• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "display/intel_dp.h"
25 
26 #include "intel_display_types.h"
27 #include "intel_dpio_phy.h"
28 #include "intel_sideband.h"
29 
30 /**
31  * DOC: DPIO
32  *
33  * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
34  * ports. DPIO is the name given to such a display PHY. These PHYs
35  * don't follow the standard programming model using direct MMIO
36  * registers, and instead their registers must be accessed trough IOSF
37  * sideband. VLV has one such PHY for driving ports B and C, and CHV
38  * adds another PHY for driving port D. Each PHY responds to specific
39  * IOSF-SB port.
40  *
41  * Each display PHY is made up of one or two channels. Each channel
42  * houses a common lane part which contains the PLL and other common
43  * logic. CH0 common lane also contains the IOSF-SB logic for the
44  * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
45  * must be running when any DPIO registers are accessed.
46  *
47  * In addition to having their own registers, the PHYs are also
48  * controlled through some dedicated signals from the display
49  * controller. These include PLL reference clock enable, PLL enable,
50  * and CRI clock selection, for example.
51  *
52  * Eeach channel also has two splines (also called data lanes), and
53  * each spline is made up of one Physical Access Coding Sub-Layer
54  * (PCS) block and two TX lanes. So each channel has two PCS blocks
55  * and four TX lanes. The TX lanes are used as DP lanes or TMDS
56  * data/clock pairs depending on the output type.
57  *
58  * Additionally the PHY also contains an AUX lane with AUX blocks
59  * for each channel. This is used for DP AUX communication, but
60  * this fact isn't really relevant for the driver since AUX is
61  * controlled from the display controller side. No DPIO registers
62  * need to be accessed during AUX communication,
63  *
64  * Generally on VLV/CHV the common lane corresponds to the pipe and
65  * the spline (PCS/TX) corresponds to the port.
66  *
67  * For dual channel PHY (VLV/CHV):
68  *
69  *  pipe A == CMN/PLL/REF CH0
70  *
71  *  pipe B == CMN/PLL/REF CH1
72  *
73  *  port B == PCS/TX CH0
74  *
75  *  port C == PCS/TX CH1
76  *
77  * This is especially important when we cross the streams
78  * ie. drive port B with pipe B, or port C with pipe A.
79  *
80  * For single channel PHY (CHV):
81  *
82  *  pipe C == CMN/PLL/REF CH0
83  *
84  *  port D == PCS/TX CH0
85  *
86  * On BXT the entire PHY channel corresponds to the port. That means
87  * the PLL is also now associated with the port rather than the pipe,
88  * and so the clock needs to be routed to the appropriate transcoder.
89  * Port A PLL is directly connected to transcoder EDP and port B/C
90  * PLLs can be routed to any transcoder A/B/C.
91  *
92  * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
93  * digital port D (CHV) or port A (BXT). ::
94  *
95  *
96  *     Dual channel PHY (VLV/CHV/BXT)
97  *     ---------------------------------
98  *     |      CH0      |      CH1      |
99  *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
100  *     |---------------|---------------| Display PHY
101  *     | PCS01 | PCS23 | PCS01 | PCS23 |
102  *     |-------|-------|-------|-------|
103  *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
104  *     ---------------------------------
105  *     |     DDI0      |     DDI1      | DP/HDMI ports
106  *     ---------------------------------
107  *
108  *     Single channel PHY (CHV/BXT)
109  *     -----------------
110  *     |      CH0      |
111  *     |  CMN/PLL/REF  |
112  *     |---------------| Display PHY
113  *     | PCS01 | PCS23 |
114  *     |-------|-------|
115  *     |TX0|TX1|TX2|TX3|
116  *     -----------------
117  *     |     DDI2      | DP/HDMI port
118  *     -----------------
119  */
120 
121 /**
122  * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
123  */
124 struct bxt_ddi_phy_info {
125 	/**
126 	 * @dual_channel: true if this phy has a second channel.
