1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/module.h>
29 #include <linux/pm_runtime.h>
30
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_plane_helper.h>
34
35 #include "display/intel_atomic.h"
36 #include "display/intel_bw.h"
37 #include "display/intel_display_types.h"
38 #include "display/intel_fbc.h"
39 #include "display/intel_sprite.h"
40
41 #include "gt/intel_llc.h"
42
43 #include "i915_drv.h"
44 #include "i915_fixed.h"
45 #include "i915_irq.h"
46 #include "i915_trace.h"
47 #include "intel_pm.h"
48 #include "intel_sideband.h"
49 #include "../../../platform/x86/intel_ips.h"
50
51 /* Stores plane specific WM parameters */
52 struct skl_wm_params {
53 bool x_tiled, y_tiled;
54 bool rc_surface;
55 bool is_planar;
56 u32 width;
57 u8 cpp;
58 u32 plane_pixel_rate;
59 u32 y_min_scanlines;
60 u32 plane_bytes_per_line;
61 uint_fixed_16_16_t plane_blocks_per_line;
62 uint_fixed_16_16_t y_tile_minimum;
63 u32 linetime_us;
64 u32 dbuf_block_size;
65 };
66
67 /* used in computing the new watermarks state */
68 struct intel_wm_config {
69 unsigned int num_pipes_active;
70 bool sprites_enabled;
71 bool sprites_scaled;
72 };
73
gen9_init_clock_gating(struct drm_i915_private * dev_priv)74 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
75 {
76 if (HAS_LLC(dev_priv)) {
77 /*
78 * WaCompressedResourceDisplayNewHashMode:skl,kbl
79 * Display WA #0390: skl,kbl
80 *
81 * Must match Sampler, Pixel Back End, and Media. See
82 * WaCompressedResourceSamplerPbeMediaNewHashMode.
83 */
84 I915_WRITE(CHICKEN_PAR1_1,
85 I915_READ(CHICKEN_PAR1_1) |
86 SKL_DE_COMPRESSED_HASH_MODE);
87 }
88
89 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
90 I915_WRITE(CHICKEN_PAR1_1,
91 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
92
93 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
94 I915_WRITE(GEN8_CHICKEN_DCPR_1,
95 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
96
97 /*
98 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
99 * Display WA #0859: skl,bxt,kbl,glk,cfl
100 */
101 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
102 DISP_FBC_MEMORY_WAKE);
103 }
104
bxt_init_clock_gating(struct drm_i915_private * dev_priv)105 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
106 {
107 gen9_init_clock_gating(dev_priv);
108
109 /* WaDisableSDEUnitClockGating:bxt */
110 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
111 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
112
113 /*
114 * FIXME:
115 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
116 */
117 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
118 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
119
120 /*
121 * Wa: Backlight PWM may stop in the asserted state, causing backlight
122 * to stay fully on.
123 */
124 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
125 PWM1_GATING_DIS | PWM2_GATING_DIS);
126
127 /*
128 * Lower the display internal timeout.
129 * This is needed to avoid any hard hangs when DSI port PLL
130 * is off and a MMIO access is attempted by any privilege
131 * application, using batch buffers or any other means.
132 */
133 I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
134
135 /*
136 * WaFbcTurnOffFbcWatermark:bxt
137 * Display WA #0562: bxt
138 */
139 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
140 DISP_FBC_WM_DIS);
141
142 /*
143 * WaFbcHighMemBwCorruptionAvoidance:bxt
144 * Display WA #0883: bxt
145 */
146 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
147 ILK_DPFC_DISABLE_DUMMY0);
148 }
149
glk_init_clock_gating(struct drm_i915_private * dev_priv)150 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
151 {
152 gen9_init_clock_gating(dev_priv);
153
154 /*
155 * WaDisablePWMClockGating:glk
156 * Backlight PWM may stop in the asserted state, causing backlight
157 * to stay fully on.
158 */
159 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
160 PWM1_GATING_DIS | PWM2_GATING_DIS);
161 }
162
pnv_get_mem_freq(struct drm_i915_private * dev_priv)163 static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
164 {
165 u32 tmp;
166
167 tmp = I915_READ(CLKCFG);
168
169 switch (tmp & CLKCFG_FSB_MASK) {
170 case CLKCFG_FSB_533:
171 dev_priv->fsb_freq = 533; /* 133*4 */
172 break;
173 case CLKCFG_FSB_800:
174 dev_priv->fsb_freq = 800; /* 200*4 */
175 break;
176 case CLKCFG_FSB_667:
177 dev_priv->fsb_freq = 667; /* 167*4 */
178 break;
179 case CLKCFG_FSB_400:
180 dev_priv->fsb_freq = 400; /* 100*4 */
181 break;
182 }
183
184 switch (tmp & CLKCFG_MEM_MASK) {
185 case CLKCFG_MEM_533:
186 dev_priv->mem_freq = 533;
187 break;
188 case CLKCFG_MEM_667:
189 dev_priv->mem_freq = 667;
190 break;
191 case CLKCFG_MEM_800:
192 dev_priv->mem_freq = 800;
193 break;
194 }
195
196 /* detect pineview DDR3 setting */
197 tmp = I915_READ(CSHRDDR3CTL);
198 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
199 }
200
ilk_get_mem_freq(struct drm_i915_private * dev_priv)201 static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
202 {
203 u16 ddrpll, csipll;
204
205 ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
206 csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
207
208 switch (ddrpll & 0xff) {
209 case 0xc:
210 dev_priv->mem_freq = 800;
211 break;
212 case 0x10:
213 dev_priv->mem_freq = 1066;
214 break;
215 case 0x14:
216 dev_priv->mem_freq = 1333;
217 break;
218 case 0x18:
219 dev_priv->mem_freq = 1600;
220 break;
221 default:
222 drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
223 ddrpll & 0xff);
224 dev_priv->mem_freq = 0;
225 break;
226 }
227
228 switch (csipll & 0x3ff) {
229 case 0x00c:
230 dev_priv->fsb_freq = 3200;
231 break;
232 case 0x00e:
233 dev_priv->fsb_freq = 3733;
234 break;
235 case 0x010:
236 dev_priv->fsb_freq = 4266;
237 break;
238 case 0x012:
239 dev_priv->fsb_freq = 4800;
240 break;
241 case 0x014:
242 dev_priv->fsb_freq = 5333;
243 break;
244 case 0x016:
245 dev_priv->fsb_freq = 5866;
246 break;
247 case 0x018:
248 dev_priv->fsb_freq = 6400;
249 break;
250 default:
251 drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
252 csipll & 0x3ff);
253 dev_priv->fsb_freq = 0;
254 break;
255 }
256 }
257
258 static const struct cxsr_latency cxsr_latency_table[] = {
259 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
260 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
261 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
262 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
263 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
264
265 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
266 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
267 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
268 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
269 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
270
271 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
272 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
273 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
274 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
275 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
276
277 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
278 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
279 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
280 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
281 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
282
283 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
284 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
285 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
286 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
287 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
288
289 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
290 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
291 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
292 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
293 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
294 };
295
intel_get_cxsr_latency(bool is_desktop,bool is_ddr3,int fsb,int mem)296 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
297 bool is_ddr3,
298 int fsb,
299 int mem)
300 {
301 const struct cxsr_latency *latency;
302 int i;
303
304 if (fsb == 0 || mem == 0)
305 return NULL;
306
307 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
308 latency = &cxsr_latency_table[i];
309 if (is_desktop == latency->is_desktop &&
310 is_ddr3 == latency->is_ddr3 &&
311 fsb == latency->fsb_freq && mem == latency->mem_freq)
312 return latency;
313 }
314
315 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
316
317 return NULL;
318 }
319
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)320 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
321 {
322 u32 val;
323
324 vlv_punit_get(dev_priv);
325
326 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
327 if (enable)
328 val &= ~FORCE_DDR_HIGH_FREQ;
329 else
330 val |= FORCE_DDR_HIGH_FREQ;
331 val &= ~FORCE_DDR_LOW_FREQ;
332 val |= FORCE_DDR_FREQ_REQ_ACK;
333 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
334
335 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
336 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
337 drm_err(&dev_priv->drm,
338 "timed out waiting for Punit DDR DVFS request\n");
339
340 vlv_punit_put(dev_priv);
341 }
342
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)343 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
344 {
345 u32 val;
346
347 vlv_punit_get(dev_priv);
348
349 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
350 if (enable)
351 val |= DSP_MAXFIFO_PM5_ENABLE;
352 else
353 val &= ~DSP_MAXFIFO_PM5_ENABLE;
354 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
355
356 vlv_punit_put(dev_priv);
357 }
358
359 #define FW_WM(value, plane) \
360 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
361
_intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)362 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
363 {
364 bool was_enabled;
365 u32 val;
366
367 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
368 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
369 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
370 POSTING_READ(FW_BLC_SELF_VLV);
371 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
372 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
373 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
374 POSTING_READ(FW_BLC_SELF);
375 } else if (IS_PINEVIEW(dev_priv)) {
376 val = I915_READ(DSPFW3);
377 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
378 if (enable)
379 val |= PINEVIEW_SELF_REFRESH_EN;
380 else
381 val &= ~PINEVIEW_SELF_REFRESH_EN;
382 I915_WRITE(DSPFW3, val);
383 POSTING_READ(DSPFW3);
384 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
385 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
386 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
387 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
388 I915_WRITE(FW_BLC_SELF, val);
389 POSTING_READ(FW_BLC_SELF);
390 } else if (IS_I915GM(dev_priv)) {
391 /*
392 * FIXME can't find a bit like this for 915G, and
393 * and yet it does have the related watermark in
394 * FW_BLC_SELF. What's going on?
395 */
396 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
397 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
398 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
399 I915_WRITE(INSTPM, val);
400 POSTING_READ(INSTPM);
401 } else {
402 return false;
403 }
404
405 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
406
407 drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
408 enableddisabled(enable),
409 enableddisabled(was_enabled));
410
411 return was_enabled;
412 }
413
414 /**
415 * intel_set_memory_cxsr - Configure CxSR state
416 * @dev_priv: i915 device
417 * @enable: Allow vs. disallow CxSR
418 *
419 * Allow or disallow the system to enter a special CxSR
420 * (C-state self refresh) state. What typically happens in CxSR mode
421 * is that several display FIFOs may get combined into a single larger
422 * FIFO for a particular plane (so called max FIFO mode) to allow the
423 * system to defer memory fetches longer, and the memory will enter
424 * self refresh.
425 *
426 * Note that enabling CxSR does not guarantee that the system enter
427 * this special mode, nor does it guarantee that the system stays
428 * in that mode once entered. So this just allows/disallows the system
429 * to autonomously utilize the CxSR mode. Other factors such as core
430 * C-states will affect when/if the system actually enters/exits the
431 * CxSR mode.
432 *
433 * Note that on VLV/CHV this actually only controls the max FIFO mode,
434 * and the system is free to enter/exit memory self refresh at any time
435 * even when the use of CxSR has been disallowed.
436 *
437 * While the system is actually in the CxSR/max FIFO mode, some plane
438 * control registers will not get latched on vblank. Thus in order to
439 * guarantee the system will respond to changes in the plane registers
440 * we must always disallow CxSR prior to making changes to those registers.
441 * Unfortunately the system will re-evaluate the CxSR conditions at
442 * frame start which happens after vblank start (which is when the plane
443 * registers would get latched), so we can't proceed with the plane update
444 * during the same frame where we disallowed CxSR.
445 *
446 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
447 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
448 * the hardware w.r.t. HPLL SR when writing to plane registers.
449 * Disallowing just CxSR is sufficient.
450 */
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)451 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
452 {
453 bool ret;
454
455 mutex_lock(&dev_priv->wm.wm_mutex);
456 ret = _intel_set_memory_cxsr(dev_priv, enable);
457 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
458 dev_priv->wm.vlv.cxsr = enable;
459 else if (IS_G4X(dev_priv))
460 dev_priv->wm.g4x.cxsr = enable;
461 mutex_unlock(&dev_priv->wm.wm_mutex);
462
463 return ret;
464 }
465
466 /*
467 * Latency for FIFO fetches is dependent on several factors:
468 * - memory configuration (speed, channels)
469 * - chipset
470 * - current MCH state
471 * It can be fairly high in some situations, so here we assume a fairly
472 * pessimal value. It's a tradeoff between extra memory fetches (if we
473 * set this value too high, the FIFO will fetch frequently to stay full)
474 * and power consumption (set it too low to save power and we might see
475 * FIFO underruns and display "flicker").
476 *
477 * A value of 5us seems to be a good balance; safe for very low end
478 * platforms but not overly aggressive on lower latency configs.
479 */
480 static const int pessimal_latency_ns = 5000;
481
482 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
483 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
484
vlv_get_fifo_size(struct intel_crtc_state * crtc_state)485 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
486 {
487 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
488 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
489 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
490 enum pipe pipe = crtc->pipe;
491 int sprite0_start, sprite1_start;
492 u32 dsparb, dsparb2, dsparb3;
493
494 switch (pipe) {
495 case PIPE_A:
496 dsparb = I915_READ(DSPARB);
497 dsparb2 = I915_READ(DSPARB2);
498 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
499 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
500 break;
501 case PIPE_B:
502 dsparb = I915_READ(DSPARB);
503 dsparb2 = I915_READ(DSPARB2);
504 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
505 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
506 break;
507 case PIPE_C:
508 dsparb2 = I915_READ(DSPARB2);
509 dsparb3 = I915_READ(DSPARB3);
510 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
511 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
512 break;
513 default:
514 MISSING_CASE(pipe);
515 return;
516 }
517
518 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
519 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
520 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
521 fifo_state->plane[PLANE_CURSOR] = 63;
522 }
523
i9xx_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)524 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
525 enum i9xx_plane_id i9xx_plane)
526 {
527 u32 dsparb = I915_READ(DSPARB);
528 int size;
529
530 size = dsparb & 0x7f;
531 if (i9xx_plane == PLANE_B)
532 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
533
534 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
535 dsparb, plane_name(i9xx_plane), size);
536
537 return size;
538 }
539
i830_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)540 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
541 enum i9xx_plane_id i9xx_plane)
542 {
543 u32 dsparb = I915_READ(DSPARB);
544 int size;
545
546 size = dsparb & 0x1ff;
547 if (i9xx_plane == PLANE_B)
548 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
549 size >>= 1; /* Convert to cachelines */
550
551 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
552 dsparb, plane_name(i9xx_plane), size);
553
554 return size;
555 }
556
i845_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)557 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
558 enum i9xx_plane_id i9xx_plane)
559 {
560 u32 dsparb = I915_READ(DSPARB);
561 int size;
562
563 size = dsparb & 0x7f;
564 size >>= 2; /* Convert to cachelines */
565
566 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
567 dsparb, plane_name(i9xx_plane), size);
568
569 return size;
570 }
571
572 /* Pineview has different values for various configs */
573 static const struct intel_watermark_params pnv_display_wm = {
574 .fifo_size = PINEVIEW_DISPLAY_FIFO,
575 .max_wm = PINEVIEW_MAX_WM,
576 .default_wm = PINEVIEW_DFT_WM,
577 .guard_size = PINEVIEW_GUARD_WM,
578 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
579 };
580
581 static const struct intel_watermark_params pnv_display_hplloff_wm = {
582 .fifo_size = PINEVIEW_DISPLAY_FIFO,
583 .max_wm = PINEVIEW_MAX_WM,
584 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
585 .guard_size = PINEVIEW_GUARD_WM,
586 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
587 };
588
589 static const struct intel_watermark_params pnv_cursor_wm = {
590 .fifo_size = PINEVIEW_CURSOR_FIFO,
591 .max_wm = PINEVIEW_CURSOR_MAX_WM,
592 .default_wm = PINEVIEW_CURSOR_DFT_WM,
593 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
594 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
595 };
596
597 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
598 .fifo_size = PINEVIEW_CURSOR_FIFO,
599 .max_wm = PINEVIEW_CURSOR_MAX_WM,
600 .default_wm = PINEVIEW_CURSOR_DFT_WM,
601 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
602 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
603 };
604
605 static const struct intel_watermark_params i965_cursor_wm_info = {
606 .fifo_size = I965_CURSOR_FIFO,
607 .max_wm = I965_CURSOR_MAX_WM,
608 .default_wm = I965_CURSOR_DFT_WM,
609 .guard_size = 2,
610 .cacheline_size = I915_FIFO_LINE_SIZE,
611 };
612
613 static const struct intel_watermark_params i945_wm_info = {
614 .fifo_size = I945_FIFO_SIZE,
615 .max_wm = I915_MAX_WM,
616 .default_wm = 1,
617 .guard_size = 2,
618 .cacheline_size = I915_FIFO_LINE_SIZE,
619 };
620
621 static const struct intel_watermark_params i915_wm_info = {
622 .fifo_size = I915_FIFO_SIZE,
623 .max_wm = I915_MAX_WM,
624 .default_wm = 1,
625 .guard_size = 2,
626 .cacheline_size = I915_FIFO_LINE_SIZE,
627 };
628
629 static const struct intel_watermark_params i830_a_wm_info = {
630 .fifo_size = I855GM_FIFO_SIZE,
631 .max_wm = I915_MAX_WM,
632 .default_wm = 1,
633 .guard_size = 2,
634 .cacheline_size = I830_FIFO_LINE_SIZE,
635 };
636
637 static const struct intel_watermark_params i830_bc_wm_info = {
638 .fifo_size = I855GM_FIFO_SIZE,
639 .max_wm = I915_MAX_WM/2,
640 .default_wm = 1,
641 .guard_size = 2,
642 .cacheline_size = I830_FIFO_LINE_SIZE,
643 };
644
645 static const struct intel_watermark_params i845_wm_info = {
646 .fifo_size = I830_FIFO_SIZE,
647 .max_wm = I915_MAX_WM,
648 .default_wm = 1,
649 .guard_size = 2,
650 .cacheline_size = I830_FIFO_LINE_SIZE,
651 };
652
653 /**
654 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
655 * @pixel_rate: Pipe pixel rate in kHz
656 * @cpp: Plane bytes per pixel
657 * @latency: Memory wakeup latency in 0.1us units
658 *
659 * Compute the watermark using the method 1 or "small buffer"
660 * formula. The caller may additonally add extra cachelines
661 * to account for TLB misses and clock crossings.
662 *
663 * This method is concerned with the short term drain rate
664 * of the FIFO, ie. it does not account for blanking periods
665 * which would effectively reduce the average drain rate across
666 * a longer period. The name "small" refers to the fact the
667 * FIFO is relatively small compared to the amount of data
668 * fetched.
669 *
670 * The FIFO level vs. time graph might look something like:
671 *
672 * |\ |\
673 * | \ | \
674 * __---__---__ (- plane active, _ blanking)
675 * -> time
676 *
677 * or perhaps like this:
678 *
679 * |\|\ |\|\
680 * __----__----__ (- plane active, _ blanking)
681 * -> time
682 *
683 * Returns:
684 * The watermark in bytes
685 */
intel_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)686 static unsigned int intel_wm_method1(unsigned int pixel_rate,
687 unsigned int cpp,
688 unsigned int latency)
689 {
690 u64 ret;
691
692 ret = mul_u32_u32(pixel_rate, cpp * latency);
693 ret = DIV_ROUND_UP_ULL(ret, 10000);
694
695 return ret;
696 }
697
698 /**
699 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
700 * @pixel_rate: Pipe pixel rate in kHz
701 * @htotal: Pipe horizontal total
702 * @width: Plane width in pixels
703 * @cpp: Plane bytes per pixel
704 * @latency: Memory wakeup latency in 0.1us units
705 *
706 * Compute the watermark using the method 2 or "large buffer"
707 * formula. The caller may additonally add extra cachelines
708 * to account for TLB misses and clock crossings.
709 *
710 * This method is concerned with the long term drain rate
711 * of the FIFO, ie. it does account for blanking periods
712 * which effectively reduce the average drain rate across
713 * a longer period. The name "large" refers to the fact the
714 * FIFO is relatively large compared to the amount of data
715 * fetched.
716 *
717 * The FIFO level vs. time graph might look something like:
718 *
719 * |\___ |\___
720 * | \___ | \___
721 * | \ | \
722 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
723 * -> time
724 *
725 * Returns:
726 * The watermark in bytes
727 */
intel_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)728 static unsigned int intel_wm_method2(unsigned int pixel_rate,
729 unsigned int htotal,
730 unsigned int width,
731 unsigned int cpp,
732 unsigned int latency)
733 {
734 unsigned int ret;
735
736 /*
737 * FIXME remove once all users are computing
738 * watermarks in the correct place.
739 */
740 if (WARN_ON_ONCE(htotal == 0))
741 htotal = 1;
742
743 ret = (latency * pixel_rate) / (htotal * 10000);
744 ret = (ret + 1) * width * cpp;
745
746 return ret;
747 }
748
749 /**
750 * intel_calculate_wm - calculate watermark level
751 * @pixel_rate: pixel clock
752 * @wm: chip FIFO params
753 * @fifo_size: size of the FIFO buffer
754 * @cpp: bytes per pixel
755 * @latency_ns: memory latency for the platform
756 *
757 * Calculate the watermark level (the level at which the display plane will
758 * start fetching from memory again). Each chip has a different display
759 * FIFO size and allocation, so the caller needs to figure that out and pass
760 * in the correct intel_watermark_params structure.
761 *
762 * As the pixel clock runs, the FIFO will be drained at a rate that depends
763 * on the pixel size. When it reaches the watermark level, it'll start
764 * fetching FIFO line sized based chunks from memory until the FIFO fills
765 * past the watermark point. If the FIFO drains completely, a FIFO underrun
766 * will occur, and a display engine hang could result.
767 */
intel_calculate_wm(int pixel_rate,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned int latency_ns)768 static unsigned int intel_calculate_wm(int pixel_rate,
769 const struct intel_watermark_params *wm,
770 int fifo_size, int cpp,
771 unsigned int latency_ns)
772 {
773 int entries, wm_size;
774
775 /*
776 * Note: we need to make sure we don't overflow for various clock &
777 * latency values.
778 * clocks go from a few thousand to several hundred thousand.
779 * latency is usually a few thousand
780 */
781 entries = intel_wm_method1(pixel_rate, cpp,
782 latency_ns / 100);
783 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
784 wm->guard_size;
785 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
786
787 wm_size = fifo_size - entries;
788 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
789
790 /* Don't promote wm_size to unsigned... */
791 if (wm_size > wm->max_wm)
792 wm_size = wm->max_wm;
793 if (wm_size <= 0)
794 wm_size = wm->default_wm;
795
796 /*
797 * Bspec seems to indicate that the value shouldn't be lower than
798 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
799 * Lets go for 8 which is the burst size since certain platforms
800 * already use a hardcoded 8 (which is what the spec says should be
801 * done).
802 */
803 if (wm_size <= 8)
804 wm_size = 8;
805
806 return wm_size;
807 }
808
is_disabling(int old,int new,int threshold)809 static bool is_disabling(int old, int new, int threshold)
810 {
811 return old >= threshold && new < threshold;
812 }
813
is_enabling(int old,int new,int threshold)814 static bool is_enabling(int old, int new, int threshold)
815 {
816 return old < threshold && new >= threshold;
817 }
818
intel_wm_num_levels(struct drm_i915_private * dev_priv)819 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
820 {
821 return dev_priv->wm.max_level + 1;
822 }
823
intel_wm_plane_visible(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)824 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
825 const struct intel_plane_state *plane_state)
826 {
827 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
828
829 /* FIXME check the 'enable' instead */
830 if (!crtc_state->hw.active)
831 return false;
832
833 /*
834 * Treat cursor with fb as always visible since cursor updates
835 * can happen faster than the vrefresh rate, and the current
836 * watermark code doesn't handle that correctly. Cursor updates
837 * which set/clear the fb or change the cursor size are going
838 * to get throttled by intel_legacy_cursor_update() to work
839 * around this problem with the watermark code.
840 */
841 if (plane->id == PLANE_CURSOR)
842 return plane_state->hw.fb != NULL;
843 else
844 return plane_state->uapi.visible;
845 }
846
intel_crtc_active(struct intel_crtc * crtc)847 static bool intel_crtc_active(struct intel_crtc *crtc)
848 {
849 /* Be paranoid as we can arrive here with only partial
850 * state retrieved from the hardware during setup.
851 *
852 * We can ditch the adjusted_mode.crtc_clock check as soon
853 * as Haswell has gained clock readout/fastboot support.
854 *
855 * We can ditch the crtc->primary->state->fb check as soon as we can
856 * properly reconstruct framebuffers.
857 *
858 * FIXME: The intel_crtc->active here should be switched to
859 * crtc->state->active once we have proper CRTC states wired up
860 * for atomic.
861 */
862 return crtc->active && crtc->base.primary->state->fb &&
863 crtc->config->hw.adjusted_mode.crtc_clock;
864 }
865
single_enabled_crtc(struct drm_i915_private * dev_priv)866 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
867 {
868 struct intel_crtc *crtc, *enabled = NULL;
869
870 for_each_intel_crtc(&dev_priv->drm, crtc) {
871 if (intel_crtc_active(crtc)) {
872 if (enabled)
873 return NULL;
874 enabled = crtc;
875 }
876 }
877
878 return enabled;
879 }
880
pnv_update_wm(struct intel_crtc * unused_crtc)881 static void pnv_update_wm(struct intel_crtc *unused_crtc)
882 {
883 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
884 struct intel_crtc *crtc;
885 const struct cxsr_latency *latency;
886 u32 reg;
887 unsigned int wm;
888
889 latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
890 dev_priv->is_ddr3,
891 dev_priv->fsb_freq,
892 dev_priv->mem_freq);
893 if (!latency) {
894 drm_dbg_kms(&dev_priv->drm,
895 "Unknown FSB/MEM found, disable CxSR\n");
896 intel_set_memory_cxsr(dev_priv, false);
897 return;
898 }
899
900 crtc = single_enabled_crtc(dev_priv);
901 if (crtc) {
902 const struct drm_display_mode *adjusted_mode =
903 &crtc->config->hw.adjusted_mode;
904 const struct drm_framebuffer *fb =
905 crtc->base.primary->state->fb;
906 int cpp = fb->format->cpp[0];
907 int clock = adjusted_mode->crtc_clock;
908
909 /* Display SR */
910 wm = intel_calculate_wm(clock, &pnv_display_wm,
911 pnv_display_wm.fifo_size,
912 cpp, latency->display_sr);
913 reg = I915_READ(DSPFW1);
914 reg &= ~DSPFW_SR_MASK;
915 reg |= FW_WM(wm, SR);
916 I915_WRITE(DSPFW1, reg);
917 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
918
919 /* cursor SR */
920 wm = intel_calculate_wm(clock, &pnv_cursor_wm,
921 pnv_display_wm.fifo_size,
922 4, latency->cursor_sr);
923 reg = I915_READ(DSPFW3);
924 reg &= ~DSPFW_CURSOR_SR_MASK;
925 reg |= FW_WM(wm, CURSOR_SR);
926 I915_WRITE(DSPFW3, reg);
927
928 /* Display HPLL off SR */
929 wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
930 pnv_display_hplloff_wm.fifo_size,
931 cpp, latency->display_hpll_disable);
932 reg = I915_READ(DSPFW3);
933 reg &= ~DSPFW_HPLL_SR_MASK;
934 reg |= FW_WM(wm, HPLL_SR);
935 I915_WRITE(DSPFW3, reg);
936
937 /* cursor HPLL off SR */
938 wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
939 pnv_display_hplloff_wm.fifo_size,
940 4, latency->cursor_hpll_disable);
941 reg = I915_READ(DSPFW3);
942 reg &= ~DSPFW_HPLL_CURSOR_MASK;
943 reg |= FW_WM(wm, HPLL_CURSOR);
944 I915_WRITE(DSPFW3, reg);
945 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
946
947 intel_set_memory_cxsr(dev_priv, true);
948 } else {
949 intel_set_memory_cxsr(dev_priv, false);
950 }
951 }
952
953 /*
954 * Documentation says:
955 * "If the line size is small, the TLB fetches can get in the way of the
956 * data fetches, causing some lag in the pixel data return which is not
957 * accounted for in the above formulas. The following adjustment only
958 * needs to be applied if eight whole lines fit in the buffer at once.
959 * The WM is adjusted upwards by the difference between the FIFO size
960 * and the size of 8 whole lines. This adjustment is always performed
961 * in the actual pixel depth regardless of whether FBC is enabled or not."
962 */
g4x_tlb_miss_wa(int fifo_size,int width,int cpp)963 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
964 {
965 int tlb_miss = fifo_size * 64 - width * cpp * 8;
966
967 return max(0, tlb_miss);
968 }
969
g4x_write_wm_values(struct drm_i915_private * dev_priv,const struct g4x_wm_values * wm)970 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
971 const struct g4x_wm_values *wm)
972 {
973 enum pipe pipe;
974
975 for_each_pipe(dev_priv, pipe)
976 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
977
978 I915_WRITE(DSPFW1,
979 FW_WM(wm->sr.plane, SR) |
980 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
981 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
982 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
983 I915_WRITE(DSPFW2,
984 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
985 FW_WM(wm->sr.fbc, FBC_SR) |
986 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
987 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
988 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
989 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
990 I915_WRITE(DSPFW3,
991 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
992 FW_WM(wm->sr.cursor, CURSOR_SR) |
993 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
994 FW_WM(wm->hpll.plane, HPLL_SR));
995
996 POSTING_READ(DSPFW1);
997 }
998
999 #define FW_WM_VLV(value, plane) \
1000 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
1001
vlv_write_wm_values(struct drm_i915_private * dev_priv,const struct vlv_wm_values * wm)1002 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1003 const struct vlv_wm_values *wm)
1004 {
1005 enum pipe pipe;
1006
1007 for_each_pipe(dev_priv, pipe) {
1008 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
1009
1010 I915_WRITE(VLV_DDL(pipe),
1011 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1012 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1013 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1014 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1015 }
1016
1017 /*
1018 * Zero the (unused) WM1 watermarks, and also clear all the
1019 * high order bits so that there are no out of bounds values
1020 * present in the registers during the reprogramming.
