796 if (ret) {
6797 free_extent_map(em);
6798 return ERR_PTR(ret);
6799 }
6800 return em;
6801 }
6802
btrfs_get_extent_fiemap(struct btrfs_inode * inode,u64 start,u64 len)6803 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6804 u64 start, u64 len)
6805 {
6806 struct extent_map *em;
6807 struct extent_map *hole_em = NULL;
6808 u64 delalloc_start = start;
6809 u64 end;
6810 u64 delalloc_len;
6811 u64 delalloc_end;
6812 int err = 0;
6813
6814 em = btrfs_get_extent(inode, NULL, 0, start, len);
6815 if (IS_ERR(em))
6816 return em;
6817 /*
6818 * If our em maps to:
6819 * - a hole or
6820 * - a pre-alloc extent,
6821 * there might actually be delalloc bytes behind it.
6822 */
6823 if (em->block_start != EXTENT_MAP_HOLE &&
6824 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6825 return em;
6826 else
6827 hole_em = em;
6828
6829 /* check to see if we've wrapped (len == -1 or similar) */
6830 end = start + len;
6831 if (end < start)
6832 end = (u64)-1;
6833 else
6834 end -= 1;
6835
6836 em = NULL;
6837
6838 /* ok, we didn't find anything, lets look for delalloc */
6839 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6840 end, len, EXTENT_DELALLOC, 1);
6841 delalloc_end = delalloc_start + delalloc_len;
6842 if (delalloc_end < delalloc_start)
6843 delalloc_end = (u64)-1;
6844
6845 /*
6846 * We didn't find anything useful, return the original results from
6847 * get_extent()
6848 */
6849 if (delalloc_start > end || delalloc_end <= start) {
6850 em = hole_em;
6851 hole_em = NULL;
6852 goto out;
6853 }
6854
6855 /*
6856 * Adjust the delalloc_start to make sure it doesn't go backwards from
6857 * the start they passed in
6858 */
6859 delalloc_start = max(start, delalloc_start);
6860 delalloc_len = delalloc_end - delalloc_start;
6861
6862 if (delalloc_len > 0) {
6863 u64 hole_start;
6864 u64 hole_len;
6865 const u64 hole_end = extent_map_end(hole_em);
6866
6867 em = alloc_extent_map();
6868 if (!em) {
6869 err = -ENOMEM;
6870 goto out;
6871 }
6872
6873 ASSERT(hole_em);
6874 /*
6875 * When btrfs_get_extent can't find anything it returns one
6876 * huge hole
6877 *
6878 * Make sure what it found really fits our range, and adjust to
6879 * make sure it is based on the start from the caller
6880 */
6881 if (hole_end <= start || hole_em->start > end) {
6882 free_extent_map(hole_em);
6883 hole_em = NULL;
6884 } else {
6885 hole_start = max(hole_em->start, start);
6886 hole_len = hole_end - hole_start;
6887 }
6888
6889 if (hole_em && delalloc_start > hole_start) {
6890 /*
6891 * Our hole starts before our delalloc, so we have to
6892 * return just the parts of the hole that go until the
6893 * delalloc starts
6894 */
6895 em->len = min(hole_len, delalloc_start - hole_start);
6896 em->start = hole_start;
6897 em->orig_start = hole_start;
6898 /*
6899 * Don't adjust block start at all, it is fixed at
6900 * EXTENT_MAP_HOLE
6901 */
6902 em->block_start = hole_em->block_start;
6903 em->block_len = hole_len;
6904 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6905 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6906 } else {
6907 /*
6908 * Hole is out of passed range or it starts after
6909 * delalloc range
6910 */
6911 em->start = delalloc_start;
6912 em->len = delalloc_len;
6913 em->orig_start = delalloc_start;
6914 em->block_start = EXTENT_MAP_DELALLOC;
6915 em->block_len = delalloc_len;
6916 }
6917 } else {
6918 return hole_em;
6919 }
6920 out:
6921
6922 free_extent_map(hole_em);
6923 if (err) {
6924 free_extent_map(em);
6925 return ERR_PTR(err);
6926 }
6927 return em;
6928 }
6929
btrfs_create_dio_extent(struct btrfs_inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)6930 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6931 const u64 start,
6932 const u64 len,
6933 const u64 orig_start,
6934 const u64 block_start,
6935 const u64 block_len,
6936 const u64 orig_block_len,
6937 const u64 ram_bytes,
6938 const int type)
6939 {
6940 struct extent_map *em = NULL;
6941 int ret;
6942
6943 if (type != BTRFS_ORDERED_NOCOW) {
6944 em = create_io_em(inode, start, len, orig_start, block_start,
6945 block_len, orig_block_len, ram_bytes,
6946 BTRFS_COMPRESS_NONE, /* compress_type */
6947 type);
6948 if (IS_ERR(em))
6949 goto out;
6950 }
6951 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6952 block_len, type);
6953 if (ret) {
6954 if (em) {
6955 free_extent_map(em);
6956 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
6957 }
6958 em = ERR_PTR(ret);
6959 }
6960 out:
6961
6962 return em;
6963 }
6964
btrfs_new_extent_direct(struct btrfs_inode * inode,u64 start,u64 len)6965 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6966 u64 start, u64 len)
6967 {
6968 struct btrfs_root *root = inode->root;
6969 struct btrfs_fs_info *fs_info = root->fs_info;
6970 struct extent_map *em;
6971 struct btrfs_key ins;
6972 u64 alloc_hint;
6973 int ret;
6974
6975 alloc_hint = get_extent_allocation_hint(inode, start, len);
6976 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6977 0, alloc_hint, &ins, 1, 1);
6978 if (ret)
6979 return ERR_PTR(ret);
6980
6981 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6982 ins.objectid, ins.offset, ins.offset,
6983 ins.offset, BTRFS_ORDERED_REGULAR);
6984 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6985 if (IS_ERR(em))
6986 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6987 1);
6988
6989 return em;
6990 }
6991
6992 /*
6993 * Check if we can do nocow write into the range [@offset, @offset + @len)
6994 *
6995 * @offset: File offset
6996 * @len: The length to write, will be updated to the nocow writeable
6997 * range
6998 * @orig_start: (optional) Return the original file offset of the file extent
6999 * @orig_len: (optional) Return the original on-disk length of the file extent
7000 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7001 * @strict: if true, omit optimizations that might force us into unnecessary
7002 * cow. e.g., don't trust generation number.
7003 *
7004 * This function will flush ordered extents in the range to ensure proper
7005 * nocow checks for (nowait == false) case.
7006 *
7007 * Return:
7008 * >0 and update @len if we can do nocow write
7009 * 0 if we can't do nocow write
7010 * <0 if error happened
7011 *
7012 * NOTE: This only checks the file extents, caller is responsible to wait for
7013 * any ordered extents.
7014 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool strict)7015 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7016 u64 *orig_start, u64 *orig_block_len,
7017 u64 *ram_bytes, bool strict)
7018 {
7019 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7020 struct btrfs_path *path;
7021 int ret;
7022 struct extent_buffer *leaf;
7023 struct btrfs_root *root = BTRFS_I(inode)->root;
7024 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7025 struct btrfs_file_extent_item *fi;
7026 struct btrfs_key key;
7027 u64 disk_bytenr;
7028 u64 backref_offset;
7029 u64 extent_end;
7030 u64 num_bytes;
7031 int slot;
7032 int found_type;
7033 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7034
7035 path = btrfs_alloc_path();
7036 if (!path)
7037 return -ENOMEM;
7038
7039 ret = btrfs_lookup_file_extent(NULL, root, path,
7040 btrfs_ino(BTRFS_I(inode)), offset, 0);
7041 if (ret < 0)
7042 goto out;
7043
7044 slot = path->slots[0];
7045 if (ret == 1) {
7046 if (slot == 0) {
7047 /* can't find the item, must cow */
7048 ret = 0;
7049 goto out;
7050 }
7051 slot--;
7052 }
7053 ret = 0;
7054 leaf = path->nodes[0];
7055 btrfs_item_key_to_cpu(leaf, &key, slot);
7056 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7057 key.type != BTRFS_EXTENT_DATA_KEY) {
7058 /* not our file or wrong item type, must cow */
7059 goto out;
7060 }
7061
7062 if (key.offset > offset) {
7063 /* Wrong offset, must cow */
7064 goto out;
7065 }
7066
7067 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7068 found_type = btrfs_file_extent_type(leaf, fi);
7069 if (found_type != BTRFS_FILE_EXTENT_REG &&
7070 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7071 /* not a regular extent, must cow */
7072 goto out;
7073 }
7074
7075 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7076 goto out;
7077
7078 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7079 if (extent_end <= offset)
7080 goto out;
7081
7082 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7083 if (disk_bytenr == 0)
7084 goto out;
7085
7086 if (btrfs_file_extent_compression(leaf, fi) ||
7087 btrfs_file_extent_encryption(leaf, fi) ||
7088 btrfs_file_extent_other_encoding(leaf, fi))
7089 goto out;
7090
7091 /*
7092 * Do the same check as in btrfs_cross_ref_exist but without the
7093 * unnecessary search.
7094 */
7095 if (!strict &&
7096 (btrfs_file_extent_generation(leaf, fi) <=
7097 btrfs_root_last_snapshot(&root->root_item)))
7098 goto out;
7099
7100 backref_offset = btrfs_file_extent_offset(leaf, fi);
7101
7102 if (orig_start) {
7103 *orig_start = key.offset - backref_offset;
7104 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7105 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7106 }
7107
7108 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7109 goto out;
7110
7111 num_bytes = min(offset + *len, extent_end) - offset;
7112 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7113 u64 range_end;
7114
7115 range_end = round_up(offset + num_bytes,
7116 root->fs_info->sectorsize) - 1;
7117 ret = test_range_bit(io_tree, offset, range_end,
7118 EXTENT_DELALLOC, 0, NULL);
7119 if (ret) {
7120 ret = -EAGAIN;
7121 goto out;
7122 }
7123 }
7124
7125 btrfs_release_path(path);
7126
7127 /*
7128 * look for other files referencing this extent, if we
7129 * find any we must cow
7130 */
7131
7132 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7133 key.offset - backref_offset, disk_bytenr,
7134 strict);
7135 if (ret) {
7136 ret = 0;
7137 goto out;
7138 }
7139
7140 /*
7141 * adjust disk_bytenr and num_bytes to cover just the bytes
7142 * in this extent we are about to write. If there
7143 * are any csums in that range we have to cow in order
7144 * to keep the csums correct
7145 */
7146 disk_bytenr += backref_offset;
7147 disk_bytenr += offset - key.offset;
7148 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7149 goto out;
7150 /*
7151 * all of the above have passed, it is safe to overwrite this extent
7152 * without cow
7153 */
7154 *len = num_bytes;
7155 ret = 1;
7156 out:
7157 btrfs_free_path(path);
7158 return ret;
7159 }
7160
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,bool writing)7161 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7162 struct extent_state **cached_state, bool writing)
7163 {
7164 struct btrfs_ordered_extent *ordered;
7165 int ret = 0;
7166
7167 while (1) {
7168 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7169 cached_state);
7170 /*
7171 * We're concerned with the entire range that we're going to be
7172 * doing DIO to, so we need to make sure there's no ordered
7173 * extents in this range.
7174 */
7175 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7176 lockend - lockstart + 1);
7177
7178 /*
7179 * We need to make sure there are no buffered pages in this
7180 * range either, we could have raced between the invalidate in
7181 * generic_file_direct_write and locking the extent. The
7182 * invalidate needs to happen so that reads after a write do not
7183 * get stale data.
7184 */
7185 if (!ordered &&
7186 (!writing || !filemap_range_has_page(inode->i_mapping,
7187 lockstart, lockend)))
7188 break;
7189
7190 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7191 cached_state);
7192
7193 if (ordered) {
7194 /*
7195 * If we are doing a DIO read and the ordered extent we
7196 * found is for a buffered write, we can not wait for it
7197 * to complete and retry, because if we do so we can
7198 * deadlock with concurrent buffered writes on page
7199 * locks. This happens only if our DIO read covers more
7200 * than one extent map, if at this point has already
7201 * created an ordered extent for a previous extent map
7202 * and locked its range in the inode's io tree, and a
7203 * concurrent write against that previous extent map's
7204 * range and this range started (we unlock the ranges
7205 * in the io tree only when the bios complete and
7206 * buffered writes always lock pages before attempting
7207 * to lock range in the io tree).
7208 */
7209 if (writing ||
7210 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7211 btrfs_start_ordered_extent(ordered, 1);
7212 else
7213 ret = -ENOTBLK;
7214 btrfs_put_ordered_extent(ordered);
7215 } else {
7216 /*
7217 * We could trigger writeback for this range (and wait
7218 * for it to complete) and then invalidate the pages for
7219 * this range (through invalidate_inode_pages2_range()),
7220 * but that can lead us to a deadlock with a concurrent
7221 * call to readahead (a buffered read or a defrag call
7222 * triggered a readahead) on a page lock due to an
7223 * ordered dio extent we created before but did not have
7224 * yet a corresponding bio submitted (whence it can not
7225 * complete), which makes readahead wait for that
7226 * ordered extent to complete while holding a lock on
7227 * that page.
7228 */
7229 ret = -ENOTBLK;
7230 }
7231
7232 if (ret)
7233 break;
7234
7235 cond_resched();
7236 }
7237
7238 return ret;
7239 }
7240
7241 /* The callers of this must take lock_extent() */
create_io_em(struct btrfs_inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7242 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7243 u64 len, u64 orig_start, u64 block_start,
7244 u64 block_len, u64 orig_block_len,
7245 u64 ram_bytes, int compress_type,
7246 int type)
7247 {
7248 struct extent_map_tree *em_tree;
7249 struct extent_map *em;
7250 int ret;
7251
7252 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7253 type == BTRFS_ORDERED_COMPRESSED ||
7254 type == BTRFS_ORDERED_NOCOW ||
7255 type == BTRFS_ORDERED_REGULAR);
7256
7257 em_tree = &inode->extent_tree;
7258 em = alloc_extent_map();
7259 if (!em)
7260 return ERR_PTR(-ENOMEM);
7261
7262 em->start = start;
7263 em->orig_start = orig_start;
7264 em->len = len;
7265 em->block_len = block_len;
7266 em->block_start = block_start;
7267 em->orig_block_len = orig_block_len;
7268 em->ram_bytes = ram_bytes;
7269 em->generation = -1;
7270 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7271 if (type == BTRFS_ORDERED_PREALLOC) {
7272 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7273 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7274 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7275 em->compress_type = compress_type;
7276 }
7277
7278 do {
7279 btrfs_drop_extent_cache(inode, em->start,
7280 em->start + em->len - 1, 0);
7281 write_lock(&em_tree->lock);
7282 ret = add_extent_mapping(em_tree, em, 1);
7283 write_unlock(&em_tree->lock);
7284 /*
7285 * The caller has taken lock_extent(), who could race with us
7286 * to add em?