127 	 */
128 	bool dual_channel;
129 
130 	/**
131 	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
132 	 * Otherwise the GRC value will be copied from the phy indicated by
133 	 * this field.
134 	 */
135 	enum dpio_phy rcomp_phy;
136 
137 	/**
138 	 * @reset_delay: delay in us to wait before setting the common reset
139 	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
140 	 */
141 	int reset_delay;
142 
143 	/**
144 	 * @pwron_mask: Mask with the appropriate bit set that would cause the
145 	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
146 	 */
147 	u32 pwron_mask;
148 
149 	/**
150 	 * @channel: struct containing per channel information.
151 	 */
152 	struct {
153 		/**
154 		 * @channel.port: which port maps to this channel.
155 		 */
156 		enum port port;
157 	} channel[2];
158 };
159 
160 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
161 	[DPIO_PHY0] = {
162 		.dual_channel = true,
163 		.rcomp_phy = DPIO_PHY1,
164 		.pwron_mask = BIT(0),
165 
166 		.channel = {
167 			[DPIO_CH0] = { .port = PORT_B },
168 			[DPIO_CH1] = { .port = PORT_C },
169 		}
170 	},
171 	[DPIO_PHY1] = {
172 		.dual_channel = false,
173 		.rcomp_phy = -1,
174 		.pwron_mask = BIT(1),
175 
176 		.channel = {
177 			[DPIO_CH0] = { .port = PORT_A },
178 		}
179 	},
180 };
181 
182 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
183 	[DPIO_PHY0] = {
184 		.dual_channel = false,
185 		.rcomp_phy = DPIO_PHY1,
186 		.pwron_mask = BIT(0),
187 		.reset_delay = 20,
188 
189 		.channel = {
190 			[DPIO_CH0] = { .port = PORT_B },
191 		}
192 	},
193 	[DPIO_PHY1] = {
194 		.dual_channel = false,
195 		.rcomp_phy = -1,
196 		.pwron_mask = BIT(3),
197 		.reset_delay = 20,
198 
199 		.channel = {
200 			[DPIO_CH0] = { .port = PORT_A },
201 		}
202 	},
203 	[DPIO_PHY2] = {
204 		.dual_channel = false,
205 		.rcomp_phy = DPIO_PHY1,
206 		.pwron_mask = BIT(1),
207 		.reset_delay = 20,
208 
209 		.channel = {
210 			[DPIO_CH0] = { .port = PORT_C },
211 		}
212 	},
213 };
214 
215 static const struct bxt_ddi_phy_info *
bxt_get_phy_list(struct drm_i915_private * dev_priv,int * count)216 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
217 {
218 	if (IS_GEMINILAKE(dev_priv)) {
219 		*count =  ARRAY_SIZE(glk_ddi_phy_info);
220 		return glk_ddi_phy_info;
221 	} else {
222 		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
223 		return bxt_ddi_phy_info;
224 	}
225 }
226 
227 static const struct bxt_ddi_phy_info *
bxt_get_phy_info(struct drm_i915_private * dev_priv,enum dpio_phy phy)228 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
229 {
230 	int count;
231 	const struct bxt_ddi_phy_info *phy_list =
232 		bxt_get_phy_list(dev_priv, &count);
233 
234 	return &phy_list[phy];
235 }
236 
bxt_port_to_phy_channel(struct drm_i915_private * dev_priv,enum port port,enum dpio_phy * phy,enum dpio_channel * ch)237 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
238 			     enum dpio_phy *phy, enum dpio_channel *ch)
239 {
240 	const struct bxt_ddi_phy_info *phy_info, *phys;
241 	int i, count;
242 
243 	phys = bxt_get_phy_list(dev_priv, &count);
244 
245 	for (i = 0; i < count; i++) {
246 		phy_info = &phys[i];
247 
248 		if (port == phy_info->channel[DPIO_CH0].port) {
249 			*phy = i;
250 			*ch = DPIO_CH0;
251 			return;
252 		}
253 
254 		if (phy_info->dual_channel &&
255 		    port == phy_info->channel[DPIO_CH1].port) {
256 			*phy = i;
257 			*ch = DPIO_CH1;
258 			return;
259 		}
260 	}
261 
262 	drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
263 		 port_name(port));
264 	*phy = DPIO_PHY0;
265 	*ch = DPIO_CH0;
266 }
267 
bxt_ddi_phy_set_signal_level(struct drm_i915_private * dev_priv,enum port port,u32 margin,u32 scale,u32 enable,u32 deemphasis)268 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
269 				  enum port port, u32 margin, u32 scale,
270 				  u32 enable, u32 deemphasis)
271 {
272 	u32 val;
273 	enum dpio_phy phy;
274 	enum dpio_channel ch;
275 
276 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
277 
278 	/*
279 	 * While we write to the group register to program all lanes at once we
280 	 * can read only lane registers and we pick lanes 0/1 for that.