1021 */
1022 I915_WRITE(DSPHOWM, 0);
1023 I915_WRITE(DSPHOWM1, 0);
1024 I915_WRITE(DSPFW4, 0);
1025 I915_WRITE(DSPFW5, 0);
1026 I915_WRITE(DSPFW6, 0);
1027
1028 I915_WRITE(DSPFW1,
1029 FW_WM(wm->sr.plane, SR) |
1030 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1031 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1032 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1033 I915_WRITE(DSPFW2,
1034 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1035 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1036 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1037 I915_WRITE(DSPFW3,
1038 FW_WM(wm->sr.cursor, CURSOR_SR));
1039
1040 if (IS_CHERRYVIEW(dev_priv)) {
1041 I915_WRITE(DSPFW7_CHV,
1042 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1043 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1044 I915_WRITE(DSPFW8_CHV,
1045 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1046 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1047 I915_WRITE(DSPFW9_CHV,
1048 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1049 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1050 I915_WRITE(DSPHOWM,
1051 FW_WM(wm->sr.plane >> 9, SR_HI) |
1052 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1053 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1054 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1055 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1056 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1057 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1058 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1059 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1060 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1061 } else {
1062 I915_WRITE(DSPFW7,
1063 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1064 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1065 I915_WRITE(DSPHOWM,
1066 FW_WM(wm->sr.plane >> 9, SR_HI) |
1067 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1068 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1069 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1070 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1071 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1072 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1073 }
1074
1075 POSTING_READ(DSPFW1);
1076 }
1077
1078 #undef FW_WM_VLV
1079
g4x_setup_wm_latency(struct drm_i915_private * dev_priv)1080 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1081 {
1082 /* all latencies in usec */
1083 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1084 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1085 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1086
1087 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1088 }
1089
g4x_plane_fifo_size(enum plane_id plane_id,int level)1090 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1091 {
1092 /*
1093 * DSPCNTR[13] supposedly controls whether the
1094 * primary plane can use the FIFO space otherwise
1095 * reserved for the sprite plane. It's not 100% clear
1096 * what the actual FIFO size is, but it looks like we
1097 * can happily set both primary and sprite watermarks
1098 * up to 127 cachelines. So that would seem to mean
1099 * that either DSPCNTR[13] doesn't do anything, or that
1100 * the total FIFO is >= 256 cachelines in size. Either
1101 * way, we don't seem to have to worry about this
1102 * repartitioning as the maximum watermark value the
1103 * register can hold for each plane is lower than the
1104 * minimum FIFO size.
1105 */
1106 switch (plane_id) {
1107 case PLANE_CURSOR:
1108 return 63;
1109 case PLANE_PRIMARY:
1110 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1111 case PLANE_SPRITE0:
1112 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1113 default:
1114 MISSING_CASE(plane_id);
1115 return 0;
1116 }
1117 }
1118
g4x_fbc_fifo_size(int level)1119 static int g4x_fbc_fifo_size(int level)
1120 {
1121 switch (level) {
1122 case G4X_WM_LEVEL_SR:
1123 return 7;
1124 case G4X_WM_LEVEL_HPLL:
1125 return 15;
1126 default:
1127 MISSING_CASE(level);
1128 return 0;
1129 }
1130 }
1131
g4x_compute_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1132 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1133 const struct intel_plane_state *plane_state,
1134 int level)
1135 {
1136 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1137 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1138 const struct drm_display_mode *adjusted_mode =
1139 &crtc_state->hw.adjusted_mode;
1140 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1141 unsigned int clock, htotal, cpp, width, wm;
1142
1143 if (latency == 0)
1144 return USHRT_MAX;
1145
1146 if (!intel_wm_plane_visible(crtc_state, plane_state))
1147 return 0;
1148
1149 cpp = plane_state->hw.fb->format->cpp[0];
1150
1151 /*
1152 * Not 100% sure which way ELK should go here as the
1153 * spec only says CL/CTG should assume 32bpp and BW
1154 * doesn't need to. But as these things followed the
1155 * mobile vs. desktop lines on gen3 as well, let's
1156 * assume ELK doesn't need this.
1157 *
1158 * The spec also fails to list such a restriction for
1159 * the HPLL watermark, which seems a little strange.
1160 * Let's use 32bpp for the HPLL watermark as well.
1161 */
1162 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1163 level != G4X_WM_LEVEL_NORMAL)
1164 cpp = max(cpp, 4u);
1165
1166 clock = adjusted_mode->crtc_clock;
1167 htotal = adjusted_mode->crtc_htotal;
1168
1169 width = drm_rect_width(&plane_state->uapi.dst);
1170
1171 if (plane->id == PLANE_CURSOR) {
1172 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1173 } else if (plane->id == PLANE_PRIMARY &&
1174 level == G4X_WM_LEVEL_NORMAL) {
1175 wm = intel_wm_method1(clock, cpp, latency);
1176 } else {
1177 unsigned int small, large;
1178
1179 small = intel_wm_method1(clock, cpp, latency);
1180 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1181
1182 wm = min(small, large);
1183 }
1184
1185 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1186 width, cpp);
1187
1188 wm = DIV_ROUND_UP(wm, 64) + 2;
1189
1190 return min_t(unsigned int, wm, USHRT_MAX);
1191 }
1192
g4x_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1193 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1194 int level, enum plane_id plane_id, u16 value)
1195 {
1196 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1197 bool dirty = false;
1198
1199 for (; level < intel_wm_num_levels(dev_priv); level++) {
1200 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1201
1202 dirty |= raw->plane[plane_id] != value;
1203 raw->plane[plane_id] = value;
1204 }
1205
1206 return dirty;
1207 }
1208
g4x_raw_fbc_wm_set(struct intel_crtc_state * crtc_state,int level,u16 value)1209 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1210 int level, u16 value)
1211 {
1212 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1213 bool dirty = false;
1214
1215 /* NORMAL level doesn't have an FBC watermark */
1216 level = max(level, G4X_WM_LEVEL_SR);
1217
1218 for (; level < intel_wm_num_levels(dev_priv); level++) {
1219 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1220
1221 dirty |= raw->fbc != value;
1222 raw->fbc = value;
1223 }
1224
1225 return dirty;
1226 }
1227
1228 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1229 const struct intel_plane_state *plane_state,
1230 u32 pri_val);
1231
g4x_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1232 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1233 const struct intel_plane_state *plane_state)
1234 {
1235 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1236 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1237 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1238 enum plane_id plane_id = plane->id;
1239 bool dirty = false;
1240 int level;
1241
1242 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1243 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1244 if (plane_id == PLANE_PRIMARY)
1245 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1246 goto out;
1247 }
1248
1249 for (level = 0; level < num_levels; level++) {
1250 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1251 int wm, max_wm;
1252
1253 wm = g4x_compute_wm(crtc_state, plane_state, level);
1254 max_wm = g4x_plane_fifo_size(plane_id, level);
1255
1256 if (wm > max_wm)
1257 break;
1258
1259 dirty |= raw->plane[plane_id] != wm;
1260 raw->plane[plane_id] = wm;
1261
1262 if (plane_id != PLANE_PRIMARY ||
1263 level == G4X_WM_LEVEL_NORMAL)
1264 continue;
1265
1266 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1267 raw->plane[plane_id]);
1268 max_wm = g4x_fbc_fifo_size(level);
1269
1270 /*
1271 * FBC wm is not mandatory as we
1272 * can always just disable its use.
1273 */
1274 if (wm > max_wm)
1275 wm = USHRT_MAX;
1276
1277 dirty |= raw->fbc != wm;
1278 raw->fbc = wm;
1279 }
1280
1281 /* mark watermarks as invalid */
1282 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1283
1284 if (plane_id == PLANE_PRIMARY)
1285 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1286
1287 out:
1288 if (dirty) {
1289 drm_dbg_kms(&dev_priv->drm,
1290 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1291 plane->base.name,
1292 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1293 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1294 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1295
1296 if (plane_id == PLANE_PRIMARY)
1297 drm_dbg_kms(&dev_priv->drm,
1298 "FBC watermarks: SR=%d, HPLL=%d\n",
1299 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1300 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1301 }
1302
1303 return dirty;
1304 }
1305
g4x_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1306 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1307 enum plane_id plane_id, int level)
1308 {
1309 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1310
1311 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1312 }
1313
g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1314 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1315 int level)
1316 {
1317 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1318
1319 if (level > dev_priv->wm.max_level)
1320 return false;
1321
1322 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1323 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1324 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1325 }
1326
1327 /* mark all levels starting from 'level' as invalid */
g4x_invalidate_wms(struct intel_crtc * crtc,struct g4x_wm_state * wm_state,int level)1328 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1329 struct g4x_wm_state *wm_state, int level)
1330 {
1331 if (level <= G4X_WM_LEVEL_NORMAL) {
1332 enum plane_id plane_id;
1333
1334 for_each_plane_id_on_crtc(crtc, plane_id)
1335 wm_state->wm.plane[plane_id] = USHRT_MAX;
1336 }
1337
1338 if (level <= G4X_WM_LEVEL_SR) {
1339 wm_state->cxsr = false;
1340 wm_state->sr.cursor = USHRT_MAX;
1341 wm_state->sr.plane = USHRT_MAX;
1342 wm_state->sr.fbc = USHRT_MAX;
1343 }
1344
1345 if (level <= G4X_WM_LEVEL_HPLL) {
1346 wm_state->hpll_en = false;
1347 wm_state->hpll.cursor = USHRT_MAX;
1348 wm_state->hpll.plane = USHRT_MAX;
1349 wm_state->hpll.fbc = USHRT_MAX;
1350 }
1351 }
1352
g4x_compute_fbc_en(const struct g4x_wm_state * wm_state,int level)1353 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1354 int level)
1355 {
1356 if (level < G4X_WM_LEVEL_SR)
1357 return false;
1358
1359 if (level >= G4X_WM_LEVEL_SR &&
1360 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1361 return false;
1362
1363 if (level >= G4X_WM_LEVEL_HPLL &&
1364 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1365 return false;
1366
1367 return true;
1368 }
1369
g4x_compute_pipe_wm(struct intel_crtc_state * crtc_state)1370 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1371 {
1372 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1373 struct intel_atomic_state *state =
1374 to_intel_atomic_state(crtc_state->uapi.state);
1375 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1376 int num_active_planes = hweight8(crtc_state->active_planes &
1377 ~BIT(PLANE_CURSOR));
1378 const struct g4x_pipe_wm *raw;
1379 const struct intel_plane_state *old_plane_state;
1380 const struct intel_plane_state *new_plane_state;
1381 struct intel_plane *plane;
1382 enum plane_id plane_id;
1383 int i, level;
1384 unsigned int dirty = 0;
1385
1386 for_each_oldnew_intel_plane_in_state(state, plane,
1387 old_plane_state,
1388 new_plane_state, i) {
1389 if (new_plane_state->hw.crtc != &crtc->base &&
1390 old_plane_state->hw.crtc != &crtc->base)
1391 continue;
1392
1393 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1394 dirty |= BIT(plane->id);
1395 }
1396
1397 if (!dirty)
1398 return 0;
1399
1400 level = G4X_WM_LEVEL_NORMAL;
1401 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1402 goto out;
1403
1404 raw = &crtc_state->wm.g4x.raw[level];
1405 for_each_plane_id_on_crtc(crtc, plane_id)
1406 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1407
1408 level = G4X_WM_LEVEL_SR;
1409 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1410 goto out;
1411
1412 raw = &crtc_state->wm.g4x.raw[level];
1413 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1414 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1415 wm_state->sr.fbc = raw->fbc;
1416
1417 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1418
1419 level = G4X_WM_LEVEL_HPLL;
1420 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1421 goto out;
1422
1423 raw = &crtc_state->wm.g4x.raw[level];
1424 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1425 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1426 wm_state->hpll.fbc = raw->fbc;
1427
1428 wm_state->hpll_en = wm_state->cxsr;
1429
1430 level++;
1431
1432 out:
1433 if (level == G4X_WM_LEVEL_NORMAL)
1434 return -EINVAL;
1435
1436 /* invalidate the higher levels */
1437 g4x_invalidate_wms(crtc, wm_state, level);
1438
1439 /*
1440 * Determine if the FBC watermark(s) can be used. IF
1441 * this isn't the case we prefer to disable the FBC
1442 * watermark(s) rather than disable the SR/HPLL
1443 * level(s) entirely. 'level-1' is the highest valid
1444 * level here.
1445 */
1446 wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1447
1448 return 0;
1449 }
1450
g4x_compute_intermediate_wm(struct intel_crtc_state * new_crtc_state)1451 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1452 {
1453 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1454 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1455 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1456 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1457 struct intel_atomic_state *intel_state =
1458 to_intel_atomic_state(new_crtc_state->uapi.state);
1459 const struct intel_crtc_state *old_crtc_state =
1460 intel_atomic_get_old_crtc_state(intel_state, crtc);
1461 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1462 enum plane_id plane_id;
1463
1464 if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1465 *intermediate = *optimal;
1466
1467 intermediate->cxsr = false;
1468 intermediate->hpll_en = false;
1469 goto out;
1470 }
1471
1472 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1473 !new_crtc_state->disable_cxsr;
1474 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1475 !new_crtc_state->disable_cxsr;
1476 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1477
1478 for_each_plane_id_on_crtc(crtc, plane_id) {
1479 intermediate->wm.plane[plane_id] =
1480 max(optimal->wm.plane[plane_id],
1481 active->wm.plane[plane_id]);
1482
1483 drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1484 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1485 }
1486
1487 intermediate->sr.plane = max(optimal->sr.plane,
1488 active->sr.plane);
1489 intermediate->sr.cursor = max(optimal->sr.cursor,
1490 active->sr.cursor);
1491 intermediate->sr.fbc = max(optimal->sr.fbc,
1492 active->sr.fbc);
1493
1494 intermediate->hpll.plane = max(optimal->hpll.plane,
1495 active->hpll.plane);
1496 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1497 active->hpll.cursor);
1498 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1499 active->hpll.fbc);
1500
1501 drm_WARN_ON(&dev_priv->drm,
1502 (intermediate->sr.plane >
1503 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1504 intermediate->sr.cursor >
1505 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1506 intermediate->cxsr);
1507 drm_WARN_ON(&dev_priv->drm,
1508 (intermediate->sr.plane >
1509 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1510 intermediate->sr.cursor >
1511 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1512 intermediate->hpll_en);
1513
1514 drm_WARN_ON(&dev_priv->drm,
1515 intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1516 intermediate->fbc_en && intermediate->cxsr);
1517 drm_WARN_ON(&dev_priv->drm,
1518 intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1519 intermediate->fbc_en && intermediate->hpll_en);
1520
1521 out:
1522 /*
1523 * If our intermediate WM are identical to the final WM, then we can
1524 * omit the post-vblank programming; only update if it's different.
1525 */
1526 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1527 new_crtc_state->wm.need_postvbl_update = true;
1528
1529 return 0;
1530 }
1531
g4x_merge_wm(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)1532 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1533 struct g4x_wm_values *wm)
1534 {
1535 struct intel_crtc *crtc;
1536 int num_active_pipes = 0;
1537
1538 wm->cxsr = true;
1539 wm->hpll_en = true;
1540 wm->fbc_en = true;
1541
1542 for_each_intel_crtc(&dev_priv->drm, crtc) {
1543 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1544
1545 if (!crtc->active)
1546 continue;
1547
1548 if (!wm_state->cxsr)
1549 wm->cxsr = false;
1550 if (!wm_state->hpll_en)
1551 wm->hpll_en = false;
1552 if (!wm_state->fbc_en)
1553 wm->fbc_en = false;
1554
1555 num_active_pipes++;
1556 }
1557
1558 if (num_active_pipes != 1) {
1559 wm->cxsr = false;
1560 wm->hpll_en = false;
1561 wm->fbc_en = false;
1562 }
1563
1564 for_each_intel_crtc(&dev_priv->drm, crtc) {
1565 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1566 enum pipe pipe = crtc->pipe;
1567
1568 wm->pipe[pipe] = wm_state->wm;
1569 if (crtc->active && wm->cxsr)
1570 wm->sr = wm_state->sr;
1571 if (crtc->active && wm->hpll_en)
1572 wm->hpll = wm_state->hpll;
1573 }
1574 }
1575
g4x_program_watermarks(struct drm_i915_private * dev_priv)1576 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1577 {
1578 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1579 struct g4x_wm_values new_wm = {};
1580
1581 g4x_merge_wm(dev_priv, &new_wm);
1582
1583 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1584 return;
1585
1586 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1587 _intel_set_memory_cxsr(dev_priv, false);
1588
1589 g4x_write_wm_values(dev_priv, &new_wm);
1590
1591 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1592 _intel_set_memory_cxsr(dev_priv, true);
1593
1594 *old_wm = new_wm;
1595 }
1596
g4x_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1597 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1598 struct intel_crtc *crtc)
1599 {
1600 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1601 const struct intel_crtc_state *crtc_state =
1602 intel_atomic_get_new_crtc_state(state, crtc);
1603
1604 mutex_lock(&dev_priv->wm.wm_mutex);
1605 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1606 g4x_program_watermarks(dev_priv);
1607 mutex_unlock(&dev_priv->wm.wm_mutex);
1608 }
1609
g4x_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1610 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1611 struct intel_crtc *crtc)
1612 {
1613 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1614 const struct intel_crtc_state *crtc_state =
1615 intel_atomic_get_new_crtc_state(state, crtc);
1616
1617 if (!crtc_state->wm.need_postvbl_update)
1618 return;
1619
1620 mutex_lock(&dev_priv->wm.wm_mutex);
1621 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1622 g4x_program_watermarks(dev_priv);
1623 mutex_unlock(&dev_priv->wm.wm_mutex);
1624 }
1625
1626 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)1627 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1628 unsigned int htotal,
1629 unsigned int width,
1630 unsigned int cpp,
1631 unsigned int latency)
1632 {
1633 unsigned int ret;
1634
1635 ret = intel_wm_method2(pixel_rate, htotal,
1636 width, cpp, latency);
1637 ret = DIV_ROUND_UP(ret, 64);
1638
1639 return ret;
1640 }
1641
vlv_setup_wm_latency(struct drm_i915_private * dev_priv)1642 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1643 {
1644 /* all latencies in usec */
1645 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1646
1647 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1648
1649 if (IS_CHERRYVIEW(dev_priv)) {
1650 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1651 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1652
1653 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1654 }
1655 }
1656
vlv_compute_wm_level(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1657 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1658 const struct intel_plane_state *plane_state,
1659 int level)
1660 {
1661 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1662 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1663 const struct drm_display_mode *adjusted_mode =
1664 &crtc_state->hw.adjusted_mode;
1665 unsigned int clock, htotal, cpp, width, wm;
1666
1667 if (dev_priv->wm.pri_latency[level] == 0)
1668 return USHRT_MAX;
1669
1670 if (!intel_wm_plane_visible(crtc_state, plane_state))
1671 return 0;
1672
1673 cpp = plane_state->hw.fb->format->cpp[0];
1674 clock = adjusted_mode->crtc_clock;
1675 htotal = adjusted_mode->crtc_htotal;
1676 width = crtc_state->pipe_src_w;
1677
1678 if (plane->id == PLANE_CURSOR) {
1679 /*
1680 * FIXME the formula gives values that are
1681 * too big for the cursor FIFO, and hence we
1682 * would never be able to use cursors. For
1683 * now just hardcode the watermark.
1684 */
1685 wm = 63;
1686 } else {
1687 wm = vlv_wm_method2(clock, htotal, width, cpp,
1688 dev_priv->wm.pri_latency[level] * 10);
1689 }
1690
1691 return min_t(unsigned int, wm, USHRT_MAX);
1692 }
1693
vlv_need_sprite0_fifo_workaround(unsigned int active_planes)1694 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1695 {
1696 return (active_planes & (BIT(PLANE_SPRITE0) |
1697 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1698 }
1699
vlv_compute_fifo(struct intel_crtc_state * crtc_state)1700 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1701 {
1702 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1703 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1704 const struct g4x_pipe_wm *raw =
1705 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1706 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1707 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1708 int num_active_planes = hweight8(active_planes);
1709 const int fifo_size = 511;
1710 int fifo_extra, fifo_left = fifo_size;
1711 int sprite0_fifo_extra = 0;
1712 unsigned int total_rate;
1713 enum plane_id plane_id;
1714
1715 /*
1716 * When enabling sprite0 after sprite1 has already been enabled
1717 * we tend to get an underrun unless sprite0 already has some
1718 * FIFO space allcoated. Hence we always allocate at least one
1719 * cacheline for sprite0 whenever sprite1 is enabled.
1720 *
1721 * All other plane enable sequences appear immune to this problem.
1722 */
1723 if (vlv_need_sprite0_fifo_workaround(active_planes))
1724 sprite0_fifo_extra = 1;
1725
1726 total_rate = raw->plane[PLANE_PRIMARY] +
1727 raw->plane[PLANE_SPRITE0] +
1728 raw->plane[PLANE_SPRITE1] +
1729 sprite0_fifo_extra;
1730
1731 if (total_rate > fifo_size)
1732 return -EINVAL;
1733
1734 if (total_rate == 0)
1735 total_rate = 1;
1736
1737 for_each_plane_id_on_crtc(crtc, plane_id) {
1738 unsigned int rate;
1739
1740 if ((active_planes & BIT(plane_id)) == 0) {
1741 fifo_state->plane[plane_id] = 0;
1742 continue;
1743 }
1744
1745 rate = raw->plane[plane_id];
1746 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1747 fifo_left -= fifo_state->plane[plane_id];
1748 }
1749
1750 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1751 fifo_left -= sprite0_fifo_extra;
1752
1753 fifo_state->plane[PLANE_CURSOR] = 63;
1754
1755 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1756
1757 /* spread the remainder evenly */
1758 for_each_plane_id_on_crtc(crtc, plane_id) {
1759 int plane_extra;
1760
1761 if (fifo_left == 0)
1762 break;
1763
1764 if ((active_planes & BIT(plane_id)) == 0)
1765 continue;
1766
1767 plane_extra = min(fifo_extra, fifo_left);
1768 fifo_state->plane[plane_id] += plane_extra;
1769 fifo_left -= plane_extra;
1770 }
1771
1772 drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1773
1774 /* give it all to the first plane if none are active */
1775 if (active_planes == 0) {
1776 drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1777 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1778 }
1779
1780 return 0;
1781 }
1782
1783 /* mark all levels starting from 'level' as invalid */
vlv_invalidate_wms(struct intel_crtc * crtc,struct vlv_wm_state * wm_state,int level)1784 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1785 struct vlv_wm_state *wm_state, int level)
1786 {
1787 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1788
1789 for (; level < intel_wm_num_levels(dev_priv); level++) {
1790 enum plane_id plane_id;
1791
1792 for_each_plane_id_on_crtc(crtc, plane_id)
1793 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1794
1795 wm_state->sr[level].cursor = USHRT_MAX;
1796 wm_state->sr[level].plane = USHRT_MAX;
1797 }
1798 }
1799
vlv_invert_wm_value(u16 wm,u16 fifo_size)1800 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1801 {
1802 if (wm > fifo_size)
1803 return USHRT_MAX;
1804 else
1805 return fifo_size - wm;
1806 }
1807
1808 /*
1809 * Starting from 'level' set all higher
1810 * levels to 'value' in the "raw" watermarks.
1811 */
vlv_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1812 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1813 int level, enum plane_id plane_id, u16 value)
1814 {
1815 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1816 int num_levels = intel_wm_num_levels(dev_priv);
1817 bool dirty = false;
1818
1819 for (; level < num_levels; level++) {
1820 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1821
1822 dirty |= raw->plane[plane_id] != value;
1823 raw->plane[plane_id] = value;
1824 }
1825
1826 return dirty;
1827 }
1828
vlv_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1829 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1830 const struct intel_plane_state *plane_state)
1831 {
1832 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1833 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1834 enum plane_id plane_id = plane->id;
1835 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1836 int level;
1837 bool dirty = false;
1838
1839 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1840 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1841 goto out;
1842 }
1843
1844 for (level = 0; level < num_levels; level++) {
1845 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1846 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1847 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1848
1849 if (wm > max_wm)
1850 break;
1851
1852 dirty |= raw->plane[plane_id] != wm;
1853 raw->plane[plane_id] = wm;
1854 }
1855
1856 /* mark all higher levels as invalid */
1857 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1858
1859 out:
1860 if (dirty)
1861 drm_dbg_kms(&dev_priv->drm,
1862 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1863 plane->base.name,
1864 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1865 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1866 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1867
1868 return dirty;
1869 }
1870
vlv_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1871 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1872 enum plane_id plane_id, int level)
1873 {
1874 const struct g4x_pipe_wm *raw =
1875 &crtc_state->wm.vlv.raw[level];
1876 const struct vlv_fifo_state *fifo_state =
1877 &crtc_state->wm.vlv.fifo_state;
1878
1879 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1880 }
1881
vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1882 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1883 {
1884 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1885 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1886 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1887 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1888 }
1889
vlv_compute_pipe_wm(struct intel_crtc_state * crtc_state)1890 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1891 {
1892 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1893 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1894 struct intel_atomic_state *state =
1895 to_intel_atomic_state(crtc_state->uapi.state);
1896 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1897 const struct vlv_fifo_state *fifo_state =
1898 &crtc_state->wm.vlv.fifo_state;
1899 int num_active_planes = hweight8(crtc_state->active_planes &
1900 ~BIT(PLANE_CURSOR));
1901 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1902 const struct intel_plane_state *old_plane_state;
1903 const struct intel_plane_state *new_plane_state;
1904 struct intel_plane *plane;
1905 enum plane_id plane_id;
1906 int level, ret, i;
1907 unsigned int dirty = 0;
1908
1909 for_each_oldnew_intel_plane_in_state(state, plane,
1910 old_plane_state,
1911 new_plane_state, i) {
1912 if (new_plane_state->hw.crtc != &crtc->base &&
1913 old_plane_state->hw.crtc != &crtc->base)
1914 continue;
1915
1916 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1917 dirty |= BIT(plane->id);
1918 }
1919
1920 /*
1921 * DSPARB registers may have been reset due to the
1922 * power well being turned off. Make sure we restore
1923 * them to a consistent state even if no primary/sprite
1924 * planes are initially active.
1925 */
1926 if (needs_modeset)
1927 crtc_state->fifo_changed = true;
1928
1929 if (!dirty)
1930 return 0;
1931
1932 /* cursor changes don't warrant a FIFO recompute */
1933 if (dirty & ~BIT(PLANE_CURSOR)) {
1934 const struct intel_crtc_state *old_crtc_state =
1935 intel_atomic_get_old_crtc_state(state, crtc);
1936 const struct vlv_fifo_state *old_fifo_state =
1937 &old_crtc_state->wm.vlv.fifo_state;
1938
1939 ret = vlv_compute_fifo(crtc_state);
1940 if (ret)
1941 return ret;
1942
1943 if (needs_modeset ||
1944 memcmp(old_fifo_state, fifo_state,
1945 sizeof(*fifo_state)) != 0)
1946 crtc_state->fifo_changed = true;
1947 }
1948
1949 /* initially allow all levels */
1950 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1951 /*
1952 * Note that enabling cxsr with no primary/sprite planes
1953 * enabled can wedge the pipe. Hence we only allow cxsr
1954 * with exactly one enabled primary/sprite plane.
1955 */
1956 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1957
1958 for (level = 0; level < wm_state->num_levels; level++) {
1959 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1960 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1961
1962 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1963 break;
1964
1965 for_each_plane_id_on_crtc(crtc, plane_id) {
1966 wm_state->wm[level].plane[plane_id] =
1967 vlv_invert_wm_value(raw->plane[plane_id],
1968 fifo_state->plane[plane_id]);
1969 }
1970
1971 wm_state->sr[level].plane =
1972 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1973 raw->plane[PLANE_SPRITE0],
1974 raw->plane[PLANE_SPRITE1]),
1975 sr_fifo_size);
1976
1977 wm_state->sr[level].cursor =
1978 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1979 63);
1980 }
1981
1982 if (level == 0)
1983 return -EINVAL;
1984
1985 /* limit to only levels we can actually handle */
1986 wm_state->num_levels = level;
1987
1988 /* invalidate the higher levels */
1989 vlv_invalidate_wms(crtc, wm_state, level);
1990
1991 return 0;
1992 }
1993
1994 #define VLV_FIFO(plane, value) \
1995 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1996
vlv_atomic_update_fifo(struct intel_atomic_state * state,struct intel_crtc * crtc)1997 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1998 struct intel_crtc *crtc)
1999 {
2000 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2001 struct intel_uncore *uncore = &dev_priv->uncore;
2002 const struct intel_crtc_state *crtc_state =
2003 intel_atomic_get_new_crtc_state(state, crtc);
2004 const struct vlv_fifo_state *fifo_state =
2005 &crtc_state->wm.vlv.fifo_state;
2006 int sprite0_start, sprite1_start, fifo_size;
2007 u32 dsparb, dsparb2, dsparb3;
2008
2009 if (!crtc_state->fifo_changed)
2010 return;
2011
2012 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
2013 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
2014 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2015
2016 drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
2017 drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2018
2019 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
2020
2021 /*
2022 * uncore.lock serves a double purpose here. It allows us to
2023 * use the less expensive I915_{READ,WRITE}_FW() functions, and
2024 * it protects the DSPARB registers from getting clobbered by
2025 * parallel updates from multiple pipes.