7287 */
7288 } while (ret == -EEXIST);
7289
7290 if (ret) {
7291 free_extent_map(em);
7292 return ERR_PTR(ret);
7293 }
7294
7295 /* em got 2 refs now, callers needs to do free_extent_map once. */
7296 return em;
7297 }
7298
7299
btrfs_get_blocks_direct_write(struct extent_map ** map,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7300 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7301 struct inode *inode,
7302 struct btrfs_dio_data *dio_data,
7303 u64 start, u64 len)
7304 {
7305 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7306 struct extent_map *em = *map;
7307 int ret = 0;
7308
7309 /*
7310 * We don't allocate a new extent in the following cases
7311 *
7312 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7313 * existing extent.
7314 * 2) The extent is marked as PREALLOC. We're good to go here and can
7315 * just use the extent.
7316 *
7317 */
7318 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7319 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7320 em->block_start != EXTENT_MAP_HOLE)) {
7321 int type;
7322 u64 block_start, orig_start, orig_block_len, ram_bytes;
7323
7324 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7325 type = BTRFS_ORDERED_PREALLOC;
7326 else
7327 type = BTRFS_ORDERED_NOCOW;
7328 len = min(len, em->len - (start - em->start));
7329 block_start = em->block_start + (start - em->start);
7330
7331 if (can_nocow_extent(inode, start, &len, &orig_start,
7332 &orig_block_len, &ram_bytes, false) == 1 &&
7333 btrfs_inc_nocow_writers(fs_info, block_start)) {
7334 struct extent_map *em2;
7335
7336 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7337 orig_start, block_start,
7338 len, orig_block_len,
7339 ram_bytes, type);
7340 btrfs_dec_nocow_writers(fs_info, block_start);
7341 if (type == BTRFS_ORDERED_PREALLOC) {
7342 free_extent_map(em);
7343 *map = em = em2;
7344 }
7345
7346 if (em2 && IS_ERR(em2)) {
7347 ret = PTR_ERR(em2);
7348 goto out;
7349 }
7350 /*
7351 * For inode marked NODATACOW or extent marked PREALLOC,
7352 * use the existing or preallocated extent, so does not
7353 * need to adjust btrfs_space_info's bytes_may_use.
7354 */
7355 btrfs_free_reserved_data_space_noquota(fs_info, len);
7356 goto skip_cow;
7357 }
7358 }
7359
7360 /* this will cow the extent */
7361 free_extent_map(em);
7362 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7363 if (IS_ERR(em)) {
7364 ret = PTR_ERR(em);
7365 goto out;
7366 }
7367
7368 len = min(len, em->len - (start - em->start));
7369
7370 skip_cow:
7371 /*
7372 * Need to update the i_size under the extent lock so buffered
7373 * readers will get the updated i_size when we unlock.
7374 */
7375 if (start + len > i_size_read(inode))
7376 i_size_write(inode, start + len);
7377
7378 dio_data->reserve -= len;
7379 out:
7380 return ret;
7381 }
7382
btrfs_dio_iomap_begin(struct inode * inode,loff_t start,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)7383 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7384 loff_t length, unsigned int flags, struct iomap *iomap,
7385 struct iomap *srcmap)
7386 {
7387 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7388 struct extent_map *em;
7389 struct extent_state *cached_state = NULL;
7390 struct btrfs_dio_data *dio_data = NULL;
7391 u64 lockstart, lockend;
7392 const bool write = !!(flags & IOMAP_WRITE);
7393 int ret = 0;
7394 u64 len = length;
7395 bool unlock_extents = false;
7396 bool sync = (current->journal_info == BTRFS_DIO_SYNC_STUB);
7397
7398 /*
7399 * We used current->journal_info here to see if we were sync, but
7400 * there's a lot of tests in the enospc machinery to not do flushing if
7401 * we have a journal_info set, so we need to clear this out and re-set
7402 * it in iomap_end.
7403 */
7404 ASSERT(current->journal_info == NULL ||
7405 current->journal_info == BTRFS_DIO_SYNC_STUB);
7406 current->journal_info = NULL;
7407
7408 if (!write)
7409 len = min_t(u64, len, fs_info->sectorsize);
7410
7411 lockstart = start;
7412 lockend = start + len - 1;
7413
7414 /*
7415 * The generic stuff only does filemap_write_and_wait_range, which
7416 * isn't enough if we've written compressed pages to this area, so we
7417 * need to flush the dirty pages again to make absolutely sure that any
7418 * outstanding dirty pages are on disk.
7419 */
7420 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7421 &BTRFS_I(inode)->runtime_flags)) {
7422 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7423 start + length - 1);
7424 if (ret)
7425 return ret;
7426 }
7427
7428 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7429 if (!dio_data)
7430 return -ENOMEM;
7431
7432 dio_data->sync = sync;
7433 dio_data->length = length;
7434 if (write) {
7435 dio_data->reserve = round_up(length, fs_info->sectorsize);
7436 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7437 &dio_data->data_reserved,
7438 start, dio_data->reserve);
7439 if (ret) {
7440 extent_changeset_free(dio_data->data_reserved);
7441 kfree(dio_data);
7442 return ret;
7443 }
7444 }
7445 iomap->private = dio_data;
7446
7447
7448 /*
7449 * If this errors out it's because we couldn't invalidate pagecache for
7450 * this range and we need to fallback to buffered.
7451 */
7452 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7453 ret = -ENOTBLK;
7454 goto err;
7455 }
7456
7457 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7458 if (IS_ERR(em)) {
7459 ret = PTR_ERR(em);
7460 goto unlock_err;
7461 }
7462
7463 /*
7464 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7465 * io. INLINE is special, and we could probably kludge it in here, but
7466 * it's still buffered so for safety lets just fall back to the generic
7467 * buffered path.
7468 *
7469 * For COMPRESSED we _have_ to read the entire extent in so we can
7470 * decompress it, so there will be buffering required no matter what we
7471 * do, so go ahead and fallback to buffered.
7472 *
7473 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7474 * to buffered IO. Don't blame me, this is the price we pay for using
7475 * the generic code.
7476 */
7477 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7478 em->block_start == EXTENT_MAP_INLINE) {
7479 free_extent_map(em);
7480 /*
7481 * If we are in a NOWAIT context, return -EAGAIN in order to
7482 * fallback to buffered IO. This is not only because we can
7483 * block with buffered IO (no support for NOWAIT semantics at
7484 * the moment) but also to avoid returning short reads to user
7485 * space - this happens if we were able to read some data from
7486 * previous non-compressed extents and then when we fallback to
7487 * buffered IO, at btrfs_file_read_iter() by calling
7488 * filemap_read(), we fail to fault in pages for the read buffer,
7489 * in which case filemap_read() returns a short read (the number
7490 * of bytes previously read is > 0, so it does not return -EFAULT).
7491 */
7492 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7493 goto unlock_err;
7494 }
7495
7496 len = min(len, em->len - (start - em->start));
7497 if (write) {
7498 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7499 start, len);
7500 if (ret < 0)
7501 goto unlock_err;
7502 unlock_extents = true;
7503 /* Recalc len in case the new em is smaller than requested */
7504 len = min(len, em->len - (start - em->start));
7505 } else {
7506 /*
7507 * We need to unlock only the end area that we aren't using.
7508 * The rest is going to be unlocked by the endio routine.
7509 */
7510 lockstart = start + len;
7511 if (lockstart < lockend)
7512 unlock_extents = true;
7513 }
7514
7515 if (unlock_extents)
7516 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7517 lockstart, lockend, &cached_state);
7518 else
7519 free_extent_state(cached_state);
7520
7521 /*
7522 * Translate extent map information to iomap.
7523 * We trim the extents (and move the addr) even though iomap code does
7524 * that, since we have locked only the parts we are performing I/O in.
7525 */
7526 if ((em->block_start == EXTENT_MAP_HOLE) ||
7527 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7528 iomap->addr = IOMAP_NULL_ADDR;
7529 iomap->type = IOMAP_HOLE;
7530 } else {
7531 iomap->addr = em->block_start + (start - em->start);
7532 iomap->type = IOMAP_MAPPED;
7533 }
7534 iomap->offset = start;
7535 iomap->bdev = fs_info->fs_devices->latest_bdev;
7536 iomap->length = len;
7537
7538 free_extent_map(em);
7539
7540 return 0;
7541
7542 unlock_err:
7543 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7544 &cached_state);
7545 err:
7546 if (dio_data) {
7547 btrfs_delalloc_release_space(BTRFS_I(inode),
7548 dio_data->data_reserved, start,
7549 dio_data->reserve, true);
7550 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7551 extent_changeset_free(dio_data->data_reserved);
7552 kfree(dio_data);
7553 }
7554 return ret;
7555 }
7556
btrfs_dio_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned int flags,struct iomap * iomap)7557 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7558 ssize_t written, unsigned int flags, struct iomap *iomap)
7559 {
7560 int ret = 0;
7561 struct btrfs_dio_data *dio_data = iomap->private;
7562 size_t submitted = dio_data->submitted;
7563 const bool write = !!(flags & IOMAP_WRITE);
7564
7565 if (!write && (iomap->type == IOMAP_HOLE)) {
7566 /* If reading from a hole, unlock and return */
7567 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7568 goto out;
7569 }
7570
7571 if (submitted < length) {
7572 pos += submitted;
7573 length -= submitted;
7574 if (write)
7575 __endio_write_update_ordered(BTRFS_I(inode), pos,
7576 length, false);
7577 else
7578 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7579 pos + length - 1);
7580 ret = -ENOTBLK;
7581 }
7582
7583 if (write) {
7584 if (dio_data->reserve)
7585 btrfs_delalloc_release_space(BTRFS_I(inode),
7586 dio_data->data_reserved, pos,
7587 dio_data->reserve, true);
7588 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7589 extent_changeset_free(dio_data->data_reserved);
7590 }
7591 out:
7592 /*
7593 * We're all done, we can re-set the current->journal_info now safely
7594 * for our endio.
7595 */
7596 if (dio_data->sync) {
7597 ASSERT(current->journal_info == NULL);
7598 current->journal_info = BTRFS_DIO_SYNC_STUB;
7599 }
7600 kfree(dio_data);
7601 iomap->private = NULL;
7602
7603 return ret;
7604 }
7605
btrfs_dio_private_put(struct btrfs_dio_private * dip)7606 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7607 {
7608 /*
7609 * This implies a barrier so that stores to dio_bio->bi_status before
7610 * this and loads of dio_bio->bi_status after this are fully ordered.
7611 */
7612 if (!refcount_dec_and_test(&dip->refs))
7613 return;
7614
7615 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7616 __endio_write_update_ordered(BTRFS_I(dip->inode),
7617 dip->logical_offset,
7618 dip->bytes,
7619 !dip->dio_bio->bi_status);
7620 } else {
7621 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7622 dip->logical_offset,
7623 dip->logical_offset + dip->bytes - 1);
7624 }
7625
7626 bio_endio(dip->dio_bio);
7627 kfree(dip);
7628 }
7629
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)7630 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7631 int mirror_num,
7632 unsigned long bio_flags)
7633 {
7634 struct btrfs_dio_private *dip = bio->bi_private;
7635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7636 blk_status_t ret;
7637
7638 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7639
7640 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7641 if (ret)
7642 return ret;
7643
7644 refcount_inc(&dip->refs);
7645 ret = btrfs_map_bio(fs_info, bio, mirror_num);
7646 if (ret)
7647 refcount_dec(&dip->refs);
7648 return ret;
7649 }
7650
btrfs_check_read_dio_bio(struct inode * inode,struct btrfs_io_bio * io_bio,const bool uptodate)7651 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7652 struct btrfs_io_bio *io_bio,
7653 const bool uptodate)
7654 {
7655 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7656 const u32 sectorsize = fs_info->sectorsize;
7657 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7658 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7659 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7660 struct bio_vec bvec;
7661 struct bvec_iter iter;
7662 u64 start = io_bio->logical;
7663 int icsum = 0;
7664 blk_status_t err = BLK_STS_OK;
7665
7666 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7667 unsigned int i, nr_sectors, pgoff;
7668
7669 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7670 pgoff = bvec.bv_offset;
7671 for (i = 0; i < nr_sectors; i++) {
7672 ASSERT(pgoff < PAGE_SIZE);
7673 if (uptodate &&
7674 (!csum || !check_data_csum(inode, io_bio, icsum,
7675 bvec.bv_page, pgoff,
7676 start, sectorsize))) {
7677 clean_io_failure(fs_info, failure_tree, io_tree,
7678 start, bvec.bv_page,
7679 btrfs_ino(BTRFS_I(inode)),
7680 pgoff);
7681 } else {
7682 blk_status_t status;
7683
7684 status = btrfs_submit_read_repair(inode,
7685 &io_bio->bio,
7686 start - io_bio->logical,
7687 bvec.bv_page, pgoff,
7688 start,
7689 start + sectorsize - 1,
7690 io_bio->mirror_num,
7691 submit_dio_repair_bio);
7692 if (status)
7693 err = status;
7694 }
7695 start += sectorsize;
7696 icsum++;
7697 pgoff += sectorsize;
7698 }
7699 }
7700 return err;
7701 }
7702
__endio_write_update_ordered(struct btrfs_inode * inode,const u64 offset,const u64 bytes,const bool uptodate)7703 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7704 const u64 offset, const u64 bytes,
7705 const bool uptodate)
7706 {
7707 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7708 struct btrfs_ordered_extent *ordered = NULL;
7709 struct btrfs_workqueue *wq;
7710 u64 ordered_offset = offset;
7711 u64 ordered_bytes = bytes;
7712 u64 last_offset;
7713
7714 if (btrfs_is_free_space_inode(inode))
7715 wq = fs_info->endio_freespace_worker;
7716 else
7717 wq = fs_info->endio_write_workers;
7718
7719 while (ordered_offset < offset + bytes) {
7720 last_offset = ordered_offset;
7721 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7722 &ordered_offset,
7723 ordered_bytes,
7724 uptodate)) {
7725 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7726 NULL);
7727 btrfs_queue_work(wq, &ordered->work);
7728 }
7729 /*
7730 * If btrfs_dec_test_ordered_pending does not find any ordered
7731 * extent in the range, we can exit.
7732 */
7733 if (ordered_offset == last_offset)
7734 return;
7735 /*
7736 * Our bio might span multiple ordered extents. In this case
7737 * we keep going until we have accounted the whole dio.