281 	 */
282 	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
283 	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
284 	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
285 
286 	val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch));
287 	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
288 	val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
289 	intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val);
290 
291 	val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch));
292 	val &= ~SCALE_DCOMP_METHOD;
293 	if (enable)
294 		val |= SCALE_DCOMP_METHOD;
295 
296 	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
297 		drm_err(&dev_priv->drm,
298 			"Disabled scaling while ouniqetrangenmethod was set");
299 
300 	intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val);
301 
302 	val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch));
303 	val &= ~DE_EMPHASIS;
304 	val |= deemphasis << DEEMPH_SHIFT;
305 	intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val);
306 
307 	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
308 	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
309 	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
310 }
311 
bxt_ddi_phy_is_enabled(struct drm_i915_private * dev_priv,enum dpio_phy phy)312 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
313 			    enum dpio_phy phy)
314 {
315 	const struct bxt_ddi_phy_info *phy_info;
316 
317 	phy_info = bxt_get_phy_info(dev_priv, phy);
318 
319 	if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
320 		return false;
321 
322 	if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
323 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
324 		drm_dbg(&dev_priv->drm,
325 			"DDI PHY %d powered, but power hasn't settled\n", phy);
326 
327 		return false;
328 	}
329 
330 	if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
331 		drm_dbg(&dev_priv->drm,
332 			"DDI PHY %d powered, but still in reset\n", phy);
333 
334 		return false;
335 	}
336 
337 	return true;
338 }
339 
bxt_get_grc(struct drm_i915_private * dev_priv,enum dpio_phy phy)340 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
341 {
342 	u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
343 
344 	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
345 }
346 
bxt_phy_wait_grc_done(struct drm_i915_private * dev_priv,enum dpio_phy phy)347 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
348 				  enum dpio_phy phy)
349 {
350 	if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
351 				  GRC_DONE, 10))
352 		drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
353 			phy);
354 }
355 
_bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)356 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
357 			      enum dpio_phy phy)
358 {
359 	const struct bxt_ddi_phy_info *phy_info;
360 	u32 val;
361 
362 	phy_info = bxt_get_phy_info(dev_priv, phy);
363 
364 	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
365 		/* Still read out the GRC value for state verification */
366 		if (phy_info->rcomp_phy != -1)
367 			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
368 
369 		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
370 			drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
371 				"won't reprogram it\n", phy);
372 			return;
373 		}
374 
375 		drm_dbg(&dev_priv->drm,
376 			"DDI PHY %d enabled with invalid state, "
377 			"force reprogramming it\n", phy);
378 	}
379 
380 	val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
381 	val |= phy_info->pwron_mask;
382 	intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
383 
384 	/*
385 	 * The PHY registers start out inaccessible and respond to reads with
386 	 * all 1s.  Eventually they become accessible as they power up, then
387 	 * the reserved bit will give the default 0.  Poll on the reserved bit
388 	 * becoming 0 to find when the PHY is accessible.
389 	 * The flag should get set in 100us according to the HW team, but
390 	 * use 1ms due to occasional timeouts observed with that.