2026 *
2027 * intel_pipe_update_start() has already disabled interrupts
2028 * for us, so a plain spin_lock() is sufficient here.
2029 */
2030 spin_lock(&uncore->lock);
2031
2032 switch (crtc->pipe) {
2033 case PIPE_A:
2034 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2035 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2036
2037 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2038 VLV_FIFO(SPRITEB, 0xff));
2039 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2040 VLV_FIFO(SPRITEB, sprite1_start));
2041
2042 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2043 VLV_FIFO(SPRITEB_HI, 0x1));
2044 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2045 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2046
2047 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2048 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2049 break;
2050 case PIPE_B:
2051 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2052 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2053
2054 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2055 VLV_FIFO(SPRITED, 0xff));
2056 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2057 VLV_FIFO(SPRITED, sprite1_start));
2058
2059 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2060 VLV_FIFO(SPRITED_HI, 0xff));
2061 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2062 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2063
2064 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2065 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2066 break;
2067 case PIPE_C:
2068 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2069 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2070
2071 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2072 VLV_FIFO(SPRITEF, 0xff));
2073 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2074 VLV_FIFO(SPRITEF, sprite1_start));
2075
2076 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2077 VLV_FIFO(SPRITEF_HI, 0xff));
2078 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2079 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2080
2081 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2082 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2083 break;
2084 default:
2085 break;
2086 }
2087
2088 intel_uncore_posting_read_fw(uncore, DSPARB);
2089
2090 spin_unlock(&uncore->lock);
2091 }
2092
2093 #undef VLV_FIFO
2094
vlv_compute_intermediate_wm(struct intel_crtc_state * new_crtc_state)2095 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2096 {
2097 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2098 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2099 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2100 struct intel_atomic_state *intel_state =
2101 to_intel_atomic_state(new_crtc_state->uapi.state);
2102 const struct intel_crtc_state *old_crtc_state =
2103 intel_atomic_get_old_crtc_state(intel_state, crtc);
2104 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2105 int level;
2106
2107 if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2108 *intermediate = *optimal;
2109
2110 intermediate->cxsr = false;
2111 goto out;
2112 }
2113
2114 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2115 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2116 !new_crtc_state->disable_cxsr;
2117
2118 for (level = 0; level < intermediate->num_levels; level++) {
2119 enum plane_id plane_id;
2120
2121 for_each_plane_id_on_crtc(crtc, plane_id) {
2122 intermediate->wm[level].plane[plane_id] =
2123 min(optimal->wm[level].plane[plane_id],
2124 active->wm[level].plane[plane_id]);
2125 }
2126
2127 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2128 active->sr[level].plane);
2129 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2130 active->sr[level].cursor);
2131 }
2132
2133 vlv_invalidate_wms(crtc, intermediate, level);
2134
2135 out:
2136 /*
2137 * If our intermediate WM are identical to the final WM, then we can
2138 * omit the post-vblank programming; only update if it's different.
2139 */
2140 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2141 new_crtc_state->wm.need_postvbl_update = true;
2142
2143 return 0;
2144 }
2145
vlv_merge_wm(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)2146 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2147 struct vlv_wm_values *wm)
2148 {
2149 struct intel_crtc *crtc;
2150 int num_active_pipes = 0;
2151
2152 wm->level = dev_priv->wm.max_level;
2153 wm->cxsr = true;
2154
2155 for_each_intel_crtc(&dev_priv->drm, crtc) {
2156 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2157
2158 if (!crtc->active)
2159 continue;
2160
2161 if (!wm_state->cxsr)
2162 wm->cxsr = false;
2163
2164 num_active_pipes++;
2165 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2166 }
2167
2168 if (num_active_pipes != 1)
2169 wm->cxsr = false;
2170
2171 if (num_active_pipes > 1)
2172 wm->level = VLV_WM_LEVEL_PM2;
2173
2174 for_each_intel_crtc(&dev_priv->drm, crtc) {
2175 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2176 enum pipe pipe = crtc->pipe;
2177
2178 wm->pipe[pipe] = wm_state->wm[wm->level];
2179 if (crtc->active && wm->cxsr)
2180 wm->sr = wm_state->sr[wm->level];
2181
2182 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2183 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2184 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2185 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2186 }
2187 }
2188
vlv_program_watermarks(struct drm_i915_private * dev_priv)2189 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2190 {
2191 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2192 struct vlv_wm_values new_wm = {};
2193
2194 vlv_merge_wm(dev_priv, &new_wm);
2195
2196 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2197 return;
2198
2199 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2200 chv_set_memory_dvfs(dev_priv, false);
2201
2202 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2203 chv_set_memory_pm5(dev_priv, false);
2204
2205 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2206 _intel_set_memory_cxsr(dev_priv, false);
2207
2208 vlv_write_wm_values(dev_priv, &new_wm);
2209
2210 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2211 _intel_set_memory_cxsr(dev_priv, true);
2212
2213 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2214 chv_set_memory_pm5(dev_priv, true);
2215
2216 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2217 chv_set_memory_dvfs(dev_priv, true);
2218
2219 *old_wm = new_wm;
2220 }
2221
vlv_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2222 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2223 struct intel_crtc *crtc)
2224 {
2225 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2226 const struct intel_crtc_state *crtc_state =
2227 intel_atomic_get_new_crtc_state(state, crtc);
2228
2229 mutex_lock(&dev_priv->wm.wm_mutex);
2230 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2231 vlv_program_watermarks(dev_priv);
2232 mutex_unlock(&dev_priv->wm.wm_mutex);
2233 }
2234
vlv_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2235 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2236 struct intel_crtc *crtc)
2237 {
2238 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2239 const struct intel_crtc_state *crtc_state =
2240 intel_atomic_get_new_crtc_state(state, crtc);
2241
2242 if (!crtc_state->wm.need_postvbl_update)
2243 return;
2244
2245 mutex_lock(&dev_priv->wm.wm_mutex);
2246 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2247 vlv_program_watermarks(dev_priv);
2248 mutex_unlock(&dev_priv->wm.wm_mutex);
2249 }
2250
i965_update_wm(struct intel_crtc * unused_crtc)2251 static void i965_update_wm(struct intel_crtc *unused_crtc)
2252 {
2253 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2254 struct intel_crtc *crtc;
2255 int srwm = 1;
2256 int cursor_sr = 16;
2257 bool cxsr_enabled;
2258
2259 /* Calc sr entries for one plane configs */
2260 crtc = single_enabled_crtc(dev_priv);
2261 if (crtc) {
2262 /* self-refresh has much higher latency */
2263 static const int sr_latency_ns = 12000;
2264 const struct drm_display_mode *adjusted_mode =
2265 &crtc->config->hw.adjusted_mode;
2266 const struct drm_framebuffer *fb =
2267 crtc->base.primary->state->fb;
2268 int clock = adjusted_mode->crtc_clock;
2269 int htotal = adjusted_mode->crtc_htotal;
2270 int hdisplay = crtc->config->pipe_src_w;
2271 int cpp = fb->format->cpp[0];
2272 int entries;
2273
2274 entries = intel_wm_method2(clock, htotal,
2275 hdisplay, cpp, sr_latency_ns / 100);
2276 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2277 srwm = I965_FIFO_SIZE - entries;
2278 if (srwm < 0)
2279 srwm = 1;
2280 srwm &= 0x1ff;
2281 drm_dbg_kms(&dev_priv->drm,
2282 "self-refresh entries: %d, wm: %d\n",
2283 entries, srwm);
2284
2285 entries = intel_wm_method2(clock, htotal,
2286 crtc->base.cursor->state->crtc_w, 4,
2287 sr_latency_ns / 100);
2288 entries = DIV_ROUND_UP(entries,
2289 i965_cursor_wm_info.cacheline_size) +
2290 i965_cursor_wm_info.guard_size;
2291
2292 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2293 if (cursor_sr > i965_cursor_wm_info.max_wm)
2294 cursor_sr = i965_cursor_wm_info.max_wm;
2295
2296 drm_dbg_kms(&dev_priv->drm,
2297 "self-refresh watermark: display plane %d "
2298 "cursor %d\n", srwm, cursor_sr);
2299
2300 cxsr_enabled = true;
2301 } else {
2302 cxsr_enabled = false;
2303 /* Turn off self refresh if both pipes are enabled */
2304 intel_set_memory_cxsr(dev_priv, false);
2305 }
2306
2307 drm_dbg_kms(&dev_priv->drm,
2308 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2309 srwm);
2310
2311 /* 965 has limitations... */
2312 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2313 FW_WM(8, CURSORB) |
2314 FW_WM(8, PLANEB) |
2315 FW_WM(8, PLANEA));
2316 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2317 FW_WM(8, PLANEC_OLD));
2318 /* update cursor SR watermark */
2319 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2320
2321 if (cxsr_enabled)
2322 intel_set_memory_cxsr(dev_priv, true);
2323 }
2324
2325 #undef FW_WM
2326
i9xx_update_wm(struct intel_crtc * unused_crtc)2327 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2328 {
2329 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2330 const struct intel_watermark_params *wm_info;
2331 u32 fwater_lo;
2332 u32 fwater_hi;
2333 int cwm, srwm = 1;
2334 int fifo_size;
2335 int planea_wm, planeb_wm;
2336 struct intel_crtc *crtc, *enabled = NULL;
2337
2338 if (IS_I945GM(dev_priv))
2339 wm_info = &i945_wm_info;
2340 else if (!IS_GEN(dev_priv, 2))
2341 wm_info = &i915_wm_info;
2342 else
2343 wm_info = &i830_a_wm_info;
2344
2345 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2346 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2347 if (intel_crtc_active(crtc)) {
2348 const struct drm_display_mode *adjusted_mode =
2349 &crtc->config->hw.adjusted_mode;
2350 const struct drm_framebuffer *fb =
2351 crtc->base.primary->state->fb;
2352 int cpp;
2353
2354 if (IS_GEN(dev_priv, 2))
2355 cpp = 4;
2356 else
2357 cpp = fb->format->cpp[0];
2358
2359 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2360 wm_info, fifo_size, cpp,
2361 pessimal_latency_ns);
2362 enabled = crtc;
2363 } else {
2364 planea_wm = fifo_size - wm_info->guard_size;
2365 if (planea_wm > (long)wm_info->max_wm)
2366 planea_wm = wm_info->max_wm;
2367 }
2368
2369 if (IS_GEN(dev_priv, 2))
2370 wm_info = &i830_bc_wm_info;
2371
2372 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2373 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2374 if (intel_crtc_active(crtc)) {
2375 const struct drm_display_mode *adjusted_mode =
2376 &crtc->config->hw.adjusted_mode;
2377 const struct drm_framebuffer *fb =
2378 crtc->base.primary->state->fb;
2379 int cpp;
2380
2381 if (IS_GEN(dev_priv, 2))
2382 cpp = 4;
2383 else
2384 cpp = fb->format->cpp[0];
2385
2386 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2387 wm_info, fifo_size, cpp,
2388 pessimal_latency_ns);
2389 if (enabled == NULL)
2390 enabled = crtc;
2391 else
2392 enabled = NULL;
2393 } else {
2394 planeb_wm = fifo_size - wm_info->guard_size;
2395 if (planeb_wm > (long)wm_info->max_wm)
2396 planeb_wm = wm_info->max_wm;
2397 }
2398
2399 drm_dbg_kms(&dev_priv->drm,
2400 "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2401
2402 if (IS_I915GM(dev_priv) && enabled) {
2403 struct drm_i915_gem_object *obj;
2404
2405 obj = intel_fb_obj(enabled->base.primary->state->fb);
2406
2407 /* self-refresh seems busted with untiled */
2408 if (!i915_gem_object_is_tiled(obj))
2409 enabled = NULL;
2410 }
2411
2412 /*
2413 * Overlay gets an aggressive default since video jitter is bad.
2414 */
2415 cwm = 2;
2416
2417 /* Play safe and disable self-refresh before adjusting watermarks. */
2418 intel_set_memory_cxsr(dev_priv, false);
2419
2420 /* Calc sr entries for one plane configs */
2421 if (HAS_FW_BLC(dev_priv) && enabled) {
2422 /* self-refresh has much higher latency */
2423 static const int sr_latency_ns = 6000;
2424 const struct drm_display_mode *adjusted_mode =
2425 &enabled->config->hw.adjusted_mode;
2426 const struct drm_framebuffer *fb =
2427 enabled->base.primary->state->fb;
2428 int clock = adjusted_mode->crtc_clock;
2429 int htotal = adjusted_mode->crtc_htotal;
2430 int hdisplay = enabled->config->pipe_src_w;
2431 int cpp;
2432 int entries;
2433
2434 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2435 cpp = 4;
2436 else
2437 cpp = fb->format->cpp[0];
2438
2439 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2440 sr_latency_ns / 100);
2441 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2442 drm_dbg_kms(&dev_priv->drm,
2443 "self-refresh entries: %d\n", entries);
2444 srwm = wm_info->fifo_size - entries;
2445 if (srwm < 0)
2446 srwm = 1;
2447
2448 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2449 I915_WRITE(FW_BLC_SELF,
2450 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2451 else
2452 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2453 }
2454
2455 drm_dbg_kms(&dev_priv->drm,
2456 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2457 planea_wm, planeb_wm, cwm, srwm);
2458
2459 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2460 fwater_hi = (cwm & 0x1f);
2461
2462 /* Set request length to 8 cachelines per fetch */
2463 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2464 fwater_hi = fwater_hi | (1 << 8);
2465
2466 I915_WRITE(FW_BLC, fwater_lo);
2467 I915_WRITE(FW_BLC2, fwater_hi);
2468
2469 if (enabled)
2470 intel_set_memory_cxsr(dev_priv, true);
2471 }
2472
i845_update_wm(struct intel_crtc * unused_crtc)2473 static void i845_update_wm(struct intel_crtc *unused_crtc)
2474 {
2475 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2476 struct intel_crtc *crtc;
2477 const struct drm_display_mode *adjusted_mode;
2478 u32 fwater_lo;
2479 int planea_wm;
2480
2481 crtc = single_enabled_crtc(dev_priv);
2482 if (crtc == NULL)
2483 return;
2484
2485 adjusted_mode = &crtc->config->hw.adjusted_mode;
2486 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2487 &i845_wm_info,
2488 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2489 4, pessimal_latency_ns);
2490 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2491 fwater_lo |= (3<<8) | planea_wm;
2492
2493 drm_dbg_kms(&dev_priv->drm,
2494 "Setting FIFO watermarks - A: %d\n", planea_wm);
2495
2496 I915_WRITE(FW_BLC, fwater_lo);
2497 }
2498
2499 /* latency must be in 0.1us units. */
ilk_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)2500 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2501 unsigned int cpp,
2502 unsigned int latency)
2503 {
2504 unsigned int ret;
2505
2506 ret = intel_wm_method1(pixel_rate, cpp, latency);
2507 ret = DIV_ROUND_UP(ret, 64) + 2;
2508
2509 return ret;
2510 }
2511
2512 /* latency must be in 0.1us units. */
ilk_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)2513 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2514 unsigned int htotal,
2515 unsigned int width,
2516 unsigned int cpp,
2517 unsigned int latency)
2518 {
2519 unsigned int ret;
2520
2521 ret = intel_wm_method2(pixel_rate, htotal,
2522 width, cpp, latency);
2523 ret = DIV_ROUND_UP(ret, 64) + 2;
2524
2525 return ret;
2526 }
2527
ilk_wm_fbc(u32 pri_val,u32 horiz_pixels,u8 cpp)2528 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2529 {
2530 /*
2531 * Neither of these should be possible since this function shouldn't be
2532 * called if the CRTC is off or the plane is invisible. But let's be
2533 * extra paranoid to avoid a potential divide-by-zero if we screw up
2534 * elsewhere in the driver.
2535 */
2536 if (WARN_ON(!cpp))
2537 return 0;
2538 if (WARN_ON(!horiz_pixels))
2539 return 0;
2540
2541 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2542 }
2543
2544 struct ilk_wm_maximums {
2545 u16 pri;
2546 u16 spr;
2547 u16 cur;
2548 u16 fbc;
2549 };
2550
2551 /*
2552 * For both WM_PIPE and WM_LP.
2553 * mem_value must be in 0.1us units.
2554 */
ilk_compute_pri_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value,bool is_lp)2555 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2556 const struct intel_plane_state *plane_state,
2557 u32 mem_value, bool is_lp)
2558 {
2559 u32 method1, method2;
2560 int cpp;
2561
2562 if (mem_value == 0)
2563 return U32_MAX;
2564
2565 if (!intel_wm_plane_visible(crtc_state, plane_state))
2566 return 0;
2567
2568 cpp = plane_state->hw.fb->format->cpp[0];
2569
2570 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2571
2572 if (!is_lp)
2573 return method1;
2574
2575 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2576 crtc_state->hw.adjusted_mode.crtc_htotal,
2577 drm_rect_width(&plane_state->uapi.dst),
2578 cpp, mem_value);
2579
2580 return min(method1, method2);
2581 }
2582
2583 /*
2584 * For both WM_PIPE and WM_LP.
2585 * mem_value must be in 0.1us units.
2586 */
ilk_compute_spr_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2587 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2588 const struct intel_plane_state *plane_state,
2589 u32 mem_value)
2590 {
2591 u32 method1, method2;
2592 int cpp;
2593
2594 if (mem_value == 0)
2595 return U32_MAX;
2596
2597 if (!intel_wm_plane_visible(crtc_state, plane_state))
2598 return 0;
2599
2600 cpp = plane_state->hw.fb->format->cpp[0];
2601
2602 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2603 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2604 crtc_state->hw.adjusted_mode.crtc_htotal,
2605 drm_rect_width(&plane_state->uapi.dst),
2606 cpp, mem_value);
2607 return min(method1, method2);
2608 }
2609
2610 /*
2611 * For both WM_PIPE and WM_LP.
2612 * mem_value must be in 0.1us units.
2613 */
ilk_compute_cur_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2614 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2615 const struct intel_plane_state *plane_state,
2616 u32 mem_value)
2617 {
2618 int cpp;
2619
2620 if (mem_value == 0)
2621 return U32_MAX;
2622
2623 if (!intel_wm_plane_visible(crtc_state, plane_state))
2624 return 0;
2625
2626 cpp = plane_state->hw.fb->format->cpp[0];
2627
2628 return ilk_wm_method2(crtc_state->pixel_rate,
2629 crtc_state->hw.adjusted_mode.crtc_htotal,
2630 drm_rect_width(&plane_state->uapi.dst),
2631 cpp, mem_value);
2632 }
2633
2634 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 pri_val)2635 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2636 const struct intel_plane_state *plane_state,
2637 u32 pri_val)
2638 {
2639 int cpp;
2640
2641 if (!intel_wm_plane_visible(crtc_state, plane_state))
2642 return 0;
2643
2644 cpp = plane_state->hw.fb->format->cpp[0];
2645
2646 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2647 cpp);
2648 }
2649
2650 static unsigned int
ilk_display_fifo_size(const struct drm_i915_private * dev_priv)2651 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2652 {
2653 if (INTEL_GEN(dev_priv) >= 8)
2654 return 3072;
2655 else if (INTEL_GEN(dev_priv) >= 7)
2656 return 768;
2657 else
2658 return 512;
2659 }
2660
2661 static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private * dev_priv,int level,bool is_sprite)2662 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2663 int level, bool is_sprite)
2664 {
2665 if (INTEL_GEN(dev_priv) >= 8)
2666 /* BDW primary/sprite plane watermarks */
2667 return level == 0 ? 255 : 2047;
2668 else if (INTEL_GEN(dev_priv) >= 7)
2669 /* IVB/HSW primary/sprite plane watermarks */
2670 return level == 0 ? 127 : 1023;
2671 else if (!is_sprite)
2672 /* ILK/SNB primary plane watermarks */
2673 return level == 0 ? 127 : 511;
2674 else
2675 /* ILK/SNB sprite plane watermarks */
2676 return level == 0 ? 63 : 255;
2677 }
2678
2679 static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private * dev_priv,int level)2680 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2681 {
2682 if (INTEL_GEN(dev_priv) >= 7)
2683 return level == 0 ? 63 : 255;
2684 else
2685 return level == 0 ? 31 : 63;
2686 }
2687
ilk_fbc_wm_reg_max(const struct drm_i915_private * dev_priv)2688 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2689 {
2690 if (INTEL_GEN(dev_priv) >= 8)
2691 return 31;
2692 else
2693 return 15;
2694 }
2695
2696 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)2697 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2698 int level,
2699 const struct intel_wm_config *config,
2700 enum intel_ddb_partitioning ddb_partitioning,
2701 bool is_sprite)
2702 {
2703 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2704
2705 /* if sprites aren't enabled, sprites get nothing */
2706 if (is_sprite && !config->sprites_enabled)
2707 return 0;
2708
2709 /* HSW allows LP1+ watermarks even with multiple pipes */
2710 if (level == 0 || config->num_pipes_active > 1) {
2711 fifo_size /= INTEL_NUM_PIPES(dev_priv);
2712
2713 /*
2714 * For some reason the non self refresh
2715 * FIFO size is only half of the self
2716 * refresh FIFO size on ILK/SNB.
2717 */
2718 if (INTEL_GEN(dev_priv) <= 6)
2719 fifo_size /= 2;
2720 }
2721
2722 if (config->sprites_enabled) {
2723 /* level 0 is always calculated with 1:1 split */
2724 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2725 if (is_sprite)
2726 fifo_size *= 5;
2727 fifo_size /= 6;
2728 } else {
2729 fifo_size /= 2;
2730 }
2731 }
2732
2733 /* clamp to max that the registers can hold */
2734 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2735 }
2736
2737 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config)2738 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2739 int level,
2740 const struct intel_wm_config *config)
2741 {
2742 /* HSW LP1+ watermarks w/ multiple pipes */
2743 if (level > 0 && config->num_pipes_active > 1)
2744 return 64;
2745
2746 /* otherwise just report max that registers can hold */
2747 return ilk_cursor_wm_reg_max(dev_priv, level);
2748 }
2749
ilk_compute_wm_maximums(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)2750 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2751 int level,
2752 const struct intel_wm_config *config,
2753 enum intel_ddb_partitioning ddb_partitioning,
2754 struct ilk_wm_maximums *max)
2755 {
2756 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2757 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2758 max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2759 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2760 }
2761
ilk_compute_wm_reg_maximums(const struct drm_i915_private * dev_priv,int level,struct ilk_wm_maximums * max)2762 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2763 int level,
2764 struct ilk_wm_maximums *max)
2765 {
2766 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2767 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2768 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2769 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2770 }
2771
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)2772 static bool ilk_validate_wm_level(int level,
2773 const struct ilk_wm_maximums *max,
2774 struct intel_wm_level *result)
2775 {
2776 bool ret;
2777
2778 /* already determined to be invalid? */
2779 if (!result->enable)
2780 return false;
2781
2782 result->enable = result->pri_val <= max->pri &&
2783 result->spr_val <= max->spr &&
2784 result->cur_val <= max->cur;
2785
2786 ret = result->enable;
2787
2788 /*
2789 * HACK until we can pre-compute everything,
2790 * and thus fail gracefully if LP0 watermarks
2791 * are exceeded...
2792 */
2793 if (level == 0 && !result->enable) {
2794 if (result->pri_val > max->pri)
2795 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2796 level, result->pri_val, max->pri);
2797 if (result->spr_val > max->spr)
2798 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2799 level, result->spr_val, max->spr);
2800 if (result->cur_val > max->cur)
2801 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2802 level, result->cur_val, max->cur);
2803
2804 result->pri_val = min_t(u32, result->pri_val, max->pri);
2805 result->spr_val = min_t(u32, result->spr_val, max->spr);
2806 result->cur_val = min_t(u32, result->cur_val, max->cur);
2807 result->enable = true;
2808 }
2809
2810 return ret;
2811 }
2812
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * crtc,int level,struct intel_crtc_state * crtc_state,const struct intel_plane_state * pristate,const struct intel_plane_state * sprstate,const struct intel_plane_state * curstate,struct intel_wm_level * result)2813 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2814 const struct intel_crtc *crtc,
2815 int level,
2816 struct intel_crtc_state *crtc_state,
2817 const struct intel_plane_state *pristate,
2818 const struct intel_plane_state *sprstate,
2819 const struct intel_plane_state *curstate,
2820 struct intel_wm_level *result)
2821 {
2822 u16 pri_latency = dev_priv->wm.pri_latency[level];
2823 u16 spr_latency = dev_priv->wm.spr_latency[level];
2824 u16 cur_latency = dev_priv->wm.cur_latency[level];
2825
2826 /* WM1+ latency values stored in 0.5us units */
2827 if (level > 0) {
2828 pri_latency *= 5;
2829 spr_latency *= 5;
2830 cur_latency *= 5;
2831 }
2832
2833 if (pristate) {
2834 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2835 pri_latency, level);
2836 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2837 }
2838
2839 if (sprstate)
2840 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2841
2842 if (curstate)
2843 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2844
2845 result->enable = true;
2846 }
2847
intel_read_wm_latency(struct drm_i915_private * dev_priv,u16 wm[])2848 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2849 u16 wm[])
2850 {
2851 struct intel_uncore *uncore = &dev_priv->uncore;
2852
2853 if (INTEL_GEN(dev_priv) >= 9) {
2854 u32 val;
2855 int ret, i;
2856 int level, max_level = ilk_wm_max_level(dev_priv);
2857
2858 /* read the first set of memory latencies[0:3] */
2859 val = 0; /* data0 to be programmed to 0 for first set */
2860 ret = sandybridge_pcode_read(dev_priv,
2861 GEN9_PCODE_READ_MEM_LATENCY,
2862 &val, NULL);
2863
2864 if (ret) {
2865 drm_err(&dev_priv->drm,
2866 "SKL Mailbox read error = %d\n", ret);
2867 return;
2868 }
2869
2870 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2871 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2872 GEN9_MEM_LATENCY_LEVEL_MASK;
2873 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2874 GEN9_MEM_LATENCY_LEVEL_MASK;
2875 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2876 GEN9_MEM_LATENCY_LEVEL_MASK;
2877
2878 /* read the second set of memory latencies[4:7] */
2879 val = 1; /* data0 to be programmed to 1 for second set */
2880 ret = sandybridge_pcode_read(dev_priv,
2881 GEN9_PCODE_READ_MEM_LATENCY,
2882 &val, NULL);
2883 if (ret) {
2884 drm_err(&dev_priv->drm,
2885 "SKL Mailbox read error = %d\n", ret);
2886 return;
2887 }
2888
2889 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2890 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2891 GEN9_MEM_LATENCY_LEVEL_MASK;
2892 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2893 GEN9_MEM_LATENCY_LEVEL_MASK;
2894 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2895 GEN9_MEM_LATENCY_LEVEL_MASK;
2896
2897 /*
2898 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2899 * need to be disabled. We make sure to sanitize the values out
2900 * of the punit to satisfy this requirement.
2901 */
2902 for (level = 1; level <= max_level; level++) {
2903 if (wm[level] == 0) {
2904 for (i = level + 1; i <= max_level; i++)
2905 wm[i] = 0;
2906 break;
2907 }
2908 }
2909
2910 /*
2911 * WaWmMemoryReadLatency:skl+,glk
2912 *
2913 * punit doesn't take into account the read latency so we need
2914 * to add 2us to the various latency levels we retrieve from the
2915 * punit when level 0 response data us 0us.
2916 */
2917 if (wm[0] == 0) {
2918 wm[0] += 2;
2919 for (level = 1; level <= max_level; level++) {
2920 if (wm[level] == 0)
2921 break;
2922 wm[level] += 2;
2923 }
2924 }
2925
2926 /*
2927 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2928 * If we could not get dimm info enable this WA to prevent from
2929 * any underrun. If not able to get Dimm info assume 16GB dimm
2930 * to avoid any underrun.
2931 */
2932 if (dev_priv->dram_info.is_16gb_dimm)
2933 wm[0] += 1;
2934
2935 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2936 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2937
2938 wm[0] = (sskpd >> 56) & 0xFF;
2939 if (wm[0] == 0)
2940 wm[0] = sskpd & 0xF;
2941 wm[1] = (sskpd >> 4) & 0xFF;
2942 wm[2] = (sskpd >> 12) & 0xFF;
2943 wm[3] = (sskpd >> 20) & 0x1FF;
2944 wm[4] = (sskpd >> 32) & 0x1FF;
2945 } else if (INTEL_GEN(dev_priv) >= 6) {
2946 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2947
2948 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2949 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2950 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2951 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2952 } else if (INTEL_GEN(dev_priv) >= 5) {
2953 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2954
2955 /* ILK primary LP0 latency is 700 ns */
2956 wm[0] = 7;
2957 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2958 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2959 } else {
2960 MISSING_CASE(INTEL_DEVID(dev_priv));
2961 }
2962 }
2963
intel_fixup_spr_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2964 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2965 u16 wm[5])
2966 {
2967 /* ILK sprite LP0 latency is 1300 ns */
2968 if (IS_GEN(dev_priv, 5))
2969 wm[0] = 13;
2970 }
2971
intel_fixup_cur_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2972 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2973 u16 wm[5])
2974 {
2975 /* ILK cursor LP0 latency is 1300 ns */
2976 if (IS_GEN(dev_priv, 5))
2977 wm[0] = 13;
2978 }
2979
ilk_wm_max_level(const struct drm_i915_private * dev_priv)2980 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2981 {
2982 /* how many WM levels are we expecting */
2983 if (INTEL_GEN(dev_priv) >= 9)
2984 return 7;
2985 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2986 return 4;
2987 else if (INTEL_GEN(dev_priv) >= 6)
2988 return 3;
2989 else
2990 return 2;
2991 }
2992
intel_print_wm_latency(struct drm_i915_private * dev_priv,const char * name,const u16 wm[])2993 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2994 const char *name,
2995 const u16 wm[])
2996 {
2997 int level, max_level = ilk_wm_max_level(dev_priv);
2998
2999 for (level = 0; level <= max_level; level++) {
3000 unsigned int latency = wm[level];
3001
3002 if (latency == 0) {
3003 drm_dbg_kms(&dev_priv->drm,
3004 "%s WM%d latency not provided\n",
3005 name, level);
3006 continue;
3007 }
3008
3009 /*
3010 * - latencies are in us on gen9.