7738 */
7739 if (ordered_offset < offset + bytes) {
7740 ordered_bytes = offset + bytes - ordered_offset;
7741 ordered = NULL;
7742 }
7743 }
7744 }
7745
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)7746 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7747 struct bio *bio, u64 offset)
7748 {
7749 struct inode *inode = private_data;
7750
7751 return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
7752 }
7753
btrfs_end_dio_bio(struct bio * bio)7754 static void btrfs_end_dio_bio(struct bio *bio)
7755 {
7756 struct btrfs_dio_private *dip = bio->bi_private;
7757 blk_status_t err = bio->bi_status;
7758
7759 if (err)
7760 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7761 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7762 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7763 bio->bi_opf,
7764 (unsigned long long)bio->bi_iter.bi_sector,
7765 bio->bi_iter.bi_size, err);
7766
7767 if (bio_op(bio) == REQ_OP_READ) {
7768 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7769 !err);
7770 }
7771
7772 if (err)
7773 dip->dio_bio->bi_status = err;
7774
7775 bio_put(bio);
7776 btrfs_dio_private_put(dip);
7777 }
7778
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)7779 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7780 struct inode *inode, u64 file_offset, int async_submit)
7781 {
7782 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7783 struct btrfs_dio_private *dip = bio->bi_private;
7784 bool write = bio_op(bio) == REQ_OP_WRITE;
7785 blk_status_t ret;
7786
7787 /* Check btrfs_submit_bio_hook() for rules about async submit. */
7788 if (async_submit)
7789 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7790
7791 if (!write) {
7792 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7793 if (ret)
7794 goto err;
7795 }
7796
7797 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7798 goto map;
7799
7800 if (write && async_submit) {
7801 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7802 file_offset, inode,
7803 btrfs_submit_bio_start_direct_io);
7804 goto err;
7805 } else if (write) {
7806 /*
7807 * If we aren't doing async submit, calculate the csum of the
7808 * bio now.
7809 */
7810 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7811 if (ret)
7812 goto err;
7813 } else {
7814 u64 csum_offset;
7815
7816 csum_offset = file_offset - dip->logical_offset;
7817 csum_offset >>= inode->i_sb->s_blocksize_bits;
7818 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7819 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7820 }
7821 map:
7822 ret = btrfs_map_bio(fs_info, bio, 0);
7823 err:
7824 return ret;
7825 }
7826
7827 /*
7828 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7829 * or ordered extents whether or not we submit any bios.
7830 */
btrfs_create_dio_private(struct bio * dio_bio,struct inode * inode,loff_t file_offset)7831 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7832 struct inode *inode,
7833 loff_t file_offset)
7834 {
7835 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7836 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7837 size_t dip_size;
7838 struct btrfs_dio_private *dip;
7839
7840 dip_size = sizeof(*dip);
7841 if (!write && csum) {
7842 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7843 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7844 size_t nblocks;
7845
7846 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7847 dip_size += csum_size * nblocks;
7848 }
7849
7850 dip = kzalloc(dip_size, GFP_NOFS);
7851 if (!dip)
7852 return NULL;
7853
7854 dip->inode = inode;
7855 dip->logical_offset = file_offset;
7856 dip->bytes = dio_bio->bi_iter.bi_size;
7857 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7858 dip->dio_bio = dio_bio;
7859 refcount_set(&dip->refs, 1);
7860 return dip;
7861 }
7862
btrfs_submit_direct(struct inode * inode,struct iomap * iomap,struct bio * dio_bio,loff_t file_offset)7863 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
7864 struct bio *dio_bio, loff_t file_offset)
7865 {
7866 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7867 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7868 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7869 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7870 BTRFS_BLOCK_GROUP_RAID56_MASK);
7871 struct btrfs_dio_private *dip;
7872 struct bio *bio;
7873 u64 start_sector;
7874 int async_submit = 0;
7875 u64 submit_len;
7876 int clone_offset = 0;
7877 int clone_len;
7878 int ret;
7879 blk_status_t status;
7880 struct btrfs_io_geometry geom;
7881 struct btrfs_dio_data *dio_data = iomap->private;
7882
7883 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7884 if (!dip) {
7885 if (!write) {
7886 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7887 file_offset + dio_bio->bi_iter.bi_size - 1);
7888 }
7889 dio_bio->bi_status = BLK_STS_RESOURCE;
7890 bio_endio(dio_bio);
7891 return BLK_QC_T_NONE;
7892 }
7893
7894 if (!write && csum) {
7895 /*
7896 * Load the csums up front to reduce csum tree searches and
7897 * contention when submitting bios.
7898 */
7899 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7900 dip->csums);
7901 if (status != BLK_STS_OK)
7902 goto out_err;
7903 }
7904
7905 start_sector = dio_bio->bi_iter.bi_sector;
7906 submit_len = dio_bio->bi_iter.bi_size;
7907
7908 do {
7909 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7910 start_sector << 9, submit_len,
7911 &geom);
7912 if (ret) {
7913 status = errno_to_blk_status(ret);
7914 goto out_err;
7915 }
7916 ASSERT(geom.len <= INT_MAX);
7917
7918 clone_len = min_t(int, submit_len, geom.len);
7919
7920 /*
7921 * This will never fail as it's passing GPF_NOFS and
7922 * the allocation is backed by btrfs_bioset.
7923 */
7924 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7925 bio->bi_private = dip;
7926 bio->bi_end_io = btrfs_end_dio_bio;
7927 btrfs_io_bio(bio)->logical = file_offset;
7928
7929 ASSERT(submit_len >= clone_len);
7930 submit_len -= clone_len;
7931
7932 /*
7933 * Increase the count before we submit the bio so we know
7934 * the end IO handler won't happen before we increase the
7935 * count. Otherwise, the dip might get freed before we're
7936 * done setting it up.
7937 *
7938 * We transfer the initial reference to the last bio, so we
7939 * don't need to increment the reference count for the last one.
7940 */
7941 if (submit_len > 0) {
7942 refcount_inc(&dip->refs);
7943 /*
7944 * If we are submitting more than one bio, submit them
7945 * all asynchronously. The exception is RAID 5 or 6, as
7946 * asynchronous checksums make it difficult to collect
7947 * full stripe writes.
7948 */
7949 if (!raid56)
7950 async_submit = 1;
7951 }
7952
7953 status = btrfs_submit_dio_bio(bio, inode, file_offset,
7954 async_submit);
7955 if (status) {
7956 bio_put(bio);
7957 if (submit_len > 0)
7958 refcount_dec(&dip->refs);
7959 goto out_err;
7960 }
7961
7962 dio_data->submitted += clone_len;
7963 clone_offset += clone_len;
7964 start_sector += clone_len >> 9;
7965 file_offset += clone_len;
7966 } while (submit_len > 0);
7967 return BLK_QC_T_NONE;
7968
7969 out_err:
7970 dip->dio_bio->bi_status = status;
7971 btrfs_dio_private_put(dip);
7972 return BLK_QC_T_NONE;
7973 }
7974
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)7975 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7976 const struct iov_iter *iter, loff_t offset)
7977 {
7978 int seg;
7979 int i;
7980 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7981 ssize_t retval = -EINVAL;
7982
7983 if (offset & blocksize_mask)
7984 goto out;
7985
7986 if (iov_iter_alignment(iter) & blocksize_mask)
7987 goto out;
7988
7989 /* If this is a write we don't need to check anymore */
7990 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7991 return 0;
7992 /*
7993 * Check to make sure we don't have duplicate iov_base's in this
7994 * iovec, if so return EINVAL, otherwise we'll get csum errors
7995 * when reading back.
7996 */
7997 for (seg = 0; seg < iter->nr_segs; seg++) {
7998 for (i = seg + 1; i < iter->nr_segs; i++) {
7999 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8000 goto out;
8001 }
8002 }
8003 retval = 0;
8004 out:
8005 return retval;
8006 }
8007
btrfs_maybe_fsync_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)8008 static inline int btrfs_maybe_fsync_end_io(struct kiocb *iocb, ssize_t size,
8009 int error, unsigned flags)
8010 {
8011 /*
8012 * Now if we're still in the context of our submitter we know we can't
8013 * safely run generic_write_sync(), so clear our flag here so that the
8014 * caller knows to follow up with a sync.
8015 */
8016 if (current->journal_info == BTRFS_DIO_SYNC_STUB) {
8017 current->journal_info = NULL;
8018 return error;
8019 }
8020
8021 if (error)
8022 return error;
8023
8024 if (size) {
8025 iocb->ki_flags |= IOCB_DSYNC;
8026 return generic_write_sync(iocb, size);
8027 }
8028
8029 return 0;
8030 }
8031
8032 static const struct iomap_ops btrfs_dio_iomap_ops = {
8033 .iomap_begin = btrfs_dio_iomap_begin,
8034 .iomap_end = btrfs_dio_iomap_end,
8035 };
8036
8037 static const struct iomap_dio_ops btrfs_dio_ops = {
8038 .submit_io = btrfs_submit_direct,
8039 };
8040
8041 static const struct iomap_dio_ops btrfs_sync_dops = {
8042 .submit_io = btrfs_submit_direct,
8043 .end_io = btrfs_maybe_fsync_end_io,
8044 };
8045
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8046 ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8047 {
8048 struct file *file = iocb->ki_filp;
8049 struct inode *inode = file->f_mapping->host;
8050 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8051 struct extent_changeset *data_reserved = NULL;
8052 loff_t offset = iocb->ki_pos;
8053 size_t count = 0;
8054 bool relock = false;
8055 ssize_t ret;
8056
8057 if (check_direct_IO(fs_info, iter, offset)) {
8058 ASSERT(current->journal_info == NULL ||
8059 current->journal_info == BTRFS_DIO_SYNC_STUB);
8060 current->journal_info = NULL;
8061 return 0;
8062 }
8063
8064 count = iov_iter_count(iter);
8065 if (iov_iter_rw(iter) == WRITE) {
8066 /*
8067 * If the write DIO is beyond the EOF, we need update
8068 * the isize, but it is protected by i_mutex. So we can
8069 * not unlock the i_mutex at this case.
8070 */
8071 if (offset + count <= inode->i_size) {
8072 inode_unlock(inode);
8073 relock = true;
8074 }
8075 down_read(&BTRFS_I(inode)->dio_sem);
8076 }
8077
8078 /*
8079 * We have are actually a sync iocb, so we need our fancy endio to know
8080 * if we need to sync.
8081 */
8082 if (current->journal_info)
8083 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
8084 &btrfs_sync_dops, is_sync_kiocb(iocb));
8085 else
8086 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
8087 &btrfs_dio_ops, is_sync_kiocb(iocb));
8088
8089 if (ret == -ENOTBLK)
8090 ret = 0;
8091
8092 if (iov_iter_rw(iter) == WRITE)
8093 up_read(&BTRFS_I(inode)->dio_sem);
8094
8095 if (relock)
8096 inode_lock(inode);
8097
8098 extent_changeset_free(data_reserved);
8099 return ret;
8100 }
8101
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)8102 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8103 u64 start, u64 len)
8104 {
8105 int ret;
8106
8107 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8108 if (ret)
8109 return ret;
8110
8111 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8112 }
8113
btrfs_readpage(struct file * file,struct page * page)8114 int btrfs_readpage(struct file *file, struct page *page)
8115 {
8116 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8117 u64 start = page_offset(page);
8118 u64 end = start + PAGE_SIZE - 1;
8119 unsigned long bio_flags = 0;
8120 struct bio *bio = NULL;
8121 int ret;
8122
8123 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8124
8125 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8126 if (bio)
8127 ret = submit_one_bio(bio, 0, bio_flags);
8128 return ret;
8129 }
8130
btrfs_writepage(struct page * page,struct writeback_control * wbc)8131 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8132 {
8133 struct inode *inode = page->mapping->host;
8134 int ret;
8135
8136 if (current->flags & PF_MEMALLOC) {
8137 redirty_page_for_writepage(wbc, page);
8138 unlock_page(page);
8139 return 0;
8140 }
8141
8142 /*
8143 * If we are under memory pressure we will call this directly from the
8144 * VM, we need to make sure we have the inode referenced for the ordered
8145 * extent. If not just return like we didn't do anything.
8146 */
8147 if (!igrab(inode)) {
8148 redirty_page_for_writepage(wbc, page);
8149 return AOP_WRITEPAGE_ACTIVATE;
8150 }
8151 ret = extent_write_full_page(page, wbc);
8152 btrfs_add_delayed_iput(inode);
8153 return ret;
8154 }
8155
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8156 static int btrfs_writepages(struct address_space *mapping,
8157 struct writeback_control *wbc)
8158 {
8159 return extent_writepages(mapping, wbc);
8160 }
8161
btrfs_readahead(struct readahead_control * rac)8162 static void btrfs_readahead(struct readahead_control *rac)
8163 {
8164 extent_readahead(rac);
8165 }
8166
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8167 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8168 {
8169 int ret = try_release_extent_mapping(page, gfp_flags);
8170 if (ret == 1)
8171 detach_page_private(page);
8172 return ret;
8173 }
8174
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8175 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8176 {
8177 if (PageWriteback(page) || PageDirty(page))
8178 return 0;
8179 return __btrfs_releasepage(page, gfp_flags);
8180 }
8181
8182 #ifdef CONFIG_MIGRATION
btrfs_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)8183 static int btrfs_migratepage(struct address_space *mapping,
8184 struct page *newpage, struct page *page,
8185 enum migrate_mode mode)
8186 {
8187 int ret;
8188
8189 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8190 if (ret != MIGRATEPAGE_SUCCESS)
8191 return ret;
8192
8193 if (page_has_private(page))
8194 attach_page_private(newpage, detach_page_private(page));
8195
8196 if (PagePrivate2(page)) {
8197 ClearPagePrivate2(page);
8198 SetPagePrivate2(newpage);
8199 }
8200
8201 if (mode != MIGRATE_SYNC_NO_COPY)
8202 migrate_page_copy(newpage, page);
8203 else
8204 migrate_page_states(newpage, page);
8205 return MIGRATEPAGE_SUCCESS;
8206 }
8207 #endif
8208
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8209 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8210 unsigned int length)
8211 {
8212 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8213 struct extent_io_tree *tree = &inode->io_tree;
8214 struct btrfs_ordered_extent *ordered;
8215 struct extent_state *cached_state = NULL;
8216 u64 page_start = page_offset(page);
8217 u64 page_end = page_start + PAGE_SIZE - 1;
8218 u64 start;
8219 u64 end;
8220 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8221
8222 /*
8223 * we have the page locked, so new writeback can't start,
8224 * and the dirty bit won't be cleared while we are here.
8225 *
8226 * Wait for IO on this page so that we can safely clear
8227 * the PagePrivate2 bit and do ordered accounting
8228 */
8229 wait_on_page_writeback(page);
8230
8231 /*
8232 * For subpage case, we have call sites like
8233 * btrfs_punch_hole_lock_range() which passes range not aligned to
8234 * sectorsize.
8235 * If the range doesn't cover the full page, we don't need to and
8236 * shouldn't clear page extent mapped, as page->private can still
8237 * record subpage dirty bits for other part of the range.
8238 *
8239 * For cases that can invalidate the full even the range doesn't
8240 * cover the full page, like invalidating the last page, we're
8241 * still safe to wait for ordered extent to finish.