391 	 */
392 	if (intel_wait_for_register_fw(&dev_priv->uncore,
393 				       BXT_PORT_CL1CM_DW0(phy),
394 				       PHY_RESERVED | PHY_POWER_GOOD,
395 				       PHY_POWER_GOOD,
396 				       1))
397 		drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
398 			phy);
399 
400 	/* Program PLL Rcomp code offset */
401 	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW9(phy));
402 	val &= ~IREF0RC_OFFSET_MASK;
403 	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
404 	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW9(phy), val);
405 
406 	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW10(phy));
407 	val &= ~IREF1RC_OFFSET_MASK;
408 	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
409 	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW10(phy), val);
410 
411 	/* Program power gating */
412 	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW28(phy));
413 	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
414 		SUS_CLK_CONFIG;
415 	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW28(phy), val);
416 
417 	if (phy_info->dual_channel) {
418 		val = intel_de_read(dev_priv, BXT_PORT_CL2CM_DW6(phy));
419 		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
420 		intel_de_write(dev_priv, BXT_PORT_CL2CM_DW6(phy), val);
421 	}
422 
423 	if (phy_info->rcomp_phy != -1) {
424 		u32 grc_code;
425 
426 		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
427 
428 		/*
429 		 * PHY0 isn't connected to an RCOMP resistor so copy over
430 		 * the corresponding calibrated value from PHY1, and disable
431 		 * the automatic calibration on PHY0.
432 		 */
433 		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
434 							  phy_info->rcomp_phy);
435 		grc_code = val << GRC_CODE_FAST_SHIFT |
436 			   val << GRC_CODE_SLOW_SHIFT |
437 			   val;
438 		intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
439 
440 		val = intel_de_read(dev_priv, BXT_PORT_REF_DW8(phy));
441 		val |= GRC_DIS | GRC_RDY_OVRD;
442 		intel_de_write(dev_priv, BXT_PORT_REF_DW8(phy), val);
443 	}
444 
445 	if (phy_info->reset_delay)
446 		udelay(phy_info->reset_delay);
447 
448 	val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
449 	val |= COMMON_RESET_DIS;
450 	intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
451 }
452 
bxt_ddi_phy_uninit(struct drm_i915_private * dev_priv,enum dpio_phy phy)453 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
454 {
455 	const struct bxt_ddi_phy_info *phy_info;
456 	u32 val;
457 
458 	phy_info = bxt_get_phy_info(dev_priv, phy);
459 
460 	val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
461 	val &= ~COMMON_RESET_DIS;
462 	intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
463 
464 	val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
465 	val &= ~phy_info->pwron_mask;
466 	intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
467 }
468 
bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)469 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
470 {
471 	const struct bxt_ddi_phy_info *phy_info =
472 		bxt_get_phy_info(dev_priv, phy);
473 	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
474 	bool was_enabled;
475 
476 	lockdep_assert_held(&dev_priv->power_domains.lock);
477 
478 	was_enabled = true;
479 	if (rcomp_phy != -1)
480 		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
481 
482 	/*
483 	 * We need to copy the GRC calibration value from rcomp_phy,
484 	 * so make sure it's powered up.
485 	 */
486 	if (!was_enabled)
487 		_bxt_ddi_phy_init(dev_priv, rcomp_phy);
488 
489 	_bxt_ddi_phy_init(dev_priv, phy);
490 
491 	if (!was_enabled)
492 		bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
493 }
494 
495 static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy,i915_reg_t reg,u32 mask,u32 expected,const char * reg_fmt,...)496 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
497 		       i915_reg_t reg, u32 mask, u32 expected,
498 		       const char *reg_fmt, ...)