3011 * - before then, WM1+ latency values are in 0.5us units
3012 */
3013 if (INTEL_GEN(dev_priv) >= 9)
3014 latency *= 10;
3015 else if (level > 0)
3016 latency *= 5;
3017
3018 drm_dbg_kms(&dev_priv->drm,
3019 "%s WM%d latency %u (%u.%u usec)\n", name, level,
3020 wm[level], latency / 10, latency % 10);
3021 }
3022 }
3023
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5],u16 min)3024 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3025 u16 wm[5], u16 min)
3026 {
3027 int level, max_level = ilk_wm_max_level(dev_priv);
3028
3029 if (wm[0] >= min)
3030 return false;
3031
3032 wm[0] = max(wm[0], min);
3033 for (level = 1; level <= max_level; level++)
3034 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3035
3036 return true;
3037 }
3038
snb_wm_latency_quirk(struct drm_i915_private * dev_priv)3039 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3040 {
3041 bool changed;
3042
3043 /*
3044 * The BIOS provided WM memory latency values are often
3045 * inadequate for high resolution displays. Adjust them.
3046 */
3047 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12);
3048 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12);
3049 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3050
3051 if (!changed)
3052 return;
3053
3054 drm_dbg_kms(&dev_priv->drm,
3055 "WM latency values increased to avoid potential underruns\n");
3056 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3057 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3058 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3059 }
3060
snb_wm_lp3_irq_quirk(struct drm_i915_private * dev_priv)3061 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3062 {
3063 /*
3064 * On some SNB machines (Thinkpad X220 Tablet at least)
3065 * LP3 usage can cause vblank interrupts to be lost.
3066 * The DEIIR bit will go high but it looks like the CPU
3067 * never gets interrupted.
3068 *
3069 * It's not clear whether other interrupt source could
3070 * be affected or if this is somehow limited to vblank
3071 * interrupts only. To play it safe we disable LP3
3072 * watermarks entirely.
3073 */
3074 if (dev_priv->wm.pri_latency[3] == 0 &&
3075 dev_priv->wm.spr_latency[3] == 0 &&
3076 dev_priv->wm.cur_latency[3] == 0)
3077 return;
3078
3079 dev_priv->wm.pri_latency[3] = 0;
3080 dev_priv->wm.spr_latency[3] = 0;
3081 dev_priv->wm.cur_latency[3] = 0;
3082
3083 drm_dbg_kms(&dev_priv->drm,
3084 "LP3 watermarks disabled due to potential for lost interrupts\n");
3085 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3086 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3087 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3088 }
3089
ilk_setup_wm_latency(struct drm_i915_private * dev_priv)3090 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3091 {
3092 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3093
3094 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3095 sizeof(dev_priv->wm.pri_latency));
3096 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3097 sizeof(dev_priv->wm.pri_latency));
3098
3099 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3100 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3101
3102 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3103 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3104 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3105
3106 if (IS_GEN(dev_priv, 6)) {
3107 snb_wm_latency_quirk(dev_priv);
3108 snb_wm_lp3_irq_quirk(dev_priv);
3109 }
3110 }
3111
skl_setup_wm_latency(struct drm_i915_private * dev_priv)3112 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3113 {
3114 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3115 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3116 }
3117
ilk_validate_pipe_wm(const struct drm_i915_private * dev_priv,struct intel_pipe_wm * pipe_wm)3118 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3119 struct intel_pipe_wm *pipe_wm)
3120 {
3121 /* LP0 watermark maximums depend on this pipe alone */
3122 const struct intel_wm_config config = {
3123 .num_pipes_active = 1,
3124 .sprites_enabled = pipe_wm->sprites_enabled,
3125 .sprites_scaled = pipe_wm->sprites_scaled,
3126 };
3127 struct ilk_wm_maximums max;
3128
3129 /* LP0 watermarks always use 1/2 DDB partitioning */
3130 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3131
3132 /* At least LP0 must be valid */
3133 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3134 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3135 return false;
3136 }
3137
3138 return true;
3139 }
3140
3141 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_crtc_state * crtc_state)3142 static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3143 {
3144 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3145 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3146 struct intel_pipe_wm *pipe_wm;
3147 struct intel_plane *plane;
3148 const struct intel_plane_state *plane_state;
3149 const struct intel_plane_state *pristate = NULL;
3150 const struct intel_plane_state *sprstate = NULL;
3151 const struct intel_plane_state *curstate = NULL;
3152 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3153 struct ilk_wm_maximums max;
3154
3155 pipe_wm = &crtc_state->wm.ilk.optimal;
3156
3157 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3158 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3159 pristate = plane_state;
3160 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3161 sprstate = plane_state;
3162 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3163 curstate = plane_state;
3164 }
3165
3166 pipe_wm->pipe_enabled = crtc_state->hw.active;
3167 if (sprstate) {
3168 pipe_wm->sprites_enabled = sprstate->uapi.visible;
3169 pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3170 (drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3171 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3172 }
3173
3174 usable_level = max_level;
3175
3176 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3177 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3178 usable_level = 1;
3179
3180 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3181 if (pipe_wm->sprites_scaled)
3182 usable_level = 0;
3183
3184 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3185 ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3186 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3187
3188 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3189 return -EINVAL;
3190
3191 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3192
3193 for (level = 1; level <= usable_level; level++) {
3194 struct intel_wm_level *wm = &pipe_wm->wm[level];
3195
3196 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3197 pristate, sprstate, curstate, wm);
3198
3199 /*
3200 * Disable any watermark level that exceeds the
3201 * register maximums since such watermarks are
3202 * always invalid.
3203 */
3204 if (!ilk_validate_wm_level(level, &max, wm)) {
3205 memset(wm, 0, sizeof(*wm));
3206 break;
3207 }
3208 }
3209
3210 return 0;
3211 }
3212
3213 /*
3214 * Build a set of 'intermediate' watermark values that satisfy both the old
3215 * state and the new state. These can be programmed to the hardware
3216 * immediately.
3217 */
ilk_compute_intermediate_wm(struct intel_crtc_state * newstate)3218 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3219 {
3220 struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3221 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3222 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3223 struct intel_atomic_state *intel_state =
3224 to_intel_atomic_state(newstate->uapi.state);
3225 const struct intel_crtc_state *oldstate =
3226 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3227 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3228 int level, max_level = ilk_wm_max_level(dev_priv);
3229
3230 /*
3231 * Start with the final, target watermarks, then combine with the
3232 * currently active watermarks to get values that are safe both before
3233 * and after the vblank.
3234 */
3235 *a = newstate->wm.ilk.optimal;
3236 if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3237 intel_state->skip_intermediate_wm)
3238 return 0;
3239
3240 a->pipe_enabled |= b->pipe_enabled;
3241 a->sprites_enabled |= b->sprites_enabled;
3242 a->sprites_scaled |= b->sprites_scaled;
3243
3244 for (level = 0; level <= max_level; level++) {
3245 struct intel_wm_level *a_wm = &a->wm[level];
3246 const struct intel_wm_level *b_wm = &b->wm[level];
3247
3248 a_wm->enable &= b_wm->enable;
3249 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3250 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3251 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3252 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3253 }
3254
3255 /*
3256 * We need to make sure that these merged watermark values are
3257 * actually a valid configuration themselves. If they're not,
3258 * there's no safe way to transition from the old state to
3259 * the new state, so we need to fail the atomic transaction.
3260 */
3261 if (!ilk_validate_pipe_wm(dev_priv, a))
3262 return -EINVAL;
3263
3264 /*
3265 * If our intermediate WM are identical to the final WM, then we can
3266 * omit the post-vblank programming; only update if it's different.
3267 */
3268 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3269 newstate->wm.need_postvbl_update = true;
3270
3271 return 0;
3272 }
3273
3274 /*
3275 * Merge the watermarks from all active pipes for a specific level.
3276 */
ilk_merge_wm_level(struct drm_i915_private * dev_priv,int level,struct intel_wm_level * ret_wm)3277 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3278 int level,
3279 struct intel_wm_level *ret_wm)
3280 {
3281 const struct intel_crtc *intel_crtc;
3282
3283 ret_wm->enable = true;
3284
3285 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3286 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3287 const struct intel_wm_level *wm = &active->wm[level];
3288
3289 if (!active->pipe_enabled)
3290 continue;
3291
3292 /*
3293 * The watermark values may have been used in the past,
3294 * so we must maintain them in the registers for some
3295 * time even if the level is now disabled.
3296 */
3297 if (!wm->enable)
3298 ret_wm->enable = false;
3299
3300 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3301 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3302 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3303 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3304 }
3305 }
3306
3307 /*
3308 * Merge all low power watermarks for all active pipes.
3309 */
ilk_wm_merge(struct drm_i915_private * dev_priv,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)3310 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3311 const struct intel_wm_config *config,
3312 const struct ilk_wm_maximums *max,
3313 struct intel_pipe_wm *merged)
3314 {
3315 int level, max_level = ilk_wm_max_level(dev_priv);
3316 int last_enabled_level = max_level;
3317
3318 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3319 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3320 config->num_pipes_active > 1)
3321 last_enabled_level = 0;
3322
3323 /* ILK: FBC WM must be disabled always */
3324 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3325
3326 /* merge each WM1+ level */
3327 for (level = 1; level <= max_level; level++) {
3328 struct intel_wm_level *wm = &merged->wm[level];
3329
3330 ilk_merge_wm_level(dev_priv, level, wm);
3331
3332 if (level > last_enabled_level)
3333 wm->enable = false;
3334 else if (!ilk_validate_wm_level(level, max, wm))
3335 /* make sure all following levels get disabled */
3336 last_enabled_level = level - 1;
3337
3338 /*
3339 * The spec says it is preferred to disable
3340 * FBC WMs instead of disabling a WM level.
3341 */
3342 if (wm->fbc_val > max->fbc) {
3343 if (wm->enable)
3344 merged->fbc_wm_enabled = false;
3345 wm->fbc_val = 0;
3346 }
3347 }
3348
3349 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3350 /*
3351 * FIXME this is racy. FBC might get enabled later.
3352 * What we should check here is whether FBC can be
3353 * enabled sometime later.
3354 */
3355 if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3356 intel_fbc_is_active(dev_priv)) {
3357 for (level = 2; level <= max_level; level++) {
3358 struct intel_wm_level *wm = &merged->wm[level];
3359
3360 wm->enable = false;
3361 }
3362 }
3363 }
3364
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)3365 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3366 {
3367 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3368 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3369 }
3370
3371 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_i915_private * dev_priv,int level)3372 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3373 int level)
3374 {
3375 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3376 return 2 * level;
3377 else
3378 return dev_priv->wm.pri_latency[level];
3379 }
3380
ilk_compute_wm_results(struct drm_i915_private * dev_priv,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)3381 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3382 const struct intel_pipe_wm *merged,
3383 enum intel_ddb_partitioning partitioning,
3384 struct ilk_wm_values *results)
3385 {
3386 struct intel_crtc *intel_crtc;
3387 int level, wm_lp;
3388
3389 results->enable_fbc_wm = merged->fbc_wm_enabled;
3390 results->partitioning = partitioning;
3391
3392 /* LP1+ register values */
3393 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3394 const struct intel_wm_level *r;
3395
3396 level = ilk_wm_lp_to_level(wm_lp, merged);
3397
3398 r = &merged->wm[level];
3399
3400 /*
3401 * Maintain the watermark values even if the level is
3402 * disabled. Doing otherwise could cause underruns.
3403 */
3404 results->wm_lp[wm_lp - 1] =
3405 (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3406 (r->pri_val << WM1_LP_SR_SHIFT) |
3407 r->cur_val;
3408
3409 if (r->enable)
3410 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3411
3412 if (INTEL_GEN(dev_priv) >= 8)
3413 results->wm_lp[wm_lp - 1] |=
3414 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3415 else
3416 results->wm_lp[wm_lp - 1] |=
3417 r->fbc_val << WM1_LP_FBC_SHIFT;
3418
3419 /*
3420 * Always set WM1S_LP_EN when spr_val != 0, even if the
3421 * level is disabled. Doing otherwise could cause underruns.
3422 */
3423 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3424 drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3425 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3426 } else
3427 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3428 }
3429
3430 /* LP0 register values */
3431 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3432 enum pipe pipe = intel_crtc->pipe;
3433 const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
3434 const struct intel_wm_level *r = &pipe_wm->wm[0];
3435
3436 if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3437 continue;
3438
3439 results->wm_pipe[pipe] =
3440 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3441 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3442 r->cur_val;
3443 }
3444 }
3445
3446 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3447 * case both are at the same level. Prefer r1 in case they're the same. */
3448 static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private * dev_priv,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)3449 ilk_find_best_result(struct drm_i915_private *dev_priv,
3450 struct intel_pipe_wm *r1,
3451 struct intel_pipe_wm *r2)
3452 {
3453 int level, max_level = ilk_wm_max_level(dev_priv);
3454 int level1 = 0, level2 = 0;
3455
3456 for (level = 1; level <= max_level; level++) {
3457 if (r1->wm[level].enable)
3458 level1 = level;
3459 if (r2->wm[level].enable)
3460 level2 = level;
3461 }
3462
3463 if (level1 == level2) {
3464 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3465 return r2;
3466 else
3467 return r1;
3468 } else if (level1 > level2) {
3469 return r1;
3470 } else {
3471 return r2;
3472 }
3473 }
3474
3475 /* dirty bits used to track which watermarks need changes */
3476 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3477 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3478 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3479 #define WM_DIRTY_FBC (1 << 24)
3480 #define WM_DIRTY_DDB (1 << 25)
3481
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)3482 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3483 const struct ilk_wm_values *old,
3484 const struct ilk_wm_values *new)
3485 {
3486 unsigned int dirty = 0;
3487 enum pipe pipe;
3488 int wm_lp;
3489
3490 for_each_pipe(dev_priv, pipe) {
3491 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3492 dirty |= WM_DIRTY_PIPE(pipe);
3493 /* Must disable LP1+ watermarks too */
3494 dirty |= WM_DIRTY_LP_ALL;
3495 }
3496 }
3497
3498 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3499 dirty |= WM_DIRTY_FBC;
3500 /* Must disable LP1+ watermarks too */
3501 dirty |= WM_DIRTY_LP_ALL;
3502 }
3503
3504 if (old->partitioning != new->partitioning) {
3505 dirty |= WM_DIRTY_DDB;
3506 /* Must disable LP1+ watermarks too */
3507 dirty |= WM_DIRTY_LP_ALL;
3508 }
3509
3510 /* LP1+ watermarks already deemed dirty, no need to continue */
3511 if (dirty & WM_DIRTY_LP_ALL)
3512 return dirty;
3513
3514 /* Find the lowest numbered LP1+ watermark in need of an update... */
3515 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3516 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3517 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3518 break;
3519 }
3520
3521 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3522 for (; wm_lp <= 3; wm_lp++)
3523 dirty |= WM_DIRTY_LP(wm_lp);
3524
3525 return dirty;
3526 }
3527
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)3528 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3529 unsigned int dirty)
3530 {
3531 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3532 bool changed = false;
3533
3534 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3535 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3536 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3537 changed = true;
3538 }
3539 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3540 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3541 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3542 changed = true;
3543 }
3544 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3545 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3546 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3547 changed = true;
3548 }
3549
3550 /*
3551 * Don't touch WM1S_LP_EN here.
3552 * Doing so could cause underruns.
3553 */
3554
3555 return changed;
3556 }
3557
3558 /*
3559 * The spec says we shouldn't write when we don't need, because every write
3560 * causes WMs to be re-evaluated, expending some power.
3561 */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)3562 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3563 struct ilk_wm_values *results)
3564 {
3565 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3566 unsigned int dirty;
3567 u32 val;
3568
3569 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3570 if (!dirty)
3571 return;
3572
3573 _ilk_disable_lp_wm(dev_priv, dirty);
3574
3575 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3576 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3577 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3578 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3579 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3580 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3581
3582 if (dirty & WM_DIRTY_DDB) {
3583 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3584 val = I915_READ(WM_MISC);
3585 if (results->partitioning == INTEL_DDB_PART_1_2)
3586 val &= ~WM_MISC_DATA_PARTITION_5_6;
3587 else
3588 val |= WM_MISC_DATA_PARTITION_5_6;
3589 I915_WRITE(WM_MISC, val);
3590 } else {
3591 val = I915_READ(DISP_ARB_CTL2);
3592 if (results->partitioning == INTEL_DDB_PART_1_2)
3593 val &= ~DISP_DATA_PARTITION_5_6;
3594 else
3595 val |= DISP_DATA_PARTITION_5_6;
3596 I915_WRITE(DISP_ARB_CTL2, val);
3597 }
3598 }
3599
3600 if (dirty & WM_DIRTY_FBC) {
3601 val = I915_READ(DISP_ARB_CTL);
3602 if (results->enable_fbc_wm)
3603 val &= ~DISP_FBC_WM_DIS;
3604 else
3605 val |= DISP_FBC_WM_DIS;
3606 I915_WRITE(DISP_ARB_CTL, val);
3607 }
3608
3609 if (dirty & WM_DIRTY_LP(1) &&
3610 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3611 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3612
3613 if (INTEL_GEN(dev_priv) >= 7) {
3614 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3615 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3616 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3617 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3618 }
3619
3620 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3621 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3622 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3623 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3624 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3625 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3626
3627 dev_priv->wm.hw = *results;
3628 }
3629
ilk_disable_lp_wm(struct drm_i915_private * dev_priv)3630 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3631 {
3632 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3633 }
3634
intel_enabled_dbuf_slices_mask(struct drm_i915_private * dev_priv)3635 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3636 {
3637 int i;
3638 int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3639 u8 enabled_slices_mask = 0;
3640
3641 for (i = 0; i < max_slices; i++) {
3642 if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
3643 enabled_slices_mask |= BIT(i);
3644 }
3645
3646 return enabled_slices_mask;
3647 }
3648
3649 /*
3650 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3651 * so assume we'll always need it in order to avoid underruns.
3652 */
skl_needs_memory_bw_wa(struct drm_i915_private * dev_priv)3653 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3654 {
3655 return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3656 }
3657
3658 static bool
intel_has_sagv(struct drm_i915_private * dev_priv)3659 intel_has_sagv(struct drm_i915_private *dev_priv)
3660 {
3661 return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3662 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3663 }
3664
3665 static void
skl_setup_sagv_block_time(struct drm_i915_private * dev_priv)3666 skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3667 {
3668 if (INTEL_GEN(dev_priv) >= 12) {
3669 u32 val = 0;
3670 int ret;
3671
3672 ret = sandybridge_pcode_read(dev_priv,
3673 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3674 &val, NULL);
3675 if (!ret) {
3676 dev_priv->sagv_block_time_us = val;
3677 return;
3678 }
3679
3680 drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3681 } else if (IS_GEN(dev_priv, 11)) {
3682 dev_priv->sagv_block_time_us = 10;
3683 return;
3684 } else if (IS_GEN(dev_priv, 10)) {
3685 dev_priv->sagv_block_time_us = 20;
3686 return;
3687 } else if (IS_GEN(dev_priv, 9)) {
3688 dev_priv->sagv_block_time_us = 30;
3689 return;
3690 } else {
3691 MISSING_CASE(INTEL_GEN(dev_priv));
3692 }
3693
3694 /* Default to an unusable block time */
3695 dev_priv->sagv_block_time_us = -1;
3696 }
3697
3698 /*
3699 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3700 * depending on power and performance requirements. The display engine access
3701 * to system memory is blocked during the adjustment time. Because of the
3702 * blocking time, having this enabled can cause full system hangs and/or pipe
3703 * underruns if we don't meet all of the following requirements:
3704 *
3705 * - <= 1 pipe enabled
3706 * - All planes can enable watermarks for latencies >= SAGV engine block time
3707 * - We're not using an interlaced display configuration
3708 */
3709 int
intel_enable_sagv(struct drm_i915_private * dev_priv)3710 intel_enable_sagv(struct drm_i915_private *dev_priv)
3711 {
3712 int ret;
3713
3714 if (!intel_has_sagv(dev_priv))
3715 return 0;
3716
3717 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3718 return 0;
3719
3720 drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3721 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3722 GEN9_SAGV_ENABLE);
3723
3724 /* We don't need to wait for SAGV when enabling */
3725
3726 /*
3727 * Some skl systems, pre-release machines in particular,
3728 * don't actually have SAGV.
3729 */
3730 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3731 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3732 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3733 return 0;
3734 } else if (ret < 0) {
3735 drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3736 return ret;
3737 }
3738
3739 dev_priv->sagv_status = I915_SAGV_ENABLED;
3740 return 0;
3741 }
3742
3743 int
intel_disable_sagv(struct drm_i915_private * dev_priv)3744 intel_disable_sagv(struct drm_i915_private *dev_priv)
3745 {
3746 int ret;
3747
3748 if (!intel_has_sagv(dev_priv))
3749 return 0;
3750
3751 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3752 return 0;
3753
3754 drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3755 /* bspec says to keep retrying for at least 1 ms */
3756 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3757 GEN9_SAGV_DISABLE,
3758 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3759 1);
3760 /*
3761 * Some skl systems, pre-release machines in particular,
3762 * don't actually have SAGV.
3763 */
3764 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3765 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3766 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3767 return 0;
3768 } else if (ret < 0) {
3769 drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3770 return ret;
3771 }
3772
3773 dev_priv->sagv_status = I915_SAGV_DISABLED;
3774 return 0;
3775 }
3776
intel_sagv_pre_plane_update(struct intel_atomic_state * state)3777 void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
3778 {
3779 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3780 const struct intel_bw_state *new_bw_state;
3781 const struct intel_bw_state *old_bw_state;
3782 u32 new_mask = 0;
3783
3784 /*
3785 * Just return if we can't control SAGV or don't have it.
3786 * This is different from situation when we have SAGV but just can't
3787 * afford it due to DBuf limitation - in case if SAGV is completely
3788 * disabled in a BIOS, we are not even allowed to send a PCode request,
3789 * as it will throw an error. So have to check it here.
3790 */
3791 if (!intel_has_sagv(dev_priv))
3792 return;
3793
3794 new_bw_state = intel_atomic_get_new_bw_state(state);
3795 if (!new_bw_state)
3796 return;
3797
3798 if (INTEL_GEN(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3799 intel_disable_sagv(dev_priv);
3800 return;
3801 }
3802
3803 old_bw_state = intel_atomic_get_old_bw_state(state);
3804 /*
3805 * Nothing to mask
3806 */
3807 if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3808 return;
3809
3810 new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
3811
3812 /*
3813 * If new mask is zero - means there is nothing to mask,
3814 * we can only unmask, which should be done in unmask.
3815 */
3816 if (!new_mask)
3817 return;
3818
3819 /*
3820 * Restrict required qgv points before updating the configuration.
3821 * According to BSpec we can't mask and unmask qgv points at the same
3822 * time. Also masking should be done before updating the configuration
3823 * and unmasking afterwards.
3824 */
3825 icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3826 }
3827
intel_sagv_post_plane_update(struct intel_atomic_state * state)3828 void intel_sagv_post_plane_update(struct intel_atomic_state *state)
3829 {
3830 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3831 const struct intel_bw_state *new_bw_state;
3832 const struct intel_bw_state *old_bw_state;
3833 u32 new_mask = 0;
3834
3835 /*
3836 * Just return if we can't control SAGV or don't have it.
3837 * This is different from situation when we have SAGV but just can't
3838 * afford it due to DBuf limitation - in case if SAGV is completely
3839 * disabled in a BIOS, we are not even allowed to send a PCode request,
3840 * as it will throw an error. So have to check it here.
3841 */
3842 if (!intel_has_sagv(dev_priv))
3843 return;
3844
3845 new_bw_state = intel_atomic_get_new_bw_state(state);
3846 if (!new_bw_state)
3847 return;
3848
3849 if (INTEL_GEN(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3850 intel_enable_sagv(dev_priv);
3851 return;
3852 }
3853
3854 old_bw_state = intel_atomic_get_old_bw_state(state);
3855 /*
3856 * Nothing to unmask
3857 */
3858 if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3859 return;
3860
3861 new_mask = new_bw_state->qgv_points_mask;
3862
3863 /*
3864 * Allow required qgv points after updating the configuration.
3865 * According to BSpec we can't mask and unmask qgv points at the same
3866 * time. Also masking should be done before updating the configuration
3867 * and unmasking afterwards.
3868 */
3869 icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3870 }
3871
skl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3872 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3873 {
3874 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3875 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3876 struct intel_plane *plane;
3877 const struct intel_plane_state *plane_state;
3878 int level, latency;
3879
3880 if (!intel_has_sagv(dev_priv))
3881 return false;
3882
3883 if (!crtc_state->hw.active)
3884 return true;
3885
3886 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3887 return false;
3888
3889 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3890 const struct skl_plane_wm *wm =
3891 &crtc_state->wm.skl.optimal.planes[plane->id];
3892
3893 /* Skip this plane if it's not enabled */
3894 if (!wm->wm[0].plane_en)
3895 continue;
3896
3897 /* Find the highest enabled wm level for this plane */
3898 for (level = ilk_wm_max_level(dev_priv);
3899 !wm->wm[level].plane_en; --level)
3900 { }
3901
3902 latency = dev_priv->wm.skl_latency[level];
3903
3904 if (skl_needs_memory_bw_wa(dev_priv) &&
3905 plane_state->uapi.fb->modifier ==
3906 I915_FORMAT_MOD_X_TILED)
3907 latency += 15;
3908
3909 /*
3910 * If any of the planes on this pipe don't enable wm levels that
3911 * incur memory latencies higher than sagv_block_time_us we
3912 * can't enable SAGV.
3913 */
3914 if (latency < dev_priv->sagv_block_time_us)
3915 return false;
3916 }
3917
3918 return true;
3919 }
3920
tgl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3921 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3922 {
3923 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3924 enum plane_id plane_id;
3925
3926 if (!crtc_state->hw.active)
3927 return true;
3928
3929 for_each_plane_id_on_crtc(crtc, plane_id) {
3930 const struct skl_ddb_entry *plane_alloc =
3931 &crtc_state->wm.skl.plane_ddb_y[plane_id];
3932 const struct skl_plane_wm *wm =
3933 &crtc_state->wm.skl.optimal.planes[plane_id];
3934
3935 if (skl_ddb_entry_size(plane_alloc) < wm->sagv_wm0.min_ddb_alloc)
3936 return false;
3937 }
3938
3939 return true;
3940 }
3941
intel_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3942 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3943 {
3944 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3945 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3946
3947 if (INTEL_GEN(dev_priv) >= 12)
3948 return tgl_crtc_can_enable_sagv(crtc_state);
3949 else
3950 return skl_crtc_can_enable_sagv(crtc_state);
3951 }
3952
intel_can_enable_sagv(struct drm_i915_private * dev_priv,const struct intel_bw_state * bw_state)3953 bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
3954 const struct intel_bw_state *bw_state)
3955 {
3956 if (INTEL_GEN(dev_priv) < 11 &&
3957 bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3958 return false;
3959
3960 return bw_state->pipe_sagv_reject == 0;
3961 }
3962
intel_compute_sagv_mask(struct intel_atomic_state * state)3963 static int intel_compute_sagv_mask(struct intel_atomic_state *state)
3964 {
3965 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3966 int ret;
3967 struct intel_crtc *crtc;
3968 struct intel_crtc_state *new_crtc_state;
3969 struct intel_bw_state *new_bw_state = NULL;
3970 const struct intel_bw_state *old_bw_state = NULL;
3971 int i;
3972
3973 for_each_new_intel_crtc_in_state(state, crtc,
3974 new_crtc_state, i) {
3975 new_bw_state = intel_atomic_get_bw_state(state);
3976 if (IS_ERR(new_bw_state))
3977 return PTR_ERR(new_bw_state);
3978
3979 old_bw_state = intel_atomic_get_old_bw_state(state);
3980
3981 if (intel_crtc_can_enable_sagv(new_crtc_state))
3982 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
3983 else
3984 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
3985 }
3986
3987 if (!new_bw_state)
3988 return 0;
3989
3990 new_bw_state->active_pipes =
3991 intel_calc_active_pipes(state, old_bw_state->active_pipes);
3992
3993 if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
3994 ret = intel_atomic_lock_global_state(&new_bw_state->base);
3995 if (ret)
3996 return ret;
3997 }
3998
3999 if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
4000 intel_can_enable_sagv(dev_priv, old_bw_state)) {
4001 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
4002 if (ret)
4003 return ret;
4004 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
4005 ret = intel_atomic_lock_global_state(&new_bw_state->base);
4006 if (ret)
4007 return ret;
4008 }
4009
4010 for_each_new_intel_crtc_in_state(state, crtc,
4011 new_crtc_state, i) {
4012 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
4013
4014 /*
4015 * We store use_sagv_wm in the crtc state rather than relying on
4016 * that bw state since we have no convenient way to get at the
4017 * latter from the plane commit hooks (especially in the legacy
4018 * cursor case)
4019 */
4020 pipe_wm->use_sagv_wm = INTEL_GEN(dev_priv) >= 12 &&
4021 intel_can_enable_sagv(dev_priv, new_bw_state);
4022 }
4023
4024 return 0;
4025 }
4026
4027 /*
4028 * Calculate initial DBuf slice offset, based on slice size
4029 * and mask(i.e if slice size is 1024 and second slice is enabled
4030 * offset would be 1024)
4031 */
4032 static unsigned int
icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,u32 slice_size,u32 ddb_size)4033 icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
4034 u32 slice_size,
4035 u32 ddb_size)
4036 {
4037 unsigned int offset = 0;
4038
4039 if (!dbuf_slice_mask)
4040 return 0;
4041
4042 offset = (ffs(dbuf_slice_mask) - 1) * slice_size;
4043
4044 WARN_ON(offset >= ddb_size);
4045 return offset;
4046 }
4047
intel_get_ddb_size(struct drm_i915_private * dev_priv)4048 u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
4049 {
4050 u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
4051 drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
4052
4053 if (INTEL_GEN(dev_priv) < 11)
4054 return ddb_size - 4; /* 4 blocks for bypass path allocation */
4055
4056 return ddb_size;
4057 }
4058
skl_ddb_dbuf_slice_mask(struct drm_i915_private * dev_priv,const struct skl_ddb_entry * entry)4059 u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
4060 const struct skl_ddb_entry *entry)
4061 {
4062 u32 slice_mask = 0;
4063 u16 ddb_size = intel_get_ddb_size(dev_priv);
4064 u16 num_supported_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
4065 u16 slice_size = ddb_size / num_supported_slices;
4066 u16 start_slice;
4067 u16 end_slice;
4068
4069 if (!skl_ddb_entry_size(entry))
4070 return 0;
4071
4072 start_slice = entry->start / slice_size;
4073 end_slice = (entry->end - 1) / slice_size;
4074
4075 /*
4076 * Per plane DDB entry can in a really worst case be on multiple slices
4077 * but single entry is anyway contigious.