8242 */
8243 if (!(offset == 0 && length == PAGE_SIZE)) {
8244 btrfs_releasepage(page, GFP_NOFS);
8245 return;
8246 }
8247
8248 if (!inode_evicting)
8249 lock_extent_bits(tree, page_start, page_end, &cached_state);
8250
8251 start = page_start;
8252 again:
8253 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8254 if (ordered) {
8255 end = min(page_end,
8256 ordered->file_offset + ordered->num_bytes - 1);
8257 /*
8258 * IO on this page will never be started, so we need
8259 * to account for any ordered extents now
8260 */
8261 if (!inode_evicting)
8262 clear_extent_bit(tree, start, end,
8263 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8264 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8265 EXTENT_DEFRAG, 1, 0, &cached_state);
8266 /*
8267 * whoever cleared the private bit is responsible
8268 * for the finish_ordered_io
8269 */
8270 if (TestClearPagePrivate2(page)) {
8271 struct btrfs_ordered_inode_tree *tree;
8272 u64 new_len;
8273
8274 tree = &inode->ordered_tree;
8275
8276 spin_lock_irq(&tree->lock);
8277 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8278 new_len = start - ordered->file_offset;
8279 if (new_len < ordered->truncated_len)
8280 ordered->truncated_len = new_len;
8281 spin_unlock_irq(&tree->lock);
8282
8283 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8284 start,
8285 end - start + 1, 1))
8286 btrfs_finish_ordered_io(ordered);
8287 }
8288 btrfs_put_ordered_extent(ordered);
8289 if (!inode_evicting) {
8290 cached_state = NULL;
8291 lock_extent_bits(tree, start, end,
8292 &cached_state);
8293 }
8294
8295 start = end + 1;
8296 if (start < page_end)
8297 goto again;
8298 }
8299
8300 /*
8301 * Qgroup reserved space handler
8302 * Page here will be either
8303 * 1) Already written to disk or ordered extent already submitted
8304 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8305 * Qgroup will be handled by its qgroup_record then.
8306 * btrfs_qgroup_free_data() call will do nothing here.
8307 *
8308 * 2) Not written to disk yet
8309 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8310 * bit of its io_tree, and free the qgroup reserved data space.
8311 * Since the IO will never happen for this page.
8312 */
8313 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8314 if (!inode_evicting) {
8315 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8316 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8317 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8318 &cached_state);
8319
8320 __btrfs_releasepage(page, GFP_NOFS);
8321 }
8322
8323 ClearPageChecked(page);
8324 detach_page_private(page);
8325 }
8326
8327 /*
8328 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8329 * called from a page fault handler when a page is first dirtied. Hence we must
8330 * be careful to check for EOF conditions here. We set the page up correctly
8331 * for a written page which means we get ENOSPC checking when writing into
8332 * holes and correct delalloc and unwritten extent mapping on filesystems that
8333 * support these features.
8334 *
8335 * We are not allowed to take the i_mutex here so we have to play games to
8336 * protect against truncate races as the page could now be beyond EOF. Because
8337 * truncate_setsize() writes the inode size before removing pages, once we have
8338 * the page lock we can determine safely if the page is beyond EOF. If it is not
8339 * beyond EOF, then the page is guaranteed safe against truncation until we
8340 * unlock the page.
8341 */
btrfs_page_mkwrite(struct vm_fault * vmf)8342 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8343 {
8344 struct page *page = vmf->page;
8345 struct inode *inode = file_inode(vmf->vma->vm_file);
8346 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8347 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8348 struct btrfs_ordered_extent *ordered;
8349 struct extent_state *cached_state = NULL;
8350 struct extent_changeset *data_reserved = NULL;
8351 char *kaddr;
8352 unsigned long zero_start;
8353 loff_t size;
8354 vm_fault_t ret;
8355 int ret2;
8356 int reserved = 0;
8357 u64 reserved_space;
8358 u64 page_start;
8359 u64 page_end;
8360 u64 end;
8361
8362 reserved_space = PAGE_SIZE;
8363
8364 sb_start_pagefault(inode->i_sb);
8365 page_start = page_offset(page);
8366 page_end = page_start + PAGE_SIZE - 1;
8367 end = page_end;
8368
8369 /*
8370 * Reserving delalloc space after obtaining the page lock can lead to
8371 * deadlock. For example, if a dirty page is locked by this function
8372 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8373 * dirty page write out, then the btrfs_writepage() function could
8374 * end up waiting indefinitely to get a lock on the page currently
8375 * being processed by btrfs_page_mkwrite() function.
8376 */
8377 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8378 page_start, reserved_space);
8379 if (!ret2) {
8380 ret2 = file_update_time(vmf->vma->vm_file);
8381 reserved = 1;
8382 }
8383 if (ret2) {
8384 ret = vmf_error(ret2);
8385 if (reserved)
8386 goto out;
8387 goto out_noreserve;
8388 }
8389
8390 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8391 again:
8392 lock_page(page);
8393 size = i_size_read(inode);
8394
8395 if ((page->mapping != inode->i_mapping) ||
8396 (page_start >= size)) {
8397 /* page got truncated out from underneath us */
8398 goto out_unlock;
8399 }
8400 wait_on_page_writeback(page);
8401
8402 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8403 set_page_extent_mapped(page);
8404
8405 /*
8406 * we can't set the delalloc bits if there are pending ordered
8407 * extents. Drop our locks and wait for them to finish
8408 */
8409 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8410 PAGE_SIZE);
8411 if (ordered) {
8412 unlock_extent_cached(io_tree, page_start, page_end,
8413 &cached_state);
8414 unlock_page(page);
8415 btrfs_start_ordered_extent(ordered, 1);
8416 btrfs_put_ordered_extent(ordered);
8417 goto again;
8418 }
8419
8420 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8421 reserved_space = round_up(size - page_start,
8422 fs_info->sectorsize);
8423 if (reserved_space < PAGE_SIZE) {
8424 end = page_start + reserved_space - 1;
8425 btrfs_delalloc_release_space(BTRFS_I(inode),
8426 data_reserved, page_start,
8427 PAGE_SIZE - reserved_space, true);
8428 }
8429 }
8430
8431 /*
8432 * page_mkwrite gets called when the page is firstly dirtied after it's
8433 * faulted in, but write(2) could also dirty a page and set delalloc
8434 * bits, thus in this case for space account reason, we still need to
8435 * clear any delalloc bits within this page range since we have to
8436 * reserve data&meta space before lock_page() (see above comments).
8437 */
8438 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8439 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8440 EXTENT_DEFRAG, 0, 0, &cached_state);
8441
8442 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8443 &cached_state);
8444 if (ret2) {
8445 unlock_extent_cached(io_tree, page_start, page_end,
8446 &cached_state);
8447 ret = VM_FAULT_SIGBUS;
8448 goto out_unlock;
8449 }
8450
8451 /* page is wholly or partially inside EOF */
8452 if (page_start + PAGE_SIZE > size)
8453 zero_start = offset_in_page(size);
8454 else
8455 zero_start = PAGE_SIZE;
8456
8457 if (zero_start != PAGE_SIZE) {
8458 kaddr = kmap(page);
8459 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8460 flush_dcache_page(page);
8461 kunmap(page);
8462 }
8463 ClearPageChecked(page);
8464 set_page_dirty(page);
8465 SetPageUptodate(page);
8466
8467 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8468
8469 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8470
8471 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8472 sb_end_pagefault(inode->i_sb);
8473 extent_changeset_free(data_reserved);
8474 return VM_FAULT_LOCKED;
8475
8476 out_unlock:
8477 unlock_page(page);
8478 out:
8479 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8480 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8481 reserved_space, (ret != 0));
8482 out_noreserve:
8483 sb_end_pagefault(inode->i_sb);
8484 extent_changeset_free(data_reserved);
8485 return ret;
8486 }
8487
btrfs_truncate(struct inode * inode,bool skip_writeback)8488 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8489 {
8490 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8491 struct btrfs_root *root = BTRFS_I(inode)->root;
8492 struct btrfs_block_rsv *rsv;
8493 int ret;
8494 struct btrfs_trans_handle *trans;
8495 u64 mask = fs_info->sectorsize - 1;
8496 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8497
8498 if (!skip_writeback) {
8499 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8500 (u64)-1);
8501 if (ret)
8502 return ret;
8503 }
8504
8505 /*
8506 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8507 * things going on here:
8508 *
8509 * 1) We need to reserve space to update our inode.
8510 *
8511 * 2) We need to have something to cache all the space that is going to
8512 * be free'd up by the truncate operation, but also have some slack
8513 * space reserved in case it uses space during the truncate (thank you
8514 * very much snapshotting).
8515 *
8516 * And we need these to be separate. The fact is we can use a lot of
8517 * space doing the truncate, and we have no earthly idea how much space
8518 * we will use, so we need the truncate reservation to be separate so it
8519 * doesn't end up using space reserved for updating the inode. We also
8520 * need to be able to stop the transaction and start a new one, which
8521 * means we need to be able to update the inode several times, and we
8522 * have no idea of knowing how many times that will be, so we can't just
8523 * reserve 1 item for the entirety of the operation, so that has to be
8524 * done separately as well.
8525 *
8526 * So that leaves us with
8527 *
8528 * 1) rsv - for the truncate reservation, which we will steal from the
8529 * transaction reservation.
8530 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8531 * updating the inode.
8532 */
8533 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8534 if (!rsv)
8535 return -ENOMEM;
8536 rsv->size = min_size;
8537 rsv->failfast = 1;
8538
8539 /*
8540 * 1 for the truncate slack space
8541 * 1 for updating the inode.
8542 */
8543 trans = btrfs_start_transaction(root, 2);
8544 if (IS_ERR(trans)) {
8545 ret = PTR_ERR(trans);
8546 goto out;
8547 }
8548
8549 /* Migrate the slack space for the truncate to our reserve */
8550 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8551 min_size, false);
8552 BUG_ON(ret);
8553
8554 /*
8555 * So if we truncate and then write and fsync we normally would just
8556 * write the extents that changed, which is a problem if we need to
8557 * first truncate that entire inode. So set this flag so we write out
8558 * all of the extents in the inode to the sync log so we're completely
8559 * safe.
8560 */
8561 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8562 trans->block_rsv = rsv;
8563
8564 while (1) {
8565 ret = btrfs_truncate_inode_items(trans, root, inode,
8566 inode->i_size,
8567 BTRFS_EXTENT_DATA_KEY);
8568 trans->block_rsv = &fs_info->trans_block_rsv;
8569 if (ret != -ENOSPC && ret != -EAGAIN)
8570 break;
8571
8572 ret = btrfs_update_inode(trans, root, inode);
8573 if (ret)
8574 break;
8575
8576 btrfs_end_transaction(trans);
8577 btrfs_btree_balance_dirty(fs_info);
8578
8579 trans = btrfs_start_transaction(root, 2);
8580 if (IS_ERR(trans)) {
8581 ret = PTR_ERR(trans);
8582 trans = NULL;
8583 break;
8584 }
8585
8586 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8587 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8588 rsv, min_size, false);
8589 BUG_ON(ret); /* shouldn't happen */
8590 trans->block_rsv = rsv;
8591 }
8592
8593 /*
8594 * We can't call btrfs_truncate_block inside a trans handle as we could
8595 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8596 * we've truncated everything except the last little bit, and can do
8597 * btrfs_truncate_block and then update the disk_i_size.
8598 */
8599 if (ret == NEED_TRUNCATE_BLOCK) {
8600 btrfs_end_transaction(trans);
8601 btrfs_btree_balance_dirty(fs_info);
8602
8603 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8604 if (ret)
8605 goto out;
8606 trans = btrfs_start_transaction(root, 1);
8607 if (IS_ERR(trans)) {
8608 ret = PTR_ERR(trans);
8609 goto out;
8610 }
8611 btrfs_inode_safe_disk_i_size_write(inode, 0);
8612 }
8613
8614 if (trans) {
8615 int ret2;
8616
8617 trans->block_rsv = &fs_info->trans_block_rsv;
8618 ret2 = btrfs_update_inode(trans, root, inode);
8619 if (ret2 && !ret)
8620 ret = ret2;
8621
8622 ret2 = btrfs_end_transaction(trans);
8623 if (ret2 && !ret)
8624 ret = ret2;
8625 btrfs_btree_balance_dirty(fs_info);
8626 }
8627 out:
8628 btrfs_free_block_rsv(fs_info, rsv);
8629
8630 return ret;
8631 }
8632
8633 /*
8634 * create a new subvolume directory/inode (helper for the ioctl).
8635 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)8636 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8637 struct btrfs_root *new_root,
8638 struct btrfs_root *parent_root,
8639 u64 new_dirid)
8640 {
8641 struct inode *inode;
8642 int err;
8643 u64 index = 0;
8644
8645 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8646 new_dirid, new_dirid,
8647 S_IFDIR | (~current_umask() & S_IRWXUGO),
8648 &index);
8649 if (IS_ERR(inode))
8650 return PTR_ERR(inode);
8651 inode->i_op = &btrfs_dir_inode_operations;
8652 inode->i_fop = &btrfs_dir_file_operations;
8653
8654 set_nlink(inode, 1);
8655 btrfs_i_size_write(BTRFS_I(inode), 0);
8656 unlock_new_inode(inode);
8657
8658 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8659 if (err)
8660 btrfs_err(new_root->fs_info,
8661 "error inheriting subvolume %llu properties: %d",
8662 new_root->root_key.objectid, err);
8663
8664 err = btrfs_update_inode(trans, new_root, inode);
8665
8666 iput(inode);
8667 return err;
8668 }
8669
btrfs_alloc_inode(struct super_block * sb)8670 struct inode *btrfs_alloc_inode(struct super_block *sb)
8671 {
8672 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8673 struct btrfs_inode *ei;
8674 struct inode *inode;
8675
8676 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8677 if (!ei)
8678 return NULL;
8679
8680 ei->root = NULL;
8681 ei->generation = 0;
8682 ei->last_trans = 0;
8683 ei->last_sub_trans = 0;
8684 ei->logged_trans = 0;
8685 ei->delalloc_bytes = 0;
8686 ei->new_delalloc_bytes = 0;
8687 ei->defrag_bytes = 0;
8688 ei->disk_i_size = 0;
8689 ei->flags = 0;
8690 ei->csum_bytes = 0;
8691 ei->index_cnt = (u64)-1;
8692 ei->dir_index = 0;
8693 ei->last_unlink_trans = 0;
8694 ei->last_reflink_trans = 0;
8695 ei->last_log_commit = 0;
8696
8697 spin_lock_init(&ei->lock);
8698 ei->outstanding_extents = 0;
8699 if (sb->s_magic != BTRFS_TEST_MAGIC)
8700 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8701 BTRFS_BLOCK_RSV_DELALLOC);
8702 ei->runtime_flags = 0;
8703 ei->prop_compress = BTRFS_COMPRESS_NONE;
8704 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8705
8706 ei->delayed_node = NULL;
8707
8708 ei->i_otime.tv_sec = 0;
8709 ei->i_otime.tv_nsec = 0;
8710
8711 inode = &ei->vfs_inode;
8712 extent_map_tree_init(&ei->extent_tree);
8713 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8714 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8715 IO_TREE_INODE_IO_FAILURE, inode);
8716 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8717 IO_TREE_INODE_FILE_EXTENT, inode);
8718 ei->io_tree.track_uptodate = true;
8719 ei->io_failure_tree.track_uptodate = true;
8720 atomic_set(&ei->sync_writers, 0);
8721 mutex_init(&ei->log_mutex);
8722 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8723 INIT_LIST_HEAD(&ei->delalloc_inodes);
8724 INIT_LIST_HEAD(&ei->delayed_iput);
8725 RB_CLEAR_NODE(&ei->rb_node);
8726 init_rwsem(&ei->dio_sem);
8727
8728 return inode;
8729 }
8730
8731 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)8732 void btrfs_test_destroy_inode(struct inode *inode)
8733 {
8734 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8735 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8736 }
8737 #endif
8738
btrfs_free_inode(struct inode * inode)8739 void btrfs_free_inode(struct inode *inode)
8740 {
8741 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8742 }
8743
btrfs_destroy_inode(struct inode * vfs_inode)8744 void btrfs_destroy_inode(struct inode *vfs_inode)
8745 {
8746 struct btrfs_ordered_extent *ordered;
8747 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8748 struct btrfs_root *root = inode->root;
8749
8750 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8751 WARN_ON(vfs_inode->i_data.nrpages);
8752 WARN_ON(inode->block_rsv.reserved);
8753 WARN_ON(inode->block_rsv.size);
8754 WARN_ON(inode->outstanding_extents);
8755 WARN_ON(inode->delalloc_bytes);
8756 WARN_ON(inode->new_delalloc_bytes);
8757 WARN_ON(inode->csum_bytes);
8758 WARN_ON(inode->defrag_bytes);
8759
8760 /*
8761 * This can happen where we create an inode, but somebody else also
8762 * created the same inode and we need to destroy the one we already
8763 * created.