499 {
500 	struct va_format vaf;
501 	va_list args;
502 	u32 val;
503 
504 	val = intel_de_read(dev_priv, reg);
505 	if ((val & mask) == expected)
506 		return true;
507 
508 	va_start(args, reg_fmt);
509 	vaf.fmt = reg_fmt;
510 	vaf.va = &args;
511 
512 	drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
513 			 "current %08x, expected %08x (mask %08x)\n",
514 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
515 			 mask);
516 
517 	va_end(args);
518 
519 	return false;
520 }
521 
bxt_ddi_phy_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy)522 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
523 			      enum dpio_phy phy)
524 {
525 	const struct bxt_ddi_phy_info *phy_info;
526 	u32 mask;
527 	bool ok;
528 
529 	phy_info = bxt_get_phy_info(dev_priv, phy);
530 
531 #define _CHK(reg, mask, exp, fmt, ...)					\
532 	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
533 			       ## __VA_ARGS__)
534 
535 	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
536 		return false;
537 
538 	ok = true;
539 
540 	/* PLL Rcomp code offset */
541 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
542 		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
543 		    "BXT_PORT_CL1CM_DW9(%d)", phy);
544 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
545 		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
546 		    "BXT_PORT_CL1CM_DW10(%d)", phy);
547 
548 	/* Power gating */
549 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
550 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
551 		    "BXT_PORT_CL1CM_DW28(%d)", phy);
552 
553 	if (phy_info->dual_channel)
554 		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
555 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
556 			   "BXT_PORT_CL2CM_DW6(%d)", phy);
557 
558 	if (phy_info->rcomp_phy != -1) {
559 		u32 grc_code = dev_priv->bxt_phy_grc;
560 
561 		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
562 			   grc_code << GRC_CODE_SLOW_SHIFT |
563 			   grc_code;
564 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
565 		       GRC_CODE_NOM_MASK;
566 		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
567 			   "BXT_PORT_REF_DW6(%d)", phy);
568 
569 		mask = GRC_DIS | GRC_RDY_OVRD;
570 		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
571 			    "BXT_PORT_REF_DW8(%d)", phy);
572 	}
573 
574 	return ok;
575 #undef _CHK
576 }
577 
578 u8
bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)579 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
580 {
581 	switch (lane_count) {
582 	case 1:
583 		return 0;
584 	case 2:
585 		return BIT(2) | BIT(0);
586 	case 4:
587 		return BIT(3) | BIT(2) | BIT(0);
588 	default:
589 		MISSING_CASE(lane_count);
590 
591 		return 0;
592 	}
593 }
594 
bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder * encoder,u8 lane_lat_optim_mask)595 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
596 				     u8 lane_lat_optim_mask)
597 {
598 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
599 	enum port port = encoder->port;
600 	enum dpio_phy phy;
601 	enum dpio_channel ch;
602 	int lane;
603 
604 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
605 
606 	for (lane = 0; lane < 4; lane++) {
607 		u32 val = intel_de_read(dev_priv,
608 					BXT_PORT_TX_DW14_LN(phy, ch, lane));
609 
610 		/*
611 		 * Note that on CHV this flag is called UPAR, but has
612 		 * the same function.
613 		 */
614 		val &= ~LATENCY_OPTIM;
615 		if (lane_lat_optim_mask & BIT(lane))
616 			val |= LATENCY_OPTIM;
617 
618 		intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
619 			       val);
620 	}
621 }
622 
623 u8
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder * encoder)624 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
625 {
626 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
627 	enum port port = encoder->port;
628 	enum dpio_phy phy;
629 	enum dpio_channel ch;
630 	int lane;
631 	u8 mask;
632 
633 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
634 
635 	mask = 0;
636 	for (lane = 0; lane < 4; lane++) {
637 		u32 val = intel_de_read(dev_priv,
638 					BXT_PORT_TX_DW14_LN(phy, ch, lane));
639 
640 		if (val & LATENCY_OPTIM)
641 			mask |= BIT(lane);
642 	}
643 
644 	return mask;
645 }
646 
647 
chv_set_phy_signal_level(struct intel_encoder * encoder,u32 deemph_reg_value,u32 margin_reg_value,bool uniq_trans_scale)648 void chv_set_phy_signal_level(struct intel_encoder *encoder,
649 			      u32 deemph_reg_value, u32 margin_reg_value,
650 			      bool uniq_trans_scale)
651 {
652 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
653 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
654 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
655 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
656 	enum pipe pipe = intel_crtc->pipe;
657 	u32 val;
658 	int i;
659 
660 	vlv_dpio_get(dev_priv);
661 
662 	/* Clear calc init */
663 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
664 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
665 	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
666 	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
667 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
668 
669 	if (intel_crtc->config->lane_count > 2) {
670 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
671 		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
672 		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
673 		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
674 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
675 	}
676 
677 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
678 	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
679 	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
680 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
681 
682 	if (intel_crtc->config->lane_count > 2) {
683 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
684 		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
685 		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
686 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
687 	}
688 
689 	/* Program swing deemph */
690 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
691 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
692 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
693 		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
694 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
695 	}
696 
697 	/* Program swing margin */
698 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
699 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
700 
701 		val &= ~DPIO_SWING_MARGIN000_MASK;
702 		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
703 
704 		/*
705 		 * Supposedly this value shouldn't matter when unique transition
706 		 * scale is disabled, but in fact it does matter. Let's just
707 		 * always program the same value and hope it's OK.