4078 */
4079 while (start_slice <= end_slice) {
4080 slice_mask |= BIT(start_slice);
4081 start_slice++;
4082 }
4083
4084 return slice_mask;
4085 }
4086
4087 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4088 u8 active_pipes);
4089
4090 static int
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state,const u64 total_data_rate,struct skl_ddb_entry * alloc,int * num_active)4091 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
4092 const struct intel_crtc_state *crtc_state,
4093 const u64 total_data_rate,
4094 struct skl_ddb_entry *alloc, /* out */
4095 int *num_active /* out */)
4096 {
4097 struct drm_atomic_state *state = crtc_state->uapi.state;
4098 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4099 struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
4100 const struct intel_crtc *crtc;
4101 u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
4102 enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
4103 struct intel_dbuf_state *new_dbuf_state =
4104 intel_atomic_get_new_dbuf_state(intel_state);
4105 const struct intel_dbuf_state *old_dbuf_state =
4106 intel_atomic_get_old_dbuf_state(intel_state);
4107 u8 active_pipes = new_dbuf_state->active_pipes;
4108 u16 ddb_size;
4109 u32 ddb_range_size;
4110 u32 i;
4111 u32 dbuf_slice_mask;
4112 u32 offset;
4113 u32 slice_size;
4114 u32 total_slice_mask;
4115 u32 start, end;
4116 int ret;
4117
4118 *num_active = hweight8(active_pipes);
4119
4120 if (!crtc_state->hw.active) {
4121 alloc->start = 0;
4122 alloc->end = 0;
4123 return 0;
4124 }
4125
4126 ddb_size = intel_get_ddb_size(dev_priv);
4127
4128 slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
4129
4130 /*
4131 * If the state doesn't change the active CRTC's or there is no
4132 * modeset request, then there's no need to recalculate;
4133 * the existing pipe allocation limits should remain unchanged.
4134 * Note that we're safe from racing commits since any racing commit
4135 * that changes the active CRTC list or do modeset would need to
4136 * grab _all_ crtc locks, including the one we currently hold.
4137 */
4138 if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes &&
4139 !dev_priv->wm.distrust_bios_wm) {
4140 /*
4141 * alloc may be cleared by clear_intel_crtc_state,
4142 * copy from old state to be sure
4143 *
4144 * FIXME get rid of this mess
4145 */
4146 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
4147 return 0;
4148 }
4149
4150 /*
4151 * Get allowed DBuf slices for correspondent pipe and platform.
4152 */
4153 dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);
4154
4155 /*
4156 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
4157 * and slice size is 1024, the offset would be 1024
4158 */
4159 offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
4160 slice_size, ddb_size);
4161
4162 /*
4163 * Figure out total size of allowed DBuf slices, which is basically
4164 * a number of allowed slices for that pipe multiplied by slice size.
4165 * Inside of this
4166 * range ddb entries are still allocated in proportion to display width.
4167 */
4168 ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;
4169
4170 /*
4171 * Watermark/ddb requirement highly depends upon width of the
4172 * framebuffer, So instead of allocating DDB equally among pipes
4173 * distribute DDB based on resolution/width of the display.
4174 */
4175 total_slice_mask = dbuf_slice_mask;
4176 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
4177 const struct drm_display_mode *adjusted_mode =
4178 &crtc_state->hw.adjusted_mode;
4179 enum pipe pipe = crtc->pipe;
4180 int hdisplay, vdisplay;
4181 u32 pipe_dbuf_slice_mask;
4182
4183 if (!crtc_state->hw.active)
4184 continue;
4185
4186 pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
4187 active_pipes);
4188
4189 /*
4190 * According to BSpec pipe can share one dbuf slice with another
4191 * pipes or pipe can use multiple dbufs, in both cases we
4192 * account for other pipes only if they have exactly same mask.
4193 * However we need to account how many slices we should enable
4194 * in total.
4195 */
4196 total_slice_mask |= pipe_dbuf_slice_mask;
4197
4198 /*
4199 * Do not account pipes using other slice sets
4200 * luckily as of current BSpec slice sets do not partially
4201 * intersect(pipes share either same one slice or same slice set
4202 * i.e no partial intersection), so it is enough to check for
4203 * equality for now.
4204 */
4205 if (dbuf_slice_mask != pipe_dbuf_slice_mask)
4206 continue;
4207
4208 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
4209
4210 total_width_in_range += hdisplay;
4211
4212 if (pipe < for_pipe)
4213 width_before_pipe_in_range += hdisplay;
4214 else if (pipe == for_pipe)
4215 pipe_width = hdisplay;
4216 }
4217
4218 /*
4219 * FIXME: For now we always enable slice S1 as per
4220 * the Bspec display initialization sequence.
4221 */
4222 new_dbuf_state->enabled_slices = total_slice_mask | BIT(DBUF_S1);
4223
4224 if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
4225 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
4226 if (ret)
4227 return ret;
4228 }
4229
4230 start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
4231 end = ddb_range_size *
4232 (width_before_pipe_in_range + pipe_width) / total_width_in_range;
4233
4234 alloc->start = offset + start;
4235 alloc->end = offset + end;
4236
4237 drm_dbg_kms(&dev_priv->drm,
4238 "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x\n",
4239 for_crtc->base.id, for_crtc->name,
4240 dbuf_slice_mask, alloc->start, alloc->end, active_pipes);
4241
4242 return 0;
4243 }
4244
4245 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4246 int width, const struct drm_format_info *format,
4247 u64 modifier, unsigned int rotation,
4248 u32 plane_pixel_rate, struct skl_wm_params *wp,
4249 int color_plane);
4250 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4251 int level,
4252 unsigned int latency,
4253 const struct skl_wm_params *wp,
4254 const struct skl_wm_level *result_prev,
4255 struct skl_wm_level *result /* out */);
4256
4257 static unsigned int
skl_cursor_allocation(const struct intel_crtc_state * crtc_state,int num_active)4258 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4259 int num_active)
4260 {
4261 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4262 int level, max_level = ilk_wm_max_level(dev_priv);
4263 struct skl_wm_level wm = {};
4264 int ret, min_ddb_alloc = 0;
4265 struct skl_wm_params wp;
4266
4267 ret = skl_compute_wm_params(crtc_state, 256,
4268 drm_format_info(DRM_FORMAT_ARGB8888),
4269 DRM_FORMAT_MOD_LINEAR,
4270 DRM_MODE_ROTATE_0,
4271 crtc_state->pixel_rate, &wp, 0);
4272 drm_WARN_ON(&dev_priv->drm, ret);
4273
4274 for (level = 0; level <= max_level; level++) {
4275 unsigned int latency = dev_priv->wm.skl_latency[level];
4276
4277 skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4278 if (wm.min_ddb_alloc == U16_MAX)
4279 break;
4280
4281 min_ddb_alloc = wm.min_ddb_alloc;
4282 }
4283
4284 return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4285 }
4286
skl_ddb_entry_init_from_hw(struct drm_i915_private * dev_priv,struct skl_ddb_entry * entry,u32 reg)4287 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4288 struct skl_ddb_entry *entry, u32 reg)
4289 {
4290
4291 entry->start = reg & DDB_ENTRY_MASK;
4292 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4293
4294 if (entry->end)
4295 entry->end += 1;
4296 }
4297
4298 static void
skl_ddb_get_hw_plane_state(struct drm_i915_private * dev_priv,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_entry * ddb_y,struct skl_ddb_entry * ddb_uv)4299 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4300 const enum pipe pipe,
4301 const enum plane_id plane_id,
4302 struct skl_ddb_entry *ddb_y,
4303 struct skl_ddb_entry *ddb_uv)
4304 {
4305 u32 val, val2;
4306 u32 fourcc = 0;
4307
4308 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
4309 if (plane_id == PLANE_CURSOR) {
4310 val = I915_READ(CUR_BUF_CFG(pipe));
4311 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4312 return;
4313 }
4314
4315 val = I915_READ(PLANE_CTL(pipe, plane_id));
4316
4317 /* No DDB allocated for disabled planes */
4318 if (val & PLANE_CTL_ENABLE)
4319 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4320 val & PLANE_CTL_ORDER_RGBX,
4321 val & PLANE_CTL_ALPHA_MASK);
4322
4323 if (INTEL_GEN(dev_priv) >= 11) {
4324 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4325 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4326 } else {
4327 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4328 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4329
4330 if (fourcc &&
4331 drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4332 swap(val, val2);
4333
4334 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4335 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4336 }
4337 }
4338
skl_pipe_ddb_get_hw_state(struct intel_crtc * crtc,struct skl_ddb_entry * ddb_y,struct skl_ddb_entry * ddb_uv)4339 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4340 struct skl_ddb_entry *ddb_y,
4341 struct skl_ddb_entry *ddb_uv)
4342 {
4343 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4344 enum intel_display_power_domain power_domain;
4345 enum pipe pipe = crtc->pipe;
4346 intel_wakeref_t wakeref;
4347 enum plane_id plane_id;
4348
4349 power_domain = POWER_DOMAIN_PIPE(pipe);
4350 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4351 if (!wakeref)
4352 return;
4353
4354 for_each_plane_id_on_crtc(crtc, plane_id)
4355 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4356 plane_id,
4357 &ddb_y[plane_id],
4358 &ddb_uv[plane_id]);
4359
4360 intel_display_power_put(dev_priv, power_domain, wakeref);
4361 }
4362
4363 /*
4364 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4365 * The bspec defines downscale amount as:
4366 *
4367 * """
4368 * Horizontal down scale amount = maximum[1, Horizontal source size /
4369 * Horizontal destination size]
4370 * Vertical down scale amount = maximum[1, Vertical source size /
4371 * Vertical destination size]
4372 * Total down scale amount = Horizontal down scale amount *
4373 * Vertical down scale amount
4374 * """
4375 *
4376 * Return value is provided in 16.16 fixed point form to retain fractional part.
4377 * Caller should take care of dividing & rounding off the value.
4378 */
4379 static uint_fixed_16_16_t
skl_plane_downscale_amount(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4380 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4381 const struct intel_plane_state *plane_state)
4382 {
4383 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4384 u32 src_w, src_h, dst_w, dst_h;
4385 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4386 uint_fixed_16_16_t downscale_h, downscale_w;
4387
4388 if (drm_WARN_ON(&dev_priv->drm,
4389 !intel_wm_plane_visible(crtc_state, plane_state)))
4390 return u32_to_fixed16(0);
4391
4392 /*
4393 * Src coordinates are already rotated by 270 degrees for
4394 * the 90/270 degree plane rotation cases (to match the
4395 * GTT mapping), hence no need to account for rotation here.
4396 *
4397 * n.b., src is 16.16 fixed point, dst is whole integer.
4398 */
4399 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4400 src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4401 dst_w = drm_rect_width(&plane_state->uapi.dst);
4402 dst_h = drm_rect_height(&plane_state->uapi.dst);
4403
4404 fp_w_ratio = div_fixed16(src_w, dst_w);
4405 fp_h_ratio = div_fixed16(src_h, dst_h);
4406 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4407 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4408
4409 return mul_fixed16(downscale_w, downscale_h);
4410 }
4411
4412 struct dbuf_slice_conf_entry {
4413 u8 active_pipes;
4414 u8 dbuf_mask[I915_MAX_PIPES];
4415 };
4416
4417 /*
4418 * Table taken from Bspec 12716
4419 * Pipes do have some preferred DBuf slice affinity,
4420 * plus there are some hardcoded requirements on how
4421 * those should be distributed for multipipe scenarios.
4422 * For more DBuf slices algorithm can get even more messy
4423 * and less readable, so decided to use a table almost
4424 * as is from BSpec itself - that way it is at least easier
4425 * to compare, change and check.
4426 */
4427 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4428 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4429 {
4430 {
4431 .active_pipes = BIT(PIPE_A),
4432 .dbuf_mask = {
4433 [PIPE_A] = BIT(DBUF_S1),
4434 },
4435 },
4436 {
4437 .active_pipes = BIT(PIPE_B),
4438 .dbuf_mask = {
4439 [PIPE_B] = BIT(DBUF_S1),
4440 },
4441 },
4442 {
4443 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4444 .dbuf_mask = {
4445 [PIPE_A] = BIT(DBUF_S1),
4446 [PIPE_B] = BIT(DBUF_S2),
4447 },
4448 },
4449 {
4450 .active_pipes = BIT(PIPE_C),
4451 .dbuf_mask = {
4452 [PIPE_C] = BIT(DBUF_S2),
4453 },
4454 },
4455 {
4456 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4457 .dbuf_mask = {
4458 [PIPE_A] = BIT(DBUF_S1),
4459 [PIPE_C] = BIT(DBUF_S2),
4460 },
4461 },
4462 {
4463 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4464 .dbuf_mask = {
4465 [PIPE_B] = BIT(DBUF_S1),
4466 [PIPE_C] = BIT(DBUF_S2),
4467 },
4468 },
4469 {
4470 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4471 .dbuf_mask = {
4472 [PIPE_A] = BIT(DBUF_S1),
4473 [PIPE_B] = BIT(DBUF_S1),
4474 [PIPE_C] = BIT(DBUF_S2),
4475 },
4476 },
4477 {}
4478 };
4479
4480 /*
4481 * Table taken from Bspec 49255
4482 * Pipes do have some preferred DBuf slice affinity,
4483 * plus there are some hardcoded requirements on how
4484 * those should be distributed for multipipe scenarios.
4485 * For more DBuf slices algorithm can get even more messy
4486 * and less readable, so decided to use a table almost
4487 * as is from BSpec itself - that way it is at least easier
4488 * to compare, change and check.
4489 */
4490 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4491 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4492 {
4493 {
4494 .active_pipes = BIT(PIPE_A),
4495 .dbuf_mask = {
4496 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4497 },
4498 },
4499 {
4500 .active_pipes = BIT(PIPE_B),
4501 .dbuf_mask = {
4502 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4503 },
4504 },
4505 {
4506 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4507 .dbuf_mask = {
4508 [PIPE_A] = BIT(DBUF_S2),
4509 [PIPE_B] = BIT(DBUF_S1),
4510 },
4511 },
4512 {
4513 .active_pipes = BIT(PIPE_C),
4514 .dbuf_mask = {
4515 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4516 },
4517 },
4518 {
4519 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4520 .dbuf_mask = {
4521 [PIPE_A] = BIT(DBUF_S1),
4522 [PIPE_C] = BIT(DBUF_S2),
4523 },
4524 },
4525 {
4526 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4527 .dbuf_mask = {
4528 [PIPE_B] = BIT(DBUF_S1),
4529 [PIPE_C] = BIT(DBUF_S2),
4530 },
4531 },
4532 {
4533 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4534 .dbuf_mask = {
4535 [PIPE_A] = BIT(DBUF_S1),
4536 [PIPE_B] = BIT(DBUF_S1),
4537 [PIPE_C] = BIT(DBUF_S2),
4538 },
4539 },
4540 {
4541 .active_pipes = BIT(PIPE_D),
4542 .dbuf_mask = {
4543 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4544 },
4545 },
4546 {
4547 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4548 .dbuf_mask = {
4549 [PIPE_A] = BIT(DBUF_S1),
4550 [PIPE_D] = BIT(DBUF_S2),
4551 },
4552 },
4553 {
4554 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4555 .dbuf_mask = {
4556 [PIPE_B] = BIT(DBUF_S1),
4557 [PIPE_D] = BIT(DBUF_S2),
4558 },
4559 },
4560 {
4561 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4562 .dbuf_mask = {
4563 [PIPE_A] = BIT(DBUF_S1),
4564 [PIPE_B] = BIT(DBUF_S1),
4565 [PIPE_D] = BIT(DBUF_S2),
4566 },
4567 },
4568 {
4569 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4570 .dbuf_mask = {
4571 [PIPE_C] = BIT(DBUF_S1),
4572 [PIPE_D] = BIT(DBUF_S2),
4573 },
4574 },
4575 {
4576 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4577 .dbuf_mask = {
4578 [PIPE_A] = BIT(DBUF_S1),
4579 [PIPE_C] = BIT(DBUF_S2),
4580 [PIPE_D] = BIT(DBUF_S2),
4581 },
4582 },
4583 {
4584 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4585 .dbuf_mask = {
4586 [PIPE_B] = BIT(DBUF_S1),
4587 [PIPE_C] = BIT(DBUF_S2),
4588 [PIPE_D] = BIT(DBUF_S2),
4589 },
4590 },
4591 {
4592 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4593 .dbuf_mask = {
4594 [PIPE_A] = BIT(DBUF_S1),
4595 [PIPE_B] = BIT(DBUF_S1),
4596 [PIPE_C] = BIT(DBUF_S2),
4597 [PIPE_D] = BIT(DBUF_S2),
4598 },
4599 },
4600 {}
4601 };
4602
compute_dbuf_slices(enum pipe pipe,u8 active_pipes,const struct dbuf_slice_conf_entry * dbuf_slices)4603 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
4604 const struct dbuf_slice_conf_entry *dbuf_slices)
4605 {
4606 int i;
4607
4608 for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4609 if (dbuf_slices[i].active_pipes == active_pipes)
4610 return dbuf_slices[i].dbuf_mask[pipe];
4611 }
4612 return 0;
4613 }
4614
4615 /*
4616 * This function finds an entry with same enabled pipe configuration and
4617 * returns correspondent DBuf slice mask as stated in BSpec for particular
4618 * platform.
4619 */
icl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes)4620 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4621 {
4622 /*
4623 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4624 * required calculating "pipe ratio" in order to determine
4625 * if one or two slices can be used for single pipe configurations
4626 * as additional constraint to the existing table.
4627 * However based on recent info, it should be not "pipe ratio"
4628 * but rather ratio between pixel_rate and cdclk with additional
4629 * constants, so for now we are using only table until this is
4630 * clarified. Also this is the reason why crtc_state param is
4631 * still here - we will need it once those additional constraints
4632 * pop up.
4633 */
4634 return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4635 }
4636
tgl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes)4637 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4638 {
4639 return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4640 }
4641
skl_compute_dbuf_slices(const struct intel_crtc_state * crtc_state,u8 active_pipes)4642 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4643 u8 active_pipes)
4644 {
4645 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4646 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4647 enum pipe pipe = crtc->pipe;
4648
4649 if (IS_GEN(dev_priv, 12))
4650 return tgl_compute_dbuf_slices(pipe, active_pipes);
4651 else if (IS_GEN(dev_priv, 11))
4652 return icl_compute_dbuf_slices(pipe, active_pipes);
4653 /*
4654 * For anything else just return one slice yet.
4655 * Should be extended for other platforms.
4656 */
4657 return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4658 }
4659
4660 static u64
skl_plane_relative_data_rate(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int color_plane)4661 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4662 const struct intel_plane_state *plane_state,
4663 int color_plane)
4664 {
4665 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4666 const struct drm_framebuffer *fb = plane_state->hw.fb;
4667 u32 data_rate;
4668 u32 width = 0, height = 0;
4669 uint_fixed_16_16_t down_scale_amount;
4670 u64 rate;
4671
4672 if (!plane_state->uapi.visible)
4673 return 0;
4674
4675 if (plane->id == PLANE_CURSOR)
4676 return 0;
4677
4678 if (color_plane == 1 &&
4679 !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4680 return 0;
4681
4682 /*
4683 * Src coordinates are already rotated by 270 degrees for
4684 * the 90/270 degree plane rotation cases (to match the
4685 * GTT mapping), hence no need to account for rotation here.
4686 */
4687 width = drm_rect_width(&plane_state->uapi.src) >> 16;
4688 height = drm_rect_height(&plane_state->uapi.src) >> 16;
4689
4690 /* UV plane does 1/2 pixel sub-sampling */
4691 if (color_plane == 1) {
4692 width /= 2;
4693 height /= 2;
4694 }
4695
4696 data_rate = width * height;
4697
4698 down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4699
4700 rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4701
4702 rate *= fb->format->cpp[color_plane];
4703 return rate;
4704 }
4705
4706 static u64
skl_get_total_relative_data_rate(struct intel_crtc_state * crtc_state,u64 * plane_data_rate,u64 * uv_plane_data_rate)4707 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4708 u64 *plane_data_rate,
4709 u64 *uv_plane_data_rate)
4710 {
4711 struct intel_plane *plane;
4712 const struct intel_plane_state *plane_state;
4713 u64 total_data_rate = 0;
4714
4715 /* Calculate and cache data rate for each plane */
4716 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4717 enum plane_id plane_id = plane->id;
4718 u64 rate;
4719
4720 /* packed/y */
4721 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4722 plane_data_rate[plane_id] = rate;
4723 total_data_rate += rate;
4724
4725 /* uv-plane */
4726 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4727 uv_plane_data_rate[plane_id] = rate;
4728 total_data_rate += rate;
4729 }
4730
4731 return total_data_rate;
4732 }
4733
4734 static u64
icl_get_total_relative_data_rate(struct intel_crtc_state * crtc_state,u64 * plane_data_rate)4735 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4736 u64 *plane_data_rate)
4737 {
4738 struct intel_plane *plane;
4739 const struct intel_plane_state *plane_state;
4740 u64 total_data_rate = 0;
4741
4742 /* Calculate and cache data rate for each plane */
4743 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4744 enum plane_id plane_id = plane->id;
4745 u64 rate;
4746
4747 if (!plane_state->planar_linked_plane) {
4748 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4749 plane_data_rate[plane_id] = rate;
4750 total_data_rate += rate;
4751 } else {
4752 enum plane_id y_plane_id;
4753
4754 /*
4755 * The slave plane might not iterate in
4756 * intel_atomic_crtc_state_for_each_plane_state(),
4757 * and needs the master plane state which may be
4758 * NULL if we try get_new_plane_state(), so we
4759 * always calculate from the master.
4760 */
4761 if (plane_state->planar_slave)
4762 continue;
4763
4764 /* Y plane rate is calculated on the slave */
4765 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4766 y_plane_id = plane_state->planar_linked_plane->id;
4767 plane_data_rate[y_plane_id] = rate;
4768 total_data_rate += rate;
4769
4770 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4771 plane_data_rate[plane_id] = rate;
4772 total_data_rate += rate;
4773 }
4774 }
4775
4776 return total_data_rate;
4777 }
4778
4779 static const struct skl_wm_level *
skl_plane_wm_level(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)4780 skl_plane_wm_level(const struct intel_crtc_state *crtc_state,
4781 enum plane_id plane_id,
4782 int level)
4783 {
4784 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
4785 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
4786
4787 if (level == 0 && pipe_wm->use_sagv_wm)
4788 return &wm->sagv_wm0;
4789
4790 return &wm->wm[level];
4791 }
4792
4793 static int
skl_allocate_pipe_ddb(struct intel_crtc_state * crtc_state)4794 skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4795 {
4796 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4797 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4798 struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4799 u16 alloc_size, start = 0;
4800 u16 total[I915_MAX_PLANES] = {};
4801 u16 uv_total[I915_MAX_PLANES] = {};
4802 u64 total_data_rate;
4803 enum plane_id plane_id;
4804 int num_active;
4805 u64 plane_data_rate[I915_MAX_PLANES] = {};
4806 u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4807 u32 blocks;
4808 int level;
4809 int ret;
4810
4811 /* Clear the partitioning for disabled planes. */
4812 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4813 memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4814
4815 if (!crtc_state->hw.active) {
4816 struct intel_atomic_state *state =
4817 to_intel_atomic_state(crtc_state->uapi.state);
4818 struct intel_dbuf_state *new_dbuf_state =
4819 intel_atomic_get_new_dbuf_state(state);
4820 const struct intel_dbuf_state *old_dbuf_state =
4821 intel_atomic_get_old_dbuf_state(state);
4822
4823 /*
4824 * FIXME hack to make sure we compute this sensibly when
4825 * turning off all the pipes. Otherwise we leave it at
4826 * whatever we had previously, and then runtime PM will
4827 * mess it up by turning off all but S1. Remove this
4828 * once the dbuf state computation flow becomes sane.
4829 */
4830 if (new_dbuf_state->active_pipes == 0) {
4831 new_dbuf_state->enabled_slices = BIT(DBUF_S1);
4832
4833 if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
4834 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
4835 if (ret)
4836 return ret;
4837 }
4838 }
4839
4840 alloc->start = alloc->end = 0;
4841 return 0;
4842 }
4843
4844 if (INTEL_GEN(dev_priv) >= 11)
4845 total_data_rate =
4846 icl_get_total_relative_data_rate(crtc_state,
4847 plane_data_rate);
4848 else
4849 total_data_rate =
4850 skl_get_total_relative_data_rate(crtc_state,
4851 plane_data_rate,
4852 uv_plane_data_rate);
4853
4854 ret = skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state,
4855 total_data_rate,
4856 alloc, &num_active);
4857 if (ret)
4858 return ret;
4859
4860 alloc_size = skl_ddb_entry_size(alloc);
4861 if (alloc_size == 0)
4862 return 0;
4863
4864 /* Allocate fixed number of blocks for cursor. */
4865 total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4866 alloc_size -= total[PLANE_CURSOR];
4867 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4868 alloc->end - total[PLANE_CURSOR];
4869 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4870
4871 if (total_data_rate == 0)
4872 return 0;
4873
4874 /*
4875 * Find the highest watermark level for which we can satisfy the block
4876 * requirement of active planes.
4877 */
4878 for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4879 blocks = 0;
4880 for_each_plane_id_on_crtc(crtc, plane_id) {
4881 const struct skl_plane_wm *wm =
4882 &crtc_state->wm.skl.optimal.planes[plane_id];
4883
4884 if (plane_id == PLANE_CURSOR) {
4885 if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4886 drm_WARN_ON(&dev_priv->drm,
4887 wm->wm[level].min_ddb_alloc != U16_MAX);
4888 blocks = U32_MAX;
4889 break;
4890 }
4891 continue;
4892 }
4893
4894 blocks += wm->wm[level].min_ddb_alloc;
4895 blocks += wm->uv_wm[level].min_ddb_alloc;
4896 }
4897
4898 if (blocks <= alloc_size) {
4899 alloc_size -= blocks;
4900 break;
4901 }
4902 }
4903
4904 if (level < 0) {
4905 drm_dbg_kms(&dev_priv->drm,
4906 "Requested display configuration exceeds system DDB limitations");
4907 drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
4908 blocks, alloc_size);
4909 return -EINVAL;
4910 }
4911
4912 /*
4913 * Grant each plane the blocks it requires at the highest achievable
4914 * watermark level, plus an extra share of the leftover blocks
4915 * proportional to its relative data rate.
4916 */
4917 for_each_plane_id_on_crtc(crtc, plane_id) {
4918 const struct skl_plane_wm *wm =
4919 &crtc_state->wm.skl.optimal.planes[plane_id];
4920 u64 rate;
4921 u16 extra;
4922
4923 if (plane_id == PLANE_CURSOR)
4924 continue;
4925
4926 /*
4927 * We've accounted for all active planes; remaining planes are
4928 * all disabled.