8764 */
8765 if (!root)
8766 return;
8767
8768 while (1) {
8769 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8770 if (!ordered)
8771 break;
8772 else {
8773 btrfs_err(root->fs_info,
8774 "found ordered extent %llu %llu on inode cleanup",
8775 ordered->file_offset, ordered->num_bytes);
8776 btrfs_remove_ordered_extent(inode, ordered);
8777 btrfs_put_ordered_extent(ordered);
8778 btrfs_put_ordered_extent(ordered);
8779 }
8780 }
8781 btrfs_qgroup_check_reserved_leak(inode);
8782 inode_tree_del(inode);
8783 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8784 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8785 btrfs_put_root(inode->root);
8786 }
8787
btrfs_drop_inode(struct inode * inode)8788 int btrfs_drop_inode(struct inode *inode)
8789 {
8790 struct btrfs_root *root = BTRFS_I(inode)->root;
8791
8792 if (root == NULL)
8793 return 1;
8794
8795 /* the snap/subvol tree is on deleting */
8796 if (btrfs_root_refs(&root->root_item) == 0)
8797 return 1;
8798 else
8799 return generic_drop_inode(inode);
8800 }
8801
init_once(void * foo)8802 static void init_once(void *foo)
8803 {
8804 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8805
8806 inode_init_once(&ei->vfs_inode);
8807 }
8808
btrfs_destroy_cachep(void)8809 void __cold btrfs_destroy_cachep(void)
8810 {
8811 /*
8812 * Make sure all delayed rcu free inodes are flushed before we
8813 * destroy cache.
8814 */
8815 rcu_barrier();
8816 kmem_cache_destroy(btrfs_inode_cachep);
8817 kmem_cache_destroy(btrfs_trans_handle_cachep);
8818 kmem_cache_destroy(btrfs_path_cachep);
8819 kmem_cache_destroy(btrfs_free_space_cachep);
8820 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8821 }
8822
btrfs_init_cachep(void)8823 int __init btrfs_init_cachep(void)
8824 {
8825 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8826 sizeof(struct btrfs_inode), 0,
8827 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8828 init_once);
8829 if (!btrfs_inode_cachep)
8830 goto fail;
8831
8832 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8833 sizeof(struct btrfs_trans_handle), 0,
8834 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8835 if (!btrfs_trans_handle_cachep)
8836 goto fail;
8837
8838 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8839 sizeof(struct btrfs_path), 0,
8840 SLAB_MEM_SPREAD, NULL);
8841 if (!btrfs_path_cachep)
8842 goto fail;
8843
8844 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8845 sizeof(struct btrfs_free_space), 0,
8846 SLAB_MEM_SPREAD, NULL);
8847 if (!btrfs_free_space_cachep)
8848 goto fail;
8849
8850 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8851 PAGE_SIZE, PAGE_SIZE,
8852 SLAB_MEM_SPREAD, NULL);
8853 if (!btrfs_free_space_bitmap_cachep)
8854 goto fail;
8855
8856 return 0;
8857 fail:
8858 btrfs_destroy_cachep();
8859 return -ENOMEM;
8860 }
8861
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)8862 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8863 u32 request_mask, unsigned int flags)
8864 {
8865 u64 delalloc_bytes;
8866 struct inode *inode = d_inode(path->dentry);
8867 u32 blocksize = inode->i_sb->s_blocksize;
8868 u32 bi_flags = BTRFS_I(inode)->flags;
8869
8870 stat->result_mask |= STATX_BTIME;
8871 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8872 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8873 if (bi_flags & BTRFS_INODE_APPEND)
8874 stat->attributes |= STATX_ATTR_APPEND;
8875 if (bi_flags & BTRFS_INODE_COMPRESS)
8876 stat->attributes |= STATX_ATTR_COMPRESSED;
8877 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8878 stat->attributes |= STATX_ATTR_IMMUTABLE;
8879 if (bi_flags & BTRFS_INODE_NODUMP)
8880 stat->attributes |= STATX_ATTR_NODUMP;
8881
8882 stat->attributes_mask |= (STATX_ATTR_APPEND |
8883 STATX_ATTR_COMPRESSED |
8884 STATX_ATTR_IMMUTABLE |
8885 STATX_ATTR_NODUMP);
8886
8887 generic_fillattr(inode, stat);
8888 stat->dev = BTRFS_I(inode)->root->anon_dev;
8889
8890 spin_lock(&BTRFS_I(inode)->lock);
8891 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8892 spin_unlock(&BTRFS_I(inode)->lock);
8893 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8894 ALIGN(delalloc_bytes, blocksize)) >> 9;
8895 return 0;
8896 }
8897
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8898 static int btrfs_rename_exchange(struct inode *old_dir,
8899 struct dentry *old_dentry,
8900 struct inode *new_dir,
8901 struct dentry *new_dentry)
8902 {
8903 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8904 struct btrfs_trans_handle *trans;
8905 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8906 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8907 struct inode *new_inode = new_dentry->d_inode;
8908 struct inode *old_inode = old_dentry->d_inode;
8909 struct timespec64 ctime = current_time(old_inode);
8910 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8911 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8912 u64 old_idx = 0;
8913 u64 new_idx = 0;
8914 int ret;
8915 int ret2;
8916 bool root_log_pinned = false;
8917 bool dest_log_pinned = false;
8918 bool need_abort = false;
8919
8920 /*
8921 * For non-subvolumes allow exchange only within one subvolume, in the
8922 * same inode namespace. Two subvolumes (represented as directory) can
8923 * be exchanged as they're a logical link and have a fixed inode number.
8924 */
8925 if (root != dest &&
8926 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8927 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8928 return -EXDEV;
8929
8930 /* close the race window with snapshot create/destroy ioctl */
8931 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8932 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8933 down_read(&fs_info->subvol_sem);
8934
8935 /*
8936 * We want to reserve the absolute worst case amount of items. So if
8937 * both inodes are subvols and we need to unlink them then that would
8938 * require 4 item modifications, but if they are both normal inodes it
8939 * would require 5 item modifications, so we'll assume their normal
8940 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8941 * should cover the worst case number of items we'll modify.
8942 */
8943 trans = btrfs_start_transaction(root, 12);
8944 if (IS_ERR(trans)) {
8945 ret = PTR_ERR(trans);
8946 goto out_notrans;
8947 }
8948
8949 if (dest != root)
8950 btrfs_record_root_in_trans(trans, dest);
8951
8952 /*
8953 * We need to find a free sequence number both in the source and
8954 * in the destination directory for the exchange.
8955 */
8956 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8957 if (ret)
8958 goto out_fail;
8959 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8960 if (ret)
8961 goto out_fail;
8962
8963 BTRFS_I(old_inode)->dir_index = 0ULL;
8964 BTRFS_I(new_inode)->dir_index = 0ULL;
8965
8966 /* Reference for the source. */
8967 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8968 /* force full log commit if subvolume involved. */
8969 btrfs_set_log_full_commit(trans);
8970 } else {
8971 ret = btrfs_insert_inode_ref(trans, dest,
8972 new_dentry->d_name.name,
8973 new_dentry->d_name.len,
8974 old_ino,
8975 btrfs_ino(BTRFS_I(new_dir)),
8976 old_idx);
8977 if (ret)
8978 goto out_fail;
8979 need_abort = true;
8980 }
8981
8982 /* And now for the dest. */
8983 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8984 /* force full log commit if subvolume involved. */
8985 btrfs_set_log_full_commit(trans);
8986 } else {
8987 ret = btrfs_insert_inode_ref(trans, root,
8988 old_dentry->d_name.name,
8989 old_dentry->d_name.len,
8990 new_ino,
8991 btrfs_ino(BTRFS_I(old_dir)),
8992 new_idx);
8993 if (ret) {
8994 if (need_abort)
8995 btrfs_abort_transaction(trans, ret);
8996 goto out_fail;
8997 }
8998 }
8999
9000 /* Update inode version and ctime/mtime. */
9001 inode_inc_iversion(old_dir);
9002 inode_inc_iversion(new_dir);
9003 inode_inc_iversion(old_inode);
9004 inode_inc_iversion(new_inode);
9005 old_dir->i_ctime = old_dir->i_mtime = ctime;
9006 new_dir->i_ctime = new_dir->i_mtime = ctime;
9007 old_inode->i_ctime = ctime;
9008 new_inode->i_ctime = ctime;
9009
9010 if (old_dentry->d_parent != new_dentry->d_parent) {
9011 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9012 BTRFS_I(old_inode), 1);
9013 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9014 BTRFS_I(new_inode), 1);
9015 }
9016
9017 /*
9018 * Now pin the logs of the roots. We do it to ensure that no other task
9019 * can sync the logs while we are in progress with the rename, because
9020 * that could result in an inconsistency in case any of the inodes that
9021 * are part of this rename operation were logged before.
9022 *
9023 * We pin the logs even if at this precise moment none of the inodes was
9024 * logged before. This is because right after we checked for that, some
9025 * other task fsyncing some other inode not involved with this rename
9026 * operation could log that one of our inodes exists.
9027 *
9028 * We don't need to pin the logs before the above calls to
9029 * btrfs_insert_inode_ref(), since those don't ever need to change a log.
9030 */
9031 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9032 btrfs_pin_log_trans(root);
9033 root_log_pinned = true;
9034 }
9035 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) {
9036 btrfs_pin_log_trans(dest);
9037 dest_log_pinned = true;
9038 }
9039
9040 /* src is a subvolume */
9041 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9042 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9043 } else { /* src is an inode */
9044 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9045 BTRFS_I(old_dentry->d_inode),
9046 old_dentry->d_name.name,
9047 old_dentry->d_name.len);
9048 if (!ret)
9049 ret = btrfs_update_inode(trans, root, old_inode);
9050 }
9051 if (ret) {
9052 btrfs_abort_transaction(trans, ret);
9053 goto out_fail;
9054 }
9055
9056 /* dest is a subvolume */
9057 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9058 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9059 } else { /* dest is an inode */
9060 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9061 BTRFS_I(new_dentry->d_inode),
9062 new_dentry->d_name.name,
9063 new_dentry->d_name.len);
9064 if (!ret)
9065 ret = btrfs_update_inode(trans, dest, new_inode);
9066 }
9067 if (ret) {
9068 btrfs_abort_transaction(trans, ret);
9069 goto out_fail;
9070 }
9071
9072 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9073 new_dentry->d_name.name,
9074 new_dentry->d_name.len, 0, old_idx);
9075 if (ret) {
9076 btrfs_abort_transaction(trans, ret);
9077 goto out_fail;
9078 }
9079
9080 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9081 old_dentry->d_name.name,
9082 old_dentry->d_name.len, 0, new_idx);
9083 if (ret) {
9084 btrfs_abort_transaction(trans, ret);
9085 goto out_fail;
9086 }
9087
9088 if (old_inode->i_nlink == 1)
9089 BTRFS_I(old_inode)->dir_index = old_idx;
9090 if (new_inode->i_nlink == 1)
9091 BTRFS_I(new_inode)->dir_index = new_idx;
9092
9093 if (root_log_pinned) {
9094 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9095 new_dentry->d_parent);
9096 btrfs_end_log_trans(root);
9097 root_log_pinned = false;
9098 }
9099 if (dest_log_pinned) {
9100 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9101 old_dentry->d_parent);
9102 btrfs_end_log_trans(dest);
9103 dest_log_pinned = false;
9104 }
9105 out_fail:
9106 /*
9107 * If we have pinned a log and an error happened, we unpin tasks
9108 * trying to sync the log and force them to fallback to a transaction
9109 * commit if the log currently contains any of the inodes involved in
9110 * this rename operation (to ensure we do not persist a log with an
9111 * inconsistent state for any of these inodes or leading to any
9112 * inconsistencies when replayed). If the transaction was aborted, the
9113 * abortion reason is propagated to userspace when attempting to commit
9114 * the transaction. If the log does not contain any of these inodes, we
9115 * allow the tasks to sync it.