708 		 */
709 		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
710 		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
711 
712 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
713 	}
714 
715 	/*
716 	 * The document said it needs to set bit 27 for ch0 and bit 26
717 	 * for ch1. Might be a typo in the doc.
718 	 * For now, for this unique transition scale selection, set bit
719 	 * 27 for ch0 and ch1.
720 	 */
721 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
722 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
723 		if (uniq_trans_scale)
724 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
725 		else
726 			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
727 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
728 	}
729 
730 	/* Start swing calculation */
731 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
732 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
733 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
734 
735 	if (intel_crtc->config->lane_count > 2) {
736 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
737 		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
738 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
739 	}
740 
741 	vlv_dpio_put(dev_priv);
742 }
743 
chv_data_lane_soft_reset(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,bool reset)744 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
745 			      const struct intel_crtc_state *crtc_state,
746 			      bool reset)
747 {
748 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
749 	enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
750 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
751 	enum pipe pipe = crtc->pipe;
752 	u32 val;
753 
754 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
755 	if (reset)
756 		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
757 	else
758 		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
759 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
760 
761 	if (crtc_state->lane_count > 2) {
762 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
763 		if (reset)
764 			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
765 		else
766 			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
767 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
768 	}
769 
770 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
771 	val |= CHV_PCS_REQ_SOFTRESET_EN;
772 	if (reset)
773 		val &= ~DPIO_PCS_CLK_SOFT_RESET;
774 	else
775 		val |= DPIO_PCS_CLK_SOFT_RESET;
776 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
777 
778 	if (crtc_state->lane_count > 2) {
779 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
780 		val |= CHV_PCS_REQ_SOFTRESET_EN;
781 		if (reset)
782 			val &= ~DPIO_PCS_CLK_SOFT_RESET;
783 		else
784 			val |= DPIO_PCS_CLK_SOFT_RESET;
785 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
786 	}
787 }
788 
chv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)789 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
790 			    const struct intel_crtc_state *crtc_state)
791 {
792 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
793 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
794 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
795 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
796 	enum pipe pipe = crtc->pipe;
797 	unsigned int lane_mask =
798 		intel_dp_unused_lane_mask(crtc_state->lane_count);
799 	u32 val;
800 
801 	/*
802 	 * Must trick the second common lane into life.
803 	 * Otherwise we can't even access the PLL.