4929 */
4930 if (total_data_rate == 0)
4931 break;
4932
4933 rate = plane_data_rate[plane_id];
4934 extra = min_t(u16, alloc_size,
4935 DIV64_U64_ROUND_UP(alloc_size * rate,
4936 total_data_rate));
4937 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4938 alloc_size -= extra;
4939 total_data_rate -= rate;
4940
4941 if (total_data_rate == 0)
4942 break;
4943
4944 rate = uv_plane_data_rate[plane_id];
4945 extra = min_t(u16, alloc_size,
4946 DIV64_U64_ROUND_UP(alloc_size * rate,
4947 total_data_rate));
4948 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4949 alloc_size -= extra;
4950 total_data_rate -= rate;
4951 }
4952 drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4953
4954 /* Set the actual DDB start/end points for each plane */
4955 start = alloc->start;
4956 for_each_plane_id_on_crtc(crtc, plane_id) {
4957 struct skl_ddb_entry *plane_alloc =
4958 &crtc_state->wm.skl.plane_ddb_y[plane_id];
4959 struct skl_ddb_entry *uv_plane_alloc =
4960 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
4961
4962 if (plane_id == PLANE_CURSOR)
4963 continue;
4964
4965 /* Gen11+ uses a separate plane for UV watermarks */
4966 drm_WARN_ON(&dev_priv->drm,
4967 INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4968
4969 /* Leave disabled planes at (0,0) */
4970 if (total[plane_id]) {
4971 plane_alloc->start = start;
4972 start += total[plane_id];
4973 plane_alloc->end = start;
4974 }
4975
4976 if (uv_total[plane_id]) {
4977 uv_plane_alloc->start = start;
4978 start += uv_total[plane_id];
4979 uv_plane_alloc->end = start;
4980 }
4981 }
4982
4983 /*
4984 * When we calculated watermark values we didn't know how high
4985 * of a level we'd actually be able to hit, so we just marked
4986 * all levels as "enabled." Go back now and disable the ones
4987 * that aren't actually possible.
4988 */
4989 for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4990 for_each_plane_id_on_crtc(crtc, plane_id) {
4991 struct skl_plane_wm *wm =
4992 &crtc_state->wm.skl.optimal.planes[plane_id];
4993
4994 /*
4995 * We only disable the watermarks for each plane if
4996 * they exceed the ddb allocation of said plane. This
4997 * is done so that we don't end up touching cursor
4998 * watermarks needlessly when some other plane reduces
4999 * our max possible watermark level.
5000 *
5001 * Bspec has this to say about the PLANE_WM enable bit:
5002 * "All the watermarks at this level for all enabled
5003 * planes must be enabled before the level will be used."
5004 * So this is actually safe to do.
5005 */
5006 if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
5007 wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
5008 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
5009
5010 /*
5011 * Wa_1408961008:icl, ehl
5012 * Underruns with WM1+ disabled
5013 */
5014 if (IS_GEN(dev_priv, 11) &&
5015 level == 1 && wm->wm[0].plane_en) {
5016 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
5017 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
5018 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
5019 }
5020 }
5021 }
5022
5023 /*
5024 * Go back and disable the transition watermark if it turns out we
5025 * don't have enough DDB blocks for it.
5026 */
5027 for_each_plane_id_on_crtc(crtc, plane_id) {
5028 struct skl_plane_wm *wm =
5029 &crtc_state->wm.skl.optimal.planes[plane_id];
5030
5031 if (wm->trans_wm.plane_res_b >= total[plane_id])
5032 memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
5033 }
5034
5035 return 0;
5036 }
5037
5038 /*
5039 * The max latency should be 257 (max the punit can code is 255 and we add 2us
5040 * for the read latency) and cpp should always be <= 8, so that
5041 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
5042 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
5043 */
5044 static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private * dev_priv,u32 pixel_rate,u8 cpp,u32 latency,u32 dbuf_block_size)5045 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
5046 u8 cpp, u32 latency, u32 dbuf_block_size)
5047 {
5048 u32 wm_intermediate_val;
5049 uint_fixed_16_16_t ret;
5050
5051 if (latency == 0)
5052 return FP_16_16_MAX;
5053
5054 wm_intermediate_val = latency * pixel_rate * cpp;
5055 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
5056
5057 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5058 ret = add_fixed16_u32(ret, 1);
5059
5060 return ret;
5061 }
5062
5063 static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate,u32 pipe_htotal,u32 latency,uint_fixed_16_16_t plane_blocks_per_line)5064 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
5065 uint_fixed_16_16_t plane_blocks_per_line)
5066 {
5067 u32 wm_intermediate_val;
5068 uint_fixed_16_16_t ret;
5069
5070 if (latency == 0)
5071 return FP_16_16_MAX;
5072
5073 wm_intermediate_val = latency * pixel_rate;
5074 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
5075 pipe_htotal * 1000);
5076 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5077 return ret;
5078 }
5079
5080 static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state * crtc_state)5081 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5082 {
5083 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5084 u32 pixel_rate;
5085 u32 crtc_htotal;
5086 uint_fixed_16_16_t linetime_us;
5087
5088 if (!crtc_state->hw.active)
5089 return u32_to_fixed16(0);
5090
5091 pixel_rate = crtc_state->pixel_rate;
5092
5093 if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5094 return u32_to_fixed16(0);
5095
5096 crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
5097 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5098
5099 return linetime_us;
5100 }
5101
5102 static u32
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5103 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
5104 const struct intel_plane_state *plane_state)
5105 {
5106 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5107 u64 adjusted_pixel_rate;
5108 uint_fixed_16_16_t downscale_amount;
5109
5110 /* Shouldn't reach here on disabled planes... */
5111 if (drm_WARN_ON(&dev_priv->drm,
5112 !intel_wm_plane_visible(crtc_state, plane_state)))
5113 return 0;
5114
5115 /*
5116 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
5117 * with additional adjustments for plane-specific scaling.
5118 */
5119 adjusted_pixel_rate = crtc_state->pixel_rate;
5120 downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
5121
5122 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
5123 downscale_amount);
5124 }
5125
5126 static int
skl_compute_wm_params(const struct intel_crtc_state * crtc_state,int width,const struct drm_format_info * format,u64 modifier,unsigned int rotation,u32 plane_pixel_rate,struct skl_wm_params * wp,int color_plane)5127 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
5128 int width, const struct drm_format_info *format,
5129 u64 modifier, unsigned int rotation,
5130 u32 plane_pixel_rate, struct skl_wm_params *wp,
5131 int color_plane)
5132 {
5133 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5134 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5135 u32 interm_pbpl;
5136
5137 /* only planar format has two planes */
5138 if (color_plane == 1 &&
5139 !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5140 drm_dbg_kms(&dev_priv->drm,
5141 "Non planar format have single plane\n");
5142 return -EINVAL;
5143 }
5144
5145 wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
5146 modifier == I915_FORMAT_MOD_Yf_TILED ||
5147 modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5148 modifier == I915_FORMAT_MOD_Yf_TILED_CCS ||
5149 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
5150 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
5151 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
5152 wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5153 modifier == I915_FORMAT_MOD_Yf_TILED_CCS ||
5154 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
5155 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
5156 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5157
5158 wp->width = width;
5159 if (color_plane == 1 && wp->is_planar)
5160 wp->width /= 2;
5161
5162 wp->cpp = format->cpp[color_plane];
5163 wp->plane_pixel_rate = plane_pixel_rate;
5164
5165 if (INTEL_GEN(dev_priv) >= 11 &&
5166 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
5167 wp->dbuf_block_size = 256;
5168 else
5169 wp->dbuf_block_size = 512;
5170
5171 if (drm_rotation_90_or_270(rotation)) {
5172 switch (wp->cpp) {
5173 case 1:
5174 wp->y_min_scanlines = 16;
5175 break;
5176 case 2:
5177 wp->y_min_scanlines = 8;
5178 break;
5179 case 4:
5180 wp->y_min_scanlines = 4;
5181 break;
5182 default:
5183 MISSING_CASE(wp->cpp);
5184 return -EINVAL;
5185 }
5186 } else {
5187 wp->y_min_scanlines = 4;
5188 }
5189
5190 if (skl_needs_memory_bw_wa(dev_priv))
5191 wp->y_min_scanlines *= 2;
5192
5193 wp->plane_bytes_per_line = wp->width * wp->cpp;
5194 if (wp->y_tiled) {
5195 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5196 wp->y_min_scanlines,
5197 wp->dbuf_block_size);
5198
5199 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5200 interm_pbpl++;
5201
5202 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
5203 wp->y_min_scanlines);
5204 } else {
5205 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5206 wp->dbuf_block_size);
5207
5208 if (!wp->x_tiled ||
5209 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5210 interm_pbpl++;
5211
5212 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5213 }
5214
5215 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
5216 wp->plane_blocks_per_line);
5217
5218 wp->linetime_us = fixed16_to_u32_round_up(
5219 intel_get_linetime_us(crtc_state));
5220
5221 return 0;
5222 }
5223
5224 static int
skl_compute_plane_wm_params(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct skl_wm_params * wp,int color_plane)5225 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
5226 const struct intel_plane_state *plane_state,
5227 struct skl_wm_params *wp, int color_plane)
5228 {
5229 const struct drm_framebuffer *fb = plane_state->hw.fb;
5230 int width;
5231
5232 /*
5233 * Src coordinates are already rotated by 270 degrees for
5234 * the 90/270 degree plane rotation cases (to match the
5235 * GTT mapping), hence no need to account for rotation here.
5236 */
5237 width = drm_rect_width(&plane_state->uapi.src) >> 16;
5238
5239 return skl_compute_wm_params(crtc_state, width,
5240 fb->format, fb->modifier,
5241 plane_state->hw.rotation,
5242 skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
5243 wp, color_plane);
5244 }
5245
skl_wm_has_lines(struct drm_i915_private * dev_priv,int level)5246 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
5247 {
5248 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5249 return true;
5250
5251 /* The number of lines are ignored for the level 0 watermark. */
5252 return level > 0;
5253 }
5254
skl_compute_plane_wm(const struct intel_crtc_state * crtc_state,int level,unsigned int latency,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)5255 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5256 int level,
5257 unsigned int latency,
5258 const struct skl_wm_params *wp,
5259 const struct skl_wm_level *result_prev,
5260 struct skl_wm_level *result /* out */)
5261 {
5262 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5263 uint_fixed_16_16_t method1, method2;
5264 uint_fixed_16_16_t selected_result;
5265 u32 res_blocks, res_lines, min_ddb_alloc = 0;
5266
5267 if (latency == 0) {
5268 /* reject it */
5269 result->min_ddb_alloc = U16_MAX;
5270 return;
5271 }
5272
5273 /*
5274 * WaIncreaseLatencyIPCEnabled: kbl,cfl
5275 * Display WA #1141: kbl,cfl
5276 */
5277 if ((IS_KABYLAKE(dev_priv) ||
5278 IS_COFFEELAKE(dev_priv) ||
5279 IS_COMETLAKE(dev_priv)) &&
5280 dev_priv->ipc_enabled)
5281 latency += 4;
5282
5283 if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5284 latency += 15;
5285
5286 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5287 wp->cpp, latency, wp->dbuf_block_size);
5288 method2 = skl_wm_method2(wp->plane_pixel_rate,
5289 crtc_state->hw.adjusted_mode.crtc_htotal,
5290 latency,
5291 wp->plane_blocks_per_line);
5292
5293 if (wp->y_tiled) {
5294 selected_result = max_fixed16(method2, wp->y_tile_minimum);
5295 } else {
5296 if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5297 wp->dbuf_block_size < 1) &&
5298 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5299 selected_result = method2;
5300 } else if (latency >= wp->linetime_us) {
5301 if (IS_GEN(dev_priv, 9) &&
5302 !IS_GEMINILAKE(dev_priv))
5303 selected_result = min_fixed16(method1, method2);
5304 else
5305 selected_result = method2;
5306 } else {
5307 selected_result = method1;
5308 }
5309 }
5310
5311 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5312 res_lines = div_round_up_fixed16(selected_result,
5313 wp->plane_blocks_per_line);
5314
5315 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
5316 /* Display WA #1125: skl,bxt,kbl */
5317 if (level == 0 && wp->rc_surface)
5318 res_blocks +=
5319 fixed16_to_u32_round_up(wp->y_tile_minimum);
5320
5321 /* Display WA #1126: skl,bxt,kbl */
5322 if (level >= 1 && level <= 7) {
5323 if (wp->y_tiled) {
5324 res_blocks +=
5325 fixed16_to_u32_round_up(wp->y_tile_minimum);
5326 res_lines += wp->y_min_scanlines;
5327 } else {
5328 res_blocks++;
5329 }
5330
5331 /*
5332 * Make sure result blocks for higher latency levels are
5333 * atleast as high as level below the current level.
5334 * Assumption in DDB algorithm optimization for special
5335 * cases. Also covers Display WA #1125 for RC.
5336 */
5337 if (result_prev->plane_res_b > res_blocks)
5338 res_blocks = result_prev->plane_res_b;
5339 }
5340 }
5341
5342 if (INTEL_GEN(dev_priv) >= 11) {
5343 if (wp->y_tiled) {
5344 int extra_lines;
5345
5346 if (res_lines % wp->y_min_scanlines == 0)
5347 extra_lines = wp->y_min_scanlines;
5348 else
5349 extra_lines = wp->y_min_scanlines * 2 -
5350 res_lines % wp->y_min_scanlines;
5351
5352 min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
5353 wp->plane_blocks_per_line);
5354 } else {
5355 min_ddb_alloc = res_blocks +
5356 DIV_ROUND_UP(res_blocks, 10);
5357 }
5358 }
5359
5360 if (!skl_wm_has_lines(dev_priv, level))
5361 res_lines = 0;
5362
5363 if (res_lines > 31) {
5364 /* reject it */
5365 result->min_ddb_alloc = U16_MAX;
5366 return;
5367 }
5368
5369 /*
5370 * If res_lines is valid, assume we can use this watermark level
5371 * for now. We'll come back and disable it after we calculate the
5372 * DDB allocation if it turns out we don't actually have enough
5373 * blocks to satisfy it.
5374 */
5375 result->plane_res_b = res_blocks;
5376 result->plane_res_l = res_lines;
5377 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5378 result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5379 result->plane_en = true;
5380 }
5381
5382 static void
skl_compute_wm_levels(const struct intel_crtc_state * crtc_state,const struct skl_wm_params * wm_params,struct skl_wm_level * levels)5383 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5384 const struct skl_wm_params *wm_params,
5385 struct skl_wm_level *levels)
5386 {
5387 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5388 int level, max_level = ilk_wm_max_level(dev_priv);
5389 struct skl_wm_level *result_prev = &levels[0];
5390
5391 for (level = 0; level <= max_level; level++) {
5392 struct skl_wm_level *result = &levels[level];
5393 unsigned int latency = dev_priv->wm.skl_latency[level];
5394
5395 skl_compute_plane_wm(crtc_state, level, latency,
5396 wm_params, result_prev, result);
5397
5398 result_prev = result;
5399 }
5400 }
5401
tgl_compute_sagv_wm(const struct intel_crtc_state * crtc_state,const struct skl_wm_params * wm_params,struct skl_plane_wm * plane_wm)5402 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
5403 const struct skl_wm_params *wm_params,
5404 struct skl_plane_wm *plane_wm)
5405 {
5406 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5407 struct skl_wm_level *sagv_wm = &plane_wm->sagv_wm0;
5408 struct skl_wm_level *levels = plane_wm->wm;
5409 unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;
5410
5411 skl_compute_plane_wm(crtc_state, 0, latency,
5412 wm_params, &levels[0],
5413 sagv_wm);
5414 }
5415
skl_compute_transition_wm(const struct intel_crtc_state * crtc_state,const struct skl_wm_params * wp,struct skl_plane_wm * wm)5416 static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5417 const struct skl_wm_params *wp,
5418 struct skl_plane_wm *wm)
5419 {
5420 struct drm_device *dev = crtc_state->uapi.crtc->dev;
5421 const struct drm_i915_private *dev_priv = to_i915(dev);
5422 u16 trans_min, trans_amount, trans_y_tile_min;
5423 u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5424
5425 /* Transition WM don't make any sense if ipc is disabled */
5426 if (!dev_priv->ipc_enabled)
5427 return;
5428
5429 /*
5430 * WaDisableTWM:skl,kbl,cfl,bxt
5431 * Transition WM are not recommended by HW team for GEN9
5432 */
5433 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
5434 return;
5435
5436 if (INTEL_GEN(dev_priv) >= 11)
5437 trans_min = 4;
5438 else
5439 trans_min = 14;
5440
5441 /* Display WA #1140: glk,cnl */
5442 if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
5443 trans_amount = 0;
5444 else
5445 trans_amount = 10; /* This is configurable amount */
5446
5447 trans_offset_b = trans_min + trans_amount;
5448
5449 /*
5450 * The spec asks for Selected Result Blocks for wm0 (the real value),
5451 * not Result Blocks (the integer value). Pay attention to the capital
5452 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
5453 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5454 * and since we later will have to get the ceiling of the sum in the
5455 * transition watermarks calculation, we can just pretend Selected
5456 * Result Blocks is Result Blocks minus 1 and it should work for the
5457 * current platforms.
5458 */
5459 wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5460
5461 if (wp->y_tiled) {
5462 trans_y_tile_min =
5463 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5464 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5465 trans_offset_b;
5466 } else {
5467 res_blocks = wm0_sel_res_b + trans_offset_b;
5468 }
5469
5470 /*
5471 * Just assume we can enable the transition watermark. After
5472 * computing the DDB we'll come back and disable it if that
5473 * assumption turns out to be false.
5474 */
5475 wm->trans_wm.plane_res_b = res_blocks + 1;
5476 wm->trans_wm.plane_en = true;
5477 }
5478
skl_build_plane_wm_single(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,enum plane_id plane_id,int color_plane)5479 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5480 const struct intel_plane_state *plane_state,
5481 enum plane_id plane_id, int color_plane)
5482 {
5483 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5484 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5485 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5486 struct skl_wm_params wm_params;
5487 int ret;
5488
5489 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5490 &wm_params, color_plane);
5491 if (ret)
5492 return ret;
5493
5494 skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5495
5496 if (INTEL_GEN(dev_priv) >= 12)
5497 tgl_compute_sagv_wm(crtc_state, &wm_params, wm);
5498
5499 skl_compute_transition_wm(crtc_state, &wm_params, wm);
5500
5501 return 0;
5502 }
5503
skl_build_plane_wm_uv(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,enum plane_id plane_id)5504 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5505 const struct intel_plane_state *plane_state,
5506 enum plane_id plane_id)
5507 {
5508 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5509 struct skl_wm_params wm_params;
5510 int ret;
5511
5512 wm->is_planar = true;
5513
5514 /* uv plane watermarks must also be validated for NV12/Planar */
5515 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5516 &wm_params, 1);
5517 if (ret)
5518 return ret;
5519
5520 skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5521
5522 return 0;
5523 }
5524
skl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5525 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5526 const struct intel_plane_state *plane_state)
5527 {
5528 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5529 const struct drm_framebuffer *fb = plane_state->hw.fb;
5530 enum plane_id plane_id = plane->id;
5531 int ret;
5532
5533 if (!intel_wm_plane_visible(crtc_state, plane_state))
5534 return 0;
5535
5536 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5537 plane_id, 0);
5538 if (ret)
5539 return ret;
5540
5541 if (fb->format->is_yuv && fb->format->num_planes > 1) {
5542 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5543 plane_id);
5544 if (ret)
5545 return ret;
5546 }
5547
5548 return 0;
5549 }
5550
icl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5551 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5552 const struct intel_plane_state *plane_state)
5553 {
5554 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5555 enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5556 int ret;
5557
5558 /* Watermarks calculated in master */
5559 if (plane_state->planar_slave)
5560 return 0;
5561
5562 if (plane_state->planar_linked_plane) {
5563 const struct drm_framebuffer *fb = plane_state->hw.fb;
5564 enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5565
5566 drm_WARN_ON(&dev_priv->drm,
5567 !intel_wm_plane_visible(crtc_state, plane_state));
5568 drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
5569 fb->format->num_planes == 1);
5570
5571 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5572 y_plane_id, 0);
5573 if (ret)
5574 return ret;
5575
5576 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5577 plane_id, 1);
5578 if (ret)
5579 return ret;
5580 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5581 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5582 plane_id, 0);
5583 if (ret)
5584 return ret;
5585 }
5586
5587 return 0;
5588 }
5589
skl_build_pipe_wm(struct intel_crtc_state * crtc_state)5590 static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5591 {
5592 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5593 struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5594 struct intel_plane *plane;
5595 const struct intel_plane_state *plane_state;
5596 int ret;
5597
5598 /*
5599 * We'll only calculate watermarks for planes that are actually
5600 * enabled, so make sure all other planes are set as disabled.
5601 */
5602 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5603
5604 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
5605 crtc_state) {
5606
5607 if (INTEL_GEN(dev_priv) >= 11)
5608 ret = icl_build_plane_wm(crtc_state, plane_state);
5609 else
5610 ret = skl_build_plane_wm(crtc_state, plane_state);
5611 if (ret)
5612 return ret;
5613 }
5614
5615 return 0;
5616 }
5617
skl_ddb_entry_write(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_ddb_entry * entry)5618 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5619 i915_reg_t reg,
5620 const struct skl_ddb_entry *entry)
5621 {
5622 if (entry->end)
5623 intel_de_write_fw(dev_priv, reg,
5624 (entry->end - 1) << 16 | entry->start);
5625 else
5626 intel_de_write_fw(dev_priv, reg, 0);
5627 }
5628
skl_write_wm_level(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_wm_level * level)5629 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5630 i915_reg_t reg,
5631 const struct skl_wm_level *level)
5632 {
5633 u32 val = 0;
5634
5635 if (level->plane_en)
5636 val |= PLANE_WM_EN;
5637 if (level->ignore_lines)
5638 val |= PLANE_WM_IGNORE_LINES;
5639 val |= level->plane_res_b;
5640 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5641
5642 intel_de_write_fw(dev_priv, reg, val);
5643 }
5644
skl_write_plane_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5645 void skl_write_plane_wm(struct intel_plane *plane,
5646 const struct intel_crtc_state *crtc_state)
5647 {
5648 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5649 int level, max_level = ilk_wm_max_level(dev_priv);
5650 enum plane_id plane_id = plane->id;
5651 enum pipe pipe = plane->pipe;
5652 const struct skl_plane_wm *wm =
5653 &crtc_state->wm.skl.optimal.planes[plane_id];
5654 const struct skl_ddb_entry *ddb_y =
5655 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5656 const struct skl_ddb_entry *ddb_uv =
5657 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5658
5659 for (level = 0; level <= max_level; level++) {
5660 const struct skl_wm_level *wm_level;
5661
5662 wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
5663
5664 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5665 wm_level);
5666 }
5667 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5668 &wm->trans_wm);
5669
5670 if (INTEL_GEN(dev_priv) >= 11) {
5671 skl_ddb_entry_write(dev_priv,
5672 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5673 return;
5674 }
5675
5676 if (wm->is_planar)
5677 swap(ddb_y, ddb_uv);
5678
5679 skl_ddb_entry_write(dev_priv,
5680 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5681 skl_ddb_entry_write(dev_priv,
5682 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5683 }
5684
skl_write_cursor_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5685 void skl_write_cursor_wm(struct intel_plane *plane,
5686 const struct intel_crtc_state *crtc_state)
5687 {
5688 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5689 int level, max_level = ilk_wm_max_level(dev_priv);
5690 enum plane_id plane_id = plane->id;
5691 enum pipe pipe = plane->pipe;
5692 const struct skl_plane_wm *wm =
5693 &crtc_state->wm.skl.optimal.planes[plane_id];
5694 const struct skl_ddb_entry *ddb =
5695 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5696
5697 for (level = 0; level <= max_level; level++) {
5698 const struct skl_wm_level *wm_level;
5699
5700 wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
5701
5702 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5703 wm_level);
5704 }
5705 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5706
5707 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5708 }
5709
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)5710 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5711 const struct skl_wm_level *l2)
5712 {
5713 return l1->plane_en == l2->plane_en &&
5714 l1->ignore_lines == l2->ignore_lines &&
5715 l1->plane_res_l == l2->plane_res_l &&
5716 l1->plane_res_b == l2->plane_res_b;
5717 }
5718
skl_plane_wm_equals(struct drm_i915_private * dev_priv,const struct skl_plane_wm * wm1,const struct skl_plane_wm * wm2)5719 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5720 const struct skl_plane_wm *wm1,
5721 const struct skl_plane_wm *wm2)
5722 {
5723 int level, max_level = ilk_wm_max_level(dev_priv);
5724
5725 for (level = 0; level <= max_level; level++) {
5726 /*
5727 * We don't check uv_wm as the hardware doesn't actually
5728 * use it. It only gets used for calculating the required
5729 * ddb allocation.
5730 */
5731 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5732 return false;
5733 }
5734
5735 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5736 }
5737
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)5738 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5739 const struct skl_ddb_entry *b)
5740 {
5741 return a->start < b->end && b->start < a->end;
5742 }
5743
skl_ddb_allocation_overlaps(const struct skl_ddb_entry * ddb,const struct skl_ddb_entry * entries,int num_entries,int ignore_idx)5744 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5745 const struct skl_ddb_entry *entries,
5746 int num_entries, int ignore_idx)
5747 {
5748 int i;
5749
5750 for (i = 0; i < num_entries; i++) {
5751 if (i != ignore_idx &&
5752 skl_ddb_entries_overlap(ddb, &entries[i]))
5753 return true;
5754 }
5755
5756 return false;
5757 }
5758
5759 static int
skl_ddb_add_affected_planes(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)5760 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5761 struct intel_crtc_state *new_crtc_state)
5762 {
5763 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
5764 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5765 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5766 struct intel_plane *plane;
5767
5768 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5769 struct intel_plane_state *plane_state;
5770 enum plane_id plane_id = plane->id;
5771
5772 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5773 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5774 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5775 &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5776 continue;
5777
5778 plane_state = intel_atomic_get_plane_state(state, plane);
5779 if (IS_ERR(plane_state))
5780 return PTR_ERR(plane_state);
5781
5782 new_crtc_state->update_planes |= BIT(plane_id);
5783 }
5784
5785 return 0;
5786 }
5787
5788 static int
skl_compute_ddb(struct intel_atomic_state * state)5789 skl_compute_ddb(struct intel_atomic_state *state)
5790 {
5791 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5792 const struct intel_dbuf_state *old_dbuf_state;
5793 const struct intel_dbuf_state *new_dbuf_state;
5794 const struct intel_crtc_state *old_crtc_state;
5795 struct intel_crtc_state *new_crtc_state;
5796 struct intel_crtc *crtc;
5797 int ret, i;
5798
5799 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5800 new_crtc_state, i) {
5801 ret = skl_allocate_pipe_ddb(new_crtc_state);
5802 if (ret)
5803 return ret;
5804
5805 ret = skl_ddb_add_affected_planes(old_crtc_state,
5806 new_crtc_state);
5807 if (ret)
5808 return ret;
5809 }
5810
5811 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
5812 new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
5813
5814 if (new_dbuf_state &&
5815 new_dbuf_state->enabled_slices != old_dbuf_state->enabled_slices)
5816 drm_dbg_kms(&dev_priv->drm,
5817 "Enabled dbuf slices 0x%x -> 0x%x (out of %d dbuf slices)\n",
5818 old_dbuf_state->enabled_slices,
5819 new_dbuf_state->enabled_slices,
5820 INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
5821
5822 return 0;
5823 }
5824
enast(bool enable)5825 static char enast(bool enable)
5826 {
5827 return enable ? '*' : ' ';
5828 }
5829
5830 static void
skl_print_wm_changes(struct intel_atomic_state * state)5831 skl_print_wm_changes(struct intel_atomic_state *state)
5832 {
5833 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5834 const struct intel_crtc_state *old_crtc_state;
5835 const struct intel_crtc_state *new_crtc_state;
5836 struct intel_plane *plane;
5837 struct intel_crtc *crtc;
5838 int i;
5839
5840 if (!drm_debug_enabled(DRM_UT_KMS))
5841 return;
5842
5843 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5844 new_crtc_state, i) {
5845 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5846
5847 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5848 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5849
5850 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5851 enum plane_id plane_id = plane->id;
5852 const struct skl_ddb_entry *old, *new;
5853
5854 old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5855 new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5856
5857 if (skl_ddb_entry_equal(old, new))
5858 continue;
5859
5860 drm_dbg_kms(&dev_priv->drm,
5861 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5862 plane->base.base.id, plane->base.name,
5863 old->start, old->end, new->start, new->end,
5864 skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5865 }
5866
5867 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5868 enum plane_id plane_id = plane->id;
5869 const struct skl_plane_wm *old_wm, *new_wm;
5870
5871 old_wm = &old_pipe_wm->planes[plane_id];
5872 new_wm = &new_pipe_wm->planes[plane_id];
5873
5874 if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5875 continue;
5876
5877 drm_dbg_kms(&dev_priv->drm,
5878 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm"
5879 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm\n",
5880 plane->base.base.id, plane->base.name,
5881 enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5882 enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5883 enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5884 enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5885 enast(old_wm->trans_wm.plane_en),
5886 enast(old_wm->sagv_wm0.plane_en),
5887 enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5888 enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5889 enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5890 enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5891 enast(new_wm->trans_wm.plane_en),
5892 enast(new_wm->sagv_wm0.plane_en));
5893
5894 drm_dbg_kms(&dev_priv->drm,
5895 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5896 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5897 plane->base.base.id, plane->base.name,
5898 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5899 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5900 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5901 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5902 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5903 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5904 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5905 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5906 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5907 enast(old_wm->sagv_wm0.ignore_lines), old_wm->sagv_wm0.plane_res_l,
5908
5909 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5910 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5911 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5912 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5913 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5914 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5915 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5916 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5917 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l,
5918 enast(new_wm->sagv_wm0.ignore_lines), new_wm->sagv_wm0.plane_res_l);
5919
5920 drm_dbg_kms(&dev_priv->drm,
5921 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5922 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5923 plane->base.base.id, plane->base.name,
5924 old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5925 old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5926 old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5927 old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5928 old_wm->trans_wm.plane_res_b,
5929 old_wm->sagv_wm0.plane_res_b,
5930 new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5931 new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5932 new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5933 new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5934 new_wm->trans_wm.plane_res_b,
5935 new_wm->sagv_wm0.plane_res_b);
5936
5937 drm_dbg_kms(&dev_priv->drm,
5938 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5939 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5940 plane->base.base.id, plane->base.name,
5941 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5942 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5943 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5944 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5945 old_wm->trans_wm.min_ddb_alloc,
5946 old_wm->sagv_wm0.min_ddb_alloc,
5947 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5948 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5949 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5950 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5951 new_wm->trans_wm.min_ddb_alloc,
5952 new_wm->sagv_wm0.min_ddb_alloc);
5953 }
5954 }
5955 }
5956
intel_add_affected_pipes(struct intel_atomic_state * state,u8 pipe_mask)5957 static int intel_add_affected_pipes(struct intel_atomic_state *state,
5958 u8 pipe_mask)
5959 {
5960 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5961 struct intel_crtc *crtc;
5962
5963 for_each_intel_crtc(&dev_priv->drm, crtc) {
5964 struct intel_crtc_state *crtc_state;
5965
5966 if ((pipe_mask & BIT(crtc->pipe)) == 0)
5967 continue;
5968
5969 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5970 if (IS_ERR(crtc_state))
5971 return PTR_ERR(crtc_state);
5972 }
5973
5974 return 0;
5975 }
5976
5977 static int
skl_ddb_add_affected_pipes(struct intel_atomic_state * state)5978 skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5979 {
5980 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5981 struct intel_crtc_state *crtc_state;
5982 struct intel_crtc *crtc;
5983 int i, ret;
5984
5985 if (dev_priv->wm.distrust_bios_wm) {
5986 /*
5987 * skl_ddb_get_pipe_allocation_limits() currently requires
5988 * all active pipes to be included in the state so that
5989 * it can redistribute the dbuf among them, and it really
5990 * wants to recompute things when distrust_bios_wm is set
5991 * so we add all the pipes to the state.