9116 */
9117 if (ret && (root_log_pinned || dest_log_pinned)) {
9118 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9119 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9120 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9121 (new_inode &&
9122 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9123 btrfs_set_log_full_commit(trans);
9124
9125 if (root_log_pinned) {
9126 btrfs_end_log_trans(root);
9127 root_log_pinned = false;
9128 }
9129 if (dest_log_pinned) {
9130 btrfs_end_log_trans(dest);
9131 dest_log_pinned = false;
9132 }
9133 }
9134 ret2 = btrfs_end_transaction(trans);
9135 ret = ret ? ret : ret2;
9136 out_notrans:
9137 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9138 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9139 up_read(&fs_info->subvol_sem);
9140
9141 return ret;
9142 }
9143
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9144 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9145 struct btrfs_root *root,
9146 struct inode *dir,
9147 struct dentry *dentry)
9148 {
9149 int ret;
9150 struct inode *inode;
9151 u64 objectid;
9152 u64 index;
9153
9154 ret = btrfs_find_free_objectid(root, &objectid);
9155 if (ret)
9156 return ret;
9157
9158 inode = btrfs_new_inode(trans, root, dir,
9159 dentry->d_name.name,
9160 dentry->d_name.len,
9161 btrfs_ino(BTRFS_I(dir)),
9162 objectid,
9163 S_IFCHR | WHITEOUT_MODE,
9164 &index);
9165
9166 if (IS_ERR(inode)) {
9167 ret = PTR_ERR(inode);
9168 return ret;
9169 }
9170
9171 inode->i_op = &btrfs_special_inode_operations;
9172 init_special_inode(inode, inode->i_mode,
9173 WHITEOUT_DEV);
9174
9175 ret = btrfs_init_inode_security(trans, inode, dir,
9176 &dentry->d_name);
9177 if (ret)
9178 goto out;
9179
9180 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9181 BTRFS_I(inode), 0, index);
9182 if (ret)
9183 goto out;
9184
9185 ret = btrfs_update_inode(trans, root, inode);
9186 out:
9187 unlock_new_inode(inode);
9188 if (ret)
9189 inode_dec_link_count(inode);
9190 iput(inode);
9191
9192 return ret;
9193 }
9194
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9195 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9196 struct inode *new_dir, struct dentry *new_dentry,
9197 unsigned int flags)
9198 {
9199 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9200 struct btrfs_trans_handle *trans;
9201 unsigned int trans_num_items;
9202 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9203 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9204 struct inode *new_inode = d_inode(new_dentry);
9205 struct inode *old_inode = d_inode(old_dentry);
9206 u64 index = 0;
9207 int ret;
9208 int ret2;
9209 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9210 bool log_pinned = false;
9211
9212 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9213 return -EPERM;
9214
9215 /* we only allow rename subvolume link between subvolumes */
9216 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9217 return -EXDEV;
9218
9219 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9220 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9221 return -ENOTEMPTY;
9222
9223 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9224 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9225 return -ENOTEMPTY;
9226
9227
9228 /* check for collisions, even if the name isn't there */
9229 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9230 new_dentry->d_name.name,
9231 new_dentry->d_name.len);
9232
9233 if (ret) {
9234 if (ret == -EEXIST) {
9235 /* we shouldn't get
9236 * eexist without a new_inode */
9237 if (WARN_ON(!new_inode)) {
9238 return ret;
9239 }
9240 } else {
9241 /* maybe -EOVERFLOW */
9242 return ret;
9243 }
9244 }
9245 ret = 0;
9246
9247 /*
9248 * we're using rename to replace one file with another. Start IO on it
9249 * now so we don't add too much work to the end of the transaction
9250 */
9251 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9252 filemap_flush(old_inode->i_mapping);
9253
9254 /* close the racy window with snapshot create/destroy ioctl */
9255 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9256 down_read(&fs_info->subvol_sem);
9257 /*
9258 * We want to reserve the absolute worst case amount of items. So if
9259 * both inodes are subvols and we need to unlink them then that would
9260 * require 4 item modifications, but if they are both normal inodes it
9261 * would require 5 item modifications, so we'll assume they are normal
9262 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9263 * should cover the worst case number of items we'll modify.
9264 * If our rename has the whiteout flag, we need more 5 units for the
9265 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9266 * when selinux is enabled).
9267 */
9268 trans_num_items = 11;
9269 if (flags & RENAME_WHITEOUT)
9270 trans_num_items += 5;
9271 trans = btrfs_start_transaction(root, trans_num_items);
9272 if (IS_ERR(trans)) {
9273 ret = PTR_ERR(trans);
9274 goto out_notrans;
9275 }
9276
9277 if (dest != root)
9278 btrfs_record_root_in_trans(trans, dest);
9279
9280 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9281 if (ret)
9282 goto out_fail;
9283
9284 BTRFS_I(old_inode)->dir_index = 0ULL;
9285 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9286 /* force full log commit if subvolume involved. */
9287 btrfs_set_log_full_commit(trans);
9288 } else {
9289 ret = btrfs_insert_inode_ref(trans, dest,
9290 new_dentry->d_name.name,
9291 new_dentry->d_name.len,
9292 old_ino,
9293 btrfs_ino(BTRFS_I(new_dir)), index);
9294 if (ret)
9295 goto out_fail;
9296 }
9297
9298 inode_inc_iversion(old_dir);
9299 inode_inc_iversion(new_dir);
9300 inode_inc_iversion(old_inode);
9301 old_dir->i_ctime = old_dir->i_mtime =
9302 new_dir->i_ctime = new_dir->i_mtime =
9303 old_inode->i_ctime = current_time(old_dir);
9304
9305 if (old_dentry->d_parent != new_dentry->d_parent)
9306 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9307 BTRFS_I(old_inode), 1);
9308
9309 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9310 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9311 } else {
9312 /*
9313 * Now pin the log. We do it to ensure that no other task can
9314 * sync the log while we are in progress with the rename, as
9315 * that could result in an inconsistency in case any of the
9316 * inodes that are part of this rename operation were logged
9317 * before.
9318 *
9319 * We pin the log even if at this precise moment none of the
9320 * inodes was logged before. This is because right after we
9321 * checked for that, some other task fsyncing some other inode
9322 * not involved with this rename operation could log that one of
9323 * our inodes exists.
9324 *
9325 * We don't need to pin the logs before the above call to
9326 * btrfs_insert_inode_ref(), since that does not need to change
9327 * a log.
9328 */
9329 btrfs_pin_log_trans(root);
9330 log_pinned = true;
9331 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9332 BTRFS_I(d_inode(old_dentry)),
9333 old_dentry->d_name.name,
9334 old_dentry->d_name.len);
9335 if (!ret)
9336 ret = btrfs_update_inode(trans, root, old_inode);
9337 }
9338 if (ret) {
9339 btrfs_abort_transaction(trans, ret);
9340 goto out_fail;
9341 }
9342
9343 if (new_inode) {
9344 inode_inc_iversion(new_inode);
9345 new_inode->i_ctime = current_time(new_inode);
9346 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9347 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9348 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9349 BUG_ON(new_inode->i_nlink == 0);
9350 } else {
9351 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9352 BTRFS_I(d_inode(new_dentry)),
9353 new_dentry->d_name.name,
9354 new_dentry->d_name.len);
9355 }
9356 if (!ret && new_inode->i_nlink == 0)
9357 ret = btrfs_orphan_add(trans,
9358 BTRFS_I(d_inode(new_dentry)));
9359 if (ret) {
9360 btrfs_abort_transaction(trans, ret);
9361 goto out_fail;
9362 }
9363 }
9364
9365 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9366 new_dentry->d_name.name,
9367 new_dentry->d_name.len, 0, index);
9368 if (ret) {
9369 btrfs_abort_transaction(trans, ret);
9370 goto out_fail;
9371 }
9372
9373 if (old_inode->i_nlink == 1)
9374 BTRFS_I(old_inode)->dir_index = index;
9375
9376 if (log_pinned) {
9377 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9378 new_dentry->d_parent);
9379 btrfs_end_log_trans(root);
9380 log_pinned = false;
9381 }
9382
9383 if (flags & RENAME_WHITEOUT) {
9384 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9385 old_dentry);
9386
9387 if (ret) {
9388 btrfs_abort_transaction(trans, ret);
9389 goto out_fail;
9390 }
9391 }
9392 out_fail:
9393 /*
9394 * If we have pinned the log and an error happened, we unpin tasks
9395 * trying to sync the log and force them to fallback to a transaction
9396 * commit if the log currently contains any of the inodes involved in
9397 * this rename operation (to ensure we do not persist a log with an
9398 * inconsistent state for any of these inodes or leading to any
9399 * inconsistencies when replayed). If the transaction was aborted, the
9400 * abortion reason is propagated to userspace when attempting to commit
9401 * the transaction. If the log does not contain any of these inodes, we
9402 * allow the tasks to sync it.
9403 */
9404 if (ret && log_pinned) {
9405 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9406 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9407 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9408 (new_inode &&
9409 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9410 btrfs_set_log_full_commit(trans);
9411
9412 btrfs_end_log_trans(root);
9413 log_pinned = false;
9414 }
9415 ret2 = btrfs_end_transaction(trans);
9416 ret = ret ? ret : ret2;
9417 out_notrans:
9418 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9419 up_read(&fs_info->subvol_sem);
9420
9421 return ret;
9422 }
9423
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9424 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9425 struct inode *new_dir, struct dentry *new_dentry,
9426 unsigned int flags)
9427 {
9428 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9429 return -EINVAL;
9430
9431 if (flags & RENAME_EXCHANGE)
9432 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9433 new_dentry);
9434
9435 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9436 }
9437
9438 struct btrfs_delalloc_work {
9439 struct inode *inode;
9440 struct completion completion;
9441 struct list_head list;
9442 struct btrfs_work work;
9443 };
9444
btrfs_run_delalloc_work(struct btrfs_work * work)9445 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9446 {
9447 struct btrfs_delalloc_work *delalloc_work;
9448 struct inode *inode;
9449
9450 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9451 work);
9452 inode = delalloc_work->inode;
9453 filemap_flush(inode->i_mapping);
9454 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9455 &BTRFS_I(inode)->runtime_flags))
9456 filemap_flush(inode->i_mapping);
9457
9458 iput(inode);
9459 complete(&delalloc_work->completion);
9460 }
9461
btrfs_alloc_delalloc_work(struct inode * inode)9462 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9463 {
9464 struct btrfs_delalloc_work *work;
9465
9466 work = kmalloc(sizeof(*work), GFP_NOFS);
9467 if (!work)
9468 return NULL;
9469
9470 init_completion(&work->completion);
9471 INIT_LIST_HEAD(&work->list);
9472 work->inode = inode;
9473 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9474
9475 return work;
9476 }
9477
9478 /*
9479 * some fairly slow code that needs optimization. This walks the list
9480 * of all the inodes with pending delalloc and forces them to disk.
9481 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)9482 static int start_delalloc_inodes(struct btrfs_root *root,
9483 struct writeback_control *wbc, bool snapshot,
9484 bool in_reclaim_context)
9485 {
9486 struct btrfs_inode *binode;
9487 struct inode *inode;
9488 struct btrfs_delalloc_work *work, *next;
9489 struct list_head works;
9490 struct list_head splice;
9491 int ret = 0;
9492 bool full_flush = wbc->nr_to_write == LONG_MAX;
9493
9494 INIT_LIST_HEAD(&works);
9495 INIT_LIST_HEAD(&splice);
9496
9497 mutex_lock(&root->delalloc_mutex);
9498 spin_lock(&root->delalloc_lock);
9499 list_splice_init(&root->delalloc_inodes, &splice);
9500 while (!list_empty(&splice)) {
9501 binode = list_entry(splice.next, struct btrfs_inode,
9502 delalloc_inodes);
9503
9504 list_move_tail(&binode->delalloc_inodes,
9505 &root->delalloc_inodes);
9506
9507 if (in_reclaim_context &&
9508 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9509 continue;
9510
9511 inode = igrab(&binode->vfs_inode);
9512 if (!inode) {
9513 cond_resched_lock(&root->delalloc_lock);
9514 continue;
9515 }
9516 spin_unlock(&root->delalloc_lock);
9517
9518 if (snapshot)
9519 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9520 &binode->runtime_flags);
9521 if (full_flush) {
9522 work = btrfs_alloc_delalloc_work(inode);
9523 if (!work) {
9524 iput(inode);
9525 ret = -ENOMEM;
9526 goto out;
9527 }
9528 list_add_tail(&work->list, &works);
9529 btrfs_queue_work(root->fs_info->flush_workers,
9530 &work->work);
9531 } else {
9532 ret = sync_inode(inode, wbc);
9533 if (!ret &&
9534 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9535 &BTRFS_I(inode)->runtime_flags))
9536 ret = sync_inode(inode, wbc);
9537 btrfs_add_delayed_iput(inode);
9538 if (ret || wbc->nr_to_write <= 0)
9539 goto out;
9540 }
9541 cond_resched();
9542 spin_lock(&root->delalloc_lock);
9543 }
9544 spin_unlock(&root->delalloc_lock);
9545
9546 out:
9547 list_for_each_entry_safe(work, next, &works, list) {
9548 list_del_init(&work->list);
9549 wait_for_completion(&work->completion);
9550 kfree(work);
9551 }
9552
9553 if (!list_empty(&splice)) {
9554 spin_lock(&root->delalloc_lock);
9555 list_splice_tail(&splice, &root->delalloc_inodes);
9556 spin_unlock(&root->delalloc_lock);
9557 }
9558 mutex_unlock(&root->delalloc_mutex);
9559 return ret;
9560 }
9561
btrfs_start_delalloc_snapshot(struct btrfs_root * root)9562 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9563 {
9564 struct writeback_control wbc = {
9565 .nr_to_write = LONG_MAX,
9566 .sync_mode = WB_SYNC_NONE,
9567 .range_start = 0,
9568 .range_end = LLONG_MAX,
9569 };
9570 struct btrfs_fs_info *fs_info = root->fs_info;
9571
9572 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9573 return -EROFS;
9574
9575 return start_delalloc_inodes(root, &wbc, true, false);
9576 }
9577
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,u64 nr,bool in_reclaim_context)9578 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr,
9579 bool in_reclaim_context)
9580 {
9581 struct writeback_control wbc = {
9582 .nr_to_write = (nr == U64_MAX) ? LONG_MAX : (unsigned long)nr,
9583 .sync_mode = WB_SYNC_NONE,
9584 .range_start = 0,
9585 .range_end = LLONG_MAX,
9586 };
9587 struct btrfs_root *root;
9588 struct list_head splice;
9589 int ret;
9590
9591 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9592 return -EROFS;
9593
9594 INIT_LIST_HEAD(&splice);
9595
9596 mutex_lock(&fs_info->delalloc_root_mutex);
9597 spin_lock(&fs_info->delalloc_root_lock);
9598 list_splice_init(&fs_info->delalloc_roots, &splice);
9599 while (!list_empty(&splice) && nr) {
9600 /*
9601 * Reset nr_to_write here so we know that we're doing a full
9602 * flush.