804 	 */
805 	if (ch == DPIO_CH0 && pipe == PIPE_B)
806 		dig_port->release_cl2_override =
807 			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
808 
809 	chv_phy_powergate_lanes(encoder, true, lane_mask);
810 
811 	vlv_dpio_get(dev_priv);
812 
813 	/* Assert data lane reset */
814 	chv_data_lane_soft_reset(encoder, crtc_state, true);
815 
816 	/* program left/right clock distribution */
817 	if (pipe != PIPE_B) {
818 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
819 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
820 		if (ch == DPIO_CH0)
821 			val |= CHV_BUFLEFTENA1_FORCE;
822 		if (ch == DPIO_CH1)
823 			val |= CHV_BUFRIGHTENA1_FORCE;
824 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
825 	} else {
826 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
827 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
828 		if (ch == DPIO_CH0)
829 			val |= CHV_BUFLEFTENA2_FORCE;
830 		if (ch == DPIO_CH1)
831 			val |= CHV_BUFRIGHTENA2_FORCE;
832 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
833 	}
834 
835 	/* program clock channel usage */
836 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
837 	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
838 	if (pipe != PIPE_B)
839 		val &= ~CHV_PCS_USEDCLKCHANNEL;
840 	else
841 		val |= CHV_PCS_USEDCLKCHANNEL;
842 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
843 
844 	if (crtc_state->lane_count > 2) {
845 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
846 		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
847 		if (pipe != PIPE_B)
848 			val &= ~CHV_PCS_USEDCLKCHANNEL;
849 		else
850 			val |= CHV_PCS_USEDCLKCHANNEL;
851 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
852 	}
853 
854 	/*
855 	 * This a a bit weird since generally CL
856 	 * matches the pipe, but here we need to
857 	 * pick the CL based on the port.
858 	 */
859 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
860 	if (pipe != PIPE_B)
861 		val &= ~CHV_CMN_USEDCLKCHANNEL;
862 	else
863 		val |= CHV_CMN_USEDCLKCHANNEL;
864 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
865 
866 	vlv_dpio_put(dev_priv);
867 }
868 
chv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)869 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
870 				const struct intel_crtc_state *crtc_state)
871 {
872 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
873 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
874 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
875 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
876 	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
877 	enum pipe pipe = crtc->pipe;
878 	int data, i, stagger;
879 	u32 val;
880 
881 	vlv_dpio_get(dev_priv);
882 
883 	/* allow hardware to manage TX FIFO reset source */
884 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
885 	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
886 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
887 
888 	if (crtc_state->lane_count > 2) {
889 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
890 		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
891 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
892 	}
893 
894 	/* Program Tx lane latency optimal setting*/
895 	for (i = 0; i < crtc_state->lane_count; i++) {
896 		/* Set the upar bit */
897 		if (crtc_state->lane_count == 1)
898 			data = 0x0;
899 		else
900 			data = (i == 1) ? 0x0 : 0x1;
901 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
902 				data << DPIO_UPAR_SHIFT);
903 	}
904 
905 	/* Data lane stagger programming */
906 	if (crtc_state->port_clock > 270000)
907 		stagger = 0x18;
908 	else if (crtc_state->port_clock > 135000)
909 		stagger = 0xd;
910 	else if (crtc_state->port_clock > 67500)
911 		stagger = 0x7;
912 	else if (crtc_state->port_clock > 33750)
913 		stagger = 0x4;
914 	else
915 		stagger = 0x2;
916 
917 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
918 	val |= DPIO_TX2_STAGGER_MASK(0x1f);
919 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
920 
921 	if (crtc_state->lane_count > 2) {
922 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
923 		val |= DPIO_TX2_STAGGER_MASK(0x1f);
924 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
925 	}
926 
927 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
928 		       DPIO_LANESTAGGER_STRAP(stagger) |
929 		       DPIO_LANESTAGGER_STRAP_OVRD |
930 		       DPIO_TX1_STAGGER_MASK(0x1f) |
931 		       DPIO_TX1_STAGGER_MULT(6) |
932 		       DPIO_TX2_STAGGER_MULT(0));
933 
934 	if (crtc_state->lane_count > 2) {
935 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
936 			       DPIO_LANESTAGGER_STRAP(stagger) |
937 			       DPIO_LANESTAGGER_STRAP_OVRD |
938 			       DPIO_TX1_STAGGER_MASK(0x1f) |
939 			       DPIO_TX1_STAGGER_MULT(7) |
940 			       DPIO_TX2_STAGGER_MULT(5));
941 	}
942 
943 	/* Deassert data lane reset */
944 	chv_data_lane_soft_reset(encoder, crtc_state, false);
945 
946 	vlv_dpio_put(dev_priv);
947 }
948 
chv_phy_release_cl2_override(struct intel_encoder * encoder)949 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
950 {
951 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
952 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
953 
954 	if (dig_port->release_cl2_override) {
955 		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
956 		dig_port->release_cl2_override = false;
957 	}
958 }
959 
chv_phy_post_pll_disable(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)960 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
961 			      const struct intel_crtc_state *old_crtc_state)
962 {
963 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
964 	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
965 	u32 val;
966 
967 	vlv_dpio_get(dev_priv);
968 
969 	/* disable left/right clock distribution */
970 	if (pipe != PIPE_B) {
971 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
972 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
973 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
974 	} else {
975 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
976 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
977 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
978 	}
979 
980 	vlv_dpio_put(dev_priv);
981 
982 	/*
983 	 * Leave the power down bit cleared for at least one
984 	 * lane so that chv_powergate_phy_ch() will power
985 	 * on something when the channel is otherwise unused.