5992 */
5993 ret = intel_add_affected_pipes(state, ~0);
5994 if (ret)
5995 return ret;
5996 }
5997
5998 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
5999 struct intel_dbuf_state *new_dbuf_state;
6000 const struct intel_dbuf_state *old_dbuf_state;
6001
6002 new_dbuf_state = intel_atomic_get_dbuf_state(state);
6003 if (IS_ERR(new_dbuf_state))
6004 return PTR_ERR(new_dbuf_state);
6005
6006 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
6007
6008 new_dbuf_state->active_pipes =
6009 intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
6010
6011 if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes)
6012 break;
6013
6014 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6015 if (ret)
6016 return ret;
6017
6018 /*
6019 * skl_ddb_get_pipe_allocation_limits() currently requires
6020 * all active pipes to be included in the state so that
6021 * it can redistribute the dbuf among them.
6022 */
6023 ret = intel_add_affected_pipes(state,
6024 new_dbuf_state->active_pipes);
6025 if (ret)
6026 return ret;
6027
6028 break;
6029 }
6030
6031 return 0;
6032 }
6033
6034 /*
6035 * To make sure the cursor watermark registers are always consistent
6036 * with our computed state the following scenario needs special
6037 * treatment:
6038 *
6039 * 1. enable cursor
6040 * 2. move cursor entirely offscreen
6041 * 3. disable cursor
6042 *
6043 * Step 2. does call .disable_plane() but does not zero the watermarks
6044 * (since we consider an offscreen cursor still active for the purposes
6045 * of watermarks). Step 3. would not normally call .disable_plane()
6046 * because the actual plane visibility isn't changing, and we don't
6047 * deallocate the cursor ddb until the pipe gets disabled. So we must
6048 * force step 3. to call .disable_plane() to update the watermark
6049 * registers properly.
6050 *
6051 * Other planes do not suffer from this issues as their watermarks are
6052 * calculated based on the actual plane visibility. The only time this
6053 * can trigger for the other planes is during the initial readout as the
6054 * default value of the watermarks registers is not zero.
6055 */
skl_wm_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)6056 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
6057 struct intel_crtc *crtc)
6058 {
6059 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6060 const struct intel_crtc_state *old_crtc_state =
6061 intel_atomic_get_old_crtc_state(state, crtc);
6062 struct intel_crtc_state *new_crtc_state =
6063 intel_atomic_get_new_crtc_state(state, crtc);
6064 struct intel_plane *plane;
6065
6066 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6067 struct intel_plane_state *plane_state;
6068 enum plane_id plane_id = plane->id;
6069
6070 /*
6071 * Force a full wm update for every plane on modeset.
6072 * Required because the reset value of the wm registers
6073 * is non-zero, whereas we want all disabled planes to
6074 * have zero watermarks. So if we turn off the relevant
6075 * power well the hardware state will go out of sync
6076 * with the software state.
6077 */
6078 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6079 skl_plane_wm_equals(dev_priv,
6080 &old_crtc_state->wm.skl.optimal.planes[plane_id],
6081 &new_crtc_state->wm.skl.optimal.planes[plane_id]))
6082 continue;
6083
6084 plane_state = intel_atomic_get_plane_state(state, plane);
6085 if (IS_ERR(plane_state))
6086 return PTR_ERR(plane_state);
6087
6088 new_crtc_state->update_planes |= BIT(plane_id);
6089 }
6090
6091 return 0;
6092 }
6093
6094 static int
skl_compute_wm(struct intel_atomic_state * state)6095 skl_compute_wm(struct intel_atomic_state *state)
6096 {
6097 struct intel_crtc *crtc;
6098 struct intel_crtc_state *new_crtc_state;
6099 struct intel_crtc_state *old_crtc_state;
6100 int ret, i;
6101
6102 ret = skl_ddb_add_affected_pipes(state);
6103 if (ret)
6104 return ret;
6105
6106 /*
6107 * Calculate WM's for all pipes that are part of this transaction.
6108 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
6109 * weren't otherwise being modified if pipe allocations had to change.
6110 */
6111 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6112 new_crtc_state, i) {
6113 ret = skl_build_pipe_wm(new_crtc_state);
6114 if (ret)
6115 return ret;
6116 }
6117
6118 ret = skl_compute_ddb(state);
6119 if (ret)
6120 return ret;
6121
6122 ret = intel_compute_sagv_mask(state);
6123 if (ret)
6124 return ret;
6125
6126 /*
6127 * skl_compute_ddb() will have adjusted the final watermarks
6128 * based on how much ddb is available. Now we can actually
6129 * check if the final watermarks changed.
6130 */
6131 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6132 new_crtc_state, i) {
6133 ret = skl_wm_add_affected_planes(state, crtc);
6134 if (ret)
6135 return ret;
6136 }
6137
6138 skl_print_wm_changes(state);
6139
6140 return 0;
6141 }
6142
ilk_compute_wm_config(struct drm_i915_private * dev_priv,struct intel_wm_config * config)6143 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6144 struct intel_wm_config *config)
6145 {
6146 struct intel_crtc *crtc;
6147
6148 /* Compute the currently _active_ config */
6149 for_each_intel_crtc(&dev_priv->drm, crtc) {
6150 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
6151
6152 if (!wm->pipe_enabled)
6153 continue;
6154
6155 config->sprites_enabled |= wm->sprites_enabled;
6156 config->sprites_scaled |= wm->sprites_scaled;
6157 config->num_pipes_active++;
6158 }
6159 }
6160
ilk_program_watermarks(struct drm_i915_private * dev_priv)6161 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6162 {
6163 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6164 struct ilk_wm_maximums max;
6165 struct intel_wm_config config = {};
6166 struct ilk_wm_values results = {};
6167 enum intel_ddb_partitioning partitioning;
6168
6169 ilk_compute_wm_config(dev_priv, &config);
6170
6171 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
6172 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6173
6174 /* 5/6 split only in single pipe config on IVB+ */
6175 if (INTEL_GEN(dev_priv) >= 7 &&
6176 config.num_pipes_active == 1 && config.sprites_enabled) {
6177 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
6178 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6179
6180 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6181 } else {
6182 best_lp_wm = &lp_wm_1_2;
6183 }
6184
6185 partitioning = (best_lp_wm == &lp_wm_1_2) ?
6186 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6187
6188 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6189
6190 ilk_write_wm_values(dev_priv, &results);
6191 }
6192
ilk_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)6193 static void ilk_initial_watermarks(struct intel_atomic_state *state,
6194 struct intel_crtc *crtc)
6195 {
6196 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6197 const struct intel_crtc_state *crtc_state =
6198 intel_atomic_get_new_crtc_state(state, crtc);
6199
6200 mutex_lock(&dev_priv->wm.wm_mutex);
6201 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6202 ilk_program_watermarks(dev_priv);
6203 mutex_unlock(&dev_priv->wm.wm_mutex);
6204 }
6205
ilk_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)6206 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6207 struct intel_crtc *crtc)
6208 {
6209 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6210 const struct intel_crtc_state *crtc_state =
6211 intel_atomic_get_new_crtc_state(state, crtc);
6212
6213 if (!crtc_state->wm.need_postvbl_update)
6214 return;
6215
6216 mutex_lock(&dev_priv->wm.wm_mutex);
6217 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
6218 ilk_program_watermarks(dev_priv);
6219 mutex_unlock(&dev_priv->wm.wm_mutex);
6220 }
6221
skl_wm_level_from_reg_val(u32 val,struct skl_wm_level * level)6222 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6223 {
6224 level->plane_en = val & PLANE_WM_EN;
6225 level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6226 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
6227 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
6228 PLANE_WM_LINES_MASK;
6229 }
6230
skl_pipe_wm_get_hw_state(struct intel_crtc * crtc,struct skl_pipe_wm * out)6231 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6232 struct skl_pipe_wm *out)
6233 {
6234 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6235 enum pipe pipe = crtc->pipe;
6236 int level, max_level;
6237 enum plane_id plane_id;
6238 u32 val;
6239
6240 max_level = ilk_wm_max_level(dev_priv);
6241
6242 for_each_plane_id_on_crtc(crtc, plane_id) {
6243 struct skl_plane_wm *wm = &out->planes[plane_id];
6244
6245 for (level = 0; level <= max_level; level++) {
6246 if (plane_id != PLANE_CURSOR)
6247 val = I915_READ(PLANE_WM(pipe, plane_id, level));
6248 else
6249 val = I915_READ(CUR_WM(pipe, level));
6250
6251 skl_wm_level_from_reg_val(val, &wm->wm[level]);
6252 }
6253
6254 if (INTEL_GEN(dev_priv) >= 12)
6255 wm->sagv_wm0 = wm->wm[0];
6256
6257 if (plane_id != PLANE_CURSOR)
6258 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
6259 else
6260 val = I915_READ(CUR_WM_TRANS(pipe));
6261
6262 skl_wm_level_from_reg_val(val, &wm->trans_wm);
6263 }
6264
6265 if (!crtc->active)
6266 return;
6267 }
6268
skl_wm_get_hw_state(struct drm_i915_private * dev_priv)6269 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6270 {
6271 struct intel_crtc *crtc;
6272 struct intel_crtc_state *crtc_state;
6273
6274 for_each_intel_crtc(&dev_priv->drm, crtc) {
6275 crtc_state = to_intel_crtc_state(crtc->base.state);
6276
6277 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6278 }
6279
6280 if (dev_priv->active_pipes) {
6281 /* Fully recompute DDB on first atomic commit */
6282 dev_priv->wm.distrust_bios_wm = true;
6283 }
6284 }
6285
ilk_pipe_wm_get_hw_state(struct intel_crtc * crtc)6286 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6287 {
6288 struct drm_device *dev = crtc->base.dev;
6289 struct drm_i915_private *dev_priv = to_i915(dev);
6290 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6291 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
6292 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6293 enum pipe pipe = crtc->pipe;
6294 static const i915_reg_t wm0_pipe_reg[] = {
6295 [PIPE_A] = WM0_PIPEA_ILK,
6296 [PIPE_B] = WM0_PIPEB_ILK,
6297 [PIPE_C] = WM0_PIPEC_IVB,
6298 };
6299
6300 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
6301
6302 memset(active, 0, sizeof(*active));
6303
6304 active->pipe_enabled = crtc->active;
6305
6306 if (active->pipe_enabled) {
6307 u32 tmp = hw->wm_pipe[pipe];
6308
6309 /*
6310 * For active pipes LP0 watermark is marked as
6311 * enabled, and LP1+ watermaks as disabled since
6312 * we can't really reverse compute them in case
6313 * multiple pipes are active.
6314 */
6315 active->wm[0].enable = true;
6316 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
6317 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
6318 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
6319 } else {
6320 int level, max_level = ilk_wm_max_level(dev_priv);
6321
6322 /*
6323 * For inactive pipes, all watermark levels
6324 * should be marked as enabled but zeroed,
6325 * which is what we'd compute them to.
6326 */
6327 for (level = 0; level <= max_level; level++)
6328 active->wm[level].enable = true;
6329 }
6330
6331 crtc->wm.active.ilk = *active;
6332 }
6333
6334 #define _FW_WM(value, plane) \
6335 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6336 #define _FW_WM_VLV(value, plane) \
6337 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6338
g4x_read_wm_values(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)6339 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6340 struct g4x_wm_values *wm)
6341 {
6342 u32 tmp;
6343
6344 tmp = I915_READ(DSPFW1);
6345 wm->sr.plane = _FW_WM(tmp, SR);
6346 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6347 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6348 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6349
6350 tmp = I915_READ(DSPFW2);
6351 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6352 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6353 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6354 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6355 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6356 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6357
6358 tmp = I915_READ(DSPFW3);
6359 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6360 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6361 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6362 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6363 }
6364
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)6365 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6366 struct vlv_wm_values *wm)
6367 {
6368 enum pipe pipe;
6369 u32 tmp;
6370
6371 for_each_pipe(dev_priv, pipe) {
6372 tmp = I915_READ(VLV_DDL(pipe));
6373
6374 wm->ddl[pipe].plane[PLANE_PRIMARY] =
6375 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6376 wm->ddl[pipe].plane[PLANE_CURSOR] =
6377 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6378 wm->ddl[pipe].plane[PLANE_SPRITE0] =
6379 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6380 wm->ddl[pipe].plane[PLANE_SPRITE1] =
6381 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6382 }
6383
6384 tmp = I915_READ(DSPFW1);
6385 wm->sr.plane = _FW_WM(tmp, SR);
6386 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6387 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6388 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6389
6390 tmp = I915_READ(DSPFW2);
6391 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6392 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6393 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6394
6395 tmp = I915_READ(DSPFW3);
6396 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6397
6398 if (IS_CHERRYVIEW(dev_priv)) {
6399 tmp = I915_READ(DSPFW7_CHV);
6400 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6401 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6402
6403 tmp = I915_READ(DSPFW8_CHV);
6404 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6405 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6406
6407 tmp = I915_READ(DSPFW9_CHV);
6408 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6409 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6410
6411 tmp = I915_READ(DSPHOWM);
6412 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6413 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6414 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6415 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6416 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6417 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6418 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6419 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6420 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6421 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6422 } else {
6423 tmp = I915_READ(DSPFW7);
6424 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6425 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6426
6427 tmp = I915_READ(DSPHOWM);
6428 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6429 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6430 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6431 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6432 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6433 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6434 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6435 }
6436 }
6437
6438 #undef _FW_WM
6439 #undef _FW_WM_VLV
6440
g4x_wm_get_hw_state(struct drm_i915_private * dev_priv)6441 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6442 {
6443 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6444 struct intel_crtc *crtc;
6445
6446 g4x_read_wm_values(dev_priv, wm);
6447
6448 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
6449
6450 for_each_intel_crtc(&dev_priv->drm, crtc) {
6451 struct intel_crtc_state *crtc_state =
6452 to_intel_crtc_state(crtc->base.state);
6453 struct g4x_wm_state *active = &crtc->wm.active.g4x;
6454 struct g4x_pipe_wm *raw;
6455 enum pipe pipe = crtc->pipe;
6456 enum plane_id plane_id;
6457 int level, max_level;
6458
6459 active->cxsr = wm->cxsr;
6460 active->hpll_en = wm->hpll_en;
6461 active->fbc_en = wm->fbc_en;
6462
6463 active->sr = wm->sr;
6464 active->hpll = wm->hpll;
6465
6466 for_each_plane_id_on_crtc(crtc, plane_id) {
6467 active->wm.plane[plane_id] =
6468 wm->pipe[pipe].plane[plane_id];
6469 }
6470
6471 if (wm->cxsr && wm->hpll_en)
6472 max_level = G4X_WM_LEVEL_HPLL;
6473 else if (wm->cxsr)
6474 max_level = G4X_WM_LEVEL_SR;
6475 else
6476 max_level = G4X_WM_LEVEL_NORMAL;
6477
6478 level = G4X_WM_LEVEL_NORMAL;
6479 raw = &crtc_state->wm.g4x.raw[level];
6480 for_each_plane_id_on_crtc(crtc, plane_id)
6481 raw->plane[plane_id] = active->wm.plane[plane_id];
6482
6483 if (++level > max_level)
6484 goto out;
6485
6486 raw = &crtc_state->wm.g4x.raw[level];
6487 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6488 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6489 raw->plane[PLANE_SPRITE0] = 0;
6490 raw->fbc = active->sr.fbc;
6491
6492 if (++level > max_level)
6493 goto out;
6494
6495 raw = &crtc_state->wm.g4x.raw[level];
6496 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6497 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6498 raw->plane[PLANE_SPRITE0] = 0;
6499 raw->fbc = active->hpll.fbc;
6500
6501 out:
6502 for_each_plane_id_on_crtc(crtc, plane_id)
6503 g4x_raw_plane_wm_set(crtc_state, level,
6504 plane_id, USHRT_MAX);
6505 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6506
6507 crtc_state->wm.g4x.optimal = *active;
6508 crtc_state->wm.g4x.intermediate = *active;
6509
6510 drm_dbg_kms(&dev_priv->drm,
6511 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6512 pipe_name(pipe),
6513 wm->pipe[pipe].plane[PLANE_PRIMARY],
6514 wm->pipe[pipe].plane[PLANE_CURSOR],
6515 wm->pipe[pipe].plane[PLANE_SPRITE0]);
6516 }
6517
6518 drm_dbg_kms(&dev_priv->drm,
6519 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6520 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6521 drm_dbg_kms(&dev_priv->drm,
6522 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6523 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6524 drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6525 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6526 }
6527
g4x_wm_sanitize(struct drm_i915_private * dev_priv)6528 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6529 {
6530 struct intel_plane *plane;
6531 struct intel_crtc *crtc;
6532
6533 mutex_lock(&dev_priv->wm.wm_mutex);
6534
6535 for_each_intel_plane(&dev_priv->drm, plane) {
6536 struct intel_crtc *crtc =
6537 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6538 struct intel_crtc_state *crtc_state =
6539 to_intel_crtc_state(crtc->base.state);
6540 struct intel_plane_state *plane_state =
6541 to_intel_plane_state(plane->base.state);
6542 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6543 enum plane_id plane_id = plane->id;
6544 int level;
6545
6546 if (plane_state->uapi.visible)
6547 continue;
6548
6549 for (level = 0; level < 3; level++) {
6550 struct g4x_pipe_wm *raw =
6551 &crtc_state->wm.g4x.raw[level];
6552
6553 raw->plane[plane_id] = 0;
6554 wm_state->wm.plane[plane_id] = 0;
6555 }
6556
6557 if (plane_id == PLANE_PRIMARY) {
6558 for (level = 0; level < 3; level++) {
6559 struct g4x_pipe_wm *raw =
6560 &crtc_state->wm.g4x.raw[level];
6561 raw->fbc = 0;
6562 }
6563
6564 wm_state->sr.fbc = 0;
6565 wm_state->hpll.fbc = 0;
6566 wm_state->fbc_en = false;
6567 }
6568 }
6569
6570 for_each_intel_crtc(&dev_priv->drm, crtc) {
6571 struct intel_crtc_state *crtc_state =
6572 to_intel_crtc_state(crtc->base.state);
6573
6574 crtc_state->wm.g4x.intermediate =
6575 crtc_state->wm.g4x.optimal;
6576 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6577 }
6578
6579 g4x_program_watermarks(dev_priv);
6580
6581 mutex_unlock(&dev_priv->wm.wm_mutex);
6582 }
6583
vlv_wm_get_hw_state(struct drm_i915_private * dev_priv)6584 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6585 {
6586 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6587 struct intel_crtc *crtc;
6588 u32 val;
6589
6590 vlv_read_wm_values(dev_priv, wm);
6591
6592 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6593 wm->level = VLV_WM_LEVEL_PM2;
6594
6595 if (IS_CHERRYVIEW(dev_priv)) {
6596 vlv_punit_get(dev_priv);
6597
6598 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6599 if (val & DSP_MAXFIFO_PM5_ENABLE)
6600 wm->level = VLV_WM_LEVEL_PM5;
6601
6602 /*
6603 * If DDR DVFS is disabled in the BIOS, Punit
6604 * will never ack the request. So if that happens
6605 * assume we don't have to enable/disable DDR DVFS
6606 * dynamically. To test that just set the REQ_ACK
6607 * bit to poke the Punit, but don't change the
6608 * HIGH/LOW bits so that we don't actually change
6609 * the current state.
6610 */
6611 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6612 val |= FORCE_DDR_FREQ_REQ_ACK;
6613 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6614
6615 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6616 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6617 drm_dbg_kms(&dev_priv->drm,
6618 "Punit not acking DDR DVFS request, "
6619 "assuming DDR DVFS is disabled\n");
6620 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6621 } else {
6622 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6623 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6624 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6625 }
6626
6627 vlv_punit_put(dev_priv);
6628 }
6629
6630 for_each_intel_crtc(&dev_priv->drm, crtc) {
6631 struct intel_crtc_state *crtc_state =
6632 to_intel_crtc_state(crtc->base.state);
6633 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6634 const struct vlv_fifo_state *fifo_state =
6635 &crtc_state->wm.vlv.fifo_state;
6636 enum pipe pipe = crtc->pipe;
6637 enum plane_id plane_id;
6638 int level;
6639
6640 vlv_get_fifo_size(crtc_state);
6641
6642 active->num_levels = wm->level + 1;
6643 active->cxsr = wm->cxsr;
6644
6645 for (level = 0; level < active->num_levels; level++) {
6646 struct g4x_pipe_wm *raw =
6647 &crtc_state->wm.vlv.raw[level];
6648
6649 active->sr[level].plane = wm->sr.plane;
6650 active->sr[level].cursor = wm->sr.cursor;
6651
6652 for_each_plane_id_on_crtc(crtc, plane_id) {
6653 active->wm[level].plane[plane_id] =
6654 wm->pipe[pipe].plane[plane_id];
6655
6656 raw->plane[plane_id] =
6657 vlv_invert_wm_value(active->wm[level].plane[plane_id],
6658 fifo_state->plane[plane_id]);
6659 }
6660 }
6661
6662 for_each_plane_id_on_crtc(crtc, plane_id)
6663 vlv_raw_plane_wm_set(crtc_state, level,
6664 plane_id, USHRT_MAX);
6665 vlv_invalidate_wms(crtc, active, level);
6666
6667 crtc_state->wm.vlv.optimal = *active;
6668 crtc_state->wm.vlv.intermediate = *active;
6669
6670 drm_dbg_kms(&dev_priv->drm,
6671 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6672 pipe_name(pipe),
6673 wm->pipe[pipe].plane[PLANE_PRIMARY],
6674 wm->pipe[pipe].plane[PLANE_CURSOR],
6675 wm->pipe[pipe].plane[PLANE_SPRITE0],
6676 wm->pipe[pipe].plane[PLANE_SPRITE1]);
6677 }
6678
6679 drm_dbg_kms(&dev_priv->drm,
6680 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6681 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6682 }
6683
vlv_wm_sanitize(struct drm_i915_private * dev_priv)6684 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6685 {
6686 struct intel_plane *plane;
6687 struct intel_crtc *crtc;
6688
6689 mutex_lock(&dev_priv->wm.wm_mutex);
6690
6691 for_each_intel_plane(&dev_priv->drm, plane) {
6692 struct intel_crtc *crtc =
6693 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6694 struct intel_crtc_state *crtc_state =
6695 to_intel_crtc_state(crtc->base.state);
6696 struct intel_plane_state *plane_state =
6697 to_intel_plane_state(plane->base.state);
6698 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6699 const struct vlv_fifo_state *fifo_state =
6700 &crtc_state->wm.vlv.fifo_state;
6701 enum plane_id plane_id = plane->id;
6702 int level;
6703
6704 if (plane_state->uapi.visible)
6705 continue;
6706
6707 for (level = 0; level < wm_state->num_levels; level++) {
6708 struct g4x_pipe_wm *raw =
6709 &crtc_state->wm.vlv.raw[level];
6710
6711 raw->plane[plane_id] = 0;
6712
6713 wm_state->wm[level].plane[plane_id] =
6714 vlv_invert_wm_value(raw->plane[plane_id],
6715 fifo_state->plane[plane_id]);
6716 }
6717 }
6718
6719 for_each_intel_crtc(&dev_priv->drm, crtc) {
6720 struct intel_crtc_state *crtc_state =
6721 to_intel_crtc_state(crtc->base.state);
6722
6723 crtc_state->wm.vlv.intermediate =
6724 crtc_state->wm.vlv.optimal;
6725 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6726 }
6727
6728 vlv_program_watermarks(dev_priv);
6729
6730 mutex_unlock(&dev_priv->wm.wm_mutex);
6731 }
6732
6733 /*
6734 * FIXME should probably kill this and improve
6735 * the real watermark readout/sanitation instead
6736 */
ilk_init_lp_watermarks(struct drm_i915_private * dev_priv)6737 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6738 {
6739 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6740 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6741 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6742
6743 /*
6744 * Don't touch WM1S_LP_EN here.
6745 * Doing so could cause underruns.
6746 */
6747 }
6748
ilk_wm_get_hw_state(struct drm_i915_private * dev_priv)6749 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6750 {
6751 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6752 struct intel_crtc *crtc;
6753
6754 ilk_init_lp_watermarks(dev_priv);
6755
6756 for_each_intel_crtc(&dev_priv->drm, crtc)
6757 ilk_pipe_wm_get_hw_state(crtc);
6758
6759 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6760 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6761 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6762
6763 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6764 if (INTEL_GEN(dev_priv) >= 7) {
6765 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6766 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6767 }
6768
6769 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6770 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6771 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6772 else if (IS_IVYBRIDGE(dev_priv))
6773 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6774 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6775
6776 hw->enable_fbc_wm =
6777 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6778 }
6779
6780 /**
6781 * intel_update_watermarks - update FIFO watermark values based on current modes
6782 * @crtc: the #intel_crtc on which to compute the WM
6783 *
6784 * Calculate watermark values for the various WM regs based on current mode
6785 * and plane configuration.
6786 *
6787 * There are several cases to deal with here:
6788 * - normal (i.e. non-self-refresh)
6789 * - self-refresh (SR) mode
6790 * - lines are large relative to FIFO size (buffer can hold up to 2)
6791 * - lines are small relative to FIFO size (buffer can hold more than 2
6792 * lines), so need to account for TLB latency
6793 *
6794 * The normal calculation is:
6795 * watermark = dotclock * bytes per pixel * latency
6796 * where latency is platform & configuration dependent (we assume pessimal
6797 * values here).
6798 *
6799 * The SR calculation is:
6800 * watermark = (trunc(latency/line time)+1) * surface width *
6801 * bytes per pixel
6802 * where
6803 * line time = htotal / dotclock
6804 * surface width = hdisplay for normal plane and 64 for cursor
6805 * and latency is assumed to be high, as above.
6806 *
6807 * The final value programmed to the register should always be rounded up,
6808 * and include an extra 2 entries to account for clock crossings.
6809 *
6810 * We don't use the sprite, so we can ignore that. And on Crestline we have
6811 * to set the non-SR watermarks to 8.
6812 */
intel_update_watermarks(struct intel_crtc * crtc)6813 void intel_update_watermarks(struct intel_crtc *crtc)
6814 {
6815 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6816
6817 if (dev_priv->display.update_wm)
6818 dev_priv->display.update_wm(crtc);
6819 }
6820
intel_enable_ipc(struct drm_i915_private * dev_priv)6821 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6822 {
6823 u32 val;
6824
6825 if (!HAS_IPC(dev_priv))
6826 return;
6827
6828 val = I915_READ(DISP_ARB_CTL2);
6829
6830 if (dev_priv->ipc_enabled)
6831 val |= DISP_IPC_ENABLE;
6832 else
6833 val &= ~DISP_IPC_ENABLE;
6834
6835 I915_WRITE(DISP_ARB_CTL2, val);
6836 }
6837
intel_can_enable_ipc(struct drm_i915_private * dev_priv)6838 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6839 {
6840 /* Display WA #0477 WaDisableIPC: skl */
6841 if (IS_SKYLAKE(dev_priv))
6842 return false;
6843
6844 /* Display WA #1141: SKL:all KBL:all CFL */
6845 if (IS_KABYLAKE(dev_priv) ||
6846 IS_COFFEELAKE(dev_priv) ||
6847 IS_COMETLAKE(dev_priv))
6848 return dev_priv->dram_info.symmetric_memory;
6849
6850 return true;
6851 }
6852
intel_init_ipc(struct drm_i915_private * dev_priv)6853 void intel_init_ipc(struct drm_i915_private *dev_priv)
6854 {
6855 if (!HAS_IPC(dev_priv))
6856 return;
6857
6858 dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6859
6860 intel_enable_ipc(dev_priv);
6861 }
6862
ibx_init_clock_gating(struct drm_i915_private * dev_priv)6863 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6864 {
6865 /*
6866 * On Ibex Peak and Cougar Point, we need to disable clock
6867 * gating for the panel power sequencer or it will fail to
6868 * start up when no ports are active.