9603 */
9604 if (nr == U64_MAX)
9605 wbc.nr_to_write = LONG_MAX;
9606
9607 root = list_first_entry(&splice, struct btrfs_root,
9608 delalloc_root);
9609 root = btrfs_grab_root(root);
9610 BUG_ON(!root);
9611 list_move_tail(&root->delalloc_root,
9612 &fs_info->delalloc_roots);
9613 spin_unlock(&fs_info->delalloc_root_lock);
9614
9615 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9616 btrfs_put_root(root);
9617 if (ret < 0 || wbc.nr_to_write <= 0)
9618 goto out;
9619 spin_lock(&fs_info->delalloc_root_lock);
9620 }
9621 spin_unlock(&fs_info->delalloc_root_lock);
9622
9623 ret = 0;
9624 out:
9625 if (!list_empty(&splice)) {
9626 spin_lock(&fs_info->delalloc_root_lock);
9627 list_splice_tail(&splice, &fs_info->delalloc_roots);
9628 spin_unlock(&fs_info->delalloc_root_lock);
9629 }
9630 mutex_unlock(&fs_info->delalloc_root_mutex);
9631 return ret;
9632 }
9633
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)9634 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9635 const char *symname)
9636 {
9637 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9638 struct btrfs_trans_handle *trans;
9639 struct btrfs_root *root = BTRFS_I(dir)->root;
9640 struct btrfs_path *path;
9641 struct btrfs_key key;
9642 struct inode *inode = NULL;
9643 int err;
9644 u64 objectid;
9645 u64 index = 0;
9646 int name_len;
9647 int datasize;
9648 unsigned long ptr;
9649 struct btrfs_file_extent_item *ei;
9650 struct extent_buffer *leaf;
9651
9652 name_len = strlen(symname);
9653 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9654 return -ENAMETOOLONG;
9655
9656 /*
9657 * 2 items for inode item and ref
9658 * 2 items for dir items
9659 * 1 item for updating parent inode item
9660 * 1 item for the inline extent item
9661 * 1 item for xattr if selinux is on
9662 */
9663 trans = btrfs_start_transaction(root, 7);
9664 if (IS_ERR(trans))
9665 return PTR_ERR(trans);
9666
9667 err = btrfs_find_free_objectid(root, &objectid);
9668 if (err)
9669 goto out_unlock;
9670
9671 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9672 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9673 objectid, S_IFLNK|S_IRWXUGO, &index);
9674 if (IS_ERR(inode)) {
9675 err = PTR_ERR(inode);
9676 inode = NULL;
9677 goto out_unlock;
9678 }
9679
9680 /*
9681 * If the active LSM wants to access the inode during
9682 * d_instantiate it needs these. Smack checks to see
9683 * if the filesystem supports xattrs by looking at the
9684 * ops vector.
9685 */
9686 inode->i_fop = &btrfs_file_operations;
9687 inode->i_op = &btrfs_file_inode_operations;
9688 inode->i_mapping->a_ops = &btrfs_aops;
9689
9690 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9691 if (err)
9692 goto out_unlock;
9693
9694 path = btrfs_alloc_path();
9695 if (!path) {
9696 err = -ENOMEM;
9697 goto out_unlock;
9698 }
9699 key.objectid = btrfs_ino(BTRFS_I(inode));
9700 key.offset = 0;
9701 key.type = BTRFS_EXTENT_DATA_KEY;
9702 datasize = btrfs_file_extent_calc_inline_size(name_len);
9703 err = btrfs_insert_empty_item(trans, root, path, &key,
9704 datasize);
9705 if (err) {
9706 btrfs_free_path(path);
9707 goto out_unlock;
9708 }
9709 leaf = path->nodes[0];
9710 ei = btrfs_item_ptr(leaf, path->slots[0],
9711 struct btrfs_file_extent_item);
9712 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9713 btrfs_set_file_extent_type(leaf, ei,
9714 BTRFS_FILE_EXTENT_INLINE);
9715 btrfs_set_file_extent_encryption(leaf, ei, 0);
9716 btrfs_set_file_extent_compression(leaf, ei, 0);
9717 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9718 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9719
9720 ptr = btrfs_file_extent_inline_start(ei);
9721 write_extent_buffer(leaf, symname, ptr, name_len);
9722 btrfs_mark_buffer_dirty(leaf);
9723 btrfs_free_path(path);
9724
9725 inode->i_op = &btrfs_symlink_inode_operations;
9726 inode_nohighmem(inode);
9727 inode_set_bytes(inode, name_len);
9728 btrfs_i_size_write(BTRFS_I(inode), name_len);
9729 err = btrfs_update_inode(trans, root, inode);
9730 /*
9731 * Last step, add directory indexes for our symlink inode. This is the
9732 * last step to avoid extra cleanup of these indexes if an error happens
9733 * elsewhere above.
9734 */
9735 if (!err)
9736 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9737 BTRFS_I(inode), 0, index);
9738 if (err)
9739 goto out_unlock;
9740
9741 d_instantiate_new(dentry, inode);
9742
9743 out_unlock:
9744 btrfs_end_transaction(trans);
9745 if (err && inode) {
9746 inode_dec_link_count(inode);
9747 discard_new_inode(inode);
9748 }
9749 btrfs_btree_balance_dirty(fs_info);
9750 return err;
9751 }
9752
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct inode * inode,struct btrfs_key * ins,u64 file_offset)9753 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9754 struct btrfs_trans_handle *trans_in,
9755 struct inode *inode, struct btrfs_key *ins,
9756 u64 file_offset)
9757 {
9758 struct btrfs_file_extent_item stack_fi;
9759 struct btrfs_replace_extent_info extent_info;
9760 struct btrfs_trans_handle *trans = trans_in;
9761 struct btrfs_path *path;
9762 u64 start = ins->objectid;
9763 u64 len = ins->offset;
9764 int ret;
9765
9766 memset(&stack_fi, 0, sizeof(stack_fi));
9767
9768 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9769 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9770 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9771 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9772 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9773 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9774 /* Encryption and other encoding is reserved and all 0 */
9775
9776 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9777 if (ret < 0)
9778 return ERR_PTR(ret);
9779
9780 if (trans) {
9781 ret = insert_reserved_file_extent(trans, BTRFS_I(inode),
9782 file_offset, &stack_fi, ret);
9783 if (ret)
9784 return ERR_PTR(ret);
9785 return trans;
9786 }
9787
9788 extent_info.disk_offset = start;
9789 extent_info.disk_len = len;
9790 extent_info.data_offset = 0;
9791 extent_info.data_len = len;
9792 extent_info.file_offset = file_offset;
9793 extent_info.extent_buf = (char *)&stack_fi;
9794 extent_info.is_new_extent = true;
9795 extent_info.qgroup_reserved = ret;
9796 extent_info.insertions = 0;
9797
9798 path = btrfs_alloc_path();
9799 if (!path)
9800 return ERR_PTR(-ENOMEM);
9801
9802 ret = btrfs_replace_file_extents(inode, path, file_offset,
9803 file_offset + len - 1, &extent_info,
9804 &trans);
9805 btrfs_free_path(path);
9806 if (ret)
9807 return ERR_PTR(ret);
9808
9809 return trans;
9810 }
9811
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9812 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9813 u64 start, u64 num_bytes, u64 min_size,
9814 loff_t actual_len, u64 *alloc_hint,
9815 struct btrfs_trans_handle *trans)
9816 {
9817 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9818 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9819 struct extent_map *em;
9820 struct btrfs_root *root = BTRFS_I(inode)->root;
9821 struct btrfs_key ins;
9822 u64 cur_offset = start;
9823 u64 clear_offset = start;
9824 u64 i_size;
9825 u64 cur_bytes;
9826 u64 last_alloc = (u64)-1;
9827 int ret = 0;
9828 bool own_trans = true;
9829 u64 end = start + num_bytes - 1;
9830
9831 if (trans)
9832 own_trans = false;
9833 while (num_bytes > 0) {
9834 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9835 cur_bytes = max(cur_bytes, min_size);
9836 /*
9837 * If we are severely fragmented we could end up with really
9838 * small allocations, so if the allocator is returning small
9839 * chunks lets make its job easier by only searching for those
9840 * sized chunks.
9841 */
9842 cur_bytes = min(cur_bytes, last_alloc);
9843 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9844 min_size, 0, *alloc_hint, &ins, 1, 0);
9845 if (ret)
9846 break;
9847
9848 /*
9849 * We've reserved this space, and thus converted it from
9850 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9851 * from here on out we will only need to clear our reservation
9852 * for the remaining unreserved area, so advance our
9853 * clear_offset by our extent size.
9854 */
9855 clear_offset += ins.offset;
9856
9857 last_alloc = ins.offset;
9858 trans = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
9859 /*
9860 * Now that we inserted the prealloc extent we can finally
9861 * decrement the number of reservations in the block group.
9862 * If we did it before, we could race with relocation and have
9863 * relocation miss the reserved extent, making it fail later.
9864 */
9865 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9866 if (IS_ERR(trans)) {
9867 ret = PTR_ERR(trans);
9868 btrfs_free_reserved_extent(fs_info, ins.objectid,
9869 ins.offset, 0);
9870 break;
9871 }
9872
9873 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9874 cur_offset + ins.offset -1, 0);
9875
9876 em = alloc_extent_map();
9877 if (!em) {
9878 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9879 &BTRFS_I(inode)->runtime_flags);
9880 goto next;
9881 }
9882
9883 em->start = cur_offset;
9884 em->orig_start = cur_offset;
9885 em->len = ins.offset;
9886 em->block_start = ins.objectid;
9887 em->block_len = ins.offset;
9888 em->orig_block_len = ins.offset;
9889 em->ram_bytes = ins.offset;
9890 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9891 em->generation = trans->transid;
9892
9893 while (1) {
9894 write_lock(&em_tree->lock);
9895 ret = add_extent_mapping(em_tree, em, 1);
9896 write_unlock(&em_tree->lock);
9897 if (ret != -EEXIST)
9898 break;
9899 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9900 cur_offset + ins.offset - 1,
9901 0);
9902 }
9903 free_extent_map(em);
9904 next:
9905 num_bytes -= ins.offset;
9906 cur_offset += ins.offset;
9907 *alloc_hint = ins.objectid + ins.offset;
9908
9909 inode_inc_iversion(inode);
9910 inode->i_ctime = current_time(inode);
9911 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9912 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9913 (actual_len > inode->i_size) &&
9914 (cur_offset > inode->i_size)) {
9915 if (cur_offset > actual_len)
9916 i_size = actual_len;
9917 else
9918 i_size = cur_offset;
9919 i_size_write(inode, i_size);
9920 btrfs_inode_safe_disk_i_size_write(inode, 0);
9921 }
9922
9923 ret = btrfs_update_inode(trans, root, inode);
9924
9925 if (ret) {
9926 btrfs_abort_transaction(trans, ret);
9927 if (own_trans)
9928 btrfs_end_transaction(trans);
9929 break;
9930 }
9931
9932 if (own_trans) {
9933 btrfs_end_transaction(trans);
9934 trans = NULL;
9935 }
9936 }
9937 if (clear_offset < end)
9938 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9939 end - clear_offset + 1);
9940 return ret;
9941 }
9942
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9943 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9944 u64 start, u64 num_bytes, u64 min_size,
9945 loff_t actual_len, u64 *alloc_hint)
9946 {
9947 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9948 min_size, actual_len, alloc_hint,
9949 NULL);
9950 }
9951
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9952 int btrfs_prealloc_file_range_trans(struct inode *inode,
9953 struct btrfs_trans_handle *trans, int mode,
9954 u64 start, u64 num_bytes, u64 min_size,
9955 loff_t actual_len, u64 *alloc_hint)
9956 {
9957 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9958 min_size, actual_len, alloc_hint, trans);
9959 }
9960
btrfs_set_page_dirty(struct page * page)9961 static int btrfs_set_page_dirty(struct page *page)
9962 {
9963 return __set_page_dirty_nobuffers(page);
9964 }
9965
btrfs_permission(struct inode * inode,int mask)9966 static int btrfs_permission(struct inode *inode, int mask)
9967 {
9968 struct btrfs_root *root = BTRFS_I(inode)->root;
9969 umode_t mode = inode->i_mode;
9970
9971 if (mask & MAY_WRITE &&
9972 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9973 if (btrfs_root_readonly(root))
9974 return -EROFS;
9975 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9976 return -EACCES;
9977 }
9978 return generic_permission(inode, mask);
9979 }
9980
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)9981 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9982 {
9983 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9984 struct btrfs_trans_handle *trans;
9985 struct btrfs_root *root = BTRFS_I(dir)->root;
9986 struct inode *inode = NULL;
9987 u64 objectid;
9988 u64 index;
9989 int ret = 0;
9990
9991 /*
9992 * 5 units required for adding orphan entry
9993 */
9994 trans = btrfs_start_transaction(root, 5);
9995 if (IS_ERR(trans))
9996 return PTR_ERR(trans);
9997
9998 ret = btrfs_find_free_objectid(root, &objectid);
9999 if (ret)
10000 goto out;
10001
10002 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10003 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10004 if (IS_ERR(inode)) {
10005 ret = PTR_ERR(inode);
10006 inode = NULL;
10007 goto out;
10008 }
10009
10010 inode->i_fop = &btrfs_file_operations;
10011 inode->i_op = &btrfs_file_inode_operations;
10012
10013 inode->i_mapping->a_ops = &btrfs_aops;
10014
10015 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10016 if (ret)
10017 goto out;
10018
10019 ret = btrfs_update_inode(trans, root, inode);
10020 if (ret)
10021 goto out;
10022 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10023 if (ret)
10024 goto out;
10025
10026 /*
10027 * We set number of links to 0 in btrfs_new_inode(), and here we set
10028 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10029 * through:
10030 *
10031 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10032 */
10033 set_nlink(inode, 1);
10034 d_tmpfile(dentry, inode);
10035 unlock_new_inode(inode);
10036 mark_inode_dirty(inode);
10037 out:
10038 btrfs_end_transaction(trans);
10039 if (ret && inode)
10040 discard_new_inode(inode);
10041 btrfs_btree_balance_dirty(fs_info);
10042 return ret;
10043 }
10044
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)10045 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10046 {
10047 struct inode *inode = tree->private_data;
10048 unsigned long index = start >> PAGE_SHIFT;
10049 unsigned long end_index = end >> PAGE_SHIFT;
10050 struct page *page;
10051
10052 while (index <= end_index) {
10053 page = find_get_page(inode->i_mapping, index);
10054 ASSERT(page); /* Pages should be in the extent_io_tree */
10055 set_page_writeback(page);
10056 put_page(page);
10057 index++;
10058 }
10059 }
10060
10061 #ifdef CONFIG_SWAP
10062 /*
10063 * Add an entry indicating a block group or device which is pinned by a
10064 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10065 * negative errno on failure.