986 	 * When the port is off and the override is removed
987 	 * the lanes power down anyway, so otherwise it doesn't
988 	 * really matter what the state of power down bits is
989 	 * after this.
990 	 */
991 	chv_phy_powergate_lanes(encoder, false, 0x0);
992 }
993 
vlv_set_phy_signal_level(struct intel_encoder * encoder,u32 demph_reg_value,u32 preemph_reg_value,u32 uniqtranscale_reg_value,u32 tx3_demph)994 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
995 			      u32 demph_reg_value, u32 preemph_reg_value,
996 			      u32 uniqtranscale_reg_value, u32 tx3_demph)
997 {
998 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
999 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1000 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1001 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1002 	enum pipe pipe = intel_crtc->pipe;
1003 
1004 	vlv_dpio_get(dev_priv);
1005 
1006 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
1007 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
1008 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
1009 			 uniqtranscale_reg_value);
1010 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1011 
1012 	if (tx3_demph)
1013 		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1014 
1015 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1016 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1017 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1018 
1019 	vlv_dpio_put(dev_priv);
1020 }
1021 
vlv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1022 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1023 			    const struct intel_crtc_state *crtc_state)
1024 {
1025 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1026 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1027 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1028 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1029 	enum pipe pipe = crtc->pipe;
1030 
1031 	/* Program Tx lane resets to default */
1032 	vlv_dpio_get(dev_priv);
1033 
1034 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1035 			 DPIO_PCS_TX_LANE2_RESET |
1036 			 DPIO_PCS_TX_LANE1_RESET);
1037 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1038 			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1039 			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1040 			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1041 				 DPIO_PCS_CLK_SOFT_RESET);
1042 
1043 	/* Fix up inter-pair skew failure */
1044 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1045 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1046 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1047 
1048 	vlv_dpio_put(dev_priv);
1049 }
1050 
vlv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1051 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1052 				const struct intel_crtc_state *crtc_state)
1053 {
1054 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1055 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1056 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1057 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1058 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1059 	enum pipe pipe = crtc->pipe;
1060 	u32 val;
1061 
1062 	vlv_dpio_get(dev_priv);
1063 
1064 	/* Enable clock channels for this port */
1065 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1066 	val = 0;
1067 	if (pipe)
1068 		val |= (1<<21);
1069 	else
1070 		val &= ~(1<<21);
1071 	val |= 0x001000c4;
1072 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1073 
1074 	/* Program lane clock */
1075 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1076 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1077 
1078 	vlv_dpio_put(dev_priv);
1079 }
1080 
vlv_phy_reset_lanes(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1081 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1082 			 const struct intel_crtc_state *old_crtc_state)
1083 {
1084 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1085 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1086 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1087 	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1088 	enum pipe pipe = crtc->pipe;
1089 
1090 	vlv_dpio_get(dev_priv);
1091 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1092 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1093 	vlv_dpio_put(dev_priv);
1094 }
1095