6869 */
6870 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6871 }
6872
g4x_disable_trickle_feed(struct drm_i915_private * dev_priv)6873 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6874 {
6875 enum pipe pipe;
6876
6877 for_each_pipe(dev_priv, pipe) {
6878 I915_WRITE(DSPCNTR(pipe),
6879 I915_READ(DSPCNTR(pipe)) |
6880 DISPPLANE_TRICKLE_FEED_DISABLE);
6881
6882 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6883 POSTING_READ(DSPSURF(pipe));
6884 }
6885 }
6886
ilk_init_clock_gating(struct drm_i915_private * dev_priv)6887 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6888 {
6889 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6890
6891 /*
6892 * Required for FBC
6893 * WaFbcDisableDpfcClockGating:ilk
6894 */
6895 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6896 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6897 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6898
6899 I915_WRITE(PCH_3DCGDIS0,
6900 MARIUNIT_CLOCK_GATE_DISABLE |
6901 SVSMUNIT_CLOCK_GATE_DISABLE);
6902 I915_WRITE(PCH_3DCGDIS1,
6903 VFMUNIT_CLOCK_GATE_DISABLE);
6904
6905 /*
6906 * According to the spec the following bits should be set in
6907 * order to enable memory self-refresh
6908 * The bit 22/21 of 0x42004
6909 * The bit 5 of 0x42020
6910 * The bit 15 of 0x45000
6911 */
6912 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6913 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6914 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6915 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6916 I915_WRITE(DISP_ARB_CTL,
6917 (I915_READ(DISP_ARB_CTL) |
6918 DISP_FBC_WM_DIS));
6919
6920 /*
6921 * Based on the document from hardware guys the following bits
6922 * should be set unconditionally in order to enable FBC.
6923 * The bit 22 of 0x42000
6924 * The bit 22 of 0x42004
6925 * The bit 7,8,9 of 0x42020.
6926 */
6927 if (IS_IRONLAKE_M(dev_priv)) {
6928 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6929 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6930 I915_READ(ILK_DISPLAY_CHICKEN1) |
6931 ILK_FBCQ_DIS);
6932 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6933 I915_READ(ILK_DISPLAY_CHICKEN2) |
6934 ILK_DPARB_GATE);
6935 }
6936
6937 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6938
6939 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6940 I915_READ(ILK_DISPLAY_CHICKEN2) |
6941 ILK_ELPIN_409_SELECT);
6942
6943 g4x_disable_trickle_feed(dev_priv);
6944
6945 ibx_init_clock_gating(dev_priv);
6946 }
6947
cpt_init_clock_gating(struct drm_i915_private * dev_priv)6948 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6949 {
6950 enum pipe pipe;
6951 u32 val;
6952
6953 /*
6954 * On Ibex Peak and Cougar Point, we need to disable clock
6955 * gating for the panel power sequencer or it will fail to
6956 * start up when no ports are active.
6957 */
6958 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6959 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6960 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6961 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6962 DPLS_EDP_PPS_FIX_DIS);
6963 /* The below fixes the weird display corruption, a few pixels shifted
6964 * downward, on (only) LVDS of some HP laptops with IVY.
6965 */
6966 for_each_pipe(dev_priv, pipe) {
6967 val = I915_READ(TRANS_CHICKEN2(pipe));
6968 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6969 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6970 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6971 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6972 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6973 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6974 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6975 }
6976 /* WADP0ClockGatingDisable */
6977 for_each_pipe(dev_priv, pipe) {
6978 I915_WRITE(TRANS_CHICKEN1(pipe),
6979 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6980 }
6981 }
6982
gen6_check_mch_setup(struct drm_i915_private * dev_priv)6983 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6984 {
6985 u32 tmp;
6986
6987 tmp = I915_READ(MCH_SSKPD);
6988 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6989 drm_dbg_kms(&dev_priv->drm,
6990 "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6991 tmp);
6992 }
6993
gen6_init_clock_gating(struct drm_i915_private * dev_priv)6994 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6995 {
6996 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6997
6998 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6999
7000 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7001 I915_READ(ILK_DISPLAY_CHICKEN2) |
7002 ILK_ELPIN_409_SELECT);
7003
7004 I915_WRITE(GEN6_UCGCTL1,
7005 I915_READ(GEN6_UCGCTL1) |
7006 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7007 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7008
7009 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7010 * gating disable must be set. Failure to set it results in
7011 * flickering pixels due to Z write ordering failures after
7012 * some amount of runtime in the Mesa "fire" demo, and Unigine
7013 * Sanctuary and Tropics, and apparently anything else with
7014 * alpha test or pixel discard.
7015 *
7016 * According to the spec, bit 11 (RCCUNIT) must also be set,
7017 * but we didn't debug actual testcases to find it out.
7018 *
7019 * WaDisableRCCUnitClockGating:snb
7020 * WaDisableRCPBUnitClockGating:snb
7021 */
7022 I915_WRITE(GEN6_UCGCTL2,
7023 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7024 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7025
7026 /*
7027 * According to the spec the following bits should be
7028 * set in order to enable memory self-refresh and fbc:
7029 * The bit21 and bit22 of 0x42000
7030 * The bit21 and bit22 of 0x42004
7031 * The bit5 and bit7 of 0x42020
7032 * The bit14 of 0x70180
7033 * The bit14 of 0x71180
7034 *
7035 * WaFbcAsynchFlipDisableFbcQueue:snb
7036 */
7037 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7038 I915_READ(ILK_DISPLAY_CHICKEN1) |
7039 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7040 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7041 I915_READ(ILK_DISPLAY_CHICKEN2) |
7042 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7043 I915_WRITE(ILK_DSPCLK_GATE_D,
7044 I915_READ(ILK_DSPCLK_GATE_D) |
7045 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
7046 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7047
7048 g4x_disable_trickle_feed(dev_priv);
7049
7050 cpt_init_clock_gating(dev_priv);
7051
7052 gen6_check_mch_setup(dev_priv);
7053 }
7054
lpt_init_clock_gating(struct drm_i915_private * dev_priv)7055 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7056 {
7057 /*
7058 * TODO: this bit should only be enabled when really needed, then
7059 * disabled when not needed anymore in order to save power.
7060 */
7061 if (HAS_PCH_LPT_LP(dev_priv))
7062 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7063 I915_READ(SOUTH_DSPCLK_GATE_D) |
7064 PCH_LP_PARTITION_LEVEL_DISABLE);
7065
7066 /* WADPOClockGatingDisable:hsw */
7067 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7068 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7069 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7070 }
7071
lpt_suspend_hw(struct drm_i915_private * dev_priv)7072 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7073 {
7074 if (HAS_PCH_LPT_LP(dev_priv)) {
7075 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7076
7077 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7078 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7079 }
7080 }
7081
gen8_set_l3sqc_credits(struct drm_i915_private * dev_priv,int general_prio_credits,int high_prio_credits)7082 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7083 int general_prio_credits,
7084 int high_prio_credits)
7085 {
7086 u32 misccpctl;
7087 u32 val;
7088
7089 /* WaTempDisableDOPClkGating:bdw */
7090 misccpctl = I915_READ(GEN7_MISCCPCTL);
7091 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7092
7093 val = I915_READ(GEN8_L3SQCREG1);
7094 val &= ~L3_PRIO_CREDITS_MASK;
7095 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
7096 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7097 I915_WRITE(GEN8_L3SQCREG1, val);
7098
7099 /*
7100 * Wait at least 100 clocks before re-enabling clock gating.
7101 * See the definition of L3SQCREG1 in BSpec.
7102 */
7103 POSTING_READ(GEN8_L3SQCREG1);
7104 udelay(1);
7105 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7106 }
7107
icl_init_clock_gating(struct drm_i915_private * dev_priv)7108 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
7109 {
7110 /* Wa_1409120013:icl,ehl */
7111 I915_WRITE(ILK_DPFC_CHICKEN,
7112 ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7113
7114 /* This is not an Wa. Enable to reduce Sampler power */
7115 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
7116 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
7117
7118 /*Wa_14010594013:icl, ehl */
7119 intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
7120 0, CNL_DELAY_PMRSP);
7121 }
7122
tgl_init_clock_gating(struct drm_i915_private * dev_priv)7123 static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
7124 {
7125 /* Wa_1409120013:tgl */
7126 I915_WRITE(ILK_DPFC_CHICKEN,
7127 ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7128
7129 /* Wa_1409825376:tgl (pre-prod)*/
7130 if (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_B1))
7131 I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
7132 TGL_VRH_GATING_DIS);
7133
7134 /* Wa_14011059788:tgl */
7135 intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
7136 0, DFR_DISABLE);
7137 }
7138
cnp_init_clock_gating(struct drm_i915_private * dev_priv)7139 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
7140 {
7141 if (!HAS_PCH_CNP(dev_priv))
7142 return;
7143
7144 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7145 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
7146 CNP_PWM_CGE_GATING_DISABLE);
7147 }
7148
cnl_init_clock_gating(struct drm_i915_private * dev_priv)7149 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
7150 {
7151 u32 val;
7152 cnp_init_clock_gating(dev_priv);
7153
7154 /* This is not an Wa. Enable for better image quality */
7155 I915_WRITE(_3D_CHICKEN3,
7156 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
7157
7158 /* WaEnableChickenDCPR:cnl */
7159 I915_WRITE(GEN8_CHICKEN_DCPR_1,
7160 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
7161
7162 /*
7163 * WaFbcWakeMemOn:cnl
7164 * Display WA #0859: cnl
7165 */
7166 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7167 DISP_FBC_MEMORY_WAKE);
7168
7169 val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
7170 /* ReadHitWriteOnlyDisable:cnl */
7171 val |= RCCUNIT_CLKGATE_DIS;
7172 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
7173
7174 /* Wa_2201832410:cnl */
7175 val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
7176 val |= GWUNIT_CLKGATE_DIS;
7177 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
7178
7179 /* WaDisableVFclkgate:cnl */
7180 /* WaVFUnitClockGatingDisable:cnl */
7181 val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
7182 val |= VFUNIT_CLKGATE_DIS;
7183 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
7184 }
7185
cfl_init_clock_gating(struct drm_i915_private * dev_priv)7186 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
7187 {
7188 cnp_init_clock_gating(dev_priv);
7189 gen9_init_clock_gating(dev_priv);
7190
7191 /*
7192 * WaFbcTurnOffFbcWatermark:cfl
7193 * Display WA #0562: cfl
7194 */
7195 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7196 DISP_FBC_WM_DIS);
7197
7198 /*
7199 * WaFbcNukeOnHostModify:cfl
7200 * Display WA #0873: cfl
7201 */
7202 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7203 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7204 }
7205
kbl_init_clock_gating(struct drm_i915_private * dev_priv)7206 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7207 {
7208 gen9_init_clock_gating(dev_priv);
7209
7210 /* WaDisableSDEUnitClockGating:kbl */
7211 if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7212 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7213 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7214
7215 /* WaDisableGamClockGating:kbl */
7216 if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7217 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7218 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7219
7220 /*
7221 * WaFbcTurnOffFbcWatermark:kbl
7222 * Display WA #0562: kbl
7223 */
7224 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7225 DISP_FBC_WM_DIS);
7226
7227 /*
7228 * WaFbcNukeOnHostModify:kbl
7229 * Display WA #0873: kbl
7230 */
7231 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7232 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7233 }
7234
skl_init_clock_gating(struct drm_i915_private * dev_priv)7235 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7236 {
7237 gen9_init_clock_gating(dev_priv);
7238
7239 /* WaDisableDopClockGating:skl */
7240 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL) &
7241 ~GEN7_DOP_CLOCK_GATE_ENABLE);
7242
7243 /* WAC6entrylatency:skl */
7244 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7245 FBC_LLC_FULLY_OPEN);
7246
7247 /*
7248 * WaFbcTurnOffFbcWatermark:skl
7249 * Display WA #0562: skl
7250 */
7251 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7252 DISP_FBC_WM_DIS);
7253
7254 /*
7255 * WaFbcNukeOnHostModify:skl
7256 * Display WA #0873: skl
7257 */
7258 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7259 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7260
7261 /*
7262 * WaFbcHighMemBwCorruptionAvoidance:skl
7263 * Display WA #0883: skl
7264 */
7265 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7266 ILK_DPFC_DISABLE_DUMMY0);
7267 }
7268
bdw_init_clock_gating(struct drm_i915_private * dev_priv)7269 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
7270 {
7271 enum pipe pipe;
7272
7273 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7274 I915_WRITE(CHICKEN_PIPESL_1(PIPE_A),
7275 I915_READ(CHICKEN_PIPESL_1(PIPE_A)) |
7276 HSW_FBCQ_DIS);
7277
7278 /* WaSwitchSolVfFArbitrationPriority:bdw */
7279 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7280
7281 /* WaPsrDPAMaskVBlankInSRD:bdw */
7282 I915_WRITE(CHICKEN_PAR1_1,
7283 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7284
7285 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7286 for_each_pipe(dev_priv, pipe) {
7287 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7288 I915_READ(CHICKEN_PIPESL_1(pipe)) |
7289 BDW_DPRS_MASK_VBLANK_SRD);
7290 }
7291
7292 /* WaVSRefCountFullforceMissDisable:bdw */
7293 /* WaDSRefCountFullforceMissDisable:bdw */
7294 I915_WRITE(GEN7_FF_THREAD_MODE,
7295 I915_READ(GEN7_FF_THREAD_MODE) &
7296 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7297
7298 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7299 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7300
7301 /* WaDisableSDEUnitClockGating:bdw */
7302 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7303 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7304
7305 /* WaProgramL3SqcReg1Default:bdw */
7306 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7307
7308 /* WaKVMNotificationOnConfigChange:bdw */
7309 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7310 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7311
7312 lpt_init_clock_gating(dev_priv);
7313
7314 /* WaDisableDopClockGating:bdw
7315 *
7316 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7317 * clock gating.
7318 */
7319 I915_WRITE(GEN6_UCGCTL1,
7320 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7321 }
7322
hsw_init_clock_gating(struct drm_i915_private * dev_priv)7323 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7324 {
7325 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7326 I915_WRITE(CHICKEN_PIPESL_1(PIPE_A),
7327 I915_READ(CHICKEN_PIPESL_1(PIPE_A)) |
7328 HSW_FBCQ_DIS);
7329
7330 /* This is required by WaCatErrorRejectionIssue:hsw */
7331 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7332 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7333 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7334
7335 /* WaSwitchSolVfFArbitrationPriority:hsw */
7336 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7337
7338 lpt_init_clock_gating(dev_priv);
7339 }
7340
ivb_init_clock_gating(struct drm_i915_private * dev_priv)7341 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7342 {
7343 u32 snpcr;
7344
7345 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7346
7347 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
7348 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7349 I915_READ(ILK_DISPLAY_CHICKEN1) |
7350 ILK_FBCQ_DIS);
7351
7352 /* WaDisableBackToBackFlipFix:ivb */
7353 I915_WRITE(IVB_CHICKEN3,
7354 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7355 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7356
7357 if (IS_IVB_GT1(dev_priv))
7358 I915_WRITE(GEN7_ROW_CHICKEN2,
7359 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7360 else {
7361 /* must write both registers */
7362 I915_WRITE(GEN7_ROW_CHICKEN2,
7363 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7364 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7365 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7366 }
7367
7368 /*
7369 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7370 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7371 */
7372 I915_WRITE(GEN6_UCGCTL2,
7373 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7374
7375 /* This is required by WaCatErrorRejectionIssue:ivb */
7376 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7377 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7378 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7379
7380 g4x_disable_trickle_feed(dev_priv);
7381
7382 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7383 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7384 snpcr |= GEN6_MBC_SNPCR_MED;
7385 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7386
7387 if (!HAS_PCH_NOP(dev_priv))
7388 cpt_init_clock_gating(dev_priv);
7389
7390 gen6_check_mch_setup(dev_priv);
7391 }
7392
vlv_init_clock_gating(struct drm_i915_private * dev_priv)7393 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7394 {
7395 /* WaDisableBackToBackFlipFix:vlv */
7396 I915_WRITE(IVB_CHICKEN3,
7397 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7398 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7399
7400 /* WaDisableDopClockGating:vlv */
7401 I915_WRITE(GEN7_ROW_CHICKEN2,
7402 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7403
7404 /* This is required by WaCatErrorRejectionIssue:vlv */
7405 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7406 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7407 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7408
7409 /*
7410 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7411 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7412 */
7413 I915_WRITE(GEN6_UCGCTL2,
7414 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7415
7416 /* WaDisableL3Bank2xClockGate:vlv
7417 * Disabling L3 clock gating- MMIO 940c[25] = 1
7418 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7419 I915_WRITE(GEN7_UCGCTL4,
7420 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7421
7422 /*
7423 * WaDisableVLVClockGating_VBIIssue:vlv
7424 * Disable clock gating on th GCFG unit to prevent a delay
7425 * in the reporting of vblank events.
7426 */
7427 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7428 }
7429
chv_init_clock_gating(struct drm_i915_private * dev_priv)7430 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7431 {
7432 /* WaVSRefCountFullforceMissDisable:chv */
7433 /* WaDSRefCountFullforceMissDisable:chv */
7434 I915_WRITE(GEN7_FF_THREAD_MODE,
7435 I915_READ(GEN7_FF_THREAD_MODE) &
7436 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7437
7438 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7439 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7440 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7441
7442 /* WaDisableCSUnitClockGating:chv */
7443 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7444 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7445
7446 /* WaDisableSDEUnitClockGating:chv */
7447 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7448 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7449
7450 /*
7451 * WaProgramL3SqcReg1Default:chv
7452 * See gfxspecs/Related Documents/Performance Guide/
7453 * LSQC Setting Recommendations.
7454 */
7455 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7456 }
7457
g4x_init_clock_gating(struct drm_i915_private * dev_priv)7458 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7459 {
7460 u32 dspclk_gate;
7461
7462 I915_WRITE(RENCLK_GATE_D1, 0);
7463 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7464 GS_UNIT_CLOCK_GATE_DISABLE |
7465 CL_UNIT_CLOCK_GATE_DISABLE);
7466 I915_WRITE(RAMCLK_GATE_D, 0);
7467 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7468 OVRUNIT_CLOCK_GATE_DISABLE |
7469 OVCUNIT_CLOCK_GATE_DISABLE;
7470 if (IS_GM45(dev_priv))
7471 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7472 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7473
7474 g4x_disable_trickle_feed(dev_priv);
7475 }
7476
i965gm_init_clock_gating(struct drm_i915_private * dev_priv)7477 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7478 {
7479 struct intel_uncore *uncore = &dev_priv->uncore;
7480
7481 intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7482 intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7483 intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7484 intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7485 intel_uncore_write16(uncore, DEUC, 0);
7486 intel_uncore_write(uncore,
7487 MI_ARB_STATE,
7488 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7489 }
7490
i965g_init_clock_gating(struct drm_i915_private * dev_priv)7491 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7492 {
7493 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7494 I965_RCC_CLOCK_GATE_DISABLE |
7495 I965_RCPB_CLOCK_GATE_DISABLE |
7496 I965_ISC_CLOCK_GATE_DISABLE |
7497 I965_FBC_CLOCK_GATE_DISABLE);
7498 I915_WRITE(RENCLK_GATE_D2, 0);
7499 I915_WRITE(MI_ARB_STATE,
7500 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7501 }
7502
gen3_init_clock_gating(struct drm_i915_private * dev_priv)7503 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7504 {
7505 u32 dstate = I915_READ(D_STATE);
7506
7507 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7508 DSTATE_DOT_CLOCK_GATING;
7509 I915_WRITE(D_STATE, dstate);
7510
7511 if (IS_PINEVIEW(dev_priv))
7512 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7513
7514 /* IIR "flip pending" means done if this bit is set */
7515 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7516
7517 /* interrupts should cause a wake up from C3 */
7518 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7519
7520 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7521 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7522
7523 I915_WRITE(MI_ARB_STATE,
7524 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7525 }
7526
i85x_init_clock_gating(struct drm_i915_private * dev_priv)7527 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7528 {
7529 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7530
7531 /* interrupts should cause a wake up from C3 */
7532 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7533 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7534
7535 I915_WRITE(MEM_MODE,
7536 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7537
7538 /*
7539 * Have FBC ignore 3D activity since we use software
7540 * render tracking, and otherwise a pure 3D workload
7541 * (even if it just renders a single frame and then does
7542 * abosultely nothing) would not allow FBC to recompress
7543 * until a 2D blit occurs.
7544 */
7545 I915_WRITE(SCPD0,
7546 _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7547 }
7548
i830_init_clock_gating(struct drm_i915_private * dev_priv)7549 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7550 {
7551 I915_WRITE(MEM_MODE,
7552 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7553 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7554 }
7555
intel_init_clock_gating(struct drm_i915_private * dev_priv)7556 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7557 {
7558 dev_priv->display.init_clock_gating(dev_priv);
7559 }
7560
intel_suspend_hw(struct drm_i915_private * dev_priv)7561 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7562 {
7563 if (HAS_PCH_LPT(dev_priv))
7564 lpt_suspend_hw(dev_priv);
7565 }
7566
nop_init_clock_gating(struct drm_i915_private * dev_priv)7567 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7568 {
7569 drm_dbg_kms(&dev_priv->drm,
7570 "No clock gating settings or workarounds applied.\n");
7571 }
7572
7573 /**
7574 * intel_init_clock_gating_hooks - setup the clock gating hooks
7575 * @dev_priv: device private
7576 *
7577 * Setup the hooks that configure which clocks of a given platform can be
7578 * gated and also apply various GT and display specific workarounds for these
7579 * platforms. Note that some GT specific workarounds are applied separately
7580 * when GPU contexts or batchbuffers start their execution.
7581 */
intel_init_clock_gating_hooks(struct drm_i915_private * dev_priv)7582 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7583 {
7584 if (IS_GEN(dev_priv, 12))
7585 dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7586 else if (IS_GEN(dev_priv, 11))
7587 dev_priv->display.init_clock_gating = icl_init_clock_gating;
7588 else if (IS_CANNONLAKE(dev_priv))
7589 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7590 else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
7591 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7592 else if (IS_SKYLAKE(dev_priv))
7593 dev_priv->display.init_clock_gating = skl_init_clock_gating;
7594 else if (IS_KABYLAKE(dev_priv))
7595 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7596 else if (IS_BROXTON(dev_priv))
7597 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7598 else if (IS_GEMINILAKE(dev_priv))
7599 dev_priv->display.init_clock_gating = glk_init_clock_gating;
7600 else if (IS_BROADWELL(dev_priv))
7601 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7602 else if (IS_CHERRYVIEW(dev_priv))
7603 dev_priv->display.init_clock_gating = chv_init_clock_gating;
7604 else if (IS_HASWELL(dev_priv))
7605 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7606 else if (IS_IVYBRIDGE(dev_priv))
7607 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7608 else if (IS_VALLEYVIEW(dev_priv))
7609 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7610 else if (IS_GEN(dev_priv, 6))
7611 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7612 else if (IS_GEN(dev_priv, 5))
7613 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7614 else if (IS_G4X(dev_priv))
7615 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7616 else if (IS_I965GM(dev_priv))
7617 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7618 else if (IS_I965G(dev_priv))
7619 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7620 else if (IS_GEN(dev_priv, 3))
7621 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7622 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7623 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7624 else if (IS_GEN(dev_priv, 2))
7625 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7626 else {
7627 MISSING_CASE(INTEL_DEVID(dev_priv));
7628 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7629 }
7630 }
7631
7632 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_i915_private * dev_priv)7633 void intel_init_pm(struct drm_i915_private *dev_priv)
7634 {
7635 /* For cxsr */
7636 if (IS_PINEVIEW(dev_priv))
7637 pnv_get_mem_freq(dev_priv);
7638 else if (IS_GEN(dev_priv, 5))
7639 ilk_get_mem_freq(dev_priv);
7640
7641 if (intel_has_sagv(dev_priv))
7642 skl_setup_sagv_block_time(dev_priv);
7643
7644 /* For FIFO watermark updates */
7645 if (INTEL_GEN(dev_priv) >= 9) {
7646 skl_setup_wm_latency(dev_priv);
7647 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7648 } else if (HAS_PCH_SPLIT(dev_priv)) {
7649 ilk_setup_wm_latency(dev_priv);
7650
7651 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7652 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7653 (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7654 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7655 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7656 dev_priv->display.compute_intermediate_wm =
7657 ilk_compute_intermediate_wm;
7658 dev_priv->display.initial_watermarks =
7659 ilk_initial_watermarks;
7660 dev_priv->display.optimize_watermarks =
7661 ilk_optimize_watermarks;
7662 } else {
7663 drm_dbg_kms(&dev_priv->drm,
7664 "Failed to read display plane latency. "
7665 "Disable CxSR\n");
7666 }
7667 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7668 vlv_setup_wm_latency(dev_priv);
7669 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7670 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7671 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7672 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7673 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7674 } else if (IS_G4X(dev_priv)) {
7675 g4x_setup_wm_latency(dev_priv);
7676 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
7677 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
7678 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
7679 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7680 } else if (IS_PINEVIEW(dev_priv)) {
7681 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7682 dev_priv->is_ddr3,
7683 dev_priv->fsb_freq,
7684 dev_priv->mem_freq)) {
7685 drm_info(&dev_priv->drm,
7686 "failed to find known CxSR latency "
7687 "(found ddr%s fsb freq %d, mem freq %d), "
7688 "disabling CxSR\n",
7689 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7690 dev_priv->fsb_freq, dev_priv->mem_freq);
7691 /* Disable CxSR and never update its watermark again */
7692 intel_set_memory_cxsr(dev_priv, false);
7693 dev_priv->display.update_wm = NULL;
7694 } else
7695 dev_priv->display.update_wm = pnv_update_wm;
7696 } else if (IS_GEN(dev_priv, 4)) {
7697 dev_priv->display.update_wm = i965_update_wm;
7698 } else if (IS_GEN(dev_priv, 3)) {
7699 dev_priv->display.update_wm = i9xx_update_wm;
7700 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7701 } else if (IS_GEN(dev_priv, 2)) {
7702 if (INTEL_NUM_PIPES(dev_priv) == 1) {
7703 dev_priv->display.update_wm = i845_update_wm;
7704 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7705 } else {
7706 dev_priv->display.update_wm = i9xx_update_wm;
7707 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7708 }
7709 } else {
7710 drm_err(&dev_priv->drm,
7711 "unexpected fall-through in %s\n", __func__);
7712 }
7713 }
7714
intel_pm_setup(struct drm_i915_private * dev_priv)7715 void intel_pm_setup(struct drm_i915_private *dev_priv)
7716 {
7717 dev_priv->runtime_pm.suspended = false;
7718 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7719 }
7720
intel_dbuf_duplicate_state(struct intel_global_obj * obj)7721 static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
7722 {
7723 struct intel_dbuf_state *dbuf_state;
7724
7725 dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
7726 if (!dbuf_state)
7727 return NULL;
7728
7729 return &dbuf_state->base;
7730 }
7731
intel_dbuf_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)7732 static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
7733 struct intel_global_state *state)
7734 {
7735 kfree(state);
7736 }
7737
7738 static const struct intel_global_state_funcs intel_dbuf_funcs = {
7739 .atomic_duplicate_state = intel_dbuf_duplicate_state,
7740 .atomic_destroy_state = intel_dbuf_destroy_state,
7741 };
7742
7743 struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state * state)7744 intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
7745 {
7746 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7747 struct intel_global_state *dbuf_state;
7748
7749 dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
7750 if (IS_ERR(dbuf_state))
7751 return ERR_CAST(dbuf_state);
7752
7753 return to_intel_dbuf_state(dbuf_state);
7754 }
7755
intel_dbuf_init(struct drm_i915_private * dev_priv)7756 int intel_dbuf_init(struct drm_i915_private *dev_priv)
7757 {
7758 struct intel_dbuf_state *dbuf_state;
7759
7760 dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
7761 if (!dbuf_state)
7762 return -ENOMEM;
7763
7764 intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
7765 &dbuf_state->base, &intel_dbuf_funcs);
7766
7767 return 0;
7768 }
7769
intel_dbuf_pre_plane_update(struct intel_atomic_state * state)7770 void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
7771 {
7772 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7773 const struct intel_dbuf_state *new_dbuf_state =
7774 intel_atomic_get_new_dbuf_state(state);
7775 const struct intel_dbuf_state *old_dbuf_state =
7776 intel_atomic_get_old_dbuf_state(state);
7777
7778 if (!new_dbuf_state ||
7779 new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
7780 return;
7781
7782 WARN_ON(!new_dbuf_state->base.changed);
7783
7784 gen9_dbuf_slices_update(dev_priv,
7785 old_dbuf_state->enabled_slices |
7786 new_dbuf_state->enabled_slices);
7787 }
7788
intel_dbuf_post_plane_update(struct intel_atomic_state * state)7789 void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
7790 {
7791 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7792 const struct intel_dbuf_state *new_dbuf_state =
7793 intel_atomic_get_new_dbuf_state(state);
7794 const struct intel_dbuf_state *old_dbuf_state =
7795 intel_atomic_get_old_dbuf_state(state);
7796
7797 if (!new_dbuf_state ||
7798 new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
7799 return;
7800
7801 WARN_ON(!new_dbuf_state->base.changed);
7802
7803 gen9_dbuf_slices_update(dev_priv,
7804 new_dbuf_state->enabled_slices);
7805 }
7806