10066 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10067 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10068 bool is_block_group)
10069 {
10070 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10071 struct btrfs_swapfile_pin *sp, *entry;
10072 struct rb_node **p;
10073 struct rb_node *parent = NULL;
10074
10075 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10076 if (!sp)
10077 return -ENOMEM;
10078 sp->ptr = ptr;
10079 sp->inode = inode;
10080 sp->is_block_group = is_block_group;
10081 sp->bg_extent_count = 1;
10082
10083 spin_lock(&fs_info->swapfile_pins_lock);
10084 p = &fs_info->swapfile_pins.rb_node;
10085 while (*p) {
10086 parent = *p;
10087 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10088 if (sp->ptr < entry->ptr ||
10089 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10090 p = &(*p)->rb_left;
10091 } else if (sp->ptr > entry->ptr ||
10092 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10093 p = &(*p)->rb_right;
10094 } else {
10095 if (is_block_group)
10096 entry->bg_extent_count++;
10097 spin_unlock(&fs_info->swapfile_pins_lock);
10098 kfree(sp);
10099 return 1;
10100 }
10101 }
10102 rb_link_node(&sp->node, parent, p);
10103 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10104 spin_unlock(&fs_info->swapfile_pins_lock);
10105 return 0;
10106 }
10107
10108 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10109 static void btrfs_free_swapfile_pins(struct inode *inode)
10110 {
10111 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10112 struct btrfs_swapfile_pin *sp;
10113 struct rb_node *node, *next;
10114
10115 spin_lock(&fs_info->swapfile_pins_lock);
10116 node = rb_first(&fs_info->swapfile_pins);
10117 while (node) {
10118 next = rb_next(node);
10119 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10120 if (sp->inode == inode) {
10121 rb_erase(&sp->node, &fs_info->swapfile_pins);
10122 if (sp->is_block_group) {
10123 btrfs_dec_block_group_swap_extents(sp->ptr,
10124 sp->bg_extent_count);
10125 btrfs_put_block_group(sp->ptr);
10126 }
10127 kfree(sp);
10128 }
10129 node = next;
10130 }
10131 spin_unlock(&fs_info->swapfile_pins_lock);
10132 }
10133
10134 struct btrfs_swap_info {
10135 u64 start;
10136 u64 block_start;
10137 u64 block_len;
10138 u64 lowest_ppage;
10139 u64 highest_ppage;
10140 unsigned long nr_pages;
10141 int nr_extents;
10142 };
10143
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10144 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10145 struct btrfs_swap_info *bsi)
10146 {
10147 unsigned long nr_pages;
10148 unsigned long max_pages;
10149 u64 first_ppage, first_ppage_reported, next_ppage;
10150 int ret;
10151
10152 /*
10153 * Our swapfile may have had its size extended after the swap header was
10154 * written. In that case activating the swapfile should not go beyond
10155 * the max size set in the swap header.
10156 */
10157 if (bsi->nr_pages >= sis->max)
10158 return 0;
10159
10160 max_pages = sis->max - bsi->nr_pages;
10161 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10162 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10163 PAGE_SIZE) >> PAGE_SHIFT;
10164
10165 if (first_ppage >= next_ppage)
10166 return 0;
10167 nr_pages = next_ppage - first_ppage;
10168 nr_pages = min(nr_pages, max_pages);
10169
10170 first_ppage_reported = first_ppage;
10171 if (bsi->start == 0)
10172 first_ppage_reported++;
10173 if (bsi->lowest_ppage > first_ppage_reported)
10174 bsi->lowest_ppage = first_ppage_reported;
10175 if (bsi->highest_ppage < (next_ppage - 1))
10176 bsi->highest_ppage = next_ppage - 1;
10177
10178 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10179 if (ret < 0)
10180 return ret;
10181 bsi->nr_extents += ret;
10182 bsi->nr_pages += nr_pages;
10183 return 0;
10184 }
10185
btrfs_swap_deactivate(struct file * file)10186 static void btrfs_swap_deactivate(struct file *file)
10187 {
10188 struct inode *inode = file_inode(file);
10189
10190 btrfs_free_swapfile_pins(inode);
10191 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10192 }
10193
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10194 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10195 sector_t *span)
10196 {
10197 struct inode *inode = file_inode(file);
10198 struct btrfs_root *root = BTRFS_I(inode)->root;
10199 struct btrfs_fs_info *fs_info = root->fs_info;
10200 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10201 struct extent_state *cached_state = NULL;
10202 struct extent_map *em = NULL;
10203 struct btrfs_device *device = NULL;
10204 struct btrfs_swap_info bsi = {
10205 .lowest_ppage = (sector_t)-1ULL,
10206 };
10207 int ret = 0;
10208 u64 isize;
10209 u64 start;
10210
10211 /*
10212 * If the swap file was just created, make sure delalloc is done. If the
10213 * file changes again after this, the user is doing something stupid and
10214 * we don't really care.
10215 */
10216 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10217 if (ret)
10218 return ret;
10219
10220 /*
10221 * The inode is locked, so these flags won't change after we check them.
10222 */
10223 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10224 btrfs_warn(fs_info, "swapfile must not be compressed");
10225 return -EINVAL;
10226 }
10227 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10228 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10229 return -EINVAL;
10230 }
10231 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10232 btrfs_warn(fs_info, "swapfile must not be checksummed");
10233 return -EINVAL;
10234 }
10235
10236 /*
10237 * Balance or device remove/replace/resize can move stuff around from
10238 * under us. The exclop protection makes sure they aren't running/won't
10239 * run concurrently while we are mapping the swap extents, and
10240 * fs_info->swapfile_pins prevents them from running while the swap
10241 * file is active and moving the extents. Note that this also prevents
10242 * a concurrent device add which isn't actually necessary, but it's not
10243 * really worth the trouble to allow it.
10244 */
10245 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10246 btrfs_warn(fs_info,
10247 "cannot activate swapfile while exclusive operation is running");
10248 return -EBUSY;
10249 }
10250
10251 /*
10252 * Prevent snapshot creation while we are activating the swap file.
10253 * We do not want to race with snapshot creation. If snapshot creation
10254 * already started before we bumped nr_swapfiles from 0 to 1 and
10255 * completes before the first write into the swap file after it is
10256 * activated, than that write would fallback to COW.
10257 */
10258 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10259 btrfs_exclop_finish(fs_info);
10260 btrfs_warn(fs_info,
10261 "cannot activate swapfile because snapshot creation is in progress");
10262 return -EINVAL;
10263 }
10264 /*
10265 * Snapshots can create extents which require COW even if NODATACOW is
10266 * set. We use this counter to prevent snapshots. We must increment it
10267 * before walking the extents because we don't want a concurrent
10268 * snapshot to run after we've already checked the extents.
10269 *
10270 * It is possible that subvolume is marked for deletion but still not
10271 * removed yet. To prevent this race, we check the root status before
10272 * activating the swapfile.
10273 */
10274 spin_lock(&root->root_item_lock);
10275 if (btrfs_root_dead(root)) {
10276 spin_unlock(&root->root_item_lock);
10277
10278 btrfs_exclop_finish(fs_info);
10279 btrfs_warn(fs_info,
10280 "cannot activate swapfile because subvolume %llu is being deleted",
10281 root->root_key.objectid);
10282 return -EPERM;
10283 }
10284 atomic_inc(&root->nr_swapfiles);
10285 spin_unlock(&root->root_item_lock);
10286
10287 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10288
10289 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10290 start = 0;
10291 while (start < isize) {
10292 u64 logical_block_start, physical_block_start;
10293 struct btrfs_block_group *bg;
10294 u64 len = isize - start;
10295
10296 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10297 if (IS_ERR(em)) {
10298 ret = PTR_ERR(em);
10299 goto out;
10300 }
10301
10302 if (em->block_start == EXTENT_MAP_HOLE) {
10303 btrfs_warn(fs_info, "swapfile must not have holes");
10304 ret = -EINVAL;
10305 goto out;
10306 }
10307 if (em->block_start == EXTENT_MAP_INLINE) {
10308 /*
10309 * It's unlikely we'll ever actually find ourselves
10310 * here, as a file small enough to fit inline won't be
10311 * big enough to store more than the swap header, but in
10312 * case something changes in the future, let's catch it
10313 * here rather than later.
10314 */
10315 btrfs_warn(fs_info, "swapfile must not be inline");
10316 ret = -EINVAL;
10317 goto out;
10318 }
10319 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10320 btrfs_warn(fs_info, "swapfile must not be compressed");
10321 ret = -EINVAL;
10322 goto out;
10323 }
10324
10325 logical_block_start = em->block_start + (start - em->start);
10326 len = min(len, em->len - (start - em->start));
10327 free_extent_map(em);
10328 em = NULL;
10329
10330 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10331 if (ret < 0) {
10332 goto out;
10333 } else if (ret) {
10334 ret = 0;
10335 } else {
10336 btrfs_warn(fs_info,
10337 "swapfile must not be copy-on-write");
10338 ret = -EINVAL;
10339 goto out;
10340 }
10341
10342 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10343 if (IS_ERR(em)) {
10344 ret = PTR_ERR(em);
10345 goto out;
10346 }
10347
10348 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10349 btrfs_warn(fs_info,
10350 "swapfile must have single data profile");
10351 ret = -EINVAL;
10352 goto out;
10353 }
10354
10355 if (device == NULL) {
10356 device = em->map_lookup->stripes[0].dev;
10357 ret = btrfs_add_swapfile_pin(inode, device, false);
10358 if (ret == 1)
10359 ret = 0;
10360 else if (ret)
10361 goto out;
10362 } else if (device != em->map_lookup->stripes[0].dev) {
10363 btrfs_warn(fs_info, "swapfile must be on one device");
10364 ret = -EINVAL;
10365 goto out;
10366 }
10367
10368 physical_block_start = (em->map_lookup->stripes[0].physical +
10369 (logical_block_start - em->start));
10370 len = min(len, em->len - (logical_block_start - em->start));
10371 free_extent_map(em);
10372 em = NULL;
10373
10374 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10375 if (!bg) {
10376 btrfs_warn(fs_info,
10377 "could not find block group containing swapfile");
10378 ret = -EINVAL;
10379 goto out;
10380 }
10381
10382 if (!btrfs_inc_block_group_swap_extents(bg)) {
10383 btrfs_warn(fs_info,
10384 "block group for swapfile at %llu is read-only%s",
10385 bg->start,
10386 atomic_read(&fs_info->scrubs_running) ?
10387 " (scrub running)" : "");
10388 btrfs_put_block_group(bg);
10389 ret = -EINVAL;
10390 goto out;
10391 }
10392
10393 ret = btrfs_add_swapfile_pin(inode, bg, true);
10394 if (ret) {
10395 btrfs_put_block_group(bg);
10396 if (ret == 1)
10397 ret = 0;
10398 else
10399 goto out;
10400 }
10401
10402 if (bsi.block_len &&
10403 bsi.block_start + bsi.block_len == physical_block_start) {
10404 bsi.block_len += len;
10405 } else {
10406 if (bsi.block_len) {
10407 ret = btrfs_add_swap_extent(sis, &bsi);
10408 if (ret)
10409 goto out;
10410 }
10411 bsi.start = start;
10412 bsi.block_start = physical_block_start;
10413 bsi.block_len = len;
10414 }
10415
10416 start += len;
10417 }
10418
10419 if (bsi.block_len)
10420 ret = btrfs_add_swap_extent(sis, &bsi);
10421
10422 out:
10423 if (!IS_ERR_OR_NULL(em))
10424 free_extent_map(em);
10425
10426 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10427
10428 if (ret)
10429 btrfs_swap_deactivate(file);
10430
10431 btrfs_drew_write_unlock(&root->snapshot_lock);
10432
10433 btrfs_exclop_finish(fs_info);
10434
10435 if (ret)
10436 return ret;
10437
10438 if (device)
10439 sis->bdev = device->bdev;
10440 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10441 sis->max = bsi.nr_pages;
10442 sis->pages = bsi.nr_pages - 1;
10443 sis->highest_bit = bsi.nr_pages - 1;
10444 return bsi.nr_extents;
10445 }
10446 #else
btrfs_swap_deactivate(struct file * file)10447 static void btrfs_swap_deactivate(struct file *file)
10448 {
10449 }
10450
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10451 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10452 sector_t *span)
10453 {
10454 return -EOPNOTSUPP;
10455 }
10456 #endif
10457
10458 static const struct inode_operations btrfs_dir_inode_operations = {
10459 .getattr = btrfs_getattr,
10460 .lookup = btrfs_lookup,
10461 .create = btrfs_create,
10462 .unlink = btrfs_unlink,
10463 .link = btrfs_link,
10464 .mkdir = btrfs_mkdir,
10465 .rmdir = btrfs_rmdir,
10466 .rename = btrfs_rename2,
10467 .symlink = btrfs_symlink,
10468 .setattr = btrfs_setattr,
10469 .mknod = btrfs_mknod,
10470 .listxattr = btrfs_listxattr,
10471 .permission = btrfs_permission,
10472 .get_acl = btrfs_get_acl,
10473 .set_acl = btrfs_set_acl,
10474 .update_time = btrfs_update_time,
10475 .tmpfile = btrfs_tmpfile,
10476 };
10477
10478 static const struct file_operations btrfs_dir_file_operations = {
10479 .llseek = generic_file_llseek,
10480 .read = generic_read_dir,
10481 .iterate_shared = btrfs_real_readdir,
10482 .open = btrfs_opendir,
10483 .unlocked_ioctl = btrfs_ioctl,
10484 #ifdef CONFIG_COMPAT
10485 .compat_ioctl = btrfs_compat_ioctl,
10486 #endif
10487 .release = btrfs_release_file,
10488 .fsync = btrfs_sync_file,
10489 };
10490
10491 /*
10492 * btrfs doesn't support the bmap operation because swapfiles
10493 * use bmap to make a mapping of extents in the file. They assume
10494 * these extents won't change over the life of the file and they
10495 * use the bmap result to do IO directly to the drive.
10496 *
10497 * the btrfs bmap call would return logical addresses that aren't
10498 * suitable for IO and they also will change frequently as COW
10499 * operations happen. So, swapfile + btrfs == corruption.
10500 *
10501 * For now we're avoiding this by dropping bmap.
10502 */
10503 static const struct address_space_operations btrfs_aops = {
10504 .readpage = btrfs_readpage,
10505 .writepage = btrfs_writepage,
10506 .writepages = btrfs_writepages,
10507 .readahead = btrfs_readahead,
10508 .direct_IO = noop_direct_IO,
10509 .invalidatepage = btrfs_invalidatepage,
10510 .releasepage = btrfs_releasepage,
10511 #ifdef CONFIG_MIGRATION
10512 .migratepage = btrfs_migratepage,
10513 #endif
10514 .set_page_dirty = btrfs_set_page_dirty,
10515 .error_remove_page = generic_error_remove_page,
10516 .swap_activate = btrfs_swap_activate,
10517 .swap_deactivate = btrfs_swap_deactivate,
10518 };
10519
10520 static const struct inode_operations btrfs_file_inode_operations = {
10521 .getattr = btrfs_getattr,
10522 .setattr = btrfs_setattr,
10523 .listxattr = btrfs_listxattr,
10524 .permission = btrfs_permission,
10525 .fiemap = btrfs_fiemap,
10526 .get_acl = btrfs_get_acl,
10527 .set_acl = btrfs_set_acl,
10528 .update_time = btrfs_update_time,
10529 };
10530 static const struct inode_operations btrfs_special_inode_operations = {
10531 .getattr = btrfs_getattr,
10532 .setattr = btrfs_setattr,
10533 .permission = btrfs_permission,
10534 .listxattr = btrfs_listxattr,
10535 .get_acl = btrfs_get_acl,
10536 .set_acl = btrfs_set_acl,
10537 .update_time = btrfs_update_time,
10538 };
10539 static const struct inode_operations btrfs_symlink_inode_operations = {
10540 .get_link = page_get_link,
10541 .getattr = btrfs_getattr,
10542 .setattr = btrfs_setattr,
10543 .permission = btrfs_permission,
10544 .listxattr = btrfs_listxattr,
10545 .update_time = btrfs_update_time,
10546 };
10547
10548 const struct dentry_operations btrfs_dentry_operations = {
10549 .d_delete = btrfs_dentry_delete,
10550 };
10551